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Abstract

The diagnosis of certain spine pathologies, such as scoliosis, spondylolis-
thesis and vertebral fractures, are part of the daily clinical routine. Very
frequently, MRI data are used to diagnose these kinds of pathologies in
order to avoid exposing patients to harmful radiation, like X-ray.

Developing a segmentation system for an array of vertebrae is complex,
so the method was first tested on brain tumors of types glioblastoma
multiforme and pituitary adenoma. A small triangular surface mesh at
the approximate center of the tumor is inflated towards the boundary
using balloon force, keeping it approximately star-shaped. The boundary
is implicitly binarized by the inflation rules, based on the minimum and
maximum intensity from the initialization step. After the segmentation is
finished, the tumor volume is calculated.

The spine segmentation system uses a bottom-up approach for detecting
vertebral bodies based on just one manual initialization. A subdivision
surface hierarchy is introduced as an efficient global-to-local smoothness
constraint, which can be thought of as an internal force. Together with
intensities, low-high (LH) values were initially used to ease boundary
finding, but the boundary estimation evolved into a multi-feature combiner.

The final system utilizes a Viola-Jones detector to determine centers
and approximate sizes of vertebral bodies. This gives the user a chance
to manually correct detections, enables parallel feature calculation and
segmentation, and is a basis for reliable diagnosis established at the end.

The system was evaluated on 26 lumbar datasets containing 234 refer-
ence vertebrae. Vertebra detection has 7.1% false negatives and 1.3% false
positives. The average Dice coefficient to manual reference is 79.3% and
mean distance error is 1.77 mm. No severe case of the three addressed
illnesses was missed, and false alarms occurred rarely – 0% for scoliosis,
3.9% for spondylolisthesis and 2.6% for vertebral fractures.

The main advantages of this system are high speed, robust handling
of a large variety of routine clinical images, and simple and minimal user
interaction.
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Zusammenfassung

Die Diagnose von bestimmten Wirbelsäulenerkrankungen, wie z.B. Skolio-
se, Spondylolisthesis oder Wirbelbrüche, sind Teil des Klinikalltags. Häufig
werden zur Diagnose dieser Art von Erkrankungen MRT-Daten benutzt,
um zu vermeiden, dass Patienten schädlicher Strahlung, wie z.B. Röntgen-
strahlung, ausgesetzt werden.

Die Entwicklung eines Segmentierungssystems für eine Reihe von Wir-
beln ist komplex. Deshalb wurde die Methode zuerst für zwei Typen von
Gehirntumoren, Glioblastoma multiforme und Hypophysenadenom, ge-
testet. Ein kleines Dreiecksnetz wird am ungefähren Zentrum des Tumors
durch Ballon-Forces expandiert, wobei seine Struktur näherungsweise stern-
förmig gehalten wird. Der Datensatz wird durch diese Kräfte basierend
auf den Minimum- und Maximumintensitäten beim Initialisierungsschritt
implizit in ein inneres und ein äußeres Segment unterteilt. Nachdem die
Segmentierung abgeschlossen ist, wird das Volumen des Tumors berechnet.

Das Segmentierungssystem für die Wirbelsäule benutzt einen „Bottum-
up“-Ansatz zur Erkennung der Wirbel, der auf nur einer manuellen In-
itialisierung basiert. Als effiziente global-zu-lokal Glättungsbedingung
wurde eine Oberflächenunterteilungshierarchie eingeführt, die man sich
als interne Kraft vorstellen kann. Zu Beginn wurden Intensitätswerte zu-
sammen mit „low-high“-Werten verwendet um die Ermittlung von Kanten
zu erleichtern. Aber der Kantenschätzer entwickelte sich hin zu einem
Multimerkmalsansatz.

Das endgültige System benutzt einen Viola-Jones-Detektor um das Zen-
trum und die ungefähre Größe von Wirbeln zu bestimmen. Dieser Ansatz
gibt dem Nutzer die Möglichkeit die Erkennung manuell zu korrigieren
und ermöglicht eine parallele Berechnung der Merkmale und Segmentie-
rung und stellt eine Basis für eine zuverlässige Diagnose dar.

Das System wurde an 26 lumbalen Datensätzen evaluiert, welche 234
Referenzwirbel beinhalteten. Die Wirbelerkennung hat 7.1% „false positi-
ves“ und 1.3% „false negatives“. Der durchschnittliche Dice-Koeffizient im
Vergleich zur Handsegmentierung ist 79.3% und der mittlere Abstandsfeh-
ler beträgt 1.77mm. Alle schlimmere Fälle der drei Erkrankungen wurde
korrekt erkannt und Fehlalarme traten selten auf – 0% bei Skoliose, 3.9%
bei Spondylolisthesis und 2.6% bei Wirbelfrakturen.

Die Hauptvorteile dieses Systems sind die hohe Geschwindigkeit, die
robuste Handhabung von alltäglichen klinischen Aufnahmen und die ein-
fache als auch minimale Benutzerinteraktion.
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Chapter 1

Introduction

In the past few decades magnetic resonance imaging (MRI) has become an
important diagnostic tool in the clinical routine. The reason for this is MRI’s
ability to capture a wide range of properties from living tissue [Bla08]. MRI
is of great value for various diagnosing tasks, but for most illnesses it is
not the first choice because of its high price. MRI is frequently used for
neurological diagnosis because of the detail it provides for brain tissue,
spinal cord and other tissues of the spine and around the spine.

1.1 Problem Statement

Image segmentation is the process of splitting an image into its constituent
regions. Frequently, the image is divided into two parts: the object of
interest and background to be ignored [SS01, 279]. The usual goal of
segmentation is a simplified representation or a more meaningful or easier
analysis.

Segmentation is useful for many things: face detection in images, pedes-
trian detection in surveillance videos, fingerprint recognition, etc. This
thesis is, however, mostly concerned with medical applications, i.e.:

1. separating tumors from other parts of the brain and head

2. separating vertebral bodies from the rest of the acquired anatomy.

The main reason for segmenting tumors is estimating their volume.
The reason for segmenting vertebral bodies is aiding diagnosis of certain
diseases.
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2 Chapter 1. Introduction

Segmentation is inherently ambiguous. This is clearly depicted in Fig-
ure 1.1, where five humans disagree on how the image should be seg-
mented.

(a) Image 189003 (b) User 1103: 12 segments (c) User 1108: 6 segments

(d) User 1109: 8 segments (e) User 1112: 5 segments (f) User 1130: 41 segments

Figure 1.1: An image and segmentations from 5 different users. The image
and its segmentations are taken from The Berkeley Segmentation Dataset
and Benchmark [MFTM01].

It is very hard to segment images of an unknown scene with unknown
lighting, but if the set of possible images is restricted the problem becomes
easier (Figure 1.2 on the next page). Just restricting ourselves to radiology
images completely eliminates the lighting variability. Radiology images
also usually imply human subjects, which is another restriction.

However, radiological images also introduce new problems, such as
little to no distinction between different tissues in computed tomography
(CT) and inhomogeneous intensity due to inhomogeneous magnetic field
in magnetic resonance (MR).

Noise in the images hampers and complicates all attempts to achieve a
proper segmentation.

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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(a) A sagittal cross-section (b) ... overlaid with segmentation

(c) A coronal cross-section (d) ... overlaid with segmentation

Figure 1.2: MR images of the lumbar spine of two different subjects



4 Chapter 1. Introduction

1.2 Coarse System Overview

The 3D image is acquired by a medical scanner and stored into a DICOM
format [MEM02] file. The image file is preprocessed to reduce noise and
prepare it for usage by the segmentation algorithm. After segmentation
is finished, analysis can be conducted. The analysis can be as simple as
calculating the volume of the segmented tumor, or more complicated as
calculation of the degree of scoliosis (see Fig. 1.3).

In this thesis the emphasis is on the segmentation and associated pre-
processing, and less effort is devoted to the analysis (diagnosis).

Figure 1.3: System overview

1.3 Contribution

This thesis deals with fast segmentation of medical magnetic resonance
images (MRI). Towards that goal, the main contributions are:

• very fast and versatile basic segmentation algorithm for single star-
shaped object [ZEB+10, EZB+10, ZEB+11, EZF+13]

• constrained subdivision hierarchy for smoothness control in de-
formable meshes [ZVD+12]

• multiple feature boundary estimation producing a smooth edge-
probability image thus enabling gradient descent approach to edge
finding [ZVD+12]

• vertebral column segmentation framework which handles diverse set
of MR images. There are two variants, utilizing a:

– bottom-up approach to vertebra detection [ZVD+12]

– top-down approach to vertebra detection [ZVE+14]

• diagnosis of scoliosis, spondylolisthesis and vertebral collapse
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1.4 Structure of Thesis

The next chapter gives a an overview of how 3D magnetic resonance
images are created, their properties, a short description of several different
approaches to their segmentation and review of published work related to
brain tumors and vertebra segmentation.

Before attempting a segmentation of the vertebral column, the inflation
approach was tested on brain tumors. Chapter 3 on page 39 introduces this
single-object segmentation system.

Chapter 4 on page 55 builds upon the previous algorithm and extends
it to multiple object segmentation, namely vertebral bodies. Based on the
pose of the initial or previous vertebral body, the center of the adjacent
vertebral body is predicted. Thus only one user-initialization is required. A
constrained subdivision hierarchy is used to control smoothness.

Improvements to boundary estimation are the core of chapter 5 on
page 75.

The final system is presented in chapter 6 on page 83. It uses automatic
detection of vertebral bodies before the main segmentation step. This gives
the user a chance to rectify initial detection errors, as correct detection is
crucial to diagnostic analysis. Diagnosis of scoliosis, spondylolisthesis and
vertebral collapse is implemented. Initial vertebra detection also enables
parallel implementation of feature calculation and segmentation. Few other
improvements are also given, such as parameter optimization.

Finally, chapter 7 on page 99 presents results for the three vertebral body
segmentation systems presented in chapters 4, 5 and 6.





Chapter 2

Technical Foundation

Raster images, arising from observations of the real world, are arrays of
points with different intensities, called pixels (picture elements). Common
example of two-dimensional (2D) images are photographs. Images don’t
have to be two-dimensional, they can be three-dimensional in various ways.
If the image’s pixel intensities do not represent incident light intensities, but
rather distances from the camera to the points in the scene, those images
are called range images or depth images. If the third dimension is time
(2D+t), they are usually called video.

Images can also have three spatial dimensions – x, y, and z. In that case
they are called volumetric or three-dimensional (3D) images. Elements of
such images can still be called pixels, but are usually called voxels (volume
elements) to distinguish them from 2D pixels. Such images are produced
by 3D computer simulations, X-ray CT, MRI, confocal microscopy etc. Even
though special volumetric displays exist, they are usually displayed on
conventional 2D displays using volume rendering and slicing. Slicing
displays a single 2D slice of a 3D image at a time.

Images can have higher dimensions too. Common 4D images are 3D
images with multiple time samples (3D+t) and multispectral 3D images
(3D+λ), e.g. coming from confocal Raman microscopy.

The normal photographs have three color channels – red, green and
blue. Multispectral images have more channels, sometimes in the range of
hundreds [Lab13]. This thesis, however, deals with grayscale 3D images –
images with only one channel.

7



8 Chapter 2. Technical Foundation

2.1 Principle of Operation of MRI Scanner

Biologic tissues, including the human body, contain a large percentage of
water and therefore a significant abundance of hydrogen atoms [Jäg11].
The nuclei of the 1H atoms are protons, which have quantum spin of 1

2 . If
protons are brought into a magnetic field, their spins tend to align parallel
or anti-parallel to the field. The exact distribution of spins is governed by
Boltzmann statistics, but somewhat more of the protons align parallel to
the field ~B0 yielding a net magnetization ~M.

When ~M is not parallel to ~B0, torque is exerted on it causing it to precess
around ~B0, see Figure 2.1. The angular velocity of this precession is given
by ω0 = γ‖~B0‖. γ is called gyromagnetic constant and for 1H nucleus it is
42.6 MHz/T (megahertz per Tesla), see [Jäg11].

Tissue
sample

Magnet

B0 x

y
z

M

ω0

Figure 2.1: Protons with magnetization ~M precess around the magnetic
field ~B0

The magnetization vector ~M can be flipped sideways if energy is intro-
duced to the tissue sample using a radio-frequency (RF) pulse. This RF
pulse has to match the resonant frequency of the sample, ω0. When the RF
pulse is turned off, the transverse component of the magnetization vector
produces an oscillating magnetic field which can be measured.

The magnetization induced falls off exponentially. Longitudinal mag-
netization Mz (magnetization along ~B0) is restored with a time constant
T1 and transverse magnetization Mxy (magnetization perpendicular to ~B0)
falls off with a time constant T2:

Mz(t) = (1− e
−t
T1 )M0

Mxy(t) = e
−t
T2 M0
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The relaxation time constants T1 and T2 are tissue dependent, and typical
values are around 1 second for T1 and a few dozen milliseconds for T2.
These constants cannot be measured independently. Since T1 is usually
much longer than T2, transverse magnetization falls off much quicker. If
we measure the magnetization short time (≈ T2) after the flip pulse, the
signal will depend much more on T2 because Mz(t) ≈ 0 and Mxy 6= 0. This
is called T2 weighting. Similarly if we measure the signal long time (≈ T1)
after the flip pulse, it will be T1 weighted.

2.1.1 Spatial Encoding

The theory so far gives us the way to measure aggregate signal of the whole
tissue sample (usually the human body). To be of practical use, a way to
measure the signal at the different spatial locations is required.

f

f‒Δf

f+Δf

z+Δzz‒Δz

Bz

z-pos

(a) Correspondence between z-
position and frequency

f+Δff‒Δf Freq.

A
m
pl
it
ud
e

(b) Frequency range

A
m
pl
itu
de

Time

(c) Time domain sinc signal

Figure 2.2: The required z-position and the slice thickness 2∆z dictate the
frequency, which through Fourier transform defines the RF pulse used.

The spin precession frequency f = ω
2π can be made position dependent

if we make the total field strength ‖~B‖ position dependent. This is usually
accomplished by applying a magnetic gradient field Gz in z-direction to the
main magnetic field ~B0, thus making the total field strength z-dependent:
Bz(z) = ‖~B0‖+ Gzz.

Now we can only flip (excite) a part of the sample, by using a pulse
which contains a range of frequencies ( f − ∆ f , f + ∆ f ). This way only a
“slice” of the sample is excited, corresponding to a spatial range (z−∆z, z +
∆z), see Figure 2.2.

With only a single slice excited, meaning all spins flipped down and in
phase, we can now focus on separating positions along x and y coordinates.
A simple way to separate positions (pixels) along the x axis is to to apply
a new gradient field Gx: Bx(x) = ‖~B0‖ + Gxx. This way the precession
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x

y

t

GPE Before
GPE

After
GPE

During
GPE

Shifted
phases

Eqaul
phases

Figure 2.3: Before applying phase encoding gradient, all spins precess at
the same frequency with the same phase. When GPE is turned on, the
spins start precessing at different frequencies. After GPE is turned off,
spins are no longer in phase, and the phase is linearly dependent on y
position.

frequency along x axis varies linearly, and the difference in angular velocity
with respect to the initial field strength can be calculated as: δω = γGxx.
The gradient Gx is applied during readout, so x axis is also called readout
direction or frequency encoding (FE) direction.

With frequency encoding taken care of, the signal which is read out is
an integral over the y direction at a fixed x and z position. To differentiate
pixels along the y axis, an additional gradient field Gy is applied for a
defined duration before the readout. This alters the precession frequency.
When Gy is turned off, the precession will continue at the original frequency,
but different positions along the y axis will have different phases, see
Figure 2.3. Gy is therefore usually called “phase encoding gradient” and
symbolized GPE.

2.1.2 A Pulse Sequence

In Figure 2.4 on the next page a complete timing diagram of a basic spin
echo pulse sequence is shown.

After the pulse sequence is executed once, one obtains measurements of
a single row of pixels of the selected slice. To obtain pixels of the whole slice,
the pulse sequence is repeated with a different phase-encoding gradient.
These repetitions are done after some waiting time, to allow longitudinal
magnetization to recover. Then the pulse sequence is executed nPE times
for each of the adjacent slices until the 3D volume is acquired.
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Figure 2.4: Simplified timing diagram for two-dimensional-Fourier-
transform (2DFT) Spin Echo (SE) pulse sequence.

The horizontal axis represents time. The vertical axis represents: (top
row) amplitude of radio frequency pulses; (middle rows) amplitudes of
the three orthogonal magnetic field gradient pulses; and (bottom row)
receiver analog-to-digital converter (ADC).

SS - slice selection. PE - phase encoding. FE - frequency encoding. nFE

- number of signal samples recorded, usually 128-512. nPE - number
of repetitions, usually 128-512. TE - echo time, time between sample
excitation and spin echo caused by the refocusing pulse (second SS). TR
- repetition time.

Reproduced from Wikipedia [Wik13].
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2.1.3 Image Reconstruction

The signals measured for each slice form a two-dimensional matrix, the
so-called k-space (Figure 2.5). Its entries are complex numbers formed
by measurements of signal power coming from frequency encoding and
phase encoding coils. To get a spatial image out of it, an inverse two-
dimensional Fourier transform of the sampled data is performed. For
human-perceivable image either the magnitude or phase of the Fourier
transform can be taken, the magnitude being far more common.

B0

Gz

x

y
z

M

ω0

Gx

Gy

Fourier
transform

Figure 2.5: Measured signals produce a complex image in k-space. Inverse
2D Fourier transform is applied to get the normal (magnitude) MR
image.

2.2 Properties and Artifacts of MRI Data

As all other sensor types, magnetic resonance imaging has artifacts. In
addition to that MRI has some other inconvenient properties, such as a lack
of unified physical unit. Some artifacts are always present and have to be
taken into account in any case, e.g. partial volume effect. Others, such as
magnetic susceptibility, occur rarely.
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Partial Volume Effect As imaging sensors have a finite spatial resolution,
a single voxel will frequently correspond to a volume which contains
more than one tissue type. For a combination of two tissue types a and b,
which occurs on tissue boundaries, the sampled intensity imeasured will not
exactly correspond to either of the involved tissue types but will instead be
somewhere in between. The resulting intensity i is some kind of average
weighted by proportions w of the given tissues a and b in the volume
corresponding to the measured voxel:

imeasured = ia × wa + ib × wb, where wa + wb = 1 and wa, wb > 0.

(a) A true state with 9 distinct intensities (b) An image with 208 distinct intensities

Figure 2.6: Partial volume effect. In (b) it is hard to even recognize the
existence of some thin structures clearly visible in the ground truth
image (a).

This in-between intensity usually corresponds to some other tissue type,
because biological tissues have a complex structure and usually different
parts of organs consist of different tissue types. Structures which are smaller
than the image’s voxel size and do not cover a complete voxel (such as small
blood vessels) will get lost through partial volume effects. This is illustrated
in Figure 2.6. The partial volume effect is more severely pronounced in
images with anisotropic resolution, because elongated voxels may contain
more tissue types.

A common way to deal with this is to use “soft segmentations” which
allow a single voxel to partly belong to more than one tissue type. This
requires a segmentation mask for each segmented object, and all object-
belonging proportions should sum up to 1 (=100%) for each voxel. Seg-
mentation representations which are not voxel-based, such as polygonal
surfaces, can be converted into either binary segmentation masks or soft
segmentation masks.
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Intensity Non-Uniformity One artifact specific to magnetic resonance
imaging is intensity inhomogeneity. Because the magnetic field strength is
not perfectly homogenous in the entire acquisition volume, the same tissue
may have different intensities in different parts of the image. The most
frequent manifestation are reduced intensity and contrast away from the
center of the acquisition volume (Figure 2.7).

(a) Sagittal (b) Axial

Figure 2.7: Cross-sections of an MR image with pronounced intensity inho-
mogeneity. The effect can be most easily noticed on the subcutaneous
fat (bright white) in both cross-sections.

This artifact is quite detrimental to automation of segmentation proce-
dures for MRI. This effect needs to be either eliminated before the main
segmentation step, or taken into account by the segmentation algorithm.
Most approaches for elimination of this artifact model the inhomogeneity
as an additive field, so it is also known as a bias field (Figure 2.8 on the
next page).

Motion Artifacts One of the assumptions utilized in acquiring MR images
is that there is no patient movement during the whole scan. Any violations
lead to blurring and anatomical structures overlapping each other.

Sampling along the frequency encoding direction is done in millisec-
onds and sampling along the phase encoding direction in seconds (by
repeating the pulse sequence). Because of this, motion of the patient affects
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(a) Uncorrected image (b) Estimated bias field (c) Corrected image

Figure 2.8: Axial cross-section of the lungs.

(a) Motion in the phase encoding (up-
down) direction

(b) Motion in the frequency encoding (left-
right) direction

Figure 2.9: Motion artifact of a bottle phantom. Reproduced from [Hig13]
with permission.

phase encoding direction much more, regardless of the direction of motion
(Fig. 2.9).

Wrap-Around The Wrap-around artifact, also known as aliasing, occurs
when tissues outside of the field of view (FOV) are excited. They get
interpreted as being on the opposite side of the image, “wrapping around”
(Fig. 2.10 on the next page).

Chemical Shift Artifacts Protons in fat resonate at a slightly lower fre-
quency than protons in water [Rad13a]. This causes a positional shift in the
frequency encoding direction (Fig. 2.11 on the following page) for spin echo
sequences. Slice selection direction is affected as well, but since routine
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Figure 2.10: Example of a wrap-around artifact. The nose and back of the
head were outside of the field of view.

(a) Ground truth position of a
fatty object

(b) A fatty object appears shifted
in the frequency encoding di-
rection

Figure 2.11: Chemical shift artifact in spin-echo images
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images are acquired with quite thick slices this is much less noticeable. In
gradient echo sequences black lines appear around fat tissue (Fig. 2.12).

(a) A T2-weighted spin-echo (b) A gradient echo

Figure 2.12: Chemical shift in a real image (slices through the brain). The
lipoma is near the center. Images from Radiopaedia [Rad13b].

Other Imaging Artifacts There are other artifacts arising in the MR imag-
ing process. Every imperfection in the imaging and reconstruction process
causes some kind of artifact.

Radio-frequency signals coming from outside the scanner room when
the door is opened can cause a zipper artifact (bands of electronic noise
appear in images perpendicular to frequency encoding direction).

Fourier transform causes artifacts around sharp edges, due to finite
number of frequencies used.

In Fig. 2.13 on the following page a magnetic susceptibility artifact is
shown.

Other Properties Noise is caused by various hardware imperfections and
limitations, as well as by image reconstruction software approximations.
Truncation to finite duration of the exciting sinc signal (Fig. 2.2 on page 9),
random fluctuations in the receiving coil electronics [LLT03], Brownian
motion of spins, and many other effects contribute to the total noise in the
image.

Radiologists look at 2D slices to establish a diagnosis and 3D information
is used for overview of the anatomy, usually for radiotherapy or surgical
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Figure 2.13: A magnetic susceptibility artifact caused by an implanted
magnetic dental retention system. From Radiopaedia.

intervention planning. Lower number of slices means faster acquisition
times and lower noise1. Coupled with lower storage requirements, this has
led to usage of anisotropic images in routine clinical practice.

Anisotropy means that voxel’s size is not equal along all three axes,
usually the voxels a larger along the inter-slice axis. In other words, voxels
are longer along inter-slice (Z) axis than along frequency encoding (X) axis
and phase encoding (Y) axis. The voxel’s dimensions are also called voxel
spacings, meaning distances between voxel centers. For routine clinical
acquisitions, the typical in-slice (also called in-plane) voxel dimensions
range from 0.5 millimeters to 1.2 mm. The typical inter-slice distance
ranges between 3 and 4.4 mm, giving voxels an anisotropy factor of about
5-6.

Tissue relaxation times T1 and T2 cannot be measured independently.
There is also a great number of MRI pulse sequences, serving a multitude
of purposes: basic spin-echo, inversion recovery, gradient echo, fat suppres-
sion, etc. Each sequence gives a different appearance (intensity) to tissues.
This gives magnetic resonance imaging a large versatility, however it has
prevented adoption of physical units.

In contrast to unit-less MRI, X-ray computed tomography (CT) has a
well-defined unit, called Hounsfield Unit (HU). HU is a linear scale defined
by two points: radio-density of air is -1000 HU and radio-density of distilled

1Signal to noise ratio increases with the increase of individual voxel’s volume, because
there are more protons in each voxel which give off measurable signals.

http://radiopaedia.org/cases/magnetic-susceptibility-artifact
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water is 0 HU at standard temperature and pressure. Most tissues are in
the range of -100 HU to 100 HU, and bone 700 HU to 3000 HU.

Even though it would be logical to use milliseconds as units at least for
T1-weighted and T2-weighted spin-echo images, this was not standardized.
The absence of units in MRI makes it harder to automate analysis.

2.3 Segmentation Approaches

Image segmentation methods can be classified based on different criteria:
supervised or unsupervised; automatic, semi-automatic or interactive;
working in image space or physical space; parallel or single threaded; based
on a model of a structure of interest; using multi-resolution optimization to
reduce execution time; etc. Whichever criteria is chosen, there are usually
some methods which are not clearly cut into one of the categories. It would
go beyond the scope of this thesis to discuss all existing segmentation
methods. The reader is referred to [SS01] or [PXP00] for a more detailed
overview. Only the most common segmentation methods and the ones
related to this thesis are going to be discussed.

2D images existed before 3D images, and it was natural that 2D measures
and segmentation methods were applied to 3D images. The simplest one
is picking a single best slice for the task, such as the mid-sagittal slice for
spine health assessment or a slice going through the middle of a brain
tumor.

Going from 2D to 3D images also spurred slice by slice processing
known as 2.5D. It is is simpler than full 3D but does not utilize all the
available spatial information.

Most approaches can be implemented both using voxel-based (e.g. bi-
nary masks or level sets [OS88]) and parametric (e.g. polygonal surface)
representations of organs.

Thresholding is a very basic method. The simplest form is to declare all
voxels with intensity above a certain threshold to belong to the object of
interest. Thresholding works better for CT images, e.g. to extract bone.
Thresholding by itself is usually not sufficient, as shown in chapter 3
on page 39. One popular thresholding method is that of Otsu [Ots79],
where the threshold is selected using gray-level histogram to maximize
separability between the resulting classes.
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Region Growing starts with seeds and adds other pixels to these regions
according to some rules – usually how similar is the pixel to the pixels
already in the region. There are many variants of this approach, one of the
oldest is from Adams and Bischof [AB94]. Hoad and Martel [HM02] use
thresholded region growing for segmentation of vertebrae in MR images.

Watersheds derive regions by considering gradient magnitude as a height-
map, each catchment basin corresponding to a region. This method fre-
quently suffers from over-segmentation (producing too many small seg-
ments), thus additional processing is needed. The method was first in-
troduced by Beucher and Lantuéjoul [BL79]. Grau et al. [GMA+04] is an
improved version applied to medical images.

Graph-Cut family of methods represent voxels as nodes of a graph. It
assigns links between nodes based on voxel adjacency, weight of the links
corresponding to similarity of connected voxels. Minimum cut optimization
is employed to split an image into a background and a foreground. This
class of methods gained popularity after Boykov and Kolmogorov [BK04]
introduced a polynomial time algorithm for minimum cut. Many authors
applied this to medical images, one example being Egger et al. [EBK+10].

Deformable Models are model-based and physically motivated methods
that use 2D curves or 3D surfaces which are deformed by internal and
external forces. Internal forces maintain smoothness and model-derived
properties of the surface. External forces pull the surface towards image
features, such as edges. Kass et al. [KWT88] is an early example. The
method described in this thesis uses a deformable model with parametric
surface representation.

Atlas-Based approach, also known as segmentation by registration was
first introduced by Broit [Bro81]. This method revolves around an atlas
image. It is an image with all voxels in it given an organ label, usually
manually. The atlas image is registered with the image under observation.
Then, organ labels from the atlas image are carried over to the image under
observation, making it fully labeled as well.

This works well if the anatomy of the subjects is similar. To account
for greater variability of subjects, multiple atlas images may be employed.
Then the image under observation is registered with the most similar image.
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Alternatively it is registered to all the atlas images and labels are carried
over with different weight depending on registration difficulty.

The atlas-based methods are very resistant to noise. However, they lack
the flexibility in locally tuning the segmentation boundary. Additionally, as
they are heavily dependent on registration, all drawbacks of the registration
method used are present in the overall method, commonly including long
running times. Davatzikos et al. [DLSH02] use this approach.

Shape-Based methods learn shape or appearance of the organ of interest
from co-registered examples. The learned shape model is imposed as a con-
straint during segmentation. Cootes et al.’s active shape models [CTCG95]
allow deformation of the segmentation curve or surface, but only in ways
which are characteristic for the class of shapes they represent. Same group
introduced active appearance models [CET01], which add learning of tex-
tures to the models. Neubert et al. [NFE+12] applied this approach to
vertebral column segmentation.

Interactive methods approach the problem from the side of manual seg-
mentation, keeping the general interaction but trying to cut down segmen-
tation time. They are usually built around quickly-running example driven
segmentation algorithms. The user provides some positive and negative
samples, the algorithm segments the image and the user reviews the result.
In areas where the resulting boundaries are wrong, the user gives new
samples which are added to the initialization set and the algorithm is run
again. This loop is repeated until satisfactory results are obtained. Boykov
and Jolly [BJ01] apply the interactive approach to N-dimensional images,
and also show examples of medical CT and MRI images.

2.4 Measuring Precision

Dice similarity coefficient (DSC) [TG09, ZWB+04] and surface distance er-
ror [CRS98,NFE+12] are the most commonly used measures for correctness
of segmentation in medical imaging.

The Dice similarity coefficient is the relative volume overlap between A
and R, where A and R are the binary masks from the automatic (A) and the
reference (R) segmentation. V(•) is the volume (in cm3 or mm3) of voxels
inside the binary mask, by means of counting the number of voxels, then
multiplying with the voxel size:
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DSC =
2 ·V(A ∩ R)

V(A) + V(R)

Surface distance error is determined by considering points on the seg-
mentation surface A and calculating minimum distance to the reference sur-
face R. The mean µ of all those distances is usually reported (e.g. [NFE+12])
as the most useful measure, but other measures such as root mean square
(RMS) and symmetric maximum distance (Hausdorff distance) also exist.

µ =
1
n

n

∑
i=1

d(pi, R), where d(pi, R) = min d(pi, pk) for ∀pk ∈ R

For detection accuracy, sensitivity and specificity can be used, as exem-
plified by Kelm et al. [KWZ+13]. Sensitivity, or true positive rate (TPR)
and specificity, or true negative rate (TNR) are defined in relation to true
positives (TP), true negatives (TN), false positives (FP) and false negatives
(FN).

Sensitivity = TPR =
TP
P

=
TP

TP + FP

Specificity = TNR =
TN
N

=
TN

TN + FN

2.5 Low-High Values

3D images are frequently visualized using volume rendering [DCH88]
(Fig. 2.14 on the next page). However, a transfer function needs to be
specified. 1D transfer function maps image values into visual properties
(color and opacity). 2D transfer function maps a combination of image
value and a derived attribute into a visual property. Higher dimensional
transfer functions are possible, but unwieldy to specify.

Most volume rendering software uses 1D, and some 2D transfer func-
tions. Gradient magnitude is usually used for the second dimension (the
derived attribute) of the transfer function. The reason for this choice is
that high gradient magnitude signifies a boundary of some kind, and
boundaries are significant for proper content understanding in volume
rendering.

If the image contains a small number of tissues, the 2D histogram on
which the transfer function is specified has an arch structure (Fig. 2.15 on
the facing page). Arches form between spatially adjacent tissues. Arches
can overlap even if the tissues are not spatially adjacent (tissues F1 and



2.5 Low-High Values 23

Figure 2.14: Volume rendered CT chest. Transfer function is aimed at
showing bones.

F2 in Fig. 2.15). It is therefore impossible to visually separate them if the
standard intensity-gradient 2D transfer function is used.

Figure 2.15: An artificial image containing 4 “tissues” with intensities Fi
on the left, and the corresponding 2D histogram on the right. X axis
is image intensity, Y axis is gradient magnitude. © 2006 IEEE. Reused
with permission.

In order to combat that, Šereda et al. [ŠBSG06] introduced LH (low-high)
values. Difference between low and high values indicates proximity to a
boundary. In order to calculate them, vector gradient field is required. For
a given starting position XS, gradient field is traced to a local maximum
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in order to find the high value, and to a local minimum for the low value
(Fig. 2.16).

Figure 2.16: Calculation of L and H values for a voxel at starting position
S. On the left, a path across a smooth boundary following gradient field.
On the right, its intensity profile. X–position, F–image intensity. © 2006
IEEE. Reused with permission.

Figure 2.16 depicts a path which ends in large areas of constant intensity
on both ends. In realistic images, that is rarely the case. All combinations of
cases from Fig. 2.17 occur. In order to keep the computational complexity
reasonable, a local extremum is declared to be found once the gradient
magnitude of the examined point is below some threshold ε.

Figure 2.17: Different types of intensity profiles. Gradient tracing can end
up in (a) large constant areas, (b) local extrema and (c) inflexion points.
© 2006 IEEE. Reused with permission.

Šereda et al. [ŠBSG06] used LH values primarily for visualization, but
they also showed its usefulness with region-growing segmentation. In this
thesis, LH values help estimate boundaries between vertebral body and its
surroundings (Fig. 2.18 on the next page).
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Figure 2.18: Left: low image. Middle: original slice. Right: high image.
Bottom row: closeups. Cross-sections from a healthy volunteer (dataset
DzZ_T1 from Tab. 7.1 on page 102).

2.6 Viola-Jones Object Detector

In 2001, Paul Viola and Micheal Jones introduced an efficient method for
detection of objects in images [VJ01]. Their use-case was detection of human
faces in natural images. The method uses a classifier cascade trained on
positive examples (objects of interest, e.g. faces or vertebral bodies) and
negative examples (background). The classifier cascade is evaluated for all
the rectangles of various scales in an image.

Evaluation is done using a sliding window starting at top-left corner,
which is moved right by one or more pixels in each step. Once the right
edge of the image is reached, the sliding window is moved to the left edge
and one or more pixels down. The sliding is finished once the bottom-right
corner is reached. The window is evaluated once per step. Fig. 2.19 on the
following page shows a single scale pass. Once a single scale detection is
finished, the scale (size of the sliding window) is increased by some factor
e.g. 1.25 (25%). After detection at all the scales is finished, the overlapping
detections are grouped and the largest detection is kept.

The method is efficient because the classifier cascade is designed to
quickly reject background windows (rectangles), and focus processing
power only on promising candidate rectangles. The first classifier is very
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1 2 3 4

1 2 3

Figure 2.19: Sliding window is used to evaluate the cascade classifier at
all positions in the test image.

simple and thus quick to evaluate, but rejects a large number of candidate
(e.g. 50%) rectangles from further processing. The second classifier in the
cascade only processes the candidate rectangles which the first classifier
did not reject (Fig. 2.20), and is also trained only on the rectangles which
the first classifier did not reject. When the last classifier in the cascade does
not reject a rectangle, that rectangle is considered a positive detection (an
object of interest). Each classifier must have a false negative rate close to
zero, i.e. it must not reject a rectangle if it contains an object of interest.

Image
Window
(Square)

+/- +/- +/-+/-
Positive
Response
(Detection)

No No No No

1 2 3 n

Figure 2.20: A cascade of simple classifiers is used to detect whether the
rectangle being evaluated contains a face.

In order to build classifiers for the detection cascade, Viola-Jones detector
uses combinations of simple features 2.21 on the facing page. The detectors
which are in the later stages of the cascade progressively contain more
features, and are thus more costly to evaluate.

Each feature is efficient to evaluate at any scale, because feature response
is the sum of pixels under the black part of the feature minus the sum of
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A B

C D

(a) Feature examples (b) Face with B (c) Face with C (d) Face 32×32

Figure 2.21: Basic features used in classifiers by the Viola-Jones algorithm
(a) and their typical correspondence with features (b, c) of an upright
frontal face (d).

pixels under the white part of the feature. Those sums can be calculated
efficiently using summed area table. Summed area table has the same
number of cells as the image has pixels. Each cell (i,j) contains the sum
of pixels in the rectangle (0,0)-(i,j). Cell 1 contains the sum of all pixels in
rectangle A (Fig. 2.22), cell 2 the sum of all pixels in rectangles A and B, cell
3 contains the sum of all pixels in rectangles A and C. Cell 4 contains the
sum of all 4 rectangles. Thus the sum of pixels in rectangle D is 1+4-(2+3).
Summed area table can be calculated from the image in a single pass.

A

C

B

D

Image

1 2

3 4

Figure 2.22: Summed area table enables calculation of the sum of any rect-
angle within the image with 4 array references and simple operations.

2.7 Medical Background for Brain Tumors

Gliomas are the most common primary brain tumors, whereof 70% are
among the group of malignant gliomas (anaplastic astrocytoma World
Health Organization (WHO) grade III, glioblastoma multiforme WHO
grade IV) [KLS+02]. The glioblastoma multiforme (WHO IV) is one
of the highest malignant human neoplasms. Due to the biological be-
havior, gliomas of WHO grades II to IV can not be cured with surgery
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alone. The multimodal therapeutical concept involves maximum safe resec-
tion followed by radiation and chemotherapy, depending on the patient’s
Karnofsky scale2. The survival rate still only accounts approximately 15
months [KJW+03], despite new technical and medical accomplishments
such as multimodal navigation during microsurgery, stereotactic radiation
or the implementation of alkylating substances. Although there is still a
lack of Class I evidence, literature today favors a maximum extent of tumor
removal in both low grade and high grade gliomas as a positive predictor
for longer patient survival [LASF+01].

Approximately 10-15% of all intracranial neoplasms are sellar tumors.
The most common sellar lesion is the pituitary adenoma [AE98, WZP+07].
The lesions can be classified according to the size or the hormone secretion
(hormone-active and hormone-inactive). Microadenomas are less than 1
cm in diameter, whereas macroadenomas measure more than 1 cm. The
rare giant-adenomas have more than 4 cm in diameter.

Secreted hormones can be cortisol (Cushing’s disease), human growth
hormone (hGH; acromegaly), follicle stimulating hormone (FSH), lutein-
ising hormone (LH), thyroid-stimulating hormone (TSH), prolactine, or a
combination of these. Only for the prolactine-expressing tumors, a pharma-
cological treatment is the initial treatment of choice in form of dopamine
agonists. Treatment is most commonly followed by a decrease of prolac-
tine levels and tumor volume. For acromegaly and Cushing’s disease,
surgery remains the first-line treatment, although somatostatin receptor
analogues or combined dopamine/somatostatin receptor analogues are a
useful second-line therapeutical option for hGH-expressing tumors. Cur-
rent medical therapies for Cushing’s disease primarily focus on the adrenal
blockade of cortisol production, although pasireotide and cabergoline show
promise as pituitary-directed medical therapy for Cushing’s disease.

Thus, not only for the most hormone-active, but also for hormone-inac-
tive macroadenomas with mass-effect, surgery is the treatment of choice,
most possibly via a transsphenoidal approach [BS09]. For hormone-inactive
mircroadenomas (<1cm) there is no need for immediate surgical resection.
The follow-up contains endocrine and ophthalmological evaluation as well
as magnetic resonance imaging (MRI). In case of a continuous tumor vol-
ume progress, microsurgical excision is the treatment of choice. Thus, the
tumor volume should be tracked over the time of the follow-up. Volumetric
assessment of a tumor with manual segmentation of its outlines is a time-

2Karnofsky scale measures health on a 0-100% scale. 0 is death, 100 is “perfect” health,
with standard 10-point steps in-between
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consuming process that can be overcome with the help of computer-assisted
segmentation methods.

The requirements for tumor segmentation can be roughly split into two
differing groups: treatment planning and progress tracking. Treatment
with radiation therapy requires precise tumor boundaries. The same usu-
ally holds for surgery planning, because blood vessels need to be avoided.
In both these cases more time and attention can be devoted to the segmen-
tation process in order to ensure high precision.

Tracking the tumor’s progress over time is usually conducted in order to
determine whether it is growing, stagnating, or perhaps receding. This in-
formation, combined with tumor volume, is used to decide whether to treat
the tumor or wait. For this purpose, ease and speed of the segmentation
process overshadow the segmentation precision.

2.8 Related Work for Tumors in MRI

3D segmentation of brain tumors has a long history, and a large number of
published work deals with it. The arsenal of tools is quite diverse: from
crude geometric models to complex computational methods.

Geometric models use one or several user-defined diameters – which
can be manually achieved very quickly – to calculate the tumor volume.
Briefly, according to the spherical model, the volume is defined as 1/6 πd3

(d is the diameter of the maximum cross-sectional area) and the ellipsoid
model defines volume as 1/6 π abc (a, b, c represent diameters in the three
axes of the tumor) [ISKF+09].

Gibbs et al. [GBBH96] presented a combination of region growing and
morphological edge detection for segmentation of enhancing tumors in
T1 weighted MRI data. Starting with a manually provided first sample of
tumor signal and surrounding tissue, an initial segmentation using pixel
thresholding, morphological opening and closing and fitting to an edge
map is performed. Gibbs et al. have evaluated their procedure with one
phantom dataset and ten clinical datasets. The mean segmentation time
for a tumor was about ten minutes, and they did not exactly classify the
tumors they used for their evaluation.

An interactive method for segmenting full-enhancing, ring-enhancing
and non-enhancing tumors has been presented by Letteboer et al. [LOD+04].
They evaluated their approach with twenty clinical cases. Based on a
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manual tracing of an initial slice, morphological filter operations are applied
to the MRI volume to divide the data in homogenous regions.

A deformable model depending on intensity-based pixel probabilities
for tumoral tissue has been introduced by Droske et al. [DMRS05]. They
used a level set formulation, in order to split the MRI data into regions of
similar image properties for tumor segmentation. The method was then
performed on image data of twelve patients.

Clark et al. [CHG+98] proposed a knowledge-based automated segmen-
tation on multispectral data to partition glioblastomas. After a training
phase with fuzzy C-means classification, clustering analysis and a brain
mask computation, an initial tumor segmentation derived from vectorial
histogram thresholding is post-processed to eliminate non-tumor pixels.
The introduced system has been trained on three MRI volume datasets and
has been tested on thirteen unseen volume datasets.

A segmentation based on outlier detection in T2 weighted MRI data has
been developed by Prastawa et al. [PBHG04]. In order to detect abnormal
tumor regions, the image data is registered on a normal brain atlas. Then,
tumor and edema are isolated by statistical clustering of the differing
voxels and a deformable model. However, they have applied the method
only to three real datasets. For each case, the required time for automatic
segmentation was about 90 minutes.

Sieg et al. [SHP01] have proposed an approach for segmenting contrast-
enhanced, intra-cranial tumors and anatomical structures of registered
multisprectral MRI data. Multilayer feed-forward neural networks with
back-propagation are trained and a pixel-oriented classification is applied.
The approach has been tested on 22 datasets, but the authors did not
provide any computational time.

Egger et al. [EBK+10, EBK+11c, EBK+11b] have introduced a segmen-
tation scheme for spherical objects that creates a directed 3D graph by
sending rays through the surface points of a polyhedron and sampling the
graph’s nodes along every ray. Thereafter, the minimal cost closed set on
the graph is computed via a polynomial time s-t cut [BK04], creating a
segmentation of the tumor non-iteratively. The center of the polyhedron is
defined by the user and located inside the tumor.

Neubauer et al. [NWF+05] and Wolfsberger et al. [WNB+06] introduce
STEPS, a virtual endoscopy system designed to aid surgery of pituitary tu-
mors relying on both CT and MR images. STEPS uses a semi-automatic seg-
mentation method that is based on the so-called watershed-from-markers
technique. The watershed-from-markers technique uses manually defined
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markers in the object of interest and the background. A memory efficient
and fast implementation of the watershed-from-markers algorithm – also
extended to 3D – has been developed by Felkel et al. [FBW01].

For a comprehensive overview of some deterministic and statistical
approaches see the review of Angelini et al. [ACM+07].

2.9 Motivation for Spine Segmentation

Lower back pain for adults is rather common and its prevalence is ris-
ing [FHA+09]. The most common causes involve spinal cord, such as
narrowing (stenosis) of the spinal canal, and that has been well inves-
tigated [HRSE+00]. For diseases involving the vertebrae, 2D X-ray is
frequently used for screening, but the effective diagnosis is made based
on Computed Tomography (CT) or Magnetic Resonance Image (MRI). The
cancer risk from radiation exposure in CT imaging makes MRI preferable in
the clinical routine [RGMB10]. Furthermore, 2D X-ray and CT cannot reveal
all pathologies [APR+85] due to low sensitivity of soft tissues. Therefore,
the usage of MRI is sometimes diagnostically required.

Most 3D segmentation approaches focus on CT datasets only, such
as [KOE+09, ML13]. However, these methods rarely transfer to MRI be-
cause of additional challenges. Routine MRI has a lower and strongly
anisotropic resolution. Unlike CT’s Hounsfield unit (HU), MRI does not
have standardized units of measurement. In spine CT, bone edges are
the only high-intensity edges. In MRI there are strong edges between
many tissue types including edges within vertebral bodies, e.g. Fig. 7.6 on
page 115. MRI also has a non-homogeneous intensity across the image, e.g.
the central region has higher intensity and better contrast than the marginal
areas. Lastly, MRI has many different parameters which can be changed to
emphasize different tissues, resulting in many different scanning sequences
which sometimes produce radically different image intensities. All these
facts are detrimental to the automation of segmentation procedures for
MRI datasets.

Spinous processes are poorly seen on MR images of low inter-slice
resolution, which are the routine in clinical practice. Also, transverse
processes are usually not seen at all because they are outside of the routine
acquisition volume (Fig. 2.23 on the next page). Therefore, focus is on the
segmentation of vertebral bodies instead of the whole vertebrae.
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(a) Case_2 slice 100 (b) Case_2 slice 113 (c) Ble s.
200

Figure 2.23: Axial cross-sections of L3 vertebra from a non-routine special-
ized scan and a routine sagittal scan (see Tab 7.2 on page 103 for details).
Spinous process (a) and transverse processes (b) can easily be seen in this
non-standard dataset. In the routine dataset (c) the transverse processes
are largely outside of acquisition volume. Moreover it is hard to discern
anything except the vertebral body.

In this thesis focus is on a segmentation system of practical clinical
usefulness. This kind of system is required to work on a large variety of
routine clinical datasets containing pathologies. It has to be reasonably
fast and should not require cumbersome initialization or other manual
intervention. Finally, it must support diagnosis of diseases of interest.

There were plenty of segmentation methods for vertebrae in CT images,
that is easier to do due to high intensity boundaries between cortical bone
and surrounding soft tissue. At the time when I started this research
only two methods for segmenting vertebrae in MRI were published, which
provided an incentive to work on this problem.

2.10 Spine Related Work

Much research has already been done on spine segmentation. There is a
large number of 2D methods due to its relative simplicity and low com-
putational requirements [MCP+09, SSQW07, HCLN09, PZWhL05, CGBM04,
EKD+12]. 2D segmentation approaches are mostly applied to manually
identified, best suitable cross-sections.
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As 2D approaches process individual slices they can miss important
information, such as a curvature or a positional shift in the anatomical
left-right direction, so 3D approaches are preferable.

Most 3D approaches focus exclusively on computed tomography (CT)
datasets. Only some of the CT-focused prior work is mentioned here.

Besides 2D/3D distinction, i.e. methods which work on only single
slices vs. the whole volume, we can also classify methods according to the
type of influence a segmentation of one vertebra has on the other vertebrae:

• Independent segmentation of each vertebra or vertebral body. Used
by [ŠVPL11, APM+12, WKL+01, HM02, CGBM04, MCP+09]

• Top-down approach, where general spine shape and position is de-
termined first, and then individual vertebrae are segmented. Used
by [DLSH02,NFS+11,SSQW07,PZWhL05,YOS06,GS04,KWL+08] and
the version presented in chapter 6 on page 83

• Bottom-up approach, where the global spine shape is built up from
segmented vertebrae. Besides segmentation system versions pre-
sented in chapters 4 on page 55 and 5 on page 75 only [HCLN09],
describing a 2D method, partially fits into this category.

2.10.1 Computed Tomography

Weese et al. [WKL+01] use a polygonal vertebra model and manual ini-
tialization. They use an iterative deformable surface model with explicit
internal and external energy. Internal energy reflects statistical shape and
distribution of mesh vertices, and external energy relies on image gradients.
In each iteration method performs a surface detection step and a mesh
reconfiguration step. The authors report 0.93 mm as the mean segmentation
error and 30 seconds execution time.

Yao et al. [YOS06] focus on routine chest and abdominal CT images. The
spinal canal is extracted using a watershed algorithm and directed acyclic
graph search. The vertebrae are segmented by using a four-part vertebra
model. The spinal column was correctly partitioned in 67 out of 69 cases.
No execution time is reported.

Ghebreab and Smeulders [GS04] use manual initialization for first verte-
bra and global spine shape. They use B-spline surfaces with 12x12 control
points for surface representation. Statistical spine shape is used for initializ-
ing segmentation of an adjacent vertebra. The mean shape of four different
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lumber vertebrae are independently constructed. The method was tested
on 6 CT images, but execution time and precision were not given.

Klinder et al. [KWL+08] initialize the global spine position by an auto-
mated rib cage segmentation method. A statistical constellation model for
vertebrae is applied on a global scale to obtain an approximate position
of individual vertebrae. Local adaptations of each vertebra are similar
to [WKL+01]. The method was evaluated on 10 thoracic CT datasets. The
segmentation error was 1.0±0.3 (µ± σ) mm, but execution time was not
given.

Klinder et al. further improve their system in [KOE+09]. They used
generalized Hough transform (GHT) to bypass a rib cage segmentation and
get the vertebral foramen points directly. They also provide vertebra labels.
Profound prior knowledge is applied through the use of various kinds of
models covering shape, gradient, and appearance information. They tested
this method on 64 CT images, most of them including pathologies. In 56
cases the vertebrae were labeled correctly resulting in a final mean point-
to-surface segmentation error of 1.12±1.04 mm. They aimed for maximum
reliability, so their overall computation time was about half an hour.

Ma and Lu’s method [ML13] is based on learned bone-structure edge
detectors and a coarse-to-fine deformable surface model in order to segment
and identify vertebrae in 3D CT thoracic images. They employ learned
statistical shape models for 12 thoracic vertebrae. This algorithm performs
successfully with reliable mean point-to-surface errors 0.95±0.91 mm on 40
volumes. They also applied vertebra labeling with 73% success rate. They
do not state execution time.

3D approaches mostly rely on user initialization. However, to extract
the approximate spine position, Yao et al. [YOS06] use Hounsfield values
and Klinder et al. [KOE+09] have a completely automatic method. Ma
and Lu [ML13] can use either completely manual or completely automatic
method.

2.10.2 Magnetic Resonance Imaging

At the time of writing this thesis only five prior fully 3D segmentation
methods are available for MRI: Hoad and Martel [HM02], Davatzikos et
al. [DLSH02], Štern et al. [ŠLPV11], Ayed et al. [APM+12], and Neubert et
al. [NFS+11, NFE+12]. Some further methods are concerned with detection
only [RET13, KWZ+13, SMB11] and could be plugged into the system
described in chapter 6 on page 83 replacing the initial vertebra detection.
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Kelm et al. [KWZ+13] optionally do segmentation of intervertebral disks,
but report neither precision nor running time.

Hoad and Martel [HM02] have developed a segmentation algorithm
that combines thresholded region-growing with morphological filtering
and masking using predefined shapes. Their algorithm is manually ini-
tialized by one or two ellipses per vertebra, and can be split into three
steps: segmentation of the vertebral bodies, segmentation of the posterior
structures, and lastly manual corrections. Their datasets have isotropic
voxels (1× 1× 1 mm3), and they combined two images of a double echo
FISP acquisition sequence. Overall, it is a method suited to assist spine
surgery, using images quite different from routinely acquired ones. They
tested their method on 30 vertebrae. The surface registration error for
vertebral bodies was 1.25mm±0.28mm. They also calculated average per-
centage of “good” points to be 79.4%, with 3 rejected registrations out of
30 experiments. Running time of their algorithmic part was 5-10 minutes
(not counting the manual steps).

Davatzikos et al. [DLSH02], with a long line of research in hierarchical
deformable models [SHD01], were mainly interested in the registration
of different spine images to a manually segmented template image. An
isosurface was extracted from this template image resulting in 837 vertices
(vertebral bodies L1 to S1 and a corresponding portion of the spinal canal).
This deformable model was trained on 13 additional images. In order
to determine the transformation which registers a test image with the
template image, the surface model is manually placed in the test image
overlapping the true position of the spine segment in the test image, and
hierarchically deformed to conform to the edges of the test image. The
transformation between the stereotaxic space of the template image and
space of the test image is used to determine the correlation between the
patient symptoms and lesions visible in the image. The evaluation was done
using the leave-one-out method on routine images (0.93× 0.93× 3 mm3) of
healthy volunteers. The average overlap was 81.5%±3.6%. They require
only one initialization per dataset but do not state the execution time.

Štern et al. [ŠLPV11] perform the segmentation by optimizing 29 param-
eters of a 3D deterministic model of the vertebral body. They maximized
dissimilarity between inside and outside intensities, and steered their
method by image gradients. The method is initialized with one point per
vertebra and an accompanying size, depending on the anatomical posi-
tion, i.e. upper thoracic, lower thoracic or lumbar. They evaluated their
method on 75 vertebral bodies from nine T2-weighted images. Three of
their images were of a routine type (0.4× 0.4× 3 mm3), the others were
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isotropic (1× 1× 1 mm3). The mean radial Euclidean distance between
the segmentation surface and ground truth points was 1.85mm±0.47mm.
Performing the algorithm takes 1-15 minutes per vertebra.

Ayed et al. [APM+12] formulate segmentation as a distribution-matching
problem. They split it into a series of sub-problems, each of which can be
solved via a convex relaxation and the augmented Lagrangian method. This
results in a parallel method, and they implement CPU and GPU variants.
They used T2-weighted MR images of the lumbar spine. They evaluated
their results only on 2D mid-sagittal slices, where they reach 85% DSC – a
precision which corresponds to 78% for the 3D case. The GPU variant runs
for 3 minutes, and the CPU variant for 75 minutes.

Neubert et al. [NFS+11, NFE+12] localize 3D spine curve and extract ap-
proximate positions of vertebral bodies using active rectangles. This serves
as initialization for segmentation using active shape models with shape
deformation using gray level models. Vertebral bodies and intervertebral
discs are segmented. They use a high resolution SPACE MRI sequence with
in-plane pixel size of 0.34× 0.34 mm2 and slice thickness of 1− 1.2 mm.
They used 14 healthy volunteers with 132 vertebral bodies for quantitative
evaluation. They achieve 91% DSC, 0.67mm mean absolute shape distance
and 4.08mm Hausdorff distance. They also classified intervertebral discs
into degenerate and healthy classes. Their method takes an average of 35
minutes per vertebra [NFE+12], not counting some 3 minutes spent on
intensity normalization per dataset. The method is completely automatic.
This means that the user has no chance to correct mis-detections, and this
is especially important if running time (5h) is taken into account.

Kelm et al. [KWZ+13] present a method for detection and labeling
of inter-vertebral disks. They combine marginal space learning (MSL)
with a generative anatomical network which incorporates relative pose
information for the detection of multiple objects. They present an efficient
iterative MSL which enables examination of many candidates by the learned
anatomical prior enabling detection of position, orientation and scale with
high sensitivity. They trained their method on 42 MR and 30 CT images.
Whole spine MR images are processed in 11.5 seconds on a dual-core
laptop. Their detection achieves a 98.6% sensitivity.

A representative general segmentation method (not specific to MRI or
vertebral column) with open source code is useful for comparison purposes.
Coupre et al. [CGNT09] present one such method. They extend a framework
for seeded image segmentation, which includes graph cuts, random walker
and shortest path optimization. They represent an image as a weighted
graph between pixels, and unify the three algorithms with a common
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energy function. This allows them to include optimal spanning forest for
watersheds. They propose a new family of segmentation algorithms which
they call power watersheds.

2.11 Fine-Grained System Overview

All four segmentation systems, i.e. the brain tumor segmentation and the
three versions of spine segmentation, can roughly fit into the generalized
processing workflow shown in Fig. 1.3 on page 4.

From Fig. 3.1 on page 39 it is visible that the tumor segmentation work-
flow matches the generalized workflow well, with pre-processing replaced
by manual initialization and diagnosis by tumor volume calculation. The
corresponding chapter 3 on page 39 centers on the introduction of the
basic polyhedron inflation algorithm. The algorithm starts with a small
triangular polyhedron and expands it by moving the vertices outwards
until a boundary is reached.

Segmentation of a series of spinal vertebrae is principally more com-
plicated - the vertebral bodies are treated as a chain of individual objects
in chapter 4 on page 55. Segmentation of individual vertebrae is an im-
proved version of the segmentation algorithm from chapter 3. The main
improvements come from the usage of Low-High images and constrained
subdivision hierarchies.

In order to predict position of the next vertebral body in the chain,
vertebra’s main axis is used. Face merging is used to reduce vertebral body
to a disk-like shape from which “flat” sides are detected thus establishing
its “axis”. The axis points towards adjacent vertebral bodies. Reliance on
this axis frees the user from additional manual initializations.

Chapter 5 on page 75 retains the overall structure. The major improve-
ment is the usage of the multi-feature boundary estimation approach,
instead of the binarized boundary which is employed in chapter 4. The mi-
nor improvement is the usage of the iterative closest points (ICP) algorithm
for axis determination.

The final version of the segmentation system is described in chapter 6
on page 83. The major improvement is the detection of all vertebrae
using the Viola-Jones algorithm before the actual segmentation is started,
which enables parallel feature calculation and vertebral body segmentation.
Finally, the detection of all vertebrae makes the diagnostic analysis at the
end reliable.





Chapter 3

Segmentation of Brain Tumors

As the spine consists of multiple vertebrae (a constellation of objects), it is
not easy to segment it. Therefore the single-object segmentation system
was first realized and evaluated for the case of brain tumors.

This chapter introduces a simple segmentation system using balloon
inflation. It is tested on two types of brain tumors. The results have
been published in two stand-alone papers [ZEB+10, ZEB+11] and two
comparison papers [EZB+10, EZF+13]. The system introduced in this
chapter is expanded and improved upon by chapter 4 on page 55.

The system is initialized by an approximate outline of the tumor. The
boundary is implicitly binarized by the inflation rules, based on the mini-
mum and maximum intensity from the initialization step. The segmentation
boundary is represented as a triangle mesh and stored using a quad-edge
data structure [GS83]. Star-shape and smoothness constraints are main-
tained during iterative inflation process. After the segmentation is finished,
the tumor volume is calculated.

3.1 Outline Initialization

DICOM Outline
initialization

Inflation
Segmentation

Tumor
volume

Scanner

Figure 3.1: Overview of the tumor segmentation system.
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The overall system relies on user initialization (Fig. 3.1 on the previous
page). The user draws an approximate outline within vertebral body on a
slice that is approximately located central to the tumor (Fig. 3.2). From this
initialization, the following information is extracted:

1. Estimated center of the tumor. Two coordinates are extracted from the
center of the outlined object (center of area), and the third coordinate
is the index of the selected slice.

2. By analyzing pixel intensities in the selected slice, the minimum and
maximum intensities of voxels of interest is determined. Here, the
few highest and lowest percent are ignored in order to account for
noise.

3. The average distance from the center to the boundary (radius) is
determined. The “radius” is a dimensionally invariant measure – it
is the same in 2D (slice) and 3D (whole volume), e.g. the radius of a
circle is equal to the radius of the sphere made by rotating that circle
around its diameter. Some complications of image anisotropy are
avoided by usage of this radius.

(a) Dataset m1_ls (glioma), slice 94 (b) Dataset Ame (adenoma), slice 6

Figure 3.2: User initialization of a tumor boundary (yellow contour).
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3.2 Constraint-Enforcing Inflation

The main idea is to start with a small triangular surface mesh in the
shape of a convex polyhedron at the approximate center of the tumor.
Balloon inflation forces [Coh91] are used to expand this mesh, keeping it
approximately star-shaped. The aim is not to inflate beyond the tumor
boundary. The overview of the algorithm is shown in Fig. 3.3.

To resolve ambiguities in the data, some constraints are needed. The first
one is smoothness of the tumor surface. Soft biological tissues, including
tumors, do not have jagged edges.

The second constraint is absence of self-intersections of the tumor sur-
face, because they make no sense physically and are computationally
inefficient. This constraint is fulfilled by approximately maintaining an
even stricter constraint: star-shape (Fig. 3.8 on page 44). Star-shape is com-
putationally efficient to maintain and it prevents self-intersections, but it
also prevents segmentation of all imaginable shapes of tumors. As tumors
rarely, if ever, have an exotic topology or geometry (they are mostly shaped
similar to a potato) this is not a severe restriction.

Additionally, vertex movability rule is application specific, i.e. different
for glioma and adenoma.

minF&Fmax
intensities

ComputeFperFvertex
normalsF&Fcurvatures

MoveFvertices
outwards

Refine
mesh

LoadFinitial
cubeFmesh

Smooth
mesh

Recalculate
center

SizeF/FIterations?

Finished

Figure 3.3: Overview of the inflation loop. The dotted block represents
image intensity information collected from the user’s outline initializa-
tion. Cube was chosen as initial mesh due to relative regularity of it
subdivision compared to tetrahedron.

Mesh refinement is needed to keep the edge length comparable to the
voxel size and to prevent long, thin triangles. This is ensured by splitting the
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edges which are 3 times longer than the average voxel spacing (geometrical
mean of spacing in X, Y and Z direction).

The computation of vertex normals�n and curvature estimates G (Fig. 3.4)
is required before the vertex repositioning step. Immediately afterwards
the center of the polyhedron is recalculated (Fig. 3.5). Vertex normals
are averages of incident triangle normals weighted by the incident angle:
�n = ∑i �ni ∗ αi

(a) Icosahedron (b) Arbitrary shape

Figure 3.4: Angle deficit approximation of Gaussian curvature G = 2π −
∑ αi. The sum of all incident angles of a vertex is close to 360◦ in low
curvature regions. The angle deficit (sum<360◦) signals a protruding
vertex.

Figure 3.5: Because vertices are usually not evenly inflated, the polyhedron
center needs to be recalculated after each iteration.

The segmentation is finished when the segmentation converges to some
position through slowdown and the maximum number of iterations is
reached or the center-surface distance (radius) reaches the user-initialized
“radius”.



3.2 Constraint-Enforcing Inflation 43

c - center

Vertex - v

nv dcv
φ

curvature

(a) Before movement

c - center

Vertex - v

dcv

pos=oldpos+d    ·factorcv

(b) After movement

Figure 3.6: Vertex movement.

The vertex repositioning (inflation) consists of doing the following 3
steps for each vertex:

1. Calculate the cosine of the angle ϕ between center-vertex vector ~dcv

and surface normal vector ~nv at the given vertex (Fig. 3.6). The greater
the angle, the lower the inflation speed (Fig. 3.7 on the following
page). While the surface is still nearly spherical, i.e. at the start of the
inflation process, the inflation speed is higher and thus the surface
reaches the boundary area faster.

2. Calculate the move-speed factor. The higher the curvature, the lower
the inflation speed, thus the inflation speed is slowed down for ver-
tices on ridges, valleys and peaks. This approach implicitly stimulates
smoothness by taking into account the curvature estimate of the
vertices.

3. If a vertex can be moved (depending on image intensity) it is moved
in the direction of center-vertex vector, thus maintaining star shape
(Fig. 3.8 on the next page). The rules about which vertices can be
moved need to be adopted to the specific segmentation task. The
vertex movability is described in section 3.2.1 on the following page
for the glioma and in section 3.2.2 on page 45 for the adenoma.

The displacement amount is adjusted by inflation speed factors
(Fig. 3.6): | ~dcv| = Sxyz · cosϕ · 1

max(1,|G|) , G - Gaussian curvature and
Sxyz - average spacing along x,y and z axes.

Smoothing the surface of the polyhedron slightly is required to overcome
noisy voxels, which would otherwise prevent inflation of the mesh beyond
them, even if they are in the middle of the tumor. We also know that the
surface of the tumor is smooth and not jaggy.



44 Chapter 3. Segmentation of Brain Tumors

Figure 3.7: If the angle (ϕ) between the mesh normal at the given vertex
(~nv) and the radial vector ( ~dcv) is close to 90◦ it makes little sense to move
that vertex. Such a movement would not inflate the mesh, it would only
disturb the surface density of the vertices.

Figure 3.8: Concave but star-shaped (star-convex): there exists a point
inside the shape (center) to which all the other points of the shape can
be connected by straight line segments lying entirely within the shape.

Convergence condition is approximated by slowed inflation speed com-
bined with a limited number of iterations. Additional stopping safeguard
is that the “radius” is smaller than 150% of user initialized radius.

3.2.1 Glioma Movability Rule

Gliomas are usually imaged with contrast agent applied, which enhances
the boundary (metabolically active tumor areas are bright). This is exploited
by the vertex movability rule used in step 3 of vertex repositioning.

The vertex can be moved if the target position (current position + dis-
placement outwards) has an intensity value within the initialized range of
interest (range of values within the user initialized boundary). Additionally,
the target intensity has to be higher than 80% of the maximum intensity this
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vertex has encountered so far. This additional condition prevents inflation
once the high-intensity boundary region has been passed.

The “life”, i.e. the temporal evolution of a single vertex through the
iterations of a glioma segmentation is shown in Fig. 3.9. The vertex is
moved outwards by a small amount in every iteration until iteration 9
when it hits a low-intensity voxel. In iterations 10-14 this vertex is pulled
forward by neighboring vertices through smoothing. As the vertex is pulled
forward, its target position for inflation is also moved, and due to trilinear
interpolation the target position’s intensity is also increased. Eventually in
iteration 15 the vertex continues inflation normally.
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Figure 3.9: Life of a single vertex through the iterations of a glioma seg-
mentation.

3.2.2 Adenoma Movability Rule

Pituitary adenomas are usually imaged without a contrast agent, which
means that their boundary is not enhanced. However, their tissue intensity
is more homogenous so tracking of the maximum encountered intensity is
not required.

The vertex can be moved only if the destination voxel has an intensity
value inside the range of interest (contents of the user-drawn boundary).
This rule favors boundaries with lower intensity surrounding tissues, which
is more common than higher intensity surrounding tissue.
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3.3 Results

The presented system was realized in C++ and the automatic segmentation
took about one second per dataset. It takes about 30 seconds including the
time it takes to locate the file, draw an outline, execute segmentation and
extract a marching cubes isosurface. These measurements were taken on an
Intel Core i7-920 CPU (2.66 GHz) with a GeForce 8800GTX graphics card on
Windows7 x64. Note that the increase of the image region size unrelated to
the tumor, e.g. when scanning the entire head instead of only the segment
that contains the tumor, does not affect the segmentation speed.

3.3.1 Glioma

To evaluate the system, neurological surgeons with several years of experi-
ence in the resection of tumors performed manual slice-by-slice segmenta-
tion of 27 WHO grade IV gliomas. The tumor outlines for the segmentation
were displayed by the contrast-enhancing areas in T1 weighted MR images.
Afterwards, the segmentation results were compared with the segmen-
tation results of the proposed system via the Dice Similarity Coefficient
(DSC) [SWM+06, ZWB+04].

The average DSC for all datasets was 80.8% (see Tab. 3.1 on the facing
page).

(a) Sagittal cross-section (b) 3D view

Figure 3.10: Automatic segmentation result, dataset m1_hm.
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Dataset Tumor volume (mm3) DSC (%) Time (min)
Manual Automatic

m1_ag 1489.0 771.4 63.7 4
m1_cpa 3435.1 2441.8 73.6 5
m1_ek 10871.2 7956.3 80.2 11
m1_gkl 2164.5 2111.0 78.6 7
m1_hm 39598.7 36638.8 80.1 9
m1_ls 29513.7 26365.4 89.2 19
m1_mg 43507.7 33460.6 83.9 6
m1_mj 73452.5 73316.6 91.3 16
m1_ns 1631.3 1811.7 81.5 3
m1_sm 3226.7 2043.5 75.6 4
m1_td 9221.9 9888.4 77.7 10
m1_vm 1526.0 2465.0 73.8 3
m2_dg 31264.8 36891.6 88.3 14
m2_gg 57839.6 57318.9 88.0 6
m2_lg 785.6 1465.2 85.4 4
m2_mk 22985.1 32095.3 76.5 3
m2_sk 24326.0 25772.6 89.2 7
m3_vd 49886.1 40481.3 85.8 10
m3_war 36390.0 45843.0 94.0 7
m3_wg 29715.8 28882.2 68.6 7
m3_wi 23276.0 16183.4 79.3 6
m3_wj 23080.5 16176.9 81.1 5
m3_wn 8405.4 4844.5 80.7 3
m3_wpe 7832.1 4656.6 82.5 4
m3_wr 16259.7 16585.6 89.5 4
m3_zg 22607.0 14767.0 73.2 5
m3_zn 10036.4 5398.2 70.0 5
Mean 21641.8 20245.7 80.8 6.9
Std. deviation 19156.1 19275.0 7.5 4.1
Minimum 785.6 771.4 63.7 3
Maximum 73452.5 73316.6 94.0 19

Table 3.1: Segmentation accuracy and manual segmentation times (in
minutes) for 27 gliomas.
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(a) Dataset m1_mj, slice 66 (b) Dataset m1_ls, slice 88

Figure 3.11: Automatic segmentation result for two glioma datasets.

(a) Original, slice 62 (b) Manual segmentation (c) Automatic result

(d) Original, slice 68 (e) Manual segmentation (f) Automatic result

Figure 3.12: Comparative results for glioma dataset m3_wr.
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Figures 3.10 on page 46 and 3.11 on the facing page show segmentation
results of the presented system. Fig. 3.12 on the preceding page presents a
direct comparison of two manual and automatically segmented MRI slices.

Table 3.2 and Fig. 3.13 on the next page present the segmentation results
for different user initializations for a selected dataset (m3_wr). The values
belong to a tumor that was located in a MRI dataset between slice number
42 and slice number 73 (center slice for the tumor: 57/58). As can be seen,
the Dice Similarity Coefficient decreases if the user draws the initial contour
on a slice that is located near the border of the tumor. However, if the user
selects one of the slices around the tumor center (55-60), the resulting DSC
is over 80%. So, there is a certain robustness of the presented system if
the user does not select a slice that is located too far away from the tumor
center. Even when the user initialization was varied on one slice (slice 64),
the following robust DSC results were obtained: 82.03%, 85.76%, 80.65%,
84.68% and 82.47%.

Slice Tumor volume (mm3) DSC (%)
Manual Algorithm

45 16259.7 2532.9 21.7
50 16259.7 9568.3 62.7
55 16259.7 15636.4 82.8
56 16259.7 16625.9 82.9
57 16259.7 15768.7 84.3
58 16259.7 18457.6 84.9
59 16259.7 19005.9 85.4
60 16259.7 18441.8 86.7
61 16259.7 20612.1 82.7
62 16259.7 21294.2 82.4
63 16259.7 18321.6 76.8
64 16259.7 18236.4 80.7
65 16259.7 20758.3 76.7
70 16259.7 6714.6 35.4

Table 3.2: Glioma segmentation results for different user initializations on
dataset m3_wr.

Comparing with other methods is not straightforward. Gibbs et
al. [GBBH96] do not report DSC or distance errors, they only report calcu-
lated tumor volume.

The automatic method of Prastawa et al. [PBHG04] also reaches overlap
of around 70-80%, but they modeled tumor and edema (swelling) separately.
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Figure 3.13: Dice Similarity Coefficient results for different user initializa-
tions on glioma dataset m3_wr. The lower tumor boundary for this
dataset was slice number 42 and the upper tumor boundary was slice
number 73.

Therefore, their method cannot be directly compared to the one presented
here.

Clark et al. [CHG+98] did not report DSC, but it can be calculated from
their “Table V” as:

DSC =
2× TP

2× TP + FP + FN

They have an average DSC of 77.2%, which is slightly worse than obtained
here (80.8%).

Egger’s method [EZB+10] has a 2% better DSC on the same datasets,
but also takes five times longer to execute. Given that the execution time is
still only a few seconds, it can be said that his method is quite similar to
the one presented here in terms of precision and performance.

3.3.2 Adenoma

The pituitary adenoma case was evaluated on ten cases manually seg-
mented by neurosurgeons (Tab. 3.3 on the facing page). The average DSC
for all datasets was 75.92%±7.24% (minimum 63.74 and maximum 86.08,
see Tab. 3.4 on the next page for details).

Fig. 3.14 on page 52 shows the user initialization (yellow outline) that
have been superimposed onto a slice of the magnetic resonance image
and the corresponding segmentation result. The segmentation results for
the remaining 9 pituitary adenoma datasets are presented in Fig. 3.15,
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Dataset Image size Voxel size (mm) Sequence View
X Y Z X Y Z

Wei 448 512 25 0.45 0.45 6 T1-TRA SE axial
Zon 256 256 160 0.98 0.98 1 T1-TRA SE axial
Aff 512 512 80 0.59 0.59 2 T2-TSE axial
Zin 416 512 25 0.45 0.45 6 T1-TRA SE axial
Ame 416 512 13 0.53 0.53 3.3 T1-SE sagittal
Lip 416 512 13 0.53 0.53 3.3 T1-SE sagittal
Men 384 512 13 0.49 0.49 3.3 T1-SE coronal
Tzi 512 512 19 0.45 0.45 3 T2-TSE coronal
Akd 416 512 13 0.53 0.53 3.3 T1-SE sagittal
Lam 416 512 13 0.53 0.53 3.3 T1-SE sagittal

Table 3.3: Information about pituitary adenoma datasets.

Dataset Volume of tumor (mm3) DSC (%) Time
Manual Automatic

Wei 6712.99 3484.46 63.74 4
Zon 4183.5 3282.92 80.9 3
Aff 7023.36 5620.09 77.76 5
Zin 5608.68 4316.91 71.6 3
Ame 2801.45 1825.35 75.55 4
Lip 9874.37 8149.63 86.08 4
Men 5573.5 3111.54 65.72 4
Tzi 4811.49 3430.79 78.77 4
Akd 15567 13049.8 83.74 4
Lam 843.383 597.16 75.35 4
Mean 6300.0 4686.9 75.9 3.9
Std Dev 4069.7 3579.7 7.2 0.6
Min 843.4 597.2 63.7 3.0
Max 15567.0 13049.8 86.1 5.0

Table 3.4: Segmentation accuracy and manual segmentation times (in
minutes) for 10 adenomas.
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by visualizing them as a three-dimensional closed surface model (yellow)
faded into the corresponding MRI dataset.

(a) Initialization contour (b) Segmentation result

Figure 3.14: Initialization contour and automatic segmentation result for
dataset Ame.

Comparing with Egger’s method [EZF+13], 2% lower DSC can be jus-
tified by higher execution speed, but both differences can be considered
negligible.
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(a) Wei (b) Zon (c) Aff

(d) Zin (e) Lip (f) Men

(g) Tzi (h) Akd (i) Lam

Figure 3.15: Automatic segmentation results for 9 adenoma datasets.
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3.4 Conclusion

For an accurate estimate of tumor volume it is necessary to develop systems
– like the one introduced in this chapter – that use all slices to calculate the
tumor boundaries. Simpler methods like geometric models provide only a
rough approximation of the tumor volume and should not be used, as an
accurate determination of the size is of paramount importance in order to
draw safe conclusions in oncology.

In conclusion, the proposed system can be used to augment the manual
segmentation for the purpose of tumor progress tracking. It imposes no
special pre-processing requirements, executes very quickly on modern
hardware, its initialization is easy, intuitive and robust, and it provides
decent results.

But, of course, there are drawbacks. For this system gaps in contrast
enhanced boundary and very inhomogeneous tumor interior are problem-
atic, leading to inferior DSC results. Thus, the system is not suitable for
treatment planning. For the case of brain tumors, better segmentation
methods exist, such as that of Prastawa, even though they require longer
processing time.

There are also areas of possible improvement. For example, some
parameter specifications of the proposed system can be reduced in order to
exchange the contour initialization with a single user-defined seed point
that is placed in the object of interest. Moreover true convergence does not
exist – it is approximated by a limited number of steps coupled with slow
inflation speed after the boundary is reached.



Chapter 4

Basic Segmentation of
Vertebral Bodies

In this chapter a 3D bottom-up system in detecting vertebral bodies is
presented, which relies on the segmented vertebra shape to predict the
global spine shape. A subdivision surface hierarchy is introduced as an
efficient global-to-local smoothness constraint which can be thought of as
an internal force. Low-High (LH) values are also used to ease boundary
classification. This system is very fast (3-4 seconds) and achieves around
70%-75% Dice similarity coefficient (DSC) for thoracic and lumbar datasets.

This chapter builds upon the system presented in the previous chapter.
Compared to that algorithm:

• Outline initialization is the same

• The implicit binary boundary and inflation are improved by usage of
LH images

• The inflation process can optionally use a constrained subdivision
hierarchy

• New algorithms are added to manage an array of segmented objects,
in order to free the human operator from initializing every vertebra
separately

The overall structure introduced in this chapter is also kept in the
next chapter, with improvements to individual building blocks such as
boundary estimation and inflation. This chapter, together with the next
one, is published in one paper [ZVD+12].

55
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4.1 Overview
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(a) High-level block diagram of the system. Yellow - user
interaction and initialization. Red - segmentation by
inflation. Green - axis estimation. Blue - center dis-
tance calculation. Cyan - correctness and termination
checks.
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(b) Possible order of seg-
mentation of vertebral
bodies in a dataset. Yel-
low - initialized verte-
bra. Green - first ad-
jacent vertebra whose
center distance to the
initialized center needs
to be guessed. Blue -
other vertebrae, whose
center distance can be es-
timated well.

Figure 4.1: Overview of the segmentation steps.

In many clinical applications, a fast and accurate method for spine
segmentation in routine magnetic resonance images is required. Thus, the
goal of the system presented here is to provide a fast 3D technique for
semi-automatic vertebral body segmentation, which is applicable to a wide
variety of MRI datasets. In general, the MRI spine datasets are acquired
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as sagittal slices (see Fig. 4.2). Further details are given in section 7.2 on
page 101.

Figure 4.2: Cross-sections of a typical dataset. Top left: sagittal (XY).
Top right: coronal (YZ). Bottom: axial (XZ). Yellow lines indicate po-
sitions of other the two cross-sections. The voxel size of this image is
0.625mm×0.625mm×4.4mm (X×Y×Z), i.e. the lateral resolution is 7
times lower than vertical and horizontal resolution.

The block diagram of the overall system is shown in Fig. 4.1a on the
preceding page. The major steps are:

1. Use the user provided initialization to find the minimum and max-
imum intensities of the vertebral body tissue and determine the
approximate center.

2. Segment the first vertebral body.
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3. Determine the spinal axis deduced from the shape of the first vertebral
body (which is roughly of cylindrical shape) and estimate the center
position of an adjacent vertebral body.

4. Segment the second vertebral body. If this segmentation fails the
plausibility check, go to step 3 with modified estimation parameters.

5. With two (or more) segmented vertebral bodies, use the axis of the
last vertebra and both centers to estimate the position of the next
center.

6. Continue the segmentation process in this direction by segmenting,
determining the spinal axes and estimating the next centers.

7. When no more vertebral bodies are found in the initial search direc-
tion, go in the opposite direction, using the second and first vertebra
to predict the adjacent vertebra’s center position. Continue in this
direction until no more vertebrae remain. See Fig. 4.1b on page 56 for
an example.

4.2 Initialization

The initialization consists of a user-drawn approximate outline of a vertebral
body. It should be on a slice which is approximately central to the spine.
From this outline the algorithm calculates the center: X and Y from the
center of the area of the bounded planar shape and Z from the selected
slice’s index. Furthermore, the minimum and maximum intensities of all
bounded pixels of the selected slice are calculated, i.e. the voxel intensity
range of interest. Intensities with low frequency of occurrence (0.1%)
are considered as noise and are discarded. The drawn curve has to be
completely inside the vertebral body, but close to the actual edge (see
Fig. 4.3 on the next page). This is required in order to achieve a good first
center and intensity-range estimate. Basically, the initialization is almost
the same as in chapter 3 on page 39.

The user also indicates the vertebra that has been initialized. This is not
used in the segmentation process, but for naming of result files to enable
easier calculation of results and comparisons.
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(a) Middle slice of a dataset
with initialization outline
in yellow

(b) Initialization closeup (c) Closeup of the original
slice

Figure 4.3: Example initialization, dataset DzZ_T1.

4.3 Segmenting the Vertebral Body

Each vertebral body is segmented using an iterative inflation algorithm.
The algorithm starts with a small triangular surface mesh (see Fig. 4.8 on
page 65) at the approximate center of the vertebral body. This mesh is
enlarged using balloon inflation forces [Coh91], enforcing smoothness and
a star-shaped geometry. The inflation ends when convergence is detected.

Star-shape is enforced by allowing the inflation only along center-vertex
direction - this was kept from the previous chapter. In addition to curvature
and angle checks smoothness can be enforced by using a subdivision surface
scheme.

[ŠBSG06] introduced LH (low-high) values (Fig. 2.18 on page 25). The
interesting feature of LH values is that their difference indicates proximity
to a boundary. This information is used to speed up the inflation in the
internal region. The area of an approximately constant H value is the
vertebral body with its boundary region. Thus, we never want to inflate
the segmentation surface beyond it.

Also, the vertices are allowed to move only into regions with an intensity
within the range of interest (contents of the user-drawn boundary). They
are not allowed to go into regions with significantly lower intensity, which
surround the vertebral bodies (cortical bone, periosteum). See figures 4.2
on page 57 and 4.3. Some vertices may still end up slightly outside of
the detected vertebral body boundary due to smoothing induced by the
subdivision hierarchy normalization.

The following steps are performed iteratively:
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1. Inflate the mesh (move the vertices outwards)

2. Normalize the subdivision hierarchy: Adjust the positions of ver-
tices so that they comply with subdivision rules. Also minimize the
amount of movement that needs to be applied to the vertices to obey
the subdivision rules.

3. If the average edge length of the polygonal segmentation surface is
greater than two times the average image spacing, another level to
the subdivision surface hierarchy is added. This is needed to better
adapt to small features.

4. Smooth the surface mesh slightly. This is required to overcome noisy
voxels, which would otherwise prevent inflation of the mesh. The
heuristic hierarchy normalization already includes smoothing as a
side-effect, so this explicit smoothing step is not needed.

5. Update per vertex normals and curvature estimates and recalculate
the polyhedron center. Only the first vertebra has a very good initial
center because it is user-provided. All the other vertebral bodies
must calculate their center from the polyhedron shape to account for
different inflation speed in different directions.

6. Stop when convergence is detected.

4.3.1 Inflating the Mesh

The inflation is done by examining each vertex separately. If it is in the
interior region (L and H values are equal), the vertex is moved using the
largest step size. Otherwise the position where it should be placed is
calculated and a boundary check conducted. If the destination position is
“inside”, the vertex is moved, otherwise it is not moved. The vertex will not
be moved if the destination voxel:

• has an intensity outside of the range of interest

• has an H value lower than the previous voxel’s H value (with 10%
tolerance).

• has an intensity higher than the previous voxel’s intensity (with 5%
tolerance)

If a vertex is to be moved, it is moved in the direction of the center-
vertex vector, thus maintaining the star-shape. In order to calculate the
move distance the cosine of the angle between the center-vertex vector and
the surface normal vector is taken into consideration. The greater the angle,
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the lower the inflation speed, i.e. the magnitude of the move vector is
lower:

moveVectorMagnitude = cosϕ× stepSize

This slows down the inflation when the mesh starts adapting to the shape of
the boundary. Also taken into account is the surface curvature: The higher
the curvature, the lower the inflation speed. The move vector magnitude is
also scaled by the curvature factor in the range [0.15,1.0]:

c f actor = min(1,
1

2× gaussCurvature
)

Thus the inflation speed is lower for vertices near feature points such as
ridges, valleys, peaks and dents.

4.3.2 Degenerate Vertex Distribution

If the initial center for the segmentation is too close to some boundary,
many vertices will get stuck in that boundary and the surface will inflate
much more in the opposite direction. This will result in a highly uneven
distribution of vertices over the surface: the surface part which inflates the
most will have the lowest vertex density (Fig. 4.4 on the next page), as the
subdivision hierarchy does not allow inserting individual vertices as the
mesh-based approach in chapter 3.

There are two options to counteract this. First one is to introduce some
kind of regularization, to prevent uneven distribution from occurring. The
other option is to detect if it happens, and fix it.

The prevention option was implemented as a change to inflation rules
to also move the vertices tangentially in an attempt to have a more uni-
form distribution. The target position for inflation is shifted tangentially,
minimizing distances to the neighboring vertices. However it takes a lot of
time for this to propagate across the entire mesh, and the non-uniformity
is introduced more quickly by the differing speeds of inflation.

For detect and fix option, the average and standard deviation of edge
lengths are calculated in each iteration of the inflation. If a degenerate
vertex distribution is detected (σ>0.8) during inflation, the segmentation is
restarted using the current mesh-center (center of mass assuming uniform
density) as the initial center. The current center is farther away from the
boundary and closer to the true center. Thus, it greatly decreases the chance
of an uneven vertex distribution occurring again. Restarting segmentation
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Figure 4.4: Uneven vertex density occurs with center estimate too close
to a boundary (left image). A view from top (top right) reveals a high
vertex density, while a view from bottom (bottom right) shows a low
vertex density.

is also more computationally efficient than applying mesh optimization,
and was therefore chosen.

An uneven vertex distribution occurs most frequently when segmenting
the first vertebral body adjacent to the initial user-initialized vertebra. At
this point in time, the axis of vertebral column can not be estimated reliably.
This sometimes leads to an initial center farther away from the true center.
One restart is usually sufficient to resolve the problem.

4.3.3 Convergence Check

The segmentation is finished when any of the following three conditions is
met:
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• The increase in average center-surface distance in the current iteration
is smaller than 0.2×voxel spacing. This is the standard termination
condition.

• The center-surface distance is 50% greater compared to the last ver-
tebra (compared to user boundary for the first vertebra). This is a
sanity check indicating a “bleeding” beyond the boundary, because
the sizes of vertebral bodies change gradually as we go up or down
the spine.

• The maximum number of iterations is exceeded (usually 200). This
is just a precaution, in order to avoid a fluctuating behavior. In most
cases the segmentation is finished in about 50 iterations.

4.4 Constrained Subdivision Hierarchy

The butterfly algorithm [DLG90] is the simplest interpolating subdivision
scheme working on triangle meshes. Interpolating means that the vertex’s
position, once calculated, will be part of all finer mesh levels and conse-
quently the coarser shape information is preserved. This is different from
approximating subdivision schemes, where the new vertex positions are
calculated by averaging the old vertices. “Modified butterfly” was pre-
sented in [ZSS96], and it avoids problems with irregular vertices (vertices
with valence 6= 6) by using somewhat different rules for those cases.

Both versions of the butterfly algorithm subdivide the mesh by splitting
each triangle’s edges, and connecting them thus turning each triangle in the
input mesh into 4 triangles in the refined output mesh (Figs. 4.5 and 4.6 on
the following page). Position of each of these new points is independently
calculated according to subdivision rules based on positions of “old” input
points (Fig. 4.7 on the next page).

Figure 4.5: Mesh is subdivided by splitting edges.
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Figure 4.6: Surface patch showing the vertex hierarchy with two refined
levels (0–base level).
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Figure 4.7: Butterfly subdivision rule for the regular case. Position of point
pnew is based on positions of points around it: pnew = 1

2 (pu + pd) +
1
8 (pl + pr)− 1

16 (pul + pur + pdl + pdr).

A modified butterfly subdivision hierarchy scheme is used here to
stimulate the smoothness of the segmentation surface. A closed triangular
polyhedron (32 vertices, 60 triangles) is used as a base mesh for subdivision
(see Fig. 4.8 on the facing page). New mesh levels are created through the
subdivision rules until the average edge length l is comparable to the voxel
size s : s <= l < 2s, where s = 3

√sxsysz is the geometric mean of the voxel
spacings. As the segmentation mesh grows, additional levels are added
to maintain s <= l < 2s. Up to four levels were needed for representing
final-stage vertebral body meshes in highest resolution images.
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(a) Mesh with level 0 vertices
only

(b) Mesh with vertices from
levels 0+1

(c) Mesh with vertices from
levels 0, 1 and 2

Figure 4.8: The polyhedron used as an initial segmentation surface.

At the beginning, only the base level (level 0) is “free”: the vertices from
this hierarchy level can be positioned freely during the inflation, but all
vertices of finer levels have their positions calculated according to the sub-
division rules. When the inflation starts converging, level 1 is also set free,
so both level 0 and level 1 have free vertex positioning. The inflation con-
tinues until the next slowdown or iteration limit exhaustion, then another
level is set free. This continues until all levels are free. Once additional
levels (besides level 0) are started being freed additional iteration limits
are also set, which get shorter as the algorithm approaches the complete
removal of the subdivision rules. The iteration limit is given exponentially:
maxIterations = 2numberO f Un f reeLevels. When only one “unfree” hierarchy
level remains, it has a limit of 21 iterations, and when all levels are free, the
inflation is limited to only 20 = 1 iteration. This favors global smoothness
but still allows segmentation of some fine features. This iteration limit is
needed because there is no true equilibrium condition.

The actual inflation step repositions the vertices with no regard to the
subdivision rules. Thus, the enforcement of the subdivision hierarchy for
all the unfree levels afterwards is needed. Two alternatives have been
developed to enforce the subdivision rules:

• a local heuristic rule

• a global optimization

Both ways adjust the positions of vertices in free levels, trying to minimize
the amount of movement of all vertices in the mesh. This movement is
mostly influenced by the subsequent application of subdivision rules in
the dependent levels. Once the positions of the vertices in free levels are
known, positions of vertices in the dependent levels are recalculated using
subdivision rules. This has a side-effect of strong smoothing in case of the
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heuristic rule and negligible smoothing in case of the global least squares
fitting.

The heuristic hierarchy normalization is based on a local rule, which
adjusts the positions of the vertices in the coarser levels until the base level
has been reached. This adjustment is based on a position update which
has been applied to each vertex during the inflation step. Basically, coarser
level update vectors are averages of finer level update vectors, influenced
by the modified butterfly subdivision rules. The averaging is formulated in
a way to approximate the (non-existing) inverse of the subdivision rule.

u0

u1

u2
u3

u4
u5

Figure 4.9: Heuristic hierarchy normalization adjusts positions of coarser
level vertices, and then calculates the positions of dependent vertices
using subdivision rules. ui – position updates from inflation step. u0 –
(coarser) control vertex. u1-u5 – directly dependent vertices on the next
finer level.

The position update vectors are propagated from finer to the coarser
levels using the following formula (also see Fig. 4.9):

uadjusted = w×u0 +
1− w

n
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∑
i=1

ui

w =
1
2

1
3λ

, w = (
1
6

,
1
18
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, ...)

λ = level above f inest

w is a weight related to the number of vertices which have contributed to
the adjustment of directly dependent vertices. It decreases exponentially.
3 is chosen as the base base because in the regular case (6 neighbors), the
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number of vertices increases 3-fold with each level, i.e. each vertex in the
base mesh contributes a half of 6 new vertices in the subdivided mesh
(Fig. 4.6 on page 64).

A globally optimal normalization algorithm using a least squares fit-
ting (Jacobi SVD) was investigated. This approach minimizes the sum of
the squared distances between the inflated positions and the subdivision
positions after optimization. This results in a system of linear equations
where the number of unknowns is equal to the number of free vertices. The
coefficient matrix of the system is constant, since it depends only on the
polyhedron topology, the number of free levels and the total number of
levels.

However the least squares fitting is less computationally efficient than
the proposed heuristic because more calculations are involved. The initial
calculation of the matrix data structures and their caching are needed. Also,
if there are many vertices in the base mesh, overshooting effects start to
appear, which is frequent in interpolating schemes. This can be avoided
by using a low or moderate number of vertices in the base mesh, or by
applying slight smoothing after each iteration, thus fighting noise and small
ambiguities in the data. Explicit smoothing is not required for heuristic
normalization because heuristic normalization includes smoothing as a
side effect. Therefore, the heuristic approach was used more frequently.

Whether subdivision surface hierarchy was used, and whether it em-
ployed local rule or global optimization gave rise to three different variants
of the segmentation system which were tested in chapter 7 on page 99:

• no subdivision hierarchy, i.e. free-form mesh (bbFF)

• subdivision hierarchy with local heuristic Normalization (bbH)

• subdivision hierarchy with optimal global normalization (bbO)

The version presented in this chapter was retrospectively named “binary
boundary” and abbreviated bb.

4.5 Finding Neighboring Vertebrae

The main segmentation loop consists of predicting the position of the
adjacent vertebra’s center, where the next segmentation is initiated. This
frees the user from further initializations.
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Prediction consists of analyzing the shape of the previously segmented
vertebral body. The main vertebra axis is extracted, which is then used
together with the center positions of the last two vertebrae to predict
the position of an adjacent vertebra’s center. Then the segmentation is
continued in that position. The required initial intensity statistics are taken
from the previously segmented vertebra. Thus, the system adopts the
gradual intensity change within the dataset, which is a common MRI
artifact. See Fig. 4.1b on page 56.

4.5.1 Pose Estimation Using Face-Merging

Vertebral bodies are geometrically similar to short and thick cylinders. This
fact can be exploited in order to find the disk axis by merging mesh faces
in order to identify a cylinder base. The face merging algorithm starts
with the final mesh resulting from the vertebral body segmentation. The
face normals are adjusted in such a way that their length is equal to the
face’s surface area, which is a half of the length of the vector product
of two triangle edges. Then all pairs of adjacent faces in the mesh are
examined. All pairs of normals which form an angle of 0.1 radians or
smaller (threshold angle) are merged. The normal of the merged face is
calculated as the sum of the normals of the old faces. This keeps the normal
length approximately proportional to the face’s surface area.

When no further merging is possible, the threshold angle is increased
by another 0.1 radians and the merging process is repeated. Increasing
the threshold angle by 0.1 radians is continued until it reaches 0.3 radians
(17.2◦). See Fig. 4.10 on the next page.

When all pairs of adjacent faces with an angle between their normals
of 0.3 radians or less have merged, the vertebra has a shape which looks
somewhat similar to a disk (cylinder). The two largest faces usually corre-
spond to the vertebral body endplates, which is the part of the vertebral
body which presses against the intervertebral disk. The cylinder sides are
represented by several faces.

For the first vertebral body the normals of the four largest faces are kept,
which are then used for estimation of adjacent vertebra center.

For all other vertebral bodies the vector between the centers of the last
two segmented vertebral bodies is known. This gives a preferred axis
direction and makes pose estimation easier. All normals are weighted by
how parallel they are to this vector, using the cosine of the angle between
them. This weighting process can increase the importance of some faces
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(a) Mesh before merging (b) Merging up to threshold angle

(c) Merging up to 2× threshold angle (d) Merging up to 3× threshold angle

Figure 4.10: Merging faces in order to determine the main axis.

up to a factor of four. This is a kind of implicit model usage, and is useful
for cases of imperfect segmentation where the top and bottom face do not
appear flat.

4.5.2 Estimation of the Position of the Second Vertebral Body

Once the four axis candidates are available, the algorithm can use them to
guess the center position of an adjacent vertebral body. The guessed center
is calculated as the translation of the center of the first vertebral body along
the axis, and the translation distance is the average distance between the
center and the surface multiplied by a factor (see Fig. 4.11 on the following
page).

Four factors (2.0, 1.8, 2.2, 1.6) for the normal of the largest face are tried
first, then the same four factors for the normal of the second largest face.
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Figure 4.11: 2D schematic illustrating the process of estimating the position
of the center of the first adjacent vertebral body. Grey: vertebral bodies.
Blue: first segmented vertebral body. Green: center of the first vertebral
body. Red: circle with radius equal to average center-surface distance of
the first segmented vertebral body. Black: guess vector using the factor
2.0.

This continues until all four kept normals are exhausted, or until a vertebral
body is successfully segmented based on one of these guesses. These four
factors represent approximate anatomic ratio of vertebral body height and
disk thickness to diameter, but are experimentally determined for usage in
this algorithm.

The very first guess (the largest face and factor 2.0) is usually successful,
but occasionally the largest face and some other multiplication factor get
used. This is mostly due to anatomical differences. Using normals other
than the one corresponding to the largest face is rare. It usually occurs when
the supplied image has low contrast between vertebrae and surrounding
tissues. Sometimes it occurs for images of the cervical spine, because the
vertebral bodies of the cervical spine are small and less disk-shaped.

4.5.3 Estimating Positions of Other Vertebral Bodies

Once the algorithm has found the center positions of two vertebral bodies,
it can make a good estimate of the center position of the next vertebral
body (Fig. 4.12 on the next page). The adjacency vector is calculated
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as an average of the last vertebra’s normalized axis and the normalized
center-center vector from the last two vertebral bodies. This is more robust
than using just one of these two, and robustness is important because one
wrongly segmented vertebra breaks the chain and the algorithm stops. The
length of this adjacency vector is the length of the center-center vector.

Figure 4.12: 2D schematic illustrating the estimation process. Grey: ver-
tebral bodies. Blue: segmented vertebral bodies. Green: centers of the
vertebral bodies. Dashed arrow: center-center vector. Dotted arrow: ver-
tebral axis with length of the center-center vector. Solid arrow: average
of the other two.

When more than two segmented vertebral bodies have already been
segmented, just the last two are used. When starting to go into the opposite
direction, the first and the second vertebrae are used, but the direction
vector is also reversed so it points from the second to the first vertebral
body.

4.6 Segmentation Correctness Measure

The main condition for assessing correctness of the segmentation is that
the difference between the average center-surface distance of the current
vertebral body is within 30% of the average center-surface distance of the
previous vertebral body.
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The segmentation correctness assessment has additional sanity checks
using experimentally determined values:

• The volume of the current vertebral body is at most 2 times larger or
smaller than the volume of the previous vertebral body. This roughly
corresponds to 25% increase or decrease in vertebral body diameter.

• The volume of the current vertebral body is at most 12.5 times larger
or smaller than the volume of the first segmented vertebral body. This
roughly corresponds to 2.3× increase or decrease in vertebral body
diameter. The difference between first and last vertebral body can be
much bigger than between two adjacent ones, but it is desirable to
limit this difference to prevent some obvious segmentation failures.

• The difference between the average center-surface distance of the
current vertebral body is between 0.2×d1 and 1.8×d1, where d1 is the
average center-surface distance of the first segmented vertebral body.

• The distance between the centers of the current and the previous
vertebral bodies is smaller than the average center-surface distance
of the current vertebral body. This is a simple heuristic check for
detecting some conceivable types of overlap.

4.7 Conclusion

A novel system for segmentation of vertebral bodies was presented 1. This
system relies on the segmented vertebral body shape to predict the global
spine shape, so it can be called a bottom-up approach.

A subdivision surface hierarchy was introduced as an efficient global-
to-local smoothness constraint. Since it is not tightly integrated into the
presented system, it could be used independently, e.g. for other segmenta-
tion tasks. Low-High (LH) values are used to ease boundary finding. This
can also be used in other application areas.

This system achieves 50%-72% detection rate for thoracic and lumbar
datasets. It scores 70%-75% on Dice similarity coefficient. These results are
not bad considering the segmentation speed and the dataset variety.

1Results are in chapter 7 on page 99. Taking the results sections out of vertebra segmen-
tation chapters and putting them into a separate chapter enables better comparison between
different versions of the vertebra segmentation system i.e. it better shows improvements
from increased system complexity.
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Finally, the greatest quality of this system is high speed. It processes
a complete dataset in a few seconds, while other 3D spine segmentation
methods take minutes.

The deficiency of detection (only ~72%) comes from the imperfect ver-
tebral body segmentation. A wrong center estimate is usually caused by
an incorrect vertebral body shape. And that is most influenced by the
boundary detection imperfections. The next chapter therefore focuses on
improving the boundary detection approach.





Chapter 5

Robust Soft-Boundary
Segmentation

This chapter refines the system introduced in chapter 4, without signif-
icantly changing its structure. This chapter, together with the previous
one, is published as one paper [ZVD+12]. The next chapter is a complete
reorganization of building blocks introduced in this chapter and chapters 3
and 4, with addition of many new elements as well.

In this chapter multiple image features are calculated in order to im-
prove the boundary estimation. The multiple features could be directly
integrated into the existing system, but the independent handling of vari-
ous features would significantly complicate the algorithm. An easier and
more efficient approach is to combine the multiple features into a single
boundary probability estimate.

The main improvement introduced in this chapter over the previous
one is combining of multiple features to arrive at an explicit soft boundary
estimate instead of an implicit binary boundary. There are other important
improvements:

• Faster-to-create single-point initializations are now possible.

• Pose estimation no longer uses face merging, instead it uses ICP.
This is more reliable so averaging of vertebral axis with center-center
vector is no longer needed. Vertebral axis alone is used to predict
adjacent vertebra’s center.

• Vertices can now be deflated, i.e. moved inwards, not just outwards
from the center. This enables establishment of a real equilibrium, not
just inflation slowdown.
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Figure 5.1: High-level diagram of the segmentation system

5.1 Spine Segmentation System

The main segmentation loop has improved initialization and pose estima-
tion. Prediction of adjacent vertebra position and segmentation correctness
measure are the same.

Initialization Two different types of initialization are implemented: cen-
ter picking and freehand outline which is same as before. Center picking
makes initialization even easier than before.

From either initialization the algorithm extracts the center coordinates
and takes a sample of intensities. In the case of center picking, intensities
are taken from a circle with 2.8 mm radius. This radius needs to be large
enough to be easily click-able even on images with low resolution where
this circle is just a few pixels in diameter. Choice of 2.8 mm was determined
experimentally.

The outline initialization additionally gives an approximate size, other-
wise the average human vertebra size is taken [MSM+08].

Pose Estimation Using Iterative Closest Points The orientation of the
vertebral body is determined by fitting to it a hand-crafted vertebral body
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shape (the same one which is used initially for inflation, Fig. 4.8 on page 65)
using the iterative closest point (ICP) algorithm.

The initial position for ICP is determined by translating the average
shape center to the segmented vertebral body center. The initial orientation
of the average vertebral body shape is taken from the previous vertebra’s
fitted orientation (except the initial vertebra, where the anatomical upright
orientation is used). The initial scaling of the average shape is determined
from the radius of the inflated mesh.

The initialization brings the average shape close to the segmented one,
which makes ICP robust. ICP is then allowed to optimize position, rotation
and scaling to find the best fit. Vertebra’s main axis (head-tail axis) is
extracted from the orientation of the fitted shape. Overall, it is a noticeable
improvement over face merging (Fig. 5.2 on the following page).
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(a) Face merging, bad segmentation (b) Face merging, good segmentation

(c) ICP, bad segmentation (d) ICP, good segmentation

Figure 5.2: Visual impression of poses (red arrows) estimated using face
merging and iterative closest points. “Good” and “bad” segmentations
had different initializations. Dataset DzZ_T1 from Tab. 7.1 on page 102

.
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5.2 Multi-Feature Boundary Classification

The vertebral body boundaries are estimated using multiple features, which
are classified into probabilities of the voxel v being at a boundary, and com-
bined to a final probability p(v) using the weighted average (see Fig. 5.3).
Using multiple classifiers and then combining them is known to improve re-
sults and robustness [KHDM98]. Three edge-based and two intensity-based
features are used. As intensity-based features require local, per-vertebra
intensity statistics, a small 2D neighborhood is examined around each of the
detected vertebral body centers. After removing outlier values, minimum
and maximum are used for further processing.

Due to the per-vertebra statistics, the boundary probability map needs
to be calculated for each vertebra separately. This is done inside a bounding
box which is twice as large as the detected diameter of the vertebra.

The edge features are based on LH (low-high) values [ŠBSG06], Canny
edges, and thresholded gradient magnitudes. The difference between low
and high values, L, H indicates proximity to a boundary. The boundary
probability is deduced from these values and the current voxel v’s intensity
I by pLH(v) = ((H − I)− (I − L))/(Imax − Imin), where Imax and Imin are
the maximum and minimum intensity in the dataset (see Fig. 5.3 and
Fig. 2.18 on page 25). Note that intensities are shifted so they start at 0 if it
is not the case, before any other processing is done.

Gradient magnitudes and Canny edges are multiplicatively enhanced
using the structure tensor as described by Fernández and Li [FL03] to
improve the detection of 2-manifold edges and suppress one-dimensional
features. Structure tensor is Jacobian of image gradients, and its eigen

(H-I) - (I-L)
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Figure 5.3: Features explained on T12 vertebra from F02 dataset. In all
images except original black indicates edges, whereas white represents
more homogenous regions like a vertebral body’s interior.
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analysis allows characterization of the local structure in the image. For
eigenvalues µi, relationship µ1 � µ2 ≈ µ3 is indicative of a 2-manifold
edge.

For both gradient magnitudes and Canny edges, the respective probabil-
ity is derived by applying a distance field (DF) and a linear transform with
clipping (LTwC), see Fig. 5.3 on the preceding page.

The two intensity-based features work directly on the thresholded MRI
intensities. The thresholds are taken from the intensity statistics collected in
the proximity of the detected vertebral body centers, i.e. the minimum and
maximum values after outlier removal. Holes are filled by morphological
closing using a 3-voxel-diameter ball structuring element.

The binarized intensities (each voxel either 0% or 100%) are used as one
feature. The second feature is the distance field constructed on this binary
image, effectively treating 0→1 transition as another edge feature (therefore
using DF+LTwC transformation). Thus both sharp edges (binary 0/1)
and a smooth edge approach (normalized distance field) are incorporated
for mesh inflation. It can be determined by visual inspection that after
combining the probabilities, true edges usually end up having a boundary
probability of around 90%.

The distance field constructed on binarized intensities is the most infor-
mative feature. After parameter optimization (Sec. 6.5 on page 96) it gets
a weight of around 30%-35% while the weights of the other four features
are around 10%-20%. Some other features, such as σ-weighted deviation
from mean initialized intensity, have been investigated and discarded due
to small benefit.

5.3 Soft-Boundary Inflation

Mesh inflation process is similar to the previous chapter. The big changes
are how the inflation step repositions vertices and establishment of true
equilibrium.

The following steps are performed iteratively:

1. Move the vertices (outwards) towards the boundary with no regard
to subdivision rules.

2. Normalize the subdivision hierarchy by moving vertices so that they
comply with subdivision rules.
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3. Recalculate the polyhedron center from the polyhedron shape to
account for different inflation speeds in different directions.

4. Stop when convergence is detected.

Constrained Subdivision Hierarchy is normalized using a global least
squares optimization. Only the base mesh vertices are independent, i.e. the
base mesh is the control mesh. Both of these are changes are done in order
to make behavior of individual vertebra segmentation more predictable
and overall segmentation system more robust.

The inflation examines each vertex separately. Depending on the bound-
ary probability, the vertex is either inflated or deflated along the radial
(center-vertex) direction. The step size is equal to the minimum voxel
spacing, i.e. 0.5–1.2 mm for the examined datasets.

Initially, a vertex v is in the interior and will inflate as long as the
boundary probability p(v) < 0.5. This way noise inside the vertebral body
is ignored. When p(v) ≥ 0.5 the sign of the probability derivative δp

δ~r in
inflation direction ~r decides on whether to inflate or to deflate, thereby
moving the vertex towards the maximum boundary probability.

Convergence is achieved when the average center-surface distance (“ra-
dius”) stops increasing, i.e. the radius from the current iteration is not
larger than the radii from the previous two iterations. An additional check
is whether the radius is 50% greater than the last vertebra. This saves
computation time in case of mis-segmentation.

An uneven distribution of vertices over the surface is detected using
the standard deviation of the edge lengths (σ > 1 mm). In this case, the
segmentation is restarted at the current center. Experiments show that one
to two restarts with a new center are sufficient to resolve the problem. This
mostly happens with the second vertebra, because intervertebral distance
at that time is only an estimate.

5.4 Conclusion

In this chapter a multiple-features boundary estimator was introduced
along with many other minor improvements. A true equilibrium conditions
were established instead of relying on stalled inflation.

Results are improved, both the detection rate (63%-75% up from 50%-
72%) and Dice similarity coefficient (77%-78% up from 70%-75%). It now
takes about half a minute to segment the whole dataset. This is an order
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of magnitude longer than the previous version (from chapter 4). This
just indicates that the law of diminishing returns is at play when human
precision levels (86%-96% DSC) [EBK+11a] are approached.

A drawback from the previous chapter remains: one wrongly segmented
vertebral body can foil subsequent segmentations, thus detection rate (75%)
is far from 100%.



Chapter 6

Initialized Parallelized
Segmentation

This chapter reorganizes the building blocks introduced previously, and
adds many more. It has been published as [ZVE+14], and is the pinnacle
of this thesis.

The main problem of the system described in the previous chapter is the
dependency of the detection ratio on the accuracy of previously segmented
vertebral bodies. One bad segmentation breaks the detection chain, leading
to low (75%) vertebra detection ratio.

Detecting all vertebral bodies before segmentation is the main improve-
ment in this chapter, but there are other improvements as well:

• Automatic detection of vertebral body centers and sizes based on
a Viola-Jones [VJ01] method with novel candidate filtering, which
enables

– a global prediction of all vertebra centers, which improves the
overall segmentation and diagnosis process,

– parallelized computation of per-vertebra features, classified im-
age merging and constrained inflation, and

– a novel size-goal force, which guides the segmentation to de-
tected vertebral body size, thus improving segmentation accu-
racy.

• Optimization of system parameters through training on manually
segmented datasets.

83
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• Center+mesh representation of segmentation allows easy diagnostic
measurements of the vertebral shape in order to detect scoliosis,
spondylolisthesis and crushed vertebrae.

6.1 Overview

This section gives an overview of the three major steps depicted in Fig. 6.1.

Vertebra Detection: In this stage, the vertebral centers are detected using
a Viola-Jones method [VJ01]. The initially detected centers are filtered
in order to remove false positive and false negative detections and thus
to minimize the required user intervention. Finally, the sizes of the user-
picked vertebral bodies are estimated (see Sec. 6.2 on the next page).
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Figure 6.1: High-level diagram of the full system. Boxes with thick black
outlines are computationally intensive. Green and red boxes employ
parallel computation on the CPU.
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Segmentation of Vertebral Bodies: The multi-feature boundary classifi-
cation is from previous chapter is slightly improved. The size parameter
estimated in the detection stage is utilized in the form of size-goal force to
increase robustness (see Sec. 6.3 on page 90). Segmentation and calculation
of per-vertebra features is parallelized.

Diagnosis: Based on the segmentation result, position and volume of the
vertebral bodies are used to deduce disease-specific parameters which drive
the final diagnosis (see Sec. 6.4 on page 92).

Please note, that in contrast to the previous chapter, all vertebral centers
are detected in a first step. This allows the parallel execution of several
downstream processing steps (Fig. 6.1 on the facing page).

Furthermore, a standard technique for parameter optimization was applied
in order to set various algorithmic parameters like thresholds; see Sec. 6.5
on page 96.

6.2 Initial Vertebra Detection

This section describes the detection of all vertebral body centers, used as
initialization for the segmentation step. After applying the Viola-Jones
method to detect candidate vertebrae (Sec. 6.2.1), the candidates are filtered
(Sec. 6.2.2 on page 88) and minimal human intervention is needed to
complete this step (see Sec. 6.2.3 on page 90). The Viola-Jones method
was chosen for its speed (a few seconds), because other approaches like
the Generalized Hough Transform or that of Vrtovec et al. [VLP05] are
relatively slow (minutes to hours [ŠLPV10]).

This section uses the coordinate system induced by the acquisition of
sagittal MR images, i.e. with respect to the human body, x is front-to-back,
y is top-to-bottom and z left-to-right.

6.2.1 Viola-Jones Detector

The training data for the (single) Viola-Jones detector is derived from the
reference segmentations utilizing all training datasets jointly. A bounding
box is determined for each vertebral body on each slice of all datasets
used for training. Expanding this bounding box to a square serves as a
positive sample for detector training. All positive samples are resized to
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Figure 6.2: Left: training samples for Viola-Jones detector. Green boxes
are positive samples, yellow boxes are negative samples. Right: ground
truth overlaid over the original slice (dataset F02, slice 9).

16x16 pixels and have 10 additional, slightly rotated versions (±15◦). The
Viola-Jones detector has a built-in scaling, and the square size (20-50 mm)
was targeted to adults.

Left, right and bottom rectangles of each slice, which are not covered
by positive samples, are added to negative samples (Fig. 6.2), along with
all slices which contained no part of reference vertebrae. Additionally
some hand-chosen rectangles very near the vertebral bodies are added to
the negative samples, otherwise some nearby structures such as aorta or
spinous processes get mistaken for vertebral bodies.

A boosted cascade with 40 stages, each stage with a minimum hit rate of
0.998 and target maximum false alarm rate of 0.5 (limited by the maximum
stage size of 100 tree stumps) has been applied. The number of positive
and negative samples used was 7500 each. The OpenCV implementation of
the Viola-Jones detector [VJ01, LM02] was used.

The initial vertebra detection based on the Viola-Jones detector [VJ01]
is done on all sagittal slices independently. If a dataset is not acquired as
sagittal slices, it is reformatted into sagittal slices. The candidates’ in-slice
positions provide the (x, y) coordinates and approximate size (vertebral
body diameter) of the vertebral body candidates, the z−coordinate of the
center is derived from the weighted average of the slice-adjacent candidate
centers.

The variety of datasets the Viola-Jones detector can handle depends on
its training set. The training set used has a lot of variety – T1, T2 and TIRM
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Figure 6.3: Vertebrae detection (red-filled points are candidates on the
current slice, empty points are lying on other slices, the fitting curve
is shown in blue; see Tab. 7.2 on page 103 for information about the
datasets): Left, the unfiltered center candidates of dataset AKs5 and,
middle left, a fully successful filtering (the T12 gap was filled and
the unwanted S2 vertebra detection was removed). Unfiltered center
candidates of dataset AKs6 (middle right) with wrong result – 1 false
negative and 1 false positive after filtering (right). In 38% (10/26) of
datasets no user intervention is required.

sequences, and a range of TE, TR and other parameters. If an untrained
MRI sequence is among the unseen test data, the method does not break
down, there is only an increase of detection errors. When AKa3, AKs7 and
AKs8 datasets (see Tab. 7.1 on page 102) were removed from the training
set (leaving only 6 T2 datasets for training), the number of detection errors
increased by 24%, from 21 to 26 out of 240 vertebrae. However if new
MRI sequences need to be handled with low amount of errors, the detector
needs to be re-trained with the expanded training set.

Note, that the result of the Viola-Jones detector is imperfect, containing
spurious detections (false positives) and missing vertebral bodies (false
negatives); see Fig. 6.3.
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Figure 6.4: Spine center curve fitting. Left: vertebra centers, axes, and
the fitting curve. Inset on the right: vertebra i shown in detail (index i
omitted). Y axis is used as abscissa and the X and Z polynomials are
dependent on it. The distances di between vertebra candidate centers
ci and their projections onto the abscissa pi are minimized using the
L1-norm.

6.2.2 Detection Filtering

Filtering along z axis is done as part of Viola-Jones algorithms’ rectangle
filtering and merging. Detected rectangles from all slices are put through
this step together, and the largest of the many overlapping rectangles is
kept as a vertebra candidate. The z−coordinate of this vertebra candidate
is the average of all the overlapping rectangles from different slices.

In order to remove wrong detections and to fill missed vertebrae, a spine
center curve is fitted to all detected vertebra candidates in 3D (see Fig. 6.4).
The S-shaped lower spine has two distinct curvatures and therefore a
third order polynomial is an appropriate curve model. At this stage mis-
detections along the x-axis are more important than precise fitting along
the z-axis. Since robustness to false positives is needed, precise fitting to
the scoliotic-shaped spine (which requires a fourth order polynomial) was
sacrificed.

The distances of all vertebra candidate centers to the spine center curve
are calculated and the one with the largest distance is removed, if it is
above the approximate radius of that vertebral body candidate. Then a new
spine center curve is fitted and the procedure is repeated for as long as
there are candidates to be removed. This outlier removal is done in sagittal
plane (using 2D planar distances).
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Figure 6.5: Detection gap analysis uses distances between centers of
adjacent vertebra pairs. The change in distances along the spine is
exaggerated here.

The topmost and bottommost vertebra detections are frequently fitted
well by the polynomial, even if they are unwanted false positives. Therefore,
they are removed in case they are located far from their adjacent vertebra.

Furthermore, the frequency of candidates along the fitted spine center
curve is examined. The Theil-Sen linear estimator [The92] is used to deter-
mine robustly the linear function of expected distance (Fig. 6.5) between
vertebral body centers – the distances increase towards the lower end of
the vertebral column. If a particular distance is below 75% of the expec-
tation from this fitting, meaning that an extraneous vertebra is detected
there, the corresponding candidate is removed. Similarly, gaps larger than
150% of expected distance are filled with the best-fitting number of evenly
distributed new centers.

Still missing vertebrae, e.g. the topmost or bottommost, need to be
added manually in the next step.
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6.2.3 Manual Correction and Labeling

Since a correct setting of the initial vertebral body centers is crucial for the
following segmentation and diagnosis, the result of the filtered detections is
presented to the user for verification. The user can reposition (mouse drag),
add (left click) and remove points (right click). This is done on sagittal
cross-sections, even if the dataset was acquired along some other body axis
(e.g. coronal). The user chooses cross-section with a slider, and the middle
slice of the detected vertebral body centers is preselected by the program.

New vertebral body centers should be placed on a slice which is ap-
proximately central to the vertebral body. The size of these new vertebral
bodies is linearly interpolated from the sizes of neighboring vertebral bod-
ies. The user also chooses a label for the bottommost vertebra (usually S1)
from which other vertebra labels are calculated, in order to have a correct
human-readable diagnosis result.

6.3 Segmentation of Vertebral Bodies

Inflation is similar to the previous chapter. However, a size-goal force is
added, which drives the segmentation towards the estimated size detected
by the Viola-Jones method.

The following steps are performed iteratively:

1. Move the mesh vertices radially towards the boundary with no regard
to subdivision rules. Vertices are inflated or deflated, depending on
the merged probability image.

2. Normalize the subdivision hierarchy (Sec. 4.4 on page 63) by moving
vertices so that they comply with subdivision rules.

3. Recalculate the polyhedron center from the polyhedron shape to
account for different inflation speed in different directions.

4. Stop when convergence is detected.

6.3.1 Inflating the Mesh

Vertebral body detection gives us not just the center but also an approximate
vertebral “radius”, and this can be used to steer the segmentation process
towards that size by modifying the equilibrium conditions.
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Depending on the boundary probability and the size-goal force, the
vertex is either inflated or deflated along the radial (center-vertex) direction.
The step size is equal to the minimum voxel spacing, i.e. 0.5–1.1 mm for
the examined datasets.

Initially, a vertex v is in the interior and will inflate as long as the
boundary probability p(v) < 0.5 + fsg, where fsg is the size-goal force.
When p(v) ≥ 0.5 + fsg, the sign of the probability derivative (adjusted

by the size-goal force) δ(p+ fsg)
δ~r in inflation direction~r decides on whether

to inflate or to deflate, thereby moving the vertex towards the maximum
boundary probability. By using the boundary probability gradient only
when the probability is high (vertex near the boundary), noise inside the
vertebral body does not block the inflation. Convergence is achieved when
the average center-surface distance (“radius”) stops increasing.

fsg = κ· tanh (
rdetected − ri

rdetected
)· smin − (ri − ri−1)

smin

is the size-goal force designed to overcome local minima which sometimes
occur at smaller sizes than anatomically possible. rdetected is the approximate
radius detected by the Viola-Jones algorithm – the goal radius, ri is the
radius in the current iteration and smin is the the minimum voxel spacing.
κ (≈ 0.1) is a parameter steering the force influence and is optimized for
segmentation accuracy (see Sec. 6.5 on page 96). fsg only gives preference
to a certain size, it does not guarantee it.

When ri < rdetected, fsg increases inflation pressure, and when ri >

rdetected, fsg creates deflation pressure. Out of precaution this factor is
limited to (-1,1) by the tanh function, which is almost linear around zero
and gradually turns into a clipping function from about 2 onwards.

The last factor is there to suppress the size-goal force during normal
inflation. When the radius growth between the last two iterations is large
(ri − ri−1 close to smin), this factor lowers the influence of fsg. This is done
in order to respect the edge probabilities, and to give influence to fsg only
when the inflation enters a local minimum (small ri − ri−1) which is far
from the desired size. This factor is always positive, because ri− ri−1 cannot
be bigger than smin which is the maximum possible step size.

If the initial center estimate for the segmentation is very close to a
boundary, the surface will inflate much more in the opposite direction. This
will result in a highly uneven distribution of vertices over the surface, which
is detected using the standard deviation of the edge lengths (σ > 1 mm). In
this case, the segmentation is restarted at the current center; this sometimes
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occurs with S1 vertebra or with some thoracic vertebrae with low contrast,
when the segmentation leaks outside of the true vertebral body.

6.3.2 Constrained Subdivision Hierarchy

The global least squares optimization is used, minimizing not only the
vertex position correction as before, but also an edge length deviation. The
latter stimulates an even vertex distribution.

Another change is that the number of control levels (number of levels,
the vertices of which are independent) is defined by how many levels exist
overall: ncontrol = b ntotal−1

2 c.

If the control levels contain many vertices, overshooting effects start to
appear, which is frequent in interpolating schemes. Thus, the least squares
fitting scheme is combined with the heuristic hierarchy normalization
which implicitly smooths the mesh. The influence of the heuristic scheme
is controlled by a weight parameter (smoothFactor) which is part of the
optimization (see Sec. 6.5 on page 96).

6.4 Diagnosis

The focus is on three diseases which can be diagnosed from segmentation
of vertebral bodies alone, i.e. on scoliosis, spondylolisthesis and vertebral
fractures.

Spinal canal stenosis and slipped disc, which were present in some
datasets, cannot be diagnosed from vertebral body segmentations. Heman-
gioma, in spite of distinct appearance in MR images and being a significant
complicating factor for vertebral body segmentation, has little to none
clinical relevance.

6.4.1 Scoliosis

Normally, the vertebral column has curves in front-back (sagittal) plane,
having a shape of two concatenated letters “S”. In the left-right direction
(coronal plane), healthy spine is generally straight with only minor asym-
metry – similar to facial asymmetries. If there is, however, a curve in the
coronal projection of the spine, that condition is known as scoliosis.
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Figure 6.6: Scoliosis is visible on coronal slices, looking at a person from
front or back. On the left is a real image (dataset C002) with manual
measurement lines. On the right is how scoliosis is calculated using the
fitted centerline and its tangents at each vertebral body center. In this
case: ϕ = 32.6◦.

According to standard clinical practice the severity is determined by
spinal curvature measured in degrees, called Cobb angle [Aeb05]. Fig. 6.6
(left) depicts how the Cobb angle ϕ is measured. If the Cobb angle is above
20◦ tracking is warranted, and above 30◦ treatment is considered.

For determining the degree of scoliosis, the spine center curve (fourth-
order polynomial) is fitted to segmented vertebral body centers (see Fig. 6.4
on page 88). The Cobb angle [Cob48] is evaluated between all possible
pairs of vertebrae, using tangents of the fitted curve taken at vertebra
center positions. The biggest Cobb angle found is reported along with the
vertebrae between which it is occurring.
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Figure 6.7: Spondylolisthesis schematic on a sagittal slice. The usual medi-
cal calculation method (top left) is not always easy to apply, especially
for L5/S1 pair (bottom left, dataset S01). Right: the way misalignment
is calculated (m1 + m2) using the fitted centerline and vertebral body
centers (L5/S1 misalignment=14%).

6.4.2 Spondylolisthesis

Spondylolisthesis is misalignment of vertebrae which results in change of
posture and can include pain. It is usually divided into low-grade which
does not usually require treatment, and high-grade (above 25% [Sar87]).

Measurement of the degree of spondylolisthesis in clinical practice
S% = m

d is adapted for manual measurement on a single sagittal slice or 2D
X-ray (Fig. 6.7 top-left) [WW83] .

Here, the degree of spondylolisthesis is determined by calculating the
distance of vertebral body centers to the fitted spine center curve and divid-
ing it by vertebral body diameter: S% = m1+m2

d (Fig. 6.7 right). This measure
is more robust and stable with respect to the segmentation imperfections
and does not require the analysis of the shape of each vertebral body so it
is also computationally efficient.

6.4.3 Vertebral Fracture

Crushed vertebral bodies are usually due to mechanical stress applied to
a weakened bone (typically a result of osteoporosis). In clinical practice
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Figure 6.8: Crushed vertebral body. Left: schematic view. Right: X-ray
image, reproduced from Wikipedia.

diagnosis is usually established based on qualitative impression [LRDG04].
Several different approaches have been used in medical research [LRDG04],
but they are tailored for manual measurements based on 2D sagittal X-rays
or single sagittal slices [WLJG95], see Fig. 6.8.

To diagnose crushed vertebrae a third-order polynomial is fitted to
vertebral body volumes using the L1-norm. That way outliers do not
influence the fitting, so the detection is robust. Besides the actual volume
of each vertebral body we now also have a volume expectation V(i) = P(i),
by evaluating the fitted polynomial at each vertebra index (similar to
analysis of candidate frequency along the center-line curve, see Fig. 6.9
on the following page). Analyzing the difference between them results in
diagnosis. If the actual segmented volume is below 80% of the polynomial-
derived volume expectation, the vertebra is indicated as crushed.

80% of the expected volume parameter (20% crushedness) was obtained
empirically. The crush-measure routinely reaches 10% in non-crushed
(fracture-less) datasets. Average crushedness over all the datasets is 2.46%
with standard deviation σ =3.87%. 5σ ≈20% was chosen as the threshold.



96 Chapter 6. Initialized Parallelized Segmentation

Vertebra

V
ol

um
e

S1 L5
L4

L4

L3
L2

L1
T12 T11 T10

L1-fit

Actualnvolume

Expectednvolume

Conclusion:
crushednL4s

Figure 6.9: Crushed vertebra analysis uses volumes of segmented vertebrae.
The change in volumes along the spine is exaggerated here.

6.5 Parameter Optimization

The Viola-Jones detector clearly relies on training data. The rest of the
segmentation system is not dependent on any kind of training. However,
since the whole system has some N = 16 parameters pi, such as thresholds
or weights (see Tab. 6.1 on the next page), which should not be exposed to
the user, their values are determined via an optimization process.

The objective function is defined via the Dice Similarity Coefficient
(DSC):

f (p1, ..., pN) = ∑
x∈T

DSC(x; p1, ..., pN)

where T is the set of datasets used for training.

A single evaluation of the function consists of segmenting all the training
datasets with the given parameter values and returning the sum of all DSC
values. A local, derivative-free COBYLA algorithm [Pow94] is used to
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Parameter name Used in/for Initial Optimized
bilateralDomainSigma Feature calc. 10 4.6
bilateralRangeSigma Feature calc. 3.0% 1.0%
structureTensorSigma Feature calc. 1 1.7
cannyVariance Feature calc. 2 1.23
lhEps Feature calc. 1.0% 1.5%
multBinaryThreshold Feature calc. 10.0% 27.6%
cannyLowerThreshold Feature calc. 5.0% 4.3%
cannyUpperThreshold Feature calc. 15.0% 24.0%
DFonThreshFeatureW Boundary est. 20.0% 33.3%
DFonCannyEdgesFeatW Boundary est. 20.0% 16.3%
DFonEnhancedGradFW Boundary est. 20.0% 14.0%
LowHighDiffFromImage Boundary est. 20.0% 15.6%
MinMaxThresholdedImg* =1-∑ w 20.0% 20.8%
percentMoreInflated Inflation 5.0% 7.8%
smoothFactor Inflation 30.0% 44.4%
edgeConstraintImportance Inflation 3 8.21
sizeGoalForceKappa Inflation 10.0% 10.2%

Table 6.1: Optimized parameters. MinMaxThresholdedImg is optimized
implicitly, because the sum of feature weights has to be 1.

maximize the function f . This optimization increases the average DSC
by ≈1% and reduces distance error by ≈5%. 9 T2 weighted datasets get
a reduction of DSC, and 10 get an increase. The average of T2 datasets
increases from 78.4 to 78.5, but the average of non-T2 datasets increases
from 76.7 to 81.3. In other words, the majority of the gain is for non-T2

datasets. This can be explained by the fact that initial parameters were
more suited for T2 datasets, because of higher availability for testing during
algorithm development.

6.6 Conclusion

A rounded system which goes beyond the state of the art was presented in
this chapter.

This system addresses the drawbacks (complex initialization, long run-
ning time, special MRI sequences) of other systems in literature and allows
for comparably fast and robust segmentation of pathological spine and
vertebra shapes on a large variety of datasets (both T1 and T2 weighted).
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This vertebral body segmentation system is inflation-based and incor-
porates a novel constrained subdivision surface approach for smoothness
control. A multiple features boundary estimator along with size-goal force
provide robustness. Automatic vertebra center detection reduces initial-
ization time and allows parallel segmentation. The segmentation takes
about 70 seconds for the whole dataset, which is significantly better than
the other spine MRI 3D methods (which were described in Sec. 2.10 on
page 32).

This system was tested on a larger set of 234 vertebral bodies (199 from
pathological, 35 from healthy datasets) than prior work (Hoad and Martel:
30 vertebrae, Štern et al.: 75 vertebral bodies; Ayed et al.: 75 vertebral bod-
ies, Neubert et al.: 132 vertebral bodies from healthy volunteers, Davatzikos
et al.: 84 vertebral bodies from healthy volunteers). Most importantly this
approach works on a large variety of datasets, whereas others restrict them-
selves to just one type of datasets: Štern et al. – T2 weighted, Davatzikos et
al. – T1 weighted, Ayed et al. – T2 weighted, Neubert et al. [NFE+12] – T2

SPACE sequence, and Hoad and Martel – T1 FISP sequence.



Chapter 7

Spine Segmentation Results

Rather than having detection and precision results spread over three chap-
ters, which would force the reader to leaf the pages (or scroll if viewed on
a computer) in order to compare them, all the results are merged into this
chapter.

Test setup and the data used for evaluation are described first. Results
are then given for:

• Vertebra detection accuracy – how many of the vertebral bodies visible
in the dataset have been detected?

• Segmentation accuracy – how good is the agreement between auto-
matic segmentation and manual reference?

• Diagnosis accuracy – have the diseases been correctly diagnosed?

7.1 Test Setup

All tests were executed on a machine with Windows7 64-bit operating
system, Intel Core i7-920 (4 cores @ 2.67GHz) processor and GeForce
GTX480 graphics card. This system also had 16GB of RAM, but that was
important only for the two datasets with 120 million voxels. This system
was not developed with memory conservation in mind, because the routine
datasets are of relatively small size (5-10 million voxels) compared to today
PC’s RAM capacities (4-16 gigabytes).

Besides comparing to methods developed specifically for spine MRIs,
all available datasets were subjected to the power watersheds of Cou-
prie et al. [CGNT09] as one representative of a general segmentation

99
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Figure 7.1: Power Watersheds initialization. One cross-section of seeds
overlaid on image (dataset Ble). Blue are background seeds, yellow
are seeds of vertebral bodies. It is noticeable on V.B. seeds that they
have different Z-positions (they appear to be of different sizes on this
cross-section).

method. The source code for this method is publicly available at http:
//powerwatershed.sourceforge.net/, so it could be run on the
same datasets as the systems described here. The execution time of power
watershed is more dependent on image size than the systems presented
here, because unimportant parts are not mostly ignored like in the systems
introduced in this thesis. The execution time of power watersheds on a
typical dataset (512x512x16) is about 20 seconds.

The graph cuts method (and its extension power watersheds) is well
suited for interactive segmentation, which is a mode where additional seeds
are placed until a satisfactory segmentation is achieved. It is not suitable
for semi-automatic segmentation, because it requires a lot of seeds and can
lead to implausible results which requires additional seed placement. The
manual initialization of this method in 3D is quite painstaking so I opted
for automatic seed creation, which is derived from ground truth data, for
the purpose of a thorough comparison.

One seed was placed into each vertebral body on a random position near
the center, and twice as many seeds into the background (Fig. 7.1). Since
the background seeds were large (20 voxel radius), they were clipped by a
safety region of interest around the vertebral bodies. This safety region was

http://powerwatershed.sourceforge.net/
http://powerwatershed.sourceforge.net/
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created by morphologically dilating ground truth vertebral body masks
with a 20 voxel radius spherical structuring element (Fig. 7.1 on the facing
page). There was one such initialization for each vertebra in the dataset.

The surface distance errors were measured using the Metro mesh com-
parison tool [CRS98]. The distance error is measured by iterating through
vertices and sample points on polygons of the segmentation surface and
measuring the distance to the closest point of the reference surface.

To get a relative distance error, the absolute distance error (measured
in millimeters) is divided by voxel size (also measured in mm). In case of
anisotropic voxels, the distance error is divided by the edge of isotropic
voxel which is equivalent by volume, Aiso = 3

√sxsysz where s∗ are voxel
spacings along the image axes. The average Aiso for 26 datasets used in the
evaluation is 1.19mm±0.27mm.

This, for example, transforms 1.77mm distance into 1.60 relative distance
error. The division is done for each dataset independently and then the
average is calculated. Just dividing the average distance by the average
voxel size does not yield the correct result.

Power watersheds crashed on a few datasets (with ≥10 million voxels)
due to hitting 2GB user memory limit of the available Win32-implementation.
The soft boundary version also crashed on Neubert’s case_* datasets [NFE+12],
because it was developed with only small routine datasets in mind. No
attention was paid to memory consumption, and at that time I had no
access to the case_* datasets.

7.2 Data

The system was tested on 22 pathological datasets and 4 datasets from
healthy volunteers for a total of 234 vertebrae. 13 are female and 13 male
patients. The source code and 17 of these datasets are publicly released,
aiming at the full reproducibility of research.

Data came from 7 different hospitals and 9 scanning stations (2 hospitals
had 2 each). Reference segmentations were produced by manually tracing
the vertebral body edges in the primary acquisition plane (23 sagittal, 2
axial, 1 coronal). 10 of the reference segmentations were done by neurosur-
geons, 14 by an experienced user (myself) and 2 by an experienced user
under neurosurgeon supervision (Aleš Neubert). The important property
of these datasets is the high anisotropy of voxel size between 2.7× and 8.2×
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Dataset MRI Seq. Sex Age Path. SB Station
AKa2 T2 frFSE F 21 + EU Sarajevo
AKa3 (*) T1 FSE F 21 + EU Sarajevo
AKa4 TIRM F 21 + EU Sarajevo
AKs3 T2 frFSE F 22 + EU Sarajevo
AKs5 (*) T2 frFSE F 22 + EU Sarajevo
AKs6 T1 FSE F 22 + EU Sarajevo
AKs7 (*) TIRM F 22 + EU Sarajevo
AKs8 (*) T1 FSE F 22 + EU Sarajevo
Ble T2 frFSE F 64 + NS Marburg2
C002 (*) T2 TSE F 74 Sco NS Prague1
case_2 T2 SPACE M 40 None AN Brisbane
case_10 T2 SPACE F 47 None AN Brisbane
DzZ_T1 T1 TSE M 27 None EU Siegen
DzZ_T2 T2 TSE M 27 None EU Siegen
F02 (*) T2 SE M 51 VF,SL NS Prague2
F03 T2 TSE M 72 VF NS Prague1
F04 T2 TSE F 69 VF+ EU Prague1
Geh T2 frFSE M 25 + NS Schwabach
Hoe T2 frFSE M 58 + EU Marburg2
Lan T2 TSE M 79 + EU Bad Wildungen
LanII T1 TSE M 79 + EU Bad Wildungen
LC T2 SE M 47 + NS Marburg1
S01 (*) T2 SE M 65 SL NS Prague2
S02 (*) T2 SE F 55 SL NS Prague2
Sch T2 frFSE M 42 SL+ NS Marburg
St1 (*) T2 SE M 71 St NS Prague2
Average 45
StdDev 22

Table 7.1: Medical information about the datasets used for the quantitative
evaluation. Seq. – sequence, Path – pathologies (Sco–scoliosis, VF–
vertebra fracture, SL–spondylolisthesis, +–other pathologies not diag-
nosable from vertebra segmentation). NVB – number of vertebral bodies
in a dataset. SB – segmented by (NS–neurosurgeon, EU–experienced
user).
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Dataset Sx,y Sz xyR zR AF NsVB MVox Aiso

AKa2 0.7 4 512 15 5.69 9 3.93 1.26
AKa3 (*) 0.7 4 512 15 5.69 9 3.93 1.26
AKa4 0.7 4 512 15 5.69 9 3.93 1.26
AKs3 0.7 4 512 25 5.69 10 6.55 1.26
AKs5 (*) 0.7 4 512 15 5.69 9 3.93 1.26
AKs6 0.7 4 512 15 5.69 9 3.93 1.26
AKs7 (*) 0.7 4 512 15 5.69 9 3.93 1.26
AKs8 (*) 0.7 4 512 15 5.69 9 3.93 1.26
Ble 0.63 4.4 512 14 7.04 10 3.67 1.2
C002 (*) 1.12 3.3 448 31 2.96 13 6.22 1.6
case_2 0.34 1.2 641 296 3.49 9 121.62 0.52
case_10 0.34 1 636 299 2.91 8 120.94 0.49
DzZ_T1 0.68 4.4 512 12 6.44 9 3.15 1.27
DzZ_T2 0.55 4.4 640 12 8.05 9 4.92 1.1
F02 (*) 0.5 3.85 768 18 7.7 9 10.62 0.99
F03 1.19 3.3 320 25 2.77 7 2.56 1.67
F04 1.12 3 448 23 2.69 17 4.62 1.55
Geh 0.63 4.4 512 10 7.04 7 2.62 1.2
Hoe 0.63 4.4 512 14 7.04 8 3.67 1.2
Lan 0.78 4.4 384 13 5.63 9 1.92 1.39
LanII 0.78 4.4 384 13 5.63 9 1.92 1.39
LC 0.73 4.4 384 14 6.03 7 2.06 1.33
S01 (*) 0.47 3.85 640 16 8.19 7 6.55 0.95
S02 (*) 0.47 3.85 640 16 8.19 8 6.55 0.95
Sch 0.63 4.4 512 16 7.04 7 4.19 1.2
St1 (*) 0.5 3.85 704 20 7.7 8 9.91 0.99
Average 0.68 3.8 527 38 5.85 9.0 13.53 1.19
StdDev 0.21 0.88 104 76.5 1.69 2.1 31.79 0.27

Table 7.2: Imaging information about the datasets used for the quantitative
evaluation. Sx,y – voxel spacing in x− and y−directions (millimeters),
Sz – spacing along z−axis. xyR – resolution of image along x− and
y−axes, zR - z−resolution. AF – anisotropy factor Sz

Sxy
. NsVB – number

of segmented vertebral bodies in a dataset. MVox – millions of voxels.
Aiso – spacing of isotropic image with equivalent voxel volume.
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(see Tab. 7.2 on the previous page and Fig. 7.6 on page 115). The manual
segmentation time was 3-6 minutes per vertebra.

9 segmentations were used for training the Viola-Jones detector [VJ01]
and later to optimize the parameters in section 6.5 on page 96. They were
chosen from the datasets that could be publicly released. The goal was
to have in both, the training set and the test set, various MRI sequences,
anisotropy factors and at least one each of the three diagnosable pathologies.
Other than that, the choice was arbitrary. From Tabs. 7.1 on page 102 and 7.2
on the previous page and Figs. 7.2 on page 108, 7.3 on page 108, 7.10 on
page 117 and 7.9 on page 117 (AvgTrain and AvgTest) it can be seen
that both of these sets have very similar characteristics and results. With
hindsight it can be claimed that the training set is a bit more challenging.

To check segmentation expertise of the author, one dataset (F02) was
manually segmented both by the author and a neurosurgeon. Dice coef-
ficient is 91%, which is on par with segmentation correlations between
neurosurgeons [EBK+11a] (86-96% DSC).

7.3 Vertebra Detection Accuracy

The following abbreviations are used for different systems and their vari-
ants 7.3.

Abbr. Initials Chapt. Variant
PW Power Watersheds Couprie et al.

bbFF Binary Boundary –
FreeForm

4 No subdivision

bbH Binary Boundary –
Heuristic

4 Heuristic subdivision hierarchy
normalization

bbO Binary Boundary –
Optimal

4 Least squares optimal subdivi-
sion hierarchy normalization

mfO Multi-Feature –
Outline

5 Soft-boundary segmentation,
outline initialization

mfSP Multi-Feature –
Single Point

5 Soft-boundary segmentation,
single point initialization

AI Automated Initial-
ization

6 Initialized parallelized segmen-
tation

Table 7.3: System abbreviations.
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Dice Similarity Coefficient (DSC) is expressed in percentages, and is
calculated with respect to the manual reference segmentation. Judging
only by segmentation accuracy measures (e.g. DSCs from Tab. 7.9 on
page 112), one would easily get the impression that the improvement
was not great. But since the bb and mf systems derive detection from
correctness of segmentation, they end up only accepting uniformly sized
segmentations. Because of that, their detection accuracy suffers. Both the
bb and mf systems had unsatisfactory detection rates because a single
wrongly segmented vertebral body prevents further segmentations in that
direction (up or down).

For the Viola-Jones detector (AI system) detection of upper thoracic
vertebrae was deficient, because only one of the datasets used for detector
training had vertebrae above T10 (dataset C002 also had vertebrae T6-T9).

Most false positives occurred for the S1 vertebra and the upper thoracic
vertebrae, which is influenced by the low contrast for the upper thoracic
region. The S1 vertebra simply has a significantly different geometry than
lumbar and thoracic vertebrae, which is not taken into account by this
system.

All variants had low number of false positives (detection as vertebra of
something which is not a vertebra). Therefore the main improvement was
the reduction of false negatives (failing to detect a vertebra which exists in
the image). This can be most clearly seen in Tab. 7.4 on the following page.

Kelm et al. [KWZ+13] established a state of the art regarding vertebra
detection in magnetic resonance images. They report sensitivity of 98.6%,
but do not report specificity. For MRI they used healthy individuals, but
ascribe increase of errors in CT partly to pathologies.

The AI system presented in chapter 6 has 93.3% sensitivity, 98.6% speci-
ficity and 95.8% accuracy. These numbers can be calculated from Tabs. 7.4
on the next page and 7.5 on page 107. Number of manual corrections of
detections depends on accuracy.

Kelm’s detection results seem somewhat better, but they come at a cost
of an order of magnitude longer processing time: for 6 million voxel images
Kelm’s method takes an average 11.5 seconds, while the detector presented
in Sec. 6.2 on page 85 takes about 1 second. Even if dual-core/quad-core
difference is accounted for, Kelm’s method is still about 5 times slower. If
we take into account that Kelm et al. used 38 datasets for training their
detector, it can be concluded that the detector presented in Sec. 6.2 on
page 85 is comparable to that of Kelm.
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Dataset bbFF bbH bbO mfO mfSP AI
AKa2 56% 44% 44% 56% 56% 0%
AKa3 (*) 89% 78% 89% 78% 67% 0%
AKa4 78% 11% 11% 78% 56% 11%
AKs3 90% 70% 80% 60% 60% 20%
AKs5 (*) 44% 11% 44% 56% 56% 0%
AKs6 67% 22% 56% 89% 56% 11%
AKs7 (*) 44% 44% 44% 44% 33% 0%
AKs8 (*) 67% 67% 78% 78% 56% 11%
Ble 50% 10% 70% 50% 40% 10%
C002 (*) 62% 54% 54% 46% 92% 15%
case_2 89% 89% 89% 0%
case_10 78% 67% 78% 11%
DzZ_T1 11% 0% 0% 11% 0% 0%
DzZ_T2 33% 0% 0% 11% 0% 11%
F02 (*) 67% 56% 67% 11% 89% 11%
F03 38% 38% 38% 38% 38% 0%
F04 82% 82% 82% 53% 35% 12%
Geh 0% 0% 0% 0% 0% 0%
Hoe 38% 25% 25% 0% 0% 0%
Lan 11% 11% 33% 22% 11% 11%
LanII 89% 0% 11% 89% 22% 11%
LC 0% 0% 0% 0% 0% 0%
S01 (*) 38% 13% 63% 13% 13% 13%
S02 (*) 40% 60% 60% 20% 20% 0%
Sch 25% 0% 0% 0% 0% 13%
St1 (*) 63% 50% 75% 25% 0% 0%

AvgTest 49.0% 27.6% 36.3% 37.1% 24.9% 7.1%
AvgTrain (*) 57.0% 48.0% 63.7% 41.1% 47.2% 5.6%
AvgAll 51.8% 34.7% 45.8% 38.6% 33.2% 6.6%
StdDevAll 27.8% 30.0% 31.2% 30.1% 29.4% 6.5%
StdDevTest 32.4% 31.5% 33.6% 33.1% 24.6% 6.5%

Table 7.4: Vertebra detection, false negatives.
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Dataset bbFF bbH bbO mfO mfSP AI
AKa2 0% 0% 0% 0% 0% 0%
AKa3 (*) 0% 11% 11% 33% 0% 11%
AKa4 0% 0% 0% 0% 0% 11%
AKs3 50% 0% 0% 0% 0% 0%
AKs5 (*) 0% 0% 0% 0% 0% 0%
AKs6 0% 11% 11% 0% 0% 11%
AKs7 (*) 0% 0% 0% 11% 0% 0%
AKs8 (*) 0% 0% 0% 0% 0% 0%
Ble 0% 0% 0% 0% 0% 0%
C002 (*) 0% 0% 0% 0% 0% 0%
case_2 0% 11% 0% 0%
case_10 0% 0% 11% 0%
DzZ_T1 0% 0% 0% 0% 0% 0%
DzZ_T2 0% 0% 0% 0% 0% 0%
F02 (*) 0% 0% 0% 0% 0% 0%
F03 0% 0% 0% 0% 0% 0%
F04 0% 0% 0% 0% 0% 0%
Geh 0% 0% 0% 14% 0% 0%
Hoe 0% 0% 0% 0% 0% 0%
Lan 0% 0% 0% 0% 0% 0%
LanII 0% 0% 0% 0% 11% 0%
LC 0% 0% 0% 0% 0% 0%
S01 (*) 0% 0% 0% 0% 0% 0%
S02 (*) 0% 10% 0% 10% 0% 10%
Sch 0% 0% 0% 0% 0% 0%
St1 (*) 0% 0% 0% 0% 13% 0%

AvgTest 2.9% 1.3% 1.3% 1.0% 0.7% 1.3%
AvgTrain (*) 0.0% 2.3% 1.2% 6.0% 1.4% 2.3%
AvgAll 1.9% 1.7% 1.3% 2.9% 1.0% 1.7%
StdDevAll 9.8% 4.0% 3.6% 7.6% 3.3% 4.0%
StdDevTest 12.1% 3.7% 3.7% 3.7% 2.9% 3.7%

Table 7.5: Vertebra detection, false positives.
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Figure 7.2: Vertebra detection, false negatives. Lower is better.
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Figure 7.3: Vertebra detection, false positives. Lower is better.

7.4 Segmentation Accuracy

The majority of discrepancies between manual and automatic segmenta-
tions result from lateral slices and upper thoracic vertebrae (see Fig. 7.6 on
page 115). Lateral slices make it harder to algorithmically discern a bound-
ary due to significant partial volume effects. Power watersheds mostly fail
on lateral edges of vertebral bodies, too (Figs. 7.4 on page 113 and 7.11 on
page 118).

The averages presented in this chapter only take into account the seg-
mented vertebral bodies, ignoring the missed vertebrae (all systems except
PW and AI) and datasets which caused a crash (PW and MF*). Therefore
the results seem somewhat better than they really are (for all systems
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Dataset PW bbFF bbH bbO mfO mfSP AI
AKa2 36.28 21.86 22.21 23.34 10.27 12.2 10.82
AKa3 (*) 45.54 16.17 40.58 39.28 51.91 12.03 10.79
AKa4 26.80 23 12.7 12.4 23.05 28.1 9.29
AKs3 60.10 108.17 13.28 11.37 11.04 13.04 17.67
AKs5 (*) 32.73 20.84 17.59 19.29 6.74 8.07 10.8
AKs6 57.24 9.71 20.7 31.85 10.94 13.18 10.58
AKs7 (*) 22.44 16 10.12 12.13 42.94 24.86 11.28
AKs8 (*) 23.69 16.34 18.71 18.54 23.81 11.51 9.11
Ble 22.31 16.46 16.82 17.01 9.01 14.94 14.43
C002 (*) 33.88 18.86 9.38 9.48 12.83 25.12 11.81
case_2 32.27 18.95 19.28 16.59
case_10 37.16 16.72 44.76 11.29
DzZ_T1 45.46 17.55 10.43 10.42 10.14 11.35 12.01
DzZ_T2 63.00 15.71 11.37 13.52 12.32 11.81 13.59
F02 (*) 22.88 25.12 26.04 15.12 17.78 15.65
F03 42.23 16.22 10.98 11.25 13.85 15.78 14.14
F04 49.56 13.69 12.82 13.9 10.14 8.71 11.4
Geh 86.09 17.43 17.47 19.77 11.68 15.23 7.54
Hoe 65.47 18.42 16.24 18.37 11.79 9.71 8.91
Lan 43.26 16.1 15 12.12 14.4 9.83 10.47
LanII 29.88 10.35 14 12.43 17.41 14.28 11.06
LC 46.92 13.75 12.06 12.2 13.85 12.94 10.51
S01 (*) 37.28 22.74 21.75 21.08 12.79 14.11 19.56
S02 (*) 24.33 15.26 14.82 16.05 14.9 9.91 9.73
Sch 67.67 10.68 14.66 16.74 11.99 12.94 11.76
St1 (*) 22.33 24.91 13.02 26.2 17.58 17.22

AvgTest 49.48 23.44 15.08 17.69 12.79 13.60 11.89
AvgTrain (*) 31.41 19.05 20.33 19.43 23.03 15.66 12.88
AvgAll 43.73 21.92 16.90 18.29 16.63 14.38 12.23
StdDevAll 17.18 18.62 6.54 8.76 10.65 5.17 3.01
StdDevTest 17.34 23.01 3.42 8.86 3.54 4.51 2.65

Table 7.6: Average Hausdorff (symmetric maximum) distance between
segmented and reference vertebral body meshes, in millimeters.
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Dataset PW bbFF bbH bbO mfO mfSP AI
AKa2 8.10 3.55 2.98 4.08 1.04 1.17 1.72
AKa3 (*) 11.82 2.61 22.25 22.49 22 1.51 1.63
AKa4 5.99 5.44 1.35 1.63 6.64 9.47 1.56
AKs3 15.25 76.41 2.67 2.72 1.51 1.64 2.04
AKs5 (*) 8.62 2.87 2.51 3 0.99 1.17 1.37
AKs6 15.40 1.98 4.51 8.95 1.12 1.73 1.85
AKs7 (*) 5.74 2.63 1.43 1.7 19.55 7.38 1.96
AKs8 (*) 4.49 2.78 2.73 2.8 3.87 1.51 1.46
Ble 3.74 2.31 2.61 2.88 1.1 1.73 2.07
C002 (*) 7.62 3.84 1.43 1.67 1.93 9.32 1.84
case_2 7.49 2.11 2.3 2.29
case_10 13.09 1.94 14.79 1.09
DzZ_T1 11.25 3.17 1.14 1.42 1.41 1.54 1.76
DzZ_T2 14.61 2.89 1.3 1.71 1.61 1.75 2.04
F02 (*) 2.44 2.99 3 1.77 2.9 2
F03 11.93 4.11 1.53 1.91 2 2.1 2.18
F04 14.50 3.05 3.11 3.71 1.61 1.51 2.18
Geh 24.00 2.03 2.04 2.55 1.5 2.2 1.08
Hoe 14.58 2.34 2.18 2.55 1.37 1.32 1.23
Lan 9.05 2.63 1.72 1.8 1.7 1.47 1.74
LanII 7.33 1.65 2.13 1.88 3.19 3.92 1.98
LC 9.97 2.4 1.45 1.66 1.96 2.02 1.76
S01 (*) 6.78 2.31 2.7 3.72 1.35 1.45 2.12
S02 (*) 5.79 1.97 1.73 2.15 3.54 1.2 1.38
Sch 18.67 1.99 1.5 1.95 1.39 1.52 1.41
St1 (*) 2.57 2.93 1.95 2.37 2.01 1.95

AvgTest 12.29 8.03 2.13 3.44 1.94 2.34 1.77
AvgTrain (*) 7.27 2.67 4.52 4.72 6.37 3.16 1.75
AvgAll 10.69 6.17 2.96 3.88 3.61 2.65 1.76
StdDevAll 5.07 14.51 4.01 4.71 5.44 2.44 0.34
StdDevTest 5.24 17.84 0.85 3.41 1.40 2.07 0.38

Table 7.7: Mean distance of points in the automatic segmentation mesh
from the reference mesh, in millimeters.
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Dataset PW bbFF bbH bbO mfO mfSP AI
AKa2 6.45 2.82 2.37 3.25 0.83 0.93 1.37
AKa3 (*) 9.41 2.08 17.73 17.92 17.53 1.2 1.3
AKa4 4.77 4.33 1.08 1.3 5.29 7.55 1.24
AKs3 12.15 60.88 2.13 2.17 1.2 1.31 1.62
AKs5 (*) 6.87 2.29 2 2.39 0.79 0.93 1.09
AKs6 12.27 1.58 3.6 7.13 0.89 1.38 1.47
AKs7 (*) 4.57 2.1 1.14 1.35 15.58 5.88 1.56
AKs8 (*) 3.57 2.21 2.17 2.23 3.08 1.2 1.16
Ble 3.12 1.93 2.18 2.41 0.92 1.45 1.73
C002 (*) 4.76 2.4 0.9 1.04 1.21 5.82 1.15
case_2 14.36 4.05 4.42 4.4
case_10 26.68 3.96 30.13 2.23
DzZ_T1 8.85 2.49 0.89 1.11 1.11 1.21 1.39
DzZ_T2 13.33 2.63 1.19 1.56 1.47 1.59 1.87
F02 (*) 2.47 3.03 3.04 1.79 2.94 2.03
F03 7.14 2.46 0.91 1.15 1.2 1.25 1.31
F04 9.35 1.96 2.01 2.39 1.04 0.98 1.4
Geh 20.04 1.7 1.71 2.13 1.25 1.84 0.9
Hoe 12.18 1.95 1.82 2.13 1.15 1.1 1.03
Lan 6.51 1.89 1.24 1.3 1.23 1.06 1.26
LanII 5.27 1.19 1.53 1.35 2.29 2.82 1.42
LC 7.50 1.8 1.09 1.25 1.48 1.52 1.33
S01 (*) 7.16 2.44 2.85 3.93 1.43 1.53 2.24
S02 (*) 6.11 2.08 1.82 2.27 3.73 1.27 1.46
Sch 15.58 1.66 1.25 1.63 1.16 1.27 1.18
St1 (*) 2.6 2.97 1.98 2.4 2.04 1.97

AvgTest 9.63 7.78 1.94 3.93 1.50 1.82 1.60
AvgTrain (*) 6.07 2.30 3.85 4.02 5.28 2.54 1.55
AvgAll 8.50 5.88 2.60 3.96 2.92 2.09 1.58
StdDevAll 4.24 12.40 3.22 6.29 4.34 1.77 0.67
StdDevTest 4.58 15.14 1.03 6.92 1.10 1.65 0.79

Table 7.8: Relative surface distance errors (mean divided by Aiso).
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Dataset PW bbFF bbH bbO mfO mfSP AI
AKa2 74.0% 56.3% 61.3% 44.8% 87.3% 86.5% 82.3%
AKa3 (*) 63.6% 79.3% 40.8% 40.4% 15.0% 81.1% 81.6%
AKa4 73.1% 75.9% 84.1% 82.0% 41.6% 44.0% 83.2%
AKs3 64.3% 0.0% 73.6% 72.5% 82.8% 81.9% 73.8%
AKs5 (*) 70.7% 65.1% 70.6% 62.9% 87.2% 85.5% 84.2%
AKs6 60.9% 81.7% 51.7% 45.1% 86.1% 79.7% 80.6%
AKs7 (*) 74.5% 82.9% 85.9% 82.8% 31.8% 48.9% 78.0%
AKs8 (*) 76.2% 65.4% 63.9% 57.0% 61.2% 83.4% 83.7%
Ble 78.9% 72.9% 65.2% 65.5% 86.1% 74.4% 72.5%
C002 (*) 64.9% 70.2% 79.6% 77.0% 73.4% 0.8% 74.5%
case_2 75.9% 76.1% 73.2% 69.2%
case_10 70.5% 73.0% 38.6% 80.6%
DzZ_T1 63.1% 86.9% 87.7% 89.4% 87.3% 86.9% 84.3%
DzZ_T2 65.4% 84.9% 85.3% 82.2% 82.6% 81.5% 78.9%
F02 (*) 65.4% 60.7% 60.1% 77.7% 62.3% 74.2%
F03 61.2% 76.5% 84.9% 82.1% 79.4% 79.0% 76.1%
F04 58.2% 62.2% 61.5% 54.7% 77.6% 79.9% 72.6%
Geh 56.8% 77.5% 79.3% 73.7% 82.2% 74.5% 88.4%
Hoe 56.0% 70.2% 74.8% 66.9% 79.5% 81.0% 83.1%
Lan 60.6% 72.7% 76.9% 80.1% 78.6% 82.1% 80.0%
LanII 64.0% 84.7% 76.4% 79.8% 68.6% 69.8% 77.9%
LC 58.8% 81.0% 84.2% 82.3% 79.2% 78.9% 81.7%
S01 (*) 70.4% 71.3% 73.2% 62.4% 82.6% 82.3% 76.7%
S02 (*) 71.3% 74.3% 77.2% 70.9% 69.9% 82.3% 79.7%
Sch 56.4% 82.4% 80.1% 73.4% 81.4% 81.2% 82.4%
St1 (*) 75.8% 61.0% 80.3% 67.9% 79.7% 79.9%

AvgTest 63.5% 71.3% 75.1% 69.8% 78.7% 77.4% 79.3%
AvgTrain (*) 70.2% 72.2% 68.1% 66.0% 63.0% 67.4% 79.2%
AvgAll 65.6% 71.6% 72.7% 68.4% 72.8% 73.7% 79.2%
StdDevAll 6.9% 16.5% 11.5% 14.5% 18.4% 18.9% 4.5%
StdDevTest 6.9% 20.1% 10.0% 15.2% 11.3% 10.2% 5.0%

Table 7.9: Dice similarity coefficient between automatic and reference
segmentation masks.
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PW bbFF bbH bbO mfO mfSP AI

Figure 7.4: Overlay of segmentation results (green) and manual reference
(red). Intersection is yellow. Dataset C002, coronal slice 242. It is fairly
obvious that the majority of segmentation errors comes from lateral (left
and right) edges of the vertebral bodies. The reason are thick slices
(coarse voxel spacing along the inter-slice axis).

except AI). Since vertebra detection accuracy was discussed in the previous
section, this section focuses only on segmentation precision decoupled from
detection accuracy.

In spite of this, a progress (bb→mf→AI) can be easily seen in the tables
and charts in this section. For comparison to methods of other authors, the
best (AI) system will be taken into account.

For the AI system the mean distance of segmentation from the reference
surface is 1.77 mm ± 0.36 mm. When converted into relative distance it is
1.60±0.79. This relative distance should be used for comparing to results
obtained on isotropic 1mm3 datasets.

The systems presented here are vastly superior to power watersheds for
the purpose of vertebral body segmentation in MRI. The execution time
is similar, but AI has higher DSC (79% vs 67%), and significantly lower
Hausdorff distance (12mm vs 49mm) and relative distance error (1.59 vs.
9.63).
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PW - 65% bbFF - 70% bbH - 79% bbO - 77%

Reference mfO - 73% mfSP - 1% AI - 75%

Figure 7.5: Overlay of segmentation results (green) and manual reference
(red). Intersection is yellow. Dataset C002, mid-sagittal slice (slice 14).
For each system only the segmented vertebrae were used to calculate
the DSC. It can be seen that single point initialization variant of the soft
boundary system has failed.

Power watersheds have lower DSC than all the systems presented here
in spite of fairly rich initialization (Fig. 7.1 on page 100). Power watersheds
frequently produce some protruding spikes (Fig. 7.11 on page 118). These
spikes are thin, so they do not hurt DSC measure so much, but surface
distance errors are significantly higher (12.29mm, 9.63 relative).



7.4 Segmentation Accuracy 115

Original Left Central Right Coronal

Legend:
Ref.
Seg.
∩

Axial

Figure 7.6: Overlay with reference segmentation showing several represen-
tative slices. Power watersheds (PW, top row) and initialized parallelized
segmentation (AI, bottom two rows). Images were cropped to save space
(unimportant parts were cut off). See Tab. 7.2 on page 103 for dataset
properties. Top and middle: dataset C002. Bottom: dataset F03. Dice
coefficients are 65%, 75% and 76%.
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Figure 7.7: Average Hausdorff distance between segmented and reference
vertebral body meshes. Scale is logarithmic, in millimeters.

Figure 7.8: Mean distance of points in the automatic segmentation mesh
from the reference mesh. Scale is logarithmic, in millimeters.

The average DSC of 79.3% is close to Davatzikos et al. with 81%, but
they used healthy individuals. Healthy volunteer datasets are easier to
segment and achieve better DSC. The datasets with more severe pathologies
(e.g. crushed vertebra) have lower DSC than less noticeable pathologies
(e.g. stenosis). Pathologies obviously and naturally reduce the detection
rate. Using the relative distances error of 1.60±0.79, my system can be
compared to Štern et al., who report an error of 1.85mm±0.47mm on a
1 mm3 grid. When taking into account only the mid-sagittal slice, my
system achieves ≈86% DSC, which is similar to Ayed et al. at 85%. Hoad
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Figure 7.9: Relative surface distance errors. Scale is logarithmic.

Figure 7.10: Dice similarity coefficient between automatic and reference
segmentation masks.

and Martel’s surgery-oriented method with thorough initialization and
manual correction of segmentation at 1.25mm±0.28mm mean distance
error remains the most precise.

Neubert kindly provided two datasets with manual segmentations
(case_2 and case_10), so I could directly compare the system from chapter 6
on page 83 to theirs [NFS+11, NFE+12].

In order to have a fair comparison to Neubert et al. [NFE+12] their
distance results should be converted into relative distances. Aiso of 0.5mm
transforms distance error of 0.67mm into a relative distance error of 1.34.
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Figure 7.11: Surface overlay of soft boundary segmentation (mfSP, green)
and power watersheds (PW, yellow). Red is the reference segmentation.
Reference and PW surfaces were derived from binary masks using
marching cubes. L2 vertebral body from DzZ_T1 dataset. DSCs: PW–
85%, mfSP–88%.

This is better than AI relative distance error (1.6). Neubert et al. also have
higher DSC (91% vs my 78%). However this high quality comes at a cost of
average execution time per dataset of 5.5 hours.

When they ran their method on datasets of higher anisotropy, their
DSC was two percentage points lower: 83% vs 85% (see [NFS+11], dataset
group I vs II). If less time is allotted to the iterative optimization, DSC is
lower: tenfold reduction in execution time (5.5h→35min) lowers DSC from
91% [NFE+12] to 85% [NFS+11].

As my system was tailored for lower resolution routine datasets, it had
low precision on Neubert’s high-resolution datasets, case_2: 2.29mm and
case_10: 1.09mm. However, the method worked without crashing, albeit
with a large memory consumption. Unfortunately, Neubert did not evaluate
his method on the 17 publicly available datasets for full cross-validation.

If case_2 and case_10 datasets are not taken into account, relative dis-
tance error decreases considerably for AI system, and both relative and
absolute distance errors decrease for bb system. PW and mf systems
crashed on these datasets, so there is no difference for them (Tab. 7.10 on
the next page).

Restricting the test set to the routine datasets, for which the systems
presented in this thesis were designed, brings the relative distance error of



7.4 Segmentation Accuracy 119

Measure system 17DS 15DS Relative
improvement

Hausdorff PW 49.48 49.48 0.00%
bbFF 23.44 21.94 6.41%
bbH 15.08 14.71 2.43%
bbO 17.69 15.78 10.80%
mfO 12.79 12.79 0.00%

mfSP 13.60 13.60 0.00%
AI 11.89 11.61 2.31%

MeanSD PW 12.29 12.29 0.00%
bbFF 8.03 7.73 3.76%
bbH 2.13 2.15 −0.67%
bbO 3.44 2.76 19.78%
mfO 1.94 1.94 0.00%

mfSP 2.34 2.34 0.00%
AI 1.77 1.77 −0.53%

RelativeSD PW 9.63 9.63 0.00%
bbFF 7.78 6.09 21.82%
bbH 1.94 1.67 14.15%
bbO 3.93 2.15 45.29%
mfO 1.50 1.50 0.00%

mfSP 1.82 1.82 0.00%
AI 1.60 1.37 14.35%

DSC PW 63.5% 63.5% 0.00%
bbFF 71.3% 71.0% −0.35%
bbH 75.1% 75.1% 0.09%
bbO 69.8% 71.6% 2.58%
mfO 78.7% 78.7% 0.00%

mfSP 77.4% 77.4% 0.00%
AI 79.3% 79.9% 0.73%

Table 7.10: Averages of results on entire test set (17 datasets) and without
taking case_2 and case_10 datasets into account (15 datasets). The most
important improvement is emphasized.
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AI system down to 1.37±0.25. This is very close to Neubert et al. at 1.34
and comparable to Hoad and Martel at 1.25±0.28.

It is of interest to note that this does not improve the Dice Coefficients
much. The reason is that the voxels in Neubert’s datasets have about 15
times smaller volume than average. Due to that about 15 times more voxels
make up an object (vertebral body in this case), and a relative difference of
a single voxel has about 15 times smaller influence on the DSC.

7.5 Diagnosis Accuracy

Diagnosis is highly dependent on correctness of segmentation. It does
not make much sense to try to establish a diagnosis based only on the
segmentations of half of the vertebrae present in the image. In addition,
correct vertebra labels are needed to have a somewhat automated evaluation.
Only the latest system (AI) provides this, so diagnosis accuracy is examined
only for this case.

The used datasets had no examples of high-grade vertebral fracture. Two
instances of high-grade spondylolisthesis were classified correctly, as was
the only high-grade scoliosis. There were 6 false alarms for severe crushed
vertebra and 9 for severe spondylolisthesis, or 2.6% and 3.9% respectively.
There were no false alarms for scoliosis.

Overall, the system errs on the side of caution, falsely drawing attention
to non-diseased vertebrae (5.5%) and never missing a diseased one, leading
to a conservative and robust behavior.

The diagnostic measurement errors for crushing percent, spondylolisthe-
sis percent and Cobb angle are 4.3 percentage points, 4.6 percentage points
and 3◦, respectively. Relative errors (55%, 52% and 31%) are quite large
because the ground truth measurements are fairly low (2.5%, 4% and 9.2◦).

The averages for automatic results were 4.9% crushing, 7.9% spondy-
lolisthesis and 9.8◦ Cobb angle. The difference to ground truth should
mostly be ascribed to imperfect segmentation.

This proves once again that high reliability of diagnosis is not easy to
achieve. The diagnosis results established using the systems presented here
are a valuable help to the medical professionals, but cannot replace their
diagnosis.
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Time Crushed Spondyl. Cobb Diag. NVB

Dataset [sec] PP Rel. PP Rel. AD Rel. FP FN
AKa2 32 2.4 45% 6.5 68% 3.3 21% 0 0 9
AKa3 (*) 17 4.5 58% 5.0 48% 4.3 28% 1 0 9
AKa4 29 5.7 60% 1.6 29% 1.9 14% 1 0 9
AKs3 29 7.0 55% 11.0 67% 5.5 44% 4 0 10
AKs5 (*) 36 2.0 50% 4.0 38% 2.0 28% 1 0 9
AKs6 38 5.2 52% 5.5 56% 2.8 27% 1 0 9
AKs7 (*) 27 3.2 47% 2.6 34% 1.9 26% 2 0 9
AKs8 (*) 20 1.7 22% 3.4 47% 1.8 14% 2 0 9
Ble 50 5.2 56% 8.4 58% 7.6 34% 3 0 10
C002 (*) 26 2.5 48% 3.7 32% 1.8 6% 1 0 13
case_2 396 8.1 52% 5.0 72% 3.4 59% 0 9
case_10 317 6.3 74% 2.1 54% 0.4 5% 0 8
DzZ_T1 18 2.9 59% 2.1 56% 0.4 11% 2 0 9
DzZ_T2 62 4.1 68% 3.6 64% 2.2 61% 0 0 9
F02 (*) 114 8.4 45% 4.9 50% 7.4 36% 2 1 9
F03 14 2.6 28% 7.6 49% 7.6 58% 0 1 7
F04 23 10.0 80% 9.6 53% 0.5 6% 3 2 17
Geh 27 1.4 66% 0.5 26% 0.6 15% 0 0 7
Hoe 33 1.8 60% 1.8 45% 4.3 40% 0 0 8
Lan 12 2.6 43% 4.0 54% 3.4 40% 2 0 9
LanII 13 2.1 39% 4.1 61% 5.1 59% 1 0 9
LC 24 3.3 46% 3.1 38% 2.7 21% 1 0 7
S01 (*) 78 3.7 50% 2.4 31% 1.2 19% 0 0 7
S02 (*) 59 3.8 51% 4.6 66% 1.3 50% 0 1 8
Sch 37 2.7 50% 1.9 40% 0.8 10% 0 0 7
St1 (*) 91 4.4 49% 2.9 60% 4.5 34% 1 0 8

AvgTest 80 4.4 53% 4.2 51% 3.2 30% 1.3 0.1 8.9
AvgTrain (*) 30 3.6 50% 4.5 47% 2.7 29% 1.0 0.4 9.2
AvgAll 62 4.1 52% 4.3 50% 3.0 29% 1.2 0.2 9.0
StdDevAll 91 2.3 12% 2.6 13% 2.2 18% 1.1 0.5 2.1
StdDevTest 109 2.1 10% 2.6 15% 2.2 18% 1.2 0.2 1.4

Table 7.11: Quantitative evaluation of diagnosis. PP – difference in percent-
age points. AD – angle difference in degrees. FP – false positives. FN –
false negatives. NVB – number of vertebral bodies in dataset. Execution
time is for the entire system (except vertebra detection), not just the
diagnosis.





Chapter 8

Conclusion

A vertebral body segmentation system was developed with a variety of
routine MR images in mind. The system is therefore general and applicable
also to specialized images, such as those of 3D SPACE sequence. Significant
usage of working memory was a technical side-effect. More important was
the failure of this system to fully utilize the high resolution offered by 3D
SPACE sequence. This conclusion just once again emphasizes that there
is no “magic bullet” algorithm which works with all kinds of data and
exploits each dataset type to the maximum.

Increasing algorithmic complexity improves the results but also increases
computational burden. In chapter 4 it is 3-4 seconds, in chapter 5 about 30
seconds and in chapter 6 around 70 seconds.

The diagnosis established at the end relies on all steps done before, so
every imperfection makes diagnosis harder. Especially hard was diagnosing
crushed vertebral bodies. A sufficient diagnosis for that would require a
more intricate shape analysis which in turn requires higher segmentation
precision. Overall, the established diagnosis can only aid the physician, not
replace his judgment.

The levels of the butterfly scheme have large steps so it is sometimes
impossible to apply just the right number of control vertices. Perhaps that
would be somewhat alleviated if the

√
3-scheme [Kob00] was used.

Open science

The program code is made publicly available under an open source MIT
license, including 17 anonymized datasets with corresponding segmen-
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http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
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tations: http://www.cg.informatik.uni-siegen.de/en/spine-
segmentation-and-analysis A written consent was collected for ev-
ery MRI study. Please cite [ZVE+14] or this thesis if you use any of these
in your work.

The project is configured using Cross-platform Make (CMake), and
all the libraries used are multi-platform too. The datasets are in single-
file DICOM format, readable by Insight Toolkit [ISNC05] and many user
programs, such as MeVisLab and 3DSlicer. Segmentations are provided as
image masks in MHA format, MeVisLab’s contour segmentation objects
and polygonal meshes with vertex positions given in DICOM user space.
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