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Abstract. p-values, the 'gold standard' of statistical validity are not as reliable as 

many scientists assume. In the last decade, severe problems have been observed 

regarding the validity of highly reputable research. Additionally, the growing 

availability of big data challenges the design and statistical analysis of studies and 

experiments across science. Therefore, it is more important than ever to make the 

best use of available computational tools, software and possibilities digitalization 

offers to improve the validity of research results. In this paper, we focus on an 

essential procedure often carried out in quantitative research, which is directly 

related to the experienced problems: Statistical hypothesis testing. First, we show 

that the traditional way of hypothesis testing has severe logical problems. Second, it 

is shown that due to the increasing availability of computational resources, highly 

sophisticated methods from the area of computational statistics - namely Bayesian 

data analysis - can complement and even replace traditional hypothesis testing. 

Third, we highlight how digitalization helps in making these technologies available 

to a vast range of researchers in the form of the novel and free software package 

JASP. Together, this paper shows that considering a change in perspective on 

statistical data analysis, in particular on hypothesis testing, provides the possibility 

to improve the transparency and reliability of research in the medical, social and 

natural sciences. 

Keywords: Data Analysis, Mathematical Psychology, Hypothesis Testing, Bayesian Statistics, 

Statistical Inference 

1 Introduction 

In 2005, epidemiologist John P. Ioannidis of 

Stanford University suggested that most 

published research findings are false (Ioannidis, 

2005). Since then, countless papers have 

explored the situation many scientists face for 

nearly two decades now (Begley & Ioannidis, 

2015; McElreath & Smaldino, 2015). These 

include problems with the replication of 

existing study results and the validity of a vast 

amount of highly reputable research. Entitled as 

the replication crisis (Baker & Penny, 2016), a 

string of publications detailing how these 

problems form has forced scientists to 

reconsider how research results are evaluated 
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(Colquhoun, 2017; Ioannidis, 2016). In 

particular, statistical data analysis has been 

identified as one major piece in the big puzzle 

of the replication crisis, causing even scientists 

with the best intentions into trouble. A large part 

of the observed problems was already attributed 

to the “surprisingly slippery nature of the p-

value, which is neither as reliable nor as 

objective as most scientists assume”, as (Nuzzo, 

2014) notes. While the p-value is often used to 

identify significant research findings and study 

results in quantitative research, in a large 

number of cases it produces false-positive 

results, that is, states an effect if none is present. 

This fact is highly problematic, as reducing the 

number of false-positive results is one of the 

biggest necessities of contemporary science 

(McElreath & Smaldino, 2015). The situation 

even led the American Statistical Association 

(ASA) to release an official statement in 2016, 

which stressed that “by itself, a p-value does not 

provide a good measure of evidence regarding 

a model or hypothesis.” (American Statistical 

Association, 2016). What is more, in light of the 

problems the ASA recommended to supplement 

or even replace p-values with other approaches 

which “emphasize estimation over testing such 

as (...) Bayesian methods” (American 

Statistical Association, 2016) and “alternative 

measures of evidence such as likelihood ratios 

or Bayes factors” (American Statistical 

Association, 2016). Many approaches have 

been proposed to counteract the problems 

identified in p-values (Wasserstein et al., 2019). 

The ideas range from methodological shifts 

(Kruschke & Liddell, 2018) to simpler options 

as applying stricter standards for declaring 

statistical significance (Benjamin et al., 2018). 

While the ongoing problems are far from being 

solved, through the debate about statistical 

significance an increasing number of scientists 

has become aware that it is necessary to change 

current practices of data analysis, especially 

hypothesis testing (McElreath, 2020; 

Wasserstein et al., 2019). In this paper, we show 

how Bayesian data analysis can replace 

traditional p-values, leading to more reliable 

conclusions. Also, we showcase how 

digitalization helps to foster transparent and 

reproducible research by presenting the 

statistical software JASP. JASP has been 

developed at the University of Amsterdam and 

implements a vast range of highly-sophisticated 

Bayesian statistical methods, making it an 

attractive candidate to improve the 

reproducibility of research. 

2 Null hypothesis significance 

testing 

In this section, we briefly review the theory 

behind p-values, which are part of null 

hypothesis significance testing (NHST). Also, 

we highlight some of the logical fallacies of 

NHST. 

2.1 A brief introduction to NHST 

The traditional way of hypothesis testing goes 

back to the early 20th century. In the approach 

of (Neyman & Pearson, 1936), who published 

their highly influential theory in the 1930s, the 

general format is to test a null hypothesis 𝐻𝐻0, 

which makes a statement about a parameter 𝛿𝜀 

against the alternative hypothesis 𝐻𝐻1. After 

conducting the experiment and calculating the 

hypothesis test, the experimenter either has to 

accept or reject 𝐻𝐻0. Due to the nomenclature 

one often calls this procedure null hypothesis 

significance testing (NHST). A hypothesis test 

can now simply be interpreted as a rule stating 

for which observed sample values the decision 

is made to reject 𝐻𝐻0. The values for which 𝐻𝐻0 

will be rejected is called the rejection region. To 

construct a hypothesis test, the so-called 

sampling statistic of the quantity of interest, the 

parameter 𝛿𝜀, is considered. For example, when 

comparing two normally distributed groups like 

a treatment and control group in a randomized 

controlled trial (RCT), often the quantity of 

interest is the difference in means 𝜇𝜈1 − 𝜇𝜈2 of 

both groups. The distribution of the differences 

in means 𝜇𝜈1 − 𝜇𝜈2  under the null hypothesis 𝐻𝐻0 

- that is, the sampling statistic - can be derived 

theoretically (Held & Sabanés Bové, 2014). 

After conducting the study and observing the 

quantity of interest, for example, 𝜇𝜈1 − 𝜇𝜈2 = 3, 
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the known distribution of 𝜇𝜈1 − 𝜇𝜈2  is used to 

determine how plausible it is to obtain a 

difference of 𝜇𝜈1 − 𝜇𝜈2 = 3 or even larger 

differences. Figure 1 visualizes NHST: On the 

x-axis, it shows the set of possible results, which 

in the above example are all possible values of 𝜇𝜈1 − 𝜇𝜈2 . Based on theoretical results, the 

distribution of this quantity 𝜇𝜈1 − 𝜇𝜈2  under the 

 

Figure 1. Null hypothesis significance testing 

 null hypothesis 𝐻𝐻0 is well known, shown as the 

bell-shaped density in figure 1. Under 𝐻𝐻0, it is 

quite unlikely to observe very small values or 

huge values. In the above example, when 

observing a result like 𝜇𝜈1 − 𝜇𝜈2 = 3, the idea of 

statistical significance is to calculate the 

probability of obtaining a difference equal to or 

more extreme than the difference observed. 

This probability is the coloured area right to the 

observed result in figure 1, and this is exactly 

the p-value often reported in quantitative 

research. If the p-value is small, it seems 

plausible to reject the null hypothesis, because 

observing such a large difference would be 

highly unlikely under 𝐻𝐻0. “The p-value is the 

probability, under the assumption of the null 

hypothesis 𝐻𝐻0, to obtain a result equal to or 

more extreme than what was actually 

observed.” (Held & Sabanés Bové, 2014). Over 

time, the well known 95% statistical 

significance threshold has manifested itself in 

science, which was invented by (Fisher, 1925). 

The threshold is shown as the dashed vertical 

line in figure 1 and simply states that one should 

reject the null hypothesis 𝐻𝐻0, whenever the p-

value is smaller than 0.05. That means one 

rejects 𝐻𝐻0 whenever one would observe a 

difference equal to the one observed or more 

extreme with 5% or less probability under the 

null hypothesis 𝐻𝐻0. It is important to note that 

formally, a continuous quantification of the p-

value when using the Neyman-Pearson theory is 

not allowed. The p-value can only be interpreted 

as a binary value for the decision against (if 𝑝𝑝 <

0.05) or for 𝐻𝐻0 (if 𝑝𝑝 ≥ 0.05).  

In summary, frequentist hypothesis testing can 

be seen as a procedure targeted at the long-term 

type I error control. 

2.2 Problems with NHST and p-values 

NHST may seem reasonable at first. 

Nevertheless, there are some severe logical 

fallacies which we want to pinpoint here. These 

problems question the usefulness of NHST for 

practical research and call for other options. 

First, there are two types of errors which need 

to be considered: If the null hypothesis 𝐻𝐻0 is 

true, but the hypothesis test incorrectly decides 

to reject 𝐻𝐻0, then the test has made a type I 

error. If the null hypothesis 𝐻𝐻0 is false, but the 

hypothesis test incorrectly accepts 𝐻𝐻0, then the 

test has made a type II error. Table 1 gives an 

overview: 

 Decision 

Accept 𝐻𝐻0 Reject 𝐻𝐻0 

Truth 𝐻𝐻0 Correct 

decision 

Type I error 

𝐻𝐻1 Type II error Correct 

decision 

Table 1. Type I and II errors in hypothesis tests 

Formally, every method of statistical testing can 

make these two types of errors. Nevertheless, 

NHST was developed to control the type I error 

while simultaneously minimizing the type II 

error (Neyman & Pearson, 1936). 

2.3 Type I error control is not always 

appropriate and is not bullet-proof 

The preference for type I error control is highly 

questionable in applied research. Consider a 

diagnostic test for a disease which uses a blood 
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sample to calculate the concentration of specific 

antibodies. Suppose one knows the number of 

antibodies follows a particular distribution in 

healthy individuals. Suppose also, that very 

large (or small) values which pass the 95% 

significance threshold indicate the presence of 

an autoimmune disease. When applying NHST 

and testing patients, the testing procedure will 

minimize the type I error. A type I error happens 

if a patient is told that she has the disease, but 

the patient is healthy. The consequence of a type 

I error is mild: Further diagnostics will show 

that the result was a false-positive one, and the 

caused costs are small. Consider now a type II 

error: A patient who has the disease will be sent 

home with a false-negative result. The condition 

will progress until the patient makes a second 

test and is diagnosed and treated correctly. The 

damage done is considerable: The disease has 

progressed, causing subsequent treatments to be 

more expensive next to the fact that the patient 

suffers unnecessarily. The example shows that 

type II error control is preferable to type I error 

control in some prevalent settings, making the 

usefulness of NHST questionable. 

Additionally, countless papers have 

demonstrated that the type I error control 

guaranteed by NHST is often not attained. This 

leads to an uncomfortable situation in which a 

long-term type I error rate of 5%, in reality, 

equals a skyrocketing 36% false-positive rate 

(Colquhoun, 2014). 

2.4 Falsification or confirmation? 

The second problem of NHST is rooted in the 

philosophy of science itself. Due to space 

limitations, we cannot offer a full account here. 

However, falsification only makes sense when 

the goal is to narrow down a substantial number 

of research hypotheses. In other cases, 

researchers are more interested in confirming 

research hypotheses. Whether this refers to 

showing the effectiveness of a new drug, the 

efficacy of psychological interventions, or the 

improved performance of a new computational 

algorithm, scientists often need to confirm that 

a hypothesis is indeed correct (or at least the 

most suitable of a set of candidates). 

Additionally, scientists often need to rephrase 

research hypotheses to make them rejectable via 

falsification. For example, if the goal is to show 

that a drug for lowering blood pressure works, 

falsification forces scientists to formulate the 

hypothesis as 𝐻𝐻0:𝜇𝜈1 = 𝜇𝜈2, where 𝜇𝜈1 and 𝜇𝜈2 are 

the group means of the treatment and control 

group in the study. The actual goal is to reject 

this hypothesis 𝐻𝐻0 to confirm that the drug 

works as expected. When discarding 𝐻𝐻0, 

scientists still do not know how large the 

difference between 𝜇𝜈1 and 𝜇𝜈2 is, which is of 

much more interest than only stating that the 

difference is non-zero. After all, the difference 

could be negligibly small, although significant, 

making the research results scientifically less or 

even entirely irrelevant. 

2.5 Dependence on the researcher's 

intentions 

The third point is the most problematic: The 

findings and interpretation of NHST depend on 

the researcher's intentions. For example, it plays 

a crucial role if the number of participants in a 

study is fixed in advance, or if researchers 

sample participants until time or money runs out 

(Kruschke & Liddell, 2018). This situation 

causes unnecessary strain on financial and 

personal resources and makes the interpretation 

of results obtained via NHST difficult. When 

reporting such findings, researchers can 

unintendedly invalidate all their work by 

violating their sampling plan. Also, this opens 

the door to misuse of statistics by reporting a 

different sampling plan after the actual study 

has been conducted only to obtain a significant 

result. This practice is often called 'p-hacking' 

and is observed widely by now, which is 

worrisome (Ioannidis, 2019). Also, NHST 

violates the likelihood principle (LP), which is 

one of the most critical proven results in 

mathematical statistics (Berger & Wolpert, 

1988). 
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3 Bayesian data analysis as an 

alternative 

In this section, we review the theory behind 

Bayesian data analysis, which is an often 

proposed alternative to NHST. We highlight 

how some of the logical fallacies of NHST are 

avoided by considering the Bayesian approach. 

3.1 Bayesian parameter estimation 

It is helpful first to introduce the general idea 

behind Bayesian parameter estimation to get 

familiar with the conventional notation. 

Bayesian parameter estimation centres on the 

posterior distribution 𝑝𝑝(𝜃𝜄|𝑥𝑥) of the unknown 

parameter 𝜃𝜄 after observing the experimental 

data 𝑥𝑥, which are assumed to follow a specific 

probability density 𝑝𝑝(𝑥𝑥|𝜃𝜄), the likelihood 

function. The posterior distribution reflects the 

relative plausibility of different parameter 

values after the available prior knowledge 𝑝𝑝(𝜃𝜄) 

has been updated employing the data 𝑥𝑥 via the 

likelihood function 𝑝𝑝(𝑥𝑥|𝜃𝜄). Correctly, one 

starts by assigning the model parameters 𝜃𝜄 a 

prior distribution 𝑝𝑝(𝜃𝜄). The information in the 

observed data 𝑥𝑥 is then used to update this prior 

information to the posterior distribution, where 

parameter values which yielded good 

predictions of the observed data 𝑥𝑥 get a boost in 

plausibility. 

              𝑝𝑝(𝜃𝜄) ∙ 𝑝𝑝(𝑥𝑥|𝜃𝜄) ∝ 𝑝𝑝(𝜃𝜄|𝑥𝑥)                    (1)

  

The ∝ symbol in equation (1) means 

'proportional to'. As modern sampling 

algorithms like Markov-Chain-Monte-Carlo 

(MCMC) which produce the posterior 

distribution numerically only need a function 

proportional to the posterior, it suffices to write 

the posterior in this way (McElreath, 2020). 

Analytic derivations of the posterior 

distribution are possible only for simple 

statistical models so that most realistic models 

require the use of MCMC algorithms (Robert & 

Casella, 2004). The posterior distribution can be 

summarized using point or interval estimates, 

like the posterior mean or median, or credible 

intervals. Credible intervals include a fixed 

percentage - for example, 95% - of the 

posteriors probability mass, and thereby make it 

possible to state in what range of parameter 

values the true parameter 𝜃𝜄 lies with a given 

probability. Note that this interpretation is often 

applied to frequentist confidence intervals, 

which is false. 

3.2 Bayesian hypothesis testing 

The structured approach to Bayesian hypothesis 

testing uses the Bayes factor (Jeffreys, 1961). 

The Bayes factor quantifies the relative 

predictive performance of two rival hypotheses. 

It can be interpreted as the degree to which the 

data demand a change in beliefs towards one of 

both hypotheses under consideration. 

             
𝑃𝑄(𝐻𝐼1)𝑃𝑄(𝐻𝐼0)

∙ 𝑝𝑞�𝑥𝑥�𝐻𝐻1�𝑝𝑞�𝑥𝑥�𝐻𝐻0� =  
𝑃𝑄(𝐻𝐼1|𝑥𝑦)𝑃𝑄(𝐻𝐼0|𝑥𝑦)

                    (2) 

The first term in equation (2) is the prior odds, 

which is the relative plausibility of the two 

hypotheses before observing any data. The 

second quantity is the Bayes factor 𝐵𝐵𝐵𝐶10(𝑥𝑥), 

which indicates the evidence provided by the 

data 𝑥𝑥 observed. The third term, the posterior 

odds, indicates the relative plausibility of both 

hypotheses after having seen the data and is 

calculated as the product of the prior odds and 

the Bayes factor. The subscript in the Bayes 

factor 𝐵𝐵𝐵𝐶10(𝑥𝑥) indicates which hypothesis is 

supported by the observed data: 𝐵𝐵𝐵𝐶10(𝑥𝑥) is the 

Bayes factor in favour of 𝐻𝐻1, and 𝐵𝐵𝐵𝐶01(𝑥𝑥) is the 

Bayes factor in favour of 𝐻𝐻0. Algebraic 

rearrangements show that 𝐵𝐵𝐵𝐶01(𝑥𝑥) = 1/𝐵𝐵𝐵𝐶10(𝑥𝑥). Large values of 𝐵𝐵𝐵𝐶10(𝑥𝑥) signal more 

support for 𝐻𝐻1 and the Bayes factor ranges from 

zero to ∞. A Bayes factor of 1 indicates that 𝐻𝐻0 

and 𝐻𝐻1 both predict the observed data 𝑥𝑥 equally 

well. 

4 An example of digitalization in 

statistical data analysis: JASP 

In this section, we show how Bayesian data 

analysis can be conducted by using the open-

source statistical software package JASP (JASP 

Team, 2019). Through the advancing 
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digitalization and availability of more powerful 

computing resources, Bayesian methods are 

available to researchers in the form of software 

like JASP today without the need to code 

complicated programming. We use an example 

from medical science to show that more 

valuable information is obtained when 

considering Bayesian hypothesis testing. Also, 

we show how the reporting of research results is 

digitalized and made more transparent through 

JASP. A typical question arising in medical 

research is used as a scaffold to showcase the 

usefulness of Bayesian hypothesis testing: Do 

two groups (pre-treatment, after-treatment) 

differ on an observed metric variable, and if so, 

how large is the effect size between both 

groups? Usually, NHST compares the means 𝜇𝜈1 

and 𝜇𝜈2 of the same population at two different 

time points via Student's paired-samples t-test 

to reject the null hypothesis via the use of p-

values (Kelter, 2020a). 

4.1 A Bayesian paired-samples t-test 

The dataset used is from (Moore et al., 2012) 

and provides the number of disruptive 

behaviours by dementia patients during two 

different phases of the lunar cycle. The 

hypothesis tested is 𝐻𝐻0: “The average number 

of disruptive behaviours in patients with 

dementia does not differ between full moon and 

other days” against the alternative 𝐻𝐻1 of a 

differing average number of disruptive 

behaviours. 

 t df p Mean 

Difference 

Moon 

- other 

6.452 14 < .001 2.433 

Table 2. Paired-samples t-test results for the 

dementia dataset obtained from NHST 

Table 2 shows the results of the paired-samples 

t-test, indicating with p < .001 that 𝐻𝐻0 can be 

rejected. Note that this is not what researchers 

want to know: The desired answer is which 

hypothesis is more probable after observing the 

data, which is precisely quantified by the 

posterior odds 𝑃𝑃(𝐻𝐻1|𝑥𝑥)/𝑃𝑃(𝐻𝐻0|𝑥𝑥). Note also 

that the Bayes factor 𝐵𝐵𝐵𝐶10 is a crucial ingredient 

in the posterior odds because the posterior odds 

are the product of the Bayes factor and the prior 

odds. A large 𝐵𝐵𝐵𝐶10 therefore necessitates a 

change in beliefs towards 𝐻𝐻1. Assumption 

checks include a Shapiro-Wilk test on 

normality, which is not significant at p = .148. 

 𝐵𝐵𝐵𝐶10 Error % 

Moon - other 1521.058 5.014e-7 

Table 3. Bayesian paired-samples t-test results 

for the dementia dataset 

Now, the Bayesian paired-samples t-test shown 

in table 3 in contrast yields  𝐵𝐵𝐵𝐶10 = 1521.058, indicating extreme evidence 

for 𝐻𝐻1. JASP also produces a plot of the prior 

and posterior distribution of the effect size 𝛿𝜀, 

which is of interest in most medical research 

settings. Figure 2 shows the prior and posterior  

 

Figure 2. Bayesian data analysis of the dementia 

dataset of (Moore et al., 2012): Prior-posterior 

plot of the effect size 
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Figure 3. Bayesian data analysis of the dementia 

dataset of (Moore et al., 2012): Robustness 

analysis for the Bayes factor using varying 

Cauchy prior widths 

plot of the effect size 𝛿𝜀 as well as the produced 𝐵𝐵𝐵𝐶10. The posterior of the effect size 𝛿𝜀 precisely 

estimates which effect size is the most probable 

after observing the data 𝑥𝑥. Note that the 

traditional paired-samples t-test did not yield 

any information about the effect size. Although 

it was significant, it did not state whether the 

observed effect is small, medium or large. The 

prior-posterior plot shows how the prior 

probability mass is reallocated to the posterior 

after observing the data and shows that with 

95% probability, the true effect size 𝛿𝜀 is in 

[0.818,2.345] and the posterior median is 

1.527, which indicates a large effect (Cohen, 

1988). Another benefit is given by the 

robustness check shown in figure 3: Different 

prior distribution widths are used for the effect 

size 𝛿𝜀 and the Bayes factor 𝐵𝐵𝐵𝐶10 is computed. 

Specifically, the prior width of the Cauchy prior 𝐶𝐷(0, 𝛾𝛿) on the effect size 𝛿𝜀 is increased 

gradually, showing how the prior shape 

influences the resulting Bayes factor 𝐵𝐵𝐵𝐶10. 

Figure 3 shows that even when changing the 

prior from the user prior, which equals a 

medium 𝐶𝐷(0,√2/2) prior, to a wide 𝐶𝐷(0,1) or 

even ultrawide 𝐶𝐷(0,√2) prior, the Bayes factor 

for 𝐻𝐻1 stays above 1000. Therefore, the 

influence of the prior is negligible here, and 

only an insignificant amount of subjectivity 

goes into the analysis. 

5 Discussion 

The two examples above highlighted how 

Bayesian data analysis, including hypothesis 

testing via the Bayes factor, is efficiently 

conducted with JASP. Next to the ease-of-use, 

there are multiple benefits when considering the 

Bayesian way of hypothesis testing: (1) Testing 

statistical hypothesis with the Bayesian 

approach is following the likelihood principle. 

(2) It does not matter if one fixes the sample size 

of the study or experiment in advance or 

samples until time or money runs out. This fact 

is particularly important from a practical 

perspective. (3) In contrast to NHST, Bayesian 

data analysis can confirm research hypotheses 

under consideration. (4) The computational 

requirements to conduct Bayesian data analyses 

have been reduced significantly in the last years, 

making the approach available to a wide range 

of users. In combination with attractive 

software options like JASP, digitalization has 

therefore opened up new possibilities for 

researchers to improve the reliability and 

transparency of research results. 

Still, there remain some challenges and 

limitations: The computational effort is larger 

when conducting Bayesian data analyses, which 

is caused by the substantial numerical 

calculations required for producing the 

posterior distribution. This is, in particular, true 

for complex and high-dimensional models 

(Kelter, 2020b). Still, for most standard models 

like linear regression or Student's two-sample t-

test, there exist either analytic solutions or the 

computational effort is moderate, which leads to 

a seamless experience when using JASP. Note, 

that the flexibility of extending and adapting 

statistical models to one own's needs is also a 

big benefit of the Bayesian approach, and for a 

brief introduction, see (Kelter, 2020b) or 

(Kelter, 2020c; McElreath, 2020). 

Another problem is concerned with keeping the 

influence of the prior selection as minimal as 

possible. While prior elicitation is an important 

topic in the literature (Held & Sabanés Bové, 
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2014; Kruschke & Liddell, 2018), the 

robustness checks available in JASP prevent 

cherry-picking the most suitable prior for 

obtaining the desired conclusions from raw 

research data. 

Two aspects of particular importance not 

mentioned so far remain: First, all analyses 

conducted in JASP can be saved in a .jasp 

workflow file, which includes all data, analyses 

and results obtained. This possibility enables 

researchers from other laboratories to recreate 

reported analyses. Second, rich visualizations 

like the ones presented in the two examples 

above can easily be exported in JASP, which 

improves the digitalization of research. Third, 

JASP has built-in support for the Open Science 

Foundation (Open Science Foundation, 2020), 

which gives scientists the possibility to make 

their data, code and material available to others 

digitally. 

6 Conclusion 

Digitalization poses various challenges and 

opens new possibilities for scientists. In this 

paper, we focussed on the essential procedure of 

statistical hypothesis testing often carried out in 

quantitative research. First, we showed that the 

traditional way of hypothesis testing, NHST, 

has severe logical problems. Second, it was 

shown that due to the increasing availability of 

computational resources, Bayesian data 

analysis could complement and even replace 

NHST. Third, we highlighted how digitalization 

helps in incorporation of these methods into 

work. A brief presentation of the free statistical 

software JASP showed how easily Bayesian 

hypothesis testing is conducted, and a vast range 

of researchers should be able to benefit from 

considering the Bayesian approach. Interested 

readers should also take a look at the R software 

packages bayest (Kelter, 2019), which 

provides a convenient implementation of 

Bayesian t-tests in R. A review of how to 

improve the reproducibility in medical research 

by employing Bayesian posterior indices is 

given by (Kelter, 2020a). In summary, this 

paper highlighted the emerging possibilities 

digitalization has created for scientists from the 

medical, social and natural sciences when it 

comes to statistical hypothesis testing. 

Considering a change in perspective towards 

Bayesian hypothesis testing should, therefore, 

foster transparent, reproducible research across 

science. 
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