Bibliographic Metadata
Bibliographic Metadata
- TitleTensor categorical foundations of algebraic geometry
- Author
- Thesis advisor
- Published
- LanguageEnglish
- Document typeDissertation (PhD)
- Keywords (DE)
- Keywords (EN)
- URN
Restriction-Information
- The document is publicly available on the WWW
Links
- Social MediaShare
- Reference
- IIIF
Files
Classification
Zusammenfassung
Nach den Arbeiten von Saavedra-Rivano, Deligne, Lurie, Schäppi u.a. lassen sich viele Schemata sowie algebraische Stacks mit ihren Tensorkategorien von quasikohärenten Garben identifizieren. In dieser Arbeit studieren wir Konstruktionen mit kovollständigen Tensorkategorien (bzw. kostetigen Tensorfunktoren), die im Falle von quasikohärenten Garben zu Konstruktionen von Schemata (bzw. ihren Morphismen) korrespondieren. Das bedeutet, die gewöhnliche lokal-globale algebraische Geometrie zu globalisieren. Als Beispiele behandeln wir affine Morphismen, projektive Morphismen, Immersionen, klassische projektive Einbettungen, Aufblasungen, Faserprodukte, klassifizierende Stacks sowie Tangentialbündel. Die universellen Eigenschaften auf der geometrischen Seite finden sich oftmals auch auf der Seite der Tensorkategorien. Bei der Theorie erweist es sich als nützlich, Grundzüge der kommutativen Algebra in einer beliebigen kovollständigen Tensorkategorie zu entwickeln.
Abstract
Several results by Saavedra-Rivano, Deligne, Lurie, Schäppi et al. shown that many schemes as well as algebraic stacks may be identified with their tensor categories of quasi-coherent sheaves. In this thesis we study constructions of cocomplete tensor categories (resp. cocontinuous tensor functors) which usually correspond to constructions of schemes (resp. their morphisms) in the case of quasi-coherent sheaves. This means to globalize the usual local-global algebraic geometry and to make a first step towards 2-algebraic geometry. We discuss for example affine morphisms, projective morphisms, immersions, classical projective embeddings (Segre, Plücker, Veronese), blow-ups, fiber products, classifying stacks and finally tangent bundles. It turns out that often the universal properties on the geometric side also appear on the side of tensor categories. For the theory it turns out to be useful to develop basic commutative algebra in an arbitrary cocomplete tensor category.
Content
Stats
- The PDF-Document has been downloaded 10 times.