Bibliographic Metadata
Bibliographic Metadata
- TitleBlow-up constructions for Lie groupoids and a Boutet de Monvel type calculus
- Author
- Is part ofMünster Journal of Mathematics, Issue Münster Journal of Mathematics, page 1-40
- Published
- LanguageEnglish
- Document typeJournal Article
- URN
- DOI
Restriction-Information
- The document is publicly available on the WWW
Links
- Social MediaShare
- Reference
- IIIF
Files
Classification
Abstract
We present natural and general ways of building Lie groupoids, by using the classical procedures of blow-ups and of deformations to the normal cone. Our constructions are seen to recover many known ones involved in index theory. The deformation and blow-up groupoids obtained give rise to several extensions of C*-algebras and to full index problems. We compute the corresponding K-theory maps. Finally, as an application, we use the blow-up of a manifold sitting in a transverse way in the space of objects of a Lie groupoid to construct a calculus which is quite similar to the Boutet de Monvel calculus for manifolds with boundary.
Stats
- The PDF-Document has been downloaded 5 times.