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We propose a Mean Value Inequality concerning functions on a compact
interval mapping into an arbitrary Banach space. In the special case of a real-
valued function, the statement of our theorem was already formulated by Dale
E.Varberg in his paper On Absolutely Continuous Functions. Since Varberg’s
proof is essentially based on the ordered structure of R, it isn’t possible to
apply this proof to our generalized theorem. Therefore we establish a proper
proof which makes use of the well-known Vitali Covering Theorem.
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1. INTRODUCTION

Throughout this paper we fix a compact interval I = [a, b], a Banach
space (X, || · ||) (over the real or complex numbers), and a map f : I → X.
The set of those points in which f is differentiable is denoted by Df . As
usual, Lebesgue measure on R (Lebesgue outer measure on R resp.) is
denoted by λ (λ∗ resp.). In this paper we prove the following

Theorem 1.1. Let A ⊂ Df and K := supx∈A ||f ′(x)|| < ∞. Then
µ0(f(A)) ≤ K · λ∗(A).

In this connection, µ0 is a specific outer measure on X; in particular,
µ0 = λ∗ in case X = R. (The construction as well as further properties
of µ0 will be noted down in section 2.) Thus, if X = R and Df = I one
concludes from continuity of f and from Theorem 1.1

|f(b) − f(a)| ≤ λ∗(f(I)) ≤ sup
x∈I

|f ′(x)| · (b − a) ,

that is the real Mean Value Inequality. In this respect Theorem 1.1 may be
called a generalization of the real Mean Value Inequality.

Concerning the special case X = R, the statement of Theorem 1.1 was
already formulated some thirty years ago by Dale E.Varberg in his so called
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Fundamental Lemma ([3] pp. 832f). Since Varberg makes use of the ordered
structure of R, it isn’t possible to apply his proof of the Fundamental
Lemma to the general case concerning functions mapping into an arbitrary
Banach space X. Therefore it is necessary to establish a proper proof of
Theorem 1.1, which we will lead through in two steps. At first we formulate
a preliminary version of Theorem 1.1, which is rather weak (section 3);
combining this result with the well-known Vitali Covering Theorem one
obtains the desired statement of Theorem 1.1 (section 4).

Finally we remark here that already the preliminary version of Theorem
1.1 may be applied to prove the following fact: If f is absolutely continuous
and Lebesgue-almost everywhere differentiable with Lebesgue-integrable
derivative then f is an indefinite integral. (A complete proof is given in [2],
pp. 15ff.)

2. CONSTRUCTING A FAMILY OF OUTER MEASURES
ON X

This section deals with a family (µd)d∈[0,∞] of outer measures on X,
in special consideration of the outer measure µ0. Since these so called d-
spherical outer measures on X are constructed in an analogous way to the
well-known Hausdorff 1-dimensional outer measure, standard proofs will be
omitted. (For more details see [1], pp. 15ff.)

Let U be a subset of X. If U is non-empty, we define the diameter of U
as

diam(U) := sup{||x − y||;x, y ∈ U} ;

the diameter of the empty set is defined as 0. U is called a ball, if there exist
x ∈ X and r ≥ 0 such that B(x, r) ⊂ U ⊂ B(x, r), where B(x, r) (B(x, r)
resp.) is the open ball (the closed ball resp.) centered at x with radius r.
A countable collection S of subsets of X is called a d-covering of U , if
U ⊂ ⋃S and diam(C) < d for every C ∈ S. We will call a d-covering of U
that consists of balls only a spherical d-covering of U. For every d ∈ ]0,∞]
one now defines

µd(U) := inf

{ ∑
C∈S

diam(C) ; S is a spherical d-covering of U

}
.

An easy check establishes that µd is an outer measure on X. Taking the
supremum

µ0(U) := sup
d>0

µd(U)
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we obtain another outer measure µ0 on X. For every d ∈ [0,∞] we call
µd d-spherical outer measure on X. As usual, if µd(U) = 0 we call U a
µd-null-set.

According to this construction of µ0 one immediately realizes the follo-
wing fact: Using d-coverings instead of spherical d-coverings, one obtains a
family (H1

d)d∈ ]0,∞] of outer measures on X instead of (µd)d∈ ]0,∞] and final-
ly the Hausdorff 1-dimensional outer measure H1 on X instead of µ0. Thus
obviously the inequalities H1

d(U) ≤ µd(U) for every d ∈ ]0;∞] and therefo-
re H1(U) ≤ µ0(U) hold. In other words, the spherical outer measures are
stronger than their Hausdorff equivalents.

Some basic properties of the d-spherical outer measures are collected in
the following four propositions.

Proposition 2.1 (Basic Properties).

(i) If d, d′ ∈ [0,∞] and d ≤ d′ then µd(U) ≥ µd′(U).
(ii) If m := µ∞(U) < ∞ then µd(U) = m for every d ∈ ]m,∞].
(iii) µ0(U) = limd→0 µd(U).
(iv) µ∞(U) = limd→∞ µd(U).

Proof. (i) is trivial. (ii) Let m := µ∞(U) < ∞ and d ∈ ]m,∞]. Let
α ∈ ]m, d[. Then there exists a spherical ∞-covering S of U such that∑

C∈S diam(C) < α < d. Hence diam(C) < d for every C ∈ S. Thus
we see that S is a spherical d-covering of U . It follows µd(U) ≤ α and
therefore µd(U) ≤ inf]m, d[= m. The converse inequality µd(U) ≥ m is an
immediate consequence of (i). (iii) and (iv) follow closely by (i) and (ii).

As an immediate application of Proposition 2.1 one may prove the follo-
wing statement already mentioned in the introduction:

Proposition 2.2. If X = R then µd(U) = λ∗(U) for every d ∈ [0,∞].

Proof. Let X = R. As a consequence of the construction of µ∞ one has
the identity λ∗(U) = µ∞(U). By Proposition 2.1 (i), (iii) it is sufficient to
prove the inequality µd(U) ≤ µ∞(U) for every d ∈]0,∞[, so let d ∈]0,∞[.
Without loss of generality let m := µ∞(U) < ∞. Then we can choose N ∈
N such that Nd > m. By Proposition 2.1 (ii) we have µNd(U) = µ∞(U).
Therefore it is sufficient to prove µd(U) ≤ µNd(U). Let S be a spherical
(Nd)-covering of U , that is, S is a countable collection of intervals satisfying
diam(C) < Nd for every C ∈ S. Consequently, the collection

S ′ :=
{

inf(C) + [k − 1, k]
diam(C)

N
; C ∈ S, k ∈ {1, ..., N}

}
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is a spherical d-covering of U and∑
C∈S

diam(S) =
∑

C∈S′
diam(S) .

This proves the desired inequality µd(U) ≤ µNd(U).

Proposition 2.3 (Null-Sets).

(i) If U is countable then U is a µd-null-set for every d ∈ [0,∞].
(ii) U is a µd-null-set for some d ∈ [0,∞] if and only if it is a µd-null-set

for every d ∈ [0,∞].

Proof. (i) Let U be countable. Then {{x};x ∈ U} is a spherical d-
covering of U for every d ∈ ]0,∞], so µd(U) = 0 and hence also µ0(U) =
0. (ii) Let U be a µd-null-set for some d ∈ [0,∞]. By Proposition 2.1
(i) µ∞(U) = 0. Thus µd(U) = 0 for every d ∈ [0,∞] by Propositi-
on 2.1 (ii) and the definition of µ0. The converse implication is trivial.

Proposition 2.4 (Diameter).

(i) µ∞(U) ≤ 2 diam(U). In particular, if U is a ball then µd(U) ≤
diam(U) for every d ∈ ]diam(U),∞].

(ii) Let A ⊂ I and let E be a countable covering of A. Then µ∞(f(A)) ≤
2

∑
E∈E diam(f(E ∩ I)).

Proof. (i) The first inequality is trivial. If U is a ball then {U} is a
spherical ∞-covering of U . Therfore we obtain µ∞(U) ≤ diam(U) < ∞.
Thus the second assertion follows closely by Proposition 2.1 (ii). (ii) Sin-
ce µ∞ is monotone and countably subadditive, the inequality µ∞(f(A)) ≤∑

E∈E µ∞(f(E ∩ I)) holds. Application of (i) completes the proof.

In the last proposition of this section we note down some advantageous
properties of the outer measure µ0. Indeed none of the d-spherical outer
measures µd, d > 0, does have these properties either. Since we make no
use of this proposition in the following sections, we will omit the non-trivial
proof (see [1], pp. 25ff).

Proposition 2.5.

(i) µ0 is a regular metric outer measure on X.
(ii) If f is continuous then diam(f(I)) ≤ µ0(f(I)) ≤ Var(f), where

Var(f) denotes the total variation of f on I. If, in addition, f is injective
then µ0(f(I)) = Var(f), that is, µ0 is measuring the length of a Jordan
curve in X correctly .
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3. A PRELIMINARY VERSION OF THEOREM 1.1

In this section a preliminary version of Theorem 1.1 will be established
(Proposition 3.1). To this end we need the following lemma; essentially
based on the local Lipschitz property the proof of this lemma is quite easy,
thus we will omit it.

Lemma 3.1. Let A be a subset of Df ∩ ]a, b[, and let

K := sup
x∈A

||f ′(x)|| < ∞ .

Let ε > 0. Then there exist an open set U ⊂ ]a, b[ containing A and a family
(δx)x∈A of positive numbers satisfying the following conditions:

(C1) It is λ(U) ≤ λ∗(A) + ε.
(C2) For every x ∈ A the open interval ]x − δx, x + δx[ is contained in

U .
(C3) For every x ∈ A and for every y ∈ ]x − δx, x + δx[ the inequality

||f(y) − f(x)|| ≤ (K + ε) · |y − x| holds.

Proposition 3.1. Under the conditions of Theorem 1.1

µ∞(f(A)) ≤ 2K · λ∗(A) .

Proof. Without loss of generality let A be non-empty and a, b /∈ A.
Obviously it is sufficient to prove the inequality

µ∞(f(A)) ≤ 2 (K + ε) · (λ∗(A) + ε) (1)

for every ε > 0, so let ε > 0. By Lemma 3.1 we choose an open set U ⊂ ]a, b[
containing A and a family (δx)x∈A of positive numbers satisfying conditions
(C1)–(C3). For every x ∈ A we set Ex := ]x−δx, x+δx[. Then the open set
E :=

⋃
x∈A Ex obviously contains A and is contained in U (cf. condition

(C2)). The collection E of the connected components of E is countable and
consists of open intervals. Combining these facts with Proposition 2.4 (ii)
and condition (C1) we obtain

µ∞(f(A)) ≤ 2
∑
W∈E

diam(f(W )) (2)
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and ∑
W∈E

λ(W ) = λ(E) ≤ λ(U) ≤ λ∗(A) + ε . (3)

If, in addition, we show for every W ∈ E

diam(f(W )) ≤ (K + ε) · λ(W ) , (4)

the inequalities (2) and (3) lead to the desired inequality (1).
Proof of (4): Let W ∈ E and x, y ∈ W , x ≤ y. Then the closed interval

[x, y] is contained in W , since W is connected. Because of

W =
⋃

v∈A∩W

Ev (5)

the collection {Ev; v ∈ A ∩ W} of open sets is a covering of [x, y]. By
compactness we can choose a finite subset P of A∩W such that {Ev; v ∈ P}
is also a covering of [x, y]. Without loss of generality we may assume that
Ev ∩ [x, y] �= ∅ for every v ∈ P and Ev �⊂ Ew for all v, w ∈ P , v �= w.
Let now n be the number of elements in P , and denote these elements in
ascending order by x1, ..., xn. At last we set Ej := Exj

and δj := δxj
for

every j ≤ n. Then one verifies that x ∈ E1, y ∈ En and Ej ∩ Ej+1 �= ∅
for every j < n. Thus we can choose pj ∈ Ej ∩ Ej+1 ∩ [xj , xj+1] for every
j < n. Using condition (C3) we obtain:

||f(x) − f(y)|| ≤ ||f(x) − f(x1)||+

+
n−1∑
j=1

(||f(xj) − f(pj)|| + ||f(pj) − f(xj+1)||) + ||f(xn) − f(y)||

≤ (K + ε) ·

 |x − x1| +

n−1∑
j=1

((pj − xj) + (xj+1 − pj)) + |xn − y|



≤ (K + ε) · ( δ1 + (xn − x1) + δn

)
= (K + ε) · ( (xn + δn) − (x1 − δ1) ) .

Since x1 and xn are elements of P ⊂ A∩W , the interval ]x1 − δ1, xn + δn[
is contained in the connected set W (cf. (5)). Thus finally

||f(x) − f(y)|| ≤ (K + ε) · (supW − inf W ) = (K + ε) · λ(W ) ,

and the proof of (4) is complete.

Corollary 3.1. Let A be a Lebesgue-null-set contained in Df . Then
f(A) is a µ∞-null-set.
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Proof. For every k ∈ N the set Ak := {x ∈ A; ||f ′(x)|| ≤ k} is a
Lebesgue-null-set, hence f(Ak) is a µ∞-null-set by Proposition 3.1. Since
f(A) is contained in

⋃
k∈N

f(Ak), the proof is complete.

4. THE PROOF OF THEOREM 1.1

As mentioned above, we will make use of the famous Vitali Covering
Theorem within the proof of Theorem 1.1. For this reason we recall that a
collection V of intervals is called a Vitali covering of a subset A of R, if for
given ε > 0 and x ∈ A there exists I ∈ V such that x ∈ I and λ(I) < ε.

Theorem 4.1 (Vitali Covering Theorem). Let A be a subset of the real
numbers such that λ∗(A) is finite, and let V be a Vitali covering of A.
Then there exists a countable collection W consisting of mutually disjoint
elements of V such that λ∗(A \ ⋃W) = 0.

Proof of Theorem 1.1. Without loss of generality let A be non-empty
and a, b /∈ A. By the definiton of µ0 it is sufficient to prove the inequality

µd(f(A)) ≤ (K + ε) · (λ∗(A) + ε) (6)

for every d > 0 and ε > 0, so let d > 0 and ε > 0. By Lemma 3.1 we
choose an open set U ⊂ ]a, b[ containing A and a family (δx)x∈A of positive
numbers satisfying conditions (C1)–(C3); without loss of generality we may
assume that

sup
x∈A

δx <
d

2 (K + ε)
. (7)

Then obviously the collection

V :=
{ ]

x − δx

n
, x +

δx

n

[
; x ∈ A, n ∈ N

}

is a Vitali covering of A. Hence by the Vitali Covering Theorem we choose
a countable collection W consisting of mutually disjoint elements of V such
that λ∗(A \ ⋃W) = 0. Applying Proposition 2.3 (ii) and Corollary 3.1 we
obtain immediately µd(f(A \ ⋃W)) = 0, thus

µd(f(A)) ≤ µd

(
f

(
A ∩

⋃
W

))
+ µd

(
f

(
A \

⋃
W

) )
≤ µd

(
f

(⋃
W

))
≤

∑
W∈W

µd(f(W )) . (8)
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We now fix W ∈ W. Referring to the definition of V we choose xW ∈ A
and δW ∈ ]0, δxW

] such that W = ]xW − δW , xW + δW [. Applying condition
(C3) we see that f(W ) is a subset of the open ball B(f(xW ), (K + ε)δW ),
hence the inequality

µd(f(W )) ≤ µd (B(f(xW ), (K + ε)δW )) (9)

holds. By (7) we have diam(B(f(xW ), (K + ε)δW )) = 2(K + ε)δW ≤ d.
Thus by Proposition 2.4 (i) we obtain

µd(B(f(xW ), (K + ε)δW )) ≤ 2 (K + ε) δW . (10)

Combination of (7)–(10) leads immediately to

µd(f(A)) ≤
∑

W∈W
2 (K + ε) δW = (K + ε)

∑
W∈W

λ(W ) . (11)

By choice the countable collection W consists of mutually disjoint elements
of V, hence

∑
W∈W λ(W ) = λ (

⋃W). Applying this fact and conditions
(C2), (C3) we obtain from (11)

µd(f(A)) ≤ (K + ε)λ
(⋃

W
)

≤ (K + ε)λ

( ⋃
x∈A

]x − δx, x + δx[

)

≤ (K + ε)λ(U) ≤ (K + ε) · (λ∗(A) + ε) ,

that is the desired inequality (6).
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