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Doubloons and q-secant numbers

Dominique Foata and Guo-Niu Han

(Communicated by Linus Kramer)

Abstract. Based on the evaluation at t = −1 of the generating polynomial for the hyper-
octahedral group by the number of descents, an observation recently made by Hirzebruch, a
new q-secant number is derived by working with the Chow-Gessel q-polynomial involving the
flag major index. Using the doubloon combinatorial model we show that this new q-secant
number is a polynomial with positive integral coefficients, a property apparently hard to
prove by analytical methods.

1. Introduction

This paper, in harmony with our previous two papers on doubloons [11, 12],
is motivated by our intention of finding a combinatorial connection between
the Eulerian polynomials, on the one hand, and the trigonometric functions,
tangent and secant, on the other hand, when the connection is further carried
over to a q-analog environment.

Let (t; q)n := (1 − t)(1 − tq) · · · (1 − tqn−1) if n ≥ 1 and (t; q)0 := 1 be the
traditional q-ascending factorial and [ j ]q := 1 + q+ · · ·+ qj−1 be the q-analog
of the positive integer j. The q-analogs An(t, q), introduced by Carlitz [3, 4],
of the Eulerian polynomials, may be defined by the identity

(1)
An(t, q)

(t; q)n+1
=

∑

j≥0

tj([j + 1]q)
n (n ≥ 0).

For each n ≥ 0 the q-analog An(t, q) is a polynomial with positive integral
coefficients [in short, a PIC polynomial ], such that An(t, 1) is equal to the
traditional Eulerian polynomial An(t) introduced by Euler himself [7], who
also derived the exponential generating function:

(2)
∑

n≥0

un

n!
An(t) =

1 − t

−t+ exp(u(t− 1))
.

As An(1, 1) = An(1) = n!, each PIC polynomial An(t) (resp. An(t, q)) has
been regarded as a generating function for the symmetric group Sn by several
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integral-valued statistics (resp. pairs of such statistics) [20, 13, 4]. Note that
(2) is easily derived from (1).

In the same manner, the next two identities

Bn(t, q)

(t; q2)n+1
=

∑

j≥0

tj([2j + 1]q)
n (n ≥ 0);(3)

∑

n≥0

un

n!
Bn(t) =

(1 − t) exp(u(t− 1))

−t+ exp(2u(t− 1))
;(4)

may serve to define two families of polynomials (Bn(t)), (Bn(t, q)) (n ≥ 0).
Again, both Bn(t) and Bn(t, q) are PIC polynomials and Bn(t) = Bn(t, 1).

Moreover, (4) is easily derived from (3). The interpretation of Bn(t) as a
generating polynomial for the hyperoctahedral group Bn, together with the
derivations of (3) for q = 1 and (4), was first obtained by Reiner [19], also
by Cohen [6] in the general context of the Coxeter groups of spherical type.
Formula (3) was derived and fully interpreted by Chow and Gessel [5].

While studying the signatures of the toric varieties, Hirzebruch [16] is led
to calculate the values of both polynomials An(t) and Bn(t) at t = −1. He
first quotes Euler’s identities [7]

(5) A2n(−1) = 0 (n ≥ 1); (−1)nA2n+1(−1) = T2n+1 (n ≥ 0),

where the coefficients T2n+1 (n ≥ 0) are the tangent numbers occurring in the
Taylor expansion of tanu:

tanu =
∑

n≥0

u2n+1

(2n+ 1)!
T2n+1(6)

=
u

1!
1 +

u3

3!
2 +

u5

5!
16 +

u7

7!
272 +

u9

9!
7936 +

u11

11!
353792 + · · ·

Then, he notes that

(7) B2n+1(−1) = 0 (n ≥ 0); (−1)nB2n(−1) = 22nE2n (n ≥ 0),

where the coefficients E2n (n ≥ 0) are the secant numbers occurring in the
Taylor expansion of secu

secu =
1

cosu
=

∑

n≥0

u2n

(2n)!
E2n(8)

= 1 +
u2

2!
1 +

u4

4!
5 +

u6

6!
61 +

u8

8!
1385 +

u10

10!
50521 + · · ·

since, by (4),

∑

n≥0

(iu)n

2nn!
Bn(−1) =

2

eiu + e−iu
= secu =

∑

n≥0

u2n

(2n)!
E2n.

It so happens that (7) is just the relation needed to construct a new q-
analog of the secant number, in parallel with what has been done already for
the tangent number.
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Theorem 1.1. Let (Bn(t, q)) (n ≥ 0) be the sequence of polynomials defined
by (3) and let

(9) E2n(q) := (−1)nqn2

B2n(−q−2n, q) (n ≥ 1).

Then,
(a) each E2n(q) is a PIC polynomial;
(b) it admits the factorization

(10) E2n(q) = (1 + q2)(1 + q4) · · · (1 + q2n)F2n(q),

where F2n(q) is a PIC polynomial;
(c) E2n(1) = 2nF2n(1) = 22nE2n (E2n the secant number);
(d) B2n+1(−q−(2n+1), q) = 0 (n ≥ 0).

Property (c) follows from (7) and (9). Property (d) is proved in Section 5.
As is often the case, it is much harder to derive the factorization shown in
(b) and prove that the coefficients of E2n(q) are positive. It requires a long
combinatorial development, given in the next three Sections. We reproduce
the first values of the polynomials Bn(t, q) and E2n(q) in Tables 1.1 and 1.2.

B1(t, q) = 1 + qt; B2(t, q) = 1 + (2q + 2q2 + 2q3)t+ q4t2;
B3(t, q) = 1 + (3q + 5q2 + 7q3 + 5q4 + 3q5)t

+ (3q4 + 5q5 + 7q6 + 5q7 + 3q8)t2 + q9t3;
B4(t, q) = 1 + (4q + 9q2 + 16q3 + 18q4 + 16q5 + 9q6 + 4q7)t

+ (6q4 + 16q5 + 30q6 + 40q7 + 46q8 + 40q9 + 30q10 + 16q11 + 6q12)t2

+ (4q9 + 9q10 + 16q11 + 18q12 + 16q13 + 9q14 + 4q15)t3 + q16t4.

Table 1.1. The polynomials Bn(t, q).

E2(q) = (1 + q2)2; E4(q) = (1 + q2)(1 + q4)(6 + 8q + 6q2);
E6(q) = (1 + q2)(1 + q4)(1 + q6)(20 + 60q + 104q2 + 120q3 + 104q4

+ 60q5 + 20q6);
E8(q) = (1 + q2)(1 + q4)(1 + q6)(1 + q8)(70 + 336q + 910q2 + 1760q3

+ 2702q4 + 3440q5 + 3724q6 + 3440q7 + 2702q8 + 1760q9 + 910q10

+ 336q11 + 70q12).

Table 1.2. The polynomials E2n(q).

Following the method developed in [11] and [12], the proof of Theorem 1.1 (a)
and (b) will consist of making the polynomial E2n+2(q), defined in (9), appear
as a generating function by an appropriate statistic “smaj,” combined with a
sign “sgn”

E2n+2(q) =
∑

w∈B2n+2

sgnw qsmaj w (n ≥ 1)

and constructing a sign-reversing involution on B2n+2, in such a way that after
its application the remaining terms in the sum have positive signs. We leave
out the banal case: E2(q) = 2(1 + q2).
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The final step is then to prove the identity

(11) E2n+2(q) = (1 + q2)(1 + q4) · · · (1 + q2n+2)
∑

w∈SN2n+2

qsmaj w,

where the sum is over a specific class SN 2n+2 of signed permutations, called
normalized signed doubloons (see Section 4).

More importantly, the generating polynomial for SN 2n+2 occurring in (11)
will be explicitly calculated by means of the doubloon polynomials (dn,j(q))
(n ≥ 1, 2 ≤ j ≤ 2n), which are defined by the recurrence

(D1) d0,j(q) = δ1,j (Kronecker symbol);
(D2) dn,j(q) = 0 for n ≥ 1 and j ≤ 1 or j ≥ 2n+ 1;
(D3) dn,2(q) =

∑

j

qj−1 dn−1,j(q) for n ≥ 1;

(D4) dn,j(q) − 2 dn,j−1(q) + dn,j−2(q)

= −(1 − q)
j−3
∑

i=1

qn+i+1−j dn−1,i(q)

− (1 + qn−1) dn−1,j−2(q) + (1 − q)
2n−1
∑

i=j−1

qi−j+1 dn−1,i(q)

for n ≥ 2 and 3 ≤ j ≤ 2n;

the first values being:
d1,2(q) = 1; d2,2(q) = q; d2,3(q) = q + 1; d2,4(q) = 1;

d3,2(q) = 2q3 + 2q2; d3,3(q) = 2q3 + 4q2 + 2q; d3,4(q) = q3 + 4q2 + 4q+ 1;
d3,5(q) = 2q2 + 4q + 2; d3,6(q) = 2q + 2;

d4,2(q) = 5q6 +12q5 +12q4 +5q3; d4,3(q) = 5q6 +17q5 +24q4 +17q3 +5q2;
d4,4(q) = 3q6 + 15q5 + 29q4 + 29q3 + 15q2 + 3q;
d4,5(q) = q6 + 9q5 + 25q4 + 34q3 + 25q2 + 9q + 1;
d4,6(q) = 3q5 + 15q4 + 29q3 + 29q2 + 15q + 3;
d4,7(q) = 5q4 + 17q3 + 24q2 + 17q + 5; d4,8(q) = 5q3 + 12q2 + 12q + 5.

Those polynomials were introduced and used in [12] to evaluate a new q-
analog

(12) T2n+1(q) := (−1)nq(
n

2)A2n+1(−q
−n, q)

of the tangent number based on the Carlitz q-Eulerian polynomial An(t, q)
defined in (1). It was shown that T2n+1(q) was a PIC polynomial equal to

(13) T2n+1(q) = (1 + q)(1 + q2) · · · (1 + qn)

2n+2
∑

k=2

dn,k(q).

The parallel expression for the PIC polynomials E2n+2(q) is next stated.

Theorem 1.2. For each n ≥ 1 the polynomial E2n+2(q) has the following
expression:

(14) E2n+2(q) = (1 + q2)(1 + q4) · · · (1 + q2n+2)

2n
∑

k=2

dn,k(q2)Pn,k(q),
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where the coefficients Pn,k(q) (n ≥ 1, 2 ≤ j ≤ 2n) are defined by

(15) Pn,k(q) :=
2n+1−k

∑

i=0

qn−1−2i

i+k
∑

l=i+1

(

2n+ 2

l

)

ql.

The quantities Qn,k(q) := qn+1−kPn,k(q) are PIC polynomials. Their first
values are listed in Table 1.3.

Q1,2(q) = 6 + 8q + 6q2;

Q2,2(q) = 15 + 26q + 30q2 + 26q3 + 15q4;
Q2,3(q) = 20 + 30q + 32q2 + 30q3 + 20q4; Q2,4(q) = Q2,2(q)

Q3,2(q) = 28 + 64q + 98q2 + 112q3 + 98q4 + 64q5 + 28q6;
Q3,3(q) = 56 + 98q + 120q2 + 126q3 + 120q4 + 98q5 + 56q6;
Q3,4(q) = 70 + 112q + 126q2 + 128q3 + 126q4 + 112q5 + 70q6;
Q3,5(q) = Q3,3(q); Q3,6(q) = Q3,2(q);

Q4,2(q) = 45 + 130q + 255q2 + 372q3 + 420q4 + 372q5 + 255q6 + 130q7 + 45q8;
Q4,3(q) = 120+255q+382q2 +465q3 +492q4 +465q5 +382q6 +255q7 +120q8;
Q4,4(q) = 210+372q+465q2 +502q3 +510q4 +502q5 +465q6 +372q7 +210q8;
Q4,5(q) = 252+420q+492q2 +510q3 +512q4 +510q5 +492q6 +420q7 +252q8;
Q4,6(q) = Q4,4(q); Q4,7(q) = Q4,3(q); Q4,8(q) = Q4,2(q).

Table 1.3. The polynomials Qn,k(q).

The proofs of Theorems 1.1 and 1.2 are given in Sections 3 and 4. In the
last Section we obtain a global expression for the generating polynomial for
the group Bn by a five-variable statistic, which takes the two classical descent
definitions into account.

To end this introduction we point out that the identity

(16) T2n+1 = 2n

2n
∑

k=2

dn,k,

which is the q = 1 version of (13), is originally due to Christiane Poupard [18],
who worked out the recurrence for the now called Poupard triangle dn,k :=
dn,k(1) (n ≥ 1, 2 ≤ k ≤ 2n), obtainable from (D1)–(D4) for q = 1.

We reproduce the first values of the Poupard triangle (dn,k), together with
the first values of

(17) Qn,k := Qn,k(1) = Pn,k(1) =

2n+1−k
∑

i=0

i+k
∑

l=i+1

(

2n+ 2

l

)

.

Both dn,k and Qn,k are displayed in triangles (2 ≤ k ≤ 2n, 1 ≤ n ≤ 4), as
shown in Fig. 1.4.

The q = 1 version of identity (14) reads:

(18) 2n+1E2n+2 =

2n
∑

k=2

dn,kQn,k.
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For instance, (18) for n = 2 yields: 23E6 = 8 × 61 = 488 = 1 × 112 + 2 ×
132+1×112. There exists a rich formulary of relations for tangent and secant
numbers (see, e.g., the old monograph by Nielsen [17]). Identities (16) and (18)
provide a new parametrization of those coefficients by means of the Poupard
triangle (dn,k).

1
1 2 1

4 8 10 8 4
34 68 94 104 94 68 34

The Poupard triangle (dn,k)

20
112 132 112

492 674 744 674 492
2024 2936 3608 3860 3608 2936 2024

The coefficients (Qn,k)

Fig. 1.4.

2. Statistics on the hyperoctahedral group

The elements of the hyperoctahedral group Bn, usually called signed per-
mutations, may be viewed as words w = x1x2 · · ·xn, where each xi belongs to
the set {−n, . . . ,−1, 1, . . . , n} and |x1||x2| · · · |xn| is a permutation of 12 . . . n.
The set (resp. the number) of negative letters among the xi’s is denoted by
Negw (resp. negw). In the same manner, let Posw (resp. posw) be the set
(resp. the number) of all positive letters in w. It is convenient to write i := −i
for each integer i. There are 2nn! signed permutations of order n. The sym-
metric group Sn may be considered as the subset of all w from Bn such that
Negw = ∅.

For each statement A let χ(A) = 1 or 0 depending on whether A is true
or not. The usual number of descents and major index of each word w =
x1x2 · · ·xn are defined by

desw :=
n−1
∑

i=1

χ(xi > xi+1);(19)

majw :=
n−1
∑

i=1

i χ(xi > xi+1).(20)

When Bn is regarded as a Coxeter group, an extra descent is counted, when
the first letter x1 of the signed permutation w = x1x2 · · ·xn is negative. In the
literature two definitions are then used:

desB w := χ(x1 < 0) + desw;(21)

fdesw := χ(x1 < 0) + 2 desw.(22)

Furthermore, a flag major index “fmaj” defined by

(23) fmajw := 2 majw + negw,

has been adopted for Bn, because it is equidistributed with the Coxeter length
“ℓ” for Bn (see, e.g., [1, 8]), a property that extends the corresponding property
for the symmetric group Sn, which says that the major index “maj” and the
number of inversions “inv” (the Coxeter length for Sn) are equidistributed.
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Proposition 2.1. The polynomial Bn(t, q) defined by (3) has the following
combinatorial interpretation:

(24) Bn(t, q) =
∑

w∈Bn

tdesB wqfmaj w.

In other words, Bn(t, q) is the generating polynomial for the hyperoctahedral
group Bn by the pair (desB, fmaj).

The proof of the proposition can be found in [5]. This is also a consequence
of Theorem 6.2, that takes both “desB” and “fdes” into account (see (75) and
(76)).

From the definition of the polynomials E2n+2(q) given in (9) and (24) it
follows that

E2n+2(q) = (−1)n+1q(n+1)2B2n+2(−q
−2n+2, q)

may be expressed as

(25) E2n+2(q) = (−1)n+1
∑

w=x1···x2n+2∈B2n+2

(−1)χ(x1<0)+des wqsmaj w,

where “smaj” is a new statistic — call it signed major index — defined for
each signed permutation w = x1x2 · · ·x2n+2 ∈ B2n+2 by

(26) smajw := (n+ 1)2 − 2(n+ 1)
(

χ(x1 < 0) + desw
)

+ 2 majw + negw.

A compressed major index “cmaj” was defined in [11, 12] on the symmetric
group Sn. Extend its definition to each w ∈ B2n+2, as follows

(27) cmajw := majw − (n+ 1) desw + (n− 1)n/2.

The next lemma only needs a straightforward calculation.

Lemma 2.2. For each w = x1x2 · · ·x2n+2 ∈ B2n+2 we have:

(28) smajw − 2 cmajw = 3n+ 1 + negw − 2(n+ 1)χ(x1 < 0);

so that

(29) smajw − 2 cmajw = n+ negw − 1, if x1 < 0.

The mirror image of a signed permutation w = x1x2 · · ·x2n+2 is defined by
rw := x2n+2 · · ·x2x1. It is easily verified that

des rw = (2n+ 1) − desw;(30)

maj rw = (2n+ 2)(2n+ 1)/2 − (2n+ 2) desw + majw.(31)

Those two relations suffice to prove the next lemma.

Lemma 2.3. For each w = x1x2 · · ·x2n+2 ∈ B2n+2 we have:

smaj rw − smajw = 2(n+ 1)
(

χ(x1 < 0) − χ(x2n+2 < 0)
)

;(32)

(−1)des r w+χ(x2n+2<0) × (−1)desw+χ(x1<0) = −(−1)χ(x1<0)+χ(x2n+2<0).(33)
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The sum displayed in (25) may be decomposed into four subsums:
∑

w=x1···x2n+2∈B2n+2

=
∑

x1x2n+2>0,
x1<x2n+2

+
∑

x1x2n+2>0,
x1>x2n+2

+
∑

x1<0,
x2n+2>0

+
∑

x1>0,
x2n+2<0

=
∑

x1x2n+2>0,
x1<x2n+2

+ r
∑

x1x2n+2>0,
x1<x2n+2

+
∑

x1<0,
x2n+2>0

+ r
∑

x1<0,
x2n+2>0

.

It follows from Lemma 2.3 that the sum of the first two subsums vanishes, and
the fourth one is equal to the product of the third one by q2n+2. Thus,

(34) E2n+2(q) = (−1)n+1(1 + q2n+2)
∑

w=x1···x2n+2∈B2n+2,
x1<0<x2n+2

(−1)des w+1qsmaj w

since χ(x1 < 0) = 1 for every w occurring in the sum. To pursue the calculation
of E2n+2(q) we use the doubloon calculus, as developed in our previous two
papers.

3. Doubloons

A doubloon of order (2n + 1) is defined to be a permutation of the word
012 · · · (2n + 1), represented as a 2 × (n + 1)-matrix δ =

(

a0 ··· an

b0 ··· bn

)

. The word

a0 · · · anbn · · · b0 is called the reading ρ(δ) of δ. Define stat δ := stat ρ(δ),
whenever “stat” is equal to “des,” “maj,” “fmaj,” “cmaj,” or “smaj.” Let
F δ := a0, L δ := b0. The set of all doubloons of order (2n+ 1) is denoted by
D2n+1. The subset of all doubloons δ such that L δ = j (resp. F δ = i and
L δ = j) is denoted by D2n+1,j (resp. Di

2n+1,j).

Each doubloon δ =
(

a0 ··· an

b0 ··· bn

)

from D2n+1 is said to be interlaced (resp.

normalized), if for every k = 1, 2, . . . , n the sequence (ak−1, ak, bk−1, bk) or one
of its three cyclic rearrangements is monotonic increasing or decreasing (resp.
decreasing). Let Ii

2n+1 (resp. Ii
2n+1,j , resp. N i

2n+1, resp. N i
2n+1,j) denote the

set of all doubloons δ from Di
2n+1, which are interlaced (resp. interlaced with

L δ = j, resp. normalized, resp. normalized with L δ = j).

For instance, the doubloon δ =
(

0 4 3
2 1 5

)

is normalized, since both sequences
(4, 2, 1, 0) and (5, 4, 3, 1), which are cyclic rearrangements of (0, 4, 2, 1) and
(4, 3, 1, 5), respectively, are decreasing.

The geometry of interlaced and normalized doubloons has been studied
in [11]. The connection between interlaced doubloons and split-pair arrange-
ments, introduced by Graham and Zang [14], is explicitly made in [12].

We now recall several properties on doubloons already proved in [11, 12].
For each doubloon δ =

(

a0 a1 ···an

b0 b1 ··· bn

)

from D2n+1 and each integer h let δ + h be
the doubloon

(35) δ + h :=

(

a0 + h a1 + h · · · an + h
b0 + h b1 + h · · · bn + h

)

,

where each entry is expressed as a residue mod(2n+ 2).

Münster Journal of Mathematics Vol. 3 (2010), 89–110



Doubloons and q-secant numbers 97

Property 3.1. The mapping δ 7→ δ+h is a bijection of Ii
2n+1,j (resp. N i

2n+1,j)

onto Ii+h
2n+1,j+h (resp. N i+h

2n+1,j+h) (superscript and subscript being taken

mod(2n+ 2)).

See [12], Proposition 2.1.

Property 3.2. Let 0 ≤ i < j and δ =
(

a0 a1 ··· an

b0 b1 ··· bn

)

be a doubloon from Di
2n+1,j,

so that δ − i =
(

0 a1−i ··· an−i
j−i b1−i ··· bn−i

)

belongs to D0
2n+1,j−i. Then,

(36) des(δ − i) = des δ, cmaj(δ − i) = cmaj δ + i.

See [12], Lemma 3.2.

Property 3.3. For each integer k there is a sign-reversing involution on
D0

2n+1,k \ I0
2n+1,k having the property that

(37)
∑

δ∈D0
2n+1,k

(−1)n+des δqcmaj δ =
∑

δ∈I0
2n+1,k

qcmaj δ.

Moreover,

(38)
∑

δ∈I0
2n+1,k

qcmaj δ = (1 + q)(1 + q2) · · · (1 + qn)
∑

δ′∈N 0
2n+1,k

qcmaj δ.

Proof. Refer to the proofs of Theorems 4.2 and 1.6 in [11], and observe that

the first column
(

0
k

)

is left invariant under each macro flip. �

4. Signed doubloons

Now, we extend the notion of doubloon to the group of signed permutations
and speak of signed doubloons, but only for those signed permutations w =
x1x2 · · ·x2n+2 ∈ B2n+2 occurring in the summation displayed in (34). They
have the property that F w := x1 < 0 < x2n+2 =: Lw. We represent them as

2 × (n+ 1)-matrices w =

(

x1 x2 · · · xn+1

x2n+2 x2n+1 · · · xn+2

)

. The set of all those signed

doubloons will be denoted by SD2n+2.

For each w =

(

x1 x2 · · · xn+1

x2n+2 x2n+1 · · · xn+2

)

from SD2n+2 let φw be the in-

creasing bijection of {x1, x2, . . . , x2n+2} onto {0, 1, 2, . . . , 2n + 1} and form

the (unsigned) doubloon δw :=

(

φw(x1) φw(x2) · · · φw(xn+1)
φw(x2n+2)φw(x2n+1) · · · φw(xn+2)

)

. The

signed doubloon w is characterized by the pair (δw,−Negw). Moreover,
statw = stat δw whenever “stat” is equal to “des,” “maj,” “fmaj,” “cmaj,”
or “smaj.” The signed doubloon w is said to be interlaced (resp. normalized),
if δw is interlaced (resp. normalized).

As F w < 0 < Lw when w belongs to SD2n+2, the mapping

(39) w 7→ (δw,−Negw)

is a bijection of the set SD2n+2 onto the set of pairs (δ, J) such that δ ∈ D2n+1,
and J a subset of {1, 2, . . . , 2n+ 2} such that F δ + 1 ≤ #J ≤ L δ.

Münster Journal of Mathematics Vol. 3 (2010), 89–110



98 Dominique Foata and Guo-Niu Han

For instance, if δ =
(

042
315

)

∈ D5, then Fδ + 1 = 1 ≤ #J ≤ 3 = Lδ. Take
J = {3}, {1, 3}, {2, 3, 5} for example, the three signed doubloons w ∈ SD6

associated with those three subsets J are the following:

(

352
416

)

7→ (
(

042
315

)

, {3}),
(

352
416

)

7→ (
(

042
315

)

, {1, 3}),
(

542
136

)

7→ (
(

042
315

)

, {2, 3, 5}).

If (δw,−Negw) = (δ, J), then (see (29))

(40) desw = des δ; smajw = 2 cmaj δ + #J + n− 1.

We next make the composition product of the two mappings described in
(35) and (39).

Theorem 4.1. For each pair (i, k) of integers such that 1 ≤ k ≤ 2n and
0 ≤ i ≤ 2n+ 1 − k the mapping

(41) w 7→ (δw − i, −Negw)

is a bijection of the set SDi
2n+2,i+k of the signed doubloons w satisfying F δw =

i, L δw = i + k onto the set of pairs (δ, J) such that δ ∈ D0
2n+1,k and J ⊂

[1, 2n + 2] with i + 1 ≤ #J ≤ i + k. Moreover, if w is interlaced (resp.
normalized), so is δw − i, and conversely. Finally, if δ = δw − i, then

(42) desw = des δ; smajw = 2 cmaj δ − 2i+ #J + n− 1.

Proof. The theorem is a consequence of Properties 3.1 and 3.2 and the prop-
erties of the bijection w 7→ (δw,−Negw) given in (40). �

Identity (34) may be rewritten as

E2n+2(q) = (−1)n+1(1 + q2n+2)
∑

w∈SD2n+2

(−1)desw+1qsmaj w

= (1 + q2n+2)
2n
∑

k=1

2n+1−k
∑

i=0

∑

w∈SDi
2n+2,i+k

(−1)n+deswqsmaj w.

Let

(43) Pn,i,k(q) := qn−1−2i

i+k
∑

l=i+1

(

2n+ 2

l

)

ql.
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Using the preceding theorem and Property 3.3 we evaluate the third sum
as follows.

∑

w∈SDi
2n+2,i+k

(−1)n+des wqsmaj w

=
∑

δ∈D0
2n+1,k

∑

i+1≤#J≤i+k

(−1)n+des δq2 cmaj δ−2i+#J+n−1

= qn−1−2i
∑

δ∈D0
2n+1,k

(−1)n+des δq2 cmaj δ

i+k
∑

l=i+1

(

2n+ 2

l

)

ql

= Pn,i,k(q)
∑

δ∈D0
2n+1,k

(−1)n+des δq2 cmaj δ

= Pn,i,k(q)
∑

δ∈I0
2n+1,k

q2 cmaj δ

= (1 + q2) · · · (1 + q2n)Pn,i,k(q)
∑

δ∈N 0
2n+1,k

q2 cmaj δ

= (1 + q2) · · · (1 + q2n)Pn,i,k(q) dn,k(q2),(44)

where the last equality follows from [12], Theorem 1.2. By multiplying (44)
by (1 + q2n+2) and summing over all pairs (k, i) such that 1 ≤ k ≤ 2n and
0 ≤ i ≤ 2n + 1 − k we derive identity (14), keeping in mind that Pn,k(q) =

∑

0≤i≤2n+1−k

Pn,i,k.

This achieves the proofs of both Theorems 1.1 and 1.2, except part (d).

Let SN i
2n+2,i+k be the set of the normalized signed doubloons w satisfying

F δw = i, L δw = i+ k. It also follows from Theorem 4.1 that

(45)
∑

w∈SN i
2n+2,i+k

qsmaj w = Pn,i,k(q)
∑

δ∈N 0
2n+1,k

q2 cmaj δ.

From (44) it follows that

(46)
∑

w∈SDi
2n+2,i+k

(−1)n+deswqsmaj w = (1 + q2) · · · (1 + q2n)
∑

w∈SN i
2n+2,i+k

qsmaj w.

By multiplying (46) by (1 + q2n+2) and summing over all pairs (k, i) such that
1 ≤ k ≤ 2n and 0 ≤ i ≤ 2n+ 1 − k we derive identity (11).

5. Proof of theorem 1.1 (d)

Recall that for each w = x1x2 · · ·x2n+1 ∈ B2n+1 we have used the notations
F w := x1 and Lw := x2n+1. As B2n+1(t, q) =

∑

w∈B2n+1

tdesB wqfmajw, we may
write

(47) B2n+1(−q
−(2n+1), q) =

∑

w∈B2n+1

(−1)sgn wqsmaj w,
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where

sgnw := (−1)desw+χ(F w<0);(48)

smajw := 2 majw + negw − (2n+ 1)(desw + χ(F w < 0)),(49)

as there is no ambiguity to adopt this definition of “smaj” for signed permu-
tations from B2n+1.

For proving the identity A2n(−q−n, q) = 0 in [11] we had recourse to the
classical properties of the dihedral group acting on S2n. Actually, the mirror
image r provided the sign-reversing involution that was needed. With the
group B2n+1 the supplementary descent to be counted, when the first letter is
negative, makes it necessary to include another dihedral group involution, as
well as a sign change operation.

In this section the elements of B2n+1 will be regarded as two-row matrices

w =
(

|w|
ǫ

)

:=
(

|x1| |x2| ··· |x2n+1|
ǫ1 ǫ2 ··· ǫ2n+1

)

, where |w| := |x1||x2| · · · |x2n+1| becomes an

ordinary permutation and ǫ := ǫ1ǫ2 · · · ǫ2n+1 is the sign word defined by ǫi := 1
or −1, depending on whether xi is positive or negative (1 ≤ i ≤ 2n+ 1).

Three operations r, c, s are now introduced and further extended to all
of B2n+1: first, the mirror image

r : y1y2 · · · y2n+1 7→ y2n+1 · · · y2y1,

defined for every arbitrary word; second, the complement to (2n+ 2), defined
for each permutation from S2n+1, by

c : y1y2 · · · y2n+1 7→ (2n+ 2 − y1)(2n+ 2 − y2) · · · (2n+ 2 − y2n+1);

third, the sign change s, defined for each binary word, such as ǫ = ǫ1ǫ2 · · · ǫ2n+1,
whose letters are equal to +1 or −1, by

s : ǫ1ǫ2 · · · ǫ2n+1 7→ ǫ1ǫ2 · · · ǫ2n+1.

We use the same symbols for their extensions to B2n+1:

r :
(

|w|
ǫ

)

=
(

|x1| |x2| ··· |x2n+1|
ǫ1 ǫ2 ··· ǫ2n+1

)

7→
(

r |w|
r ǫ

)

=
(

|x2n+1| ··· |x2||x1|
ǫ2n+1 ··· ǫ2 ǫ1

)

;(50)

c :
(

|w|
ǫ

)

=
(

|x1| ··· |x2n+1|
ǫ1 ··· ǫ2n+1

)

7→
(

c |w|
ǫ

)

=
(

(2n+2−|x1|)···(2n+2−|x2n+1|)
ǫ1 ··· ǫ2n+1

)

;(51)

s :
(

|w|
ǫ

)

=
(

|x1| |x2|··· |x2n+1|
ǫ1 ǫ2 ··· ǫ2n+1

)

7→
(

|w|
s ǫ

)

=
(

|x1| |x2| ··· |x2n+1|
ǫ1 ǫ2 ··· ǫ2n+1

)

.(52)

Note that the three involutions r, c, s, defined on B2n+1 by (50), (51) and (52)
commute. The composition product b := c s r can also be written as

(53) b :
(

|w|
ǫ

)

=
(

|x1| ··· |x2n+1|
ǫ1 ··· ǫ2n+1

)

7→
(

c r |w|
r s ǫ

)

=
(

(n+2−|x2n+1|)···(n+2−|x1|)
ǫ2n+1 ··· ǫ1

)

.

Theorem 5.1. The composition product b defined in (53) is a sign-reversing
involution of B2n+1, i.e.,

(54) (sgn, smaj)
(

|w|
ǫ

)

= (− sgn, smaj)b
(

|w|
ǫ

)

.

The proof of the theorem is based on the next three lemmas. The first two
ones being easy to verify are given without proofs.
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Lemma 5.2. For each w =
(

|w|
ǫ

)

∈ B2n+1 we have

sgn rw = sgnw · (−1)χ(L w<0)+χ(F w<0);(55)

smaj rw = smajw + (2n+ 1)
(

χ(F w < 0) − χ(Lw < 0)
)

.(56)

Lemma 5.3. For each w =
(

|w|
ǫ

)

∈ B2n+1 we have:

sgn sw = − sgnw;(57)

smaj sw = − smajw.(58)

The third lemma requires a careful analysis.

Lemma 5.4. For each w =
(

|w|
ǫ

)

=
(

|x1| |x2| ··· |x2n+1|
ǫ1 ǫ2 ··· ǫ2n+1

)

∈ B2n+1 we have:

sgn cw = (−1)χ(F w<0)−χ(L w<0) sgnw;(59)

smaj cw = − smajw − (2n+ 1)
(

χ(F w < 0) − χ(Lw < 0)
)

.(60)

Proof. If
(

|xi|
ǫi

)

>
(

|xi+1|
ǫi+1

)

(resp.
(

|xi|
ǫi

)

<
(

|xi+1|
ǫi+1

)

) say that i is an interior

descent (resp. rise), if |xi| > |xi+1| (resp. |xi| < |xi+1|) and ǫi = ǫi+1. Denote
the set of all descents (resp. rises) of w by DESw (resp. RISEw), the set of
all interior descents (resp. rises) being designated by DESi w (resp. RISEiw),

so that DESw = DESi w + DES ǫ and RISEw = RISEi w + RISE ǫ.
First, DESi w = RISEi cw and RISEi w = DESi cw. Hence,

desw + des cw = (#DES ǫ+ #DESiw) + (#DES ǫ+ #DESi cw)

= (#DESiw+#DES ǫ) + (#RISEiw+#RISE ǫ)

+ (#DES ǫ−#RISE ǫ)

= 2n+ (#DES ǫ− #RISE ǫ)

:= 2n+ drise ǫ.

In the same way, let DRISE ǫ :=
∑

i

i
(

χ(i ∈ DES ǫ) − χ(i ∈ RISE ǫ)
)

. Then,

majw + majcw =
∑

i

(

i χ(i ∈ DES ǫ) + i χ(i ∈ DESiw)
)

+
∑

i

(

i χ(i ∈ DES ǫ) + i χ(i ∈ DESi cw)
)

=
∑

i

(

i χ(i ∈ DESw) + i χ(i ∈ RISEw)
)

+
∑

i

i
(

χ(i ∈ DES ǫ) − χ(i ∈ RISE ǫ)
)

= (1 + 2 + · · · + 2n) + DRISE ǫ

= n(2n+ 1) + DRISE ǫ.

Let d1 < d2 < · · · (resp. r1 < r2 < · · · ) denote the sequence of the descents
(resp. rises) of ǫ, when reading the word ǫ from left to right. Four cases are
now considered.
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(a) ǫ1 = ǫ2n+1 = −1; the rises and descents alternate in such a way that
1 ≤ r1 < d1 < r2 < d2 < · · · < rk < dk ≤ 2n and k ≥ 0. Hence, drise ǫ = 0

and DRISE ǫ =
k
∑

i=1

(di − ri) = posw.

(b) ǫ1 = +1, ǫ2n+1 = −1; the alternation becomes: 1 ≤ d1 < r1 < d2 <
r2 < · · · < dk < rk < dk+1 ≤ 2n (k ≥ 0). In this case, drise ǫ = 1 and
DRISE ǫ = posw.

(c) ǫ1 = ǫ2n+1 = 1; the sequence is then: 1 ≤ d1 < r1 < d2 < r2 < · · · <
dk < rk ≤ 2n (k ≥ 0). Hence, drise ǫ = 0 and DRISE ǫ = − negw.

(d) ǫ1 = −1, ǫ2n+1 = 1; then 1 ≤ r1 < d2 < r2 < · · · < rk < dk < rr+1 ≤ 2n
(k ≥ 0). Hence, drise ǫ = −1 and DRISE ǫ = − negw.

Thus, sgnw + sgn cw = desw + χ(ǫ1 < 0) + des cw + χ(ǫ1 < 0) ≡ drise ǫ
(mod 2), which is 0 when ǫ1 and ǫ2n+1 are of the same sign (cases (a) and (c)),
equal to 1 when ǫ1 = 1 , ǫ2n+1 = −1 (case (b)) and −1 when ǫ1 = −1 and
ǫ2n+1 = +1 (case (d)). Gathering in a common formula: sgnw + sgn cw ≡
χ(ǫ1 = 1) − χ(ǫ2n+1 = 1). This implies (59).

Finally,

smajcw + smajw = 2(majcw + majw) + neg cw + negw

− (2n+ 1)(des cw + desw + 2χ(ǫ1 < 0))

= 2n(2n+ 1) + 2 DRISE ǫ+ 2 negw

− (2n+ 1)(2n+ drise ǫ+ 2χ(ǫ1 < 0))

= 2 DRISE ǫ+ 2 negw

− (2n+ 1)(drise ǫ+ 2χ(ǫ1 < 0))

=



















2 posw + 2 negw − (2n+ 1)2 = 0, in case (a);

2 posw + 2 negw − (2n+ 1) = 2n+ 1, in case (b);

−2 negw + 2 negw − (2n+ 1)0 = 0, in case (c);

−2 negw + 2 negw − (2n+ 1) = −(2n+ 1), in case (d).

Altogether, smajcw = − smajw − (2n + 1)
(

χ(ǫ1 = −1) − χ(ǫ2n+1 = −1)
)

.
This proves (60) and also Lemma 5.4. �

Proof of Theorem 5.1. Let w ∈ B2n+1. By the previous three lemmas

sgn r cw = sgn cw · (−1)χ(L c w<0)+χ(F c w<0)

= sgnw(−1)χ(F w<0)−χ(L w<0)(−1)χ(L w<0)+χ(F w<0)

= sgnw;

smaj r cw = smajcw + (2n+ 1)(χ(F cw < 0) − χ(L cw < 0))

= smajcw + (2n+ 1)(χ(F w < 0) − χ(Lw < 0))

= − smajw;

sgn s r cw = − sgn r cw = − sgnw;

smaj s r cw = − smaj r cw = smajw. �
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6. Which descent for the hyperoctahedral group?

The purpose of this Section is to work out a global expression for the generat-
ing polynomial for Bn by the five-term statistic (neg, pos,Ξ, des, fmaj), where
Ξw is equal to 1 or 0, depending on whether the first letter of w is negative
or positive, and to derive the specializations when the pair (Ξ, des) is replaced
either by “desB,” or by “fdes,” defined in (21) and (22). Our main result is
the following.

Theorem 6.1. Let

(61) Bn(X,Y, Z; t, q) =
∑

w∈Bn

XnegwY pos wZχ(x1<0)tdes wqfmajw.

Then,

Bn(X,Y, Z; t, q)

(t; q2)n+1
=
t− Z

t− 1

∑

s≥0

ts
(

(qX + Y )[s+ 1]q2

)n
(62)

+
Z − 1

t− 1

∑

s≥0

ts
(

(qX + Y )[s+ 1]q2 −Xq2s+1
)n
.

When q = 1, write Bn(X,Y, Z; t) := Bn(X,Y, Z; t, 1). The exponential
generating function for the latter polynomials can be derived in the following
form.

Theorem 6.2. The following identity holds:

(63)
∑

n≥0

un

n!
Bn(X,Y, Z; t) =

Z − t+ (1 − Z) exp(uX(t− 1))

−t+ exp(u(X + Y )(t− 1))
.

Proof of Theorem 6.1. Let w = x1x2 · · ·xn be a signed permutation from Bn

and φ be the unique increasing bijection of the set {x1, x2, . . . , xn} onto the
interval [n] :={1, 2, . . . , n}. The word

σ=σ(1)σ(2) · · · σ(n) :=φ(x1)φ(x2) · · ·φ(xn)

is then an (ordinary) permutation from Sn and the map w 7→ (Negw, σ) a
bijection of Bn onto the Cartesian product 2[n] × Sn having the following
properties:

χ(x1 < 0) = χ(σ(1) ≤ negw); desw = des σ; fmajw = fmajσ.

For convenience, introduce the polynomial

Ak
n(Z; t, q) :=

∑

σ

Zχ(σ(1)≤k)tdes σqmaj σ (σ = σ(1) · · ·σ(n) ∈ Sn)
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and express Bn(X,Y, Z; t, q) in terms of the latter polynomials, to get:

Bn(X,Y, Z; t, q) =

n
∑

k=0

∑

|E|=k

∑

Neg w=E

(qX)neg wY pos wZχ(x1<0)tdes wq2maj w

=

n
∑

k=0

(qX)kY n−k
∑

|E|=k

∑

(E,σ)

Zχ(σ(1)≤k)tdesσq2 maj σ

=

n
∑

k=0

(

n

k

)

(qX)kY n−kAk
n(Z; t, q2).

Next, with each permutation σ = k σ(2) · · ·σ(n) starting with k associate the
permutation σ′ = σ′(1) · · ·σ′(n − 1) := ψ(σ(2)) · · ·ψ(σ(n)), where ψ is the
unique increasing bijection of [n] \ {k} onto [n − 1]. If σ(2) ≤ k − 1, then
des σ = desσ′ + 1, while majσ = majσ′ + des σ′ + 1 and σ′(1) ≤ k − 1. If
σ(2) ≥ k+1, then desσ = des σ′, while majσ = majσ′ +desσ′ and σ′(1) ≥ k.
Hence,

∑

σ(1)=k,σ(2)≤k−1

Zχ(σ(1)≤k)tdes σqmaj σ = Z
∑

σ′(1)≤k−1

tdes σ′+1qmaj σ′+des σ′+1

= Z
∑

σ′(1)≤k−1

(tq)χ(σ(1)≤k−1)(tq)des σ′

qmaj σ′

;

while
∑

σ(1)=k,
σ(2)≥k+1

Zχ(σ(1)≤k)tdes σqmaj σ = Z
∑

σ′(1)≥k

tdes σ′

qmaj σ′+des σ′

= Z
∑

σ′(1)≥k

(tq)χ(σ(1)≤k−1)(tq)des σ′

qmaj σ′

.

Altogether
∑

σ(1)=k

Zχ(σ(1)≤k)tdes σqmaj σ = Z Ak−1
n−1(tq; tq, q).

In the same manner,
∑

σ(1)=k

Zχ(σ(1)≤k−1)tdes σqmaj σ = Ak−1
n−1(tq; tq, q).

Consequently, we have the relation:

(64) Ak
n(Z; t, q) = Ak−1

n (Z; t, q) + (Z − 1)Ak−1
n−1(tq; tq, q).

By iteration we are led to:

Ak
n(Z; t, q) = A0

n(Z; t, q)(65)

+
Z − 1

t− 1

k
∑

j=1

(

k

j

)

(t− 1)(tq − 1) · · · (tqj−1)A0
n−j(tq

j , tqj , q).
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But, the variableZ vanishes fromAk
n(Z; t, q) when k = 0 and then A0

n(Z; t, q) =
An(t, q), which is the Carlitz q-analog of the Eulerian polynomial ([3, 4]) ap-
pearing in (1). Hence,

Ak
n(Z; t, q) = An(t, q) +

Z − 1

t− 1

k
∑

j=1

(

k

j

)

(−1)j (t; q)j An−j(tq
j , q)

=
t− Z

t− 1
An(t, q) +

Z − 1

t− 1

k
∑

j=0

(

k

j

)

(−1)j (t; q)j An−j(tq
j , q).

The next step is to report this new expression of Ak
n(Z; t, q) into the polynomial

Bn(X,Y, Z; t, q). We get:

Bn(X,Y, Z; t, q) =
n

∑

k=0

(

n

k

)

(qX)kY n−kAk
n(Z; t, q2)

=

n
∑

k=0

(

n

k

)

(qX)kY n−k
( t− Z

t− 1
An(t, q2)

+
Z − 1

t− 1

k
∑

j=0

(

k

j

)

(−1)j (t; q2)j An−j(tq
2j , q2)

)

=
t− Z

t− 1
(qX + Y )nAn(t, q2)

+
Z − 1

t− 1

∑

j,l,m≥0
j+l+m=n

n!

j! l!m!
(qX)j+lY m(−1)j (t; q2)j Al+m(tq2j , q2),

where k = j + l.
Next, with r = l +m we get

Bn(X,Y, Z; t, q)

(t; q2)n+1
=
t− Z

t− 1
(qX + Y )n An(t, q2)

(t; q2)n+1

+
Z − 1

t− 1

∑

j+r=n

n!

r! j!
(−qX)j Ar(tq

2j , q2)

(tq2j ; q2)r+1

∑

l+m=r

r!

l!m!
(qX)lY m

=
t− Z

t− 1
(qX + Y )n An(t, q2)

(t; q2)n+1

+
Z − 1

t− 1

∑

j+r=n

n!

r! j!
(−qX)j Ar(tq

2j , q2)

(tq2j ; q2)r+1
(qX + Y )r.

Furthermore,

∑

n≥0

Bn(X,Y, Z; t, q)

(t; q2)n+1

un

n!
=
t− Z

t− 1

∑

n≥0

An(t, q2)

(t; q2)n+1

((qX + Y )u)n

n!

+
Z − 1

t− 1

∑

j≥0

(−qXu)j

j!

∑

r≥0

Ar(tq
2j , q2)

(tq2j , q2)r+1

((qX + Y )u)r

r!
.
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Now, make use of the classical identity on the Carlitz q-Eulerian polynomials

∑

n≥0

un

n!

An(t, q)

(t; q)n+1
=

∑

s≥0

ts exp(u[s+ 1]q),

to obtain

∑

n≥0

Bn(X,Y, Z; t, q)

(t; q2)n+1

un

n!
=
t− Z

t− 1

∑

s≥0

ts exp((qX + Y )u [s+ 1]q2)(66)

+
Z − 1

t− 1

∑

j≥0

(−qXu)j

j!

∑

s≥0

(tq2j)s exp((qX + Y )u [s+ 1]q2).

There remains to extract the coefficient of un on both sides. This leads to:

(67)
Bn(X,Y, Z; t, q)

n! (t; q2)n+1
=
t− Z

t− 1

∑

s≥0

ts
(

(qX + Y ) [s+ 1]q2

)n
+
Z − 1

t− 1
C,

where C is the coefficient of un in

∑

j≥0

(−qXu)j

j!

∑

s≥0

(tq2j)s
∑

m≥0

((qX + Y )u [s+ 1]q2)m

m!
,

that is,

C =
∑

s≥0

ts
∑

j≥0

(−qX)j

j!
q2js ((qX + Y ) [s+ 1]q2)n−j

(n− j)!

=
1

n!

∑

s≥0

ts
∑

j≥0

(

n

j

)

(−qXq2s)j((qX + Y ) [s+ 1]q2)n−j

=
1

n!

∑

s≥0

ts
(

(qX + Y )[s+ 1]q2 −Xq2s+1
)n

Reporting the last expression in (67) yields identity (62). �

Proof of Theorem 6.2. When q = 1 in (62), we obtain

Bn(X,Y, Z; t)

(1 − t)n+1
=
t− Z

t− 1

∑

s≥0

ts
(

(X + Y )(s+ 1)
)n

(68)

+
Z − 1

t− 1

∑

s≥0

ts
(

(X + Y )(s+ 1) −X
)n
.
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Hence,

∑

n≥0

un

(1 − t)n
Bn(X,Y, Z; t)

= (Z − t)
∑

s≥0

ts
∑

n≥0

(

u(X + Y )(s+ 1)
)n

n!

+ (1 − Z)
∑

s≥0

ts
∑

n≥0

(

u(X + Y )(s+ 1) −X
)n

n!

= (Z − t)
∑

s≥0

ts exp(u(X + Y )(s+ 1))

+ (1 − Z)
∑

s≥0

ts
∑

n≥0

exp(u(X + Y )(s+ 1) −X)

=
(

(Z − t) exp(u(X + Y )) + (1 − Z) exp(uY )
)

∑

s≥0

ts exp(u(X + Y )s)

=
(Z − t) exp(u(X + Y )(1 − Z)) exp(uY )

1 − t exp(u(X + Y ))
,

which is identity (63) by replacing u by u(1 − t). �

Next, we derive specializations of Theorems 6.1 and 6.2 when the pair
(Ξ, des) is replaced by “desB” and “fdes” (see (21) and (22)). We get:

∑

w∈Bn

Xneg wY pos wtdesB wqfmaj w = Bn(X,Y, t; t, q);(69)

∑

w∈Bn

Xneg wY pos wtfdeswqfmaj w = Bn(X,Y, t; t2, q).(70)

Also, note that Bn(0, 1, 1; t, q) is the Carlitz q-Eulerian polynomial An(t, q).
First,

Bn(X,Y, t; t, q)

(t; q2)n+1
=

∑

s≥0

ts
(

(qX + Y )[s+ 1]q2 −Xq2s+1
)n

;(71)

Bn(1, 1, t; t, q)

(t; q2)n+1
=

∑

w∈Bn

tdesB wqfmaj w =
∑

s≥0

ts
(

[2s+ 1]q
)n
.(72)

Second,

Bn(X,Y, t; t2, q)

(t2; q2)n+1
=
t2 − t

t− 1

∑

s≥0

t2s
(

(qX + Y ) [s+ 1]q2

)n

+
t− 1

t2 − 1

∑

s≥0

t2s
(

(qX + Y )[s+ 1]q2 −Xq2s+1
)n
,
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so that

(1 + t)Bn(X,Y, t; t2, q)

(t2; q2)n+1
=

∑

s≥0

t2s+1
(

(qX + Y ) [s+ 1]q2

)n
(73)

+
∑

s≥0

t2s
(

(qX + Y )[s]q2 + Y q2s
)n
.

In particular,

(74)
(1 + t)Bn(1, 1, t; t, q)

(t2; q2)n+1
=

∑

w∈Bn

tfdes wqfmaj w =
∑

s≥0

ts
(

[s+ 1]q
)n
.

The specializations of (72) and (74) for q = 1 are banal and not repro-
duced. However, it is worth writing the exponential generating functions for
the polynomials Bn(1, 1, t; t) and Bn(1, 1, t; t2) directly obtained from (63):

∑

n≥0

un

n!
Bn(1, 1, t; t) =

∑

n≥0

un

n!

∑

w∈Bn

tdesB w =
(1 − t) exp(u(t− 1))

−t+ exp(2u(t− 1))
;(75)

∑

n≥0

un

n!
Bn(1, 1, t; t2) =

(1 − t)(t+ exp(u(t2 − 1)))

−t2 + exp(2u(t2 − 1))
;

so that

(76)
∑

n≥0

un

n!
Bn(1, 1, t; t2) =

∑

n≥0

un

n!

∑

w∈Bn

tfdesw =
1 − t

−t+ exp(u(t2 − 1))
.

The statistics “fdes” and “fmaj” were introduced by Adin and Roichman [2].
Identity (74) with their equivalent adaptations were derived by Brenti et al.
[1], Haglund et al. [15] and reproved by the authors ([9, 10]) as specializations
of identities involving several-variable statistics. Note that (76) implies that
∑

w∈Bn
(−1)fdesw is null for every n ≥ 1. Accordingly, the statistic “fdes”

would have been a wrong choice for obtaining a q-extension!
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