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On rigidity of locally symmetric spaces
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(Communicated by Peter Schneider)

Abstract. In this note I generalize the classical results of Calabi–Vesentini [3] (cp. also
[2]) to certain noncompact locally symmetric domains, namely those that are quotients of a
hermitian symmetric domain by a neat arithmetic subgroup of the group of its holomorphic
automorphisms.

Introduction

A classical result due to Calabi and Vesentini [3] states that a compact
locally symmetric space is rigid, provided all of its irreducible factors have
dimension at least 2. This implies that such varieties (known to be algebraic)
can be defined over a numberfield. This was first remarked by Shimura in [10].
For a modern variant of the proof see [7].

Faltings [5] remarked that one can show that the Kodaira–Spencer class for
any “spread family” of the given variety is zero which suffices for rigidity. This
is true without any restriction on the type of irreducible factors, and even for
noncompact locally symmetric spaces. The proof uses first of all Mumford’s
theory of toroidal compactifications [1] of locally symmetric varieties together
with the existence of “good” extensions of metric homogeneous vector bundles
to these compactifications as shown in [6]. The second ingredient is a careful
analysis of the extension of classical harmonic theory to a suitable L2-version.

I show in this note that the same techniques can be used to extend the
results of Calabi and Vesentini to the noncompact case. This is stated as
Theorem 4.3.

Mumford’s ideas are sketched in Section 1. In Section 2, I explain the basic
L2-techniques used by Faltings. This is done in some detail since the arguments
in [5] are rather sketchy.
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1. Poincaré growth and good metrics

In this section I recall some concepts and results from [6]. LetX be a smooth
quasi-projective complex variety and let X be a “good” compactification: X is
non-singular, projective and ∂X := X −X a normal crossing divisor. Hence,
locally at a point of the boundary, coordinates (z1, . . . , zn) can be chosen such
that the boundary is given by the equation z1 · · · zr = 0 and ∂X can be covered
by a collection of polydisks ∆n on which X cuts out (∆∗)r ×∆n−r. Let ‖ ‖P
be the Poincaré norm on such a product given on a coordinate disk (∆, z)
by the usual euclidian norm while on a punctured disk (∆∗, z) it is given by
|z|2(log |z|)2.

Any smooth p form, say η on X , is said to have Poincaré growth near the
boundary, if for all tangent vectors {t1, . . . , tp} at a point of ∆

n∩X , one has the
estimate |η(t1, . . . , tp)|

2 ≤ Const.‖t1‖P · · · ‖tp‖P . This notion does not depend
on choices. By [6, Prop. 1.1] such a form defines a current on X . Mumford
calls a smooth form ω on X a good form if ω as well as dω have Poincaré
growth near the boundary.

Let (E, h) be a hermitian holomorphic vector bundle on X . Recall the
following definition:

Definition 1.1. The Chern connection for (E, h) is the unique metric connec-

tion ∇E on E whose (0, 1)-part is the operator ∂̄ : A0
X(E) → A0,1

X (E) coming
from the complex structure on E.

Assume that E = E#|X where E# is a holomorphic vector bundle on X.

Definition 1.2. The metric h is good relative to E#, if locally near the bound-
ary for every frame of E# the following holds:

(i) The matrix entries hij of h, respectively h−1
ij of h−1, with respect to the

frame grow at most logarithmically: in local coordinates z1, . . . , zn as
above, |hij |, |h

−1
ij | ≤ Const. · (log |z1 · · · zk|)

N for some integer N .

(ii) The entries of the connection matrix ωh = ∂h · h−1 for the Chern con-
nection are good forms (as defined above).

By [6, Prop. 1.3] there is at most one extension E# of E such that h is good
relative to that extension. Note also that the dual E∗ carries a natural metric
and this metric is good relative (E#)∗.

If h is a good metric on a vector bundle E relative to an extension E#, then
by definition any Chern form calculated from the Chern connection is good,
and by [6, Thm. 1.4] the class it represents is the corresponding Chern class
of E#.

2. Relevant L2-harmonic theory

Let me continue with the set-up of the previous section. So (E, h) is a
hermitian holomorphic vector bundle on X such that E is the restriction to X
of a holomorphic vector bundle E# on X with the property that h is good rel-
ative to E#. In addition, make the following, admittedly strong assumptions:
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Assumption 2.1. (a) X carries a complete Kähler metric hX whose (1, 1)-
form has Poincaré growth near ∂X (and hence its volume form has Poincaré
growth).

(b) Smooth sections of the bundle Ak

X
(E#) of complex k-forms with values in

E# are bounded in the metric on the space of global sections that h and
hX induce as explained now.

On Ak(E#), the space of global complex k-forms with values in E#, this
goes as follows. On a fiber Ak

X,x(E) at x ∈ X of the vector bundle Ak
X(E),

one has a fiberwise metric induced by the metrics h and hX :

hx(α⊗ s, β ⊗ t) = hX(α, β)h(s, t), α, β ∈ Ak
X,x, s, t ∈ Ex.

Assumption 2.1 (b) means that for any two sections ωi ∈ Ak(E#), i = 1, 2, the
function {x 7→ hx(ω1, ω2)} is bounded on X . Since by Assumption 2.1 (a) the
volume form for hX has Poincaré growth near ∂X , it follows that the global
inner product

〈ω1, ω2〉 =

∫

X

hx(ω1, ω2) · volume form with respect to hX ,

ω1, ω2 ∈ Ak
X̄
(E#), exists; in other words, one has an inclusion

Ak(E#) →֒ L2(X,Ak(E)) = {square integrable E-valued k forms}

and one can do harmonic theory for certain differential operators on these
spaces. The particular operators here are those that are induced by the Chern
connection ∇ = ∇E (see Definition 1.1), namely

∇ : Ak
X(E) → Ak+1

X (E), ∇0,1 = ∂̄,

α⊗ s 7→ dα⊗ s+ (−1)kα⊗∇s.

The operator ∂̄ extends in the distributional sense to an operator

∂̄ : L2(X,A0,q(E)) → L2(X,A0,q+1(E)),

and since the metric on X is complete and ∂̄2 = 0, one can apply a result of
von Neumann (cp. [4, §12]) which says that there is a formal adjoint operator
∂̄∗ : L2(X,A0,q+1(E)) → L2(X,A0,q(E)) in the sense of distributions. More-
over, the formal adjoint of ∂̄∗ exists and equals ∂̄. These adjoints, viewed as
operators on the bundles A0,∗

X (E), coincide with the classical ones:

Lemma 2.2. Let ∗E : Ap,q
X (E) → An−q,n−p

X (E) be the fiberwise defined oper-
ator induced by the Hodge star-operator.

(i) The formal adjoint ∂̄∗ is induced by

− ∗E ∇1,0∗E : A0,q+1
X (E) → A0,q

X (E).

(ii) The formal adjoint of ∇1,0 equals (∇1,0)∗ = − ∗E ∂̄∗E.
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Proof. Since ∂̄ = −(∗E∇
1,0∗E)

∗ = −∗E (∇1,0)∗∗E, the second assertion follows
from the first. The meaning of the first assertion is that for ω1 ∈ A0,q(E#)
and ω2 ∈ A0,q+1(E#) one has

(1) 〈∂̄ω1, ω2〉 = −〈ω1, (∗E∇
1,0∗E)ω2〉.

To show this, let me go through the classical calculation. First, using the
metric contraction

hE : Ak(E)⊗Aℓ(E) → Ak+ℓ,

(α⊗ s, β ⊗ t) 7→ hE(s, t)α ∧ β̄,

one observes the fundamental equation

(2) hE(ϕ1, ∗Eϕ2) = hx(ϕ1, ϕ2) · volume form dV, x ∈ X, ϕ1, ϕ2 ∈ Ak(E).

Next, the Chern connection being metric implies that for the forms restricted
to X (denoted by the same symbols) one has

hE(∇ω1, ∗Eω2) + (−1)khE(ω1,∇(∗Eω2)) = dhE(ω1, ∗Eω2),

and hence, using (2) and the relation ∗E · ∗E = (−1)k, one finds

∂̄hE(ω1, ∗Eω2) =
[

hx(∂̄ω1, ω2) + hx(ω1, (∗E∇
1,0∗E)ω2)

]

· dV.

I claim that ∂̄hE(ω1, ∗Eω2) is bounded near ∂X and that it integrates over
X to zero. Assume this for a moment. Since the first term on the right is
bounded, the other is too. Hence after integration one obtains

0 = 〈∂̄ω1, ω2〉+ 〈ω1, (∗E∇
1,0∗E)ω2〉

and the result follows.
It remains to show the assertion about ∂̄hE(ω1, ∗Eω2). Let Uδ be a tubular

neighborhood of ∂X with radius δ. By Stokes’ theorem,
∫

X

∂̄hE(ω1, ∗Eω2) = lim
δ→0

∫

∂Uδ

hE(ω1, ∗Eω2) = 0.

The last equality follows since by (2) the integrand has Poincaré growth near
the boundary and hence the integral tends to zero (compare the proof of
[6, Prop. 1.2]). �

The Laplacian ∆E := ∂̄∂̄∗ + ∂̄∗∂̄ preserves L2(A0,q(X)) and the forms ω
with ∆Eω = 0 are by definition the harmonic forms. Reasoning as in the
classical situation (cp. [4, §12]) one shows:

Corollary 2.3. (i) For all ω ∈ A0,q

X̄
(E#) one has

〈∆Eω, ω〉 = 〈∂̄ω, ∂̄ω〉+ 〈∂̄∗ω, ∂̄∗ω〉.

Hence, in the distributional sense, one has

∆Eω = 0 ⇐⇒ ∂̄ω = 0 = ∂̄∗ω.
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(ii) There is an orthogonal decomposition

(3) L2(X,A0,q
X (E)) = [∂̄A0,q−1

X (E)]cl ⊕ [∂̄∗A0,q+1
X (E)]cl ⊕ H

0,q
(2)(E),

where the symbol cl stands for “topological closure” and the symbol H(2)

stands for the harmonic L2-forms, i.e. L2-forms ω with ∆Eω = 0 in the
sense of distributions.

To apply this, recall that by Dolbeault’s theorem the cohomology group
Hk(X,E#) can be calculated as the k-th cohomology of the complexA0,∗

X
(E#).

Proposition 2.4 ([5, Lem. 2]). Assume that E is a holomorphic vector bundle
on X and that (E = E#|X , h) is a hermitian bundle on X such that h is
good relative E#. If Assumption 2.1 holds, then there is a natural injective
homomorphism

j∗L2 : Hk(X,E#) = Hk(A0,∗

X
(E#)) → H

0,k
(2)(X,E),

with target the space of E-valued harmonic square integrable (0, k)-forms.

Proof. The map j∗L2 is induced from the orthogonal projection to H
k
L2(E). The

procedure is as follows. Pick α ∈ A0,k
X

(E#) for which ∂̄α = 0 representing a
given cohomology class [α] ∈ Hk(X,E#). By Assumption 2.1, β = α|X is an
E-valued L2-form whose orthogonal projection to the harmonic forms is j∗L2α.

One needs to verify independence of choices: since ∂̄α = 0, one has ∂̄β = 0 in
the sense of currents and so, another representative for α leads to a form which
differs from β by a current of the form ∂̄γ. Hence the harmonic projection is
independent of choices.

To see that it is injective, suppose that the harmonic part of β vanishes. By
(1) one has 〈β, ∂̄∗ϕ〉 = 〈∂̄β, ϕ〉 = 0 and hence β belongs to the first summand
of (3) so that

β = lim
j→∞

∂̄γj , γj ∈ A0,k−1

X
(E#).

To test that this gives the zero class in Hk(X,E#), one uses the Serre duality
pairing:

Hk(X,E#)⊗Hn−k(X,Ωn
X

⊗ (E∗)#) → Hn,n(X) = C

as induced by the pairing

A0,k

X
(E#)⊗A0,n−k

X
(Ωn

X
⊗ (E∗)#) → An,n

X
.

To this end, consider a closed β′ ∈ A0,n−k
X

(Ωn
X
⊗ (E∗)#). I claim that near ∂X

it is bounded in norm.
To see this, one uses that Ωn

X
(log ∂X)⊗(E∗)# is the unique extension of the

bundle Ωn
X ⊗ E∗ on X for which h = hX ⊗ hE∗ is good. That this is the case

will be shown later (see Example 4.2 (i)). Let f be a local equation for ∂X .
Then a local expression for β′ is of the form f · γ · s with γ a bounded form of
type (0, n−k) and s a local section of Ωn

X
(log ∂X)⊗(E∗)#. Since h(f ·s, f ·s) =

|f |2h(s, s) and h(s, s) has logarithmic growth near ∂X , it follows that h(β′, β′)

Münster Journal of Mathematics Vol. 10 (2017), 277–286



282 Chris Peters

tends to zero when one approaches ∂X . Hence β′ ∈ L2(A0,n−k
X (Ωn

X ⊗ E∗)).
The Serre pairing therefore is given by

(β, β′) := lim
j→∞

∫

X

∂̄γj ∧ β′ = lim
j→∞

lim
δ→0

∫

∂Uδ

γj ∧ β′,

where Uδ is a tubular neighborhood of ∂X whose radius is δ (the last equation
follows from Stokes’ theorem). Since β′ tends to zero near ∂X , this integral
vanishes. Consequently, the cohomology class of β is zero by Serre duality. �

I want to finish this section by showing that the Nakano inequality [8] still
holds for E-values harmonic (0, q)-forms on X . To explain this, one needs
some more notation. The Lefschetz operator L (which is wedging with the
fundamental (1, 1)-form for the metric hX) preserves L2-forms since the fun-
damental form has Poincaré growth near ∂X . Moreover, since L is real, one
has

hx(Lα, β)dV = hE(Lα, β) = Lα ∧ ∗β = α ∧ ∗(∗−1L ∗ β)

and so Λ = ∗−1L∗ is the formal adjoint of L. Since ∗ is an isometry, one
concludes that also Λ preserves the L2-forms.

Lemma 2.5 (Nakano inequality [8]). Let ω ∈ H
0,k
(2)(X,E). With Fh the cur-

vature of the metric connection on (E, h) and Λ the formal adjoint of the
Lefschetz operator, one has the inequality

i〈ΛFhω, ω〉 ≥ 0.

Proof. For simplicity, write ∇1,0 = ∂E with adjoint ∂∗

E . One has the Kähler
identity (see, e.g., [4, §13])

Λ∂̄ − ∂̄Λ = −i∂∗

E ,

which is derived in the L2-setting as in the classical setting. Using this relation,
the fact that ω is closed and co-closed (∂̄ω = 0 = ∂̄∗ω), as well as the relation

Fh(ω) = ∂̄∂E(ω) + ∂E ∂̄(ω) = ∂̄∂E(ω),

one calculates

0 ≤ 〈∂Eω, ∂Eω〉 = 〈∂∗

E∂Eω, ω〉

= i〈Λ∂̄∂Eω − ∂̄Λ∂Eω, ω〉

= i〈ΛFhω, ω〉 − i〈Λ∂E , ∂̄
∗ω〉

= i〈ΛFhω, ω〉. �

3. The Calabi–Vesentini method in the L2-setting

In this section I shall indicate how the method employed in [3, §7, §8] to
show vanishing of the groups Hq(TX) for X compact can be adapted step by
step in the noncompact setting.

Let (X,h) be a Kähler manifold and let TX be the holomorphic tangent
bundle. Suppose that Assumption 2.1 holds. The metric h induces hermitian
metrics on the bundles Ap,q

X = ∧pT ∗

X ⊗ ∧qT̄ ∗

X of forms on X of type (p, q).

Münster Journal of Mathematics Vol. 10 (2017), 277–286
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The Chern connection on TX is the standard Levi-Civita connection and its
curvature is a global TX -valued (1, 1)-form:

Fh ∈ A1,1
X (End(TX)).

Using the metric, one has an identification T̄ ∗

X ≃ TX and hence Fh induces an
endomorphism of TX ⊗ TX :

Fh ∈ T ∗

X ⊗ T̄ ∗

X ⊗ T ∗

X ⊗ TX ≃ T ∗

X ⊗ T ∗

X ⊗ TX ⊗ TX ≃ End(TX ⊗ TX).

One can show, using the Bianchi identity, that the resulting endomorphism
vanishes on skew-symmetric tensors and hence induces

Q : S2TX → S2TX , R = 2Tr(Q),

where the function R is the scalar curvature of the metric. The operator Q is
selfadjoint and hence at each x ∈ X it has real eigenvalues. Suppose that

(4) −∞ < λ :=

∫

x∈X

λx < 0, λx smallest eigenvalue of Qx.

The operator Q together with the metric h induces a Hermitian form hQ on
the bundles A0,q(TX), q > 0, as follows:

hQ : (∧qT̄ ∗

X ⊗ TX)⊗ (∧qT̄ ∗

X ⊗ TX) ≃ TX ⊗ TX ⊗ (∧qT̄ ∗

X ⊗ ∧qT̄ ∗

X)

Q
−→ TX ⊗ TX ⊗ (∧q T̄ ∗

X ⊗ ∧qT̄ ∗

X) → C,

where the last map is induced from the hermitian metric h. If h is Kähler–
Einstein, one has (see [3, §8])

(5) ihx(ΛFω, ω) =
R

2n
‖ω‖2 − hQ(ω, ω).

On the other hand, by [3, Lem. 3] one has the inequality

(6) hQ(ω, ω) ≥
1

2
(q + 1)λx‖ω‖

2.

In [3] it is shown that first of all R < 0 implies λ < 0, and hence, combining
(6) and (5) that

ihx(ΛFω, ω) ≤
( R

2n
−

1

2
(q + 1)λx

)

‖ω‖2.

The above function is ≤ 0 whenever R
2n − 1

2 (q + 1)λ < 0 and it is identically
zero if and only if ω = 0. Now contrast this with Nakano’s lemma in the form
of Lemma 2.5, which holds under the assumptions of Section 2. The conclusion
is:

Proposition 3.1. Suppose that Assumption 2.1 holds for a quasi projective
Kähler–Einstein manifold (X,h) and its holomorphic tangent bundle (TX , h).
Suppose also that R < 0, where R is the scalar curvature. Then for all integers
q for which q < R

nλ
− 1, one has H

0,q
(2)(X,TX) = 0.
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Remark 3.2. The above proof has to be modified slightly for q = 0. In
that case the term hQ(ω, ω) in (5) vanishes, and since R < 0, the above
argument directly shows that H0

(2)(X,TX) = 0. This implies that X̄ admits no

vectorfields tangent to ∂X .

4. Application to locally symmetric varieties of hermitian type

Let G be a reductiveQ-algebraic group of hermitian type, i.e. forK ⊂ G(R)
maximal compact, D = G(R)/K is a bounded symmetric domain. Fix some
neat arithmetic subgroup Γ ⊂ G(Q) and let X = Γ \D be the corresponding
locally symmetric manifold. It is quasi-projective and by [1] admits a smooth
toroidal compactification X with boundary a normal crossing divisor ∂X .

Let ρ : G → GL(E) be a finite-dimensional complex algebraic representation

with Ẽρ the corresponding holomorphic vector bundle on D and Eρ the bundle

it defines onX . Fix also aG-equivariant hermitian metric h̃ on Ẽρ (which exists
since the isotropy group of the G(R)-action on D is the compact group K)
and write h for the induced metric on Eρ. By [6, Thm. 3.1], there is a unique

extension of Eρ to an algebraic vectorbundle E#
ρ on X with the property that

the metric h is a so-called good metric for the bundle Eρ relative to E#
ρ .

For what follows it is important to observe the next lemma.

Lemma 4.1. The metric (1, 1)-form ωhX
of a Kähler–Einstein metric hX has

Poincaré growth near ∂X.

Proof. The Kähler–Einstein condition means that

ωhX
= −k · i∂∂̄ log(dethX)

for some positive real constant k. Up to some positive constant, the right-
hand side can be identified with the first Chern form for the canonical line
bundle Ωn

X with respect to the metric induced by hX . Since this metric is
G(R)-equivariant, it is good in Mumford’s sense and so ωhX

is also good. �

Clearly, if this is to be useful in applications, given a bundle (with some
G(R)-equivariant hermitian metric), one needs to get hold of the extension
making the metric good. Here are some examples.

Examples 4.2. (i) Let E = Ωp
X . Then E# = Ωp

X
(log ∂X), the bundle of

p-forms with at most log-poles along ∂X . This is not trivial. See [6, Prop. 3.4]
where this is shown for p = 1. Since

Ωp

X
(log ∂X) =

p
∧

Ω1
X
(log ∂X),

this implies the result for all p. In particular, smooth sections of Ω1
X

are
bounded near ∂X . Indeed, if f = 0 is a local equation for ∂X and ω a
smooth section of Ω1

X , then f · ω is a smooth section of Ω1
X(log ∂X). Then

‖f · ω‖2 = ‖f‖2‖ω‖2 and since ‖ω‖2 ≤ C(log ‖f‖)N , the norm of f · ω is
bounded. A similar argument holds for smooth sections of Ωp

X
and hence for

sections of Ap,q

X
.
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(ii) One has T#
X = TX(− log ∂X), the bundle of holomorphic vector fields

on X which are tangent to the boundary ∂X , since this is the dual of the
bundle Ω1

X
(log ∂X). Any smooth section of this bundle is bounded near the

boundary: its normal component tends to zero and the Poincaré growth of the
metric implies (by compactness of ∂X) that the tangential component remains
bounded.

The above examples show that the holomorphic tangent bundle TX satisfies
Assumption 2.1 (b).

I can finally state the main result:

Theorem 4.3. Let (X, ∂X) be as before, e.g., X = Γ \ D, D = G(R)/K
hermitian symmetric, Γ a neat arithmetic subgroup of G(Q) and X a good
toroidal compactification with boundary ∂D. Let R be the scalar curvature of
the G(R)-equivariant (Kähler–Einstein) metric and let λ be as before (cp. (4)).
Set γ(D) := R/nλ. This is a positive integer and

H
0,q
(2)(X,TX) = 0 for all q with q < γ(D)− 1.

If no irreducible factor of D has dimension 1, one has γ(D) ≥ 3. In particular,
the resulting pairs (X, ∂X) are infinitesimally rigid.

Proof. Since X admits a Kähler–Einstein metric hX , by Lemma 4.1 its fun-
damental (1, 1)-form has Poincaré growth near the boundary. So Assump-
tion 2.1 (a) is fulfilled. By Example 4.2 (iii) the second condition is also ful-
filled.

In order to apply Proposition 3.1, one observes that the Kähler manifold X
is homogeneous and that therefore λ = λx, x ∈ X , a constant. Since the scalar
curvature of D is known to be negative, this proves the result, except that one
still has to show that γ(D) is an integer ≥ 2. The calculation of γ(D) is local
and has been done in [2, 3] and it indeed implies that it is an integer ≥ 2.
Also, it is shown there that γ(D) ≥ 3 whenever D has no irreducible factor of
dimension 1. For details, see [3, §3] and [2, §2]. See also Remark 4.4 below.

I apply this to infinitesimal deformations of (X, ∂X) as follows. As is well
known, these correspond bijectively to elements of H1(X,TX(− log ∂X)). See,
e.g., [9, Prop. 3.4.17].

Now assume that α ∈ A0,1
X

(TX(− log ∂X)) represents a given cohomology
class [α] ∈ H1(X,TX(− log ∂X)). By Proposition 2.4, the class β = α|X is an
L2-harmonic form and it suffices to show that β = 0, which follows from the
vanishing of H0,1

(2)(X,TX). �

Remark 4.4. For irreducible D there is a table for the values of γ(D) in [3]
and [2]. I copy their result:

Type Ip,q IIm, m ≥ 2 IIIm, m ≥ 1 IVm, m ≥ 3 V VI
γ(D) p+ q 2(m− 1) m+ 1 m 12 18

dimC D pq 1
2m(m− 1) 1

2m(m+ 1) m 16 27
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If D = D1 × · · · ×DN is the decomposition into irreducible factors, one has
γ(D) = minj γ(Dj). One sees from this that γ(D) ≥ 2 with equality precisely
when D contains a factor of type I1,1 ≃ II2 ≃ III1. One also sees that the best
vanishing result is for the unit ball Ip,1 where all groups vanish.

Corollary 4.5. Under the assumptions of Theorem 4.3, the pair (X, ∂X) has
a unique model over a number field.

Proof. This follows using spreads. For details see [7, 10]. �

Remark 4.6. The above theorem is false for Shimura curves (one-dimensional
locally homogeneous algebraic manifolds). However, the corollary is true since
all Shimura curves have models overQ. A proof which is a variant of the above
method was given in [5]. This article in fact motivated this note.

Acknowledgments. Thanks to Christopher Deninger for pointing out refer-
ence [5].
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