Doubloons and q-secant numbers

Dominique Foata and Guo-Niu Han

(Communicated by Linus Kramer)

Abstract. Based on the evaluation at $t = -1$ of the generating polynomial for the hyperoctahedral group by the number of descents, an observation recently made by Hirzebruch, a new q-secant number is derived by working with the Chow-Gessel q-polynomial involving the flag major index. Using the doubloon combinatorial model we show that this new q-secant number is a polynomial with positive integral coefficients, a property apparently hard to prove by analytical methods.

1. INTRODUCTION

This paper, in harmony with our previous two papers on doubloons [11, 12], is motivated by our intention of finding a combinatorial connection between the Eulerian polynomials, on the one hand, and the trigonometric functions, tangent and secant, on the other hand, when the connection is further carried over to a q-analog environment.

Let $(t; q)_n := (1-t)(1-tq) \cdots (1-tq^{n-1})$ if $n \ge 1$ and $(t; q)_0 := 1$ be the traditional q-ascending factorial and $[j]_q := 1 + q + \cdots + q^{j-1}$ be the q-analog of the positive integer j. The q-analogs $A_n(t, q)$, introduced by Carlitz [3, 4], of the *Eulerian polynomials*, may be defined by the identity

(1)
$$
\frac{A_n(t,q)}{(t;q)_{n+1}} = \sum_{j\geq 0} t^j ([j+1]_q)^n \quad (n \geq 0).
$$

For each $n \geq 0$ the q-analog $A_n(t,q)$ is a polynomial with positive integral coefficients [in short, a PIC *polynomial*], such that $A_n(t, 1)$ is equal to the traditional *Eulerian polynomial* $A_n(t)$ introduced by Euler himself [7], who also derived the exponential generating function:

(2)
$$
\sum_{n\geq 0} \frac{u^n}{n!} A_n(t) = \frac{1-t}{-t + \exp(u(t-1))}.
$$

As $A_n(1,1) = A_n(1) = n!$, each PIC polynomial $A_n(t)$ (resp. $A_n(t,q)$) has been regarded as a generating function for the symmetric group \mathfrak{S}_n by several integral-valued statistics (resp. pairs of such statistics) [20, 13, 4]. Note that (2) is easily derived from (1).

In the same manner, the next two identities

(3)
$$
\frac{B_n(t,q)}{(t;q^2)_{n+1}} = \sum_{j\geq 0} t^j ([2j+1]_q)^n \quad (n \geq 0);
$$

(4)
$$
\sum_{n\geq 0} \frac{u^n}{n!} B_n(t) = \frac{(1-t) \exp(u(t-1))}{-t + \exp(2u(t-1))};
$$

may serve to define two families of polynomials $(B_n(t)), (B_n(t,q))$ $(n \ge 0)$.

Again, both $B_n(t)$ and $B_n(t, q)$ are PIC polynomials and $B_n(t) = B_n(t, 1)$. Moreover, (4) is easily derived from (3). The interpretation of $B_n(t)$ as a generating polynomial for the hyperoctahedral group B_n , together with the derivations of (3) for $q = 1$ and (4), was first obtained by Reiner [19], also by Cohen [6] in the general context of the Coxeter groups of spherical type. Formula (3) was derived and fully interpreted by Chow and Gessel [5].

While studying the signatures of the toric varieties, Hirzebruch [16] is led to calculate the values of both polynomials $A_n(t)$ and $B_n(t)$ at $t = -1$. He first quotes Euler's identities [7]

(5)
$$
A_{2n}(-1) = 0 \ (n \ge 1); \quad (-1)^n A_{2n+1}(-1) = T_{2n+1} \ (n \ge 0),
$$

where the coefficients T_{2n+1} $(n \geq 0)$ are the *tangent numbers* occurring in the Taylor expansion of tan u:

(6)
$$
\tan u = \sum_{n\geq 0} \frac{u^{2n+1}}{(2n+1)!} T_{2n+1}
$$

$$
= \frac{u}{1!} 1 + \frac{u^3}{3!} 2 + \frac{u^5}{5!} 16 + \frac{u^7}{7!} 272 + \frac{u^9}{9!} 7936 + \frac{u^{11}}{11!} 353792 + \cdots
$$

Then, he notes that

(7)
$$
B_{2n+1}(-1) = 0 \ (n \ge 0); \quad (-1)^n B_{2n}(-1) = 2^{2n} E_{2n} \ (n \ge 0),
$$

where the coefficients E_{2n} ($n \geq 0$) are the *secant numbers* occurring in the Taylor expansion of sec u

(8)
$$
\sec u = \frac{1}{\cos u} = \sum_{n\geq 0} \frac{u^{2n}}{(2n)!} E_{2n}
$$

$$
= 1 + \frac{u^2}{2!} 1 + \frac{u^4}{4!} 5 + \frac{u^6}{6!} 61 + \frac{u^8}{8!} 1385 + \frac{u^{10}}{10!} 50521 + \cdots
$$

since, by (4) ,

$$
\sum_{n\geq 0} \frac{(iu)^n}{2^n n!} B_n(-1) = \frac{2}{e^{iu} + e^{-iu}} = \sec u = \sum_{n\geq 0} \frac{u^{2n}}{(2n)!} E_{2n}.
$$

It so happens that (7) is just the relation needed to construct a new qanalog of the secant number, in parallel with what has been done already for the tangent number.

Theorem 1.1. Let $(B_n(t,q))$ $(n \geq 0)$ be the sequence of polynomials defined *by (3) and let*

(9)
$$
E_{2n}(q) := (-1)^n q^{n^2} B_{2n}(-q^{-2n}, q) \quad (n \ge 1).
$$

Then,

(a) each $E_{2n}(q)$ *is a* PIC *polynomial*;

(b) *it admits the factorization*

(10)
$$
E_{2n}(q) = (1+q^2)(1+q^4)\cdots(1+q^{2n})F_{2n}(q),
$$

where $F_{2n}(q)$ *is a* PIC *polynomial*;

(c) $E_{2n}(1) = 2^n F_{2n}(1) = 2^{2n} E_{2n}$ (E_{2n} *the secant number*); (d) $B_{2n+1}(-q^{-(2n+1)}, q) = 0$ $(n \ge 0)$ *.*

Property (c) follows from (7) and (9) . Property (d) is proved in Section 5. As is often the case, it is much harder to derive the factorization shown in (b) and prove that the coefficients of $E_{2n}(q)$ are *positive*. It requires a long *combinatorial* development, given in the next three Sections. We reproduce the first values of the polynomials $B_n(t, q)$ and $E_{2n}(q)$ in Tables 1.1 and 1.2.

$$
B_1(t,q) = 1 + qt; \t B_2(t,q) = 1 + (2q + 2q^2 + 2q^3)t + q^4t^2;
$$

\n
$$
B_3(t,q) = 1 + (3q + 5q^2 + 7q^3 + 5q^4 + 3q^5)t
$$

\n
$$
+ (3q^4 + 5q^5 + 7q^6 + 5q^7 + 3q^8)t^2 + q^9t^3;
$$

\n
$$
B_4(t,q) = 1 + (4q + 9q^2 + 16q^3 + 18q^4 + 16q^5 + 9q^6 + 4q^7)t
$$

\n
$$
+ (6q^4 + 16q^5 + 30q^6 + 40q^7 + 46q^8 + 40q^9 + 30q^{10} + 16q^{11} + 6q^{12})t^2
$$

\n
$$
+ (4q^9 + 9q^{10} + 16q^{11} + 18q^{12} + 16q^{13} + 9q^{14} + 4q^{15})t^3 + q^{16}t^4.
$$

Table 1.1. The polynomials $B_n(t,q)$.

$$
E_2(q) = (1+q^2)2; \t E_4(q) = (1+q^2)(1+q^4)(6+8q+6q^2);
$$

\n
$$
E_6(q) = (1+q^2)(1+q^4)(1+q^6)(20+60q+104q^2+120q^3+104q^4
$$

\n
$$
+ 60q^5 + 20q^6);
$$

\n
$$
E_8(q) = (1+q^2)(1+q^4)(1+q^6)(1+q^8)(70+336q+910q^2+1760q^3
$$

\n
$$
+ 2702q^4 + 3440q^5 + 3724q^6 + 3440q^7 + 2702q^8 + 1760q^9 + 910q^{10}
$$

\n
$$
+ 336q^{11} + 70q^{12}).
$$

Table 1.2. The polynomials $E_{2n}(q)$.

Following the method developed in [11] and [12], the proof of Theorem 1.1 (a) and (b) will consist of making the polynomial $E_{2n+2}(q)$, defined in (9), appear as a generating function by an appropriate statistic "smaj," combined with a sign "sgn"

$$
E_{2n+2}(q) = \sum_{w \in B_{2n+2}} \text{sgn } w \, q^{\text{smaj } w} \qquad (n \ge 1)
$$

and constructing a sign-reversing involution on B_{2n+2} , in such a way that after its application the remaining terms in the sum have positive signs. We leave out the banal case: $E_2(q) = 2(1 + q^2)$.

The final step is then to prove the identity

(11)
$$
E_{2n+2}(q) = (1+q^2)(1+q^4)\cdots(1+q^{2n+2})\sum_{w \in \mathcal{SN}_{2n+2}} q^{\text{smaj }w},
$$

where the sum is over a specific class \mathcal{SN}_{2n+2} of signed permutations, called *normalized signed doubloons* (see Section 4).

More importantly, the generating polynomial for \mathcal{SN}_{2n+2} occurring in (11) will be explicitly calculated by means of the *doubloon polynomials* $(d_{n,j}(q))$ $(n \geq 1, 2 \leq j \leq 2n)$, which are defined by the recurrence

(D1)
$$
d_{0,j}(q) = \delta_{1,j}
$$
 (Kronecker symbol);
\n(D2) $d_{n,j}(q) = 0$ for $n \ge 1$ and $j \le 1$ or $j \ge 2n + 1$;
\n(D3) $d_{n,2}(q) = \sum_{j} q^{j-1} d_{n-1,j}(q)$ for $n \ge 1$;
\n(D4) $d_{n,j}(q) - 2 d_{n,j-1}(q) + d_{n,j-2}(q)$
\n $= -(1-q) \sum_{i=1}^{j-3} q^{n+i+1-j} d_{n-1,i}(q)$
\n $- (1+q^{n-1}) d_{n-1,j-2}(q) + (1-q) \sum_{i=j-1}^{2n-1} q^{i-j+1} d_{n-1,i}(q)$

for $n \geq 2$ and $3 \leq j \leq 2n$;

the first values being:

$$
d_{1,2}(q) = 1; \t d_{2,2}(q) = q; \t d_{2,3}(q) = q + 1; \t d_{2,4}(q) = 1; \n d_{3,2}(q) = 2q^3 + 2q^2; \t d_{3,3}(q) = 2q^3 + 4q^2 + 2q; \t d_{3,4}(q) = q^3 + 4q^2 + 4q + 1; \n d_{3,5}(q) = 2q^2 + 4q + 2; \t d_{3,6}(q) = 2q + 2; \n d_{4,2}(q) = 5q^6 + 12q^5 + 12q^4 + 5q^3; \t d_{4,3}(q) = 5q^6 + 17q^5 + 24q^4 + 17q^3 + 5q^2; \n d_{4,4}(q) = 3q^6 + 15q^5 + 29q^4 + 29q^3 + 15q^2 + 3q; \n d_{4,5}(q) = q^6 + 9q^5 + 25q^4 + 34q^3 + 25q^2 + 9q + 1; \n d_{4,6}(q) = 3q^5 + 15q^4 + 29q^3 + 29q^2 + 15q + 3; \n d_{4,7}(q) = 5q^4 + 17q^3 + 24q^2 + 17q + 5; \t d_{4,8}(q) = 5q^3 + 12q^2 + 12q + 5.
$$

Those polynomials were introduced and used in [12] to evaluate a new q analog

(12)
$$
T_{2n+1}(q) := (-1)^n q^{\binom{n}{2}} A_{2n+1}(-q^{-n}, q)
$$

of the *tangent number* based on the Carlitz q-Eulerian polynomial $A_n(t,q)$ defined in (1). It was shown that $T_{2n+1}(q)$ was a PIC polynomial equal to

(13)
$$
T_{2n+1}(q) = (1+q)(1+q^2)\cdots(1+q^n)\sum_{k=2}^{2n+2} d_{n,k}(q).
$$

The parallel expression for the PIC polynomials $E_{2n+2}(q)$ is next stated.

Theorem 1.2. For each $n \geq 1$ the polynomial $E_{2n+2}(q)$ has the following *expression:*

(14)
$$
E_{2n+2}(q) = (1+q^2)(1+q^4)\cdots(1+q^{2n+2})\sum_{k=2}^{2n} d_{n,k}(q^2)P_{n,k}(q),
$$

where the coefficients $P_{n,k}(q)$ $(n \geq 1, 2 \leq j \leq 2n)$ *are defined by*

(15)
$$
P_{n,k}(q) := \sum_{i=0}^{2n+1-k} q^{n-1-2i} \sum_{l=i+1}^{i+k} {2n+2 \choose l} q^l.
$$

The quantities $Q_{n,k}(q) := q^{n+1-k} P_{n,k}(q)$ are PIC polynomials. Their first values are listed in Table 1.3.

$$
\begin{array}{l} Q_{1,2}(q) = 6+8q+6q^2; \\ Q_{2,2}(q) = 15+26q+30q^2+26q^3+15q^4; \\ Q_{2,3}(q) = 20+30q+32q^2+30q^3+20q^4; \quad Q_{2,4}(q) = Q_{2,2}(q) \\ Q_{3,2}(q) = 28+64q+98q^2+112q^3+98q^4+64q^5+28q^6; \\ Q_{3,3}(q) = 56+98q+120q^2+126q^3+120q^4+98q^5+56q^6; \\ Q_{3,4}(q) = 70+112q+126q^2+128q^3+126q^4+112q^5+70q^6; \\ Q_{3,5}(q) = Q_{3,3}(q); \quad Q_{3,6}(q) = Q_{3,2}(q); \\ Q_{4,2}(q) = 45+130q+255q^2+372q^3+420q^4+372q^5+255q^6+130q^7+45q^8; \\ Q_{4,3}(q) = 120+255q+382q^2+465q^3+492q^4+465q^5+382q^6+255q^7+120q^8; \\ Q_{4,4}(q) = 210+372q+465q^2+502q^3+510q^4+502q^5+465q^6+372q^7+210q^8; \\ Q_{4,5}(q) = 252+420q+492q^2+510q^3+512q^4+510q^5+492q^6+420q^7+252q^8; \\ Q_{4,6}(q) = Q_{4,4}(q); \quad Q_{4,7}(q) = Q_{4,3}(q); \quad Q_{4,8}(q) = Q_{4,2}(q). \end{array}
$$

Table 1.3. The polynomials $Q_{n,k}(q)$.

The proofs of Theorems 1.1 and 1.2 are given in Sections 3 and 4. In the last Section we obtain a global expression for the generating polynomial for the group B_n by a five-variable statistic, which takes the two classical *descent* definitions into account.

To end this introduction we point out that the identity

(16)
$$
T_{2n+1} = 2^n \sum_{k=2}^{2n} d_{n,k},
$$

which is the $q = 1$ version of (13), is originally due to Christiane Poupard [18], who worked out the recurrence for the now called *Poupard triangle* $d_{n,k}$:= $d_{n,k}(1)$ $(n \geq 1, 2 \leq k \leq 2n)$, obtainable from (D_1) – (D_4) for $q = 1$.

We reproduce the first values of the Poupard triangle $(d_{n,k})$, together with the first values of

(17)
$$
Q_{n,k} := Q_{n,k}(1) = P_{n,k}(1) = \sum_{i=0}^{2n+1-k} \sum_{l=i+1}^{i+k} {2n+2 \choose l}.
$$

Both $d_{n,k}$ and $Q_{n,k}$ are displayed in triangles $(2 \leq k \leq 2n, 1 \leq n \leq 4)$, as shown in Fig. 1.4.

The $q = 1$ version of identity (14) reads:

(18)
$$
2^{n+1} E_{2n+2} = \sum_{k=2}^{2n} d_{n,k} Q_{n,k}.
$$

For instance, (18) for $n = 2$ yields: $2^{3}E_{6} = 8 \times 61 = 488 = 1 \times 112 + 2 \times$ $132 + 1 \times 112$. There exists a rich formulary of relations for tangent and secant numbers (see, e.g., the old monograph by Nielsen [17]). Identities (16) and (18) provide a new parametrization of those coefficients by means of the Poupard triangle $(d_{n,k})$.

2. STATISTICS ON THE HYPEROCTAHEDRAL GROUP

The elements of the hyperoctahedral group B_n , usually called *signed permutations*, may be viewed as *words* $w = x_1 x_2 \cdots x_n$, where each x_i belongs to the set $\{-n, \ldots, -1, 1, \ldots, n\}$ and $|x_1||x_2|\cdots|x_n|$ is a permutation of $12 \ldots n$. The *set* (resp. the *number*) of *negative* letters among the x_i 's is denoted by Neg w (resp. neg w). In the same manner, let Pos w (resp. pos w) be the set (resp. the number) of all positive letters in w. It is convenient to write $\overline{i} := -i$ for each integer i. There are $2ⁿn!$ signed permutations of order n. The symmetric group \mathfrak{S}_n may be considered as the subset of all w from B_n such that Neg $w = \emptyset$.

For each statement A let $\chi(A) = 1$ or 0 depending on whether A is true or not. The usual *number of descents* and *major index* of each word w = $x_1x_2\cdots x_n$ are defined by

(19)
$$
\deg w := \sum_{i=1}^{n-1} \chi(x_i > x_{i+1});
$$

(20)
$$
\text{maj } w := \sum_{i=1}^{n-1} i \chi(x_i > x_{i+1}).
$$

When B_n is regarded as a Coxeter group, an extra descent is counted, when the first letter x_1 of the signed permutation $w = x_1 x_2 \cdots x_n$ is *negative*. In the literature two definitions are then used:

(21)
$$
\deg_B w := \chi(x_1 < 0) + \deg w;
$$

(22)
$$
f \text{des } w := \chi(x_1 < 0) + 2 \text{ des } w.
$$

Furthermore, a *flag major index* "fmaj" defined by

(23)
$$
\operatorname{fmaj} w := 2 \operatorname{maj} w + \operatorname{neg} w,
$$

has been adopted for B_n , because it is equidistributed with the *Coxeter length* " ℓ " for B_n (see, e.g., [1, 8]), a property that extends the corresponding property for the symmetric group \mathfrak{S}_n , which says that the major index "maj" and the number of inversions "inv" (the Coxeter length for \mathfrak{S}_n) are equidistributed.

Proposition 2.1. *The polynomial* $B_n(t,q)$ *defined by (3) has the following combinatorial interpretation:*

(24)
$$
B_n(t,q) = \sum_{w \in B_n} t^{\text{des}_B w} q^{\text{fmaj }w}.
$$

In other words, $B_n(t,q)$ *is the generating polynomial for the hyperoctahedral group* B_n *by the pair* (des_B, fmaj).

The proof of the proposition can be found in [5]. This is also a consequence of Theorem 6.2, that takes both " des_{B} " and "fdes" into account (see (75) and (76) .

From the definition of the polynomials $E_{2n+2}(q)$ given in (9) and (24) it follows that

$$
E_{2n+2}(q) = (-1)^{n+1} q^{(n+1)^2} B_{2n+2}(-q^{-2n+2}, q)
$$

may be expressed as

(25)
$$
E_{2n+2}(q) = (-1)^{n+1} \sum_{w=x_1\cdots x_{2n+2} \in B_{2n+2}} (-1)^{\chi(x_1 < 0) + \text{des } w} q^{\text{smaj } w},
$$

where "smaj" is a new statistic — call it *signed major index* — defined for each signed permutation $w = x_1x_2 \cdots x_{2n+2} \in B_{2n+2}$ by

(26)
$$
\operatorname{smaj} w := (n+1)^2 - 2(n+1)\left(\chi(x_1 < 0) + \operatorname{des} w\right) + 2\operatorname{maj} w + \operatorname{neg} w.
$$

A *compressed major index* "cmaj" was defined in [11, 12] on the symmetric group \mathfrak{S}_n . Extend its definition to each $w \in B_{2n+2}$, as follows

(27)
$$
\cosh w := \text{maj } w - (n+1) \text{ des } w + (n-1)n/2.
$$

The next lemma only needs a straightforward calculation.

Lemma 2.2. *For each* $w = x_1 x_2 \cdots x_{2n+2} \in B_{2n+2}$ *we have:*

(28)
$$
\text{smaj } w - 2 \text{cmaj } w = 3n + 1 + \text{neg } w - 2(n+1) \chi(x_1 < 0);
$$

so that

(29)
$$
\text{smaj } w - 2 \text{cmaj } w = n + \text{neg } w - 1, \quad \text{if } x_1 < 0.
$$

The *mirror image* of a signed permutation $w = x_1 x_2 \cdots x_{2n+2}$ is defined by $\mathbf{r} w := x_{2n+2} \cdots x_2 x_1$. It is easily verified that

(30)
$$
\deg \mathbf{r} \, w = (2n+1) - \deg w;
$$

(31)
$$
\text{maj } \mathbf{r} \, w = (2n+2)(2n+1)/2 - (2n+2) \deg w + \text{maj } w.
$$

Those two relations suffice to prove the next lemma.

Lemma 2.3. *For each* $w = x_1 x_2 \cdots x_{2n+2} \in B_{2n+2}$ *we have:*

(32)
$$
\text{smaj}\,\mathbf{r}\,w-\text{smaj}\,w=2(n+1)\big(\chi(x_1<0)-\chi(x_{2n+2}<0)\big);
$$

(33) $(-1)^{\text{des } r w + \chi(x_{2n+2} < 0)} \times (-1)^{\text{des } w + \chi(x_1 < 0)} = -(-1)^{\chi(x_1 < 0) + \chi(x_{2n+2} < 0)}$.

The sum displayed in (25) may be decomposed into four subsums:

$$
\sum_{w=x_1\cdots x_{2n+2}\in B_{2n+2}} = \sum_{\substack{x_1x_{2n+2}>0, \ x_10, \ x_1>x_{2n+2}>0, \ x_1>x_{2n+2}>0}} + \sum_{\substack{x_1<0, \ x_1>0, \ x_{2n+2}<0 \ x_10, \ x_1*x_{2n+2}>0, \ x_10, \ x_10, \ x_10, \ x_10, \ x_1=x_{2n+2}>0} + \sum_{\substack{x_1<0, \ x_1<0, \ x_1<
$$

.

It follows from Lemma 2.3 that the sum of the first two subsums vanishes, and the fourth one is equal to the product of the third one by q^{2n+2} . Thus,

(34)
$$
E_{2n+2}(q) = (-1)^{n+1} (1+q^{2n+2}) \sum_{\substack{w=x_1\cdots x_{2n+2} \in B_{2n+2},\\x_1 < 0 < x_{2n+2}}} (-1)^{\text{des }w+1} q^{\text{smaj }w}
$$

since $\chi(x_1 < 0) = 1$ for every w occurring in the sum. To pursue the calculation of $E_{2n+2}(q)$ we use the doubloon calculus, as developed in our previous two papers.

3. Doubloons

A *doubloon* of order $(2n + 1)$ is defined to be a permutation of the word $012 \cdots (2n+1)$, represented as a $2 \times (n+1)$ -matrix $\delta = \begin{pmatrix} a_0 \cdots a_n \\ b_0 \cdots b_n \end{pmatrix}$. The word $a_0 \cdots a_n b_n \cdots b_0$ is called the *reading* $\rho(\delta)$ of δ . Define stat $\delta := \text{stat } \rho(\delta)$, whenever "stat" is equal to "des," "maj," "fmaj," "cmaj," or "smaj." Let $F \delta := a_0, L \delta := b_0.$ The set of all doubloons of order $(2n + 1)$ is denoted by \mathcal{D}_{2n+1} . The subset of all doubloons δ such that $L \delta = j$ (resp. $F \delta = i$ and $L \delta = j$) is denoted by $\mathcal{D}_{2n+1,j}$ (resp. $\mathcal{D}_{2n+1,j}^{i}$).

Each doubloon $\delta = \begin{pmatrix} a_0 \cdots a_n \\ b_0 \cdots b_n \end{pmatrix}$ from \mathcal{D}_{2n+1} is said to be *interlaced* (resp. *normalized*), if for every $k = 1, 2, \ldots, n$ the sequence $(a_{k-1}, a_k, b_{k-1}, b_k)$ or one of its three *cyclic rearrangements* is monotonic increasing or decreasing (resp. decreasing). Let \mathcal{I}_{2n+1}^i (resp. $\mathcal{I}_{2n+1,j}^i$, resp. \mathcal{N}_{2n+1}^i , resp. $\mathcal{N}_{2n+1,j}^i$) denote the set of all doubloons δ from \mathcal{D}_{2n+1}^i , which are interlaced (resp. interlaced with $L \delta = j$, resp. normalized, resp. normalized with $L \delta = j$.

For instance, the doubloon $\delta = \binom{0.43}{2.15}$ is normalized, since both sequences $(4, 2, 1, 0)$ and $(5, 4, 3, 1)$, which are cyclic rearrangements of $(0, 4, 2, 1)$ and $(4, 3, 1, 5)$, respectively, are decreasing.

The geometry of interlaced and normalized doubloons has been studied in [11]. The connection between interlaced doubloons and *split-pair arrangements*, introduced by Graham and Zang [14], is explicitly made in [12].

We now recall several properties on doubloons already proved in [11, 12]. For each doubloon $\delta = \begin{pmatrix} a_0 & a_1 & \cdots & a_n \\ b_0 & b_1 & \cdots & b_n \end{pmatrix}$ from \mathcal{D}_{2n+1} and each integer h let $\delta + h$ be the doubloon

(35)
$$
\delta + h := \begin{pmatrix} a_0 + h & a_1 + h & \cdots & a_n + h \\ b_0 + h & b_1 + h & \cdots & b_n + h \end{pmatrix},
$$

where each entry is expressed as a residue $mod(2n + 2)$.

Property 3.1. The mapping $\delta \mapsto \delta + h$ is a bijection of $\mathcal{I}_{2n+1,j}^i$ (resp. $\mathcal{N}_{2n+1,j}^i$) *onto* $\mathcal{I}_{2n+1,j+h}^{i+h}$ (resp. $\mathcal{N}_{2n+1,j+h}^{i+h}$) (superscript and subscript being taken $mod(2n + 2)$.

See [12], Proposition 2.1.

Property 3.2. Let $0 \leq i < j$ and $\delta = \begin{pmatrix} a_0 & a_1 & \cdots & a_n \\ b_0 & b_1 & \cdots & b_n \end{pmatrix}$ be a doubloon from $\mathcal{D}^i_{2n+1,j}$, so that $\delta - i = \begin{pmatrix} 0 & a_1 - i & \cdots & a_n - i \\ j - i & b_1 - i & \cdots & b_n - i \end{pmatrix}$ belongs to $\mathcal{D}_{2n+1,j-i}^0$. Then, (36) $\deg(\delta - i) = \deg \delta$, $\text{cmai}(\delta - i) = \text{cmai} \delta + i$.

See [12], Lemma 3.2.

Property 3.3. *For each integer* k *there is a sign-reversing involution on* $\mathcal{D}^0_{2n+1,k} \setminus \mathcal{I}^0_{2n+1,k}$ having the property that

(37)
$$
\sum_{\delta \in \mathcal{D}_{2n+1,k}^0} (-1)^{n+\text{des}\,\delta} q^{\text{cmaj}\,\delta} = \sum_{\delta \in \mathcal{I}_{2n+1,k}^0} q^{\text{cmaj}\,\delta}.
$$

Moreover,

(38)
$$
\sum_{\delta \in \mathcal{I}_{2n+1,k}^0} q^{\text{cmaj }\delta} = (1+q)(1+q^2)\cdots(1+q^n) \sum_{\delta' \in \mathcal{N}_{2n+1,k}^0} q^{\text{cmaj }\delta}.
$$

Proof. Refer to the proofs of Theorems 4.2 and 1.6 in [11], and observe that the first column $\binom{0}{k}$ is left invariant under each macro flip. \Box

4. Signed doubloons

Now, we extend the notion of doubloon to the group of signed permutations and speak of *signed doubloons*, but only for those signed permutations $w =$ $x_1x_2 \cdots x_{2n+2} \in B_{2n+2}$ occurring in the summation displayed in (34). They have the property that $F w := x_1 < 0 < x_{2n+2} =: L w$. We represent them as $2 \times (n+1)$ -matrices $w = \begin{pmatrix} x_1 & x_2 & \cdots & x_{n+1} \\ x_{2n+2} & x_{2n+1} & \cdots & x_{n+2} \end{pmatrix}$. The set of all those signed doubloons will be denoted by \mathcal{SD}_{2n+2} .

For each $w = \begin{pmatrix} x_1 & x_2 & \cdots & x_{n+1} \\ x_{2n+2} & x_{2n+1} & \cdots & x_{n+2} \end{pmatrix}$ from \mathcal{SD}_{2n+2} let ϕ_w be the increasing bijection of $\{x_1, x_2, \ldots, x_{2n+2}\}$ onto $\{0, 1, 2, \ldots, 2n+1\}$ and form the (unsigned) doubloon $\delta_w := \begin{pmatrix} \phi_w(x_1) & \phi_w(x_2) & \cdots & \phi_w(x_{n+1}) \\ \phi_w(x_1) & \phi_w(x_2) & \cdots & \phi_w(x_{n+1}) \end{pmatrix}$ $\phi_w(x_{2n+2})\phi_w(x_{2n+1})\cdots \phi_w(x_{n+2})$ $\Big)$. The signed doubloon w is characterized by the pair $(\delta_w, -Neg w)$. Moreover, stat $w =$ stat δ_w whenever "stat" is equal to "des," "maj," "fmaj," "cmaj," or "smaj." The signed doubloon w is said to be *interlaced* (resp. *normalized*), if δ_w is interlaced (resp. normalized).

As $F w < 0 < L w$ when w belongs to \mathcal{SD}_{2n+2} , the mapping

(39)
$$
w \mapsto (\delta_w, -\operatorname{Neg} w)
$$

is a bijection of the set \mathcal{SD}_{2n+2} onto the set of pairs (δ, J) such that $\delta \in \mathcal{D}_{2n+1}$, and J a subset of $\{1, 2, \ldots, 2n + 2\}$ such that $F \delta + 1 \leq \# J \leq L \delta$.

For instance, if $\delta = \begin{pmatrix} 0.42 \\ 315 \end{pmatrix} \in \mathcal{D}_5$, then $F\delta + 1 = 1 \leq \#J \leq 3 = L\delta$. Take $J = \{3\}, \{1, 3\}, \{2, 3, 5\}$ for example, the three signed doubloons $w \in \mathcal{SD}_6$ associated with those three subsets J are the following:

$$
\begin{aligned}\n\binom{352}{416} &\mapsto \left(\binom{042}{315}, \{3\}\right), \\
\left(\frac{352}{416}\right) &\mapsto \left(\binom{042}{315}, \{1,3\}\right), \\
\left(\frac{542}{136}\right) &\mapsto \left(\binom{042}{315}, \{2,3,5\}\right).\n\end{aligned}
$$

If $(\delta_w, -\text{Neg } w) = (\delta, J)$, then (see (29))

(40)
$$
\text{des } w = \text{des } \delta; \quad \text{smaj } w = 2 \,\text{cmaj } \delta + \#J + n - 1.
$$

We next make the composition product of the two mappings described in (35) and (39).

Theorem 4.1. For each pair (i, k) of integers such that $1 \leq k \leq 2n$ and $0 \leq i \leq 2n+1-k$ *the mapping*

(41)
$$
w \mapsto (\delta_w - i, -\operatorname{Neg} w)
$$

is a bijection of the set $\mathcal{SD}^{i}_{2n+2,i+k}$ *of the signed doubloons* w *satisfying* $F \, \delta_w =$ *i*, $L \, \delta_w = i + k$ *onto the set of pairs* (δ, J) *such that* $\delta \in \mathcal{D}^0_{2n+1,k}$ *and* $J \subset$ $[1, 2n + 2]$ *with* $i + 1 \leq #J \leq i + k$ *. Moreover, if w is interlaced (resp. normalized), so is* $\delta_w - i$ *, and conversely. Finally, if* $\delta = \delta_w - i$ *, then*

(42)
$$
\deg w = \deg \delta
$$
; $\text{smaj } w = 2 \text{cmaj } \delta - 2i + \#J + n - 1$.

Proof. The theorem is a consequence of Properties 3.1 and 3.2 and the properties of the bijection $w \mapsto (\delta_w, -\text{Neg } w)$ given in (40).

Identity (34) may be rewritten as

$$
E_{2n+2}(q) = (-1)^{n+1} (1+q^{2n+2}) \sum_{w \in SD_{2n+2}} (-1)^{\text{des }w+1} q^{\text{smaj }w}
$$

= $(1+q^{2n+2}) \sum_{k=1}^{2n} \sum_{i=0}^{2n+1-k} \sum_{w \in SD_{2n+2,i+k}^i} (-1)^{n+\text{des }w} q^{\text{smaj }w}.$

Let

(43)
$$
P_{n,i,k}(q) := q^{n-1-2i} \sum_{l=i+1}^{i+k} {2n+2 \choose l} q^l.
$$

Using the preceding theorem and Property 3.3 we evaluate the third sum as follows.

$$
\sum_{w \in SD_{2n+2,i+k}^{\delta}} (-1)^{n+\text{des }w} q^{\text{smaj }w}
$$
\n
$$
= \sum_{\delta \in D_{2n+1,k}^0} \sum_{i+1 \leq \#J \leq i+k} (-1)^{n+\text{des } \delta} q^{2 \text{cmaj } \delta - 2i + \#J+n-1}
$$
\n
$$
= q^{n-1-2i} \sum_{\delta \in D_{2n+1,k}^0} (-1)^{n+\text{des } \delta} q^{2 \text{cmaj } \delta} \sum_{l=i+1}^{i+k} {2n+2 \choose l} q^l
$$
\n
$$
= P_{n,i,k}(q) \sum_{\delta \in D_{2n+1,k}^0} (-1)^{n+\text{des } \delta} q^{2 \text{cmaj } \delta}
$$
\n
$$
= P_{n,i,k}(q) \sum_{\delta \in T_{2n+1,k}^0} q^{2 \text{cmaj } \delta}
$$
\n
$$
= (1+q^2) \cdots (1+q^{2n}) P_{n,i,k}(q) \sum_{\delta \in \mathcal{N}_{2n+1,k}^0} q^{2 \text{cmaj } \delta}
$$
\n(44)\n
$$
= (1+q^2) \cdots (1+q^{2n}) P_{n,i,k}(q) d_{n,k}(q^2),
$$

where the last equality follows from [12], Theorem 1.2. By multiplying (44) by $(1 + q^{2n+2})$ and summing over all pairs (k, i) such that $1 \leq k \leq 2n$ and $0 \leq i \leq 2n + 1 - k$ we derive identity (14), keeping in mind that $P_{n,k}(q) =$ \sum $\sum_{0 \le i \le 2n+1-k} P_{n,i,k}.$

This achieves the proofs of both Theorems 1.1 and 1.2, except part (d).

Let $\mathcal{SN}_{2n+2,i+k}^i$ be the set of the normalized signed doubloons w satisfying $F \delta_w = i, L \delta_w = i + k$. It also follows from Theorem 4.1 that

(45)
$$
\sum_{w \in \mathcal{SN}_{2n+2,i+k}^i} q^{\text{smaj }w} = P_{n,i,k}(q) \sum_{\delta \in \mathcal{N}_{2n+1,k}^0} q^{2 \text{ cmaj } \delta}.
$$

From (44) it follows that

(46)
$$
\sum_{w \in \mathcal{SD}_{2n+2,i+k}^i} (-1)^{n+\text{des }w} q^{\text{smaj }w} = (1+q^2) \cdots (1+q^{2n}) \sum_{w \in \mathcal{SN}_{2n+2,i+k}^i} q^{\text{smaj }w}.
$$

By multiplying (46) by $(1+q^{2n+2})$ and summing over all pairs (k, i) such that $1 \leq k \leq 2n$ and $0 \leq i \leq 2n+1-k$ we derive identity (11).

5. Proof of theorem 1.1 (d)

Recall that for each $w = x_1x_2 \cdots x_{2n+1} \in B_{2n+1}$ we have used the notations $F w := x_1 \text{ and } L w := x_{2n+1}.$ As $B_{2n+1}(t,q) = \sum_{w \in B_{2n+1}} t^d$ $t^{\text{des}_B w} q^{\text{fmaj }w}$, we may write

(47)
$$
B_{2n+1}(-q^{-(2n+1)},q) = \sum_{w \in B_{2n+1}} (-1)^{\operatorname{sgn} w} q^{\operatorname{smaj} w},
$$

where

(48) $sgn w := (-1)^{\text{des } w + \chi(F w < 0)}$;

(49)
$$
\text{smaj } w := 2 \,\text{maj } w + \text{neg } w - (2n+1)(\text{des } w + \chi(F\, w < 0)),
$$

as there is no ambiguity to adopt this definition of "smaj" for signed permutations from B_{2n+1} .

For proving the identity $A_{2n}(-q^{-n}, q) = 0$ in [11] we had recourse to the classical properties of the dihedral group acting on \mathfrak{S}_{2n} . Actually, the mirror image r provided the sign-reversing involution that was needed. With the group B_{2n+1} the supplementary descent to be counted, when the first letter is negative, makes it necessary to include another dihedral group involution, as well as a sign change operation.

In this section the elements of B_{2n+1} will be regarded as two-row matrices $w = \binom{|w|}{\epsilon} := \binom{|x_1||x_2| \cdots |x_{2n+1}|}{\epsilon_1 \epsilon_2 \cdots \epsilon_{2n+1}}, \text{ where } |w| := |x_1||x_2| \cdots |x_{2n+1}| \text{ becomes an}$ *ordinary* permutation and $\epsilon := \epsilon_1 \epsilon_2 \cdots \epsilon_{2n+1}$ is the sign word defined by $\epsilon_i := 1$ or -1 , depending on whether x_i is positive or negative $(1 \le i \le 2n + 1)$.

Three operations r, c, s are now introduced and further extended to all of B2n+1: first, the *mirror image*

$$
\mathbf{r}: y_1y_2\cdots y_{2n+1}\mapsto y_{2n+1}\cdots y_2y_1,
$$

defined for every *arbitrary word*; second, the *complement to* $(2n + 2)$, defined for each *permutation* from \mathfrak{S}_{2n+1} , by

$$
\mathbf{c}: y_1y_2\cdots y_{2n+1}\mapsto (2n+2-y_1)(2n+2-y_2)\cdots(2n+2-y_{2n+1});
$$

third, the *sign change* s, defined for each *binary word*, such as $\epsilon = \epsilon_1 \epsilon_2 \cdots \epsilon_{2n+1}$, whose letters are equal to $+1$ or -1 , by

$$
\mathbf{s}:\epsilon_1\epsilon_2\cdots\epsilon_{2n+1}\mapsto\overline{\epsilon}_1\overline{\epsilon}_2\cdots\overline{\epsilon}_{2n+1}.
$$

We use the same symbols for their extensions to B_{2n+1} :

(50)
$$
\mathbf{r}: \binom{|w|}{\epsilon} = \binom{|x_1||x_2|\cdots|x_{2n+1}|}{\epsilon_1 \epsilon_2 \cdots \epsilon_{2n+1}} \mapsto \binom{\mathbf{r}|w|}{\mathbf{r}\epsilon} = \binom{|x_{2n+1}|\cdots|x_2||x_1|}{\epsilon_{2n+1} \cdots \epsilon_2 \epsilon_1};
$$

(51)
$$
\mathbf{c}: \binom{|w|}{\epsilon} = \binom{|x_1| \cdots |x_{2n+1}|}{\epsilon_1 \cdots \epsilon_{2n+1}} \mapsto \binom{\mathbf{c}|w|}{\epsilon} = \binom{(2n+2-|x_1|) \cdots (2n+2-|x_{2n+1}|)}{\epsilon_1 \cdots \epsilon_{2n+1}};
$$

$$
(52) \qquad \mathbf{s}: \binom{|w|}{\epsilon} = \binom{|x_1||x_2|\cdots|x_{2n+1}|}{\epsilon_1 \epsilon_2 \cdots \epsilon_{2n+1}} \mapsto \binom{|w|}{\epsilon} = \binom{|x_1||x_2|\cdots|x_{2n+1}|}{\overline{\epsilon}_1 \ \overline{\epsilon}_2 \cdots \overline{\epsilon}_{2n+1}}.
$$

Note that the three involutions r, c, s, defined on B_{2n+1} by (50), (51) and (52) *commute*. The composition product $\mathbf{b} := \mathbf{c} \, \mathbf{s} \, \mathbf{r}$ can also be written as

(53)
$$
\mathbf{b}: \binom{|w|}{\epsilon} = \binom{|x_1| \cdots |x_{2n+1}|}{\epsilon_1 \cdots \epsilon_{2n+1}} \mapsto \binom{\mathbf{c} \mathbf{r} |w|}{\mathbf{r} \mathbf{s} \epsilon} = \binom{(n+2-|x_{2n+1}|) \cdots (n+2-|x_1|)}{\epsilon_{2n+1} \cdots \epsilon_1}.
$$

Theorem 5.1. *The composition product* b *defined in (53) is a sign-reversing involution of* B_{2n+1} *, i.e.*,

(54)
$$
(sgn, smaj) \binom{|w|}{\epsilon} = (-sgn, smaj) \mathbf{b} \binom{|w|}{\epsilon}.
$$

The proof of the theorem is based on the next three lemmas. The first two ones being easy to verify are given without proofs.

Lemma 5.2. For each $w = \binom{|w|}{\epsilon} \in B_{2n+1}$ we have

(55) $\text{sgn } \mathbf{r} \, w = \text{sgn } w \cdot (-1)^{\chi(L \, w < 0) + \chi(F \, w < 0)};$

(56)
$$
\text{smaj}\,\mathbf{r}\,w = \text{smaj}\,w + (2n+1)\big(\chi(F\,w < 0) - \chi(L\,w < 0)\big).
$$

Lemma 5.3. For each $w = \binom{|w|}{\epsilon} \in B_{2n+1}$ we have:

$$
(57) \t\t\tsgn s w = - sgn w;
$$

(58) $\text{smais } w = -\text{smaj } w.$

The third lemma requires a careful analysis.

Lemma 5.4. For each $w = \binom{|w|}{\epsilon} = \binom{|x_1||x_2| \cdots |x_{2n+1}}{\epsilon_1 \epsilon_2 \cdots \epsilon_{2n+1}} \in B_{2n+1}$ we have:

(59)
$$
\text{sgn } \mathbf{c} \, w = (-1)^{\chi(F \, w < 0) - \chi(L \, w < 0)} \, \text{sgn } w;
$$

(60)
$$
\text{smaj}\,\mathbf{c}\,w = -\,\text{smaj}\,w - (2n+1)\big(\chi(F\,w < 0) - \chi(L\,w < 0)\big).
$$

Proof. If $\binom{|x_i|}{\epsilon_i} > \binom{|x_{i+1}|}{\epsilon_{i+1}}$ (resp. $\binom{|x_i|}{\epsilon_i} < \binom{|x_{i+1}|}{\epsilon_{i+1}}$) say that *i* is an *interior* descent (resp. rise), if $|x_i| > |x_{i+1}|$ (resp. $|x_i| < |x_{i+1}|$) and $\epsilon_i = \epsilon_{i+1}$. Denote the set of all descents (resp. rises) of w by $DES w$ (resp. $RISE w$), the set of all *interior* descents (resp. rises) being designated by $\text{DES}^i w$ (resp. $\text{RISE}^i w$), so that $DES w = DES^i w + DES \epsilon$ and $RISE w = RISE^i w + RISE \epsilon$.

First, $DESⁱ w = RISEⁱ \mathbf{c} w$ and $RISEⁱ w = DESⁱ \mathbf{c} w$. Hence,

$$
\begin{aligned} \text{des } w + \text{des } \mathbf{c} \, w &= (\# \, \text{DES} \, \epsilon + \# \, \text{DES}^i \, w) + (\# \, \text{DES} \, \epsilon + \# \, \text{DES}^i \, \mathbf{c} \, w) \\ &= (\# \, \text{DES}^i \, w + \# \, \text{DES} \, \epsilon) + (\# \, \text{RISE}^i \, w + \# \, \text{RISE} \, \epsilon) \\ &\quad + (\# \, \text{DES} \, \epsilon - \# \, \text{RISE} \, \epsilon) \\ &= 2n + (\# \, \text{DES} \, \epsilon - \# \, \text{RISE} \, \epsilon) \\ &:= 2n + \text{drise } \epsilon. \end{aligned}
$$

In the same way, let $DRISE \epsilon := \sum_{i} i (\chi(i \in DES \epsilon) - \chi(i \in RISE \epsilon)).$ Then,

$$
\text{maj } w + \text{maj } \mathbf{c} \, w = \sum_{i} \left(i \, \chi(i \in \text{DES} \epsilon) + i \, \chi(i \in \text{DES}^i \, w) \right) \\
+ \sum_{i} \left(i \, \chi(i \in \text{DES} \epsilon) + i \, \chi(i \in \text{DES}^i \, \mathbf{c} \, w) \right) \\
= \sum_{i} \left(i \, \chi(i \in \text{DES} \, w) + i \, \chi(i \in \text{RISE} \, w) \right) \\
+ \sum_{i} i \left(\chi(i \in \text{DES} \, \epsilon) - \chi(i \in \text{RISE} \, \epsilon) \right) \\
= (1 + 2 + \dots + 2n) + \text{DRISE} \, \epsilon \\
= n(2n + 1) + \text{DRISE} \, \epsilon.
$$

Let $d_1 < d_2 < \cdots$ (resp. $r_1 < r_2 < \cdots$) denote the sequence of the descents (resp. rises) of ϵ , when reading the word ϵ from left to right. Four cases are now considered.

(a) $\epsilon_1 = \epsilon_{2n+1} = -1$; the rises and descents alternate in such a way that $1 \leq r_1 < d_1 < r_2 < d_2 < \cdots < r_k < d_k \leq 2n$ and $k \geq 0$. Hence, drise $\epsilon = 0$ and DRISE $\epsilon = \sum_{k=1}^{k}$ $\sum_{i=1} (d_i - r_i) = \text{pos } w.$

(b) $\epsilon_1 = +1$, $\epsilon_{2n+1} = -1$; the alternation becomes: $1 \leq d_1 < r_1 < d_2$ $r_2 < \cdots < d_k < r_k < d_{k+1} \leq 2n (k \geq 0)$. In this case, drise $\epsilon = 1$ and DRISE $\epsilon = \text{pos } w$.

(c) $\epsilon_1 = \epsilon_{2n+1} = 1$; the sequence is then: $1 \leq d_1 < r_1 < d_2 < r_2 < \cdots$ $d_k < r_k \leq 2n \ (k \geq 0)$. Hence, drise $\epsilon = 0$ and $DRISE \ \epsilon = - \text{neg } w$.

(d) $\epsilon_1 = -1$, $\epsilon_{2n+1} = 1$; then $1 \leq r_1 < d_2 < r_2 < \cdots < r_k < d_k < r_{r+1} \leq 2n$ $(k \geq 0)$. Hence, drise $\epsilon = -1$ and DRISE $\epsilon = - \text{neg } w$.

Thus, sgn $w + \text{sgn } \mathbf{c} w = \text{des } w + \chi(\epsilon_1 < 0) + \text{des } \mathbf{c} w + \chi(\epsilon_1 < 0) \equiv \text{drise } \epsilon$ (mod 2), which is 0 when ϵ_1 and ϵ_{2n+1} are of the same sign (cases (a) and (c)), equal to 1 when $\epsilon_1 = 1$, $\epsilon_{2n+1} = -1$ (case (b)) and -1 when $\epsilon_1 = -1$ and $\epsilon_{2n+1} = +1$ (case (d)). Gathering in a common formula: sgn $w + \text{sgn } \mathbf{c} w \equiv$ $\chi(\epsilon_1 = 1) - \chi(\epsilon_{2n+1} = 1)$. This implies (59).

Finally,

$$
\text{smaj}\,\mathbf{c}\,w + \text{smaj}\,w = 2(\text{maj}\,\mathbf{c}\,w + \text{maj}\,w) + \text{neg}\,\mathbf{c}\,w + \text{neg}\,w
$$
\n
$$
- (2n+1)(\text{des}\,\mathbf{c}\,w + \text{des}\,w + 2\chi(\epsilon_1 < 0))
$$
\n
$$
= 2n(2n+1) + 2\,\text{DRISE}\,\epsilon + 2\,\text{neg}\,w
$$
\n
$$
- (2n+1)(2n + \text{drive}\,\epsilon + 2\chi(\epsilon_1 < 0))
$$
\n
$$
= 2\,\text{DRISE}\,\epsilon + 2\,\text{neg}\,w
$$
\n
$$
- (2n+1)(\text{drive}\,\epsilon + 2\chi(\epsilon_1 < 0))
$$

$$
= \begin{cases} 2\cos w + 2\log w - (2n+1)2 = 0, & \text{in case } (a); \\ 2\cos w + 2\log w - (2n+1) = 2n+1, & \text{in case } (b); \\ -2\log w + 2\log w - (2n+1) = 0, & \text{in case } (c); \\ -2\log w + 2\log w - (2n+1) = -(2n+1), & \text{in case } (d). \end{cases}
$$

Altogether, smaj **c** $w = -$ smaj $w - (2n + 1)(\chi(\epsilon_1 = -1) - \chi(\epsilon_{2n+1} = -1)).$ This proves (60) and also Lemma 5.4. \Box

Proof of Theorem 5.1. Let $w \in B_{2n+1}$. By the previous three lemmas

$$
\operatorname{sgn} \mathbf{r} \mathbf{c} w = \operatorname{sgn} \mathbf{c} w \cdot (-1)^{\chi(L \mathbf{c} w < 0) + \chi(F \mathbf{c} w < 0)}
$$
\n
$$
= \operatorname{sgn} w (-1)^{\chi(F w < 0) - \chi(L w < 0)} (-1)^{\chi(L w < 0) + \chi(F w < 0)}
$$
\n
$$
= \operatorname{sgn} w;
$$
\n
$$
\operatorname{smaj} \mathbf{r} \mathbf{c} w = \operatorname{smaj} \mathbf{c} w + (2n + 1)(\chi(F \mathbf{c} w < 0) - \chi(L \mathbf{c} w < 0))
$$
\n
$$
= -\operatorname{smaj} w;
$$
\n
$$
\operatorname{sgn} \mathbf{r} \mathbf{c} w = -\operatorname{sgn} \mathbf{r} \mathbf{c} w = -\operatorname{sgn} w;
$$

 $smaj$ **s r c** $w = -smaj$ **r c** $w = smaj$ w .

6. Which descent for the hyperoctahedral group?

The purpose of this Section is to work out a *global* expression for the generating polynomial for B_n by the five-term statistic (neg, pos, Ξ , des, fmaj), where Ξw is equal to 1 or 0, depending on whether the first letter of w is negative or positive, and to derive the specializations when the pair (Ξ, des) is replaced either by "des_B," or by "fdes," defined in (21) and (22) . Our main result is the following.

Theorem 6.1. *Let*

(61)
$$
B_n(X, Y, Z; t, q) = \sum_{w \in B_n} X^{\text{neg } w} Y^{\text{pos } w} Z^{X(x_1 < 0)} t^{\text{des } w} q^{\text{fmaj } w}.
$$

Then,

(62)
$$
\frac{B_n(X, Y, Z; t, q)}{(t; q^2)_{n+1}} = \frac{t - Z}{t - 1} \sum_{s \ge 0} t^s ((qX + Y)[s + 1]_{q^2})^n + \frac{Z - 1}{t - 1} \sum_{s \ge 0} t^s ((qX + Y)[s + 1]_{q^2} - Xq^{2s+1})^n.
$$

When $q = 1$, write $B_n(X, Y, Z; t) := B_n(X, Y, Z; t, 1)$. The exponential generating function for the latter polynomials can be derived in the following form.

Theorem 6.2. *The following identity holds:*

(63)
$$
\sum_{n\geq 0} \frac{u^n}{n!} B_n(X, Y, Z; t) = \frac{Z - t + (1 - Z) \exp(uX(t - 1))}{-t + \exp(u(X + Y)(t - 1))}.
$$

Proof of Theorem 6.1. Let $w = x_1x_2 \cdots x_n$ be a signed permutation from B_n and ϕ be the unique increasing bijection of the set $\{x_1, x_2, \ldots, x_n\}$ onto the interval $[n]:=\{1,2,\ldots,n\}$. The word

$$
\sigma = \sigma(1)\sigma(2)\cdots\sigma(n) := \phi(x_1)\phi(x_2)\cdots\phi(x_n)
$$

is then an (ordinary) permutation from \mathfrak{S}_n and the map $w \mapsto (\text{Neg } w, \sigma)$ a bijection of B_n onto the Cartesian product $2^{[n]} \times \mathfrak{S}_n$ having the following properties:

$$
\chi(x_1 < 0) = \chi(\sigma(1) \le \text{neg } w); \quad \text{des } w = \text{des }\sigma; \quad \text{fmaj } w = \text{fmaj }\sigma.
$$

For convenience, introduce the polynomial

$$
A_n^k(Z;t,q) := \sum_{\sigma} Z^{\chi(\sigma(1)\leq k)} t^{\text{des}\,\sigma} q^{\text{maj}\,\sigma} \quad (\sigma = \sigma(1)\cdots\sigma(n) \in \mathfrak{S}_n)
$$

and express $B_n(X, Y, Z; t, q)$ in terms of the latter polynomials, to get:

$$
B_n(X, Y, Z; t, q) = \sum_{k=0}^n \sum_{|E|=k} \sum_{\text{Neg } w=E} (qX)^{\text{neg } w} Y^{\text{pos } w} Z^{(\mathcal{X}_1 < 0)} t^{\text{des } w} q^{2 \text{maj } w}
$$
\n
$$
= \sum_{k=0}^n (qX)^k Y^{n-k} \sum_{|E|=k} \sum_{(E, \sigma)} Z^{\chi(\sigma(1)\leq k)} t^{\text{des } \sigma} q^{2 \text{maj } \sigma}
$$
\n
$$
= \sum_{k=0}^n {n \choose k} (qX)^k Y^{n-k} A_n^k(Z; t, q^2).
$$

Next, with each permutation $\sigma = k \sigma(2) \cdots \sigma(n)$ starting with k associate the permutation $\sigma' = \sigma'(1) \cdots \sigma'(n-1) := \psi(\sigma(2)) \cdots \psi(\sigma(n))$, where ψ is the unique increasing bijection of $[n] \setminus \{k\}$ onto $[n-1]$. If $\sigma(2) \leq k-1$, then $\text{des }\sigma = \text{des }\sigma' + 1$, while $\text{maj }\sigma = \text{maj }\sigma' + \text{des }\sigma' + 1$ and $\sigma'(1) \leq k - 1$. If $\sigma(2) \geq k+1$, then des $\sigma = \text{des }\sigma'$, while maj $\sigma = \text{maj }\sigma' + \text{des }\sigma'$ and $\sigma'(1) \geq k$. Hence,

$$
\sum_{\sigma(1)=k,\sigma(2)\leq k-1} Z^{\chi(\sigma(1)\leq k)} t^{\text{des}\,\sigma} q^{\text{maj}\,\sigma} = Z \sum_{\sigma'(1)\leq k-1} t^{\text{des}\,\sigma'+1} q^{\text{maj}\,\sigma'+\text{des}\,\sigma'+1}
$$

$$
= Z \sum_{\sigma'(1)\leq k-1} (tq)^{\chi(\sigma(1)\leq k-1)} (tq)^{\text{des}\,\sigma'} q^{\text{maj}\,\sigma'},
$$

while

X σ(1)=k, σ(2)≥k+1 Z χ(σ(1)≤k) t des σ q maj ^σ = Z X σ′(1)≥k t des σ ′ q maj σ ′+des σ ′ = Z X σ′(1)≥k (tq) ^χ(σ(1)≤k−1)(tq) des σ ′ q maj σ ′ .

Altogether

$$
\sum_{\sigma(1)=k} Z^{\chi(\sigma(1)\leq k)} t^{\text{des}\,\sigma} q^{\text{maj}\,\sigma} = Z\, A^{k-1}_{n-1}(tq;tq,q).
$$

In the same manner,

$$
\sum_{\sigma(1)=k} \!\!Z^{\chi(\sigma(1)\leq k-1)}t^{\text{des}\,\sigma}q^{\text{maj}\,\sigma}=A^{k-1}_{n-1}(tq;tq,q).
$$

Consequently, we have the relation:

(64)
$$
A_n^k(Z;t,q) = A_n^{k-1}(Z;t,q) + (Z-1)A_{n-1}^{k-1}(tq;tq,q).
$$

By iteration we are led to:

(65)
$$
A_n^k(Z; t, q) = A_n^0(Z; t, q)
$$

$$
+ \frac{Z-1}{t-1} \sum_{j=1}^k {k \choose j} (t-1)(tq-1) \cdots (tq^{j-1}) A_{n-j}^0(tq^j, tq^j, q).
$$

But, the variable Z vanishes from $A_n^k(Z; t, q)$ when $k = 0$ and then $A_n^0(Z; t, q) =$ $A_n(t, q)$, which is the Carlitz q-analog of the Eulerian polynomial ([3, 4]) appearing in (1). Hence,

$$
A_n^k(Z;t,q) = A_n(t,q) + \frac{Z-1}{t-1} \sum_{j=1}^k {k \choose j} (-1)^j (t;q)_j A_{n-j}(tq^j,q)
$$

=
$$
\frac{t-Z}{t-1} A_n(t,q) + \frac{Z-1}{t-1} \sum_{j=0}^k {k \choose j} (-1)^j (t;q)_j A_{n-j}(tq^j,q).
$$

The next step is to report this new expression of $A_n^k(Z; t, q)$ into the polynomial $B_n(X, Y, Z; t, q)$. We get:

$$
B_n(X, Y, Z; t, q) = \sum_{k=0}^n {n \choose k} (qX)^k Y^{n-k} A_n^k(Z; t, q^2)
$$

=
$$
\sum_{k=0}^n {n \choose k} (qX)^k Y^{n-k} \left(\frac{t-Z}{t-1} A_n(t, q^2) + \frac{Z-1}{t-1} \sum_{j=0}^k {k \choose j} (-1)^j (t; q^2)_j A_{n-j} (tq^{2j}, q^2) \right)
$$

=
$$
\frac{t-Z}{t-1} (qX+Y)^n A_n(t, q^2)
$$

+
$$
\frac{Z-1}{t-1} \sum_{\substack{j,l,m \geq 0 \\ j+l+m = n}} \frac{n!}{j! l! m!} (qX)^{j+l} Y^m(-1)^j (t; q^2)_j A_{l+m} (tq^{2j}, q^2),
$$

where $k = j + l$.

Next, with $r = l + m$ we get

$$
\frac{B_n(X, Y, Z; t, q)}{(t; q^2)_{n+1}} = \frac{t - Z}{t - 1} (qX + Y)^n \frac{A_n(t, q^2)}{(t; q^2)_{n+1}} \n+ \frac{Z - 1}{t - 1} \sum_{j+r=n} \frac{n!}{r! j!} (-qX)^j \frac{A_r(tq^{2j}, q^2)}{(tq^{2j}; q^2)_{r+1}} \sum_{l+m=r} \frac{r!}{l! m!} (qX)^l Y^m \n= \frac{t - Z}{t - 1} (qX + Y)^n \frac{A_n(t, q^2)}{(t; q^2)_{n+1}} \n+ \frac{Z - 1}{t - 1} \sum_{j+r=n} \frac{n!}{r! j!} (-qX)^j \frac{A_r(tq^{2j}, q^2)}{(tq^{2j}; q^2)_{r+1}} (qX + Y)^r.
$$

Furthermore,

$$
\sum_{n\geq 0} \frac{B_n(X, Y, Z; t, q)}{(t; q^2)_{n+1}} \frac{u^n}{n!} = \frac{t - Z}{t - 1} \sum_{n\geq 0} \frac{A_n(t, q^2)}{(t; q^2)_{n+1}} \frac{((qX + Y)u)^n}{n!} + \frac{Z - 1}{t - 1} \sum_{j\geq 0} \frac{(-qXu)^j}{j!} \sum_{r\geq 0} \frac{A_r(tq^{2j}, q^2)}{(tq^{2j}, q^2)_{r+1}} \frac{((qX + Y)u)^r}{r!}.
$$

Now, make use of the classical identity on the Carlitz q -Eulerian polynomials

$$
\sum_{n\geq 0} \frac{u^n}{n!} \frac{A_n(t,q)}{(t;q)_{n+1}} = \sum_{s\geq 0} t^s \exp(u[s+1]_q),
$$

to obtain

(66)
$$
\sum_{n\geq 0} \frac{B_n(X, Y, Z; t, q)}{(t; q^2)_{n+1}} \frac{u^n}{n!} = \frac{t - Z}{t - 1} \sum_{s\geq 0} t^s \exp((qX + Y)u [s + 1]_{q^2}) + \frac{Z - 1}{t - 1} \sum_{j\geq 0} \frac{(-qXu)^j}{j!} \sum_{s\geq 0} (tq^{2j})^s \exp((qX + Y)u [s + 1]_{q^2}).
$$

There remains to extract the coefficient of u^n on both sides. This leads to:

(67)
$$
\frac{B_n(X,Y,Z;t,q)}{n!(t;q^2)_{n+1}} = \frac{t-Z}{t-1} \sum_{s \ge 0} t^s \left((qX+Y) \left[s+1 \right]_{q^2} \right)^n + \frac{Z-1}{t-1} C,
$$

where C is the coefficient of u^n in

$$
\sum_{j\geq 0} \frac{(-qXu)^j}{j!} \sum_{s\geq 0} (tq^{2j})^s \sum_{m\geq 0} \frac{((qX+Y)u\,[s+1]_{q^2})^m}{m!},
$$

that is,

$$
C = \sum_{s\geq 0} t^s \sum_{j\geq 0} \frac{(-qX)^j}{j!} q^{2js} \frac{((qX+Y) [s+1]_{q^2})^{n-j}}{(n-j)!}
$$

=
$$
\frac{1}{n!} \sum_{s\geq 0} t^s \sum_{j\geq 0} {n \choose j} (-qXq^{2s})^j ((qX+Y) [s+1]_{q^2})^{n-j}
$$

=
$$
\frac{1}{n!} \sum_{s\geq 0} t^s ((qX+Y) [s+1]_{q^2} - Xq^{2s+1})^n
$$

Reporting the last expression in (67) yields identity (62). \Box

Proof of Theorem 6.2. When $q = 1$ in (62), we obtain

(68)
$$
\frac{B_n(X, Y, Z; t)}{(1-t)^{n+1}} = \frac{t-Z}{t-1} \sum_{s \ge 0} t^s ((X+Y)(s+1))^n + \frac{Z-1}{t-1} \sum_{s \ge 0} t^s ((X+Y)(s+1) - X)^n.
$$

Hence,

$$
\sum_{n\geq 0} \frac{u^n}{(1-t)^n} B_n(X, Y, Z; t)
$$

= $(Z - t) \sum_{s\geq 0} t^s \sum_{n\geq 0} \frac{(u(X+Y)(s+1))^n}{n!}$
+ $(1-Z) \sum_{s\geq 0} t^s \sum_{n\geq 0} \frac{(u(X+Y)(s+1) - X)^n}{n!}$
= $(Z - t) \sum_{s\geq 0} t^s \exp(u(X+Y)(s+1))$
+ $(1-Z) \sum_{s\geq 0} t^s \sum_{n\geq 0} \exp(u(X+Y)(s+1) - X)$
= $((Z - t) \exp(u(X+Y)) + (1-Z) \exp(uY)) \sum_{s\geq 0} t^s \exp(u(X+Y)s)$
= $\frac{(Z - t) \exp(u(X+Y)(1-Z)) \exp(uY)}{1 - t \exp(u(X+Y))},$

which is identity (63) by replacing u by $u(1-t)$.

Next, we derive specializations of Theorems 6.1 and 6.2 when the pair (Ξ, des) is replaced by "des_B" and "fdes" (see (21) and (22)). We get:

(69)
$$
\sum_{w \in B_n} X^{\text{neg } w} Y^{\text{pos } w} t^{\text{des}_B w} q^{\text{fmaj } w} = B_n(X, Y, t; t, q);
$$

(70)
$$
\sum_{w \in B_n} X^{\text{neg } w} Y^{\text{pos } w} t^{\text{fdes } w} q^{\text{fmaj } w} = B_n(X, Y, t; t^2, q).
$$

Also, note that $B_n(0, 1, 1; t, q)$ is the Carlitz q-Eulerian polynomial $A_n(t, q)$. First,

(71)
$$
\frac{B_n(X, Y, t; t, q)}{(t; q^2)_{n+1}} = \sum_{s \ge 0} t^s \big((qX + Y)[s+1]_{q^2} - Xq^{2s+1} \big)^n;
$$

(72)
$$
\frac{B_n(1,1,t;t,q)}{(t;q^2)_{n+1}} = \sum_{w \in B_n} t^{\text{des}_B w} q^{\text{fmaj }w} = \sum_{s \ge 0} t^s \big([2s+1]_q \big)^n.
$$

Second,

$$
\frac{B_n(X, Y, t; t^2, q)}{(t^2; q^2)_{n+1}} = \frac{t^2 - t}{t - 1} \sum_{s \ge 0} t^{2s} ((qX + Y) [s + 1]_{q^2})^n
$$

+
$$
\frac{t - 1}{t^2 - 1} \sum_{s \ge 0} t^{2s} ((qX + Y) [s + 1]_{q^2} - Xq^{2s+1})^n,
$$

so that

(73)
$$
\frac{(1+t)B_n(X,Y,t;t^2,q)}{(t^2;q^2)_{n+1}} = \sum_{s\geq 0} t^{2s+1} ((qX+Y) [s+1]_{q^2})^n + \sum_{s\geq 0} t^{2s} ((qX+Y) [s]_{q^2} + Yq^{2s})^n.
$$

In particular,

(74)
$$
\frac{(1+t)B_n(1,1,t;t,q)}{(t^2;q^2)_{n+1}} = \sum_{w \in B_n} t^{\text{fdes }w} q^{\text{fmaj }w} = \sum_{s \ge 0} t^s \big([s+1]_q \big)^n.
$$

The specializations of (72) and (74) for $q = 1$ are banal and not reproduced. However, it is worth writing the exponential generating functions for the polynomials $B_n(1, 1, t; t)$ and $B_n(1, 1, t; t^2)$ directly obtained from (63):

(75)
$$
\sum_{n\geq 0} \frac{u^n}{n!} B_n(1, 1, t; t) = \sum_{n\geq 0} \frac{u^n}{n!} \sum_{w \in B_n} t^{\text{des}_B w} = \frac{(1-t) \exp(u(t-1))}{-t + \exp(2u(t-1))};
$$

$$
\sum_{n\geq 0} \frac{u^n}{n!} B_n(1, 1, t; t^2) = \frac{(1-t)(t + \exp(u(t^2 - 1)))}{-t^2 + \exp(2u(t^2 - 1))};
$$

so that

(76)
$$
\sum_{n\geq 0} \frac{u^n}{n!} B_n(1, 1, t; t^2) = \sum_{n\geq 0} \frac{u^n}{n!} \sum_{w \in B_n} t^{\text{fdes } w} = \frac{1 - t}{-t + \exp(u(t^2 - 1))}.
$$

The statistics "fdes" and "fmaj" were introduced by Adin and Roichman [2]. Identity (74) with their equivalent adaptations were derived by Brenti et al. [1], Haglund et al. [15] and reproved by the authors ([9, 10]) as specializations of identities involving several-variable statistics. Not e that (76) implies that $\sum_{w\in B_n} (-1)^{\text{fdes }w}$ is null for every $n \geq 1$. Accordingly, the statistic "fdes" would have been a wrong choice for obtaining a *q*-extension!

REFERENCES

- [1] R. M. Adin, F. Brenti and Y. Roichman, Descent numbers and major indices for the hyperoctahedral group, Adv. in Appl. Math. 27 (2001), no. 2-3, 210–224. MR1868962 (2003m:05211)
- [2] R. M. Adin and Y. Roichman, The flag major index and group actions on polynomial rings, European J. Combin. 22 (2001), no. 4, 431–446. MR1829737 (2002d:05004)
- [3] L. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954), 332– 350. MR0060538 (15,686a)
- [4] L. Carlitz, A combinatorial property of q-Eulerian numbers, Amer. Math. Monthly 82 (1975), 51–54. MR0366683 (51 #2930)
- [5] C.-O. Chow and I. M. Gessel, On the descent numbers and major indices for the hyperoctahedral group, Adv. in Appl. Math. 38 (2007), no. 3, 275–301. MR2301692 (2008g:05007)
- [6] A. M. Cohen, Eulerian polynomials of spherical type, Münster J. Math. 1 (2008), 1–7. MR2502492 (2010e:05318)

- [7] Leonhard Euler, Institutiones calculi differentialis cum eius usu in analysi finitorum ac Doctrina serierum, Academiae Imperialis Scientiarum Petropolitanae, St. Petersbourg, (1755), chap. VII ("Methodus summandi superior ulterius promota")
- [8] D. Foata and G.-N. Han, Signed words and permutations. I. A fundamental transformation, Proc. Amer. Math. Soc. 135 (2007), no. 1, 31–40 (electronic). MR2280171 (2007j:05004)
- [9] D. Foata and G.-N. Han, Signed words and permutations. III. The MacMahon Verfahren, Sém. Lothar. Combin. 54 (2005/07), Art. B54a, 20 pp. (electronic). MR2196519 (2007c:05003)
- [10] D. Foata and G.-N. Han, Signed words and permutations. V. A sextuple distribution, Ramanujan J. 19 (2009), no. 1, 29–52. MR2501235
- [11] D. Foata and G.-N. Han, Doubloons and new q-tangent numbers. To appear in Quarterly J. Math.,17 pp.
- [12] D. Foata and G.-N. Han, The doubloon polynomial triangle. To appear in Ramanujan J., 20 pp.
- [13] D. Foata and M.-P. Schützenberger, *Théorie géométrique des polynômes eulériens*, Lecture Notes in Mathematics, Vol. 138 Springer, Berlin, 1970. MR0272642 (42 #7523) http://math.univ-lyon1.fr/~slc/books/index.html
- [14] R. Graham and N. Zang, Enumerating split-pair arrangements, J. Combin. Theory Ser. A 115 (2008), no. 2, 293–303. MR2382517 (2008m:05018)
- [15] J. Haglund, N. Loehr and J. B. Remmel, Statistics on wreath products, perfect matchings, and signed words, European J. Combin. 26 (2005), no. 6, 835–868. MR2143200 (2006b:05004)
- [16] F. Hirzebruch, Eulerian polynomials, M¨unster J. Math. 1 (2008), 9–14. MR2502493 (2010g:11033)
- [17] Niels Nielsen, Traité élémentaire des nombres de Bernoulli, Paris, Gauthier-Villars, (1923).
- [18] C. Poupard, Deux propriétés des arbres binaires ordonnés stricts, European J. Combin. 10 (1989), no. 4, 369–374. MR1005843 (90g:05019)
- [19] V. Reiner, Signed permutation statistics, European J. Combin. 14 (1993), no. 6, 553– 567. MR1248063 (95e:05008)
- [20] J. Riordan, An introduction to combinatorial analysis, Wiley Publications in Mathematical Statistics Wiley, New York, 1958. MR0096594 (20 #3077)

Received February 22 2010; accepted May 15 2010

Dominique Foata Institut Lothaire, 1, rue Murner, F-67000 Strasbourg, France E-mail: foata@unistra.fr

Guo-Niu Han I.R.M.A. UMR 7501, Université de Strasbourg et CNRS, 7, rue René-Descartes, F-67084 Strasbourg, France E-mail: guoniu.han@unistra.fr