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Abstract. We define notions of semi-saturatedness and orthogonality for a Fell bundle
over a quasi-lattice ordered group. We show that a compactly aligned product system
of Hilbert bimodules can be naturally extended to a semi-saturated and orthogonal Fell
bundle whenever it is simplifiable. Conversely, a semi-saturated and orthogonal Fell bundle is
completely determined by the positive fibers, and its cross-sectional C∗-algebra is isomorphic
to a relative Cuntz–Pimsner algebra of a simplifiable product system of Hilbert bimodules.
We show that this correspondence is part of an equivalence between bicategories and use this
to generalize several results of Meyer and the author in the context of single correspondences.
We apply functoriality for relative Cuntz–Pimsner algebras to study Morita equivalence
between C∗-algebras attached to compactly aligned product systems over Morita equivalent
C∗-algebras.

1. Introduction

Given a discrete group G and a subsemigroup P of G, in some situations,
a partial representation of G on a C∗-algebra may be reconstructed from its
restriction to P . When G = P−1P , a representation of P by isometries can be
extended to a partial representation of G if and only if the range projections
associated to the isometries commute with each other [15, Thm. 31.16]. Such
an extension is unique, and so isometric representations of P with commuting
range projections are in one-to-one correspondence with partial representations
of G which restrict to isometric representations of P . A similar correspondence
holds, for example, in the context of circle-valued cocycles under the same
assumption G = P−1P (see [21, 22]).

In this paper, we are primarily interested in extensions of semigroup actions
by Hilbert bimodules. We assume that P is a subsemigroup of G so that (G,P )
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is a quasi-lattice ordered group in the sense of Nica [29]. In this case, any
element in PP−1 has a reduced expression of the form pq−1, with p, q ∈ P . We
use this to give sufficient conditions for a compactly aligned product system
over P of Hilbert bimodules to extend uniquely to a Fell bundle over the
group G, and to identify which Fell bundles over G can be reconstructed in
this way by its positive fibers. We believe this may be profitable in several ways.
For instance, P may embed into another group H with H amenable even for
a non-amenable G (see [19]). This may be used to establish amenability of the
Fell bundle, that is, an isomorphism between full and reduced cross-sectional
C∗-algebras through the regular representation.

A Fell bundle (Bg)g∈G over a discrete group is called saturated if Bg ·Bh =
Bgh for all g, h ∈ G. In this case, each fiber may be viewed as an imprim-
itivity bimodule over the unit fiber algebra Be with the structure coming
from the multiplication and involution operations on (Bg)g∈G. In the general
case of a non-saturated Fell bundle, each fiber carries a structure of a Hilbert
Be-bimodule.

Exel introduced in [13] a notion of semi-saturatedness for actions of the unit
circle T. An action of T on a C∗-algebra B is said to be semi-saturated if B
is generated as a C∗-algebra by the spectral subspace B1 and the fixed-point
algebra B0. He proved that this is the case for the canonical action of T on
the crossed product of a C∗-algebra by a partial automorphism. A Fell bundle
(Bn)n∈Z is then called semi-saturated ifBm ·Bn =Bm+n for allm,n≥ 0 (equiv-
alently, m, n ≤ 0). Abadie, Eilers, and Exel proved that the cross-sectional
C∗-algebra of a semi-saturated Fell bundle (Bn)n∈Z is canonically isomorphic to
the crossed product of the unit fiber B0 by the Hilbert B0-bimodule B1. They
also provided examples to illustrate that the crossed product of a C∗-algebra by
a Hilbert bimodule need not come from a partial automorphism. The crossed
product by a Hilbert bimodule is a special case of a Cuntz–Pimsner algebra
[30, 20, 27].

Despite the fact that a free group F on more than one generator is not
amenable, there is a nontrivial class of amenable Fell bundles over F. A Fell
bundle (Bg)g∈F over the free group F on the set of generators S is said to be
semi-saturated in [14] if Bg ·Bh = Bgh whenever the product g · h involves no
cancellation. It is called orthogonal if B∗

sBt = {0} for all distinct generators
s, t ∈ S. A Fell bundle over F with separable fibers that is semi-saturated
and orthogonal is then amenable [14, Thm. 6.3]. This happens because F has
a quasi-lattice ordered group structure arising from the free unital subsemigroup
F+ generated by S, and (F,F+) is amenable in the sense of Nica [29]. A semi-
saturated and orthogonal partial representation of F as introduced by Exel is
completely determined by its restriction to F+.

In this paper, we introduce concepts of semi-saturatedness and orthogonal-
ity for Fell bundles over quasi-lattice orders. Recall that a pair (G, P ) with
P ∩ P−1 = {e} is quasi-lattice ordered if whenever a pair of elements g, h ∈ G

has a common upper bound in P , then it also has a least upper bound g ∨ h

in P . We say that (Bg)g∈G is orthogonal if Bg = {0} for all g ∈ G with no
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Fell bundles over quasi-lattice ordered groups 225

upper bound in P . That is, g ∨ e = ∞. Semi-saturatedness is defined so that,
when combined with orthogonality, the restriction of (Bg)g∈G to the positive
fibers gives a product system of Hilbert bimodules B = (Bp)p∈P which gener-
ates (Bg)g∈G in an appropriate sense (see Definition 3.3).

Our main motivation to define these notions of semi-saturatedness and or-
thogonality for Fell bundles over quasi-lattice orders was the canonical topologi-
calG-grading of a Nica–Toeplitz algebra of a compactly aligned product system
over P , and its quotients by gauge-invariant ideals (see Section 2). In the con-
text of single correspondences, the Fell bundle (On

J,E)n∈Z over Z associated to
a relative Cuntz–Pimsner algebra is always semi-saturated. And (O0

J,E ,O
1
J,E) =

(A,E) if and only if E is a Hilbert bimodule over A and J = 〈〈E |E〉〉 is Katsura’s
ideal, that is, J is the largest ideal acting faithfully and by compact operators
on E [20, Prop. 5.18].

It turns out that the Fell bundle (NT g
E
)g∈G associated to a Nica–Toeplitz

algebra is semi-saturated and orthogonal. This is also the case for a relative
Cuntz–Pimsner algebra of E when we define it as a quotient of NTE . Following
ideas for (G, P ) = (Z, N), we find precisely the class of compactly aligned
product systems of Hilbert bimodules that can be extended to semi-saturated
and orthogonal Fell bundles over G as above. We call a product system in this
class simplifiable. In Theorem 3.12, we obtain an extension of a simplifiable
product system of Hilbert bimodules to a semi-saturated and orthogonal Fell
bundle over G. This also arises from the canonical G-grading of the relative
Cuntz–Pimsner algebra determined by the family of Katsura’s ideals for the
product system, and we prove that it is unique up to isomorphism.

The restriction of a semi-saturated and orthogonal Fell bundle (Bg)g∈G to
the positive fibers gives a product system of Hilbert bimodules. We show
in Proposition 3.17 that this product system is simplifiable, and its relative
Cuntz–Pimsner algebra for the family of Katsura’s ideals is canonically iso-
morphic to the cross-sectional C∗-algebra of (Bg)g∈G. Hence representations
of (Bg)g∈G are in bijection with Cuntz–Pimsner covariant representations of
the product system (Bp)p∈P on the family of Katsura’s ideals. So we say that
a semi-saturated and orthogonal Fell bundle over G is extended from P .

As the work of Exel [14] already suggested, amenability of a Fell bundle
extended from the positive cone of a quasi-lattice order seems to be related
to amenability of the underlying quasi-lattice. We prove that a Fell bundle
extended from F+ can be described as a Cuntz–Pimsner algebra of a corre-
spondence over the unit fiber Be, and hence it is amenable (see Lemma 3.21
and Proposition 3.23). In particular, the main result of [14] remains true if we
remove the separability assumption. This allows us to establish nuclearity of
the cross-sectional C∗-algebra as well when the unit fiber algebra is nuclear.
As for free semigroups, a Fell bundle extended from the Baumslag–Solitar
semigroup BS(c, d)+ with c, d ≥ 1 is isomorphic to a Cuntz–Pimsner algebra
of a single correspondence and so it is also amenable. In general, we do not
know whether a Fell bundle extended from the positive cone of an amenable
quasi-lattice order is amenable too.
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In Section 4, we consider bicategories of compactly aligned product systems.
In Theorem 4.10, we build an equivalence between a bicategory of simplifiable
product systems of Hilbert bimodules over P and a bicategory of Fell bundles
over G extended from P that sends a product system to its unique extension
from Theorem 3.12. We observe that, as opposed to Fowler’s original definition
of a Cuntz–Pimsner algebra, we take the relative Cuntz–Pimsner algebra of
a product system E = (Ep)p∈P as a quotient of the Nica–Toeplitz algebra of E .
The relative Cuntz–Pimsner algebra OJ ,E is determined by a family of ideals
J = {Jp}p∈P in the coefficient algebra A, where each ideal Jp acts by compact
operators on Ep, and the canonical representation of E in OJ ,E is also Nica
covariant. This allows us to attach a simplifiable product system of Hilbert
bimodules (Op

J ,E)p∈P with coefficient algebra Oe
J ,E to each triple (A, E ,J ).

A triple (A, E ,J ) as above is an object of our bicategory C
P
pr. A morphism

from (A,E ,JA) to (B,G,JB) is a proper covariant correspondence (F , V ) (see
Definition 4.2). We generalize several results of Meyer and the author [26] to
compactly aligned product systems over positive cones of quasi-lattice orders
using the equivalence between Fell bundles extended from P and simplifiable
product systems of Hilbert bimodules over P . In particular, we show that
the construction of a relative Cuntz–Pimsner algebra is part of a reflector
from a bicategory of compactly aligned product systems to a bicategory of
simplifiable product systems of Hilbert bimodules. That is, the reflector sends
an object (A,E ,J ) to (Op

J ,E)p∈P . This is [26, Cor. 4.7] in the context of single
correspondences.

In Subsection 4.14, we study Morita equivalence for relative Cuntz–Pimsner
algebras. The construction of a relative Cuntz–Pimsner algebra induces a func-
tor from C

P
pr into a bicategory of C∗-algebras with correspondences as mor-

phisms. Since an arrow between objects (A,E ,JA) and (B,G,JB) comes from
a correspondence F : A❀ B, invertible morphisms in C

P
pr imply Morita equiv-

alence between the underlying relative Cuntz–Pimsner algebras. This is [1, 28]
for (G, P ) = (Z,N). When Aα and Bβ are the product systems of Hilbert
bimodules built out of actions α, β of P on A and B by injective and ex-
tendible endomorphisms with hereditary range, we generalize [28, Prop. 2.4]
of Muhly and Solel and characterize the invertible proper covariant correspon-
dences in C

P
pr,∗ between Aα and Bβ (see Proposition 4.19). Our result is an

analog of Morita equivalence for actions of groups by Combes [8] and Curto,
Muhly, and Williams [10].

2. Relative Cuntz–Pimsner algebras of
compactly aligned product systems

In this section, we recall some basic concepts and known results on product
systems and their C∗-algebras. We will be interested in compactly aligned
product systems over semigroups that are positive cones of quasi-lattice orders.

2.1. Notation and basic notions. Let A and B be C∗-algebras. A cor-
respondence E : A ❀ B is a Hilbert B-module E with a nondegenerate left
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action of A implemented by a ∗-homomorphism ϕ : A → B(E). We say that
E is a Hilbert A, B-bimodule if the left action of A comes from a left Hilbert
A-module structure 〈〈 · | · 〉〉A on E that is compatible with 〈 · | · 〉B. That is,
〈〈ξ | η〉〉ζ = ξ〈η | ζ〉 for all ξ, η, ζ ∈ E .

Let P be a semigroup with identity e. A product system over P of A-corre-
spondences consists of
(i) a correspondence Ep : A ❀ A for each p ∈ P , where Ee = A is the identity

correspondence over A,
(ii) correspondence isomorphisms µp,q : Ep ⊗A Eq

∼=
−→ Epq, also called multipli-

cation maps, for all p, q ∈ P \ {e}.
We let ϕp :A→ B(Ep) be the multiplication map µe,p and let µp,e implement

the right action of A on Ep, respectively. The multiplication maps must be
associative. That is, the following diagram commutes for all p, q, r ∈ P :

(Ep ⊗A Eq)⊗A Er

µp,q⊗1

��

oo // Ep ⊗A (Eq ⊗A Er)
1⊗µq,r

// Ep ⊗A Eqr

µp,qr

��

Epq ⊗A Er
µpq,r

// Epqr,

where the first isomorphism on the top row of the diagram is simply the as-
sociativity isomorphism for internal tensor products of Hilbert modules. We
will say that a product system E = (Ep)p∈P is faithful if ϕp is injective for all
p ∈ P . It is proper if ϕp(A) ⊆ K(Ep) for all p in P . If each Ep is a Hilbert
A-bimodule, we will speak of a product system of Hilbert bimodules.

A representation of a product system E = (Ep)p∈P in a C∗-algebra B con-
sists of linear maps ψp : Ep → B, for all p ∈ P \ {e}, and a ∗-homomorphism
ψe : A → B, satisfying the following two axioms:
(T1) ψp(ξ)ψq(η) = ψpq(ξη) for all p, q ∈ P , ξ ∈ Ep and η ∈ Eq;
(T2) ψp(ξ)

∗ψp(η) = ψe(〈ξ | η〉) for all p ∈ P and ξ, η ∈ Ep.
If ψe is faithful, we say that ψ is injective. In this case, relation (T2) implies

that ‖ψp(ξ)‖ = ‖ξ‖ for all ξ ∈ Ep and p ∈ P .

2.2. Compactly aligned product systems and Nica–Toeplitz algebras.

Let us restrict our attention to semigroups arising from quasi-lattice orders in
the sense of [29]: let G be a group, and let P be a subsemigroup of G with
P ∩ P−1 = {e}. We say that (G, P ) is a quasi-lattice ordered group if any
two elements g1, g2 of G with a common upper bound in P with respect to
the partial order g1 ≤ g2 ⇔ g−1

1 g2 ∈ P also have a least upper bound g1 ∨ g2
in P . We write g1 ∨ g2 = ∞ if g1 and g2 have no common upper bound
in P . Following [9], we call P the positive cone of (G, P ), observing that
P = {g ∈ G | g ≥ e}.

Let (G,P ) be a quasi-lattice ordered group, and let E = (Ep)p∈P be a product
system over P . For p ∈ P and ξ, η ∈ Ep, we denote by |ξ〉〈η| the generalized
rank-1 operator on Ep that sends ζ ∈ Ep to ξ〈η | ζ〉 ∈ Ep. Let ψ = {ψp}p∈P be

a representation of E in a C∗-algebra B. For each p ∈ P , we will denote by ψ(p)
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the ∗-homomorphism from K(Ep) to B obtained as in [30]. This is defined on
a generator |ξ〉〈η| by

ψ(p)(|ξ〉〈η|) := ψp(ξ)ψp(η)
∗.

We may use the multiplication maps on E to define ∗-homomorphisms ιpqp :

B(Ep) → B(Epq). Explicitly, ιpqp sends T ∈ B(Ep) to µp,q ◦ (T ⊗ idEq
) ◦ µ−1

p,q. We
say that E = (Ep)p∈P is compactly aligned if, for all p, q ∈ P with p ∨ q < ∞,
we have

ιp∨q
p (T )ιp∨q

q (S) ∈ K(Ep∨q) for all T ∈ K(Ep) and S ∈ K(Eq).

Here ιp∨q
p and ιp∨q

q denote the ∗-homomorphisms

ιp·p
−1(p∨q)

p : B(Ep) → B(Ep∨q) and ιq·q
−1(p∨q)

q : B(Eq) → B(Ep∨q),

respectively.
If E is compactly aligned, a representation ψ = {ψp}p∈P of E in a C∗-algebra

B is Nica covariant if, for all p, q ∈ P , T ∈ K(Ep), and S ∈ K(Eq), we have

ψ(p)(T )ψ(q)(S) =

{
ψ(p∨q)(ιp∨q

p (T )ιp∨q
q (S)) if p ∨ q < ∞,

0 otherwise.

There is a canonical Nica covariant representation associated to a compactly
aligned product system: let E+ be the right Hilbert A-module given by the
direct sum of all Ep’s. That is, E+ =

⊕
p∈P Ep. Define a representation of E

in B(E+) as follows. Given ξ ∈ Ep and η+ =
⊕

s∈P ηs, set

ψ+
p (ξ)(η

+)s =

{
µp,p−1s(ξ ⊗ ηs) if s ∈ pP,

0 otherwise.

We view Eps as the correspondence Ep ⊗A Es through the correspondence iso-
morphism µ−1

p,s. In this way, ψ+
p (ξ)

∗(η)s is the image of ηps in Es under the
operator defined on elements of the form µp,s(ζp ⊗ ζs) by the formula

ψ+
p (ξ)

∗(µp,s(ζp ⊗ ζs)) = ϕs(〈ξ | ζp〉)ζs.

So ψ+
p (ξ)

∗ is the adjoint of ψ+
p (ξ). This gives rise to a Nica covariant represen-

tation ψ+ = {ψ+
p }p∈P of E in B(E+) called the Fock representation of E . This

representation is injective.

Proposition 2.3 ([17, Thm. 6.3]). Let (G,P ) be a quasi-lattice ordered group,
and let E be a compactly aligned product system over P . Then there is a
C∗-algebra NTE and a Nica covariant representation π̄ = {π̄p}p∈P of E in
NTE so that π̄(E) generates NTE as a C∗-algebra and, given a Nica covariant
representation ψ = {ψp}p∈P of E in a C∗-algebra B, there is a unique ∗-homo-
morphism ψ̄ : TE → B such that ψ̄ ◦ π̄p = ψp for all p ∈ P . Moreover, π̄ is
injective and the pair (NTE , π̄) is unique up to canonical isomorphism.

We call NTE the Nica–Toeplitz algebra of E .
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2.4. Relative Cuntz–Pimsner algebras. Let E = (Ep)p∈P be a product sys-
tem. For each p ∈ P , let Jp ⊳ A be an ideal that acts by compact operators
on Ep, and set J = {Jp}p∈P . We say that a representation ψ = {ψp}p∈P is
Cuntz–Pimsner covariant on J if, for all p ∈ P and all a in Jp,

ψ(p)(ϕp(a)) = ψe(a).

Proposition 2.5. Let (G, P ) be a quasi-lattice ordered group, and let E be
a compactly aligned product system over P . Let J = {Jp}p∈P be a family of
ideals in A with ϕp(Jp) ⊆ K(Ep) for all p ∈ P . Then there is a C∗-algebra
OJ ,E and a Nica covariant representation j = {jp}p∈P of E in OJ ,E that is
also Cuntz–Pimsner covariant on J and such that
(i) OJ ,E is generated by j(E) as a C∗-algebra,
(ii) given a Nica covariant representation ψ= {ψp}p∈P of E in a C∗-algebra B

that is Cuntz–Pimsner covariant on J , there is a unique ∗-homomorphism
ψ̄J : OJ ,E → B such that ψ̄J ◦ jp = ψp for all p ∈ P .

Moreover, the pair (OJ ,E , j) is unique up to canonical isomorphism.

Proof. Let NTE be the Nica–Toeplitz algebra of E . Let OJ ,E be the quotient
of NTE by the ideal generated by

{π̄e(a)− π̄(p)(ϕp(a)) | a ∈ Jp, p ∈ P}.

For each p ∈ P , we let jp : Ep → OJ ,E be the composition of π̄p with the
quotient map, and we set j = {jp}p∈P . The pair (OJ ,E , j) satisfies the required
properties. �

Definition 2.6. Given E and J as above, we call OJ ,E the relative Cuntz–
Pimsner algebra determined by J .

We emphasize two particular cases. If Jp = {0} for all p ∈ P , then OJ ,E =
NT E . As a consequence of [30, Cor. 3.7], if (G, P ) = (Z,N), E is a product
system of Hilbert bimodules, and Jp = 〈〈Ep | Ep〉〉 for all p in P , then OJ ,E

is the C∗-algebra studied by Katsura in [20]. He proved that the canonical
∗-homomorphism from A to OJ ,E is an isomorphism onto the fixed-point al-
gebra of OJ ,E with respect to the gauge action of T. In this case, E extends
to a semi-saturated Fell bundle over Z (see [1]). We will generalize this to
a certain class of compactly aligned product systems of Hilbert bimodules over
semigroups arising from quasi-lattice orders.

Remark 2.7. Fowler defined the Cuntz–Pimsner algebra of a product system
E to be the universal C∗-algebra for representations of E that are Cuntz–
Pimsner covariant on J = {Jp}p∈P , where Jp = ϕ−1

p (K(Ep)) for all p ∈ P

(see [17]). Here we consider the class of compactly aligned product systems and
define the relative Cuntz–Pimsner algebra with respect to a family of ideals as
a quotient of the Nica–Toeplitz algebra of E . This provides the construction
of relative Cuntz–Pimsner algebras with a special feature and will allow us to
generalize most of the results obtained in [26] to quasi-lattice ordered groups.
Our approach applies to Fowler’s Cuntz–Pimsner algebras of proper product
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systems E = (Ep)p∈P if (G,P ) is a quasi-lattice ordered group and P is directed.
This is so because, in this case, a Cuntz–Pimsner covariant representation of E
in the sense of Fowler is also Nica covariant [17, Prop. 5.4].

The next is the analog of [26, Prop. 2.15] in the context of product systems.

Proposition 2.8. A representation ψ = {ψp}p∈P of E = (Ep)p∈P in B is
Cuntz–Pimsner covariant on J = {Jp}p∈P if and only if ψe(Jp) ⊆ ψp(Ep) · B
for all p ∈ P .

2.9. Coaction on relative Cuntz–Pimsner algebras. Let (G, P ) be a
quasi-lattice order, and let E be a compactly aligned product system over P .
The representation of E in OJ ,E ⊗C∗(G) which sends ξ ∈ Ep to ξ ⊗ up is Nica
covariant and also Cuntz–Pimsner covariant on J . So this yields a ∗-homo-
morphism δ : OJ ,E → OJ ,E ⊗ C∗(G).

Proposition 2.10. The ∗-homomorphism δ : OJ ,E → OJ ,E ⊗ C∗(G) gives
a full nondegenerate coaction of G on OJ ,E . Moreover, the spectral subspace
Og

J ,E for δ at g ∈ G with g ∨ e < ∞ is the closure of sums of elements of the
form

jp(ξ)jq(η)
∗

with ξ ∈ Ep and η ∈ Eq, where pq−1 = g and p, q ∈ P . If g ∨ e = ∞, then Og
J ,E

is the trivial subspace.

Proof. That δ is a full nondegenerate coaction follows as in [6, Prop. 3.5]. For
the last part of the statement, notice that the Nica covariance condition entails
jp(Ep)∗jq(Eq) = {0} whenever p∨ q =∞ as jp(Ep) = jp(Ep)jp(Ep)∗jp(Ep) for all
p ∈ P . In case p ∨ q < ∞, we have

jp(Ep)
∗jq(Eq) ⊆ span{jp−1(p∨q)(ξ)jq−1(p∨q)(η)

∗ | ξ ∈ Ep−1(p∨q),

η ∈ Eq−1(p∨q)}.

So take g ∈ G with g ∨ e =∞. In particular, g has no presentation of the form
pq−1 with p,q in P . Thus, by successive applications of the above simplification
for elements of the form jp(ξp)

∗jq(ξq), it follows that

jp1
(ξp1

)jp2
(ξp2

)∗ . . . jp2n−1
(ξp2n−1

)jp2n
(ξp2n

)∗ = 0

whenever p1p
−1
2 . . . p2n−1p

−1
2n = g and ξpi

∈ Epi
for all i ∈ {1, 2, . . . , 2n}. As

a consequence, Og
J ,E = {0} because it is spanned by elements of that form.

Now a similar reasoning shows that if g ∈ G satisfies

g ∨ e < ∞ and p1p
−1
2 . . . p2n−1p

−1
2n = g,

then jp1
(ξp1

)jp2
(ξp2

)∗ . . . jp2n−1
(ξp2n−1

)jp2n
(ξp2n

)∗ lies in the closed subspace
spanned by

{jp(ξ)jq(η)
∗ | pq−1 = g, ξ ∈ Ep and η ∈ Eq}.

This completes the proof. �
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Corollary 2.11. Let E = (Ep)p∈P be a compactly aligned product system and
J as above. Then, for all p ∈ P , we have an isomorphism

Op
J ,E

∼= Ep ⊗A Oe
J ,E

of correspondences A ❀ Oe
J ,E . Moreover, (Op

J ,E)p∈P is a product system of
Hilbert Oe

J ,E -bimodules.

Proof. By Proposition 2.10, Op
J ,E is generated by elements of the form

jr(ξ)js(η)
∗, with ξ ∈ Er, η ∈ Es, and rs−1 = p.

In particular, r = ps, and we can use the isomorphism µ−1
p,s to show that

jr(ξ)js(η)
∗ lies in jp(Ep)js(Es)js(Es)

∗, which in turn is contained in jp(Ep)O
e
J ,E .

The inclusion jp(Ep)Oe
J ,E ⊆ Op

J ,E is trivial. So Op
J ,E = jp(Ep)Oe

J ,E . Hence

Ep ⊗A Oe
J ,E → Op

J ,E , ξ ⊗ η 7→ jp(ξ)η gives an isomorphism of correspondences
A ❀ Oe

J ,E .
For each p∈P , Op

J ,E is a HilbertOe
J ,E -bimodule with the structure obtained

from the multiplication and involution operations on OJ ,E . In particular,
Oe

J ,EO
p
J ,E = Op

J ,E . Hence, if p, q ∈ P , we have a correspondence isomorphism

Op
J ,E ⊗Oe

J ,E
Oq

J ,E
∼= Op

J ,EO
q
J ,E = (jp(Ep)O

e
J ,E)O

q
J ,E = jp(Ep)(O

e
J ,EO

q
J ,E)

= jp(Ep)O
q
J ,E = jp(Ep)jq(Eq)O

e
J ,E = jpq(Epq)O

e
J ,E = Opq

E,J .

These multiplication maps are associative because they coincide with the mul-
tiplication on OJ ,E . �

3. Fell bundles over quasi-lattice ordered groups

This section contains our main findings. We show that a simplifiable prod-
uct system of Hilbert bimodules E = (Ep)p∈P admits a unique extension Ê =

(Êg)g∈G to a semi-saturated and orthogonal Fell bundle over G. A Fell bundle
over G that is semi-saturated and orthogonal is then completely determined by
its positive fibers. Albandik and Meyer obtained a similar correspondence be-
tween proper product systems over an Ore monoid and saturated Fell bundles
over its enveloping group [4, Prop. 3.17].

3.1. From product systems of Hilbert bimodules to Fell bundles. In
order to define semi-saturatedness for a Fell bundle over G, we recall that an
element of G with an upper bound in the positive cone has a certain reduced
form in terms of elements of P .

Lemma 3.2. Let (G, P ) be a quasi-lattice ordered group, and let g ∈ G with
g ∨ e < ∞. Then g−1 ∨ e < ∞ and g = (g ∨ e)(g−1 ∨ e)−1.

Proof. Let q ∈ P be such that g−1(g ∨ e) = q. Then g ∨ e = gq = (g−1)−1q.
This shows that g−1 ∨ e < ∞ and g−1 ∨ e ≤ q. But g(g−1 ∨ e) belongs to P

and g ≤ g(g−1 ∨ e). So g ∨ e ≤ g(g−1 ∨ e). Since the partial order g1 ≤ g2 ⇔
g−1
1 g2 ∈ P is invariant under left-translation by elements of G, it follows that
q = g−1(g ∨ e)≤ g−1 ∨ e. So q = g−1 ∨ e and, therefore, g = (g ∨ e)(g−1 ∨ e)−1.

�
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Definition 3.3. Let (G,P ) be a quasi-lattice ordered group, and let (Bg)g∈G

be a Fell bundle over G. We will say that (Bg)g∈G is semi-saturated with
respect to the quasi-lattice ordered group structure of (G,P ) if it satisfies the
following conditions:
(S1)BpBq = Bpq for all p, q ∈ P ;
(S2)Bg = B(g∨e)B

∗
(g−1∨e) for all g ∈ G with g ∨ e < ∞.

Definition 3.4. A Fell bundle over G will be called orthogonal with respect
to (G,P ) if Bg = {0} whenever g ∨ e = ∞.

Let F be the free group on a set of generators S. A Fell bundle over F

is semi-saturated in the sense of Exel if BgBh = Bgh for all g, h ∈ F such
that the multiplication g · h involves no cancellation. It is called orthogonal if
B∗

sBt = {0} whenever s and t are distinct generators of F (see [14] for further
details). Let F+ be the unital subsemigroup of F generated by S. Recall
from [29] that (F, F+) is a quasi-lattice ordered group and that an element
g ∈ F satisfies g ∨ e < ∞ if and only if its reduced form is pq−1, with p, q

in F+. In this case, g ∨ e = p and g−1 ∨ e = q. The following result compares
our definitions of semi-saturatedness and orthogonality for Fell bundles over F
with those introduced by Exel.

Proposition 3.5. A Fell bundle (Bg)g∈F is semi-saturated and orthogonal
with respect to (F, F+) if and only if it is both semi-saturated and orthogonal
as defined in [14].

Proof. Suppose that (Bg)g∈F is semi-saturated and orthogonal with respect to
(F,F+). Then orthogonality implies that (Bg)g∈F is orthogonal as defined by
Exel since (p−1q) ∨ e = ∞ if p and q are distinct generators of F. In order
to prove that (Bg)g∈F is also semi-saturated according to [14], let g, h ∈ F

be such that the product g · h involves no cancellation. If gh ∨ e = ∞, then
Bgh = {0} = BgBh. Assume that (gh) ∨ e < ∞. First, this implies that either
g belongs to F+ and h ∨ e < ∞ or g ∨ e < ∞ and h ∈ (F+)−1 because gh has
reduced form pq−1 with p, q ∈ P and the product g · h involves no cancellation.
In case g ∈ F+, we then have g(h∨ e) = gh∨ e and (gh)−1 ∨ e= (h−1g−1)∨ e=
h−1 ∨ e. So axioms (S1) and (S2) give us

BgBh = BgBh∨eB
∗
h−1∨e = Bg(h∨e)B

∗
h−1∨e = B(gh)∨eB

∗
(gh)−1∨e = Bgh.

Now if h ∈ (F+)−1, it follows from the previous case that

BgBh = (Bh−1Bg−1)∗ = B∗
h−1g−1 = Bgh.

This shows that (Bg)g∈F is semi-saturated as defined in [14].
Now suppose that (Bg)g∈F is a Fell bundle that is semi-saturated and or-

thogonal according to [14]. Clearly, (Bg)g∈F satisfies (S1). Any element of F
has a reduced form so that orthogonality as in Definition 3.4 follows by com-
bining semi-saturatedness and orthogonality of (Bg)g∈F. Given g ∈ F with
g ∨ e < ∞, the product (g ∨ e)(g−1 ∨ e)−1 involves no cancellation. Therefore,

Münster Journal of Mathematics Vol. 14 (2021), 223–263



Fell bundles over quasi-lattice ordered groups 233

semi-saturatedness gives us

Bg = Bg∨eB(g−1∨e)−1 = Bg∨eB
∗
(g−1∨e).

This completes the proof of the statement. �

Our main examples of Fell bundles that are semi-saturated and orthogonal
come from the grading of relative Cuntz–Pimsner algebras associated to com-
pactly aligned product systems obtained in Proposition 2.10. In fact, we will
prove that any Fell bundle that is semi-saturated and orthogonal is isomorphic
to one of this form.

Example 3.6. Let E = (Ep)p∈P be a compactly aligned product system, and
let J = {Jp}p∈P be a family of ideals in A with Jp ⊆ ϕ−1

p (K(Ep)) for all p ∈ P .
Then (Og

J ,E)g∈G is orthogonal because Og
J ,E = {0} whenever g ∨ e = ∞. To

see that it is also semi-saturated, observe that if p, q ∈ P satisfy pq−1 = g, then
there is r ∈ P with p = (g ∨ e)r and q = (g−1 ∨ e)r. Indeed, since g ∨ e and
g−1 ∨ e are the least upper bounds for g and g−1 in P , respectively, there are
r, s ∈ P such that p = (g ∨ e)r and q = (g−1 ∨ e)s. The equality

g = (g ∨ e)(g−1 ∨ e)−1 = (g ∨ e)rs−1(g−1 ∨ e)−1

entails r = s.
Thus, given g in G with g ∨ e <∞, write g = (g ∨ e)(g−1 ∨ e)−1. By Propo-

sition 2.10, Og
J ,E is spanned by the elements of the form jp(ξ)jq(η)

∗, with
ξ ∈ Ep, η ∈ Eq, and pq−1 = g. Given such an element jp(ξ)jq(η)

∗, let r ∈ P be
such that p = (g ∨ e)r and q = (g−1 ∨ e)r. We then employ the isomorphisms
µ−1
g∨e,r and µ−1

g−1∨e,r
to conclude that

jp(ξ)jq(η)
∗ ∈ jg∨e(Eg∨e)jr(Er)jr(Er)

∗jg−1∨e(Eg−1∨e)
∗ ⊆ Og∨e

J ,E(O
g−1

∨e
J ,E )∗.

Therefore, (Og
J ,E)g∈G satisfies (S2). Now axiom (S1) follows from Corol-

lary 2.11. Thus (Og
J ,E)g∈G is also semi-saturated.

Definition 3.7. A product system of Hilbert bimodules E = (Ep)p∈P will be
called simplifiable if, for all p, q ∈ P , one has
(i) 〈〈Ep | Ep〉〉〈〈Eq | Eq〉〉 ⊆ 〈〈Ep∨q | Ep∨q〉〉 if p ∨ q < ∞,
(ii) 〈〈Ep | Ep〉〉〈〈Eq | Eq〉〉 = {0} if p ∨ q = ∞;
here 〈〈· | ·〉〉 denotes the left A-valued inner product.

Remark 3.8. A simplifiable product system of Hilbert bimodules is compactly
aligned. The converse is not true in general. For instance, take a nontrivial
Hilbert bimodule E over a C∗-algebraA satisfying E ⊗A E = {0}. This produces
a product system over N × N such that E(1,0) = E(0,1) = E . It is compactly
aligned because E(1,1) = {0}, but 〈〈E(1,0) | E(1,0)〉〉 = 〈〈E(0,1) | E(0,1)〉〉 6= {0}.

A canonical example of a simplifiable product system of Hilbert bimod-
ules comes from the underlying irreversible dynamical system of a semigroup
C∗-algebra.
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Example 3.9. Let (G, P ) be quasi-lattice ordered. Let χqP ∈ ℓ∞(P ) denote
the characteristic function on the right ideal of P given by {qr | r ∈ P}. Let A
be the C∗-subalgebra generated by {χqP | q ∈ P}. There is an action β =
{βp}p∈P of P on A by injective endomorphisms with hereditary range. The
endomorphism βp is defined on a generator by βp(χqP ) := χpqP . So βp(A) is
the corner determined by the projection χpP . This gives a product system of
Hilbert bimodules Aβ = (Aβp

)p∈P as follows. We set Aβp
:= AχpP and define

the right A-valued inner product by

〈aχpP | bχpP 〉 := β−1
p (χpPa

∗ · bχpP ).

The right action of A on Aβp
is implemented by βp, and the homomorphism

ϕp : A → B(Aβp
) is given by left multiplication. The multiplication map µp,q :

Aβp
⊗ Aβq

→ Aβpq
sends an elementary tensor aχpP ⊗ bχqP to aβp(b)χpqP .

See, for example, [32, Sec. 4.3].
For each p ∈ P , the correspondence Aβp

carries a structure of Hilbert A-bi-
module, with left A-valued inner product given by 〈〈aχpP | bχpP 〉〉 = aχpP b

∗.
Thus Aβ = (Aβp

)p∈P is a product system of Hilbert bimodules that is simpli-
fiable because the projections {χqP | q ∈ P} satisfy the relations

χpP · χqP =

{
χ(p∨q)P if p ∨ q < ∞,

0 otherwise.

In this example, the relative Cuntz–Pimsner algebra for the family of Katsura’s
ideals of Aβ coincides with Nica’s semigroup C∗-algebra C∗(G, P ) (see [29]).
See [32, Prop. 4.8 and Prop. 4.11].

Proposition 3.10. Let E = (Ep)p∈P be a simplifiable product system of Hilbert
bimodules. For each p ∈ P , let Ip := 〈〈Ep | Ep〉〉, and set I = {Ip}p∈P . If ψ =
{ψp}p∈P is a representation of E in a C∗-algebra B that is Cuntz–Pimsner
covariant on I, then it is also Nica covariant.

Proof. Let p, q ∈ P , T ∈ K(Ep), and S ∈ K(Eq). Let a ∈ Ip and b ∈ Iq be such
that ϕp(a) = T and ϕq(b) = S. Cuntz–Pimsner covariance on I gives us

ψ(p)(T )ψ(q)(S) = ψe(a)ψe(b) = ψe(ab).

So by condition (ii) of Definition 3.7, ψ(p)(T )ψ(q)(S) = 0 if p ∨ q = ∞. In case
p ∨ q < ∞, it follows that ιp∨q

p (T )ιp∨q
q (S) = ϕp∨q(ab). Applying the Cuntz–

Pimsner covariance condition to ab ∈ Ip∨q , we obtain

ψ(p)(T )ψ(q)(S) = ψe(ab) = ψ(p∨q)(ϕp∨q(ab)) = ψ(p∨q)(ιp∨q
p (T )ιp∨q

q (S)).

Therefore, ψ is Nica covariant. �

Lemma 3.11. Let E = (Ep)p∈P be a simplifiable product system of Hilbert bi-
modules. For each p ∈ P , set Ip := 〈〈Ep | Ep〉〉 and I = {Ip}p∈P . Then the canon-
ical ∗-homomorphism from A to the relative Cuntz–Pimsner algebra OI,E is an
isomorphism onto the gauge-fixed point algebra Oe

I,E . Moreover, Op
I,E

∼= Ep for
all p ∈ P .
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Proof. Conditions (i) and (ii) of Definition 3.7 imply that the family of ideals
I = {Ip}p∈P satisfies the hypothesis of [32, Prop. 4.8]. So OI,E is canonically
isomorphic to the covariance algebra A×E P of E . In particular, the universal
∗-homomorphism je : A → OI,E is injective by [32, Thm. 3.10 (C3)].

Since E is simplifiable, its representation in OI,E is Nica covariant by Propo-
sition 3.10. Thus Oe

I,E is the closed linear span of the set

{jp(ξ)jp(η)
∗ | ξ, η ∈ Ep, p ∈ P}.

Hence the Cuntz–Pimsner covariance condition implies that je : A → Oe
I,E is

an isomorphism.
It follows that jp : Ep → Op

I,E is injective for all p ∈ P . Again because the

representation of E in OI,E is Nica covariant, Op
I,E is generated by elements of

the form jq(ξ)jr(η)
∗ with qr−1 = p. Using that µp,r is a correspondence iso-

morphism, we deduce from Cuntz–Pimsner covariance that jp is also surjective,
as asserted. �

Theorem 3.12. Let (G, P ) be a quasi-lattice ordered group and E = (Ep)p∈P

a simplifiable product system of Hilbert bimodules. There is a semi-saturated
and orthogonal Fell bundle Ê = (Êg)g∈G extending the structure of product sys-
tem of E, in the sense that

(i) there are isomorphisms jp : Ep ∼= Êp of complex vector spaces such that

je : A → Êe is a ∗-isomorphism and jp(ξ)jq(η) = jpq(µp,q(ξ ⊗ η)) for all
p, q ∈ P ,

(ii) jp(ξ)
∗jp(η) = je(〈ξ | η〉) for all ξ, η ∈ Ep and p ∈ P , where ∗ : Êp → Êp−1 is

the involution operation on Ê.
Moreover, Ê is unique up to canonical isomorphism of Fell bundles.

Proof. Let (Og
I,E)g∈G be the Fell bundle associated to the canonical coaction

of G on OI,E . This is semi-saturated and orthogonal by Example 3.6. For each

g ∈ G, we set Êg := Og
I,E . So, for all p ∈ P , jp : Ep → Êp is an isomorphism of

complex vector spaces by Lemma 3.11, and we have jp(ξ)
∗jp(η) = je(〈ξ | η〉)

for all ξ, η ∈ Ep. Hence Ê = (Êg)g∈G is a semi-saturated and orthogonal Fell
bundle over G that extends the structure of E = (Ep)p∈P .

In order to prove the uniqueness property, let Ê ′ = (Ê ′
g)g∈G be another Fell

bundle that is semi-saturated and orthogonal and extends the structure of
product system of E . Let j′ = {j′p}p∈P be the family of isomorphisms Ep ∼= Ê ′

p.
Then j′ = {j′p}p∈P is a representation of E in the cross-sectional C∗-algebra
C∗((Ê ′

g)g∈G). We will now see that j′ = {j′p}p∈P is Cuntz–Pimsner covariant on
I = {Ip}p∈P . Indeed, the ideal in A determined by j′p(Ep)j

′
p(Ep)

∗ is contained in

(kerϕp)
⊥ because j′ preserves multiplication and j′e is an isomorphism from A

onto the fixed-point algebra of Ê ′. And for all ξ, η and ζ ∈ Ep, we have that

j′e(〈〈ξ | η〉〉)j
′
p(ζ) = j′p(ξ〈η | ζ〉) = j′p(ξ)j

′
e(〈η | ζ〉) = j′p(ξ)j

′
p(η)

∗j′p(ζ).

This implies that j′e(〈〈ξ | η〉〉) = j′p(ξ)j
′
p(η)

∗.
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We obtain a ∗-homomorphism j̄′ : OI,E → C∗((Ê ′
g)g∈G) by universal prop-

erty. Such a ∗-homomorphism induces an isomorphism of Fell bundles Ê ∼= Ê ′

because Ê ′ is also semi-saturated and orthogonal and, for all p ∈ P , j′p : Ep → Ê ′
p

is an isomorphism. This completes the proof of the theorem. �

Corollary 3.13. Let (G,P ) be a quasi-lattice ordered group, with G amenable.
Let E = (Ep)p∈P be a simplifiable product system of Hilbert bimodules, and let
Ê = (Êg)g∈G be the Fell bundle extending the structure of product system of E

as in Theorem 3.12. Then the regular representation of Ê induces an injective
∗-homomorphism of

OI,E → B(⊕g∈GÊg).

The compression by the projection Q+ : ⊕g∈GÊg → ⊕p∈PEp gives a completely
positive map OI,E → NTE which is a cross-section to the quotient map q :
NTE → OI,E .

Proof. By definition, Êg =Og
I,E for all g ∈G, and hence C∗((Êg)g∈G) is canoni-

cally isomorphic to OI,E . From this, we deduce that the regular representation
of Ê induces a ∗-homomorphismOI,E → B(

⊕
g∈G Êg). This is injective because

G is amenable (see [15, Thm. 20.7]). The image of OI,E under the compres-
sion b 7→ Q+bQ+ is precisely the C∗-subalgebra of B(E+) generated by the
Fock representation of E . This C∗-algebra is isomorphic to NTE because G is
amenable (see [17, Thm. 7.2] and [32, Prop. 4.4]). We then get a cross-section
OI,E → NTE to the quotient map q as asserted. �

A product system of Hilbert bimodules E = (Ep)p∈P gives rise to a prod-
uct system E∗ over P op by setting E∗ := (E∗

p )p∈P , where E∗
p is the Hilbert

bimodule adjoint to Ep. The multiplication map E∗
p ⊗A E∗

q
∼= E∗

qp is given by
the isomorphism E∗

p ⊗A E∗
q
∼= (Eq ⊗A Ep)∗, ξ∗ ⊗ η∗ 7→ (η ⊗ ξ)∗, followed by the

multiplication map µq,p. We identify A with its adjoint Hilbert bimodule A∗

through the isomorphism a 7→ ã∗ implemented by the involution operation
on A, where ã∗ is the image of a∗ in A∗ under the canonical conjugate-linear
map. We regard E∗ as a product system of correspondences over A using this
identification. So E∗

p has the canonical structure of Hilbert A-bimodule adjoint
of Ep for each p ∈ P \ {e}. Notice that E∗∗ = E . Before providing concrete
examples of relative Cuntz–Pimsner algebras for simplifiable product systems
of Hilbert bimodules, we need the following lemma.

Lemma 3.14. Let E = (Ep)p∈P be a product system of Hilbert bimodules. For
each p ∈ P , let IEp

:= 〈〈Ep | Ep〉〉, and set IE = {IEp
}p∈P . A representation

ψ = {ψp}p∈P of E in a C∗-algebra B that is Cuntz–Pimsner covariant on IE
naturally induces a representation of E∗ = (E∗

p )p∈P that is Cuntz–Pimsner co-
variant on IE∗ , where IE∗ = {IE∗

p
}p∈P and IE∗

p
= 〈〈E∗

p | E∗
p 〉〉 = 〈Ep | Ep〉. As

a consequence, representations of E that are Cuntz–Pimsner covariant on IE
are in one-to-one correspondence with representations of E∗ that are Cuntz–
Pimsner covariant on IE∗ .
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Proof. For p = e, put ψ∗
e := ψe. Given p ∈ P \ {e}, define ψ∗

p : E∗
p → B by

ψ∗
p(ξ

∗) := ψp(ξ)
∗, and set ψ∗ = {ψ∗

p}p∈P . Then, for all ξ ∈ Ep and η ∈ Eq,

ψ∗
p(ξ

∗)ψ∗
q (η

∗) = ψp(ξ)
∗ψq(η)

∗ = ψqp(µq,p(η ⊗ ξ))∗ = ψ∗
qp(µq,p(η ⊗ ξ)∗).

Since ψ is Cuntz–Pimsner covariant on IE , it follows that

ψ∗
p(ξ

∗)∗ψ∗
p(η

∗) = ψp(ξ)ψp(η)
∗ = ψ(p)(|ξ〉〈η|) = ψe(〈〈ξ | η〉〉) = ψ∗

e(〈〈ξ | η〉〉)

for all ξ, η ∈ Ep. That ψ
∗ is Cuntz–Pimsner covariant on IE∗ follows from the

fact that ψ is a representation of E . So the last statement is obtained from the
identity E = E∗∗. �

Let us present an important class of examples of product systems of Hilbert
bimodules, with Proposition 4.19 in mind. This generalizes Example 3.9.

Example 3.15 (Crossed products by semigroups of endomorphisms). An en-
domorphism α : A → A of a C∗-algebra A is said to be extendible if it extends
to a strictly continuous endomorphism of the multiplier algebraM(A) (see [3]).
This happens if and only if there is a projection Q ∈ M(A) so that α(uλ) con-
verges to Q in the strict topology of M(A), where (uλ)λ∈Λ is an approximate
unit for A. In particular, we have Q = α(1), where here we still denote by α

the induced endomorphism of M(A). Let α : P → End(A) be an action by
extendible endomorphisms with αe = idA.

1 For each p ∈ P , let Aαp
:= αp(1)A

be equipped with the structure of right Hilbert A-module coming from the
multiplication and involution operations on A. That is, αp(1)a · b := αp(1)ab
and 〈αp(1)a |αp(1)b〉 := a∗αp(1)b for all a, b ∈ A. We let ϕp : A → B( Aαp

) be
the ∗-homomorphism implemented by αp. So ϕp(b)(αp(1)a) = αp(b)a. This
turns Aαp

into a correspondence over A.
We let µp,q : Aαp

⊗A Aαq
→ Aαqp

be defined on elementary tensors by

αp(1)a⊗A αq(1)b 7→ αqp(1)αq(a)b.

This intertwines the left and right actions of A and preserves the A-valued
inner product. It is surjective because

αqp(1)a = lim
λ

αqp(uλ)a = lim
λ

αq(αp(uλ))a = lim
λ

αq(αp(1)αp(uλ))a.

Since p 7→ αp is an action by endomorphisms, the multiplication maps are as-
sociative. Thus α : P → End(A) gives rise to a product system Aα = ( Aαp

)p∈P

over P op, where P op is the opposite semigroup of P . Moreover, Aα is proper
since K( Aαp

) ∼= αp(1)Aαp(1) and αp(a) = αp(1)αp(a)αp(1) for all a ∈ A and
p ∈ P .

Now suppose further that α : P → End(A) is an action by extendible endo-
morphisms as above with the property that, for all p ∈ P , αp is an injective
endomorphism with hereditary range. In this case, Aα is faithful and may be
enriched to a product system of Hilbert bimodules over P op. The left A-valued
inner product is given by

〈〈αp(1)a |αp(1)b〉〉 = α−1
p (αp(1)ab

∗αp(1))

1If αe is injective, the equality αe = αe ◦ αe entails αe = idA.
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for all a, b ∈ A and p ∈ P . In particular, this yields a product system Aα =
(Aαp

)p∈P over P , where Aαp
= Aαp(1) with the Hilbert A-bimodule structure

obtained from Aαp

∗ through the identification

α̃p(1)a 7→ a∗αp(1).

Observe that Aα is always compactly aligned. It is simplifiable if and only if
P is right reversible. It is not clear when Aα is simplifiable (or even compactly
aligned).

Let us now relate constructions of semigroup crossed products with relative
Cuntz–Pimsner algebras: the ideal Ip ⊳ A given by the left inner product of
Aαp

is precisely Aαp(1)A. Given a nondegenerate representation ψ = {ψp}p∈P

of Aα in a C∗-algebra B, we obtain a strictly continuous unital ∗-homomor-
phism ψ̄e : M(A) → M(B) by nondegeneracy of ψe. In addition, we define
a semigroup homomorphism from P to the semigroup of isometries in M(B)
by setting

vp := lim
λ

ψp(uλαp(1)).

Here the limit is taken in the strict topology of M(B). It indeed exists because
‖ψp(uλαp(1))‖ ≤ 1 for each λ and, for a ∈ A and b ∈ B,

lim
λ

ψp(uλαp(1))(ψe(a)b) = lim
λ

ψp(uλαp(a))b = ψp(αp(a))b,

lim
λ
(bψe(a))ψp(uλαp(1)) = lim

λ
bψp(auλαp(1)) = bψp(aαp(1)).

To see that v∗pvp = 1, observe that

v∗pvp(ψe(a)b) = lim
λ

ψp(uλαp(1))
∗ψp(αp(a))b

= lim
λ

ψe(α
−1
p (αp(1)uλαp(a)))b = ψe(a)b.

The semigroup of isometries {vp | p∈P} together with the ∗-homomorphism
ψ̄e : M(A) → M(B) satisfy the relation

vp · ψ̄e(c) = ψ̄e(αp(c))vp

for all c ∈ M(A) and p ∈ P . Hence

(1) ψ̄e(αp(c))vpv
∗
p = vpψ̄e(c)v

∗
p .

In addition, ψp(aαp(1)) = ψe(a)vp for all a ∈ A and p ∈ P . If ψ is Cuntz–
Pimsner covariant on IAα

= {Ip}p∈P , it follows that, for all c ∈ M(A) and
p ∈ P ,

ψ̄e(αp(c)) = ψ̄e(αp(c))vpv
∗
p .

Indeed, for c in A and aαp(1) in Aαp
, we compute

αp(c
∗c)aαp(1) = αp(c

∗)αp(αp−1(αp(c)aαp(1)))

= αp(c
∗)αp(〈αp(c

∗)αp(1) | aαp(1)〉)

= αp(c
∗) · 〈αp(c

∗)αp(1) | aαp(1)〉

= |αp(c
∗)〉〈αp(c

∗)|(aαp(1)).
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Hence Cuntz–Pimsner covariance gives us

ψe(αp(c
∗c)) = ψp(αp(c

∗))ψp(αp(c
∗))∗ = ψe(αp(c

∗))vpv
∗
pψe(αp(c))

= ψe(αp(c
∗))vpψe(c)v

∗
p = ψe(αp(c

∗c))vpv
∗
p .

Since A is spanned by positive elements, the same relation holds for all c ∈ A

and thus for all c ∈ M(A) if we replace ψe by its extension ψ̄e. So combining
this with (1), we deduce the relation ψe(αp(c)) = vpψe(c)v

∗
p for all c ∈ A. The

same holds for ψ̄e and c in M(A).
Conversely, we claim that a nondegenerate ∗-homomorphism π : A → B

together with a semigroup of isometries {vp | p ∈ P} satisfying the relation

(2) π(αp(a)) = vpπ(a)v
∗
p

yields a representation of Aα that is Cuntz–Pimsner covariant on IAα
. First,

notice that the projection vpv
∗
p coincides with π̄(αp(1)), where π̄ is the strictly

continuous ∗-homomorphism M(A)→M(B) extending π. For each p ∈ P and
a ∈ A, we set ψp(aαp(1)) := π(a)vp. Put ψ = {ψp}p∈P . Then π̄(αp(1)) = vpv

∗
p

implies that ψ is Cuntz–Pimsner covariant on Ip = Aαp(1)A for all p ∈ P since

ψe(aαp(1)b) = π(aαp(1)b) = π(a)π̄(αp(1))π(b)

= π(a)vpv
∗
pπ(b) = π(a)vp(π(b

∗)vp)
∗

= ψp(aαp(1))ψp(b
∗αp(1))

∗ = ψ(p)(|aαp(1)〉〈b
∗αp(1)|)

for all a and b in A. Moreover, (2) tells us that ψe(αp(a))vp = vpψe(a) for all
a ∈ A and p ∈ P . This also gives

ψp(aαp(1))ψq(bαq(1)) = ψpq(aαp(b)αpq(1)) = ψpq(µp,q(aαp(1)⊗ bαq(1))).

Again by (2),

ψe(αp−1(αp(1)a
∗bαp(1))) = v∗pvpψe(αp−1 (αp(1)a

∗bαp(1)))v
∗
pvp

= v∗pψe(αp(1)a
∗bαp(1))vp

= v∗pψe(a
∗b)vp.

This shows that ψ is a representation of Aα that is Cuntz–Pimsner covariant
on IAα

.
As a result, the crossed product A⋊α P of A by the semigroup of endomor-

phisms provided by α has a description as the universal C∗-algebra of repre-
sentations of Aα that are Cuntz–Pimsner covariant on IAα

. By Lemma 3.14,
A⋊α P may also be described as the universal C∗-algebra for representations
of Aα that are Cuntz–Pimsner covariant on I Aα

. If P op is the positive cone
of a quasi-lattice order and P is right reversible (so P op is directed), a repre-
sentation of Aα that is Cuntz–Pimsner covariant on I Aα

is also Nica covariant
by [17, Prop. 5.4]. In this case, OI Aα

, Aα

∼= A⋊α P . In general, A⋊α P is the

Cuntz–Pimsner algebra of Aα as defined by Fowler [17, Prop. 3.4]. See, for
instance, [23] and [24] for constructions of crossed products by semigroups of
endomorphisms. We also refer the reader to [25] for this and further construc-
tions of crossed products out of product systems.
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3.16. From Fell bundles to product systems. Let (Bg)g∈G be a semi-
saturated Fell bundle with respect to (G,P ). There is a canonical product sys-
tem associated to (Bg)g∈G: for each p ∈ P , view Bp as a Hilbert Be-bimodule
with left and right actions inherited from the multiplication in (Bg)g∈G. The
left inner product is given by 〈〈ξ | η〉〉 := ξη∗, while the right inner product is
〈ξ |η〉 := ξ∗η. Property (S1) of Definition 3.3 says that B= (Bp)p∈P is a product
system with isomorphisms Bp ⊗Be

Bq
∼= Bpq coming from the multiplication

in (Bg)g∈G. If (Bg)g∈G is also orthogonal, the next result states that the
cross-sectional C∗-algebra of (Bg)g∈G can be recovered from B.

Proposition 3.17. Let (Bg)g∈G be a Fell bundle that is semi-saturated and
orthogonal with respect to (G, P ). Then B = (Bp)p∈P is a simplifiable prod-
uct system of Hilbert bimodules. Its relative Cuntz–Pimsner algebra OI,B is
naturally isomorphic to the cross-sectional C∗-algebra of (Bg)g∈G. Such an
isomorphism comes from the canonical isomorphism between the Fell bundles
(Og

I,B)g∈G and (Bg)g∈G.

Proof. Let p, q ∈ P , and set g = p−1q. Notice that p ∨ q = ∞ if and only
if g ∨ e = ∞, and hence 〈〈Bp | Bp〉〉〈〈Bq | Bq〉〉 = BpB

∗
pBqB

∗
q = {0} provided

p ∨ q = ∞. Suppose that p ∨ q < ∞. Then g ∨ e = p−1(p ∨ q) and g−1 ∨ e =
q−1(p ∨ q) so that

〈〈Bp |Bp〉〉〈〈Bq |Bq〉〉 ⊆ BpBp−1qB
∗
q = BpBp−1(p∨q)B

∗
q−1(p∨q)B

∗
q

= Bp∨qB
∗
p∨q = 〈〈Bp∨q |Bp∨q〉〉.

The representation of (Bg)g∈G in C∗((Bg)g∈G) restricted to the fibers over P
is Cuntz–Pimsner covariant on I. This gives us a ∗-homomorphism ψ :OI,B →
C∗((Bg)g∈G) that is an isomorphism between the Fell bundles (Og

I,B)g∈G and

(Bg)g∈G by the uniqueness property established in Theorem 3.12. Such an
isomorphism yields a representation of (Bg)g∈G in OI,B, and hence OI,B and
C∗((Bg)g∈G) are canonically isomorphic to each other. �

Combining Example 3.6 with the previous proposition, we obtain the fol-
lowing.

Corollary 3.18. Let E = (Ep)p∈P be a compactly aligned product system and
OJ ,E a relative Cuntz–Pimsner algebra associated to E. Then (Op

J ,E)p∈P is
simplifiable.

Definition 3.19. Let (G,P ) be a quasi-lattice order. A Fell bundle over G is
said to be extended from P if it is semi-saturated and orthogonal with respect
to the quasi-lattice ordered group structure of (G,P ).

3.20. Amenability for Fell bundles extended from free semigroups.

A quasi-lattice ordered group (G,P ) is called amenable if the Fock representa-
tion of P in B(ℓ2(P )) induces an injective ∗-homomorphism ψ+ : C∗(G, P ) →
B(ℓ2(P )) (see [29, Sec. 4.2]). Examples of amenable quasi-lattice orders are free
groups [14, 29], Baumslag–Solitar groups BS(c, d) with c, d positive integers [7],
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and, of course, (G,P ) for an amenable group G. Counterexamples are, for in-
stance, nonabelian Artin groups of finite type [9]. In [14], Exel proved that Fell
bundles extended from a free semigroup F+ are amenable, under a separability
hypothesis. In this section, we follow the ideas of [7] to show that any Fell bun-
dle extended from F+ is amenable, with no extra assumptions. But here we
deduce faithfulness of the regular representation from gauge-invariant unique-
ness theorems for relative Cuntz–Pimsner algebras of single correspondences.
The same techniques are employed to show that a Fell bundle extended from
BS(c, d)+ is always amenable. This suggests that amenability for Fell bundles
extended from a positive cone is connected with amenability of the underlying
quasi-lattice ordered group. We have been unable to establish a general result
in this direction.

Lemma 3.21. Let (Bg)g∈F be a Fell bundle extended from F+, and view
G :=

⊕
a∈S Ba as a correspondence over Be. Then C∗((Bg)g∈F) ∼= OIG ,G.

Proof. Let θ : F → Z be the group homomorphism defined on the generators
by a 7→ 1 for all a ∈ S. So, for b ∈ F+, θ(b) = |b| is the length of b in its
reduced form. This induces a coaction of Z on (Bg)g∈G by [12, Ex. A.28].
Hence it provides C∗((Bg)g∈F) with a topological Z-grading, for which the
corresponding spectral subspace at m ∈ Z is the closure of

span{ξp · η
∗
q | p, q ∈ F+ and θ(p)− θ(q) = m}.

Now let G be the direct sum
⊕

a∈SBa viewed as a correspondence over Be

in the usual way. Let IG be Katsura’s ideal for G. That is,

IG = ϕ−1
G

(K(G)) ∩ (kerϕG)
⊥ =

⊕

a∈S

BaB
∗
a .

This sum is indeed orthogonal because BaB
∗
aBbB

∗
b = {0} for a 6= b. It follows

that (⊕

a∈S

ξa

)∗(⊕

a∈S

ηa

)
=

⊕

a∈S

ξ∗aηa

in C∗((Bg)g∈F), where ξa, ηa ∈ Ba for all a ∈ S. Thus we get a representation
of G in C∗((Bg)g∈F) obtained by restricting the representation of (Bg)g∈G

to the Ba’s. This is a gauge-compatible injective representation of G that
is covariant on IG , and whose image generates C∗((Bg)g∈F) as a C∗-algebra.
Hence it induces an isomorphism OIG ,G → C∗((Bg)g∈F) by [20, Thm. 6.4]. �

The next corollary is a consequence of the previous lemma and nuclearity
and exactness results for Cuntz–Pimsner algebras.

Corollary 3.22. Let (Bg)g∈F be a Fell bundle extended from F+. If Be is
nuclear (resp. exact), then C∗((Bg)g∈F) is nuclear (resp. exact).

Proof. The nuclearity (resp. exactness) of C∗((Bg)g∈F) follows from the fact
that the Cuntz–Pimsner algebra of a correspondence is nuclear (resp. exact)
whenever the coefficient algebra is nuclear (resp. exact) (see [11, 20]). �
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Now Lemma 3.21 combined with gauge-invariant uniqueness theorems for
Cuntz–Pimsner algebras implies the following.

Proposition 3.23. A Fell bundle (Bg)g∈F extended from F+ is amenable,
where F denotes the free group on a set of generators S.

Proof. We begin by proving that, as C∗((Bg)g∈F), the reduced cross-sectional
C∗-algebra C∗

r((Bg)g∈F) also carries a topological Z-grading, for which the
regular representation Λ : C∗((Bg)g∈F) → C∗

r((Bg)g∈F) is a grading-preserving
∗-homomorphism. Indeed, for each z ∈ T, define a unitary Uz ∈ B(ℓ2((Bg)g∈F))
by setting

η+ =
⊕

g∈F

ηg 7→ Uz(η
+) =

⊕

g∈F

zθ(g)ηg.

Then Λ(b) 7→ UzΛ(b)U
∗
z is a continuous action of T on the reduced cross-

sectional C∗-algebra of (Bg)g∈F. Hence C
∗
r((Bg)g∈F) is a topologically Z-graded

C∗-algebra (see [13]).
Thus the composition of the regular representation Λ with the isomorphism

OIG ,G
∼= C∗((Bg)g∈F) from Lemma 3.21 gives a gauge-compatible injective rep-

resentation of G that is covariant on IG . So we invoke again the gauge-invariant
uniqueness theorem for Katsura’s relative Cuntz–Pimsner algebra of a single
correspondence, namely [20, Thm. 6.4], to derive faithfulness of Λ. This shows
that (Bg)g∈F is amenable. �

Let c and d be positive integers. Recall from [33] that the Baumslag–Solitar
group BS(c, d) is the universal group on two generators a and b subject to the
relation abc = bda and (BS(c, d),BS(c, d)+) is a quasi-lattice ordered group,
where BS(c, d)+ is the unital subsemigroup generated by a and b. As for
free groups, there is a group homomorphism θ : BS(c, d) → Z which is given
on generators by a 7→ 1 and b 7→ 0. We follow [7] and [33] and call θ(g) for
g ∈ BS(c, d) the height of g.

Each p ∈ BS(c, d)+ has a reduced form

p = bs0abs1 . . . bsk−1absk ,

with 0 ≤ si < d for all i ∈ {1, . . . , k − 1} and θ(p) = k. As in [7], we set

stem(p) := bs0abs1 . . . bsk−1a.

Given a Fell bundle extended from BS(c, d)+, we will again construct a corre-
spondence G over a C∗-algebra B so that OIG,G is T-equivariantly isomorphic
to C∗((Cg)g∈BS(c,d)).

We need the following lemma.

Lemma 3.24 ([7, Lem. 3.4]). Let p, q ∈ BS(c, d)+ be such that p ∨ q < ∞.
(i) If θ(p) > θ(q), there is m ∈ N with p ∨ q = pbm.
(ii) If θ(p) = θ(q), there is m ∈ N with either

p ∨ q = pbm = q or p ∨ q = qbm = p.

In particular, by the previous lemma, p ∨ q = ∞, and hence C∗
pCq = {0}

whenever p and q have reduced forms bs0a and bt0a with s0 6= t0.
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Lemma 3.25. Let (Cg)g∈BS(c,d) be a Fell bundle extended from BS(c, d)+.
Let B be the C∗-subalgebra of C∗((Cg)g∈BS(c,d)) generated by the fiber Cb and
the unit fiber Ce. For each 0 ≤ i < d, let Gi = Cbia ⊗Ce

B, and set

G :=

d−1⊕

i=0

Gi.

Then the multiplication on (Cg)g∈BS(c,d) provides G with a structure of corre-
spondence over B. Moreover, C∗((Bg)g∈BS(c,d)) ∼= OIG ,G .

Proof. Observe that the C∗-subalgebraB of C∗((Cg)g∈BS(c,d)) generated by the
fiber Cb and the unit fiber Ce is a topologically Z-graded C∗-algebra, where
the conditional expectation onto Ce coincides with that of C∗((Cg)g∈BS(c,d)).
The corresponding spectral subspace at m ∈ Z is Cbm . In particular, B is
(isomorphic to) the cross-sectional C∗-algebra of the Fell bundle (Cbm)m∈Z.

Let Gi =Cbia ⊗Ce
B for 0≤ i < d, and set G =

⊕d−1
i=0 Gi. This is a correspon-

dence Ce ❀B. We extend the left action of Ce to B by using the multiplication
on (Cg)g∈BS(c,d). By the above discussion, it suffices to find a representation
of the Hilbert Ce-bimodule Cb in B(G) that is Cuntz–Pimsner covariant on
CbC

∗
b by [26, Prop. 2.19] (see also [1]). Thus, for ξ ∈ Cb and i+ 1 < d, take an

elementary tensor η ⊗ ζ ∈ Gi. We define

ϕGi
(ξ)(η ⊗ ζ) := (ξ · η)⊗ ζ ∈ Gi+1.

If i + 1 = d, we use the relation bda = abc and that (Cg)g∈BS(c,d) is extended

from BS(c, d)+ to identify the multiplication ξ · η ⊗ c with an element of G0.
Notice that a ∨ b = bda = abc and hence C∗

bCa ⊆ Cbd−1aC
∗
bc . This guarantees

that ϕG(ξ) is adjointable for all ξ ∈ Cb and ϕG(ξ)
∗ is given in a similar way

by multiplication with ξ∗. This produces a ∗-homomorphism ϕG : B → B(G),
which turns G into a correspondence over B. Using the relation bda = abc and
also ab−c = b−da, we deduce that CbmCaC

∗
aCbn is contained in Cbia · B · C∗

bja

in C∗((Cg)g∈F ), where 0 ≤ i, j < d are uniquely determined by m and n, re-
spectively, and m,n ∈ Z. From this, we see that Katsura’s ideal for G is

IG = span{CbmCaC
∗
aCbn | m,n ∈ Z} ⊳ B

since the left action of B on G involves the multiplication on (Cg)g∈BS(c,d).

Because C∗
pCq = {0} whenever p and q have reduced forms bs0a and bt0a

with s0 6= t0, we have a canonical representation of G in C∗((Cg)g∈BS(c,d))
coming from the identification Gi

∼= CbiaB. If g ∈ BS(c, d) has normal form
bs0abm with m ≤ 0, we have g ∨ e = bs0a and g−1 ∨ e = b−m. This implies
that the representation of G in C∗((Cg)g∈BS(c,d)) is Cuntz–Pimsner covariant
on IG , Furthermore, it is injective and gauge-compatible. This gives a surjec-
tive ∗-homomorphism φ : OIG ,G → C∗((Cg)g∈BS(c,d)) because (Cg)g∈BS(c,d) is

extended from the positive cone BS(c, d)+. Now [20, Thm. 6.4] shows that φ
is an isomorphism. �
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As for free groups, we obtain nuclearity and exactness results for Fell bundles
extended from BS(c, d)+.

Corollary 3.26. Let (Cg)g∈BS(c,d) be a Fell bundle extended from BS(c, d)+.
If Ce is nuclear (resp. exact), then C∗((Bg)g∈BS(c,d)) is nuclear (resp. exact).

Proof. If Ce is nuclear (resp. exact), then B is nuclear (resp. exact). Using
the description of C∗((Cg)g∈BS(c,d)) as a Katsura’s relative Cuntz–Pimsner
algebra of a correspondence over B from Lemma 3.25, we then conclude that
C∗((Cg)g∈BS(c,d)) is nuclear (resp. exact) whenever Ce is. �

Again using gauge-invariant uniqueness theorems for Cuntz–Pimsner alge-
bras, we have the following.

Proposition 3.27. A Fell bundle (Cg)g∈BS(c,d) extended from BS(c, d)+ is
amenable.

Proof. Employing the same argument used in Proposition 3.23, we deduce that
C∗

r((Cg)g∈BS(c,d)) also carries a topological Z-grading, for which the regular
representation is compatible. Thus Λ : C∗((Cg)g∈BS(c,d)) → C∗

r((Cg)g∈BS(c,d))
produces a gauge-compatible representation of OIG ,G that is faithful on B

so that the gauge-invariant uniqueness theorem for OIG ,G implies the desired
isomorphism. �

4. Functoriality for relative Cuntz–Pimsner algebras

In this section, we introduce the bicategory of compactly aligned product
systems C

P
pr and its sub-bicategory of simplifiable product systems of Hilbert

bimodules CP
pr,∗. We upgrade the main results from Section 3 to an equivalence

between C
P
pr,∗ and a bicategory of Fell bundles over G that are extended from

the positive cone P . We also prove that the construction of a relative Cuntz–
Pimsner algebra is part of a functor from C

P
pr into a bicategory of C∗-algebras.

4.1. Bicategories of compactly aligned product systems. We define co-
variant correspondences between compactly aligned product systems as in [26,
Def. 2.20], also following the ideas of Schweizer [31]. Let (G, P ) be a quasi-
lattice ordered group. Let E = (Ep)p∈P and G = (Gp)p∈P be compactly aligned
product systems of correspondences over C∗-algebras A and B, respectively.
Let JA = {JA

p }p∈P and JB = {JB
p }p∈P be families of ideals in A and B, with

ϕA
p (J

A
p ) ⊆ K(Ep) and ϕB

p (J
B
p ) ⊆ K(Gp) for all p ∈ P .

Definition 4.2. A covariant correspondence from (A, E ,JA) to (B, G,JB) is
a pair (F , V ), where F : A ❀ B is a correspondence such that JA

p F ⊆ FJB
p

for all p ∈ P and V = {Vp}p∈P is a family of correspondence isomorphisms
Vp : Ep ⊗A F ∼= F ⊗B Gp, where Ve : A ⊗A F ∼= F ⊗B B is the isomorphism
which sends a ⊗ (ξb) to ψ(a)ξ ⊗ b. These must make the following diagram
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commute for all p, q ∈ P :

(3)

(Ep ⊗A Eq)⊗A F
OO

��

µ1

p,q⊗1
// Epq ⊗A F

Vpq
// F ⊗B Gpq

OO

1⊗µ2

p,q

Ep ⊗A (Eq ⊗A F) F ⊗B (Gp ⊗B Gq)

Ep ⊗A (F ⊗B Gq) oo //

��

1⊗Vq

(Ep ⊗A F)⊗B Gq

Vp⊗1
// (F ⊗B Gp)⊗B Gq.

��

OO

A covariant correspondence (F , V ) is called proper if F is a proper correspon-
dence.

Definition 4.3. The bicategory C
P has the following data.

• Objects are triples (A, E , J ), where A is a C∗-algebra, E = (Ep)p∈P is
a compactly aligned product system over P of A-correspondences, and
J = {Jp}p∈P is a family of ideals in A with Jp ⊆ ϕ−1

p (K(Ep)) for all p ∈ P .
• Arrows (A,E ,J )→ (A1,E1,J1) are covariant correspondences (F , V ) from

(A, E ,J ) to (A1, E1,J1).
• 2-Arrows (F0, V0) ⇒ (F1, V1) are isomorphisms of covariant correspon-

dences, that is, correspondence isomorphisms w : F0 → F1 for which the
following diagram commutes for all p ∈ P :

Ep ⊗A F0

V0,p
//

1Ep⊗w

��

F0 ⊗A1
E1,p

w⊗1E1,p

��

Ep ⊗A F1

V1,p
// F1 ⊗A1

E1,p.

• The vertical product of 2-arrows

w0 : (F0, V0) ⇒ (F1, V1), w1 : (F1, V1) ⇒ (F2, V2)

is the usual product w1 · w0 : F0 → F2. The arrows

(A, E ,J ) → (A1, E1,J1)

and the 2-arrows between them form a groupoid C
P ((A,E ,J ), (A1,E1,J1)).

• Let (F ,V ) : (A,E ,J )→ (A1,E1,J1) and (F1,V1) : (A1,E1,J1)→ (A2,E2,J2)
be arrows. For each p ∈ P , let Vp • V1,p be the composite correspondence
isomorphism

Ep ⊗A F ⊗A1
F1

Vp⊗1F1−−−−−→ F ⊗A1
E1,p ⊗A1

F1
1F⊗V1,p
−−−−−→ F ⊗A1

F1 ⊗A2
E2,p.

We define the product (F1, V1) ◦ (F , V ) by

(F1, V1) ◦ (F , V ) := (F ⊗A1
F1, V • V1),

where V • V1 = {Vp • V1,p}p∈P .
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• The horizontal product for a diagram of arrows and 2-arrows

(A, E ,J )

(F ,V )
++

(F̃ ,Ṽ )

33
(A1, E1, J1)

(F1,V1)
++

(F̃1,Ṽ1)

33
(A2, E2, J2)w

��

w1

��

is the 2-arrow

(A, E ,J )

(F⊗A1
F1,V •V1)

,,

(F̃⊗A1
F̃1,Ṽ •Ṽ1)

22
(A2, E2,J2).w⊗w1

��

This horizontal product and the product of arrows produce composition
bifunctors

C
P ((A, E ,J ), (A1, E1,J1))× C

P ((A1, E1,J1), (A2, E2,J2))

→ C
P ((A, E ,J ), (A2, E2,J2)).

• The unit arrow on the object (A, E ,J ) is the proper covariant correspon-
dence (A, ιE ), where A is the identity correspondence and ιE = {ιEp

}p∈P is
the family of canonical isomorphisms

Ep ⊗A A ∼= Ep ∼= A⊗A Ep

obtained from the right and left actions of A on E .
• The associators and unitors are the same as in the correspondence bicate-

gory [5, Sec. 2]. That is,

a : F0 ⊗A (F1 ⊗A1
F2)

∼=
=⇒ (F0 ⊗A F1)⊗A1

F2

is the obvious isomorphism, and the isomorphisms

A⊗A F
∼=
=⇒ F and F ⊗A1

A1

∼=
=⇒ F

implement the left and right actions of A and A1, respectively.
We let C

P
pr be the sub-bicategory of CP whose arrows are proper covariant

correspondences.

Definition 4.4. We denote by C
P
pr,∗ the full sub-bicategory of CP

pr whose ob-
jects are triples (A, E , I), where E is a simplifiable product system of Hilbert
bimodules and I = {Ip}p∈P is the family of Katsura’s ideals for E , that is,
Ip = 〈〈Ep | Ep〉〉 for all p ∈ P .

Example 4.5. View Oe
J ,E as a correspondence A ❀ Oe

J ,E . For each p ∈ P ,
let ι̂Ep

be the isomorphism

Ep ⊗A Oe
J ,E

∼= Op
J ,E

∼= Oe
J ,E ⊗Oe

J ,E
Op

J ,E ,

where the first isomorphism is that of Corollary 2.11. Cuntz–Pimsner covari-
ance on J = {Jp}p∈P implies that

je(Jp) ⊆ jp(Ep)jp(Ep)
∗ ⊆ Op

J ,EO
p∗
J ,E
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for all p ∈ P . So (Oe
J ,E , ι̂E) is a proper covariant correspondence

(A, E ,J ) → (Oe
J ,E , (O

p
J ,E)p∈P , IOJ ,E

),

where ι̂E = {ι̂Ep
}p∈P and IOJ ,E

= {IOJ ,E
p }p∈P with

IOJ ,E
p = Op

J ,EO
p∗
J ,E = 〈〈Op

J ,E | O
p
J ,E〉〉.

In order to prove that the construction of a relative Cuntz–Pimsner algebra
is functorial, we begin by building correspondences between the underlying
relative Cuntz–Pimsner algebras out of morphisms in C

P
pr.

Proposition 4.6. Let (F , V ) : (A, E ,JA) → (B,G,JB) be a proper covariant
correspondence. It induces a proper correspondence OF ,V : OJA,E ❀ OJB ,G.
In particular, a morphism in C

P
pr,∗ between two simplifiable product systems of

Hilbert bimodules produces a proper correspondence between the cross-sectional
C∗-algebras of the associated Fell bundles.

Proof. Let FO := F ⊗B OJB ,G . This is a proper correspondence A ❀ OJB ,G .
We define a family of isometries V ! = {V !

p}p∈P by setting, for all p ∈ P ,

V !
p : Ep ⊗A FO = Ep ⊗A F ⊗B OJB ,G

Vp⊗id
====⇒ F ⊗B Gp ⊗B OJB ,G

id⊗µGp
====⇒ FO,

where µGp
is the isometry Gp ⊗B OJB ,G ⇒ OJB ,G obtained from the represen-

tation of Gp in OJB ,G . For each ξ ∈ Ep, we set

ψp(ξ)(η) := V !
p(ξ ⊗A η), η ∈ FO.

Because FO is a proper correspondence, the map η 7→ ξ ⊗A η gives a compact
operator from F to Ep ⊗A FO. This is mapped to K(FO) when composed
with V !

p by [26, Lem. 2.1]. In particular, ψp(ξ) is adjointable. The coherence
axiom (3) for (F , V ) implies that ψ = {ψp}p∈P preserves the multiplication
on E . In addition, for all ξ, η ∈ Ep and ζ, ζ′ ∈ FO, we have that

〈ψp(ξ)
∗ψp(η)ζ | ζ

′〉 = 〈ψp(η)ζ |ψp(ξ)ζ
′〉

= 〈ζ |ψe(〈η | ξ〉)ζ
′〉

= 〈ψe(〈ξ | η〉)ζ | ζ
′〉,

provided V !
p is an isometry. Therefore, ψ = {ψp}p∈P is a representation of E

by compact operators on FO.
We are left with the task of proving that ψ factors through OJA,E . To do so,

we will first prove that it is Cuntz–Pimsner covariant on JA = {JA
p }p∈P . The

Nica covariance condition will then follow from the fact that the G-grading of
OJB ,G is a Fell bundle extended from P . The representation of G in OJB ,G is
covariant on JB . Hence the ∗-homomorphism jJB

: B → OJB ,G satisfies

jJB
(JB

p )OJB ,G ⊆ µGp
(Gp ⊗B OJB ,G)
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for all p ∈ P . It follows that ψe(J
A
p ) maps FO into F ⊗B µGp

(Gp ⊗B OJB ,G),
provided JA

p F ⊆ FJB
p . Using that Vp is unitary, we see that this coincides

with ψp(Ep)FO. Proposition 2.8 ensures that ψ is covariant on JA.
To see that ψ is also Nica covariant, let p, q ∈ P , T ∈ K(Ep) and S ∈ K(Eq).

Since

ψp(Ep)(FO) ⊆ F ⊗B µGp
(Gp ⊗B OJB ,G)

and the representation of G in OJB ,G is Nica covariant, it follows that

ψ(p)(T )(F ⊗B Oe
JB ,G) ⊆ F ⊗B Op

JB ,GO
p∗
JB ,G .

The same reasoning shows that

ψ(q)(S)(F ⊗B Oe
JB ,G) ⊆ F ⊗B Oq

JB ,GO
q∗
JB ,G .

Now OJB ,G =Oe
JB ,GOJB ,G , so we deduce that ψ(p)(T )ψ(q)(S) = 0 if p ∨ q = ∞

because (Op
JB ,G)g∈G is simplifiable by Corollary 3.18. In case p ∨ q < ∞, we

then have

ψ(p)(T )ψ(q)(S)(FO) ⊆ F ⊗B µGp∨q
(Gp∨q ⊗B OJB ,G).

The right-hand side above is contained in ψp∨q(Ep∨q)FO, provided Vp∨q is uni-
tary. So we may argue as in Proposition 2.8 to deduce that ψ is Nica covariant
and therefore descends to a ∗-homomorphism OJA,E → K(FO), as desired.

The last assertion in the statement follows from the fact that C∗((Êg)g∈G) is
canonically isomorphic to OIE ,E whenever E is a simplifiable product system
of Hilbert bimodules (see Proposition 3.17). �

Our next goal is to enrich the correspondence found in Section 3 between
simplifiable product systems of Hilbert bimodules and Fell bundles extended
from positive cones to an equivalence of bicategories, using the C∗-correspon-
dence built in the previous proposition.

Definition 4.7. Let (Bg)g∈G and (Cg)g∈G be Fell bundles extended from P .
A correspondence (F ,U) : (Bg)g∈G → (Cg)g∈G consists of a C∗-correspondence
F : Be ❀ Ce and a family of isometries U = {Ug}g∈G, where Ug : Bg ⊗Be

F →
F ⊗Ce

Cg, such that Ue :Be ⊗Be
F ∼=F ⊗Ce

Ce is the isomorphism which sends
b ⊗ (ξc) to ψ(b)ξ ⊗ c and, for all p ∈ P , Up is unitary. Here we are regarding
the Bg’s as correspondences over Be. We also require the following diagram
to commute for all g, h ∈ G:

(4)

(Bg ⊗Be Bh)⊗Be F
OO

��

µ̂g,h⊗1

// Bgh ⊗Be F
Ugh

// F ⊗Ce Cgh
OO

1⊗µ̂1

g,h

Bg ⊗Be (Bh ⊗Be F) F ⊗Ce (Cg ⊗Ce Ch)

Bg ⊗Be (F ⊗Ce Ch) oo //
��

1⊗Uh

(Bg ⊗Be F)⊗Ce Ch

Ug⊗1
// (F ⊗Ce Cg)⊗Ce Ch.

��

OO

A correspondence (F , U) is proper if F is a proper correspondence.
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It is not clear to us whether all of the Ug’s in the above definition are unitary
whenever the Up’s are so.

Definition 4.8. We will denote by C
(G,P ) the bicategory whose objects are

Fell bundles overG extended from P and arrows (Bg)g∈G → (Cg)g∈G are corre-
spondences as above. A 2-morphismw : (F0,U0)⇒ (F1,U1) is a correspondence
isomorphism w :F0 →F1 making the following diagram commute for all g ∈G:

Bg ⊗Be
F0

U0,g
//

1Bg⊗w

��

F0 ⊗Ce
Cg

w⊗1Cg

��

Bg ⊗Be
F1

U1,g
// F1 ⊗Ce

Cg.

The unit arrow on an object (Bg)g∈G is the identity correspondence Be : Be →
Be with the family of isomorphisms ι̂G = {ιBg

}g∈G, where ιBg
is the isomor-

phism Be ⊗Be
Bg

∼= Bg ⊗Be
Be obtained as in Definition 4.3. The further data

needed for a bicategory is also defined as in Definition 4.3. We let C
(G,P )
pr be

the sub-bicategory of C(G,P ) whose arrows are proper correspondences.

Lemma 4.9. Let (F , U) : (Bg)g∈G → (Cg)g∈G be a morphism in C
(G,P )
pr . Then

its restriction to the positive fibers is a proper covariant correspondence

(Be,B, IB) → (Ce, C, IC),

where IB and IC denote the families of Katsura’s ideals for B and C, respec-
tively. Moreover, if U ′ = {U ′

g}g∈G is another family of isometries turning F
into a correspondence from (Bg)g∈G to (Cg)g∈G and such that U ′

p = Up for all
p ∈ P , then U ′

g = Ug for all g ∈ G.

Proof. Let (F , U) be a proper correspondence from (Bg)g∈G to (Cg)g∈G. By
definition, Up : Bp ⊗Be

F → F ⊗Ce
Cp is unitary whenever p belongs to the

positive cone P . Thus all we need to prove is that the ideal 〈〈Bp |Bp〉〉 maps
F into F〈〈Cp |Cp〉〉. This follows from (4). We let p−1 play the role of q and
obtain the commutative diagram

Bp ⊗Be
B∗

p ⊗Be
F

µ̂
p,p−1⊗1

// BpB
∗
p ⊗Be

F
Ue

// F ⊗Ce
Ce

OO

1⊗µ̂1

p,p−1

Bp ⊗Be
F ⊗Ce

C∗
p

��

1⊗Up−1

Up⊗1
// F ⊗Ce

Cp ⊗Ce
C∗

p .

The image of the top map is 〈〈Bp |Bp〉〉F and the image of the right map is
F〈〈Cp |Cp〉〉. Hence 〈〈Bp |Bp〉〉F ⊆ F〈〈Cp |Cp〉〉.

We are left with the task of proving that U = {Ug}g∈G is completely deter-
mined by the unitaries {Up}p∈P . We begin by using the Ug’s to make FO =
F ⊗Ce

C∗((Cg)g∈G) into a proper correspondence C
∗((Bg)g∈G)❀C∗((Cg)g∈G),

essentially repeating the argument employed in the proof of Proposition 4.6.
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For each g ∈ G, we let U !
g be the isometry given by the composite

Bg ⊗Be
FO = Bg ⊗Be

F ⊗Ce
C∗((Cg)g∈G)

Ug⊗id
====⇒ F ⊗Ce

Cg ⊗Ce
C∗((Cg)g∈G)

id⊗µCg
====⇒ FO,

where µCg
is the isometry Cg ⊗Ce

C∗((Cg)g∈G) ⇒ C∗((Cg)g∈G) obtained from
the representation of Cg in C∗((Cg)g∈G). We set U ! = {U !

g}g∈G. For each
ξ ∈ Bg, we let

ψg(ξ)(η) := U !
p(ξ ⊗Be

η), η ∈ FO.

As in Proposition 4.6, η 7→ ξ ⊗Be
η gives a compact operator from F to

Bg ⊗A FO. This is mapped to K(FO) when composed with U !
g, and so ψg(ξ)

is adjointable. Observe that this is just the representation built in Proposi-
tion 4.6 when restricted to the positive fibers if we identify C∗((Cg)g∈G) with
the relative Cuntz–Pimsner algebra OIC,C through Proposition 3.17.

Clearly, ψ = {ψg}g∈G is compatible with the multiplication operation on
(Bg)g∈G because (F , U) satisfies the coherence axiom (4). Thus all we need to
prove to conclude that it is a representation of (Bg)g∈G is that ψ also preserves
the involution. Indeed, it suffices to show that, for all p∈P and ξ∗ ∈B∗

p =Bp−1 ,
we have ψp−1(ξ∗) = ψp(ξ)

∗. We may suppose that ξ = ξ1〈ξ2 | ξ3〉 using the
isomorphism Bp

∼= BpB
∗
pBp. Let η1, η2 ∈ FO. We have

〈ψp−1(ξ∗)η1 | η2〉 = 〈ψe(〈ξ3 | ξ2〉)ψp−1(ξ∗1 )η1 | η2〉

= 〈ψp(ξ2)ψp−1(ξ∗1 )η1 |ψp(ξ3)η2〉

= 〈ψe(〈〈ξ2 | ξ1〉〉)η1 |ψp(ξ3)η2〉

= 〈η1 |ψe(〈〈ξ1 | ξ2〉〉)ψp(ξ3)η2〉

= 〈η1 |ψp(〈〈ξ1 | ξ2〉〉ξ3)η2〉

= 〈η1 |ψp(ξ1〈ξ2 | ξ3〉)η2〉

= 〈η1 |ψp(ξ)η2〉.

This shows that ψp−1(ξ∗) = ψp(ξ)
∗, Therefore, ψ = {ψg}g∈G is a representation

of (Bg)g∈G in K(FO). It induces a
∗-homomorphism ψ̄ : C∗((Bg)g∈G)→K(FO)

by the universal property of C∗((Bg)g∈G).
Now if U ′ = {U ′

g}g∈G is another family of isometries making F into a cor-
respondence

(F , U ′) : (Bg)g∈G → (Cg)g∈G

and such that U ′
p = Up for all p ∈ P , we have a ∗-homomorphism

ψ̄U ′ : C∗((Bg)g∈G) → K(FO)

that coincides with ψ̄ on the positive fibers (Bp)p∈P . But ψ̄ = ψ̄U ′ if and only
if Ug = U ′

g for all g ∈G. Since (Bp)p∈P completely determines a representation
of C∗((Bg)g∈G by Proposition 3.17, it follows that U = U ′ as claimed. �

Theorem 4.10. There is an equivalence of bicategories C
P
pr,∗ → C

(G,P )
pr which

sends an object (A,E ,I) to the associated Fell bundle (Êg)g∈G extended from P .
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Proof. Let (F , V ) : (A, E , IE) → (B, G, IG) be a proper covariant correspon-
dence. This induces a proper correspondence

OF ,V : C∗((Êg)g∈G) ❀ C∗((Ĝg)g∈G)

by Proposition 4.6. By Proposition 3.11, Op
IG,G

is isomorphic to Gp, and hence

Oe
F ,V = F ⊗B Oe

IG,G
∼= F . Combining this with the left action of C∗((Êg)g∈G)

on OF ,V , we obtain isometries

Ug : Êg ⊗A F → F ⊗B Ĝg

through the identification Êg ⊗A F ∼= ψ̄(Êg)F . Thus Up = Vp for all p ∈ P so
that U = {Ug}g∈G extends V .

We let F ♯ be F viewed as a correspondence from the unit fiber of Ê to that
of Ĝ. We set V ♯

g := Ug, and let V ♯ = {V ♯
g }g∈G. The pair (F ♯, V ♯) satisfies the

coherence condition (4) because F ♯ and V ♯ come from a correspondence

C∗((Êg)g∈G) ❀ C∗((Ĝg)g∈G).

In order to show that a 2-morphism w : (F0, V0) ⇒ (F1, V1) produces a

2-arrow w♯ : (F ♯
0, V

♯
0 ) ⇒ (F ♯

1, V
♯
1 ) such that w♯ = w as a correspondence iso-

morphism F0
∼= F1, we observe that a ∗-homomorphism from C∗((Êg)g∈G) in

a C∗-algebra B is completely determined by its restriction to (A, E). We may
use a 2-morphism w : (F0, V0) ⇒ (F1, V1) to define a left action of OIE ,E on
F1 ⊗B OIG,G by setting

ψ̄′
1( · ) := (w ⊗ 1)ψ̄0( · )(w

−1 ⊗ 1).

This is equal to ψ̄1 on (A, E). By the above observation, ψ̄′
1 = ψ̄1 on OIE ,E .

As a consequence, the diagram

Êg ⊗A F ♯
0

V ♯
0,g

//

1
Êg

⊗w

��

F ♯
0 ⊗B Ĝg

w⊗1
Ĝg

��

Êg ⊗A F ♯
1

V ♯
1,g

// F ♯
1 ⊗B Ĝg

commutes for all g ∈ G. So w gives a 2-arrow w♯ : (F ♯
0, V

♯
0 ) ⇒ (F ♯

1, V
♯
1 ). The

map (F , V ) 7→ (F ♯, V ♯), w 7→ w♯ clearly gives a functor

C
P
pr,∗((A, E , IE ), (B,G, IG)) → C

(G,P )
pr ((Êg)g∈G, (Ĝg)g∈G)

between the groupoids of arrows associated to the objects (A,E ,IE), (B,G,IG).
Furthermore, it follows from Lemma 4.9 that such a functor is an equivalence
between categories since it is fully faithful and essentially surjective.

Now we define a homomorphism of bicategories L∗ : CP
pr,∗ → C

(G,P )
pr by send-

ing a simplifiable product system E = (Ep)p∈P to its associated Fell bundle
(Êg)g∈G and a morphism (F , V ) : (A, E , IE ) → (B,G, IG) to the arrow

(F ♯, V ♯) : (Êg)g∈G → (Ĝg)g∈G
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built out of (F , V ) as above. A 2-arrow w is mapped to w♯. Given arrows

(F , V ) : (A, E , IE ) → (A1, E1, IE1
), (F1, V1) : (A1, E1, IE1

) → (A2, E2, IE2
),

we have that

(F ⊗A1
F1)

♯ = F ♯ ⊗A1
F ♯

1 = F ⊗A1
F1

as correspondences A ❀ A2. Moreover, the product of arrows in C
(G,P ) is

defined as in C
P
∗ , and Lemma 4.9 tells us that (F ⊗A1

F1, V • V1) extends
uniquely to a correspondence (Êg)g∈G → (Ê2,g)g∈G. This guarantees that L∗

preserves the product of arrows. Thus this is indeed a homomorphism of
bicategories.

We have proven that L∗ is locally an equivalence. That it is also essentially
surjective follows from the fact that every Fell bundle extended from P is iso-
morphic to the Fell bundle constructed out of the simplifiable product system
of Hilbert bimodules determined by its positive fibers (see Proposition 3.17).
So, by [18, Lem. 3.1], L∗ is an equivalence of bicategories. �

4.11. Relative Cuntz–Pimsner algebras as universal arrows. Let B and
C be bicategories, and let R : C → B be a functor. Let b ∈ obB and c ∈ ob C.
An arrow g : b → R(c) induces a functor g∗ : C(R(c), x) → B(b,R(x)) defined
by f 7→ R(f) · g, w 7→ R(w) • 1g. It is a universal arrow from b to R if g∗

is an equivalence of categories [16, Def. 9.4]. To each (A, E ,J ) in obCP
pr, we

may associate an object (Oe
J ,E , (O

p
J ,E)p∈P , IOJ ,E

) of CP
pr,∗ by Corollary 3.18.

In what follows, we let

υ(A,E,J ) : (A, E ,J ) → (Oe
J ,E , (O

p
J ,E)p∈P , IOJ ,E

)

be the canonical proper covariant correspondence from Example 4.5. That is,
υ(A,E,J ) := (Oe

J ,E , ι̂E). It gives rise to a functor

C
P
pr,∗

(
(Oe

J ,E , (O
p
J ,E)p∈P , IOJ ,E

), (B,G, IG)
)
→ C

P
pr

(
(A, E ,J ), (B,G, IG)

)

as above. This is given by

(F , V ) 7→ (F , V ) ◦ υ(A,E,J ), w 7→ w • 1Oe
J ,E

.

Our next result is a generalization of [26, Prop. 3.4] to the context of com-
pactly aligned product systems. It says that the above functor is an equivalence
of categories. Hence υ(A,E,J ) is a universal arrow from (A, E ,J ) to the inclu-
sion functor C

P
pr,∗ →֒ C

P
pr. Our argument to prove this fact is essentially that

of [26, Prop. 3.4] given in the context of single correspondences, and so we limit
ourselves to sketching some ideas. Among them, we will prove that a proper co-
variant correspondence (F , V ) : (A,E ,J )→ (B,G,IG) yields a proper covariant
correspondence

(F ♯, V ♯) : (Oe
J ,E , (O

p
J ,E)p∈P , IOJ ,E

) → (B,G, IG)

using Proposition 4.6. This is a crucial part of the proof that the functor
defined by composing objects with υ(A,E,J ) is indeed essentially surjective.
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Proposition 4.12. Let (A, E ,J ) and (B, G, IG) be objects of CP
pr and C

P
pr,∗,

respectively. There is a groupoid equivalence

C
P
pr,∗

(
(Oe

J ,E , (O
p
J ,E)p∈P , IOJ ,E

), (B,G, IG)
)
∼= C

P
pr

(
(A, E ,J ), (B,G, IG)

)
,

which is defined by composing objects with υ(A,E,J ).

Proof. Let (F , V ) : (A, E ,J ) → (B, G, IG) be a morphism in C
P
pr. Let OF ,V

be the correspondence OJ ,E ❀ OIG,G induced by (F , V ) built in Proposi-
tion 4.6. By Proposition 3.11, Oe

IG,G
is isomorphic to B, and hence Oe

F ,V =
F ⊗B Oe

IG,G
∼=F . Since Oe

J ,E acts by G-grading-preserving operators on OF ,V ,

we then obtain a nondegenerate ∗-homomorphism from Oe
J ,E to K(F) by re-

stricting its left action to Oe
F ,V . This makes F into a proper correspondence

Oe
J ,E ❀B, which we denote by F ♯. We also have correspondence isomorphisms

V ♯
p : Op

J ,E ⊗Oe
J ,E

F ♯ ∼= F ♯ ⊗B Gp

obtained from OF ,V because Op
F ,V = F ⊗B Op

IG ,G
∼= F ⊗B Gp for all p ∈ P and

ψ̄(Op
J ,E)O

e
F ,V = ψp(Ep)ψ̄(O

e
J ,E)O

e
F ,V = ψp(Ep)O

e
F ,V

∼= Op
F ,V .

Thus we let V ♯ = {V ♯
p }p∈P . The coherence axiom (3) holds because V ♯ comes

from the ∗-homomorphism ψ̄ : OJ ,E → K(OF ,V ).
In order to see that the pair (F ♯, V ♯) is a proper covariant correspondence

(Oe
J ,E , (O

p
J ,E)p∈P , IOJ ,E

) → (B,G, IG),

it remains to prove that IOJ ,E
p F ⊆ FIGp for all p ∈ P . The ideal IOJ ,E

p is
determined by the left inner product so that IOJ ,E

p = Op
J ,EO

p∗
J ,E . Now Op∗

J ,E

sends Oe
F ,V to Op−1

F ,V = F ⊗B Op∗
IG,G

∼= F ⊗B G∗
p , while Op

J ,E maps F ⊗B Op∗
G

into F ⊗B Op
IG ,GO

p∗
IG,G

. The isomorphism Op
IG,G

Op∗
IG ,G

∼= 〈〈Gp | Gp〉〉 implies that

(F ♯, V ♯) is indeed a proper covariant correspondence.
Now let (F ,V ) : (Oe

J ,E , (O
p
J ,E)p∈P ,IOJ ,E

)→ (B,G,IG) be a proper covariant
correspondence. Composition with υ(A,E,J ) yields a proper correspondence
OJ ,E ⊗OJ ,E

F : A ❀ B, which we naturally identify with the correspondence
F : A ❀ B with left action induced by the ∗-homomorphism jJA

: A → OJ ,E .

We denote this correspondence A ❀ B by F ♭. We let V ♭ = {V ♭
p }p∈P be the

associated family of isomorphisms

V ♭
p : Ep ⊗A F ♭ ∼= Ep ⊗A Oe

J ,E ⊗Oe
J ,E

F ∼= Op
J ,E ⊗Oe

J ,E
F

Vp
=⇒ F ♭ ⊗B Gp.

This gives a proper covariant correspondence (F ♭, V ♭) : (A,E ,J )→ (B,G,IG).
The proof that (F ♯♭, V ♯♭) = (F , V ) and that (F ♭♯, V ♭♯) = (F , V ) follows as

for single correspondences. So we refer the reader to [26, Prop. 3.4] for further
details. Thus (F , V ) 7→ (F ♭, V ♭), w 7→ w♭ is an equivalence of categories. This
functor is naturally equivalent to the one defined by composition with υ(A,E,J ).
Such an equivalence has component at (F , V ) determined by the canonical
correspondence isomorphismOe

J ,E ⊗Oe
J ,E

F ∼=F ♭. Therefore, composition with

υ(A,E,J ) establishes a groupoid equivalence. �
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Let B and C be bicategories. By [16, Thm. 9.17], a functor R : C → B has
a left adjoint if and only if there exists a universal arrow from b to R for every
b ∈ obB. As a consequence, we have the following.

Corollary 4.13 (see [26, Cor. 4.7]). The sub-bicategory C
P
pr,∗ ⊆ C

P
pr is reflec-

tive. That is, the inclusion homomorphism R : CP
pr,∗ →֒ C

P
pr has a left adjoint

L : CP
pr → C

P
pr,∗ (reflector). This is defined on objects by

(A, E ,J ) 7→ (Oe
J ,E , (O

p
J ,E)p∈P , IOJ ,E

).

The proof of [16, Thm. 9.17] builds the reflector L; it maps an arrow (F , V ) :
(A, E ,J ) → (A1, E1,J1) to

L(F , V ) = (υ(A1,E1,J1) ◦ (F , V ))♯ = ((F ⊗A1
Oe

J1,E1
)♯, (V • ῑE1

)♯).

It is defined on a 2-arrow w : (F0, V0) ⇒ (F1, V1) by L(w) = (w ⊗ 1OJ1,E1
)♯.

Let (F , V ) : (A,E ,J )→ (A1,E1,J1) and (F1, V1) : (A1,E1,J1)→ (A2,E2,J2)
be proper covariant correspondences. The isomorphism

λ((F , V ), (F1, V1)) : L(F1, V1) ◦ L(F , V ) ∼= L((F1, V1) ◦ (F , V ))

is built out of the left action of Oe
J1,E1

on (F1 ⊗A2
Oe

J2,E2
)♯ constructed in

Proposition 4.12. That is, it is given by the canonical isomorphism

(F ⊗A1
Oe

J1,E1
)♯ ⊗Oe

J1,E1

(F1 ⊗A2
Oe

J2,E2
)♯ ∼= (F ⊗A1

F1 ⊗A2
Oe

J2,E2
)♯.

The compatibility isomorphism for units is obtained from the nondegenerate
∗-homomorphism jJ : A → Oe

J ,E .

4.14. Morita equivalence for relative Cuntz–Pimsner algebras. Let CG

denote the bicategory whose objects are C∗-algebras carrying a nondegenerate
full coaction of G. Arrows are correspondences with a coaction of G compatible
with those on the underlying C∗-algebras and 2-arrows are correspondence
isomorphisms that intertwine the left and right actions of the C∗-algebras. We
refer to [12, Def. 2.10] for a precise definition. See also [12, Thm. 2.15] for CG.
Let CG

pr be the sub-bicategory of CG whose arrows are proper correspondences.

Corollary 4.15. The construction of relative Cuntz–Pimsner algebras is func-
torial. There is a homomorphism of bicategories C

P
pr → C

G
pr which is defined

on objects by

(A, E ,J ) 7→ OJ ,E .

This functor is naturally isomorphic to the composite

C
P
pr

L
−→ C

P
pr,∗ −→ C

G
pr,

where the functor on the right-hand side sends a simplifiable product system
of Hilbert bimodules to its relative Cuntz–Pimsner algebra for the family of
Katsura’s ideals.
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Proof. It follows from Proposition 4.6 that a proper covariant correspondence
(F , V ) : (A, E ,J ) → (A1, E1,J1) yields a proper C∗-correspondence

OF ,V : OJ ,E ❀ OJ1,E1
.

This carries a coaction of G that is compatible with the coactions on OJ ,E and
OJ1,E1

. Repeating the arguments in the proof of Theorem 4.10, we deduce
that a 2-arrow w : (F0, V0) ⇒ (F1, V1) produces an isomorphism

w ⊗ 1OJ1,E1
: OF0,V0

⇒ OF1,V1

that intertwines the left and right actions of OJ ,E and OJ1,E1
, respectively.

The remaining data for composition of arrows and compatibility of units comes
from the canonical isomorphisms

OJ ,E ⊗OJ ,E
OF ,V

∼= OF ,V , A⊗A OJ ,E
∼= OJ ,E .

So we obtain a homomorphism C
P
pr → C

G
pr that sends (A,E ,J ) to OJ ,E , (F , V )

to OF ,V and maps a 2-morphism w to w ⊗ 1.
The above functor restricts to a homomorphism C

P
pr,∗ → C

G
pr that sends a

simplifiable product system of Hilbert bimodules to its relative Cuntz–Pimsner
algebra for the family of Katsura’s ideals. We know that OJ ,E is isomorphic
to the cross-sectional C∗-algebra of the Fell bundle (Og

J ,E)g∈G associated to
the coaction of G. This establishes a canonical isomorphism

OIOJ ,E
,OJ ,E

∼= OJ ,E

by Proposition 3.17 because (Og
J ,E)g∈G is extended from P . Here OIOJ ,E

,OJ ,E

is the relative Cuntz–Pimsner algebra for Katsura’s ideals of (Op
J ,E)p∈P . This

produces a natural isomorphism between the homomorphism C
P
pr → C

G
pr built

above and the composite of the reflector L : CP
pr → C

P
pr,∗ from Corollary 4.13

with the homomorphism C
P
pr,∗ → C

G
pr obtained by restriction. �

Corollary 4.16. Let (A, E ,J ) and (B, G,JB) be objects of CP
pr. Then OJ ,E

and OJB ,G are Morita equivalent if there is a covariant correspondence

(F , V ) : (A, E ,J ) → (B,G,JB)

so that JA
p F = FJB

p for all p ∈ P and F : A❀ B establishes a Morita equiva-

lence. For objects in C
P
pr,∗, this equivalence preserves amenability of Fell bun-

dles.

Proof. First, notice that F is automatically a proper correspondence. By [12,
Lem. 2.4], a correspondence F : A ❀ B is an imprimitivity A, B-bimodule if

there exists a correspondence F̃ : A ❀ B with correspondence isomorphisms

F ⊗B F̃ ∼= A, F̃ ⊗A F ∼= B.

So by functoriality for relative Cuntz–Pimsner algebras established in Corol-
lary 4.15, it suffices to show that F is an invertible arrow in C

P
pr. That is,
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there is a proper covariant correspondence (F∗, Ṽ ) : (B, G, JB) → (A, E , J )
with (invertible) 2-arrows

w : (F ⊗B F∗, V • Ṽ ) ⇒ (A, ιE), w̃ : (F∗ ⊗A F , Ṽ • V ) ⇒ (B, ιG).

Let F∗ be the Hilbert B,A-bimodule adjoint to F . For each p ∈ P , we use
the identifications F ⊗B F∗ ∼= A and F∗ ⊗A F ∼= B to define a correspondence
isomorphism Ṽp : Gp ⊗B F∗ ∼= F∗ ⊗A Ep as the composite

Gp ⊗B F∗ ∼= F∗ ⊗A F ⊗B Gp ⊗B F∗ (1F∗ ⊗ V −1
p ⊗ 1F∗)

∼= F∗ ⊗A Ep ⊗A F ⊗B F∗

∼= F∗ ⊗A Ep.

We set Ṽ = {Ṽp}p∈P . Observe that JA
p F =FJB

p implies JB
p F∗ =F∗JA

p . So, in
order to conclude that (F∗, Ṽ ) is a covariant correspondence from (B, G,JB)
to (A, E ,J ), all we need to prove is that it satisfies the coherence axiom (3).
To do so, let p, q ∈ P . Tensoring the coherence diagram (3) for (F , V ) with F∗

on the left and on the right, we obtain the following commutative diagram:

(5)

F∗ ⊗A Ep ⊗A Eq ⊗A F ⊗B F∗ //

OO

1⊗V −1

q ⊗1F∗

F∗ ⊗A Epq ⊗A F ⊗B F∗

F∗ ⊗A Ep ⊗A F ⊗B Gq ⊗B F∗

OO

1F∗⊗V −1

p ⊗1

F∗ ⊗A F ⊗B Gp ⊗B Gq ⊗B F∗ // F∗ ⊗A F ⊗B Gpq ⊗B F∗.

1F∗⊗V −1

pq ⊗1F∗

OO

The following diagram also commutes:

(6)

F ⊗B Gp ⊗B F∗ ⊗A F ⊗B Gq

1⊗V −1

q
//

V −1

p ⊗1

��

F ⊗B Gp ⊗B F∗ ⊗A Eq ⊗A F

V −1

p ⊗1

��

Ep ⊗A F ⊗B F∗ ⊗A F ⊗B Gq

1⊗V −1

q
// Ep ⊗A F ⊗B F∗ ⊗A Eq ⊗A F .

Since all the maps involved in the above diagrams are A,B-bimodule maps,
commutativity of (6) implies that the top-left composite of (5) is precisely the
bottom-left composite of

Gp ⊗B Gq ⊗B F∗

1⊗Ṽq

��

µ2

p,q⊗1
// Gpq ⊗B F∗

Ṽpq
// F∗ ⊗A Epq

Gp ⊗B F∗ ⊗A Eq
Ṽp⊗1

// F∗ ⊗A Ep ⊗A Eq
1⊗µ1

p,q
// F∗ ⊗A Epq

up to the usual identifications. Hence the above diagram commutes, and so
(F∗, V̄ ) is a proper covariant correspondence as desired. The canonical iso-
morphisms w : F ⊗B F∗ ∼= A and w̃ : F∗ ⊗A F ∼= B are the required 2-arrows.
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If (F , V ) : (A, E , IE) → (B,G, IG) is an equivalence in C
P
pr,∗ and (Ĝg)g∈G is

amenable, then (Êg)g∈G is also amenable. Indeed, by functoriality,

OF ,V : OIE ,E ❀ OIG ,G

is an imprimitivity bimodule. In particular, OIE ,E
∼= C∗((Êg)g∈G) acts faith-

fully on OF ,V . Since C∗((Ĝg)g∈G) ∼= C∗
r((Ĝg)g∈G) through the regular repre-

sentation, we can turn C∗((Ĝg)g∈G) into a faithful correspondence

C∗((Ĝg)g∈G)E : C∗((Ĝg)g∈G) ❀ B

using the (faithful) conditional expectation E : C∗((Ĝg)g∈G)→ B to define the
right B-valued inner product (see [15, Prop. 19.7]). Now, composing with F∗,

we obtain a faithful correspondence from C∗((Êg)g∈G) to A which is given by

OF ,V ⊗OIG ,G
C∗((Ĝg)g∈G)E ⊗B F∗ : C∗((Êg)g∈G) ❀ A.

We use the canonical correspondence isomorphism

OIG,G ⊗OIG ,G
C∗((Ĝg)g∈G)E ∼= C∗((Ĝg)g∈G)E

coming from the nondegenerate left action of OIG,G on C∗((Ĝg)g∈G)E to iden-
tify

OF ,V ⊗OIG ,G
C∗((Ĝg)g∈G)E

with the direct sum of correspondences
⊕

g∈G(F ⊗B Ĝg). This is isomorphic to

(
⊕

g∈G Êg)⊗A F because the Vp’s are unitary and Ṽp : Gp ⊗B F∗ ∼= F∗ ⊗A Ep
induces an isomorphism E∗

p ⊗A F ∼= F ⊗B G∗
p for each p ∈ P . Thus the iso-

morphism F ⊗A F∗ ∼= A provides the direct sum
⊕

g∈G Êg with a structure

of faithful correspondence C∗((Êg)g∈G) ❀ A which coincides with the struc-
ture coming from the regular representation of Ê = (Êg)g∈G in B

(⊕
g∈G Êg

)
.

Therefore, Ê must be amenable. �

Remark 4.17. That an equivalence between objects in C
P
pr,∗ preserves amen-

ability also follows from [2] and Theorem 4.10.

Example 4.18. Let A and B be C∗-algebras, and let F :A→B be an imprimi-
tivity A,B-bimodule. A compactly aligned product system E = (Ep)p∈P over A
induces a compactly aligned product system G = (Gp)p∈P over B as follows.
We set Gp := F∗ ⊗A Ep ⊗A F . The multiplication map µ̃p,q : Gp ⊗A Gq

∼= Gpq is
defined using the isomorphism F ⊗A F∗ ∼= A. More explicitly, it is given by

Gp ⊗B Gq = F∗ ⊗A Ep ⊗A F ⊗B F∗ ⊗A Eq ⊗A F

∼= F∗ ⊗A Ep ⊗A Eq ⊗A F (1F∗ ⊗ µp,q ⊗ 1F)

∼= F∗ ⊗A Epq ⊗A F = Gpq.

The multiplication maps {µ̃p,q}p,q∈P satisfy the coherence axiom required for
product systems because {µp,q}p,q∈P do so.
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We claim that G is compactly aligned. Indeed, let p, q ∈ P with p ∨ q < ∞.
Notice that K(Gp) is canonically isomorphic to F∗ ⊗A K(Ep)⊗A F through the
B-bimodule map

F∗ ⊗A Ep ⊗A F ⊗B (F∗ ⊗A Ep ⊗A F)∗

∼= F∗ ⊗A Ep ⊗A F ⊗B F∗ ⊗A E∗
p ⊗A F

∼= F∗ ⊗A Ep ⊗A E∗
p ⊗A F

∼= F∗ ⊗A K(Ep)⊗A F .

So take T ∈ K(Ep) and S ∈ K(Eq). Let ζ1, ζ2, η1, η2 ∈ F , and let η∗ ⊗ ξ ⊗ ζ be
an elementary tensor of F∗ ⊗A Ep∨q ⊗A F . We have that

ιp∨q
q (η∗2 ⊗ S ⊗ ζ2)(η

∗ ⊗ ξ ⊗ ζ) = η∗2 ⊗ ιp∨q
q (S)(ϕp∨q(〈〈ζ2 | η〉〉)(ξ)) ⊗ ζ.

Applying ιp∨q
p (η∗1 ⊗ T ⊗ ζ1) to both sides of the above equality, we deduce that

ιp∨q
p (η∗1 ⊗ T ⊗ ζ1)ι

p∨q
q (η∗2 ⊗ S ⊗ ζ2)(η

∗ ⊗ ξ ⊗ ζ)

= η∗1 ⊗ ιp∨q
p (T )

(
ϕp∨q(〈〈ζ1 | η2〉〉)ι

p∨q
q (S)(ϕp∨q(〈〈ζ2 | η〉〉)(ξ))

)
⊗ ζ.

Define T ′ ∈ K(Ep∨q) by T ′ = ιp∨q
p (T )ϕp∨q(〈〈ζ1 | η2〉〉)ιp∨q

q (S). Then

η∗1 ⊗ T ′(ϕp∨q(〈〈ζ2 | η〉〉)(ξ)) ⊗ ζ = (η∗1 ⊗ T ′ ⊗ ζ2)(η
∗ ⊗ ξ ⊗ ζ).

So G is also compactly aligned, as claimed.
Given p ∈ P , an element b ∈ B is compact on Gp if and only if bF∗ ⊆

F∗ϕ−1
p (K(Ep)), provided F∗ is an equivalence (see also [30, Cor. 3.7]). The

bijection between the lattices of ideals of A and B, respectively, obtained from
the Rieffel correspondence, yields a one-to-one correspondence between ideals
in A acting by compact operators on Ep and ideals in B mapped to compact
operators on Gp. Precisely, this sends J

A
p ⊳ ϕ−1

p (K(Ep)) to JB
p = 〈JA

p F |F〉. Its

inverse maps an ideal JB
p ⊳ ϕ̃−1

p (K(Gp)) to JA
p = 〈〈FJB

p | F〉〉.
The equivalence F may be turned into a proper covariant correspondence

(F , V ) : (A, E , JA) → (B, G, JB), where V = {Vp}p∈P and Vp : Ep ⊗A F ∼=
F ⊗B Gp arises from the canonical isomorphism

Ep ⊗A F ∼= F ⊗B F∗ ⊗A Ep ⊗A F = F ⊗B Gp.

Here JA and JB are related by the bijection described above.
It follows from Corollary 4.16 that (F , V ) is invertible in C

P
pr and produces

a Morita equivalence between OJA,E and OJB ,G . Therefore, up to equivari-
ant Morita equivalence, the relative Cuntz–Pimsner algebras associated to E
correspond bijectively to those associated to G. In particular, if E is a simpli-
fiable product system of Hilbert bimodules, the cross-sectional C∗-algebra of
the Fell bundle associated to E is Morita equivalent to that of G. This is so
because the family of Katsura’s ideals IE corresponds to IG under the Rieffel
correspondence.

The next proposition characterizes equivalences between product systems
built out of semigroups of injective endomorphisms with hereditary range as
in Example 3.15. This generalizes [28, Prop. 2.4]. The idea of the proof is
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also taken from there, but notice that we do not require that the actions be
by automorphisms. We will see below that our notion of equivalence between
product systems associated to these semigroup actions is an analog of Morita
equivalence for actions of groups as studied in [8, 10].

Proposition 4.19. Let α : P → End(A) and β : P → End(B) be actions by
extendible injective endomorphisms with hereditary range. Let Aα and Bβ
be the associated product systems of Hilbert bimodules over P op. There is
an equivalence (F , V ) : (A, Aα , I Aα

) → (B, Bβ , I B
β

) if and only if there are

an imprimitivity A, B-bimodule F and a semigroup homomorphism p 7→ Up

from P to the semigroup of C-linear isometries on F such that, for all p ∈ P

and ξ, η ∈ F ,

(7) 〈〈Up(ξ) |Up(η)〉〉 = αp(〈〈ξ | η〉〉), 〈Up(ξ) |Up(η)〉 = βp(〈ξ | η〉).

Proof. Let (F, V ) : (A, Aα ,I Aα
) → (B, Bβ ,I B

β
) be an equivalence. Then F is

an imprimitivity A,B-bimodule. Observing that, for all p ∈ P ,

〈〈 Bβp
| Bβp

〉〉 = β−1
p (βp(B)) = B,

we define a correspondence isomorphism U ′
p : F → Aαp

⊗A F ⊗B Bβp

∗ by

F ∼= F ⊗B Bβp
⊗B Bβp

∗
V −1

p ⊗1
====⇒ Aαp

⊗A F ⊗B Bβp

∗.

We identify Bβp

∗ with Bβp
= Bβp(1) via β̃p(1)b 7→ b∗βp(1) to obtain a linear

map

Aαp
⊗A F ⊗B Bβp

∗ → F

defined on an elementary tensor αp(1)a⊗A ξ ⊗B bβp(1) by (αp(1)a)ξ(bβp(1)).
This is isometric because β−1

p is an injective ∗-homomorphism between C∗-al-
gebras. Its composition with U ′

p yields a linear map F → F , which we denote
by Up. Given ξ,η ∈F , we have that 〈ξ |η〉= 〈U ′

p(ξ) |U
′
p(η)〉, that is, U

′
p preserves

inner products. From this, we deduce

〈Up(ξ) |Up(η)〉 = βp(〈U
′
p(ξ) |U

′
p(η)〉) = βp(〈ξ | η〉).

Similarly, 〈〈U ′
p(ξ) |U

′
p(η)〉〉 = 〈〈ξ | η〉〉, and we see that

〈〈Up(ξ) |Up(η)〉〉 = αp(〈〈ξ | η〉〉).

It remains to verify that p 7→ Up is a semigroup homomorphism from P to
the semigroup of C-linear isometries on F . First, let αq(1)a ∈ Aαq

, and notice
that, given an elementary tensor ξ ⊗ αp(1)b of F ⊗B Bβp

, one has

V −1
p (αq(1)aξ ⊗ βp(1)b) = αq(1)aV

−1
p (ξ ⊗ βp(1)b).

Since the left action ofA on Aαp
is implemented by αp, it follows that the image

of V −1
p (αq(1)aξ ⊗ βp(1)b) in F under the map Aαp

⊗A F → F determined by
the left action of A on F coincides with the image of

(µα
q,p ⊗ 1)(αq(1)a⊗A V −1

p (ξ ⊗ βp(1)b))
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under the corresponding map Aαpq
⊗A F →F . Here µα

q,p is the correspondence
isomorphism Aαq

⊗A Aαp

∼= Aαpq
.

Now let p, q ∈ P , and let (uλ)λ∈Λ be an approximate identity for B. Fix
λ ∈ Λ, and let ξ ∈ F and b ∈ B. Then

U ′
q(ξuλuλb) = V −1

q (ξ ⊗ βq(uλ))⊗ βq(uλb).

From the above observation and from the fact that V −1
p and V −1

q intertwine
the right actions of B, we conclude that

U ′
pUq(ξuλuλb)

= (µα
q,p ⊗ 1)(1⊗ V −1

p ⊗ 1Bβp
)(V −1

q (ξ ⊗ βq(uλ))⊗ βpq(uλ)⊗ βpq(b)).

Combining this with the coherence condition (3), we may replace the right-
hand side of the above equality by

(V −1
pq ⊗ 1Bβp

)(1 ⊗ µβ
q,p ⊗ 1)(ξ ⊗ (βq(uλ)⊗ βpq(uλ))⊗ βpq(b))

= (V −1
pq ⊗ 1Bβp

)(ξ ⊗ βpq(uλuλ))⊗ βpq(b).

This implies UpUq(ξuλuλb) = Upq(ξuλuλb). Using that all the Up’s are con-
tinuous and

ξb = lim
λ
(ξuλuλb),

we obtain UpUq(ξb) = Upq(ξb). This shows that p 7→ Up is a semigroup homo-
morphism, as asserted.

Conversely, suppose that we are given an imprimitivity A, B-bimodule F
and a semigroup homomorphism p 7→ Up from P to the semigroup of C-linear
isometries on F satisfying (7). For each p ∈ P , ξ ∈ F , and b ∈ B, we have that
Up(ξb) = Up(ξ)βp(b) because

〈Up(ξb)− Up(ξ)βp(b) |Up(ξb)− Up(ξ)βp(b)〉

= 〈Up(ξb) |Up(ξb)〉 − 〈Up(ξb) |Up(ξ)βp(b)〉 − 〈Up(ξ)βp(b) |Up(ξb)〉

+ 〈Up(ξ)βp(b) |Up(ξ)βp(b)〉

= βp(〈ξb | ξb〉)− βp(〈ξb | ξ〉)βp(b)− βp(b)
∗βp(〈ξ | ξb〉)

+ βp(b
∗)βp(〈ξ | ξ〉)βp(b) = 0.

The same reasoning shows that Up(aξ) = αp(a)Up(ξ) for all a ∈ A.
We then define a map V ′

p : Aαp

∗ ⊗A F ⊗B Bβp
→ F on elementary tensors

by

aαp(1)⊗ ξ ⊗B βp(1)b 7→ aUp(ξ)b.

In order to verify that this preserves the B-valued inner product, let a, c ∈ A,
b, d ∈ B, and ξ, η ∈ F . Let (uλ)λ∈Λ be an approximate identity for A, and fix
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λ ∈ Λ. Then

〈aUp(uλξ)b | cUp(uλη)d〉 = b∗〈aαp(uλ)Up(ξ) | cαp(uλ)Up(η)〉d

= b∗〈Up(ξ) |αp(uλ)a
∗cαp(uλ)Up(η)〉d

= b∗〈Up(ξ) |Up(α
−1
p (αp(uλ)a

∗cαp(uλ))η)〉d

= b∗βp(〈ξ |α
−1
p (αp(uλ)a

∗cαp(uλ))η〉)d

= 〈aαp(uλ)⊗ ξ ⊗ βp(1)b | cαp(uλ)⊗ η ⊗ βp(1)d〉.

Using that Up is continuous and ξ = limλ uλξ, η = limλ uλη, we conclude that
V ′
p preserves the inner product. In addition, it intertwines the left and right

actions of A and B.
Now we let Ṽp : F ⊗B Bβp

⇒ Aαp
⊗A F be the composite

F ⊗B Bβp

∼= Aαp
⊗A Aαp

∗ ⊗A F ⊗B Bβp

1⊗V ′
p

===⇒ Aαp
⊗A F ,

where the isomorphism on the left-hand side comes from the identification

Aαp
⊗A Aαp

∗ ∼= 〈〈 Aαp
| Aαp

〉〉 = A.

Then Ṽp is an isometry between correspondences A ❀ B. To see that it is
indeed unitary, we need to prove that it is also surjective.

First, observe that

αp(〈〈ξ | η〉〉)ζ = 〈〈Up(ξ) |Up(η)〉〉ζ = Up(ξ)〈Up(η) | ζ〉.

This implies αp(A)F = Up(F)〈Up(F) | F〉, provided 〈〈F | F〉〉 = A. Again we
let (uλ)λ∈Λ be an approximate identity for A and fix λ ∈ Λ. Let c ∈ A be such
that uλ = c∗c. Take a ∈ A and ξ ∈ F . Then

αp(uλ)a⊗A ξ = αp(c
∗)⊗A αp(c)(aξ) ∈ αp(c

∗)⊗A Up(F)〈Up(F) | F〉.

Using that Up(F) = αp(A)Up(F), we deduce that αp(uλ)a ⊗A ξ belongs to

the image of Ṽp. This has closed range, and hence αp(1)a ⊗ ξ also lies in

Ṽp(F ⊗B Bβp
). Applying again the fact that Ṽp has closed range, we conclude

that it is indeed unitary.

We let Vp = Ṽ ∗
p and V = {Vp}p∈P . We shall now prove that (F ,V ) is a proper

covariant correspondence. In this case, it suffices to show that it satisfies the
coherence axiom (3) and that Ve is the canonical isomorphism obtained from
the left and right actions of A and B, respectively. This latter fact follows
from the identities

〈〈Ue(ξ) | η〉〉 = 〈〈ξ |Ue(η)〉〉 = 〈〈ξ | η〉〉 = 〈〈Ue(ξ) |Ue(η)〉〉

so that Ue = idF . The above equalities may be derived from the computation

〈〈Ue(ξ) | η〉〉 = αe(〈〈Ue(ξ) | η〉〉) = 〈〈Ue(Ue(ξ)) |Ue(η)〉〉

= 〈〈Ue(ξ) |Ue(η)〉〉 = 〈〈ξ | η〉〉.

Finally, given a, c ∈ A, b, d ∈ B and ξ ∈ F , we have

cUq(aUp(ξ)b)d = cαq(a)Uq(Up(ξ))βq(b)d = cαq(a)Uqp(ξ)βq(b)d.
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This leads to a commutative diagram for Ṽp, Ṽq and Ṽqp as in (3). By reversing
arrows, we conclude that (F , V ) also makes such a diagram commute. This
completes the proof. �
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