Zur Seitenansicht

Titelaufnahme

Links
Zusammenfassung (Englisch)

This treatise is intended for mathematicians and computational engineers that work on modeling, coupling and simulation of electromagnetic problems. This includes lumped electric networks, magnetoquasistatic field and semiconductor devices. Their coupling yields a multiscale system of partial differential algebraic equations containing device models of any dimension interconnected by the electric network. It is solved in time domain by multirate techniques that efficiently exploit the structure. The central idea is the usage of lumped surrogate models that describe latent model parts sufficiently accurate (e.g. the field model by an inductance) even if other model parts (e.g. the circuit) exhibit highly dynamic behavior. We propose dynamic iteration and a bypassing technique using surrogate Schur complements. A mathematical convergence analysis is given and numerical examples are discussed. They show a clear reduction in the computational costs compared to single rate approaches.

Statistik