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Kurzfassung

Die Ortung in Mobilfunknetzen ist ein faszinierendes Forschungsgebiet. Der
in großem Umfang genutzte Mobilfunkstandard für digitale Netze Global
System for Mobile communications (GSM) kann auch zur Positionsbestim-
mung erfolgreich eingesetzt werden. Eine der bedeutenden Anwendungen
bezüglich der Ortung von Mobilstationen (MS), d.h. von Mobilfunkend-
geräten, ist das sogenannte Ground-Target-Tracking, also die Zielverfolgung
derselben. Im Falle eines GSM-basierten Ortungssystems, das auf den ak-
tuellen GSM-Spezifikationen basiert, müssen viele Schwierigkeiten überwun-
den werden, um die Position genau schätzen zu können. Zum einen liegen - da
die Signale im Wesentlichen unter Berücksichtigung der Anforderungen hin-
sichtlich der Kommunikation (und nicht der Ortung) entworfen wurden - die
Ergebnisse der Ortung in GSM-Netzwerken nur in einer groben Auflösung
vor, und im Falle einer nicht ausreichend hohen Anzahl von verfügbaren
Messwerten treten Mehrdeutigkeiten bei der Positionsschätzung auf. Zum
anderen führt das Ziel entsprechend dem Gelände, dem Straßenverlauf und
dem Verkehr oft Bewegungsänderungen durch. In dieser Arbeit werden
deshalb Datenfusionsansätze verfolgt, die redundante Messwerte aus ver-
schiedenen Quellen berücksichtigen, um eine verbesserte Genauigkeit der Po-
sitionsschätzung zu erzielen.

Im Mittelpunkt der Arbeit steht die Zustandsschätzung unter Berücksich-
tigung der Messwerte aus dem GSM-Netzwerk und von a priori Information
zum Straßenverlauf. Es wird ein Datenfusionsansatz eingeführt, mit dem
die Fusion der Messwerte aus den Verfahren Time-of-Arrival (TOA) und
Received-Signal-Strength (RSS) möglich wird, um einen verbesserten Po-
sitionsschätzwert zu erhalten. Es wird dabei ein Extended-Kalman-Filter
(EKF) eingesetzt. Die theoretisch beste erzielbare Genauigkeit mit dem
Datenfusionsansatz wird in Form der posterior Cramér-Rao lower bound
(PCRLB) abgeleitet. Die PCRLB wird herangezogen um die Vorteile des
Datenfusionsansatzes zu zeigen und dient als Benchmark für den Vergleich
verschiedener Verfahren. Die Information über den Straßenverlauf wird in
den Schätzprozess in Form einer Pseudomessung integriert. Simulationen
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sowohl in linearen als auch in nichtlinearen Fällen zeigen die Vorteile dieses
Ansatzes, der die Randbedingungen durch den Straßenverlauf einbezieht.
Weiterhin wird das Problem der Unsicherheit bei der Auswahl der Bewe-
gungsart im Multiple-Model (MM) - Ansatz betrachtet und gelöst. Insbeson-
dere wird ein sogenannter Adaptive-Road-Constraint-Interacting-Multiple-
Model (ARC-IMM) - Schätzer, der die Straßen-information in einen MM-
Ansatz mit variabler Struktur integriert, vorgeschlagen. Es wird gezeigt,
dass dieser Schätzer effizient und robust ist, und eine wesentlich verbesserte
Positionsschätzung liefert.
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Abstract

Positioning in mobile cellular networks is an exciting research area. The
Global System for Mobile communications (GSM) network, as a widely used
mobile communication standard around the world, has shown the potential
to provide position information. Ground target tracking is a significant appli-
cation of finding the position of a mobile station (MS). However, a GSM posi-
tioning system based on current specifications faces many difficulties to yield
an accurate position estimate. Since the signals are designed by communi-
cation needs rather than positioning, the resolution of the measurements in
GSM networks for positioning is coarse. The ambiguities of the position esti-
mate arise when there are not a sufficient number of measurements available.
Moreover, due to the restriction of terrain, road and traffic, the ground target
often maneuvers. Therefore, data fusion approaches, which integrate redun-
dant information from different sources, are applied in this work to obtain
improved position estimation accuracy.

This work focuses on the state estimation problem of the MS’s position
given the measurements from the GSM networks and a priori road infor-
mation. A data fusion solution, which integrates time of arrival (TOA) and
received signal strength (RSS) measurements using an extended Kalman filter
(EKF), is proposed to provide an improved position estimate. The theoretical
best achievable performance, posterior Cramér-Rao lower bound (PCRLB),
is derived for the data fusion approach. The PCRLB is used to demon-
strate the benefits of the fusion approach and applied as a benchmark to
compare different estimators. The road constraint is incorporated into the
estimation process as a pseudomeasurement. Simulations of the linear and
nonlinear road segments prove the advantages of the road-constrained ap-
proach. Moreover, the motion mode uncertainty problem is considered and
solved by a multiple model (MM) approach. In particular, an adaptive road-
constrained interacting MM (ARC-IMM) estimator, which incorporates the
road information into a variable structure MM mechanism, is proposed and
demonstrated to be effective and robust to provide a significantly improved
position estimate.

vii





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous Research . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Area and Main Assumptions of the Thesis . . . . . . 5

1.3.1 Research Area . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Main Assumptions of the Thesis . . . . . . . . . . . . . 8

1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . 9

2 Mobile Station Positioning Using GSM Networks 11
2.1 Overview of GSM Networks . . . . . . . . . . . . . . . . . . . 12
2.2 Radio Propagation . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Positioning Techniques and Measurements from GSM Networks 15

2.3.1 Time of Arrival . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Time Difference of Arrival . . . . . . . . . . . . . . . . 18
2.3.3 Angle of Arrival . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Received Signal Strength . . . . . . . . . . . . . . . . . 21
2.3.5 Multipath Propagation . . . . . . . . . . . . . . . . . . 23
2.3.6 None-line-of-sight Propagation . . . . . . . . . . . . . . 24
2.3.7 Hearability Problem . . . . . . . . . . . . . . . . . . . 26

2.4 Position Estimation . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Static Estimation . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Dynamic Estimation . . . . . . . . . . . . . . . . . . . 34

2.5 Accuracy Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.1 Root Mean Square Error . . . . . . . . . . . . . . . . . 35
2.5.2 FCC Requirements for E911 . . . . . . . . . . . . . . . 35
2.5.3 Geometric Dilution of Precision . . . . . . . . . . . . . 36

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 A Data Fusion Solution for Ground Target Tracking 39
3.1 Target Dynamic Models . . . . . . . . . . . . . . . . . . . . . 40

ix



Contents

3.1.1 Nearly Constant Velocity Model . . . . . . . . . . . . . 40
3.1.2 Nearly Constant Acceleration Model . . . . . . . . . . 40
3.1.3 Singer Model . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.4 Coordinated Turn Model . . . . . . . . . . . . . . . . . 41
3.1.5 Curvilinear Model . . . . . . . . . . . . . . . . . . . . . 42

3.2 State Estimation Using EKF . . . . . . . . . . . . . . . . . . . 42
3.3 Posterior CRLB for Target Tracking . . . . . . . . . . . . . . 44
3.4 A Data Fusion Solution . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Data Fusion Structure . . . . . . . . . . . . . . . . . . 45
3.4.2 Dynamic Model and Measurement Model for EKF . . . 47

3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.1 Simulation Scenario . . . . . . . . . . . . . . . . . . . . 48
3.5.2 EKF Design . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.3 Performance Comparisons . . . . . . . . . . . . . . . . 51

3.6 PCRLB for the Data Fusion Solution . . . . . . . . . . . . . . 60
3.6.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . 61

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Road-Constrained Target Tracking 69
4.1 Road Information . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Constrained State Estimation . . . . . . . . . . . . . . . . . . 71

4.2.1 Pseudomeasurement Approach . . . . . . . . . . . . . . 72
4.2.2 Projection Approach . . . . . . . . . . . . . . . . . . . 73
4.2.3 Comparison of Pseudomeasurement and Projection Ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Road Constraint as Pseudomeasurement: Linear Case . . . . . 77

4.3.1 Position Estimation without Constraints . . . . . . . . 78
4.3.2 Road Constraints as Pseudomeasurements . . . . . . . 78
4.3.3 EKF for Road-Constrained Tracking . . . . . . . . . . 79
4.3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . 80

4.4 Road Constraint as Pseudomeasurement: Nonlinear Case . . . 87
4.4.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.2 EKF for Road-Constrained Tracking . . . . . . . . . . 88
4.4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . 89

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 An Adaptive Road-Constrained IMM Estimator 95
5.1 Maneuvering Target Tracking . . . . . . . . . . . . . . . . . . 96
5.2 Interacting Multiple Model Estimator . . . . . . . . . . . . . . 97

5.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 97

x



Contents

5.2.2 Extended Kalman Filter in Subfilters . . . . . . . . . . 100
5.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . 100

5.3 An Adaptive Road-Constrained IMM Estimator . . . . . . . . 107
5.3.1 Ground Target Tracking on the Road . . . . . . . . . . 108
5.3.2 ARC-IMM Algorithm . . . . . . . . . . . . . . . . . . . 109
5.3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . 113

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Conclusions and Outlook 123
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A Some Useful Formulae for Vectors and Matrices 127
A.1 Derivatives of Vectors and Matrices . . . . . . . . . . . . . . . 127

A.1.1 The Gradient of a Scalar Function f(x) . . . . . . . . . 127
A.1.2 The Gradient of a Vector-Valued Function f(x) . . . . 127
A.1.3 The Hessian of a Scalar Function f(x) . . . . . . . . . 128

A.2 The Inversion of a Partitioned Matrix . . . . . . . . . . . . . . 129
A.3 Matrix Inversion Lemma . . . . . . . . . . . . . . . . . . . . . 129

B Posterior Cramér-Rao Lower Bound for Nonlinear Filtering
with Additive Gaussian Noise 131

C Derivations for Constrained State Estimation 135
C.1 Maximum Conditional Probability Method for Projection Ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
C.2 Mean Square Method for Projection Approach . . . . . . . . . 136
C.3 Constrained Estimate in Terms of the Unconstrained Estimate

Using Pseudomeasurement Approach . . . . . . . . . . . . . . 137

Bibliography 143

xi





List of Figures

1.1 A data fusion system for ground target tracking . . . . . . . . 5
1.2 Two-step positioning . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Enhanced cell identity . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Propagation loss in free space . . . . . . . . . . . . . . . . . . 14
2.3 Propagation mechanisms . . . . . . . . . . . . . . . . . . . . . 14
2.4 Time of arrival . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Time difference of arrival . . . . . . . . . . . . . . . . . . . . . 19
2.6 Angle of arrival . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Definition of the parameters in the COST 231-WI model . . . 22
2.8 Base stations around university of Siegen . . . . . . . . . . . . 27
2.9 Base stations around center of Cologne . . . . . . . . . . . . . 27
2.10 Hexagonal cellular networks . . . . . . . . . . . . . . . . . . . 28

3.1 The structure of the data fusion solution . . . . . . . . . . . . 46
3.2 Simulation scenario . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 The true and estimated state values . . . . . . . . . . . . . . . 52
3.4 RMSE comparison of three approaches . . . . . . . . . . . . . 53
3.5 Fusion of RSS measurements with only one TA measurement . 55
3.6 RMSE comparison of different TA measurement errors . . . . 56
3.6 RMSE comparison of different TA measurement errors (cont’d) 57
3.7 RMSE comparison of different RSS measurement errors . . . . 58
3.7 RMSE comparison of different RSS measurement errors (cont’d) 59
3.8 Simulation Scenario . . . . . . . . . . . . . . . . . . . . . . . . 62
3.9 RMSEs and PCRLBs of position . . . . . . . . . . . . . . . . 63
3.10 PCRLBs comparsion . . . . . . . . . . . . . . . . . . . . . . . 63
3.11 PCRLBs of different process noises . . . . . . . . . . . . . . . 65
3.12 PCRLBs of position for σd=300 m and σl=2 dB, 4 dB, 6 dB,

8 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.13 PCRLBs of position for σd=100 m, 300 m, 500 m, 700 m and

σl=4 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.14 PCRLBs of different tangential accelerations . . . . . . . . . . 67

xiii



List of Figures

4.1 Segments, nodes, and shape points . . . . . . . . . . . . . . . 70
4.2 Estimation process . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Simulation scenario . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Comparison of position RMSEs for uniform motion . . . . . . 84
4.5 Comparison of position RMSEs for maneuver motion . . . . . 84
4.6 Position RMSEs for different numbers of BTSs . . . . . . . . . 86
4.7 Simulation scenario . . . . . . . . . . . . . . . . . . . . . . . . 90
4.8 RMSE performance comparison (three BTSs) . . . . . . . . . 91
4.9 Position RMSEs of the EKF without constraint . . . . . . . . 92
4.10 Position RMSEs of the EKF with constraint (projection ap-

proach) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.11 Position RMSEs of the EKF with constraint (pseudomeasurement

approach) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 IMM algorithm consisting of two subfilters (one cycle) . . . . . 98
5.2 Simulation scenario 1 . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 Simulation scenario 2 . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 Simulation scenario 3 . . . . . . . . . . . . . . . . . . . . . . . 102
5.5 Position RMSEs against corresponding PCRLBs (scenario 1) . 105
5.6 Position RMSEs against corresponding PCRLBs (scenario 2) . 105
5.7 Position RMSEs against Corresponding PCRLBs (scenario 3) 106
5.8 Mode probability (scenario 3) . . . . . . . . . . . . . . . . . . 107
5.9 ARC-IMM estimator consisting of three subfilters (one cycle) . 111
5.10 Modules example . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.11 Simulation scenario . . . . . . . . . . . . . . . . . . . . . . . . 114
5.12 State estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.13 RMSE performance comparison (three measurements) . . . . . 119
5.14 RMSE performance of only two measurements . . . . . . . . . 120

xiv



List of Tables

3.1 Values of σx and σy for the different parts of the trajectory . . 50
3.2 Parameters of two groups of simulations . . . . . . . . . . . . 55

5.1 Values of at and an for different scenarios [m/s2] . . . . . . . . 102
5.2 Estimation errors comparisons . . . . . . . . . . . . . . . . . . 106

xv





Nomenclatures

Symbols
(x, y) Position of the mobile station in x and y directions
(xi, yi) Position of the ith base station in x and y directions
[·]T Transpose
argmax Argument that maximizes
argmin Argument that minimizes
¯̄x Conditional mean of x given the measurement z
λ Multiplier vector to form a Lagrangian
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Chapter 1

Introduction

1.1 Motivation

Firstly driven by the requirement of localizing emergency calls, positioning
in mobile cellular networks has become an exciting research area over the
past few years. As a widely used mobile communication standard around
the world, the Global System for Mobile communications (GSM) network
has shown the potential to provide position information. Besides emergency
assistance, a reliable estimate of a mobile station’s (MS) position has been
found very useful for many applications. For the GSM itself, the esti-
mator can assist the network to dynamically optimize its resource assign-
ment. There are many commercial services based on the knowledge of the
MS’s position, such as fraud protection, asset tracking, mobile yellow pages,
location-sensitive billing, and so on. In particular, ground target tracking is
also an important task of finding the position of a MS in the applications
like automatic vehicle location (AVL), intelligent transport system (ITS), and
fleet management.

There are two basic categories of methods for determining a MS’s posi-
tion, handset-based solution and network-based solution. The handset-based
solution relies on the use of a handset that includes a specialized chipset ca-
pable of calculating its own position like a Global Positioning System (GPS)
receiver. The network-based solution uses the attributes of the radio signals
exchanged between the MS and multiple base transceiver stations (BTSs)
to determine the MS’s location. The most popular proposed measurements
in this category include time of arrival (TOA), time difference of arrival
(TDOA), angle of arrival (AOA), and received signal strength (RSS).

However, a GSM positioning system based on current specifications faces
many difficulties to yield an accurate position estimate for ground target
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Chapter 1. Introduction

tracking applications. The resolution of the measurements in GSM networks
related to positioning is coarse. The ambiguities of the position estimate arise
when there are not a sufficient number of measurements available. Moreover,
due to the restriction of terrain, road and traffic, the ground target may
frequently start, accelerate, decelerate, stop, or turn on the road, i.e., the
state to be estimated may change dramatically. Therefore, it is difficult
to obtain an accurate position estimate when relying on just a single type
of measurements. In this research work, we use data fusion solutions for
ground target tracking applications, which integrate two or more types of
measurements, to provide position estimation with better accuracy, reliability
and coverage.

1.2 Previous Research

The research of mobile positioning was motivated by the requirement of the
Federal Communications Commission (FCC) in the United States for locat-
ing emergency 911 calls. The FCC adopted such accuracy and reliability
requirements first in 1996 and they were revised in the Third Report and
Order [1] in 1999. In the report [2], the status of main technologies for de-
termining a caller’s position was addressed. The emergency call number in
Europe is 112 and localizing emergency calls, i.e., Enhanced 112, was de-
manded to be in the new telecommunications regulatory framework in 2000.
The report by the Coordinate Group on Access to Location Information by
Emergency Services (CGALIES) [3] suggests relevant implementations to
enhance the emergency services in Europe with location information. It is
mentioned that the location accuracy has different requirements in different
stages of the emergency helps like call routing, dispatching and call finding.
When the caller is unable to provide location information and the location
estimate is the only available information source, the desired location accu-
racy should be 10 m - 150 m for urban areas, 10 m - 500 m for suburban
areas, rural areas and motorways. In response of the location requirement
for wireless communication services, many efforts in the research field have
been made on different issues and challenges for mobile positioning in wire-
less communication networks. The fundamentals and algorithms of position
location technologies were described in [4]. The unique challenges and some
proposed approaches for each of the major wireless standards were presented
in [5]. Some overviews and surveys can be found in [6–11].

With respect to different standards of communication networks, specific
solutions and issues have been considered. Caffery et al. [12] investigated
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the positioning methods in Code Division Multiple Access (CDMA) cellular
networks and the problems encountered. The wireless location in CDMA
networks can further refer to [13]. In [14], the ability of deriving position
information from GSM networks was examined by Drane et al., the features
of GSM signals relevant to positioning were analyzed, and the arising issues
were also discussed. Further, Zhao [15] focused on the standardization of mo-
bile positioning for 3G1 systems. The QUALCOMM company also reported
their investigation of location technologies for GSM and the next genera-
tion communication networks of General Packet Radio Service (GPRS) and
Universal Mobile Telecommunications System (UMTS) [16,17].

However, the basic mobile positioning methods based on the measure-
ments from the communication networks, no matter which wireless standard
is concerned, includes TOA, TDOA, AOA and RSS. These approaches are
also the basis of radio location systems, which locate a mobile station by mea-
suring the radio signals traveling between the mobile station and a set of fixed
stations. Silventoinen et al. [18] presented the approaches of using already
existing measurements in GSM networks for positioning, Timing Advance
(TA, a TOA measurement) and Observed Time Difference (OTD). Spirito et
al. [19] focused on three network-based location methods using Cell Identity
(CI), TA, and RSS measurement in GSM networks. Caffery et al. [20] con-
sidered two methods of radio location, TOA obtained from the code tracking
loop in the CDMA receiver and AOA assumed to be made with an antenna
array. In [21], Pent et al. proposed a trilateration based method using TA in
a GSM network and some experimental results were given in [22]. In [23] two
least squares (LS) algorithms were developed, which use TOA measurements
received at three or more base stations. A method of hyperbolic positioning
of GSM mobile station was presented in [24, 25]. The location based on the
measurement of the propagation loss between the mobile terminal and the
fixed base stations derived from RSS measurements was discussed in [26,27].
Hellebrandt et al. [28,29] presented the method of using the RSS from GSM
networks to estimate the position and velocity of the mobile station, where a
LS based approach and an extended Kalman filter (EKF) based approach is
employed, respectively. In [30], a method based on the differences of down-
link signal attenuations was proposed, which does not require a known and
accurate path loss modeling.

The above research work have shown that it is difficult to obtain an
accurate position estimate relying on a single kind of existing measurements
from wireless communication networks due to the high measurement errors.
Therefore, data fusion approaches have been proposed to integrate differ-

1Third generation
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ent types of measurements in order to achieve a more accurate and robust
position. In [31], a data fusion architecture was proposed for the enhanced
accuracy of position estimate within wireless networks, which can be used
to include different complementary and redundant position related measure-
ments. McGuire et al. [32] explored the fusion of power and time measure-
ments obtained from CDMA networks at low cost. A hybrid TDOA and
AOA location scheme was proposed in [33] to achieve high location accuracy
and low cost of the mobile receiver. In [34], the performance improvement
of a TDOA location system utilizing the AOA measurements over a TDOA
only system was evaluated. Other hybrid systems in the literature include
TDOA and TOA [35], signal attenuation difference of arrival and TDOA [36],
TDOA and Doppler [37], and so on. By using the data fusion approaches, the
estimation accuracy can be improved compared with using a single type of
measurements, the advantages of both types of measurements will be utilized,
and the estimation results are more robust to the noisy measurements.

It is well known that the dynamic information of the mobile station with
respect to the time can be used to predict the mobile’s position into the
next time instant and incorporating it correctly using a recursive filter, e.g.,
Kalman filter, can greatly facilitate the position estimation. Cartrein et
al. [38] analyzed the performance of a tracking algorithm based on Kalman
filter using data from a field trial, which shows the estimation improvement
by using Kalman filter. McGuire et al. [39] proposed a model-based dynamic
filter based on the accurate model of mobile station motion. The motion
model includes a kinematic state space model describing the physical rules
governing the terminal motion and a control model, which describes the user
decisions concerning the mobile’s motion. In [40], Zaidi et al. presented two
algorithms based on RSS measurements for real-time tracking of the mobile’s
location. In particular, the second algorithm was able to track mobility with
adequate accuracy when there are less measurements, and this problem was
also discussed using the concept of observability. However, relatively few
studies have been reported on the dynamic estimation problem for mobile
positioning. More research on this topic, especially for different scenarios of
ground target tracking, should be conducted.
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1.3 Research Area and Main Assumptions of

the Thesis

1.3.1 Research Area

Data fusion is defined as the fusion of multiple and a diversity of measure-
ments, technologies or systems simultaneously to form hierarchical and over-
lapping levels of processing. It can provide aggregate properties, robust
measurements and more accurate estimation because if there is redundant
information available from independent sources then higher precision and
reliability in the estimation can be achieved. As shown in Fig. 1.1, a data
fusion system for ground target tracking in GSM networks mainly consists
of source preprocessing, object refinement, situation refinement, and process
refinement. The focus of this work is in the stage of object refinement. In

Data Fusion Domain

Source 

Preprocessing

Human
Computer

Interaction

Database Management System

Fusion 
Database

Support 
Database

Level One  

Object Refinment

Level Two  

Situation Refinement

Level Three  
Process Refinement

Level One  

Object Refinement

Sources

GSM Networks

GPS

Other 

Information

Figure 1.1: A data fusion system for ground target tracking

other words, it aims to find a better estimation solution when integrating
redundant information from different sources to obtain the most reliable and
accurate estimate of the MS’s position, velocity, or other attributes. To
realize this goal, our work consists of the following parts:

� Measurement part : According to whether the position estimate is
obtained directly from the received signals or from intermediate para-
meters, such as TOA, TDOA, AOA, and RSS, the positioning can be
divided into direct positioning and two-step positioning. In this work,
the two-step positioning is considered for the sake of low complex-
ity, where some position related parameters are extracted firstly from
the received signals, and then the position and velocity of the MS are
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estimated from these intermediate parameters as shown in Fig. 1.2.
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Figure 1.2: Two-step positioning

Our work focuses on the second step to obtain the position estimate
from the pre-estimated parameters. Measurement models are built and
measurement errors are modeled according to GSM standards. Af-
ter investigating different measurements from the network, i.e., TOA,
TDOA, AOA, and RSS, a data fusion method of integrating two differ-
ent types of measurements in GSM networks, namely TOA and RSS,
by using an EKF to estimate the MS’s position is proposed. The data
fusion method yields an improved positioning accuracy compared with
the methods employing only TOA measurements or only RSS measure-
ments. This approach can also be easily applied to other combinations
of the network-based measurements. However, this thesis does not
present it.

� Estimation part : Depending on whether the target motion with re-
spect to time is considered, the position estimation can be divided into
static estimation and dynamic estimation. We focus on the problem of
ground target tracking, which is a dynamic estimation problem. Since
the measurements are usually nonlinear, i.e., there is a nonlinear map-
ping of the states into the observation space, the EKF is the basic
estimator applied in this work. The theoretical estimation accuracy is
a very important issue because it predicts the best achievable perfor-
mance before designing any estimator and provides a benchmark of
assessing the estimation algorithms. Therefore, the posterior Cramér-
Rao lower bound (PCRLB) for the proposed data fusion approach is
derived. The bound shows the basic principle of the data fusion ap-
proach, that is, information is additive. In addition, the bound can
be used to analyze the performance of the data fusion. It shows that,
theoretically, the data fusion approach yields a better accuracy and is
more robust than using a single kind of measurements. Moreover, the
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performance of different estimators can be also evaluated by comparing
the results with the corresponding PCRLBs.

� Target part : For the dynamic estimation problem, the dynamic model
is very important since the estimator works well when the dynamic
model matches the real motion of the target, otherwise the estimator
will not provide an accurate estimate. Different dynamic models are
studied, such as nearly constant velocity (CV) model, nearly constant
acceleration (CA) model, coordinated turn (CT) model, and so on.
Different movements of the ground target are simulated and estimators
are examined under different scenarios. Moreover, the ground target
maneuvers quite often, which is different from other types of targets,
e.g., air targets. Hence, the motion mode uncertainty should be con-
sidered. It is well known that the multiple model (MM) method is a
powerful approach for maneuvering target tracking under motion mode
uncertainty. An interacting multiple model (IMM) estimator is devel-
oped for our problem, and the estimation results of three different sim-
ulated scenarios are evaluated.

� Road information part : The resolution of the measurements in
GSM networks related to positioning is coarse according to the GSM
specifications. Thus, additional information about the target should be
incorporated, and the road restriction is such a promising a priori infor-
mation. Taking advantage of the road knowledge for tracking ground
targets can be regarded as a constrained state estimation problem. The
main approaches which address the solution to this problem are pseudo-
measurement approach and projection approach. These two approaches
are investigated and compared. For our problem, the road constraint
is incorporated into an EKF as a pseudomeasurement, by which the
uncertainty of the constraint can be applied. The approach is tested
not only for uniform motions but also for maneuver motions. More-
over, nonlinear equality constraints are fundamentally different from
linear equality constraints. The benefits of applying the nonlinear road
constraint using the proposed approach are also demonstrated. In par-
ticular, incorporating the road constraint into a variable structure IMM
(VS-IMM) greatly improves the estimation accuracy for maneuvering
target tracking, which we propose as an adaptive road-constrained IMM
(ARC-IMM) estimator.
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1.3.2 Main Assumptions of the Thesis

Since the second step of the positioning is mainly concerned (see Fig. 1.2), i.e.,
estimating the MS’s position from some position-related parameters in GSM
networks, some assumptions on these measurements, i.e., the parameters,
should be made.

� The base stations and the mobile station lie in the same plane. This
will hold approximately true for most networks except for regions with
extremely hilly topologies or high-rise buildings. Therefore, the posi-
tioning in this thesis is in two-dimensional space.

� The measurements are assumed to be corrupted by additive Gaussian
noises, which are also assumed in most of the literature in mobile po-
sitioning. The main rationales of this assumption are: First, the time
measurement in wireless networks is computed using correlation tech-
niques. When the effective bandwidth and the signal-to-noise ratio
(SNR) are sufficiently large and there is line-of-sight (LOS) signal, the
additive Gaussian assumption of the measurement noise holds. Sec-
ond, if the time interval used to obtain the measurement is large, the
central limit theorem can be motivated to approximate the measure-
ment error by a Gaussian distribution. The third is for simplicity of
analysis. The Gaussian assumption is the least informative distribution
with a given variance, the theoretical bound calculated under Gaussian
assumption still holds for the estimation using EKF. The details of the
error modeling will be presented in Chapter 2.

� The multipath and non-line-of-sight (NLOS) error are assumed to be
identified and mitigated before the position estimation since they can
be done in the first step of the positioning (see Fig. 1.2). The mitigation
approaches are not discussed in this thesis. However, the effect of mul-
tipath and NLOS propagation and general approaches are introduced
in Chapter 2.

� The measurements from different base transceiver stations (BTSs) and
different types of measurements are assumed to be uncorrelated. This
can be easily justified in the GSM network, which is a Time Division
Multiple Access (TDMA) system, since each measurement is made at
a different BTS using a different time slot.
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1.4 Thesis Contributions

Most of the research in mobile positioning focuses on the static position esti-
mation. In this thesis, we are specifically concerned with the target tracking
applications, which are a dynamic estimation problem, using the available
position related measurements from GSM networks and will discover the
principle behind the data fusion approaches. The main contributions of this
thesis are summarized as follows:

� Two kinds of measurements, TA and RSS from GSM networks, are
integrated using an EKF to track the position of a mobile station set
in a vehicle.

� The theoretical performance of ground target tracking using GSM net-
works is evaluated by the PCRLB. The benefits of the above mentioned
data fusion approach are demonstrated in terms of the PCRLB.

� An approach of incorporating the road information into a conventional
EKF as a pseudomeasurement for target tracking in GSM networks
is proposed, which is the extension of constrained state estimation in
mobile positioning. The benefits of the proposed road-constrained ap-
proach are demonstrated in both of linear and nonlinear road segments.

� An IMM estimator is designed for tracking maneuvering targets in GSM
networks since it can better estimate the changing dynamics of a target
than a conventional EKF.

� A novel adaptive approach considering the various possible target dy-
namics on changing road segments, an adaptive road-constrained IMM
(ARC-IMM) estimator, is proposed, which incorporates the road infor-
mation into a variable structure IMM (VS-IMM) mechanism to improve
the estimation performance.

1.5 Structure of the Thesis

The following part of the thesis is organized as:

Chapter 2 introduces the fundamentals of positioning using GSM net-
works and provides a basic understanding of the research background. The
measurements from GSM networks, TOA, TDOA, AOA and RSS, are mod-
eled and the estimation techniques are presented. The main error sources,
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multipath and NLOS propagation, are discussed and general mitigation ap-
proaches are introduced. The hearability problem of the BTSs on the MS
is addressed. Moreover, the accuracy criteria and their connections are de-
scribed.

Chapter 3 presents the proposed data fusion approach of integrating
two different types of measurements, and the simulation results are given
to show the improved positioning results compared with using a single type
of measurements. In addition, the PCRLB for the data fusion approach is
derived in this chapter and the performance is analyzed in terms of PCRLB
to prove the benefits of the data fusion approach from a theoretical point of
view.

Chapter 4 addresses the issue of incorporating the road information into
the estimation process. The projection and pseudomeasurement approaches
are introduced and compared. Simulations of a linear road and of a nonlinear
road are implemented and the estimation results are analyzed.

Chapter 5 deals with the motion mode uncertainty problem. First an
IMM estimator is designed and the simulation results show that the esti-
mation accuracy during the non-maneuvering period is improved. Next, the
proposed ARC-IMM estimator is presented. The simulation results depict
the significant improvement of the tracking performance.

Chapter 6 provides a conclusion of the work. The main contributions
are highlighted and some suggestions for the future work are also given.
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Chapter 2

Mobile Station Positioning
Using GSM Networks

GSM was first developed as an European digital mobile telephone standard
and is now the most widely used mobile communication standard in the
world. The GSM network has the potential to provide position information.
In this chapter, the fundamentals of MS positioning using GSM networks
are introduced. First, an overview of the GSM network is given and the
important terms related to the positioning are explained. Then the radio
propagation environment is described in Section 2.2 to provide an under-
standing of the complex radio propagation mechanisms. Most importantly,
the positioning techniques and measurements in GSM networks are intro-
duced and modeled in Section 2.3. There are basically two categories of po-
sitioning techniques, i.e., handset-based and network-based solutions. Con-
sidering that the network-based solutions do not require great modifications
on the MS and networks, they are mainly introduced and employed in this
thesis, including time of arrival (TOA), time difference of arrival (TDOA),
angle of arrival (AOA), and received signal strength (RSS) measurements.
The most important error sources for mobile positioning are multipath and
non-line-of-sight (NLOS) propagation. Section 2.3.5 and 2.3.6 discuss the
error modeling and general mitigation approaches. Another practical issue,
hearability problem, is introduced in Section 2.3.7. Based on the measure-
ment models obtained, the problem of position estimation is addressed in
Section 2.4. The static estimation problem can be also called parameter
estimation. Depending on modeling the parameters as nonrandom unknown
constants or random variables, then non-Bayesian or Bayesian estimators are
applied. On the other hand, the dynamic estimation problem is referred to as
state estimation, which will be presented in the next chapter. The accuracy
criteria to evaluate the positioning accuracy are described in Section 2.5.
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2.1 Overview of GSM Networks

The GSM network was firstly deployed in 1991 and is now the most popular
standard for mobile communications in the world. GSM is used by over 3
billion people across more than 219 countries and territories.2 Its ubiquity
makes international roaming very common between mobile phone operators,
which enables the users to travel freely with their mobile phones in many
parts of the world. This is realized by the handover procedure, which is the
process of automatically transferring a call in progress to a different cell so
that the call could be continued even when a MS crosses the border of one
cell into another.

A GSM network is a cellular network. A cell is a certain limited area
which is reached by one transmitter or a small collection of transmitters
at a single base site, and the cell size is determined by the power of the
transmitter. There are five different cell sizes in GSM networks, macro,
micro, pico, femto and umbrella cells. The most often used cells for this
work are macro and micro cells. Macro cells can be regarded as cells where
the base station antenna is installed on a mast or a building above the average
roof top level. Micro cells are cells whose antenna height is under the average
roof top level, which are typically used in urban areas.

Most 2G3 GSM networks operate in the 900 MHz or 1800 MHz bands.
GSM 900 uses two 25 MHz blocks of the radio frequency spectrum, uplink
(MS to BTS) and downlink (BTS to MS). Each block is divided into 125
frequency channels of 200 kHz. GSM employs a Time Division Multiple Ac-
cess (TDMA) scheme on each frequency channel, dividing it into time slots of
577 µs. Eight time slots are gathered to form a frame and frames are grouped
into multiframes and superframes. GSM defines logical channels, which are
mapped onto the predefined time slots, to carry different information, e.g.,
the broadcast channels are to transmit system parameters. The messages
contained in the various logical channels are fitted into the time slots using
a burst structure.

In the GSM network, the position of the MS is roughly known by its
presence in a cell using Cell Global Identification (CGI), which is a parameter
available for all MSs. It is the identity number associated with a cell, which is
designated by the network operator. The operator knows the coordinates of
each cell site, and therefore the MS can be located in the position of the BTS
controlling the call. This method is limited in precision to several hundred

2Source: http://www.gsmworld.com/technology/index.htm last visited on 20/7/2009
3Second generation
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meters at best and a number of kilometers in many cases, which depends
on the size of the cell. Additionally, in most cases each cell is divided into
120 degree sectors, with three base transceiver subsystems in each cell and
each base transceiver subsystem has a 120 degree antenna. Through dividing
the cell into different sectors, the MS can be estimated in a fraction of the
cell. Moreover, the accuracy can be further improved with the use of a
parameter, Timing Advance (TA), which is needed in a GSM network to
avoid overlapping of multiple connections. The TA can be used to estimate
the distance from MS to BTS and define a circle centered at the BTS. This
approach is called enhanced cell identity (E-CID) as shown in Fig. 2.1, which
is simple to be implemented with very crude location estimation.

BTS Cell ID

( , )x y  

MS

Sector Information

TA

Figure 2.1: Enhanced cell identity

2.2 Radio Propagation

The radio signals transmit in free space based on Friis formula as follows

PR

PT

= GTGR

(
λ

4πd

)2

(2.1)

where PT indicates the power supplied to the transmitting antenna, GT is
the power gain of the transmitter antenna, PR denotes the power available at
the receiving antenna, GR stands for the power gain of the receiver antenna,
λ indicates the wavelength and d is the distance between the transmitter
and the receiver (see Fig. 2.2). The propagation loss LP is defined as PT/PR
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Figure 2.2: Propagation loss in free space

and usually expressed in decibel 10 log10(PT/PR). For unity-gain (isotropic)
antennas the propagation loss is

LP = 32.44 + 20 log10 f̃ + 20 log10 d̃ (2.2)

where LP denotes the propagation loss in dB, f̃ stands for the frequency in
MHz, f̃ = f/1 MHz, and d̃ indicates the distance in km, d̃ = d/1 km.

However, in a real environment the propagation mechanisms are very
complex and diverse which may cause the propagation loss to differ from
the free space case, because of reflection, diffraction, scattering, etc. [41] (as
shown in Fig. 2.3). These three mechanisms result in three nearly indepen-
dent phenomena of the radio propagation: path loss variation with distance,
slow log-normal shadowing, and fast multipath fading [42]. Therefore, free
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Figure 2.3: Propagation mechanisms
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space propagation does not apply in the mobile radio environment and the
propagation loss depends not only on the distance and wavelength, but also
on the antenna height of the MSs and the base stations (BSs), and the local
terrain characteristics. The simplest propagation loss model [42] assumes
that

LP = K + 10β log10 d̃+ ϵ (2.3)

where the parameters K and β are propagation constants. β is called path
loss exponent which indicates the rate at which the path loss increases with
distance and strongly depends on the cell size and local terrain character-
istics. β is usually determined by empirical measurements, and it is equal
to 2 in free space (see Eq. 2.2), it ranges from 3 to 4 in a typical urban
macrocellular environment, and from 2 to 8 in a microcellular environment.
Moreover, the surrounding environment may be greatly different at two differ-
ent locations having the same d, which results in a log-normal distributed
shadowing error. It is represented by the parameter ϵ, which is a zero-mean
Gaussian random variable (in dB).

2.3 Positioning Techniques and Measurements

from GSM Networks

There are a variety of technologies available to provide position estimates
in GSM networks, and they can be loosely grouped into two basic classes
depending on where the position information are mainly obtained: handset-
based solutions and network-based solutions. The handset-based solution
relies on the use of a handset that includes a specialized chipset capable of
calculating its own position, e.g., a GPS receiver. Assisted GPS (AGPS) is
such a solution which uses a terrestrial cellular network to improve GPS re-
ceiver performance by providing satellite constellation information directly to
the GPS receiver. This approach offers the greatest accuracy compared with
network-based solutions. However, embedding a GPS receiver into mobile
devices leads to increased cost, size, and power consumption. It could also
require the replacement of millions of mobile handsets that are already on
the market. In addition, the location uncertainty can be quite small in cases
where at least four GPS satellites are in view and where the GPS satellites
are well distributed. In less ideal operating conditions, however, such as in
urban environments as well as inside buildings, the GPS handset may have
significant problems in providing accurate location information.

On the other hand, the network-based solution uses the attributes of the
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radio signals exchanged between the MS and multiple BTSs to determine
the MS’s location. We will introduce the most important measurements
from GSM networks including TOA, TDOA, AOA, and RSS in the following
subsections.

2.3.1 Time of Arrival

By measuring the propagation time that a signal takes to travel between a
BTS and a MS, the distance between them can be calculated. This requires
that the BTS and the MS are well synchronized (e.g., 1 µs of timing error
results in a 300 m position error). To avoid the synchronization problem,
measuring the round trip time, i.e., the signal is transmitted from a source
to a destination and then echoed back to the source, is more often utilized.
Geometrically, assuming that the MS and the BTS are on the same plane, one
TOA measurement provides a circle, centered at the BTS, on which the MS
must lie. Using at least three BTSs to resolve ambiguities in two dimensions,
the intersection of circles provides the MS’s position, shown in Fig. 2.4.
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Figure 2.4: Time of arrival

TA represents a TOA measurement in the GSM system. TA is a para-
meter that a particular BTS sends to each MS according to the perceived
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round trip propagation delay BTS-MS-BTS. Then the MS advances its tim-
ing by this amount to compensate the propagation delay in order to avoid
user time slot overlap and maintain the frame alignment, especially when
the MS is far away from the BTS. TA is rounded to the nearest integer bit
period, and the time per bit is Tb = 48/13 µs. The corresponding distance
∆ = c · Tb ≈ 1108 m, where c = 3× 108 m/s is the speed of light. Then the
distance between a BTS and a MS can be calculated as d = TA ·∆/2. There-
fore, the measurement of TA can be formulated as the distance between one
MS and a certain BTS.

It should be noticed that under current GSM specifications, the TA is
only taken in the current serving BTS. It is estimated by the serving BTS
only when the MS is in connected mode, i.e., the MS is communicating with
the serving BTS using a dedicated channel. As a consequence, TA can only
be measured by sequentially forcing the communication to be handed over
from one BTS to another until all BTSs have been accessed. However, this
artificially forced handovers to suboptimal BTSs can degrade call quality and
reduce system capacity.

Error Model

Let (x, y) denote the position of the MS, B = 1, 2, · · · , n be the set of the
BTSs, and (xi, yi) be the position of the ith BTS. Assuming that a line-of-
sight (LOS) signal between the ith BTS (i = 1, 2, · · · , n) and the MS exists,
then the TOA measurement from the ith BTS (i = 1, 2, · · · , n) is formulated
as distance with noise

zi,TOA =
√
(x− xi)2 + (y − yi)2 + vi,TOA (2.4)

where the measurement noise vi,TOA is usually, in most of the literature on
mobile positioning [7, 10, 43, 44], assumed to be a zero-mean white Gaussian
noise

vi,TOA ∼ N (0, σ2
i,TOA) (2.5)

Without loss of generality, the subscript “TOA” is used instead of “TA”. In
fact, in GSM networks, the time measurements are averages of propagation
delays estimated during periods longer than the typical coherence time of
the mobile radio channel [45]. Therefore, it is reasonable to assume the time
delay in LOS propagation is a zero-mean white Gaussian variable using the
central limit theorem. On the other hand, in wireless networks, the time
measurement is computed using correlation techniques. When the effective
bandwidth and the signal-to-noise ratio (SNR) are sufficiently large, the
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additive Gaussian assumption of the measurement noise in Eqs. (2.4) and
(2.5) holds and σi,TOA depends on the bandwidth and SNR [10,46].

According to the GSM standard [47], the assessment error of TA due to
noise and interference is less than 1/2 bit period, i.e., 1/2 Tb, for stationary
MS and for MS moving at a speed of up to 500 km/h the additional error
shall be less than 1/4 bit period. Thus, the error of the distance of one trip,
due to noise and interference, is uniformly distributed in the range [−E,+E],
where E = ∆/4 + χ ·∆/8 in which χ varies from 0 to 1 accounting for the
speed of MS. In literature [21], a uniform distribution for the error is given
with the standard deviation

σTA =
∆

2

√
1

6

[(
1 +

χ

4

)2

+
(χ
4

)2
]

(2.6)

which is derived from the above specification. Then the author used a
Gaussian distribution with the standard deviation in Eq. (2.6) to approx-
imate the statistics of the TA measurement error in the EKF for estimation.
A field experiment was executed in [22], by which the rational of the Gaussian
assumption usually used in EKF was verified with the comparison of the real
TA measurement error statistics in GSM networks and the Gaussian assump-
tion. It is also shown that the standard deviation of the measurement errors
is in the level of few hundreds of meters and varies in different environments
like rural and urban areas. Other explanations for the Gaussian assump-
tion can be found in [48, 49]. For the simplicity of research and analysis,
we use the error model in Eqs. (2.4) and (2.5) in the following chapters and
the standard deviation in Eq. (2.6) derived from the GSM specifications for
simulations.

The error model in Eq. (2.4) assumes unbiased measurements. However,
in practice there are often biases within the time measurements, which arise
from non-line-of-sight (NLOS) propagation, hardware calibration, and mul-
tipath propagation [48]. Assuming that the statistics of possible biases is
known or estimated prior to the position estimation, it is equivalent to as-
sume zero-mean measurement errors. The details of the NLOS and multipath
propagation will be discussed in Section 2.3.5 and 2.3.6.

2.3.2 Time Difference of Arrival

Instead of the absolute time measurements, time difference measurements
can be used to define hyperbolas, with foci at the BTSs, on which the MS
must lie. The intersection of hyperbolas provides the location of the MS. For
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a two dimensional scenario, at least two TDOA measurements are required,
i.e., three BTSs, to uniquely define a position as shown in Fig. 2.5.

y

x

BTS 1

1 1( , )x y

BTS 0
(Reference Station)

0 0( , )x y

BTS 2

2 2( , )x y

MS

),( yx
0d

1 0d d 

2 0d d 

Figure 2.5: Time difference of arrival

There are two ways to calculate the TDOA measurement (refer to [10,46]
and the references therein). One method is to calculate the difference of two
TOAs received at two BTSs. Another approach is to estimate the TDOA
by correlating the received signals at different BTSs. In GSM networks,
the TDOA approach is called enhanced observed time difference (EOTD),
which is based on the first kind of TDOA technique. There are three para-
meters: Observed Time Difference (OTD), Real Time Difference (RTD), and
the TDOA, which is termed Geometric Time Difference (GTD=RTD-OTD).
They are used in GSM networks to improve the efficiency of handovers. If a
burst is transmitted by BTS a (BTS b) at the instant tTxa

( tTxb
) and received

by the MS at instant tRxa
(tRxb

), then

RTD = tTxb
− tTxa

(2.7)

OTD = tRxb
− tRxa

(2.8)

GTD = RTD−OTD = (tRxa
− tTxa

)− (tRxb
− tTxb

) (2.9)

The TDOA measurement is modeled as the difference of the distances
multiplied with a factor of the speed of light. First choosing a reference
BTS from the set of BTSs B, which has position (x0, y0), then the ith TDOA
measurement of the rest n − 1 BTSs (i = 1, 2, · · · , n − 1) relative to the
reference BTS is given by

zi,TDOA =
√

(x− xi)2 + (y − yi)2−
√
(x− x0)2 + (y − y0)2+vi,TDOA (2.10)
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Similar to the assumptions of TOA measurement errors, the measurement
noise in Eq. (2.10) is usually assumed to be a zero-mean white Gaussian noise
with standard deviation σi,TDOA in LOS situation [7, 10,24,25,43,44]

vi,TDOA ∼ N (0, σ2
i,TDOA) (2.11)

In [24], a value of the EOTD standard deviation in GSM networks is given
according to the specifications in GSM networks for OTD and RTD

σi,TDOA =

√
5

12
∆ (2.12)

where ∆ is the corresponding distance of one bit period ∆ = c · Tb.

RTDs are measured by ad hoc location measurement units (LMUs) in-
stalled through the network and OTDs are measured by the MS. In GSM-
based systems, an MS performs OTDmeasurements either in connected mode
or in idle mode (i.e., the MS is turned on but no two-way communication
takes place). OTD measurements are made without forcing a handover. An
important issue using TDOA is that the systems need to be synchronized.

2.3.3 Angle of Arrival

Using directive antennas or antenna arrays BTSs measure the AOA of a signal
that is transmitted by the MS. There are three steps in the processing [50].
First the channel impulse response for each element of the antenna array is
estimated from the signal received at the BTS. Then the AOA is extracted
from the impulse responses. After that, simple geometric relationships are
used to form the position estimate based on the AOA measurements and
the known positions of the BTSs, or filtering techniques can be used to
estimate the MS’s position. For two-dimensional positioning, a minimum of
two BTSs is required as shown in Fig. 2.6. Assuming a LOS signal, the AOA
measurement at ith BTS (i = 1, 2, · · · , n) can be written as

zi,AOA = arctan

(
y − yi
x− xi

)
+ vi,AOA (2.13)

where vi,AOA is assumed to be a zero-mean white Gaussian noise [10,43,46].

vi,AOA ∼ N (0, σ2
i,AOA) (2.14)

Currently, it is possible to use the rough sector information (e.g., 120° for a
three-sector antenna). By using an antenna array for 3G mobile networks,
the AOA accuracy can be improved.
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Figure 2.6: Angle of arrival

The advantages of AOA are that it requires only two BTSs to obtain the
position in two dimensions, and there is also no time synchronization be-
tween BTSs required. However, the BTSs need to be equipped with complex
hardware to obtain an accurate AOA. When the MS is far away from the
BTS, the AOA measurement accuracy degrades.

2.3.4 Received Signal Strength

As introduced in Section 2.1, the propagation loss between a MS and a
certain BTS derived from a RSS measurement is a logarithmic function of
the distance between the stations. Therefore, if the propagation losses from
three or more BTSs are available, we can estimate the MS’s position in two
dimensions based on trilateration techniques. The RSS measurement from
the ith BTS (i = 1, 2, · · · , n) is generally formulated as

zi,RSS = K + 10β log10

(√
(x̃− x̃i)2 + (ỹ − ỹi)2

)
+ vi,RSS (2.15)

where K and β are propagation constants depending on the environment
characteristics, and the ‘tilde’ notations denote the positions of the MS and
BTSs normalized by 1 km. It is well known that the attenuation of the signal
strength is caused by three factors: path loss, fast multipath fading, and
slow log-normal shadowing. Usually the fast fading effect can be removed
by averaging the received power over a time interval. Therefore, the RSS
measurement noise vi,RSS is assumed to be a zero-mean white Gaussian noise
representing the shadowing

vi,RSS ∼ N (0, σ2
i,RSS) (2.16)
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The above propagation model can either be empirical or theoretical, or a
combination of these two. The empirical models are based on measurements,
whereas the theoretical models are derived from the fundamental principles
of radio wave propagation phenomena.

The COST 231-Walfisch-Ikegami-Model (COST-WI) [51] is an empirical
path loss model based on extensive measurement campaigns in European
cities, which has been used extensively in typical suburban and urban envi-
ronments. The model considers several parameters to describe the character
of the urban environment, as shown in Fig. 2.7. The environment parameters

Figure 2.7: Definition of the parameters in the COST 231-WI model

are assumed as a typical small cell in urban environments, in which the cell
range is less than 1-3 km and the antenna is sited above the median but
below the maximum height of the surrounding roof tops [52]. Assuming that
the environment parameters are as follows:

� Building separation b = 40 m; Widths of the roads w = 20 m;

� Heights of buildings hRoof = 15 m; Heights of BTSs hBTS = 17 m;

� Road orientation with respect to the direct radio path φ = 90°
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in a LOS situation, the propagation loss is given by

LP = 42.64 + 26 log10

(√
(x̃− x̃i)2 + (ỹ − ỹi)2

)
+ 20 log10 f̃ + vi,RSS (2.17)

where f̃ is the frequency normalized by 1 MHz, f̃ = f/1 MHz. With f =
900 MHz, the above equation becomes

LP = 101.724 + 26 log10

(√
(x̃− x̃i)2 + (ỹ − ỹi)2

)
+ vi,RSS (2.18)

The transmission loss in the NLOS situation, which is composed of free space
loss, multiple screen diffraction loss, and roof-top-to-street diffraction and
scatter loss, based on these parameters is given by

LP ≈ 33.49 + 20 log10(∆h̃MS)

+
[
26 + 0.7(f̃/925− 1)

]
log10(f̃) + 38 log10(d̃) + vi,RSS (2.19)

where ∆h̃MS = ∆hMS/1 m and ∆hMS = hRoof −hMS is the height difference
between the MS and the buildings, f̃ indicates the signal frequency in MHz,
f̃ = f/1 MHz, and d̃ denotes the distance between MS and BTS in km,
d̃ = d/1 km =

√
(x̃− x̃i)2 + (ỹ − ỹi)2. Further, we assume the heights of

mobiles hMS = 1.5 m, and the frequency f = 900 MHz. Thus the path loss
can be formulated as

LP = 132.85 + 38 log10 d̃+ vi,RSS (2.20)

where vi,RSS is the measurement noise with the mean error in the range of
±3 dB and the standard deviation about 4-8 dB [51].

2.3.5 Multipath Propagation

A radio signal transmitting through the complex wireless environment may
arrive at the MS or BTS as multiple versions with different amplitude, phase
and time delay due to the presence of reflecting objects and scatterers. The
multiple radio waves combine vectorially at the receiver antenna to give a
resultant signal which can be large or small depending upon whether the
incoming waves combine constructively or destructively. This causes a rapid
fluctuation of the envelope of the received signal over a short period of time or
travel distance, which is called the phenomenon of fast fading to distinguish
them from the much longer-term variation in mean level which is known as
slow fading.
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Multipath results in the rapid changes of the signal strength and also
of the time dispersion. In a digital receiver, this is normally translated
into an impact on the Bit Error Rate (BER). In wireless positioning, the
BER is no longer concerned, whereas the first replica of the delay is un-
der consideration [43]. In [53], for the time measurements the author fol-
lows a ML estimation of multipath delays, which is modeled as a vector

τ =
[
τ1 τ2 · · · τN

]T
τ̂i = τi + ξi (2.21)

where τi denotes the time delay of the ith multipath signal received at one

receiver, τ̂i is the estimate of the time delay and ξ =
[
ξ1 ξ2 · · · ξN

]T
stands for a multivariate Gaussian random variable. The usual approach
to deal with the multipath effect is to detect and only use the first arrival
signal (LOS or NLOS) for positioning [54]. For time-based and angle-based
positioning approaches, the multipath problem can be reduced to the posi-
tioning of a single path. In [53], the author claims that the second and later
arrived signals can also provide position information and the enhancement
of accuracy depends on the strength of the multipath components and the
variance of the related NLOS delays [53, 55].

2.3.6 None-line-of-sight Propagation

Due to reflection and diffraction, the signal may travel excess path lengths
of the order of hundreds of meters and there might be no direct path from
the BS to the MS. This problem is called NLOS problem, which is a critical
issue for mobile positioning.

Assume that there are m NLOS measurements, and the corresponding
BTSs are denoted by the set of NLOS BTSs BNLOS = 1, 2, · · · ,m. For the
time-based and angle measurements, the NLOS error is usually modeled as
an additive bias [10,43,44,56–58]. For simplicity of analysis, the NLOS error
is assumed to be Gaussian distributed in order to provide an understanding
of the effect of NLOS on the location precision [44]. Since the Gaussian
distribution is the least informative distribution for a given variance, the
lower bound calculated based on Gaussian assumption will still hold for the
estimation [7]. Some realistic models for the NLOS error include Gamma
distribution [44], distributions based on certain scatter models [59], and the
distribution from measurements [60]. Gaussian mixtures can be also used
for approximating the distribution of the NLOS error [7]. The specific error
model for each type of measurement based on Gaussian distribution is as
follows:
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TOA:
zNLOS
i,TOA =

√
(x− xi)2 + (y − yi)2 + bi + vi,TOA (2.22)

where bi indicates the positive bias induced from the NLOS propagation, and
vi,TOA is assumed to be a zero-mean white Gaussian noise such that formula
vi,TOA ∼ N (0, σ2

i,TOA). If it is assumed that the measurements are averaged
over some integration time, by the central limit theorem, the bias bi can be
assumed constant, and the time variance of the bias can be reflected in the
variance of the zero-mean noise vi,TOA [56].

TDOA: As introduced in Section 2.3.2, the TDOA measurement is a
difference of TOA measurements. Assume that a BTS in the NLOS BTS set
BNLOS is chosen as the reference BTS i = 0, whose position is (x0, y0). For
BTS i = 1, 2, · · · ,m− 1

zNLOS
i,TDOA =

(√
(x− xi)2 + (y − yi)2 + bi

)
−
(√

(x− x0)2 + (y − y0)2 + b0
)

+vi,TDOA (2.23)

=
(√

(x− xi)2 + (y − yi)2 −
√

(x− x0)2 + (y − y0)2
)
+ (bi − b0)

+vi,TDOA (2.24)

where bi indicates the NLOS error of the ith BTS and b0 denotes the NLOS
error of the reference BTS. Defining zNLOS

TDOA as the measurement vector which
includes TDOA measurements from m − 1 BTSs, then the error vTDOA =[
v1,TDOA v2,TDOA · · · vm−1,TDOA

]T
is a multivariate Gaussian variable,

which conforms to N (0,Υ) with

Υ =


σ2
1 + σ2

0 σ2
0 · · · σ2

0

σ2
0 σ2

2 + σ2
0 · · · σ2

0
...

...
. . .

...
σ2
0 σ2

0 · · · σ2
m−1 + σ2

0

 (2.25)

AOA: The AOA with NLOS error at ith BTS in the NLOS BTS set
BNLOS can be expressed as

zNLOS
i,AOA = arctan

y − yi
x− xi

+ φi + vi,AOA (2.26)

where φi stands for a NLOS induced angle error and vi,AOA indicates a zero-
mean white Gaussian noise.

RSS: The signal strength is modeled in dB scale as

zNLOS
i,RSS = K + 10β log10

√
(x̃− x̃i)2 + (ỹ − ỹi)2 + vi,RSS (2.27)
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where vi,RSS indicates a zero-mean white Gaussian noise representing log-
normal fading. The NLOS effects are implicitly included in the formulation.

To mitigate the NLOS errors, there are two main categories of methods.
One is that the NLOS error is modeled as additive bias to the LOS measure-
ment with known or unknown distribution. The NLOS error could be de-
tected, which is a problem of NLOS identification, and then removed, which
is called LOS reconstruction [58]. Other methods in this category can be
found in [46, 57, 61] and the references therein. Another category is that
a multipath delay profile is considered instead of a TOA or RSS measure-
ment, such as signature matching. This approach is especially useful where
the propagation environment is complicated. However, it suffers from the
requirement of building a big data base and computational complexity.

Reference [46] presents an estimation accuracy analysis in terms of CRLB
in a NLOS environment. The discussion is classified into two cases according
to whether a priori statistics of the NLOS errors are available or not. When
there is no prior knowledge of the NLOS error available, the CRLB depends
only on the LOS signals. On the contrary, in the case of knowing the prior
statistics of the NLOS error, the Fisher information matrix (FIM), which is
the inverse matrix of the CRLB, consists of two components, which are the
information from data and that from the a priori as shown in Eq. (2.51).
The corresponding CRLB is derived in [46].

2.3.7 Hearability Problem

As introduced, many positioning methods rely on the multilateration of a few
measurements from different BTSs, e.g., TOA requires at least three BTSs to
get a unique position estimate (see Fig. 2.4). However, the practical problem
arises, whether there are more than three BTSs available. The ability of the
MS to detect surrounding BTSs in a given time interval is called hearability
problem [62], which is usually represented by the number of detectable BTSs.
It should be noted that here the hearability refers not only to the near-far
effect, but means the detectability of BTSs in general.

The cellular network is consisted of cells, which is an area around a BTS.
The size of a cell varies a lot in different areas, which is usually between a few
hundreds meters to a few kilometers. The maximum cell size can be 35 km.
The density of cells corresponds to the size of cells, i.e., in rural areas the
cells have a low density but bigger size, whereas in urban areas there is a high
density of cells but with small cell size. As shown in Fig. 2.8, the density of
the BTS in the city center of Siegen is relatively high whereas in suburban,
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around the university, there is only one base station in the neighbourhood.
There are apparently more BTSs in metropolitan cities, e.g., the center area
of cologne as shown in Fig. 2.9.

Figure 2.8: Base stations around university of Siegen

Figure 2.9: Base stations around center of Cologne

The cell has a hexagonal shape (Fig. 2.10) and the MS is usually only
connected with the serving BTS and detects signals from up to six neigh-
bouring BTSs. The detectability of a BTS at the MS depends on the received
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signal power, which relies on the transition power of the tower and the dis-
tance between the BTS and the MS as well. In [18], the hearability of the

Figure 2.10: Hexagonal cellular networks

neighbouring cell was examined using a car driving through different envi-
ronments. Over 92% of the time three or more BTSs were received in a
metropolitan area. However, in a rural area, only 71% of the time more than
three BTSs were received. The percentages of receiving more than five BTSs
are below 30% in both environments. In [5], a driving test was implemented
in USA. Similar results were obtained that much less BTSs can be observed
in rural areas than in urban areas. But the percentage of the detectability
is less when compared to the test in [18], e.g., in urban, there is only 40%
time to detect more than three stations whereas there is 60% time to observe
two base stations. Hence, it can be concluded that the hearablity drops
significantly from city to rural areas and it varies a lot in different regions.

Moreover, the TA, a current quantity in GSM networks able for position-
ing, is only available for the serving BTS and measured on the connected
mode. If more TAs want to be obtained, forced handover should be per-
formed. Also, although in big cities more BTSs are available, NLOS propa-
gation is a critical issue due to the block of high buildings, so that the number
of LOS base stations will be reduced.

To tackle the hearablity problem for positioning purpose, a good solution
is to get as many information as possible and apply data fusion methods.
There are more network providers like O2, E-Plus, Telekom and Vodafone
in Germany and therefore more possible BTSs if different providers are con-
sidered. Moreover, the road network is a promising source to be integrated
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with the measurements from GSM networks [63] to improve the estimation
accuracy and robustness, which will be explored in Chapter 4.

2.4 Position Estimation

2.4.1 Static Estimation

In the static estimation case, there is no assumption or a priori knowledge of
the changes of the MS’s position with respect to the time. Thus the positions
at different times are a sequence of uncorrelated parameters to be estimated
in a snap-shot manner.

For this static estimation problem, the measurements of one location can
be generally written as

z = h(x) + v (2.28)

where z =
[
z1 z2 · · · zn

]T
stands for the measurement vector including

the available n measurements from different BTSs, x =
[
x y

]T
indicates the

two dimensional position of the MS in x and y directions, which stays con-

stant during the measurement process, h(x) =
[
h1(x) h2(x) · · · hn(x)

]T
denotes the vector of measurement functions, and v =

[
v1 v2 · · · vn

]T
is

the vector of measurement noises, which can be assumed to be a zero-mean
white Gaussian noise with covariance matrix R

v ∼ N (0,R) (2.29)

R = diag(σ2
1, σ

2
2, · · · , σ2

n) (2.30)

According to different measurement types obtained from GSM networks, the
measurement function h(·) has different forms as introduced in Eqs. (2.4),
(2.10), (2.13), and (2.15). For TOA, TDOA and RSS measurements, at least
three measurements from different BTSs are required, whereas for AOA only
two different measurements are necessary. The measurement vector can also
consist of different types of measurements, e.g., TOA and AOA. Then some
optimization criteria to minimize (or maximize) a given cost function can be
applied. The static estimation problem is also called parameter estimation.
There are two models for the parameters to be estimated, nonrandom or
random. If the parameters are nonrandom unknown constants, the least
squares (LS) and the maximum likelihood (ML) principle should be utilized.
But when the parameters are assumed to be random variables, Bayesian
approaches should be considered.
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Least Squares

Based on the LS principle, to obtain the estimate from the measurements
described by Eq. (2.28) the minimization of the quadratic error

x̂WLS = argmin
x

[
z− h(x)

]T
R−1

[
z− h(x)

]
(2.31)

is under consideration, where R−1 is a weighting matrix and here is the
inverse of the measurement error covariance matrix. It is noted that the
problem of Eq. (2.31) is termed as weighted LS (WLS), which is an extension
of the general LS problem. Using a first order Taylor series expansion, the
problem of Eq. (2.31) can be solved iteratively by

x̂j+1 = x̂j + (HT
j R

−1Hj)
−1HT

j R
−1
[
z− h(x̂j)

]
(2.32)

where Hj is the Jacobian matrix of h(x) at iteration j

Hj =
∂h(x)

∂x

∣∣∣∣
x̂j

(2.33)

The above solution, Eq. (2.32), is referred to as the iterated least squares
(ILS) estimator, which iteratively updates the estimate using the measure-
ments until convergence is achieved. For different types of measurements,
the Jacobian matrix defined in Eq. (2.33) (refer to Appendix A.1 for the
derivation of the Jacobian matrix) has different forms as the following:

TOA:

Hj,TOA =



x− x1

d1

y − y1
d1

x− x2

d2

y − y2
d2

...
...

x− xn

dn

y − yn
dn


(2.34)

TDOA:

Hj,TDOA =



x− x1

d1
− x− x0

d0

y − y1
d1

− y − y0
d0

x− x2

d2
− x− x0

d0

y − y2
d2

− y − y0
d0

...
...

x− xn−1

dn−1

− x− x0

d0

y − yn−1

dn−1

− y − y0
d0


(2.35)

30



Chapter 2. Mobile Station Positioning Using GSM Networks

AOA:

Hj,AOA =



−y − y1
d21

x− x1

d21

−y − y2
d22

x− x2

d22
...

...

−y − yn
d2n

x− xn

d2n


(2.36)

RSS:

Hj,RSS =



38(x̃− x̃1)

ln 10 · d̃21

38(ỹ − ỹ1)

ln 10 · d̃21
38(x̃− x̃2)

ln 10 · d̃22

38(ỹ − ỹ2)

ln 10 · d̃22
...

...
38(x̃− x̃n)

ln 10 · d̃2n

38(ỹ − ỹn)

ln 10 · d̃2n


(2.37)

where di =
√
(x− xi)2 + (y − yi)2 stands for the distance from the MS to

the ith BTS and d0 =
√

(x− x0)2 + (y − y0)2 indicates the distance from the
MS to a reference BTS used for TDOA measurements. The ‘tilde’ notations
represent the normalized values. The above Jacobians are evaluated at x̂j.

Instead of using Taylor series to linearize the nonlinear function, numeri-
cal search methods, such as steepest descent and Gauss-Newton, can also be
applied to solve the nonlinear optimization problem (Eq. 2.31), and a simi-
lar solution can be obtained [7]. In addition, the nonlinear LS problem can
also be transfered to a linear LS problem by subtracting and rearranging the
measurement equations. In [8], explicit LS formulations for different types
of measurements are given.

Maximum Likelihood

The ML method is an alternative way to estimate the position from the
measurements modeled as shown in Eq. (2.28), which maximize the likelihood
function

x̂ML = argmax
ξ

Λ(ξ) = argmax
ξ

fz|x(ζ|ξ) (2.38)

Assuming that the measurement noise has zero-mean white Gaussian form
as shown in Eq. (2.30), the likelihood function is given by

Λ(ξ) =
n∏

i=1

fzi|x(ζi|ξ) =
n∏

i=1

ce
− 1

2σ2
i

[
ζi−hi(ξ)

]2
(2.39)
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where c is a normalizing constant. Since maximizing the likelihood function
is to minimize − ln

[
Λ(ξ)

]
, the above optimization problem is now to solve

x̂ML = argmin
ξ

{
− ln

[
Λ(ξ)

]}
(2.40)

= argmin
ξ

{
n∑

i=1

1

2σ2
i

[
ζi − hi(ξ)

]2}
(2.41)

which is the same as the LS formulation in Eq. (2.31). Therefore, the solution
can be obtained in analogy to the nonlinear LS method.

Bayesian Estimator

If the prior probability density function (pdf) of the parameter to be esti-
mated, which is the MS’s position in our work, is known, we can obtain the
a posteriori pdf using Bayes’ formula

fx|z(ξ|ζ) =
fz|x(ζ|ξ)fx(ξ)

fz(ζ)
=

1

c
fz|x(ζ|ξ)fx(ξ) (2.42)

where c is the normalization constant. According to different optimization
cost functions which can be used for estimating the position, there are differ-
ent Bayesian estimators. The counterpart of the LS estimator is called the
minimum mean square error (MMSE) estimator

x̂MMSE = argmin
x̂

E
[
(x̂− x)T (x̂− x)|z = z0

]
(2.43)

The solution of the above is the conditional mean of x given the measure-
ments z

x̂MMSE = E[x|z = z0] ,
∞w

−∞

ξfx|z(ξ|z0)dξ (2.44)

Moreover, the one that corresponds to the ML estimator is the maximum a
posteriori (MAP) estimator, which is to maximize the posterior pdf

x̂MAP = argmax
ξ

fx|z(ξ|ζ) = argmax
ξ

[
fz|x(ζ|ξ)fx(ξ)

]
(2.45)

The normalization constant c in Eq. (2.42) is irrelevant to the maximization,
therefore it is not considered. Under the Gaussian assumption, the MMSE
estimator is equal to the MAP estimator.
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Cramér-Rao Lower Bound

As is well known, the Cramér-Rao lower bound (CRLB) sets a lower limit on
the mean square error of any unbiased estimator

E
{[

x̂(z)− x
][
x̂(z)− x

]T} ≥ J−1 (2.46)

where x̂(z) indicates the estimate of x based on the measurement of z, and J
stands for Fisher information matrix (FIM). The inequality A ≥ B denotes
that the matrix A−B is non-negative definite. Considering the multidimen-
sional parameters and measurements, Eq. (2.46) is given in vector form and
the scalar form can refer to [64,65]. On the base of the parameters to be esti-
mated are nonrandom or random, there are two different CRLBs, parametric
CRLB and posterior CRLB [66].

For nonrandom vector parameters, the FIM depends on the likelihood
function Λ(ξ) = fz|x(ζ|ξ)

J , −E
{
∇ξ∇T

ξ ln Λ(ξ)
} ∣∣

ξ=ξtrue
(2.47)

= E
{[

∇ξ ln Λ(ξ)
][
∇ξ ln Λ(ξ)

]T} ∣∣∣∣
ξ=ξtrue

(2.48)

where∇ξ denotes the gradient operator with respect to ξ (see Appendix A.1).
The expectation is taken over the measurements z. ξtrue is the true value
vector of the parameters.

For random vector parameters, the FIM is calculated by the joint pdf
fz,x(ζ, ξ)

J , −E
{
∇ξ∇T

ξ ln fz,x(ζ, ξ)
} ∣∣

ξ=ξtrue
(2.49)

= E
{[

∇ξ ln fz,x(ζ, ξ)
][
∇ξ ln fz,x(ζ, ξ)

]T} ∣∣∣∣
ξ=ξtrue

(2.50)

where the expectation is taken over the measurements z and the random
parameters x. Since fz,x(ζ, ξ) = fz|x(ζ|ξ)fx(ξ), the FIM in Eq. (2.49) can
be decomposed into two terms

J = JD + JP (2.51)

where JD represents the information from the measurements and JP denotes
the information of the prior distribution of the parameters.

JD = E
{[

∇ξ ln fz|x(ζ|ξ)
][
∇ξ ln fz|x(ζ|ξ)

]T} ∣∣∣∣
ξ=ξtrue

(2.52)

JP = E
{[

∇ξ ln fx(ξ)
][
∇ξ ln fx(ξ)

]T} ∣∣∣∣
ξ=ξtrue

(2.53)
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Reference [45] gives a CRLB accuracy analysis of the multilateration tech-
niques including TOA, TDOA and hybrid solution for the LOS cases. In [46]
the CRLBs for different measurements including TOA, TDOA, RSS and
AOA in non-line-of-sight environment are explicitly discussed.

2.4.2 Dynamic Estimation

As opposed to the static estimation, by knowing the movement characteristics
of the target over a period of time or the temporal correlation of the position,
the target’s position of the next time can be predicted. This estimation
problem is called state estimation and formulated as follows

x(k + 1) = f
[
x(k)

]
+w(k) (2.54)

z(k) = h
[
x(k)

]
+ v(k) (2.55)

where Eq. (2.54) is the dynamic model and f [·] is a nonlinear vector-valued
mapping function. For the application of target tracking, it is reasonable to
include the dynamics of the target into the estimation. Therefore, the work
in this thesis is based on the problem formulation of Eqs. (2.54) and (2.55).
The general dynamic models for the ground target tracking, an appropriate
filter for the estimation, i.e., Kalman filter, and the corresponding posterior
CRLB will be introduced in Chapter 3.

2.5 Accuracy Criteria

To evaluate the performance of a mobile positioning system using wireless
communication networks, many considerations arise [14, 67]. The most im-
portant factor of the performance should be quality of service, which can be
characterized by the accuracy of the computed location. Another important
factor is grade of service, for which blocking rate can be used as a measure
of the instances when there are missing calls or the location determination
is above the system requirement for accuracy. The coverage of a positioning
system is an area that is provided with an acceptable level of service by the
system. Moreover, other performance measures should also be considered like
delays of the location calculation and capacity, which represents the expected
number calls the location system is designed to handle. Here we summarize
some important accuracy criteria using statistical approaches.
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2.5.1 Root Mean Square Error

The root mean square error (RMSE) in two dimensions is given by

RMSE =

√∑N
i=1(x̂i − x)2 + (ŷi − y)2

N
=

√
E [(x̂− x)2 + (ŷ − y)2] (2.56)

where (x, y) indicates the real position of the MS, and (x̂, ŷ) stands for the
estimated position of the MS, the subscript i denotes the ith of N realizations.
Assuming that the position estimate error in each dimension is a zero-mean
Gaussian distribution with equal variance

ex = (x̂− x) ∼ N (0, σ2) (2.57)

ey = (ŷ − y) ∼ N (0, σ2) (2.58)

and they are independent, the joint pdf fex,ey(ηx, ηy) is the product of the
single pdfs

fex,ey(ηx, ηy) = fex(ηx) · fey(ηy) =
1

2πσ2
e−(η2x+η2y)/2σ

2

(2.59)

Then we have
RMSE =

√
σ2 + σ2 (2.60)

which is equal to
√
2σ.

2.5.2 FCC Requirements for E911

In 1999, the United States FCC revised and tightened the E911 Phase II
location accuracy requirements from no more than 125 m for 67 percent of
all calls to the following [1]:

� For network-based solutions: 100 m for 67% of calls, 300 m for 95% of
calls

� For handset-based solutions: 50 m for 67% of calls, 150 m for 95% of
calls

This is often interpreted by the radial error

er =
√

(x̂− x)2 + (ŷ − y)2 (2.61)

which is a random variable. If the cumulative density function (CDF) of er
is determined, then the error at certain percentile, i.e., 67% and 95% will
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be compared with the corresponding threshold in the requirement, e.g., for
network-based solutions 100 m and 300 m, respectively. In the document [68],
some approaches of testing and verifying the accuracy using this standard
are given.

In contrast to using the RMSE, where a very small number of relatively
large errors will result in a big RMSE since all calls would be used for the
error evaluation, the FCC requirement, which is a dual ring method, ignores
the 5 percent of calls with the largest errors. Also, the dual ring approach
dose not square the errors, a procedure in RMSE that gives greater weight
to large errors. Therefore, when there are outliers in the positioning, i.e.,
the estimate is not Gaussian distributed any more, the dual ring approach is
more reasonable than the RMSE criterion.

However, when the Gaussian assumption, Eqs. (2.57) and (2.58), holds,
these two approaches are directly connected. Since now the radial error er is
Rayleigh distributed, the 67% percentile error is about 1.05 RMSE and the
95% percentile error is about 1.73 RMSE.

Considering that the RMSE method is also widely used for other position-
ing systems, in this thesis we mainly use it to assess the accuracy performance
of the position estimation.

2.5.3 Geometric Dilution of Precision

The conception of the geometric dilution of precision (GDOP) starts from the
use of GPS and it is defined as the geometry factor that relates parameters
of the user position and time bias errors to those of the pseudorange errors.
Usually the measurement error is assumed to be Gaussian, zero mean, and
identically distributed. Then the error covariance matrix of the state to be
estimated (for GPS positioning it is normally denoted by δx, which is the
difference of the state and a nominal state value for linearization [65]) is given
by

P =
[
HTH

]−1
σ2 (2.62)

where σ2 is the variance of the measurement errors and the measurement
matrix H depends only on the relative geometry of the satellites and the
receiver. The GDOP is then defined as

GDOP =
√
tr
[
(HTH)−1

]
(2.63)

Based on Eq. (2.63), other DOPs are also defined, such as position DOP
(PDOP), horizontal DOP (HDOP), vertical DOP (VDOP), and time DOP
(TDOP).

36



Chapter 2. Mobile Station Positioning Using GSM Networks

Considering the TOA measurement defined in Eq. (2.4), the H matrix is
the Jacobian matrix of the measurement function, see [21] for the derivation,

H =



x− x1√
(x− x1)2 + (y − y1)2

y − y1√
(x− x1)2 + (y − y1)2

x− x2√
(x− x2)2 + (y − y2)2

y − y2√
(x− x2)2 + (y − y2)2

...
...

x− xn√
(x− xn)2 + (y − yn)2

y − yn√
(x− xn)2 + (y − yn)2


(2.64)

For this TOA measurement, the GDOP is also equal to the PDOP and
HDOP. In reference [45] the GDOPs for TOA, TDOA and hybrid approaches
are discussed.

It should be noted that a higher value of GDOP means a poor geometry,
whereas a lower value indicates a better geometry. In addition, as shown in
Eq. (2.62), the relative bigger GDOP will degrade the estimation accuracy.
For example, to optimize a communication system the wireless base stations
are placed along highways. For comparable measurement errors,such linear
geometry will lead to larger errors in positioning. When the Gaussian as-
sumption, Eqs. (2.57) and (2.58), holds, GDOP is the RMSE normalized
with the measurement precision. Thus, the concept of GDOP is connected
with RMSE and also the FCC requirement.

2.6 Summary

The attributes of the signals transmitted between the MS and multiple BTSs
can contribute to the position estimation, mainly including TOA, TDOA,
AOA and RSS. The position estimation can be divided into static estimation
and dynamic estimation depending on whether the target motion with re-
spect to time is considered. This chapter mainly introduces the static esti-
mation problem, which is also called parameter estimation. Further, non-
Bayesian or Bayesian estimators are applied according to modeling the para-
meters as nonrandom unknown constants or random variables and the corres-
ponding lower bounds are parametric CRLB or posterior CRLB.

The radio propagation environment is complicated and the multipath
and NLOS propagation greatly degrades the positioning. Mitigation algo-
rithms should be applied before or with the position estimation. To evaluate
the performance of the position estimation, accuracy criteria are introduced.
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RMSE is used as the main performance criteria in this thesis since it is
widely used for the positioning systems and tracking problems. The FCC
requirements for E911 are also important since it is the first standard of po-
sitioning using mobile cellular networks. Another term GDOP, mainly used
in GPS field, is also introduced. The connection between these criteria is
also presented.
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A Data Fusion Solution for
Ground Target Tracking

Ground target tracking has different characteristics from other types of target
tracking like air targets (detailed comparisons can be found in reference [69]).
The motion of ground targets is generally two dimensional, whereas air tar-
gets move in the three-dimensional space. Ground targets can be very close
to each other, but the air targets should keep distance for safety. The ground
target may be obscured by terrain and buildings. For instance, there may be
only non-line-of-sight (NLOS) propagation from a BTS to a MS, whereas the
detection of air targets are less affected by the terrain. Most importantly,
the ground target motion is far more variable than the air target motion.
Due to the restriction of the terrain, road and traffic, the ground target may
frequently start, accelerate, decelerate, stop, or turn on the road, i.e., the
state to be estimated may change dramatically. Therefore, the ground tar-
get has a distinctive feature of high maneuverability and a proper target
dynamic model, which describes the evolution of the target state x with re-
spect to the time, is very important for tracking the ground target. If the
dynamic model matches the motion of the target very well, the estimation
will be greatly benefiting from the dynamic information. Otherwise, a wrong
dynamic model will degrade the estimation performance.

In this chapter, first the dynamic models are described and the state
estimation using extended Kalman filter (EKF) is introduced. Then the pos-
terior Cramér-Rao lower bound (PCRLB) for the target tracking is derived
in Section 3.3. In Section 3.4, a data fusion approach integrating two types
of measurements is presented and simulation results are given in Section 3.5.
In Section 3.6, the PCRLB for the data fusion approach is derived and the
performance of different methods is analyzed in terms of PCRLB.
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3.1 Target Dynamic Models

The most well-known representative dynamic models are nearly constant ve-
locity (CV), nearly constant acceleration (CA), Singer, and coordinated turn
(CT) models [70]. To describe these models, firstly a generic state-space
target motion model in discrete time is given by

x(k + 1) = F(k)x(k) +G(k)w(k) (3.1)

where k denotes the discrete-time index. x(k), F(k), G(k), and w(k) stand
for the target state vector, state transition matrix, noise Gain matrix and
process noise vector, respectively, and they have different forms for different
models as follows.

3.1.1 Nearly Constant Velocity Model

The state vector x =
[
x ẋ y ẏ

]T
includes the position and velocity in two

dimensions. The state transition matrix is

FCV = diag[F1,F1] (3.2)

F1 =

[
1 T
0 1

]
(3.3)

where T indicates the sampling interval. The noise gain matrix GCV =

diag[G1,G1], andG1 =
[
1
2
T 2 T

]T
. The process noisew(k) =

[
wx(k) wy(k)

]T
is assumed to be zero-mean white Gaussian noise where the elements corre-
spond to the accelerations in two dimensions. The CV model is usually used
for nonmaneuvering motion (uniform motion), which is a straight and level
motion at a constant velocity. It can be also used for a maneuvering motion
where the target acceleration is assumed to be white noise and the maneuver
is small.

3.1.2 Nearly Constant Acceleration Model

The state vector for CA model x =
[
x ẋ ẍ y ẏ ÿ

]T
contains the posi-

tion, velocity and acceleration in two dimensions. The state transition matrix
is

FCA = diag[F2,F2] (3.4)

F2 =

1 T 1
2
T 2

0 1 T
0 0 1

 (3.5)
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The noise gain matrix is GCA = diag[G2,G2], where G2 =
[
1
2
T 2 T 1

]T
.

The process noise w(k) =
[
wx(k) wy(k)

]T
is assumed to be zero-mean white

Gaussian noise representing acceleration increments, which means that the
acceleration is modeled as a Wiener process.

3.1.3 Singer Model

Not modeling the acceleration as a white noise or a wiener process like the CV
and CA model, the Singer model assumes that the target acceleration a(t) is
a zero-mean stationary first-order Markov process with autocorrelation

Ψa(τ) = E
[
a(t+ τ)a(t)

]
= σ2e−α|τ | (3.6)

The time evolution of the acceleration in discrete time is written as

ẍ(k + 1) = βẍ(k) + w(k) (3.7)

where w(k) is a zero-mean white noise sequence with variance σ2(1 − β2)
and β = e−αT . The state vector is identical to the CA model, and the state
transition matrix is

FSinger = diag[F3,F3] (3.8)

F3 =

1 T (αT − 1 + e−αT )/α2

0 1 (1− e−αT )/α
0 0 e−αT

 (3.9)

The exact covariance of the process noise is a function of α and T [65].
Therefore, the important part of building a Singer model is designing the
parameters α, which depends on the period of the maneuver, and σ2, which
is the instantaneous variance of the acceleration [65, 70]. As the maneuver
time constant increases, the Singer model reduces to the CA model, whereas
it reduces to the CV model when the maneuver time decreases.

3.1.4 Coordinated Turn Model

The CT model is built for circular motion and assumes that the target speed

and turn rate are nearly constant. The state vector x =
[
x ẋ y ẏ ω

]T
consists of the position and velocity in two dimensions, and the turn rate.
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The state transition matrix is

FCT =



1
sin(ωT )

ω
0 −1− cos(ωT )

ω
0

0 cos(ωT ) 0 − sin(ωT ) 0

0
1− cos(ωT )

ω
1

sin(ωT )

ω
0

0 sin(ωT ) 0 cos(ωT ) 0

0 0 0 0 1


(3.10)

The noise gain matrix is GCT = diag[G1,G1, T ]. The process noise w(k) =[
wx(k) wy(k) wω(k)

]T
includes noise terms for accelerations in x and y

directions and for turn rate, and it is assumed to be zero-mean white Gaussian
noise.

3.1.5 Curvilinear Model

Besides the standard motion models introduced above, another turn mo-
tion model is a first-order Euler discretization of the generic continuous-time
curvilinear motion model from kinematics [71, 72], which can be used for
describing either a straight or a turn motion.

x(k + 1) = f
[
x(k)

]
+w(k) (3.11)

f
[
x(k)

]
=


x(k) + Tv(k) cos

(
ϕ(k)

)
y(k) + Tv(k) sin

(
ϕ(k)

)
v(k) + Tat(k)
ϕ(k) + Tan(k)/v(k)

 (3.12)

where the state vector x =
[
x y v ϕ

]T
includes the target position in

two dimensions, speed v and heading ϕ. at and an denote tangential (along-
track) and normal (cross-track) accelerations, respectively. The process noise

w(k) =
[
wx(k) wy(k) wv(k) wϕ(k)

]T
is assumed to be zero-mean white

Gaussian noise. In fact the CV, CA and CT models are special cases of this
generic curvilinear model when the tangential and normal accelerations are
set to different values [70].

3.2 State Estimation Using EKF

The main task of target tracking is state estimation which consists of pre-
diction and correction. While the prediction depends on the dynamic infor-
mation of the target, the correction relies on the measurements obtained at
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each time step. Usually, the Kalman filter addresses the general problem
of estimating the state of a discrete-time controlled process described by a
linear model. In some applications, however, the state transition and/or the
mapping of the states into the observation space is nonlinear. The state
transition with respect to time and the relationship between the state vector
x ∈ ℜn and the measurement vector z ∈ ℜm are given by

x(k + 1) = f
[
x(k)

]
+G(k)w(k) (3.13)

z(k) = h
[
x(k)

]
+ v(k) (3.14)

where w(k) and v(k) indicate the driving noise and measurement noise,
respectively. They are assumed to be zero-mean white Gaussian noises and
characterized by their covariance matrices.

E
{
w(k)

}
= 0, E

{
w(k) ·w(j)T

}
= Q(k) · δ(k − j) (3.15)

E
{
v(k)

}
= 0, E

{
v(k) · v(j)T

}
= R(k) · δ(k − j) (3.16)

where Q(k) denotes the covariance matrix of the driving noise and R(k)
stands for the covariance matrix of the measurement noise. Then the EKF
formulated for nonlinear situations is given by the following equations:

Prediction:

x̂−(k + 1) = f
[
x̂+(k)

]
(3.17)

P−(k + 1) = F(k)P+(k)FT (k) +G(k)Q(k)G(k)T (3.18)

Correction:

K(k + 1) = P−(k + 1)HT (k + 1)

·
[
H(k + 1)P−(k + 1)HT (k + 1) +R(k + 1)

]−1
(3.19)

r(k + 1) = z(k + 1)− h
[
x̂−(k + 1)

]
(3.20)

x̂+(k + 1) = x̂−(k + 1) +K(k + 1)r(k + 1) (3.21)

P+(k + 1) = P−(k + 1)−K(k + 1)H(k + 1)P−(k + 1) (3.22)

where x̂−(k + 1) and P−(k + 1) represent the predicted state estimate and
state error covariance, x̂+(k+1) and P+(k+1) denote the updated state esti-
mate and associated state error covariance, respectively. K(k + 1) indicates
the designated Kalman gain and r(k + 1) denotes the measurement residual
vector. F(k) is the Jacobian matrix of f [·]

F(k) =
∂f

[
x(k)

]
∂x(k)

∣∣∣∣
x̂+(k)

(3.23)
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and H(k + 1) indicates the Jacobian matrix of h[·]

H(k + 1) =
∂h

[
x(k + 1)

]
∂x(k + 1)

∣∣∣∣
x̂−(k+1)

(3.24)

The initial value of the estimate is given by

E
{
x̂(0)+

}
= E

{
x(0)

}
(3.25)

E
{
P(0)+

}
= E

{(
x(0)− x̂(0)

)(
x(0)− x̂(0)

)T}
(3.26)

3.3 Posterior CRLB for Target Tracking

The Cramér-Rao lower bound (CRLB) is useful to predict the best achievable
performance before designing any estimator and to provide a benchmark of
assessing different estimation algorithms. As introduced in Section 2.4.1, the
parametric CRLB is used for nonrandom parameters, whereas the posterior
CRLB (PCRLB) is a lower bound for random parameters. Obviously in
the context of positioning, the parameters to be estimated, mainly position
and velocity, should be considered as random, and thus PCRLB should be
analyzed.

Similar to the parametric CRLB, PCRLB is the lower bound of the mean
square error of any unbiased estimator

E
{[

x̂(z)− x
][
x̂(z)− x

]T} ≥ J−1 (3.27)

The bound is the inverse of the Fisher information matrix (FIM) J−1. The
difference is that the PCRLB depends on the joint probability density of
the state and observation vector fz,x(ζ, ξ), whereas the parametric CRLB
depends on the likelihood fz|x(ζ|ξ) and the unknown parameter. Using the
conditional equation, the FIM J can be decomposed into the information
obtained from the observation data, and the a priori information, shown in
Eqs. (2.49)-(2.52).

The problem of target tracking is a nonlinear filtering problem modeled
as Eqs. (3.13) and (3.14). The FIM can be written as a sequence of the FIM
at each time step

{
J(0),J(1), · · · ,J(k)

}
for the corresponding target state{

x(0),x(1), · · · ,x(k)
}
, respectively. By using submatrix techniques, J(k)

can be calculated recursively from the FIM of the last time step J(k − 1) [73].
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After some derivations (see Appendix B), the final PCRLB recursion formula
for the nonlinear problem with additive Gaussian noise is

J(k + 1) =
[
Q(k) + E

{
F(k)J(k)−1F(k)T

} ]−1

+E
{
H(k + 1)TR(k + 1)−1H(k + 1)

}
(3.28)

where F(k) indicates the Jacobian matrix of the vector-valued state transition
function f [·] (Eq. 3.13) evaluated at the real value of state x(k).

F(k) ,
∂f

[
x(k)

]
∂x(k)

∣∣∣∣
x(k)

(3.29)

H(k+1) denotes the Jacobian matrix of the vector-valued nonlinear measure-
ment function h[·] (Eq. 3.14) evaluated at the real value of the state x(k+1).

H(k + 1) ,
∂h

[
x(k + 1)

]
∂x(k + 1)

∣∣∣∣
x(k+1)

(3.30)

Q(k) stands for the covariance matrix of process noise, and R(k+1) denotes
the covariance matrix of measurement noise. It should be noted that the
Jacobians depend on the random realization of x and are implicitly random
variables. Hence the expectation should be taken over Monte Carlo trials.
The initial value of the FIM can be given by the inverse of the covariance
matrix of the initial state estimate

J(0) = P(0)−1 (3.31)

3.4 A Data Fusion Solution

3.4.1 Data Fusion Structure

As introduced in Chapter 2, since the radio propagation environment, such as
urban, suburban and rural, is diverse and complicated, and as the communi-
cation signals are usually not designed for positioning, it is difficult to achieve
an accurate position estimate relying just on a single type of measurements.
Therefore, data fusion solutions which integrate two or more types of measure-
ments have been proposed to provide estimation with better accuracy, relia-
bility and coverage.

Reference [35] used TDOA and TOA measurements to obtain the posi-
tion estimate. The author also analyzed the accuracy of a mixed approach
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using both TOA and TDOA measurements compared with only using TOA
measurements and only using TDOA measurements in [45]. The results show
that the mixed approach provides the best compromise between robustness
and accuracy. A hybrid TDOA/AOA approach is proposed in [33] where a
two step LS estimator is applied. In [32], power and time measurements are
combined and nonparametric MMSE estimation methods are employed to
calculate the position estimate. By using these data fusion approaches, the
estimation accuracy can be improved compared with using a single type of
measurements since the information from independent sources are combined.
The advantages of both types of measurements will be utilized. For exam-
ple, in the two-dimensional scheme of AOA/TDOA [33], the AOA approach
requires only two measurements from two BTSs, and the TDOA approach
provides higher accuracy than the AOA approach. Moreover, when one type
of measurements is degraded, the required estimation accuracy can still be
achieved by the other type of measurements.

However, there are few approaches which consider using data fusion for
target tracking in a mobile communication environment. In our work, we
propose a data fusion solution to integrate two different types of measure-
ments for dynamic position estimation and the EKF is utilized for this pur-
pose. Considering that the RSS and TOA measurements can be obtained
in current GSM networks without significant modifications on the handset
and the network, they are employed as an example of this fusion approach.
The structure of the data fusion solution is illustrated in Fig. 3.1. The EKF

Measurements Estimator

TA

EKF

Lateration

Estimation of
Position and Velocity 

RSS

Figure 3.1: The structure of the data fusion solution

provides a convenient structure for integrating different types of measure-
ments by stacking the whole measurements into the vector of measurement
functions h[·] in Eq. (3.14). With the EKF, the lateration techniques are
also used. It should be noticed that other measurements, TDOA or AOA,
can also be integrated using the proposed data fusion structure.
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3.4.2 Dynamic Model and Measurement Model for EKF

The dynamic model should be chosen according to the real trajectory. For
the sake of simplicity, a CV model, which is suitable for nonmaneuvering
motion or a maneuver motion with small acceleration errors (refer to [70]),

can be used. The state vector is x =
[
x ẋ y ẏ

]T
including the position

and velocity in two dimensions.

In general, for two-dimensional positioning, at least three BTSs are re-
quired to obtain a unique position estimate. Thus, the TOA and RSS
measurements from three BTSs are integrated for the position estimation.
Now the measurements, z ∈ ℜ6, are the distances between the BTSs and
the MS according to the TOA measurements and the signal strength losses
calculated from the RSS measurements received from three BTSs a, b, and
c, whose position coordinates are (xa, ya), (xb, yb) and (xc, yc), respectively.
Define the distance between the MS and three BTSs as

di =
√

(x− xi)2 + (y − yi)2, i = a, b, c (3.32)

d̃i =
di

1 km
(3.33)

Since NLOS propagation is common in urban area which attracts the most
interest for the mobile positioning, the measurement model should consider
the tolerance of NLOS propagation. For RSS measurements, a typical propa-
gation loss model, Eq. (2.20), for small cells in urban areas (COST-WI
model), which is a NLOS propagation model composed of free space loss,
multiple screen diffraction loss, and roof-top-to-street diffraction and scatter
loss, is used. For TOA measurements, the NLOS error can be modeled as a
bias and it is possible to remove it before the estimation (see Section 2.3.6).
Thus, the measurement model for TOA, Eq. (2.4), can be applied. Then the
measurement model for EKF (Eq. 3.14) can be written as

z(k) = h
[
x(k)

]
+ v(k) (3.34)

h
[
x(k)

]
=



da(k)

db(k)

dc(k)

132.85 + 38 log10
(
d̃a(k)

)
132.85 + 38 log10

(
d̃b(k)

)
132.85 + 38 log10

(
d̃c(k)

)


(3.35)

where v(k) stands for a zero-mean white Gaussian noise defined in Eq. (3.16).
Since the measurement noises of TOA and RSS measurements are from
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different sources, it is reasonable to assume that they are independent from
each other. Therefore, the covariance matrix of the measurement noise is
R(k) = diag(σ2

d, σ
2
d, σ

2
d, σ

2
l , σ

2
l , σ

2
l ). Note that the propagation model is highly

dependent on the surrounding environment. So the measurement model for
RSS should be updated in real time by specifying several parameters which
define the propagation environment (the details are explained in Section
2.3.4).

Once the state transition model and the observation model are estab-
lished, the EKF of Eqs. (3.17)-(3.22) can be applied, where the Jacobian
matrix H(k + 1) is given by

H(k + 1) =



(
x(k + 1)− xa

)
da(k + 1)

0

(
y(k + 1)− ya

)
da(k + 1)

0(
x(k + 1)− xb

)
db(k + 1)

0

(
y(k + 1)− yb

)
db(k + 1)

0(
x(k + 1)− xc

)
dc(k + 1)

0

(
y(k + 1)− yc

)
dc(k + 1)

0

38
(
x̃(k + 1)− x̃a

)
ln 10 ·

(
d̃a(k + 1)

)2 0
38
(
ỹ(k + 1)− ỹa

)
ln 10 ·

(
d̃a(k + 1)

)2 0

38
(
x̃(k + 1)− x̃b

)
ln 10 ·

(
d̃b(k + 1)

)2 0
38
(
ỹ(k + 1)− ỹb

)
ln 10 ·

(
d̃b(k + 1)

)2 0

38
(
x̃(k + 1)− x̃c

)
ln 10 ·

(
d̃c(k + 1)

)2 0
38
(
ỹ(k + 1)− ỹc

)
ln 10 ·

(
d̃c(k + 1)

)2 0



(3.36)

evaluated at x̂−(k + 1). The ‘tilde’ notations denote the normalized values
by 1 km.

3.5 Simulation Results

3.5.1 Simulation Scenario

The estimator is tested in a simulated urban square area of 5 km × 5 km
with the environment parameters described in Section 2.3.4. The propa-
gation loss model of Eq. (2.20) typically for a small cell is used for the ra-
dio propagation environment simulation. Within this area there are three
BTSs, a, b and c , with position coordinates (xa, ya) = (1500 m, 2000 m),
(xb, yb) = (3500 m, 2000 m) and (xc, yc) = (2500 m, 4500 m), respectively
(see Fig. 3.2). It is supposed that the measurement update is every 480 ms,
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T = 0.48 s, which is a typical value for the TA parameter in GSM networks.
TA is one TOA measurement in GSM networks. The TA measurements and
RSS measurements are assumed to be simultaneously obtained by the esti-
mator. It should be noticed that in the current GSM networks only one TA
is taken by the serving BTS. To obtain more TA measurements from other
BTSs, forced handover must be implemented.
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Figure 3.2: Simulation scenario

It is assumed that a vehicle equipped with a MS travels clockwise along
a trapezium route starting at the point (0 m, 1250 m) and made of 4 parts
designed for evaluating the performance of the proposed estimator as depicted
in Fig. 3.2. The trajectory is generated by the curvilinear motion model,
Eqs. (3.11) (3.12), which is called truth model since it represents the real
trajectory for the simulation. In the first part, the vehicle first moves under
an acceleration of 2 m/s2 from stationary state, then at a nearly constant
speed of about 10 m/s, finally under a deceleration of −2 m/s2 when it goes
to the corner. In part 2, the vehicle moves under an acceleration of 1 m/s2,
then under a deceleration of −1 m/s2. In part 3, the movement of the vehicle
is similar to part 1. In part 4, the vehicle first moves with an acceleration
of 2 m/s2, then at a nearly constant speed of about 20 m/s, and at last
decelerates at −2 m/s2 back to the starting point. The process noise w(k) =[
wx(k) wy(k) wv(k) wϕ(k)

]T
is assumed to be zero-mean white Gaussian

noise with standard deviations of σx = 10−4 m, σy = 10−4 m, σv = 10−5 m/s,
σϕ = 10−6 rad.
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3.5.2 EKF Design

Each part of the trajectory in the simulation is a straight motion and during
most of the time at nearly constant velocity. As discussed in Section 3.4.2,
a CV model is chosen as the state transition model for the EKF. Although
the second part of the trajectory is actually a nearly constant acceleration
motion, the EKF with CV model can still work by tuning the driving noise to
a large value. The measurement model is described by Eqs. (3.34) (3.35), in
which three TOA and three RSS measurements are integrated. The driving
and measurement noise covariance matrix Q(k) and R(k) are set to

Q(k) = diag(σ2
x, σ

2
y) (3.37)

R(k) = diag(σ2
d, σ

2
d, σ

2
d, σ

2
l , σ

2
l , σ

2
l ) (3.38)

where σd and σl stand for the standard deviations of the measurement noises.
σd is chosen according to the TA error model from the specifications of GSM
networks, shown in Eq. (2.6). A typical value is 300 m. The standard devi-
ation of RSS measurement noise σl has a typical value of 4-8 dB according
to the COST-WI model. The proposed estimator uses one simple CV model
to describe the state transition of the MS on the whole route. Unfortunately,
in reality the real state of MS has different characteristics, e.g., constant
acceleration at the end of each part of the route, thus the standard devi-
ations of the driving noises σx and σy should be set to different values for
different parts of the trajectory as shown in Table 3.1.

Table 3.1: Values of σx and σy for the different parts of the trajectory

Part 1 Part 2 Part3 Part 4

σx 1 m/s2 10 m/s2 10−4 m/s2 1 m/s2

σy 1 m/s2 10−4 m/s2 1 m/s2 10−4 m/s2

The initial state values x̂+(0) and ŷ+(0) of the estimator are calculated by
one point measurement [65], which uses a traditional least squares algorithm
to achieve an initial position guess from three independent TOA measure-
ments at time step k = 0. The initial values of the velocity ˆ̇x+(0), ˆ̇y+(0)
are assumed to be zero-mean Gaussian random variables with an associated
standard deviation which is equal to half of the known maximum state values.
Then the initial state error covariance matrix is set to be

P+(0) = diag
[
σ2
d, (30 m/s)2, σ2

d, (30 m/s)2
]

(3.39)
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where the variance elements of the position in two dimensions are set to be
the values of the variance of the TOA measurement and the variance elements
of the velocity in two dimensions are set to be (30 m/s)2 as half the value of
the possibly biggest velocity.

To prove the advantages of the data fusion approach, two EKF estimators
which use only TOA or only RSS measurements are also designed. Each in-
cludes three TOA or three RSS measurements from three independent BTSs,
respectively. The other parameters of the EKFs are identical to the fusion
approach introduced above.

3.5.3 Performance Comparisons

Estimates Compared with True State Values

The estimation results of the proposed estimator, when the standard devi-
ations of the measurement noises are set to be σd = 300 m and σl = 4 dB,
are shown in Fig. 3.3. The red lines depict the true state values, x =[
x ẋ y ẏ

]T
, and the blue curves are the corresponding estimated val-

ues by the data fusion approach. The plots show that in all parts of the
route the estimator can track the movement of the MS. When the real move-
ment is quite different from the assumption of the proposed state transition
model like in part 2, where the real movement is under constant acceleration,
whereas the model assumes constant velocity, the estimator can still track
the true state value by increasing the driving noise properly. When the real
state transition and the model match each other very well, as the state ele-
ment ẋ in part 2 and the state element ẏ in part 4, the estimates converge
quickly to the real state values. Note that some estimates have relatively big
errors although the motion model matches the real movement very well, e.g.,
the first part. This is because the standard deviation of the driving noise in
the EKF is chosen to assume a relatively large values, e.g., 1 m/s2 for both
x and y directions in part 1, in order to cover the maneuvering movement at
the beginning and the end of this part of route. Increasing the driving noise
makes the estimator more robust to the unpredicted maneuver. However,
the CV model can only be used for a maneuver with a short period and a
small process noise. When the maneuver takes long time and the maneuver is
large, other dynamic models for the maneuver should be chosen or adaptive
estimators should be applied. This will be discussed in Chapter 5.
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Figure 3.3: The true and estimated state values

RMSE Comparison

One comparative performance of the proposed estimator with the estimators
using only one kind of measurements is studied by using the RMSE, Eq. (2.56).
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Similarly, the standard deviations of the measurement noises are σd = 300 m
and σl = 4 dB. 500 Monte Carlo trials are run and the results are illustrated
in Fig. 3.4. In each part of the route, the proposed estimator shows the high-
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Figure 3.4: RMSE comparison of three approaches

est accuracy and the RSS only method provides the worst estimate among
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three approaches. It is also observed that in part 2 the estimation accuracy is
greatly degraded, especially for the velocity estimate, since a wrong dynamic
assumption is given. At the beginning of each part of the route, there is a
relatively bigger RMSE due to the change of the target movement, which is
decreased when the estimates converge to the new state values. It is also
observed that the improvement of the velocity estimate is not so big. This is
because the velocity is not measured, whereas is derived from the position.

Fusion of RSS Measurements with Only One TA Measurement

As mentioned before, in practice only one TA measurement from the serving
BTS is available in current GSM networks. Thus the performance of inte-
grating three RSS measurements with only one TA measurement should be
also examined. The simulation is implemented by using three RSS measure-
ments from BTS a, b, c, respectively, and one TA measurement from BTS
c. Figure 3.5 shows the position RMSE comparison of fusion of three TA
and three RSS measurements, fusion of RSS measurements with only one
TA measurement, and using only three RSS measurements. It is shown that
among three approaches the fusion of three TA measurements with three RSS
measurements has the highest accuracy. However, the integration of three
RSS measurements and one TA measurement can also improve the estimation
accuracy compared with using only three RSS measurements. This provides
a realistic solution which uses only existed position related measurements in
GSM networks for the MS tracking.

Fusion under Different Measurement Errors

In this simulation, the data fusion approach is examined under different
measurement errors and the performance is compared with that of the RSS
only and TOA only approach. The simulations are divided into two groups
as shown in Table 3.2. The first group is assumed a fixed RSS measurement
error of σl =4 dB with varying TA measurement errors of σd =100 m, 300 m,
500 m, and 700 m, respectively (see Fig. 3.6). The second group of sim-
ulations uses a fixed TOA measurement error of σd =300 m with varying
RSS measurement errors of σl =2 dB, 4 dB, 6 dB and 8 dB, respectively (see
Fig. 3.7). The comparisons indicate that when one kind of measurements
has degraded accuracy, such as in Fig. 3.6d and Fig. 3.7d, the data fusion
approach can still provide relatively accurate estimates. It is observed that if
one kind of measurements is much worse than the other type of measurements
like in Fig. 3.6a, the RMSE of the fusion approach is close to the approach
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Figure 3.5: Fusion of RSS measurements with only one TA measurement

Table 3.2: Parameters of two groups of simulations

First Group Second Group

TA (σd) RSS (σl) TA (σd) RSS (σl)

100 m 4 dB 300 m 2 dB

300 m 4 dB 300 m 4 dB

500 m 4 dB 300 m 6 dB

700 m 4 dB 300 m 8 dB

of using single measurements with better accuracy alone. It can also be seen
that among all the comparisons the data fusion approach yields the highest
accuracy. However, it should be noted that this is because the statistics of
the measurement noise is known properly. When the measurement noise is
getting worse unpredictably, integrating the measurement data with good
accuracy with bad measurement data may cause much worse estimation re-
sults.
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(b) σd = 300 m, σl = 4 dB

Figure 3.6: RMSE comparison of different TA measurement errors
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(c) σd = 500 m, σl = 4 dB
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(d) σd = 700 m, σl = 4 dB

Figure 3.6: RMSE comparison of different TA measurement errors (cont’d)
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Figure 3.7: RMSE comparison of different RSS measurement errors
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Figure 3.7: RMSE comparison of different RSS measurement errors (cont’d)
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3.6 PCRLB for the Data Fusion Solution

3.6.1 Derivation

As discussed in Section 3.3, the PCRLB for the target tracking problem
has the recursion form of Eq. (3.28). Suppose that a data fusion solution
is given as shown in Section 3.4, the measurement function vector can be

written as h =
[
hT
1 hT

2

]T
and thus the corresponding Jacobian matrix can

be decomposed into H =
[
HT

1 HT
2

]T
, where H1 represents one type of

measurements and H2 the other type of measurements. It is assumed that
the measurement noises are independent, then the cross covariance terms
of measurement noises are zero. Thus, the complete covariance matrix of
measurement noises is R = diag(R1,R2). Then the FIM of the data fusion
approach at time step of k + 1 can be written as

J(k + 1) =
[
Q(k) + E

{
F(k)J(k)−1F(k)T

} ]−1

+E
{
H(k + 1)TR(k + 1)−1H(k + 1)

}
(3.40)

=
[
Q(k) + E

{
F(k)J(k)−1F(k)T

} ]−1

+E
{
H1(k + 1)TR1(k + 1)−1H1(k + 1)

}
+E

{
H2(k + 1)TR2(k + 1)−1H2(k + 1)

}
(3.41)

= JP (k + 1) + JD1(k + 1) + JD2(k + 1) (3.42)

where JP (k + 1) denotes the information from a priori, JD1(k + 1) indicates
the information from one type of measurements and JD2(k + 1) stands for
the information from another type of measurements. The above equations
indicate that the information is additive.

The most important part of deriving the PCRLB is to define the Jacobian
matrix of the state transition function f [·] and measurement function h[·]
(usually nonlinear) with respect to the state vector x. For the data fusion
approach proposed in the last section, the measurement model includes two
different types of measurements from three BTSs (Eqs. 3.34, 3.35). It should
be noticed that to calculate PCRLB the truth model of the real trajectory
rather than the dynamic model for the EKF design should be used because
PCRLB is the best achievable theoretical performance considering the real
data. The truth model might be different with the dynamic model used in
EKF. Assuming that the curvilinear model, Eqs. (3.11) and (3.12), is used

for generating the trajectory, the state vector is x =
[
x y v ϕ

]T
, which

includes the target position in two dimensions, speed and heading. The
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Jacobian matrix of the state transition function is derived as follows

F(k) ,
∂f

[
x(k)

]
∂x(k)

∣∣∣∣
x(k)

(3.43)

=


1 0 T cos

(
ϕ(k)

)
−Tv(k) sin

(
ϕ(k)

)
0 1 T sin

(
ϕ(k)

)
Tv(k) cos

(
ϕ(k)

)
0 0 1 0

0 0 −Tan(k)

v(k)2
1

 (3.44)

where F(k) is evaluated at the real value of state x(k). The Jacobian matrix
of the measurement function is

H(k + 1) ,
∂h

[
x(k + 1)

]
∂x(k + 1)

∣∣∣∣
x(k+1)

(3.45)

=



x(k + 1)− xa

da(k + 1)

y(k + 1)− ya
da(k + 1)

0 0

x(k + 1)− xb

db(k + 1)

y(k + 1)− yb
db(k + 1)

0 0

x(k + 1)− xc

dc(k + 1)

y(k + 1)− yc
dc(k + 1)

0 0

38
(
x̃(k + 1)− x̃a

)
ln 10 · (d̃a(k + 1))2

38
(
ỹ(k + 1)− ỹa

)
ln 10 · (d̃a(k + 1))2

0 0

38
(
x̃(k + 1)− x̃b

)
ln 10 · (d̃b(k + 1))2

38
(
ỹ(k + 1)− ỹb

)
ln 10 · (d̃b(k + 1))2

0 0

38
(
x̃(k + 1)− x̃c

)
ln 10 · (d̃c(k + 1))2

38
(
ỹ(k + 1)− ỹc

)
ln 10 · (d̃c(k + 1))2

0 0



(3.46)

whereH(k+1) is evaluated at the real value of state x(k+1). The expectation
should be taken over Monte Carlo trials.

3.6.2 Simulation Results

Simulation Scenario

The simulations are carried out in a simulated urban square area as described
in Section 3.5.1. It is assumed that a vehicle equipped with a MS travels at
nearly constant velocity from location (0 m, 3000 m) as shown in Fig. 3.8.
The initial state comprises the position and velocity of the MS in two dimen-

sions as x(0) =
[
0 m 15 m/s 3000 m 0 m/s

]T
. The measurement update
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is T = 0.48 s. The trajectory is generated by the curvilinear model, where the
accelerations are set to be at = 0 m/s2 and an = 0 m/s2. The process noise
is assumed to be zero-mean white Gaussian noise with standard deviations
of σx = 10−4 m, σy = 10−4 m, σv = 10−5 m/s, σϕ = 10−6 rad.
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Figure 3.8: Simulation Scenario

To compare the estimation results with the corresponding PCRLBs, an
EKF is applied. The state transition and measurement models are the same
with the EKF in the last section. Only the standard deviations of the process
noise in the CV model are set to be σx = 10−4 m/s2 and σy = 10−4 m/s2

because the real motion is nearly constant velocity. The calculation of the
PCRLBs uses the truth model, i.e., curvilinear model. The initial FIM is
given by the inverse of P+(0) (see Eq. 3.39), which is the covariance matrix
of the initial state assumed to be Gaussian.

Performance Comparisons of Fusion Approach and Single Type of
Measurements Approach

For comparing the PCRLB with the RMSE, we take the root of the PCRLB
of the state element x plus the PCRLB of y, which is called PCRLB of posi-
tion. 500 Monte Carlo trials are run. Figure 3.9 shows the RMSEs of the data
fusion approach, using only TA measurements, and using only RSS measure-
ments comparing with the corresponding PCRLBs. The measurement noises
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Figure 3.9: RMSEs and PCRLBs of position

have the standard deviations of σd = 300 m, σl = 4 dB. It is observed that
the estimation results of the designed EKF are close to the corresponding
PCRLB in this simple scenario, and among these three methods, the data
fusion method yields the highest accuracy.

Figure 3.10 shows the PCRLBs of position and velocity of the data fusion
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Figure 3.10: PCRLBs comparsion
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approach, TA only approach and RSS only approach, respectively. Similarly,
the measurement noises have the standard deviations σd = 300 m, σl = 4 dB.
As expected, the comparison of the PCRLBs reveals that theoretically the
integration of these two kinds of measurements yields better accuracy than
using only one type of measurements. This comparison is analogous to the
RMSE comparison using EKF shown in Fig. 3.4 and it demonstrates the
solution of the estimation results comparison from a theoretical point of
view.

PCRLB Analysis

Since the PCRLB represents the best achievable estimation accuracy, it can
be used to evaluate the tracking performance before designing any estimator.
Recalling the recursive equation of calculating the PCRLB (Eqs. 3.40-3.42),
the PCRLB is influenced by the following factors: the initial information, J0;
the process noise, Q(k); the dynamics of the trajectory, F(k) (see Eq. 3.44);
the measurement noise, R(k); the geometric relationship of the BTSs and
the MS, i.e., geometric dilution of precision (GDOP). It is observed that the
value of J0 influences the initial stage of the estimation and has little effect
on the estimation accuracy when the estimator converges. The analysis of
GDOP has been discussed in [45]. The relatively higher GDOP, in other
words, worse geometry, will degrade the estimation accuracy. Therefore,
in this section, we mainly discuss the influences of the process noise, the
measurement noise and the dynamics on the PCRLB.

Firstly, the parameters of the simulation are set similarly as introduced
above except that the process noise of the curvilinear model is set to be
different levels as:

� Q1: σx = 10−4 m, σy = 10−4 m, σv = 10−5 m/s, σϕ = 10−6 rad;

� Q2: σx = 10−2 m, σy = 10−2 m, σv = 10−3 m/s, σϕ = 10−4 rad;

� Q3: σx = 5 × 10−1 m, σy = 5 × 10−1 m, σv = 5 × 10−2 m/s, σϕ =
5× 10−3 rad;

� Q4: σx = 1 m, σy = 1 m, σv = 10−1 m/s, σϕ = 10−2 rad.

Figure 3.11 shows the PCRLBs of the fusion approach, TOA only approach
and RSS only approach under different process noises. The fusion approach
has the highest accuracy for all simulations of different process noises. It is
also observed that the PCRLBs are degraded when the process noises are
high. When the process noise is as low as to be neglected, the PCRLBs have
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Figure 3.11: PCRLBs of different process noises

not too much difference with the change of the process noise. For example,
for Q1 and Q2 the PCRLBs are very close.

Another comparison is done to analyze how the measurement noise influ-
ences the data fusion and the single type measurement method, which is a
theoretical analysis analogous to the estimate comparison shown in Fig. 3.6
and Fig. 3.7. Firstly the standard deviation of the TA measurement noise is
fixed as σd = 300 m, but various standard deviations of the RSS measurement
noise are applied, σl=2 dB, 4 dB, 6 dB and 8 dB, respectively. The PCRLBs
of position using data fusion approach and using only RSS measurements are
given in Fig. 3.12. The plots indicate that for more noisy measurements, the
data fusion approach will yield results with remarkably improved accuracy.
Then a similar simulation is implemented fixing the standard deviation of
the RSS measurement noise at σl = 4 dB, but the standard deviation of the
TA measurement noise is varied as σd=100 m, 300 m, 500 m and 700 m.
The results, as shown in Fig. 3.13, demonstrate the above conclusion that
the fusion approach provides more stable and better results when one kind
of measurements has higher error.

Finally, a simulation of different dynamics, a nearly constant acceleration
motion, is implemented. The initial velocity is set to be (0 m/s, 0 m/s), and
the tangential acceleration is set to be at = 1 m/s2, 3 m/s2, 6 m/s2, 10 m/s2,
respectively. The process noise is assumed to be very small as Q1. Fig-
ure 3.14 shows the PCRLBs of the data fusion approach, TA only, and RSS
only approach under different accelerations. Similarly, the fusion approach
provides the highest accuracy among the three approaches. It is observed
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Figure 3.12: PCRLBs of position for σd=300 m and σl=2 dB, 4 dB, 6 dB,
8 dB
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Figure 3.13: PCRLBs of position for σd=100 m, 300 m, 500 m, 700 m and
σl=4 dB

that for the CA motion the PCRLBs have a peak at the beginning, then
are decreasing. For the acceleration of at = 10 m/s2 the PCRLBs increase
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greatly at the end of the trajectory. This is because the influence of the
relative geometry of the MS and the BTSs.
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Figure 3.14: PCRLBs of different tangential accelerations

3.7 Summary

In this chapter, the state estimation problem of ground target tracking is con-
sidered and the PCRLB, which is a variant of CRLB for random parameters,
for the target tracking problem is presented. On the base of this under-
standing, a data fusion approach using an EKF is proposed to integrate two
different types of measurements, TOA and RSS measurements from GSM
networks. The simulation results show that the fusion approach yields high-
est accuracy as compared with single type measurement approaches, TOA
only and RSS only. And the fusion of three RSS measurements with one
TOA measurement provides a realistic solution for the MS tracking. An-
other comparison of different measurement errors shows that the data fusion
approach is more tolerant than the single type measurement approaches.

The PCRLB for the fusion approach is also derived and analyzed. PCRLB
clearly depicts the underlying principle of data fusion, i.e., information is
additive. It is shown that the position RMSE of EKF can be very close to
the corresponding PCRLB. Comparisons of PCRLBs, which are analogous
to the comparisons of the estimation results using EKF, demonstrate the
conclusion that the data fusion approach provides better accuracy and is
more robust to the noisy measurement from a theoretical point of view.
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Chapter 4

Road-Constrained Target
Tracking

A GSM positioning system based on current specifications faces many diffi-
culties when trying to obtain accurate position estimates. From the measure-
ment point of view, the resolution of the measurements in GSM networks
related to positioning is coarse, e.g., Timing Advance (TA) is only reported
in units of a bit period. Moreover, ambiguities of the position estimate
arise when there are not a sufficient number of measurements available since
usually measurements from three BTSs are required for two-dimensional po-
sitioning. All of these factors will degrade the position estimation accuracy.
In order to achieve better performance, additional information about the tar-
gets should be incorporated into the estimation process. The road constraint
is such a promising a priori information.

In this chapter, the road constraint is incorporated into an EKF as a
pseudomeasurement for target tracking in GSM networks to improve the
estimation accuracy. In Section 4.1, the road information is described. The
approaches of constrained state estimation are introduced in Section 4.2. The
proposed approach is presented in Section 4.3 for a linear road constraint and
in Section 4.4 for a nonlinear road constraint.

4.1 Road Information

Assume that the targets considered here are mostly ground vehicles, such as
civil cars, trucks, and so on, and they are strictly linked to the road network.

The road information can be obtained from a digital map database, which
typically represents the road data using line segments [74]. There are three
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types of road data: node, segment, and shape point, as shown in Fig. 4.1. A
node is a cross point or an endpoint of a road, and is used to represent an
intersection or a dead-end of a road. It is commonly represented in the map
database by a latitude and a longitude. A segment is a piece of road ways
between two nodes and is used to represent fragments of roadways and other
features. Shape points are ordered collections of points which map the curved
portion of a given segment to a series of consecutive straight-line pieces in
such a way as to make the calculated segment distance close to the actual
length.

Segments

Nodes

Shape Points

Figure 4.1: Segments, nodes, and shape points

Therefore, a road can typically be represented by a sequence of straight
lines selected to approximate the real curvature of the road, and the road
network is defined using waypoints and associated properties [75], such as
road names, types of roads, road segment lengths, expected driving speeds,
turn restrictions, etc. The digital map database compiles these data into files
that can be readily accessed by other modules in a location and navigation
system. It provides all location-related features once the position of a vehicle
has been determined. It can be used as a reference to visualize and locate
vehicles. Moreover, it can also help to determine vehicle location using the
geometry and topology of road networks. In this work, the road network
information is considered as constraints of the target motion, i.e., the target
must lie on the road, and the velocity of the target is in the direction of the
road.

There are many approaches to incorporate the road information into the

70



Chapter 4. Road-Constrained Target Tracking

tracking process, including tuning the covariance of the process noise adap-
tively according to road maps [76], building the tracking filters upon the 1D
representation of road segments [77], and so on. Here the constrained state
estimation approaches are considered.

4.2 Constrained State Estimation

For a state estimation problem, the system is usually described by dynamic
model and measurement model

x(k + 1) = f
[
x(k)

]
+w(k) (4.1)

z(k) = h
[
x(k)

]
+ v(k) (4.2)

Besides, in some physical systems there exists some information or constraints
between the state variables, which can not be described by Eqs. (4.1) and
(4.2). That is, it is supposed that the states satisfy some constraints

Dx = d (4.3)

where x is the state vector, D is a known matrix and d is a known vector.
They might be given by the basic laws of physics, from the mathematical
description of a state vector, and also from kinematic or geometric consider-
ations of the system [78], such as the road information.

The main approach categories of incorporating such constraints into the
state estimation process are model reduction, pseudomeasurement, projec-
tion and pdf truncation. The model reduction approach reduces the system
model parameterization by replacing some states using the constraints [79].
It is conceptually straightforward and can be easily implemented, but it loses
the physical meaning of the system model. The pseudomeasurement [80–82]
approach treats the state constraints as fictitious measurements. Accord-
ingly, the original measurement model is augmented and the classic Kalman
filter is ready to be applied. The projection [83–85] approaches project the
unconstrained state estimate at each time step onto the state constraint sur-
face. Another approach is the pdf truncation approach, in which the prob-
ability density function of the unconstrained state estimate is truncated at
the constraint edges and the constrained state estimate is the mean of the
truncated pdf. This approach is specially suitable for inequality constraints.
Exhaustive investigations can be found in [78, 86, 87]. In the following we
mainly introduce and compare the pseudomeasurement and projection ap-
proach.
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4.2.1 Pseudomeasurement Approach

The idea of introducing a kinematic constraint into the tracking process
through a pseudomeasurement was firstly proposed in [80]. Suppose that
various constraints (Eq. 4.3) are considered, the constraints on the state
vector x can be formulated as pseudomeasurements

zc(k) = Hcx(k) + vc(k) (4.4)

where zc(k) = 0 is a zero-valued pseudomeasurement vector, Hcx(k) = Dx−
d and vc(k) is a zero-mean white Gaussian noise vector introduced to relax
the constraints. The subscript ‘c’ denotes the terms for constraints.

vc(k) ∼ N
(
0,Rc(k)

)
(4.5)

Then the original measurement model can be augmented by the pseudo-
measurement model (Eq. 4.4)

za(k) = ha

[
x(k)

]
+ va(k) (4.6)

where za(k) =
[
z(k)T zc(k)

T
]T
, ha

[
x(k)

]
=

[
h
[
x(k)

]T
Hcx(k)

T

]T
, and

va(k) =
[
v(k)T vc(k)

T
]T
. The subscript ‘a’ denotes the augmented terms.

Because of the nonlinear mapping of the states into the observation space,
an EKF can be applied to obtain the constrained state estimates:
Prediction:

x̂−(k + 1) = f [x̂+(k)] (4.7)

P−(k + 1) = F(k)P+(k)FT (k) +Q(k) (4.8)

Correction:

Ka(k + 1) = P−(k + 1)HT
a (k + 1)

·
[
Ha(k + 1)P−(k + 1)HT

a (k + 1) +Ra(k + 1)
]−1

(4.9)

ra(k + 1) = za(k + 1)− ha

[
x̂−(k + 1)

]
(4.10)

x̂+
a (k + 1) = x̂−(k + 1) +Ka(k + 1)ra(k + 1) (4.11)

P+
a (k + 1) = P−(k + 1)−Ka(k + 1)Ha(k + 1)P−(k + 1) (4.12)

where x̂−(k + 1) and P−(k + 1) represent the predicted state estimate and
state error covariance, x̂+

a (k+1) and P+
a (k+1) denote the constrained state

estimate and associated state error covariance, respectively. The prediction is
exactly the same as the normal EKF. Only in the update stage, the Jacobian
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matrix of the measurement function H(k + 1) is replaced by the Jacobian
matrix of the augmented measurement functionHa(k+1). The measurement
residual vector ra(k + 1) is calculated by augmented measurement model.
The measurement noise covariance matrix is also augmented as Ra(k) =
diag

[
R(k),Rc(k)

]
.

The pseudomeasurement approach provides a convenient framework for
incorporating such constraints without greatly increasing the computational
cost. Since using the constraints removes some of the target dynamic uncer-
tainty, the estimation performance will be improved. In addition, it has less
computation complexity to incorporate the constraints into the measurement
model rather than into the state transition model, especially in the case of
nonlinear constraints [80].

4.2.2 Projection Approach

The constrained state estimate can be also derived through projecting the
unconstrained state estimate x̂(k) onto the constrained surface. For the
simplicity of notation, the time subscript ‘k’ is eliminated in the following of
this section since the projection is implemented only related with time step
k. The problem can be formulated as a constrained optimization problem

x̃ = argmin
x̃

(x̃− x̂)TW(x̃− x̂) such that Dx̃ = d (4.13)

where W is any positive definite weighting matrix, x̂ represents the uncon-
strained state estimate and x̃ denotes the constrained state estimate. Apply-
ing the method of Lagrange multipliers to solve this problem, a Lagrangian
L can be formed

L = (x̃− x̂)TW(x̃− x̂) + 2λT (Dx̃− d) (4.14)

where λ is the multiplier vector. To obtain the optimization, let the partial
derivatives of the Lagrangian with respect to x̃ and λ equal to zero and solve
them simultaneously

∂L

∂x̃
= W(x̃− x̂) +DTλ = 0 (4.15)

∂L

∂λ
= Dx̃− d = 0 (4.16)

The solutions are

λ = (DW−1DT )−1(Dx̂− d) (4.17)

x̃ = x̂−W−1DT (DW−1DT )−1(Dx̂− d) (4.18)
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The constrained state estimate x̃ is equal to the unconstrained state estimate
x̂ minus a correction term. Note that this derivation does not depend on the
conditional Gaussian nature of x̂. As shown in [83], the constrained state
estimate obtained by Eq. (4.18) is unbiased, the constrained state estimate
when W = P−1, i.e., the inverse of the unconstrained state estimation error
covariance, has a smaller estimation error covariance than that of the un-
constrained state estimate. The covariance of the constrained state estimate
error is given by

P̃ = P−PDT (DPDT )−1DP (4.19)

where P is the covariance matrix of the unconstrained state estimate error
and P̃ denotes the covariance matrix of the constrained state estimate error.
Among all the constrained Kalman filters of Eq. (4.18), the filter which uses
W = P−1 has the smallest estimation error covariance. This solution can be
given by solving the maximization of the posterior conditional probability.

The above derivation is a general solution. In the following, the projec-
tion approach of the constrained state estimation is derived from maximum
conditional probability point of view and mean square point of view, respec-
tively.

Maximum Conditional Probability Method

From maximum conditional probability point of view, Kalman filter solves
the problem

x̂ = argmax
ξ

fz|x(ζ|ξ) (4.20)

To maximize fz|x(ζ|ξ), we can maximize ln fz|x(ζ|ξ), which means minimiz-
ing (x− ¯̄x)TP−1(x− ¯̄x) when the Gaussian assumptions hold. In the above, ¯̄x
denotes the conditional mean of x given the measurement z, ¯̄x = E{x|z}, and
P is the covariance matrix of the state estimate error. Now the constrained
minimization problem is formulated as

x̃ = argmin
x̃

(x̃− ¯̄x)TP−1(x̃− ¯̄x) such that Dx̃ = d (4.21)

Similar to the derivation of the general projection approach, a Lagrangian
can be formed and solved.

x̃ = x̂−PDT (DPDT )−1(Dx̂− d) (4.22)

Refer to Appendix C.1 for the derivation.
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Mean Square Method

The problem can also be solved from a mean square point of view. The
constrained state estimate is to solve

x̃ = argmin
x̃

E
{
∥x− x̃∥2|z = z0

}
such that Dx̃ = d (4.23)

Again, a Lagrangian can be formed and the solution of this minimization
could be obtained, as shown in Appendix C.2.

x̃ = x̂−DT (DDT )−1
(
Dx̂(k)− d

)
(4.24)

Comparing to Eq. (4.18), the solution by the mean square method is equiv-
alent to setting W = I.

4.2.3 Comparison of Pseudomeasurement and Projec-
tion Approach

As discussed above, the principle and derivation of the psudomeasurement
and projection approaches are different. However, when we compare the
pseudomeasurement approach (Eq. 4.11), which uses Kalman filter measure-
ment update equation, and the projection approach (Eq. 4.18), they are both
equal to a preliminary estimate plus one correction term, which is propor-
tional to the measurement residual. Therefore, it is necessary to look at the
detail of the formulae and to find out the similarity and difference of these
two approaches.

Comparison of the Formulation

The constrained estimation obtained by the pseudomeasurement approach in
Eq. (4.11) consists of two terms, the predicted estimation and the correction
part. In order to compare it with that of the projection approach Eq. (4.18),
which consists of the unconstrained state estimate and a correction term, the
constrained state estimate of the pseudomeasurement approach (Eq. 4.11) in
terms of the unconstrained estimate should be derived.

The augmented system by constraints Dx = d is written as

x(k + 1) = f
[
x(k)

]
+w(k) (4.25)

za(k) = ha

[
x(k)

]
+ va(k) (4.26)

where za(k) =
[
z(k)T zc(k)

T
]T
, ha

[
x(k)

]
=

[
h[x(k)]T Hcx(k)

T
]T
, and

va(k) =
[
v(k)T vc(k)

T
]
. Note that Hc = D and zc = d. Keeping the above
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augmented form and after some derivations, the constrained state estimation
using pseudomeasurement approach can be written as

x̂+
a = x̂+ −P+HT

c (HcP
+HT

c +Rc)
−1(Hcx̂

+ − zc) (4.27)

P+
a = P+ −P+HT

c (HcP
+HT

c +Rc)
−1HcP

+ (4.28)

where x̂+
a denotes the constrained state estimate and P+

a is the covariance
matrix of the constraint state estimate. x̂+ represents the unconstrained
state estimate and P+ is the covariance matrix of the unconstrained state
estimate.

Comparing Eqs. (4.27) and (4.28) with the constrained state estimate x̃
obtained by projection approach (Eq. 4.18) and the corresponding covariance
(Eq. 4.19), two differences are observed. One is that the pseudomeasurement
has a term of constraint error covariance which is to account for the un-
certainty of the constraint, i.e., soft constraint. Another is that the pseudo-
measurement approach uses the covariance matrix of the unconstrained state
estimate P in contrast with any positive definite weighting matrix W in pro-
jection approach. Therefore, if only hard constraint, i.e., there is no con-
straint uncertainty, is considered and W = P−1, the two approaches have
an identical solution. In practice, the road information obtained from digital
maps always has errors, such as the modeling error, the road width, and so
on. Therefore, using a pseudomeasurement approach can better incorporate
the soft road constraint into the tracking process as compared to the pro-
jection approach. Moreover, the pseudomeasurement approach can be easily
extended to the nonlinear road constraint by simply using the EKF equation.

The derivation of the constrained state estimate in terms of the uncon-
strained estimate obtained by the pseudomeasurement approach applying
soft constraint, Eqs. (4.27) and (4.28), is given in Appendix C.3. The corres-
ponding derivation for hard constraints can be found in [88].

Comparison of the Estimation Process

From the estimation process point of view, these two approaches are differ-
ent as shown in Fig. 4.2. For the pseudomeasurement approach, the con-
straint is dealt with simultaneously with the measurement update. For the
projection approach, however, the constraint is applied after the measure-
ment update. In the linear case and for independent assumptions of the
measurement noises, these two ways are equivalent. But in nonlinear case, the
projection approach may diverge since the ambiguity arises when there are
less than three measurements available. Therefore, an advantage of pseudo-
measurement approach can be naturally obtained that the constraint is re-
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garded as an extra measurement and hence it will improve the observability
when there are not a sufficient number of measurements available for obtain
a unique position estimate.

Prediction

Correction
(Constraint)

(a) Pseudomeasurement approach

Prediction

Correction

Constraint

(b) Projection approach

Figure 4.2: Estimation process

4.3 Road Constraint as Pseudomeasurement:

Linear Case

Since the road constraint is a soft constraint considering the uncertainty of
the digital map and the ignorance of road width, we will apply the pseudo-
measurement approach to incorporate the road constraint into the estimation
process. This section will focus on a linear formulation of the straight road
constraint, and next section will deal with a curve road, which is a nonlinear
constraint. On one hand, a theoretical performance comparison using the
posterior Cramér-Rao lower bound (PCRLB) and a numerical performance
comparison of an EKF with the proposed road constraints and without con-
straints is given. We will show that the road-constrained approach can sig-
nificantly improve the tracking accuracy. On the other hand, the benefits of
the proposed road-constrained approach are demonstrated by different sim-
ulation scenarios, including uniform motion, maneuver motion, and also the
scenario when there are fewer than three independent measurements avail-
able.
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4.3.1 Position Estimation without Constraints

As discussed in Chapter 3, for the problem of target tracking, the target
motion and its observations are usually described by state space model

x(k + 1) = f
[
x(k)

]
+G(k)w(k) (4.29)

z(k) = h
[
x(k)

]
+ v(k) (4.30)

It is assumed that the states to be estimated are position and velocity of a

MS in two dimensions, i.e., x =
[
x ẋ y ẏ

]T
. The state transition model

(Eq. 4.29) can be described by a CV model (see Section 3.1.1).

The measurements can be time of arrival (TOA), time difference of
arrival (TDOA), received signal strength (RSS), angle of arrival (AOA), and
so on. Here we will use the TOAmeasurement as an example and this method
can be also utilized for other types of measurements. Let the position of the
MS be (x, y) and the position of the BTS be (xi, yi), where i represents a
certain BTS. For finding a position in two dimensions, at least three base
stations are required, whose position coordinates are (xa, ya), (xb, yb) and
(xc, yc), respectively. We define

di =
√
(x− xi)2 + (y − yi)2, i = a, b, c (4.31)

Then the measurement model (Eq. 4.30) can be written as

z(k) =

da(k)db(k)
dc(k)

+ v(k) (4.32)

where v(k) is the measurement noise vector which is assumed to be a zero-
mean white Gaussian noise.

v(k) ∼ N
(
0,R(k)

)
(4.33)

R(k) = diag(σ2
d, σ

2
d, σ

2
d) (4.34)

4.3.2 Road Constraints as Pseudomeasurements

Assuming that the target is traveling on a given road segment, the following
constraints exist: the position of the target lies on the road and the associ-
ated velocity is along with the direction of the road. There is an important
step before incorporating the road constraint into the estimation process, i.e.,
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creating an analytical representation for a given road segment [89]. As intro-
duced in section 4.1, the road network is usually represented by waypoints
in the digital map database. Thus a straight road segment can be built by
connecting the waypoints. On the other hand, if the road is a curve, it is
represented by shapepoints in database. A polynomial function can be used
to define the road, which is a nonlinear function (to be discussed in the next
section).

Let s
(
x(t), y(t)

)
= 0 denote the road segment function, which can be

linear or curved, and ns(t) represents the normal vector of the road segment,
the constraints can be described by

s
(
x(t), y(t)

)
= 0 (4.35)

v(t) · ns(t) = 0 (4.36)

where Eq. (4.36) denotes that the velocity vector v(t) =
[
ẋ(t) ẏ(t)

]T
and

ns(t) are orthogonal.

Supposing that the road is straight, the general road constraint (Eq. 4.35)
and (Eq. 4.36) can be put in the following discrete time form

tan θ · x(k)− y(k) + c = 0 (4.37)

tan θ · ẋ(k)− ẏ(k) = 0 (4.38)

where θ is the road direction, c is the parameter of the linear function for
the road segment, which are both a priori information. The above equations
can be written as the pseudomeasurement model (Eq. 4.4)

zc(k) = Hcx(k) + vc(k) (4.39)

zc(k) =

[
−c
0

]
,Hc =

[
tan θ 0 −1 0
0 tan θ 0 −1

]
(4.40)

where vc(k) is assumed to be a zero-mean white Gaussian noise (Eq. 4.5),
which accounts for the uncertainty of the constraints, such as road width,
error of the road function, and so on.

4.3.3 EKF for Road-Constrained Tracking

After defining the road constraints as pseudomeasurements, the original
measurement model of TOA (Eq. 4.32) will be augmented by the pseudo-
measurement model of Eq. (4.39). The measurement covariance matrix is
also augmented as Ra(k) = diag

[
R(k),Rc(k)

]
, where Rc(k) is the covari-

ance matrix of the pseudomeasurement noise vc(k).
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Because of the nonlinear mapping of the states into the observation space
(Eq. 4.32), an EKF can be applied to obtain a suboptimal estimate of the
states4. Ha(k + 1) is the Jacobian matrix of the augmented measurement
function ha

Ha(k + 1) ,
∂ha

[
x(k + 1)

]
∂x(k + 1)

∣∣∣∣
x̂−(k+1)

(4.41)

=



x(k + 1)− xa

da(k + 1)
0

y(k + 1)− ya
da(k + 1)

0

x(k + 1)− xb

db(k + 1)
0

y(k + 1)− yb
db(k + 1)

0

x(k + 1)− xc

dc(k + 1)
0

y(k + 1)− yc
dc(k + 1)

0

tan θ 0 −1 0
0 tan θ 0 −1


(4.42)

evaluated at the predicted value of the state x̂−(k + 1), where pa = (xa, ya),
pb = (xb, yb), and pc = (xc, yc) are the two dimensional position coordinates
of the three BTSs a, b, c, respectively.

4.3.4 Simulation Results

Simulation Scenario

The simulations are carried out in a simulated urban square area of 5 km
by 5 km as shown in Fig. 4.3. Within this area there are three BTSs, a, b
and c. We assume that a vehicle equipped with a MS travels along a linear
route, the direction of which is 0° and the y coordinate is always 3000 m.
Therefore, the pseudomeasurement model for road constraints (Eq. 4.39) is

specified by zc(k) =

[
−3000

0

]
and Hc =

[
0 0 −1 0
0 0 0 −1

]
.

The target movements are generated by the curvilinear motion model
(Eq. 3.11), which is called truth model since it represents the real trajectory

for our simulations. The state vector xt(k) =
[
x(k) y(k) v(k) ϕ(k)

]T
in-

cludes the target position in two dimensions, speed and heading. at and an
denote tangential and normal accelerations, respectively. Through setting

4It is assumed in optimal filters that exact descriptions of system dynamics, error
statistics and the measurement process are known. However, for nonlinear systems, this
can bot be available and approximations of these factors in the filters should be applied,
which results in suboptimal filters.
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Figure 4.3: Simulation scenario

different values of them, we can generate not only uniform motion but also

maneuver motion. The process noisewt(k) =
[
wx(k) wy(k) wv(k) wϕ(k)

]T
is assumed to be zero-mean white Gaussian noise

wt(k) ∼ N
(
0,Qt(k)

)
(4.43)

Qt(k) = diag(σ2
x, σ

2
y, σ

2
v , σ

2
ϕ) (4.44)

where σx, σy, σv, σϕ are the standard deviations of the process noise set
to be the values of 10−2 m, 10−2 m, 10−3 m/s and 10−4 rad, respectively.
The measurement update rate is T = 0.48 s. The standard deviation of the
measurement noise (Eq. 4.34) is assumed to be σd = 300 m.

In the following, we will analyze the performance of an EKF using the
proposed road-constrained approach in comparison to a normal EKF without
constraints in different simulated movements including uniform motion and
maneuver motion. In order to show the performance of the EKF, for each
comparison the corresponding PCRLB, which represents the theoretically
best achievable estimation performance for the given simulation scenario, will
also be plotted. Moreover, the performance comparison under the situation,
when less than three measurements are available, will also be shown. All of
the results are obtained by Monte Carlo simulations with 500 runs.
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PCRLB for the Road-Constrained Approach

The calculation of the PCRLB has already been introduced in Section 3.3.
The two important issues for the PCRLB are the Jacobian matrix of the state
transition function and the measurement function. It should be noticed that
in order to calculate PCRLB the truth model of the real trajectory, i.e.,
the curvilinear model, as opposed to the simplified dynamic model for the
EKF design should be used. Let Ft(k) be the Jacobian matrix of the state
transition function in the truth model ft[·]

Ft(k) ,
∂ft

[
xt(k)

]
∂xt(k)

∣∣∣∣
xt(k)

(4.45)

=


1 0 T cos

(
ϕ(k)

)
−Tv(k) sin

(
ϕ(k)

)
0 1 T sin

(
ϕ(k)

)
Tv(k) cos

(
ϕ(k)

)
0 0 1 0

0 0 −Tan(k)

v(k)2
1

 (4.46)

evaluated at the real value of state xt(k) =
[
x(k) y(k) v(k) ϕ(k)

]T
. Let

Ht(k + 1) be the Jacobian matrix of the nonlinear augmented measurement
function ht[·] evaluated at the real value of the state xt(k + 1). ht con-
sists of the measurement (Eq. 4.32) and the pseudomeasurement functions
(Eq. 4.39), except that the second pseudomeasurement equation is replaced
by

θ = ϕ(k) + vϕ(k) (4.47)

because of the different state ϕ(k) in the truth model xt, where vϕ(k) is the
corresponding pseudomeasurement noise and θ is the known road direction.
Thus,

Ht(k + 1) ,
∂ht

[
xt(k + 1)

]
∂xt(k + 1)

∣∣∣∣
xt(k+1)

(4.48)

=



x(k + 1)− xa

da(k + 1)

y(k + 1)− ya
da(k + 1)

0 0

x(k + 1)− xb

db(k + 1)

y(k + 1)− yb
db(k + 1)

0 0

x(k + 1)− xc

dc(k + 1)

y(k + 1)− yc
dc(k + 1)

0 0

tan θ −1 0 0
0 0 0 1


(4.49)
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evaluated at xt(k+1), where pa = (xa, ya), pb = (xb, yb), and pc = (xc, yc) are
the two dimensional position coordinates of the three BTSs a, b, c, respec-
tively. In this simulation θ = 0 rad. Qt is the covariance matrix of process
noise in the truth model as shown in Eq. (4.43), and Rt is the covariance ma-
trix of measurement noise. The expectation should be taken over the whole
500 Monte Carlo trials.

Uniform Motion

Uniform motion refers to the straight and level motion at constant velocity,
which is the simplest target motion. We generate the uniform motion by
setting the parameters of the truth model: the tangential acceleration is
at = 0 m/s2, the normal acceleration is an = 0 m/s2, the initial position
is (0 m, 3000 m) and the initial velocity is (15 m/s, 0 m/s). The parameters
for the EKF are chosen as follows: a nearly constant velocity (CV) model is
chosen as the dynamic model, the standard deviations of the process noise
σx = σy = 10−4 m/s2; the covariance matrix of the pseudomeasurement
noise Rc = diag

[
(10 m)2, (1 m/s)2

]
. The initial state values of the EKF are

calculated by one point TOA measurement, and the initial P matrix is set
to be P+(0) = diag

[
(300 m)2, (30 m/s)2, (300 m)2, (30 m/s)2

]
.

The root mean square error (RMSE) is shown in Fig. 4.4. It is observed
that the EKF with road constraints outperforms the normal EKF without
constraints. Especially at the initial phase the accuracy improvement is
significant, which means that the estimates converge to the real values very
quickly. By comparing the RMSE to the corresponding PCRLB, not only the
EKF without constraints but also the EKF with constraints are very close
to the best theoretical performance under uniform motion.

Maneuver Motion

However, in the real world maneuver motion occurs more often. In this
section we only discuss the performance of the maneuver motion under tan-
gential accelerations. The trajectory consists of uniform motion parts and
two maneuvers of only tangential accelerations, both of which are about 10
seconds. In the first maneuver, the vehicle accelerates under at = 3 m/s2

and the second maneuver is a deceleration of at = −3 m/s2. During the
whole time the normal acceleration is an = 0 m/s2. The initial position is
(0 m, 3000 m) and the initial velocity is (5 m/s, 0 m/s). The dynamic model
of the EKF is still a CV model. But the parameters of the EKF are mod-
ified as: the standard deviations of the process noises σx = σy = 3 m/s2
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Figure 4.4: Comparison of position RMSEs for uniform motion

considering the maneuver. The covariance matrix of the measurement and
pseudomeasurement noise are the same as in the uniform motion case.

The RMSE performance comparisons are given in Fig. 4.5. It is obvi-
ously that the EKF with road constraints has better accuracy than the EKF
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Figure 4.5: Comparison of position RMSEs for maneuver motion
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without constraints not only during uniform motions but also during the
maneuvers. It is observed that the RMSEs do not achieve the corresponding
PCRLBs, even in case of uniform motion, because we have chosen a bigger
value for the standard deviation of the process noise in order to get a satis-
fying performance during the maneuver period. Choosing a smaller process
noise can decrease the RMSE during uniform motion but obtain bigger peak
errors during the maneuvers. However, on the other hand, it should also be
noticed that the PCRLB for the maneuver motion is too conservative since
it assumes that the maneuver is completely known, which should be actually
estimated by the estimator [90].

Performance of Different Numbers of BTSs

As is well known, to uniquely determine a position in two dimensions using
trilateration technique, at least three BTSs are required to solve the ambigu-
ities. However, sometimes this condition can not be satisfied. In many rural
and suburban areas the cell size is large and the cell density is low. In urban
areas the blockage of high-rise buildings will introduce NLOS errors and even
there is no LOS propagation available. Moreover, under current GSM spec-
ifications a TA measurement is only taken in the current serving BTS. To
obtain more TAs, artificially forced handovers should be carried out, but
this will degrade the call quality and reduce the system capacity. Therefore,
in such situations the available number of BTSs might be less than three,
or in order to obtain more measurements from other BTSs may cause more
efforts and introduce errors. Although the EKF can always run and provide
a position estimate since the EKF can predict the state, the estimation will
be unreliable when less than three BTSs are available. In this part of the
study, we examine the performance of a standard EKF and an EKF with
road constraints when less than three measurements are available.

The trajectory of a uniform motion is generated similar to the first sim-
ulation. The performance of different approaches, when measurements from
four BTSs of a, b, c and d, three BTSs of a, b and c, only two BTSs of
a and b, or only one BTS of b are available, are compared. The coordi-
nate of BTS d is (2500 m, 0 m), and the coordinates of other BTSs are the
same as before. The parameters of the EKF are similar to the first sim-
ulation. But the initial values of the states are set to the true initial val-
ues x+(0) =

[
0 m 15 m/s 3000 m 0 m/s

]T
, since there are not enough

measurements available to calculate the initial position.

Figure 4.6a shows that using the standard EKF it is possible to obtain
an estimate when only two observations are available and the estimate di-
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Figure 4.6: Position RMSEs for different numbers of BTSs

verges in case of only one observation, which corresponds to the observability
analysis in [40] that in principle two independent measurements can be suffi-
cient for tracking, and in case of only one measurement the estimate cannot
be found. It should be noticed, however, that the results of the standard
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EKF with two measurements may not be accurate enough and it depends
on the configuration of the base stations. In contrast, Fig. 4.6b shows the
results of the EKF with constraints. The estimator can still provide stable
and accurate estimates when two measurements are available, because the
road constraints strengthen the observability condition. Even in the case of
only one measurement, the estimates can converge. Moreover, for both un-
constrained and constrained approaches, the EKF using four measurements
provides the best accuracy, but it doesn’t improve much compared with using
three measurements.

4.4 Road Constraint as Pseudomeasurement:

Nonlinear Case

In the last section, we expand the approach of treating straight road con-
straints as pseudomeasurements for target tracking in GSM networks. How-
ever, as Geeter [82] and Julier [78] argued that nonlinear equality constraints
are fundamentally different from linear equality constraints since two er-
rors arise, i.e., truncation error and base point error, the performance of
tracking ground targets in GSM networks in the presence of nonlinear road
constraints deserves to be examined. The objective of this work is to demon-
strate the benefits of applying nonlinear road constraints in ground target
tracking in GSM networks. Comparative studies of utilizing an EKF with-
out constraint and with constraint verify that the road-constrained approach
significantly improves the tracking accuracy. Another performance study on
different numbers of available measurements demonstrates the efficiency and
robustness of this approach. Moreover, by comparing the performance of the
pseudomeasurement and the projection approach in the presence of nonlin-
ear road constraints, the former has a better performance. The results of the
comparison will be analyzed and discussed.

4.4.1 Formulation

Assuming that the target is traveling on a given road segment, the two-
dimensional position of the target

(
x(t), y(t)

)
must lie on the road. Then

the constraint s
(
x(t), y(t)

)
= 0 exists, where s(·) denotes the road segment

and normally the road can be modeled by straight lines, arcs, or low-order
polynomials. Without losing generality, we assume a polynomial function of
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second degree to represent a road segment as

s
(
x(t), y(t)

)
= a · x(t)2 + b · y(t)2 + c · x(t)y(t) + d · x(t) + e · y(t) + f (4.50)

where the parameters a, b, c, d, e, f are all a priori information given for a
specific road segment. Compared to the real measurement model, the road
constraint (Eq. 4.50) can be rewritten as a pseudomeasurement model in
discrete time

zc(k) = hc

[
x(k)

]
+ vr(k) (4.51)

where zc(k) = 0, hc

[
x(k)

]
= s

(
x(k), y(k)

)
, and vr(k) is assumed to be zero-

mean white Gaussian noise, which accounts for the uncertainty of the road
constraint, such as road width, error of the road function, and so on.

vr(k) ∼ N
(
0, Rr(k)

)
(4.52)

Rr(k) = σ2
r (4.53)

With the formulation of Eq. (4.51), an EKF is readily applied.

4.4.2 EKF for Road-Constrained Tracking

After defining the road constraint as a pseudomeasurement, the original
measurement model of TOA can be augmented by the pseudomeasurement
model (Eq. 4.51) as

za(k) = ha

[
x(k)

]
+ va(k) (4.54)

where za(k) =
[
z(k)T zc(k)

]T
, ha

[
x(k)

]
=

[
h
[
x(k)

]T
hc

[
x(k)

]]T
, and

va(k) =
[
v(k)T vr(k)

]T
. Because of the nonlinear mapping of the states

into the observation space, an EKF can be applied to obtain a suboptimal
estimate of the states (Eqs. 4.7-4.12) as introduced in Section 4.2.1.

To deal with the nonlinear constraint, the measurement noise covariance
matrix in EKF is augmented as Ra(k) = diag

[
R(k), Rc(k)

]
. The variance

of the pseudomeasurement error Rc(k) should consist of two components

Rc(k) = Rr +R0 · βk−1 (4.55)

where Rr (Eq. 4.52) represents the road modeling error, and a weakening
component R0 · βk−1 is to account for the linearization error, which includes
truncation error resulting from neglecting the higher order terms of the Taylor
series expansion in EKF and base point error due to linearizing around the
predicted state estimate [82]. Considering the large initial estimation error,
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this linearization error should be large at the beginning of the estimation
and decrease as the estimation process proceeds. Therefore, the weakening
component can be chosen as an initial value R0 = α·Hc(1)P

−(1)HT
c (1) at k =

1, which is a fraction α of the predicted state error covariance transformed to
constraint space via the constraint Jacobian Hc(1), multiplying a decreasing
term βk−1, 0 < β < 1. The choice of α and β needs to be verified in Monte
Carlo simulations. This manipulation is the difference of applying a nonlinear
road constraint compared with incorporating linear road constraints, which
only considers the uncertainty of the road modeling, i.e., Rr. Through this
operation, the nonlinear road constraint is applied progressively tightly.

4.4.3 Simulation Results

The simulations are carried out in a simulated square area of 5 km by 5 km
as shown in Fig. 4.7. Within this area there are four BTSs, a, b, c and d. It
is assumed that a vehicle equipped with a MS traveled along an arc route as
an example to show the performance of the road-constrained approach. The
road constraint (Eq. 4.50) can be specified to yield on the arc road and in
discrete time as

r2 =
(
x(k)− x0

)2
+
(
y(k)− y0

)2
(4.56)

where r denotes the radius of the road arc and (x0, y0) is the two-dimensional
coordinate of the arc’s centre, both of which are known as r = 2000 m and
(x0, y0) = (1000 m, 3000 m). The measurements update rate is T = 0.48 s.
The standard deviation of the measurement noise is assumed to be σd =
300 m.

The vehicle executes a coordinated turn starting at (1000 m, 1000 m), and
the initial velocity is 20 m/s and 0 m/s in x and y direction, respectively. The
trajectory is generated by the curvilinear motion model (Eq. 3.11), which is
called truth model since it represents the real trajectory for the simulations.

The state vector xt(k) =
[
x(k) y(k) v(k) ϕ(k)

]T
includes the target po-

sition in two dimensions, speed and heading. at and an denote tangential
and normal accelerations, respectively, which are set to be at = 0 m/s2,

an = 0.2 m/s2. The process noise wt(k) =
[
wx(k) wy(k) wv(k) wϕ(k)

]T
is assumed to be zero-mean white Gaussian noise

wt(k) ∼ N
(
0,Qt(k)

)
(4.57)

Qt(k) = diag(σ2
x, σ

2
y, σ

2
v , σ

2
ϕ) (4.58)

where σx, σy, σv, σϕ are the standard deviations of the process noises set to
be the values of 10−2 m, 10−2 m, 10−3 m/s and 10−4 rad, respectively.
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Figure 4.7: Simulation scenario

Design of the EKF

To track the trajectory shown in Fig. 4.7, the dynamic model can be de-
scribed by a nearly coordinated turn (CT) model (see Section 3.1.4). The
parameters for the EKF are chosen as follows: the standard deviation of the
measurement noise is σd = 300 m; the standard deviation of the pseudo-
measurement noise is σr = (10 m)2; the standard deviations of the pro-
cess noise are σx = 10−4 m/s2, σy = 10−4 m/s2, σω = 10−6 rad/s2. These
designed values are chosen according to the prior knowledge and assump-
tions of the system, e.g., the measurement noise, the uncertainty of the
road, and the trajectory. The initial state values x̂+(0) and ŷ+(0) of the
EKF are calculated by one point measurement [65], which uses a traditional
least squares algorithm to achieve an initial position guess from three TOA
measurements at time step k = 0. The initial values of velocity ˆ̇x+(0),
ˆ̇y+(0) and turn rate ω̂+(0) are assumed to be zero-mean Gaussian random
variables with an associated standard deviation equal to half of the known
maximum state values. Thus, the initial state covariance matrix is set to
P+(0) = diag

[
(300 m)2, (30 m/s)2, (300 m)2, (30 m/s)2, (0.01 rad/s)2

]
.
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Figure 4.8: RMSE performance comparison (three BTSs)

Performance Comparisons of Different Approaches

The RMSE performance of EKFs without constraint, and with constraint
on the base of three TOA measurements from BTS a, b and c, are shown
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in Fig. 4.8. 500 Monte Carlo trials are run. It is observed that the results
of the EKFs with constraint, no matter using pseudomeasurement or pro-
jection method, outperform that of the EKF without constraint. Especially
at the initial phase the accuracy improvements are significant, which means
that the estimates converge to the real values much quicker than those of the
EKF without constraint. However, by comparing the performance of pseudo-
measurement and projection methods, it is shown that the position RMSE
of the two approaches are similar, but the pseudomeasurement approach has
a smaller velocity RMSE than the projection approach.

Performance of Different Numbers of BTSs

In this part of simulations the performance of different approaches, when
measurements from four BTSs of a, b, c and d, three BTSs of a, b and c, only
two BTSs of a and b, or only one BTS of b are available, are compared. Same
to the last simulation, 500 Monte Carlo simulations are run. The position
RMSEs performance is shown in Fig. 4.9-Fig. 4.11.
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Figure 4.9: Position RMSEs of the EKF without constraint

For all of these three approaches, it is shown that the estimation perfor-
mance in case of four measurements has the highest accuracy. For the EKF
without constraint, the RMSEs in cases of only two measurements and only
one measurement diverge. For the EKF with constraint using the projec-
tion approach, it is possible to get a position estimate in the case of two
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Figure 4.10: Position RMSEs of the EKF with constraint (projection ap-
proach)
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Figure 4.11: Position RMSEs of the EKF with constraint (pseudo-
measurement approach)

measurements, but it diverges in the case of one measurement. It is no-
ticed that the EKF with constraint using pseudomeasurement still converges
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in the case of two measurements and can obtain an estimate in the case
of one measurement. The difference of projection and pseudomeasurement
approach is that the former one applies the normal EKF and then sequen-
tially projects the unconstrained estimate into the constraint surface, but the
pseudomeasurement approach augments the measurement model in the EKF
by one pseudomeasurement equation, thus the necessary number of measure-
ments for trilateration in two dimensions is reduced to two. Therefore, the
estimator using pseudomeasurement to incorporate the road constraint can
still provide stable and accurate estimates when only two measurements are
available, and it is more robust than the projection approach.

4.5 Summary

In this chapter, we have investigated how to incorporate road constraints
into the estimation process to improve the estimation accuracy. Firstly, the
road information was introduced and the approaches of constrained state esti-
mation were presented and compared. The pseudomeasurement approach has
many advantages. It provides a convenient framework for incorporating con-
straints without greatly increasing the computational cost. The estimation
performance will be improved since using the constraints removes some of the
target dynamic uncertainty. In addition, it has less computational complex-
ity to incorporate the constraints into the measurement model rather than
into the state transition model, especially in the case of nonlinear constraints.
We formulate the road constraint as a pseudomeasurement in the linear case
and also in the nonlinear case. The EKF for the constrained system has
also been explained. In particular, the nonlinear road constraint should be
applied progressively tightly considering the linearization error.

The simulations verify that the road-constrained approach using pseudo-
measurement significantly improves the estimation accuracy. Figures 4.6
and 4.9 - 4.11 show the tracking performance with different numbers of avail-
able BTSs. The constrained approach can obtain a good tracking accuracy
of below 50 m even if there are only two BTSs available, whereas without
the constraint two measurements can only provide position estimates of one
to two hundred meters and which will diverge. Therefore, the constrained
approach can reach the E112 accuracy goal of 10 m - 150 m in urban areas.
Moreover, the hearability problem of the BTSs can be relaxed since only two
BTSs are required for the constrained approach.
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An Adaptive
Road-Constrained IMM
Estimator

For the application of ground target tracking, the target should be regarded
as a maneuvering target since the state to be estimated may change dramati-
cally due to the restriction of terrain, road, traffic, and so on. In this chapter,
we consider this target motion uncertainty problem in GSM environments.
The maneuvering target tracking problem is formulated in Section 5.1. It
is well known that multiple model (MM) estimation is a powerful approach
for such a hybrid estimation problem. In Section 5.2 the interacting multi-
ple model (IMM) estimator is analyzed and the estimation results of three
different simulated scenarios are evaluated by the corresponding posterior
Cramér-Rao lower bound (PCRLB) and compared with the single model
method of using a nearly constant velocity (CV) model. The comparisons
show that the IMM estimator reduces the estimation errors during the non-
maneuvering period. However, a GSM positioning system based on current
specifications faces many difficulties to yield accurate position estimate for
ground target tracking. The additional information of the road network is
very useful not only for restricting the target position inside the road but
also for providing a potential constraint on the possible target motions. In
Section 5.3, we propose an adaptive road-constrained IMM (ARC-IMM) esti-
mator, in which the road constraint is incorporated into a variable structure
IMM (VS-IMM) mechanism as a pseudomeasurement. The module set of
the ARC-IMM, not only the dynamic model but also the road constraint, is
updated adaptively according to the estimated target position and the road
network. In particular, the selection of the dynamic models depends also
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on the road constraint. The simulation results verify that the proposed ap-
proach significantly improves the estimation accuracy in comparison to an
IMM estimator with directional noise, a standard IMM estimator and an
EKF. A simulation study in the case of only two available measurements
demonstrates the efficiency and robustness of the proposed approach.

5.1 Maneuvering Target Tracking

Different from air targets, ground targets may frequently accelerate, slow
down, stop completely and turn depending on variable local conditions, e.g.,
terrain, road and traffic situations. Basically the target dynamics or motions
are classified into two categories: nonmaneuver motion, which stands for
the straight and level motion at a constant velocity, and maneuver motion,
which includes all the other motions. The ground target motion has the
unique nature of high maneuverability.

Kalman filters perform well if the target dynamics match the model,
used in the filter, which assumes the dynamics to be well modeled. The
traditional dynamic models which can describe the maneuver are CV model
with relatively high process noise, nearly constant acceleration (CA) model,
coordinated turn (CT) model, Singer model and so on [70]. But in most cases
when a target maneuvers, the motion models turn to be uncertain and time
varying. Therefore, the problem of maneuvering ground target tracking can
be described by a hybrid system, which is usually modeled by the equations

x(k + 1)=f
[
k,x(k),m(k + 1)

]
+g

[
k,x(k),m(k + 1),w

[
k,x(k),m(k + 1)

]]
(5.1)

z(k)=h
[
k,x(k),m(k)

]
+ v

[
k,x(k),m(k)

]
(5.2)

where x is the state vector, z is the noisy measurement vector, and w[· ]
and v[· ] are the state-dependent mode-dependent process and measurement
noises, which are assumed to be white Gaussian noises. The f [· ], g[· ] and
h[· ] are nonlinear functions. m(k) denotes the system mode at time k, i.e., a
pattern of the target behavior, which is assumed to be among the possible r
modes m(k) ∈ {Mj}, j = 1, . . . , r and it is assumed that the mode switching
is a Markov chain with known mode transition probabilities

pij , Pm(k)|m(k−1) {Mj|Mi} (5.3)

It should be noted that here the mode transition probabilities are constant,
which do not depend on time. As shown in Eqs. (5.1) and (5.2), the hybrid
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system has both continuous uncertainties, i.e., the state, and discrete uncer-
tainties, i.e., the mode. Thus, the hybrid estimation problem is to estimate
the state and the mode based on the noisy measurements.

In order to solve such uncertainties, adaptive filters have been developed
to detect maneuvers and adapt the filter to the target dynamics in real time
and especially MM approaches have been proposed [69]. The MM estimation
algorithms assume the system to be in a finite number of modes. The state
estimate is computed under each possible current model by running a set of
filters, and then the output of those filters are fused for an overall estimate
by different ways.

5.2 Interacting Multiple Model Estimator

In recent years, MM methods have been generally considered as the main-
stream approach for maneuvering target tracking under motion mode uncer-
tainty [91], and IMM estimator is one of the most efficient MM estimators,
which was firstly proposed by Blom and Bar-Shalom [65, 92]. Assuming a
set of models as possible state modes, which is realized by running a bank
of elemental filters in parallel, the state estimate is computed at time k in
each filter using a different combination of the previous model-conditioned
estimates, and the final state estimate is obtained by merging the results
of all filters. Comparing with other different MM approaches which have
acceptable tracking errors, the IMM algorithm has the best computational
complexity [72]. The key difference of IMM approach is that at time k each
filter is individually reinitialized using a different combination of the previous
model-conditioned estimates, which is referred to as mixed initial condition.

5.2.1 Algorithm

Assuming that the system mode is in a finite set of possible motion models,
the hybrid system (Eqs. 5.1 and 5.2) can be rewritten as:

x(k + 1) = fj
[
k,x(k)

]
+ gj

[
k,x(k),wj(k)

]
(5.4)

z(k) = hj

[
k,x(k)

]
+ vj(k) (5.5)

where j = m(k) is in the model set {Mj}, j = 1, . . . , r and the mode tran-
sition probabilities are as Eq. (5.3). One cycle of the algorithm consists of
the following (see Fig. 5.1):

Step 1: Calculation of the mixing probabilities. The probabilities that
mode Mi was in effect at k − 1 given that Mj is in effect at k conditioned
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Figure 5.1: IMM algorithm consisting of two subfilters (one cycle)

on z(k− 1) is derived applying the Bayes’ theorem and the total probability
theorem

µi|j(k − 1|k − 1) , Pm(k−1)|m(k),z(k−1)

{
Mi|Mj, zk−1

}
(5.6)

=
Pm(k−1),m(k),z(k−1)

{
Mi,Mj, zk−1

}
Pm(k),z(k−1)

{
Mj, zk−1

}
=

Pm(k)|m(k−1),z(k−1)

{
Mj|Mi, zk−1

}
Pm(k−1)|z(k−1)

{
Mi|zk−1

}
Pz(k−1)

{
zk−1

}
Pm(k)|z(k−1)

{
Mj|zk−1

}
Pz(k−1)

{
zk−1

}
=

Pm(k)|m(k−1),z(k−1)

{
Mj|Mi, zk−1

}
Pm(k−1)|z(k−1)

{
Mi|zk−1

}
Pm(k)|z(k−1)

{
Mj|zk−1

}
=

Pm(k)|m(k−1),z(k−1)

{
Mj|Mi, zk−1

}
Pm(k−1)|z(k−1)

{
Mi|zk−1

}∑r
i=1 Pm(k)|m(k−1),z(k−1)

{
Mj|Mi, zk−1

}
Pm(k−1)|z(k−1)

{
Mi|zk−1

} (5.7)

=
1

c̄j
pijµi(k − 1), i, j = 1, . . . , r (5.8)

where µi(k − 1) is the conditional probability about model i at time k − 1,
cf. Eq. (5.15), and c̄j is the normalizing constants, which is

cj =
r∑

i=1

pijµi(k − 1), j = 1, . . . , r (5.9)

Step 2: Calculation of the initial mixing condition for j = 1, . . . , r filters.
Starting with x̂i(k − 1|k − 1) one computes the mixed initial condition for
the filter matched to Mj(k) as

x̂0j(k − 1|k − 1) =
r∑

i=1

µi|j(k − 1|k − 1)x̂i(k − 1|k − 1) (5.10)
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The corresponding covariance is

P0j(k − 1|k − 1)=
r∑

i=1

µi|j(k − 1|k − 1)
{
Pi(k − 1|k − 1)

+
[
x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)

]
·
[
x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)

]T}
(5.11)

Step 3: Mode-matched filtering for j = 1, . . . , r. The estimate (Eq. 5.10) and
the covariance (Eq. 5.11) are used as input to each filter to yield x̂j(k|k) and
Pj(k|k). The likelihood function corresponding to the jth filter are computed
as

Λj(k) , fz(k)|Z(k−1),m(k){ζk,ρk−1,Mj} (5.12)

= N
[
rj(k);0,Sj(k)

]
(5.13)

= (2π)−
n
2 ∥Sj(k)∥−

1
2 exp

{
−1

2

[
rj(k)

]T [
Sj(k)

]−1
rj(k)

}
(5.14)

where rj(k) = z(k)− h
[
x̂j(k|k− 1)

]
is the residual and Sj(k) is the residual

covariance for filter j at time k.

Step 4: Mode probability update for j = 1, . . . , r.

µj(k) , Pm(k)|z(k)
{
Mj|zk

}
(5.15)

=
1

c
Λj(k)c̄j (5.16)

where c is the normalization constant

c =
r∑

j=1

Λj(k)c̄j (5.17)

Step 5: Estimation and covariance combination. Combination of the
model-conditioned estimate and covariance is done according to the mixture
equations

x̂(k|k) =
r∑

j=1

µj(k)x̂
j(k|k) (5.18)

P(k|k) =
r∑

j=1

µj(k)
{
Pj(k|k) +

[
x̂j(k|k)− x̂(k|k)

]
·
[
x̂j(k|k)− x̂(k|k)

]T}
(5.19)

Figure 5.1 shows one cycle of the IMM algorithm with two subfilters.

99



Chapter 5. An Adaptive Road-Constrained IMM Estimator

5.2.2 Extended Kalman Filter in Subfilters

For each subfilter in the IMM estimator, an EKF can be used. The most
well-known representative dynamic models are CV model for nonmaneuver
motion, and CA model and CT model for maneuver motions of accelerating
and turning. These models are also the basic models for the IMM approach.
All models have a generic state space model

x(k + 1) = Fx(k) +Gw(k) (5.20)

where x, F, G, and w have different forms for different models (see Section
3.1).

For simplicity, the measurements, z ∈ ℜ3, are the distances between the
BTSs and the MS according to the time of arrival (TOA) measurements
received from three BTSs a, b, and c, whose position coordinates are (xa, ya),
(xb, yb) and (xc, yc), respectively. We define

di =
√

(x− xi)2 + (y − yi)2, i = a, b, c (5.21)

Then the measurement model (Eq. 5.5) can be written as

z(k) = h[x(k)] + v(k) (5.22)

h[x(k)] =

da(k)db(k)
dc(k)

 (5.23)

where h[x(k)] describes the nonlinear mapping of the states into the obser-
vation space. v(k) is measurement noise vector assumed to be zero-mean
white Gaussian noise.

E
{
v(k)

}
= 0,E

{
v(k) · vT (j)

}
= R · δ(k − j) (5.24)

R = diag(σ2
d, σ

2
d, σ

2
d) (5.25)

5.2.3 Simulation Results

Simulation Scenarios

The simulations are carried out in a simulated urban square area of 5 km×
5 km. Within this area there are three BTSs, a, b and c. It is assumed that
a vehicle is equipped with a MS, and the trajectories are generated by the
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Figure 5.2: Simulation scenario 1
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Figure 5.3: Simulation scenario 2

curvilinear motion model (see Section 3.1.5). Three different scenarios are
simulated by setting different tangential accelerations at and normal accelera-
tions an, as shown in Fig. 5.2-Fig. 5.4. In the first simulated scenario, the tra-
jectory includes uniform motions and two segments of maneuvers with only
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Figure 5.4: Simulation scenario 3

tangential accelerations. In the second one, the trajectory consists of uniform
motions and two segments of maneuvers with only normal accelerations. The
trajectory in the third scenario contains uniform motions and two segments
of maneuvers with both tangential and normal accelerations. The values of
at and an are shown in Table 5.1. They are set to be ±3 m/s2, which is about

Table 5.1: Values of at and an for different scenarios [m/s2]

Samples Scenario 1 Scenario 2 Scenario 3

k at an at an at an

1-199 0 0 0 0 0 0

200-219 3 0 0 3 3 3

220-419 0 0 0 0 0 0

420-439 -3 0 0 -3 -3 -3

440-639 0 0 0 0 0 0

0.3 g. The positive and negative values for at mean accelerating and deceler-
ating, whereas those for an denote left turn and right turn, respectively. The

initial values of the position and velocity in two dimensions
[
x ẋ y ẏ

]T
for each trajectory are: scenario 1-

[
0 m 5 m/s 3000 m 0 m/s

]T
, scenario
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2-
[
500 m 20 m/s 1000 m 0 m/s

]T
and

[
1200 m 10 m/s 0 m 0 m/s

]T
for scenario 3. The standard deviations of the process noise are set to be
σx = 10−4 m, σy = 10−4 m, σv = 10−5 m/s, σϕ = 10−6 rad. The measure-
ments are the distances between the BTSs and the MS according to the TOA
received from three BTSs (Eqs. 5.22 and 5.23), respectively. The standard
deviation of the measurement noise, which is assumed to be zero-mean white
Gaussian noise, is σd = 300 m.

Design of IMM Estimator

There are three main steps for designing an IMM estimator: selection of
model set, selection of process noise for each model, and selection of the
Markov chain transition probabilities [71,93].

(1) Selection of Model Set

Typically the models used in the IMM estimator include one CV model for
uniform motion and one or more for the maneuver (e.g., CA or CT model).
Both the estimation quality and the complexity should be considered. The
main principle is to use the exact or approximate maneuver model set. It
should be noted that increasing the number of the models will increase the
computation loads, but it does not guarantee better performance [93]. There-
fore, for the above three different simulated trajectories, we choose different
IMM configurations in order to show the best performance of the IMM esti-
mator.

� Scenario l: CV and CA models;

� Scenario 2: CV and CT models;

� Scenario 3: CV and CT models.

(2) Selection of Process Noises

The process noises are selected based on the expected disturbances and
the similarity of the models with the real maneuvers. Since the first and sec-
ond generated trajectories have small noises, and the models in the estimator
match the real movement very well, the process noises of the filter should be
set to be small values. In the third scenario, however, there is no exact model
to describe the maneuver, so that one approximate model, CT model with
high process noise, is used to cover the maneuver phase.

� Scenario l: CV model- the standard deviations of the acceleration noise
in x and y directions are σx = σy = 0.01 m/s2, CA model- the standard
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deviations of the acceleration increment noise in x and y directions are
σx = σy = 0.01 m/s3;

� Scenario 2: CV model- σx = σy = 0.01 m/s2, CT model- the standard
deviations of the acceleration noise in x and y directions are σx = σy =
0.01 m/s2 and noise for turn rate is σω = 0.01 rad/s2;

� Scenario 3: CV model- σx = σy = 0.01 m/s2, CT model- σx = σy =
3 m/s2 and σω = 1 rad/s2.

(3) Selection of Transition Probabilities Matrix

For each simulation scenario, we set the mode transition probability ma-
trix and initial probability to the same values. The elements of the mode tran-
sition probability matrix (Eq. 5.3), which is a 2Ö2 matrix, are p11 = 0.994,
p12 = 0.006, p21 = 0.01, p22 = 0.99, and the initial probability of the CV
model is 0.9, while that of maneuver model, i.e., for scenario 1 CA model
and for scenario 2 and scenario 3 CT model, is 0.1.

For each subfilter, an EKF is used. The TOA measurements for one point
are used to initialize the EKF.

Results Comparison and Analysis

The RMSE performance of the IMM estimators for three scenarios are shown
in Fig. 5.5-Fig. 5.7. All results are based on 500 Monte Carlo trials. We
compare the RMSE with the corresponding PCRLB, which represens the
theoretically best achievable estimation performance of a specific simulation
scenario [73,94]. The results are also compared with the RMSE performance
of an EKF using only one CV model. It should be noted that for comparing
the RMSE with the PCRLB, the PCRLB is calculated as the root of the
PCRLB in x direction plus the PCRLB in y direction. The comparisons of
the estimation errors are shown in Table 5.2.

� Estimation errors during nonmaneuvering period: Since the estimators
have large errors at the beginning of the nonmaneuvering period, which
is because that the estimators need some time to converge to the real
state value, the average uniform motion (UM) position RMSEs and
average UM velocity RMSEs in the Table 5.2 are calculated by the
average over the samples 100-199, 320-419, and 540-639, when the esti-
mation of each estimator already converged. In all three scenarios the
IMM estimators reduce the estimation errors during the uniform mo-
tion comparing with the EKF of using only one model. For the scenario
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Figure 5.5: Position RMSEs against corresponding PCRLBs (scenario 1)
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Figure 5.6: Position RMSEs against corresponding PCRLBs (scenario 2)

3, the IMM estimator has a 14.5 m smaller position RMSE and 1.6 m/s
smaller velocity RMSE than the EKF estimator.

� Peak errors during maneuvering: For each scenario, the peak errors are
taken at the samples when the errors of the IMM estimators achieve
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Figure 5.7: Position RMSEs against Corresponding PCRLBs (scenario 3)

Table 5.2: Estimation errors comparisons

Scenario 1 Scenario 2 Scenario 3

EKF IMM EKF IMM EKF IMM

Av. UM Position RMSE5 [m] 86.5 69.4 86.2 79.8 104.5 90.0

Av. UM Velocity RMSE5 [m/s] 5.3 4.1 5.4 4.9 7.9 6.3

Peak Position RMSE [m] 134.0 122.0 136.5 156.6 144.6 166.2

Peak Velocity RMSE [m/s] 25.4 25.3 23.8 24.7 30.6 33.5

Mode Detection Delay [sample] - 34.5 - 40 - 30.5
5Av. stands for average

the peak, and they are the average of two maneuvers. For scenario 1,
the IMM has a lower peak error, while for the other two scenarios, the
IMM has a higher peak error than the EKF using one model.

� Detection of the maneuver: The mode detection delay is calculated
as using the sample time, when the probability of maneuver mode is
bigger than that of uniform motion, minus the sample time, when the
maneuver actually happens. They are averaged over two maneuvers in
each scenario. The delays are 30 samples to 40 samples (about 14 s to
20 s), e.g. the mode probability in scenario 3 is shown in Fig 5.8.
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Figure 5.8: Mode probability (scenario 3)

As shown in the above comparisons, the IMM estimators achieve better
accuracy during the nonmaneuvering period, but they have higher peak error
when the target maneuvers. This is because that the mode detection is
delayed. The possible reasons are high measurement noises and relatively
low velocities for the application in GSM networks, which results in that the
estimation of the acceleration in CA models and the turn rate in CT models
converge to the real values slowly, and the nonmaneuver model (CV) and the
maneuver model (CA or CT) can not be differentiated quickly.

5.3 An Adaptive Road-Constrained IMM Esti-

mator

As discussed before, one of the natural characteristics for ground targets is
the target motion uncertainty due to the change of terrain and road condi-
tions. In recent years, MM methods have been generally considered as the
mainstream approach for maneuvering target tracking under motion mode
uncertainty, and the IMM estimator is one of the most efficient MM esti-
mators, which has been considered in the last section. However, most of the
work on the IMM estimators considers only fixed mode sets. This requires
that the estimator carries as many modes as necessary to handle the varying
target motion characteristics during the entire tracking period, which will
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increase the computational load and may also degrade the estimation accu-
racy. It is possible to vary the set of models in the IMM estimator based
on some criteria to yield better estimates, which results in VS-IMM [75,95].
The road network is such a promising a priori information.

Although the road network will cause the high maneuverability of ground
targets, it has the advantage of additional knowledge on the target state.
There are already many approaches of incorporating the road information
into the tracking algorithm. The main approaches include projection and
pseudomeasurement approach, which were introduced in Chapter 4. More-
over, there are also many research efforts which have been done to incorporate
the road information into MM schemes. In [75, 96] the road constraint was
handled using the concept of directional process noise. The target dynam-
ics was modeled in one-dimensional road coordinates and mapped onto the
ground coordinate in [97]. The projection approach was applied within a
VS-IMM filter in [98].

In Chapter 4, we expanded the pseudomeasurement approach for road-
constrained target tracking in GSM networks, including straight roads and
curved roads. The benefits were demonstrated. In this section, we will incor-
porate this road-constrained tracking approach into a VS-IMM mechanism,
which results in an ARC-IMM estimator. In this approach, the module
set, not only the dynamic model but also the road constraint as a pseudo-
measurement, is updated adaptively according to the estimated position of
the target and the road network information as the estimation process pro-
ceeds. In particular, the selection of the dynamic models also depends on
the road constraint. Comparative studies with utilizing an IMM estimator
with directional noise, a standard IMM estimator and an EKF verify that
the proposed approach significantly improves the tracking accuracy. In ad-
dition, the performance when there are only two measurements available is
also discussed.

5.3.1 Ground Target Tracking on the Road

Although the varying environmental conditions, e.g., road network, result in
the high maneuverability of ground targets, they cause also another nature of
the ground targets, i.e., constrained motion. As discussed in Chapter 4, the
road constraint can be formulated as a fictitious measurement and rewritten
by a pseudomeasurement model in discrete time

zc(k) = hc

[
x(k)

]
+ vr(k) (5.26)
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where zc(k) = 0, hc

[
x(k)

]
= s

(
x(k), y(k)

)
representing the road model, and

vr(k) is assumed to be zero-mean white Gaussian noise accounting for the
uncertainty of the road constraint.

vr(k) ∼ N
(
0, rr(k)

)
(5.27)

rr(k) = σ2
r (5.28)

Accordingly, the measurement model is augmented and an EKF can be uti-
lized.

For simplicity, the measurements, z ∈ ℜ3, are the distances between the
BTSs and the MS according to the TOA received from three BTSs a, b, and
c, whose position coordinates are (xa, ya), (xb, yb) and (xc, yc), respectively.
The measurement model can be found in Eqs. (5.22) and (5.24).

5.3.2 ARC-IMM Algorithm

MM approaches can be divided into two categories: one with a fixed set of
models, and one with a variable structure. As has been pointed out in [95],
the fixed mode set approach is not realistic since more models have to be used
to cover all the possible target motions, which adds to the computational load
and also degrades the performance. Therefore, VS-IMM has been proposed
to vary the set of models in the IMM estimator based on some criteria. E.g.,
the variations in the topography, which include targets entering and leaving
roads, target motion at road junctions and target obscuration conditions, are
considered to decide which models in the estimator are added or deleted at
each revisit time [75].

In addition, the road network also conveys such information, that can be
used to adaptively update the model set as the estimation process proceeds.
Assuming that the road network can be modeled by a set of road segments
{sl}, l = 1, . . . , n and each sl can be described by a straight line, arc, or
low-order polynomial. At each time step, a neighboring road segment set of
the target S(k) , {so} ∈ {sl}, o = 1, . . . ,m can be obtained by examining
the estimated target position and the road network. The road not only
restricts the position of the target inside the road, but also has a potential
constraint on the possible target motions corresponding to a specific road
segment. E.g., on a straight road the target dynamic model might be a CV
or a CA model, but cannot be a nearly CT model. Therefore, a road segment
in the neighboring road segment set, which is selected from the whole set of
the road network for the current position, has finite corresponding possible
motion models.
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The principle of the proposed ARC-IMM estimator is based on a VS-IMM
mechanism, where the module set will be updated adaptively according to
the latest position estimate and the road network information. In partic-
ular, the road constraint is incorporated into the measurement model as a
pseudomeasurement, and the modules of the estimator at each time step not
only have different dynamic models but also have different road constraints
as pseudomeasurements, in which one or more dynamic models correspond
to one road constraint. In the following, module Mj, i.e., mode in MM ap-
proaches, stands for the different filters in the ARC-IMM, which includes
a pair of dynamic model and road constraint. And the set of modules is
updated adaptively according to the road network.

Thus the hybrid system (Eqs. 5.1 and 5.2) can be written as

x(k + 1) = fp
[
k,x(k)

]
+ gp

[
k,x(k),wp(k)

]
(5.29)

zo(k) = ho

[
k,x(k)

]
+ vo(k) (5.30)

where zo(k) is the augmented measurement vector by the road constraint

as a pseudomeasurement (Eq. 5.26), zo(k) =
[
z(k)T zso(k)

]T
, ho[x(k)] =[

h
[
x(k)

]T
hso

[
x(k)

]]T
, and vo(k) =

[
v(k)T vso(k)

]T
, and the subscript

so denotes the neighboring road segment at time k, and o = 1, . . . ,m.
The subscript in the dynamic model p denotes the different motion mod-
els corresponding to each oth road segment. The module of the target
M(k) , {o, p} is given by the combination of different road constraints and
different target motions. Unlike the fixed set IMM estimator, the module
set at time k, M(k) ,

{
Mj(k)

}
, j = 1, . . . , r, and that at time k − 1,

M(k − 1) ,
{
Mi(k − 1)

}
, i = 1, . . . , s, might be different. The module

transition probability (Eq. 5.3) is modified as

pij , Pm(k)|m(k−1)

{
Mj ∈ M(k)|Mi ∈ M(k − 1)

}
(5.31)

where pij depends on the module set M(k − 1) and M(k).

One cycle of the ARC-IMM algorithm consists of the following five steps
as illustrated in Fig. 5.9:

Step 1: Module set update.

The module set at time k, M(k), is updated adaptively on the base of the
latest estimated position, the neighboring road segments and corresponding
possible target motions. Firstly, the neighboring road segment set is se-
lected, which can be done by testing whether any segment of the road set
{sl} lies within a certain neighborhood ellipse centered at the predicted posi-
tion

(
x̂−(k|k), ŷ−(k|k)

)
[75]. Then the corresponding target dynamic models
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Figure 5.9: ARC-IMM estimator consisting of three subfilters (one cycle)

of each road segment are chosen according to the empirical knowledge. The
modules of the estimator at one time step are illustrated in Fig. 5.10. There
are two road segments in the neighboring road set, s1 and s2. For the straight
road s1, the target might move at constant velocity or constant acceleration,
and for the arc road s2, the target might do a coordinated turn. There-
fore, three possible modules are chosen as shown in Fig. 5.10. In this step,
the measurement model will be augmented by the road constraint pseudo-
measurement from the selected neighboring road segments.

Step 2: Calculation of the initial mixing condition for j = 1, . . . , r filters.

The probabilities that module Mi was in effect at k − 1 given that Mj is
in effect at k conditioned on z(k − 1) is

µi|j(k − 1|k − 1) , Pm(k−1)|m(k),z(k−1)

{
Mi|Mj, zk−1

}
(5.32)

=
1

c̄j
pijµi(k − 1),Mi ∈ M(k − 1),Mj ∈ M(k) (5.33)

where µi(k − 1) is the conditional probability about module i at time k − 1,
and c̄j is the normalizing constants, which is

cj =
s∑

i=1

pijµi(k − 1), j = 1, . . . , r (5.34)
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Figure 5.10: Modules example

Then starting with x̂i(k− 1|k− 1) one computes the mixed initial condition
for the filter matched to Mj(k) as

x̂0j(k − 1|k − 1) =
s∑

i=1

µi|j(k − 1|k − 1)x̂i(k − 1|k − 1) (5.35)

The corresponding covariance is

P0j(k − 1|k − 1) =
s∑

i=1

µi|j(k − 1|k − 1)
{
Pi(k − 1|k − 1)

+
[
x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)

]
·
[
x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)

]T}
(5.36)

Step 3: Module-matched filtering for j = 1, . . . , r.

The estimate (Eq. 5.35) and the covariance (Eq. 5.36) are used as input
to each filter, where the EKF can be used, to yield x̂j(k|k) and Pj(k|k). The
EKF with road constraint as pseudomeasurement in linear and nonlinear case
refers to Chapter 4. The likelihood functions corresponding to the r filters
are computed as

Λj(k)=N
[
rj(k);0,Sj(k)

]
(5.37)

=(2π)−
n
2 ∥Sj(k)∥−

1
2 exp

{
−1

2

[
rj(k)

]T [
Sj(k)

]−1
rj(k)

}
(5.38)

where rj(k) = z(k)− h
[
x̂j(k|k− 1)

]
is the residual and Sj(k) is the residual

covariance for filter j at time k. Note that the real measurement model z(k),
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not the augmented measurement model zo(k), is used to calculate the like-
lihood functions (Eq. 5.37) considering the different road segment functions
for each modules, i.e., straight line, arc or polynomial function.

Step 4: Module probability update for j = 1, . . . , r.

The module probability in effect at k is updated by

µj(k) , Pm(k)|z(k)
{
Mj|zk

}
(5.39)

=
1

c
Λj(k)c̄j (5.40)

where c is the normalization constant

c =
r∑

j=1

Λj(k)c̄j (5.41)

Step 5: Estimation and covariance combination.

Combination of the module-conditioned estimate and covariance is done
according to the mixture equations

x̂(k|k) =
r∑

j=1

µj(k)x̂
j(k|k) (5.42)

P(k|k) =
r∑

j=1

µj(k)
{
Pj(k|k) +

[
x̂j(k|k)− x̂(k|k)

]
·
[
x̂j(k|k)− x̂(k|k)

]T}
(5.43)

The above five steps are similar with the VS-IMM algorithm, but the
road constraint is incorporated into the estimation as a pseudomeasurement
and the structure of the module set is selected and updated considering the
neighboring road segments and corresponding possible target motions.

5.3.3 Simulation Results

Simulation Scenario

The simulations are carried out in a simulated square area of 5 km by 5 km.
Within this area there are three BTSs, a, b and c. As shown in Fig. 5.11, it
is assumed that a vehicle equipped with a MS, whose position and velocity
are going to be estimated using three TOA measurements from BTSs a, b
and c, respectively, travels along a route D-E-F-G as an example to show the
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Figure 5.11: Simulation scenario

structure and performance of the proposed ARC-IMM Estimator. There are
three road segments: s1(D-E) is a straight road, s2(E-F) is an arc road, and
s3(F-G) is also a straight road. It is assumed that these three road segments
are modeled by a linear function or a circle function as

0 = tan θ · x(k)− y(k) + c (5.44)

r2 = (x(k)− x0)
2 + (y(k)− y0)

2 (5.45)

where tan θ is the slope of the straight roads, c stands for the y-intercept of
the straight roads, r denotes the radius of the arc road and (x0, y0) is the two-
dimensional coordinate of the arc’s centre, which are all known parameters.
Therefore they can be written as pseudomeasurement models

zs1(k) = hs1 [x(k)] + vs1(k) (5.46)

zs2(k) = hs2 [x(k)] + vs2(k) (5.47)

zs3(k) = hs3 [x(k)] + vs3(k) (5.48)

The measurement update rate is T = 0.48 s. The standard deviation of the
measurement noise is assumed to be σd = 300 m.

It is assumed that the vehicle is moving on the road from D to G and
the estimator starts working at position D: (1000 m, 1000 m) and at this
time the velocity of the vehicle is 20 m/s and 0 m/s in x and y direction,
respectively. Firstly the vehicle moves along the road s1 at constant velocity,
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then it executes a coordinated turn when it goes to the arc road s2, and
finally it has again constant velocity movement on the straight road s3. The
trajectory is generated by the curvilinear motion model. The tangential and
normal accelerations at and an are set to be at = 0 m/s2, an = 0 m/s2

for the movement on s1, at = 0 m/s2, an = 1 m/s2 for that on s2, and
at = 0 m/s2, an = 0 m/s2 for that on s3. The process noise wt(k) =[
wx(k) wy(k) wv(k) wϕ(k)

]T
is assumed to be zero-mean white Gaussian

noise. The standard deviations of the process noise σx, σy, σv, σϕ are set to
be the values of 10−4 m, 10−4 m, 10−5 m/s and 10−6 rad, respectively.

Design of the ARC-IMM Estimator

For illustrating the module structure of the ARC-IMM estimator, it is as-
sumed that in the period of traveling from D to G there are always three road
segments in the neighboring road set S(k) = {s1, s2, s3}, i.e., the adaptive
update of the module set is not considered in this example. Therefore, the
ARC-IMM estimator consists of three modules during the movement from D
to G, which are as follows:

� Module 1 : The dynamic model is a CV Model, and the measurement
model includes three TOA measurements plus the pseudomeasurement
model of the road segment s1 (Eq. 5.46). The standard deviations
of the process noise, including acceleration in x and y directions, are
set to be σx = 1 m/s2, σy = 1 m/s2. The standard deviation of the
pseudomeasurement noise is σr = 10 m.

� Module 2 : The dynamic model is a CT Model, and the measurement
model includes three TOA measurements plus the pseudomeasurement
model of the road segment s2 (Eq. 5.47). The standard deviations
of the process noise, including acceleration in x and y directions and
the change of turn rate, are σx = 10−2 m/s2, σy = 10−2 m/s2, σω =
10−4 rad/s2. The standard deviation of the pseudomeasurement noise
is σr = (10 m)2.

� Module 3 : The dynamic model is a CV Model, and the measurement
model includes three TOA measurements plus the pseudomeasurement
model of the road segment s3 (Eq. 5.48). The standard deviations
of the process noise are σx = 1 m/s2, σy = 1 m/s2, and the standard
deviation of the pseudomeasurement noise is σr = 10 m.

The standard deviation of the measurement noise for all three modules is
set to be σd = 300 m. The module transition probability matrix, which is a
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3Ö3 matrix, is designed as follows

M1 =

 0.99 0.005 0.005
0.01 0.98 0.01
0.005 0.005 0.99

 (5.49)

The initial probability of each module is set to be 0.9 for module 1, and 0.05
for module 2 and 3, respectively. The initial state values x̂+(0) and ŷ+(0)
of the estimator are calculated by one point measurement [65], which uses a
traditional least squares algorithm to achieve an initial position guess from
three independent TOA measurements at time step k = 0. The initial values
of the velocity ˆ̇x+(0), ˆ̇y+(0) are assumed to be zero-mean Gaussian random
variables with an associated standard deviation equal to be half of the known
maximum state values.

In order to evaluate the performance of the proposed approach, an IMM
estimator with directional noise (IMM-DN), a standard IMM estimator, and
a single model EKF estimator are also designed for the simulated scenario and
the results are compared. The IMM-DN estimator comprises three models,
one CV model for the road segment D-E, one CT model and one CV model for
the road segment F-G. Since the target should have more uncertainty along
the road than orthogonal to it, the variance of the corresponding process
noise could be set as σa = 10−2 m/s2, σo = 10−6 m/s2, σ2

a ≫ σ2
o . Then they

need to be converted into a covariance matrix in the X-Y coordinate system.

Q =

[
−cosφ sinφ
sinφ −cosφ

] [
σ2
a 0
0 σ2

o

] [
−cosφ sinφ
sinφ −cosφ

]
(5.50)

where φ is the direction of the road segment D-E and F-G, respectively.
The details of the directional noise design can be found in [75]. The mode
transition probability matrix is the same with the ARC-IMM. The IMM esti-
mator consists of two models, one CV model, in which the standard deviation
of process noises σax = 10−2 m/s2, σay = 10−2 m/s2, and one CT model with

process noises σax = 10−2 m/s2, σay = 10−2 m/s2, σω = 10−4 rad/s2. The
mode transition probability matrix is assumed to be

M2 =

[
0.99 0.01
0.02 0.98

]
(5.51)

The initial probability is set to be 0.9 for CV model, 0.1 for CT model. The
dynamic model of the EKF is CV model, and the standard deviations of
process noises are set to be σax = 3 m/s2, σay = 3 m/s2, which are designed
to be large enough to track both the uniform motion and maneuver motion.
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Performance Comparisons

The state estimate results of the proposed ARC-IMM estimator, the IMM-
DN estimator, the IMM estimator and the single model EKF estimator are
shown in Fig. 5.12. It is observed that the performance of the ARC-IMM
outperforms those of the other three approaches. The state estimates of
the target yielded by the ARC-IMM are close to the real state values. In
particular, at the initial phase the estimates converge to the real values much
quicker than that of the other three approaches. When the target maneuvers,
i.e., when the target turns on the road, the proposed estimator can better
track the change of the state than the others.

To further evaluate the estimation performance, the RMSE performance
is obtained from 1000 Monte Carlo simulations as shown in Fig. 5.13. The
comparison of the RMSEs verifies that the ARC-IMM significantly improves
the estimation accuracy. During the uniform motion the ARC-IMM yields
about 30 m position RMSE reduction when comparing with the IMM and
about 20 m in comparison to the EKF. The velocity RMSE is improved about
6 m/s over the IMM and about 3 m/s over the EKF. During the maneuver,
the ARC-IMM has a peak error, but it decreases much faster than in the
case of the other three estimators. By comparing the performance of IMM
and EKF, it is shown that the IMM cannot improve the estimation accu-
racy over the EKF even though an additional maneuver model is included,
which is because the IMM estimator converges slowly in this application
with high measurement noises and relatively low velocities. The compari-
son of the results from the IMM-DN and the IMM estimator shows that the
IMM with directional noise has only a slightly better performance during the
nonmaneuver period.

Performance in the Case of Two Measurements

As discussed in Section 4.3.4, to uniquely determine a position in two dimen-
sions using trilateration techniques, at least three base stations are required
to solve the ambiguities. However, sometimes this condition cannot be satis-
fied in GSM networks. In this part of simulations the performance of different
approaches, when there are only two measurements from two BTSs of a and
b available, are compared. The RMSE performance based on 1000 Monte
Carlo simulations is shown in Fig. 5.14. It is observed that the proposed
ARC-IMM yields the highest accuracy, and the performances of the other
three approaches are greatly degraded. In the case of only two measure-
ments the measurement model in the IMM-DN, the IMM and the EKF is
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Figure 5.12: State estimates

only a two-dimensional vector, which results in increased estimation ambigu-
ities. In the ARC-IMM, however, the incorporation of the road constraint as
a pseudomeasurement augments the measurement model, thus the necessary
number of measurements for trilateration in two dimensions is reduced to
two. Therefore, the proposed ARC-IMM can still provide stable and accu-
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Figure 5.13: RMSE performance comparison (three measurements)

rate estimates when there are only two measurements available.
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Figure 5.14: RMSE performance of only two measurements

5.4 Summary

In this chapter, the problem of motion uncertainty has been discussed. Firstly
the IMM estimator has been applied. The simulation results show that the
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IMM estimator can improve the estimation accuracy during the nonmaneuver
period, but it has higher errors during the target maneuvers compared to the
EKF estimator since it takes some time to shift to the correct motion model.
Considering this difficulty, an ARC-IMM estimator to track the ground tar-
get in GSM networks has been proposed. The road constraint can be used
not only to restrict the position of the target inside the road, but also as
a criterion to select possible dynamic models. Similar to the VS-IMM esti-
mator, the module set of the ARC-IMM is updated adaptively according to
the estimated target position and the road network information. The differ-
ence is that in the ARC-IMM the road constraint is incorporated into the
estimator as a pseudomeasurement, and the module is specified by the dy-
namic model and the road constraint together. In particular, the selection of
the dynamic model also depends on the road constraint. The performance
comparison verifies that the proposed ARC-IMM estimator is superior to an
IMM with directional noise, a standard IMM estimator and a classic EKF
estimator. The results in the situation of only two measurements available
show the robustness and efficiency of the proposed approach.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

This thesis presented data fusion solutions for ground target tracking in GSM
networks. Since the communication signal is not designed for positioning
purposes, it is difficult for a GSM positioning system relying on a single type
of measurements under current specifications to provide accurate position
estimates. Therefore, this work integrates the measurements from the GSM
network and additional information applying estimation theory aiming at
providing more accurate position estimates. The main contributions of this
work are listed as follows:

1. A data fusion approach, which integrates two different types of measure-
ments from GSM networks, TOA and RSS, using an EKF is proposed.
The comparison results with the single measurement approach depicts
that the data fusion approach can greatly improve the estimation accu-
racy. This contribution has been published in [99].

2. The PCRLB is derived for the proposed data fusion approach and the
principle of the fusion, i.e., the information is additive, is clearly ex-
plained through the PCRLB. Moreover, the recursive equation of the
PCRLB shows that the accuracy of the tracking using GSM networks
is affected by the initial information, the process noise, the dynamics
of the trajectory, the measurement noise, and the geometric relation-
ship of the BTSs and the MS. Comparisons of PCRLBs, which are
compatible with the comparisons of the estimation results using EKF,
demonstrate the conclusion that the data fusion approach provides bet-
ter accuracy and is more robust to the noisy measurements from a
theoretical point of view. This contribution can be found in [94,100].
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3. The road information has been successfully incorporated into the esti-
mation process as a pseudomeasurement. The simulation results con-
cerning linear road segments and nonlinear road segments demonstrate
the benefits of the proposed road-constrained approach. The estimation
accuracy is greatly improved by the road information, and incorporat-
ing the road constraint reduces the condition for trilateration in two
dimensions from three required BTSs to two BTSs. This contribution
can be found in [101,102].

4. An IMM estimator has been designed for the maneuvering target track-
ing in GSM networks under different maneuver scenarios. Moreover,
an ARC-IMM estimator has been proposed to solve the motion mode
uncertainty problem for tracking the ground target limited to the road
network. The proposed approach incorporates the road information
into a VS-IMM scheme so that the estimator can adaptively apply the
road network information related into the current target position. The
approach has been proven superior to a normal IMM estimator. This
contribution can be found in [103,104].

6.2 Outlook

There are several aspects for future work which can be done as a continuation
work of this thesis:

� NLOS: The NLOS error is a critical issue for mobile positioning in a
wireless communication environment. Due to reflection and diffraction,
the radio signal may travel extra path lengths of the order of hundreds
of meters and there might be no direct path from the BS to the MS. In
such a situation, if the algorithm for LOS condition is directly utilized,
the position estimates will greatly diverge from the true values. In this
thesis, it is assumed that the NLOS bias error has been removed before
the estimation by having the prior knowledge of the bias. However, in
practice the statistics of the NLOS error are usually unknown or known
in a limited way and the presence of NLOS is unpredictable. Therefore,
the NLOS mitigation algorithm together with the estimation should be
investigated.

� ARC-IMM: In this thesis an ARC-IMM estimator has been proposed
and shown to be effective. The simulation is done using a limited area,
which is 5 km by 5 km, and the simulated road network is simply con-
sisting of three consecutive road segments. The estimator should be
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examined in a wider area and more complicated road networks should
be considered. Since the ARC-IMM estimator is an adaptive estimator
with respect to the road network, the adaptive selection and the selec-
tion of the module set should be further studied to improve the effi-
ciency of the proposed approach.

� Road Constraint: The road constraint is a very interesting topic
since it is easily obtained from a digital map database and can be used
to improve the positioning, especially in urban areas, where position-
ing using GPS and wireless communication networks will be greatly
degraded due to dense buildings. The proposed approach can be ex-
amined in real environments to further demonstrate the benefits.

� Data Fusion: As the development of the Global Navigation Satellite
Systems (GNSS) and navigation technologies, the data fusion of differ-
ent positioning system should be under consideration. As shown in
this thesis, the accuracy of the position estimate using the measure-
ments from GSM networks is limited but the advantage is its ubiquity
in different environments. The GNSS system provides much more accu-
rate position information but will be greatly degraded in urban areas.
Therefore, the integration of the navigation systems, e.g., GNSS and
Inertial Navigation System (INS), and the positioning system using mo-
bile communication networks can be considered for the ground vehicle
navigation and tracking applications.

� Real Experiments: The work in this thesis focuses on the theoretical
foundations of data fusion solutions and the proposed novel approaches
are evaluated through Monte Carlo simulations. However, in practice,
the communication channel is far more complicated than the assump-
tions in the thesis. The work should be further examined and improved
by real data from field tests.
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Appendix A

Some Useful Formulae for
Vectors and Matrices

A.1 Derivatives of Vectors and Matrices

A.1.1 The Gradient of a Scalar Function f(x)

Let f(x) = f(x1, x2, · · · , xn) be a real valued scalar function of a n-vector x,
the gradient of f(·) with respect to x is defined as a n× 1 vector

∇x =

[
∂f(x)

∂x1

∂f(x)

∂x2

· · · ∂f(x)

∂xn

]T
(A.1)

It should be noted that conventionally the derivative of f(x) is defined as a
row vector with dimension 1× n.

∂f(x)

∂x
=

[
∂f(x)

∂x1

∂f(x)

∂x2

· · · ∂f(x)

∂xn

]
(A.2)

A.1.2 The Gradient of a Vector-Valued Function f(x)

Let f(x) =
[
f1(x) f2(x) · · · fm(x)

]T
be a m-dimensional vector-valued

function of a n-vector x, the gradient of f(·) with respect to x is defined as
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a n×m matrix

∇xf(x)
T =



∂f1(x)

∂x1

∂f2(x)

∂x1

· · · ∂fm(x)

∂x1

∂f1(x)

∂x2

∂f2(x)

∂x2

· · · ∂fm(x)

∂x2

...
...

. . .
...

∂f1(x)

∂xn

∂f2(x)

∂xn

· · · ∂fm(x)

∂xn


(A.3)

The inverse of the above is the Jacobian matrix, which is a m× n matrix

F , ∂f(x)

∂x
=

[
∇xf(x)

T
]T

=



∂f1(x)

∂x1

∂f1(x)

∂x2

· · · ∂f1(x)

∂xn

∂f2(x)

∂x1

∂f2(x)

∂x2

· · · ∂f2(x)

∂xn

...
...

. . .
...

∂fm(x)

∂x1

∂fm(x)

∂x2

· · · ∂fm(x)

∂xn


(A.4)

A.1.3 The Hessian of a Scalar Function f(x)

The Hessian of the scalar function f(x) with respect to the n-vector x is
defined as a symmetric n× n matrix

F , ∂2f(x)

∂x2
= ∇x∇T

xf(x) =



∂2f(x)

∂x1∂x1

∂2f(x)

∂x1∂x2

· · · ∂2f(x)

∂x1∂xn

∂2f(x)

∂x2∂x1

∂2f(x)

∂x2∂x2

· · · ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)

∂xn∂x1

∂2f(x)

∂xn∂x2

· · · ∂2f(x)

∂xn∂xn


(A.5)
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A.2 The Inversion of a Partitioned Matrix

In general, the inversion of a partitioned matrix is given by

A−1 =

[
A11 A12

A21 A22

]−1

=

[
A−1

11 (I+A12JA21A
−1
11 ) −A−1

11 A12J

−JA21A
−1
11 J

]
(A.6)

where
J = (A22 −A21A

−1
11 A12)

−1 (A.7)

A.3 Matrix Inversion Lemma

The matrix inversion lemma is very useful for the derivation of the recursive
equation of the least squares estimator and the linear estimation of dynamic
systems.

(A+BCBT )−1 = A−1 −A−1B(BTA−1B+C−1)−1BTA−1 (A.8)
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Appendix B

Posterior Cramér-Rao Lower
Bound for Nonlinear
Filtering with Additive
Gaussian Noise

Given a nonlinear filtering problem with additive Gaussian noise

x(k + 1) = f
[
x(k)

]
+w(k) (B.1)

z(k) = h
[
x(k)

]
+ v(k) (B.2)

where w(k) and v(k) are zero-mean white Gaussian noises with invertible
covariance matrix Q(k) and R(k), respectively.

E
{
w(k)

}
= 0,E

{
w(k) ·w(j)T

}
= Q(k) · δ(k − j) (B.3)

E
{
v(k)

}
= 0,E

{
v(k) · v(j)T

}
= R(k) · δ(k − j) (B.4)

Further assume that the initial state x(0) has a known probability density
function fx(0)

(
ξ0
)
. The dimension of the state vector x(k) is n. Let a capital

symbol X(k) =
[
x(0)T x(1)T · · · x(k)T

]T
represent the states in all time

step and Z(k) =
[
z(0)T z(1)T · · · z(k)T

]T
contain the measurements in

all time step, then the joint probability distribution of
(
X(k),Z(k)

)
is

fX(k),Z(k)

(
ηk,ρk

)
= fx(0)

(
ξ0
) k∏
j=1

fz(j)|x(j)
(
ζj|ξj

)
·

k∏
i=1

fx(i)|x(i−1)

(
ξi|ξi−1

)
(B.5)
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Following Eq. (2.49), the FIM for PCRLB is calculated by the joint pdf.
Let J

(
X(k)

)
be the information matrix (kn× kn) of X(k) derived from the

joint distribution (Eq. B.5). X(k) can be decomposed as
[
XT (k − 1) xT (k)

]T
.

Then the information submatrix for x(k) at time step k, which is denoted as

J(k), is given by the inversion of the (n×n) right-lower block of J
(
X(k)

)−1
.

Let

J
(
X(k)

)
=

[
A(k) B(k)
BT (k) C(k)

]
(B.6)

,

E
{
− ∂2 ln f(k)

∂ηk−1∂ηk−1

}
E
{
−∂2 ln f(k)

∂ξk∂ηk−1

}
E
{
−∂2 ln f(k)

∂ηk−1∂ξk

}
E
{
−∂2 ln f(k)

∂ξk∂ξk

}


(B.7)

where f(k) denotes fX(k),Z(k)

(
ηk,ρk

)
for brevity. Using the formula of the

inversion of a partitioned matrix (see Appendix A.2), J(k) is

J(k) = C(k)−BT (k)A−1(k)B(k) (B.8)

The matrix J−1(k) provides a lower bound on the mean square error of esti-
mating x(k).

Now it goes to the next step k+1, the joint probability function ofX(k+1)
and Z(k + 1) can be written as

f(k + 1) , fX(k+1),Z(k+1)

(
ηk+1,ρk+1

)
(B.9)

= fX(k),Z(k)

(
ηk,ρk

)
· fx(k+1)|X(k),Z(k)

(
ξk+1|ηk,ρk

)
·fz(k+1)|x(k+1),X(k),Z(k)

(
ζk+1|ξk+1,ηk,ρk

)
(B.10)

= f(k) · fx(k+1)|x(k)
(
ξk+1|ξk

)
·fz(k+1)|x(k+1)

(
ζk+1|ξk+1

)
(B.11)

The posterior information matrix for X(k + 1) can be written in block form
as

J
(
X(k + 1)

)
=

 A(k) B(k) 0
BT (k) C(k) +D11(k) D12(k)

0 D21(k) D22(k)

 (B.12)

where

D11(k) = E

{
−
∂2 ln fx(k+1)|x(k)

(
ξk+1|ξk

)
∂ξk∂ξk

}
(B.13)
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D12(k) = E

{
−
∂2 ln fx(k+1)|x(k)

(
ξk+1|ξk

)
∂ξk+1∂ξk

}
(B.14)

D21(k) = E

{
−
∂2 ln fx(k+1)|x(k)

(
ξk+1|ξk

)
∂ξk∂ξk+1

}
= [D12(k)]T (B.15)

D22(k) = E

{
−
∂2 ln fx(k+1)|x(k)

(
ξk+1|ξk

)
∂ξk+1∂ξk+1

}

+E

{
−
∂2 ln fz(k+1)|x(k+1)

(
ζk+1|ξk+1

)
∂ξk+1∂ξk+1

}
(B.16)

The information submatrix J(k+ 1) can be found as an inverse of the right-
lower n× n submatrix of J−1

(
X(k + 1)

)
J(k + 1) = D22(k)−D21(k)

[
J(k) +D11(k)

]−1
D12(k) (B.17)

The initial information matrix J(0) can be calculated from a priori proba-
bility function fx(0)

(
ξ0
)
J(0) = E

{
−
∂2 ln fx(0)

(
ξ0
)

∂ξ0∂ξ0

}
(B.18)

Using the assumption of additive Gaussian noise, Eqs. (B.3), (B.4), (B.13)-
(B.16), are derived as

D11(k) = E
{
FT (k)Q−1(k)F(k)

}
(B.19)

D12(k) = −E
{
FT (k)

}
Q−1(k) (B.20)

D21(k) = [D12(k)]T (B.21)

D22(k) = Q−1(k) + E
{
HT (k + 1)R−1(k + 1)H(k + 1)

}
(B.22)

where F(k) is the Jacobian matrix of f(·) in Eq. (B.2) with respect to the
true values of x(k)

F(k) =
∂f

[
x(k)

]
∂x(k)

∣∣∣∣
x(k)

(B.23)

Similarly, H(k + 1) is the Jacobian matrix of h(·) in Eq. (B.2) with respect
to the true values of x(k + 1)

H(k) =
∂h[x(k + 1)]

∂x(k + 1)

∣∣∣∣
x(k+1)

(B.24)
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Substituting Eqs. (B.19)-(B.22) into Eq. (B.17) yields

J(k + 1) = Q−1(k) + E
{
HT (k + 1)R−1(k + 1)H(k + 1)

}
−
[
E
{
FT (k)

}
Q−1(k)

]T [
J(k) + E

{
FT (k)

}
Q−1(k)E {F(k)}

]−1

·E
{
FT (k)

}
Q−1(k) (B.25)

According to the matrix inversion lemma (see A.3), Eq. (B.25) can be written
as

J(k + 1) =
[
Q−1(k) + E {F(k)J(k)F(k)}T

]−1

+E
{
HT (k + 1)R−1(k + 1)H(k + 1)

}
(B.26)

where J(0) can be given by the inverse of the initial covariance matrix P(0).
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Derivations for Constrained
State Estimation

C.1 Maximum Conditional Probability Method

for Projection Approach

The problem of constrained state estimation is a constrained minimization
problem

x̃ = argmin
x̃

(x̃− ¯̄x)TP−1(x̃− ¯̄x)) such that Dx̃ = d (C.1)

where x̃(k) denotes the constrained state estimate, ¯̄x depicts the conditional
mean of the state, and P stands for the covariance matrix of the state esti-
mation error. Constrained optimization problems can be solved using the
Lagrange multiplier method. So a Lagrangian L can be formed

L = (x̃− ¯̄x)TP−1(x̃− ¯̄x) + 2λT (Dx̃− d) (C.2)

To obtain the optimization, we let the partial derivatives of the Lagrangian
with respect to x̃ and λ be equal to zero and solve them simultaneously.

∂L

∂x̃
= P−1(x̃− ¯̄x) +DTλ = 0 (C.3)

∂L

∂λ
= Dx̃− d = 0 (C.4)

Then

λ = (DPDT )−1(D¯̄x− d) (C.5)

x̃ = ¯̄x−PDT (DPDT )−1(D¯̄x− d) (C.6)
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Since ¯̄x is the unconstrained state estimate x̂ of the Kalman filter, the con-
strained state estimation is

x̃ = x̂−PDT (DPDT )−1(Dx̂− d) (C.7)

C.2 Mean Square Method for Projection Ap-

proach

The constrained state estimation problem can be solved from a mean square
point of view.

x̃ = argmin
x̃

E
{
∥x− x̃∥2|z = z0

}
such that Dx̃ = d (C.8)

The conditional expected value can be written as

E
{
∥x− x̃∥2|z = z0

}
=

w
(ξ − x̃)T (ξ − x̃)fx|z(ξ|z0)dξ (C.9)

=
w
ξTξfx|z(ξ|z0)dξ − 2x̃

w
ξfx|z(ξ|z0)dξ + x̃T x̃

(C.10)

Then a Lagrangian can be formed

L = E
{
∥x− x̃∥2|z = z0

}
+ 2λT (Dx̃− d) (C.11)

=
w
ξTξfx|z(ξ|z0)dξ − 2x̃

w
ξfx|z(ξ|z0)dξ + x̃T x̃+ 2λT (Dx̃− d)

(C.12)

Assume that the Gaussian assumption holds for the unconstrained state esti-
mate obtained from Kalman filter x̂, then

x̂ = E {x|z = z0} =
w
ξfx|z(ξ|z0)dξ (C.13)

Let the partial derivatives of the Lagrangian with respect to x̃ and λ be
equal to zero and solve them simultaneously.

∂L

∂x̃
= −2x̂+ 2x̃+ 2DTλ = 0 (C.14)

∂L

∂λ
= Dx̃− d = 0 (C.15)

Solving them gives

λ = (DDT )−1(Dx̄− d) (C.16)

x̃ = x̂−DT (DDT )−1(Dx̂− d) (C.17)
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C.3 Constrained Estimate in Terms of the

Unconstrained Estimate Using Pseudo-

measurement Approach

We would like to write the constrained estimate obtained by pseudomeasurement
approach in terms of the unconstrained estimate. The system is

x(k + 1) = f
[
x(k)

]
+w(k) (C.18)

z(k) = h
[
x(k)

]
+ v(k) (C.19)

where the process noise w(k) and the measurement noise v(k) are assumed
to be zero-mean white Gaussian noises.

w(k) ∼ N
(
0,Q(k)

)
(C.20)

v(k) ∼ N
(
0,R(k)

)
(C.21)

Then the unconstrained estimate using EKF is

Prediction:

x̂−(k + 1) = F(k)x̂+(k) (C.22)

P−(k + 1) = F(k)P+(k)FT (k) +Q(k) (C.23)

Correction:

K(k + 1) = P−(k + 1)HT (k + 1)

·
[
H(k + 1)P−(k + 1)HT (k + 1) +R(k + 1)

]−1
(C.24)

r(k + 1) = z(k + 1)− h
[
x̂−(k + 1)

]
(C.25)

x̂+(k + 1) = x̂−(k + 1) +K(k + 1)r(k + 1) (C.26)

P+(k + 1) = P−(k + 1)−K(k + 1)H(k + 1)P−(k + 1) (C.27)

Now suppose that the system has constraints on the state estimate, the
augmented system by constraints can be written as

x(k + 1) = f
[
x(k)

]
+w(k) (C.28)

za(k) = ha

[
x(k)

]
+ va(k) (C.29)

where za(k) =
[
z(k)T zc(k)

T
]T
, ha[x(k)] =

[
h
[
x(k)

]T [
Hcx(k)

]T]T , and
va(k) =

[
v(k)T vc(k)

T
]T
. The state transition function (Eq. C.28) is the
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same as the system without constraints (Eq. C.18). Assume that the uncer-
tainty of constraints is also a zero-mean white Gaussian noise, the augmented
measurement noise is

vc(k) ∼ N
(
0,Rc(k)

)
(C.30)

va(k) ∼ N
(
0,Ra(k)

)
(C.31)

Ra(k) = diag
[
R(k),Rc(k)

]
(C.32)

Thus the corresponding EKF equations are

Prediction:

x̂−
a (k + 1) = F(k)x̂+

a (k) (C.33)

P−
a (k + 1) = F(k)P+

a (k)F
T (k) +Q(k) (C.34)

Correction:

Ka(k + 1) = P−(k + 1)HT
a (k + 1)

·
[
Ha(k + 1)P−(k + 1)HT

a (k + 1) +Ra(k + 1)
]−1

(C.35)

ra(k + 1) = za(k + 1)− ha

[
x̂−(k + 1)

]
(C.36)

x̂+
a (k + 1) = x̂−(k + 1) +Ka(k + 1)ra(k + 1) (C.37)

P+
a (k + 1) = P−(k + 1)−Ka(k + 1)Ha(k + 1)P−(k + 1) (C.38)

If we start with a same previous estimate x+
a (k) = x+(k) and error covari-

ance matrix P+
a (k) = P+(k) for both constrained and unconstrained system.

Comparing Eq. (C.33) and Eq. (C.22), the predicted state estimate are the
same.

x−
a (k + 1) = x−(k + 1) (C.39)

P−
a (k + 1) = P−(k + 1) (C.40)

Now we rewrite the correction part for the constrained system. Since the
following derivation is all from step (k + 1)− to (k + 1)+, we delete the time
index for simplicity. The measurement residual is

ra =

[
z− h[x̂−]
zc −Hcx̂

−

]
=

[
r

zc −Hcx̂
−

]
(C.41)

Let S = HP−HT +R represent the measurement residual covariance matrix,
then the constrained measurement residual covariance matrix can be written
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as

Sa = HaP
−HT

a +Ra (C.42)

=

[
H
Hc

]
P− [

H Hc

]
+

[
R 0
0 Rc

]
(C.43)

=

[
HP−HT +R HP−HT

c

HcP
−HT HcP

−HT
c +Rc

]
(C.44)

=

[
S HP−HT

c

HcP
−HT HcP

−HT
c +Rc

]
(C.45)

In order to obtain the inverse matrix of Sa(k + 1), we denote it in a block
matrix form

(Sa)
−1 =

[
(Sa)

−1
a (Sa)

−1
b

(Sa)
−1
c (Sa)

−1
d

]
(C.46)

Follow Appendix A.2,

(Sa)
−1
a = S−1 + S−1HP−HT

c

·(HcP
−HT

c +Rc −HcP
−HTS−1HP−HT

c︸ ︷︷ ︸
J

)−1

·HcP
−HTS−1 (C.47)

where

J = HcP
−HT

c +Rc −HcP
−HTS−1HP−HT

c (C.48)

= HcP
−HT

c +Rc −HcKHP−HT
c (C.49)

= Hc(I−KH)P−HT
c +Rc (C.50)

= HcP
+HT

c +Rc (C.51)

Therefore,

(Sa)
−1
a = S−1 + (P−HTS−1)THT

c (HcP
+HT

c +Rc)
−1

·HcP
−HTS−1 (C.52)

= S−1 +KTHT
c (HcP

+HT
c +Rc)

−1HcK (C.53)

Similarly,

(Sa)
−1
b = −S−1HP−HT

c (HcP
−HT

c +Rc −HcP
−HTS−1HP−HT

c︸ ︷︷ ︸
J

)−1

(C.54)

= −S−1HP−HT
c (HcP

+HT
c +Rc)

−1 (C.55)

= −KTHT
c (HcP

+HT
c +Rc)

−1 (C.56)
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(Sa)
−1
c = −(HcP

−HT
c +Rc −HcP

−HTS−1HP−HT
c︸ ︷︷ ︸

J

)−1HcP
−HTS−1

(C.57)

= −(HcP
+HT

c +Rc)
−1HcK (C.58)

(Sa)
−1
d = (HcP

−HT
c +Rc −HcP

−HTS−1HP−HT
c︸ ︷︷ ︸

J

)−1 (C.59)

= (HcP
+HT

c +Rc)
−1 (C.60)

After obtaining the measurement residual covariance matrix, we can derive
the Kalman gain.

Ka = P− [
HT HT

c

] [(Sa)
−1
a (Sa)

−1
b

(Sa)
−1
c (Sa)

−1
d

]
(C.61)

=


P−HT (Sa)

−1
a +P−HT

c (Sa)
−1
c︸ ︷︷ ︸

(Ka)a

P−HT (Sa)
−1
b +P−HT

c (Sa)
−1
d︸ ︷︷ ︸

(Ka)b


T

(C.62)

(Ka)a = P−HT
[
S−1 +KTHT

c (HcP
+HT

c +Rc)
−1HcK

]
−P−HT

c (HcP
+HT

c +Rc)
−1HcK (C.63)

= K+ (P−HTKT −P−)HT
c (HcP

+HT
c +Rc)

−1HcK (C.64)

= K−P+HT
c (HcP

+HT
c +Rc)

−1HcK (C.65)

(Ka)b = −P−HTKTHT
c (HcP

+HT
c +Rc)

−1

+P−HT
c (HcP

+HT
c +Rc)

−1 (C.66)

= (−P−HTKT +P−)HT
c (HcP

+HT
c +Rc)

−1 (C.67)

= P+HT
c (HcP

+HT
c +Rc)

−1 (C.68)
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Then the constrained state estimate is

x̂+
a = x̂−

a +
[
(Ka)a (Ka)b

] [ r
rc

]
(C.69)

= x̂− +
[
K−P+HT

c (HcP
+HT

c +Rc)
−1HcK

]
r

+P+HT
c (HcP

+HT
c +Rc)

−1rc (C.70)

= x̂− +Kr−P+HT
c (HcP

+HT
c +Rc)

−1HcKr

+P+HT
c (HcP

+HT
c +Rc)

−1rc (C.71)

= x̂+ −P+HT
c (HcP

+HT
c +Rc)

−1Hc(x̂
+ − x̂−)

+P+HT
c (HcP

+HT
c +Rc)

−1(zc −Hcx̂
−) (C.72)

= x̂+ −P+HT
c (HcP

+HT
c +Rc)

−1(Hcx̂
+ − zc) (C.73)

The error covariance matrix of the constrained state estimate is

Pa =

(
I−

[
(Ka)a (Ka)b

] [H
Hc

])
P− (C.74)

=
[
I− (Ka)aH− (Ka)bHc

]
P− (C.75)

=
[
I−KH+P+HT

c (HcP
+HT

c +Rc)
−1HcKH

−P+HT
c (HcP

+HT
c +Rc)

−1Hc

]
P− (C.76)

= (I−KH)P− −P+HT
c (HcP

+HT
c +Rc)

−1Hc(I−KH)P−(C.77)

= P+ −P+HT
c (HcP

+HT
c +Rc)

−1HcP
+ (C.78)
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