Transition metal catalysed allylic substitution is one of the most powerful and frequently used methods in organic synthesis. In particular, palladium-catalysed allylic functionalization has become a well-established strategy for constructing carbon–carbon or carbon–heteroatom bonds, and its utility has been demonstrated in natural product synthesis, drug discovery and materials science. Several methods have been developed to generate π-allylpalladium complexes through ionic mechanisms; however, these methods typically require either prefunctionalized starting materials or stoichiometric oxidants, which naturally limits their scope. Here, we show a radical approach for the generation of π-allylpalladium complexes by employing N-hydroxyphthalimide esters as bifunctional reagents in combination with 1,3-dienes. Using this strategy, we report the 1,4-aminoalkylation of dienes. The remarkable scope and functional group tolerance of this redox-neutral and mild protocol was demonstrated across >60 examples. The utility of this strategy was further demonstrated in radical cascade reactions and in the late-stage modification of drugs and natural products.
Bibliographic Metadata
Bibliographic Metadata
- TitleCatalytic radical generation of π-allylpalladium complexes
- Author
- Published
- AnnotationSupplementary information is available in the published version of the paper: https://doi.org/10.1038/s41929-020-0434-0This document is the author’s final version of a published work that appeared in final form in Nature Catalysis (ISSN 2520-1158) after technical editing by the publisher. To access the final edited and published work, see https://doi.org/10.1038/s41929-020-0434-0
- LanguageEnglish
- Document typeJournal Article
- Keywords (EN)
- URN
Restriction-Information
- The document is publicly available on the WWW
Links
- Social MediaShare
- Reference
- IIIF
Files
Classification
Abstract
Stats
- The PDF-Document has been downloaded 8 times.