Diese Arbeit befasst sich mit kapazitiv gekoppelten Hochfrequenzentladungen bei atmosphärischem Druck in atomaren Gasen wie He und Ar sowie deren Gemischen mit molekularen Gasen. Ziel der Arbeit ist die Untersuchung des Potentials sowie der Anwendbarkeit dieser Entladungen bezüglich der nicht-thermischen Oberflächenmodifikation (Hydrophilierung) von thermisch labilen Polymeren.
Es werden ausschließlich parallele Elektrodenanordnungen untersucht. Die Entladungen werden mit einer Frequenz von 13,56 MHz angeregt. Die Physik dieser Entladungen wird am Beispiel von He-Entladungen anhand von theoretischen und experimentellen Untersuchungen diskutiert. Die wesentlichen Charakteristiken dieser Entladungen wie Energie und Dichte der Ladungsträger, elektrische Felder sowie Randschichtdicken werden anhand relativ einfacher Diagnostikmethoden ermittelt. Der Einfluss solcher Parameter wie Gasfluss, seine Zusammensetzung, eingekoppelte Leistung sowie Elektrodenkonfiguration auf die Entladungseigenschaften wird untersucht.
Mit Hilfe der angewendeten Diagnostikmethoden zur Deutung der Veränderungen in der polymeren Oberfläche, insbesondere ihres energetischen Zustandes sowie theoretischer Modellrechnungen werden die Entladungseigenschaften mit den Behandlungseffekten verbunden. Ein simples qualitatives Modell des Behandlungsprozesses wird vorgeschlagen. Durch die gezielte Wahl der Parameter werden optimale Bedingungen des statischen Behandlungsprozesses von flachen Polypropylen-Werkstoffen gesucht.
Am Beispiel der Behandlung von Folien und Bändern wird das hohe Potential solcher Entladungen zur Oberflächenmodifikation von thermolabilen Polymeren aufgezeigt. Es werden konkurrenzfähige Behandlungsprozesse für flache Polypropylen-Werkstoffe vorgeschlagen, welche bei niedrigen Energiekosten langzeitstabile Behandlungen mit einem hohen Hydrophilierungsgrad ermöglichen.