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Abstract

For many years, embedded computer systems have been designed based on feder-
ated architectures where every service of a system is mapped to a dedicated hard-
ware unit. A federated system architecture, despite several advantages such as low
architectural complexity and high level of dependability, requires a new dedicated
node for every newly added function. Therefore, integrated system architectures
were introduced to address the scalability issues of federated systems, assuming
that every node comprises several isolated partitions and different services can ex-
ecute on a single node. Nevertheless, the integrated systems require many modifi-
cations in case of any changes in a system which lead to the costly design, integra-
tion, verification and maintenance processes. Thereby, a domain-specific integrated
system can be transformed into a more generic solution through resource virtualiza-
tion. Such a virtualized integrated system can host several functions with different
reliability constraints and temporal requirements on the virtualized computing re-
sources. The key advantage of the virtualized integrated systems is that they are re-
configurable easily and at very low cost. Each function in the virtualized integrated
system may reside either on different partitions of a single processing node or on dif-
ferent computers and communicate with other functions via a common networking
infrastructure. Therefore, the non-functional requirements of the virtualized inte-
grated system, including reliability, availability, integrity, safety and maintainability
highly depend on the capabilities of the communication infrastructure. Moreover,
the networking technology of the integrated system has a significant impact on the
design, complexity management and integration process.

The Ethernet standard due to its widespread usage is considered as a promising
networking solution for the virtualized integrated system. However, Ethernet does
not offer the fault-tolerant and deterministic communication infrastructure that is
essential for modern embedded systems. Therefore, this thesis introduces a commu-
nication layer of a virtualized integrated system based on the principles of the Time-
Sensitive Networking (TSN) standard, which encompasses a series of protocol ex-
tensions to the Ethernet standard. TSN offers real-time capability and performance
improvements while benefiting from high bandwidth and seamless connectivity of
Ethernet technologies.

It is essential to verify the correctness and applicability of TSN mechanisms as
a networking solution for the virtualized integrated system. Therefore, this thesis
presents a simulation framework for the TSN standard, which is developed as a
multi-hop switched Ethernet network. The simulation framework is generic with
stable interfaces between simulation components. Therefore, it can be universally
applied to simulate different applications and to gain insights into different archi-
tectural decisions (e.g. different topologies, different redundancy degrees). In ad-
dition, it can be extended using additional sub-protocols of TSN and modified to
incorporate future changes introduced by the TSN working group. The TSN simu-
lator also includes dynamic configuration services, thereby enabling the modelling
of dynamic applications (like train inauguration) and system adaptation (e.g. fault
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recovery). Furthermore, there is neither an existing simulation framework nor an
actual TSN device which contains different TSN features such as remote configu-
ration, clock synchronization and time-aware shaping simultaneously. Hence, the
presented TSN simulator provides a comprehensive simulation platform for mod-
elling, performance and reliability evaluation of TSN networks. The empirical re-
sults based on a real-world use case illustrate that the central configuration model
of TSN enables the remote management and configuration of the emulated network.
Moreover, according to the experimental results, the simulation models with TSN
features satisfy the stringent timing and reliability requirements of the virtualized
integrated system.

TSN offers determinism using Time-Triggered (TT) transmission schedules which
are expressed as Gate Control Lists (GCL). The scheduling problem arising from the
GCL synthesis is NP-complete. Moreover, the feasibility of running real-time ap-
plications over different virtualized computing resources makes the search space
of legitimate schedules even bigger. Therefore, the optimization algorithms for the
search space exploration are a vital element for the deployment of TSN. This thesis
presents a fast Genetic Algorithm (GA) and a Heuristic List Scheduler (HLS) which
are designed to compute GCLs by addressing the interdependence of routing and
scheduling constraints. The primary goal of these schedulers is to satisfy the dead-
lines of real-time applications while optimizing the TT transmission makespan and
the overhead of TT communication. The experimental results show that GA and
HLS improve the transmission makespan on average by 31 % and 39 % respectively
compared to an existing scheduling strategy which uses fixed routing. Moreover,
in experiments, it is observed that the schedulability ratios of GA and HLS signifi-
cantly increase (on average by 71 % and 73 % respectively) compared to a two-step
scheduler.

The seamless recovery from faulty behaviours is vital for many modern embed-
ded systems, since failures in such systems may result in irreparable environmental
damages and substantial financial losses. Therefore, this thesis extends the schedul-
ing strategies described above to support the TSN redundancy management mecha-
nism. To this end, the message replication, elimination of replicas and the redundant
path selection are incorporated to the TSN schedulers. The main goal of the fault-
tolerant TSN schedulers is to optimize the overall system reliability based on appli-
cation and platform models while satisfying the real-time constraints of the applica-
tion. The system reliability considers the redundancy in the application models (e.g.
redundant and non-redundant real-time jobs), the redundancy in the platform mod-
els and the reliability of the TSN platform components (e.g. end systems, switches
and links) and novel TSN-based fault-tolerance mechanisms such as IEEE 802.1CB.
The empirical results show that the fault-tolerant TSN schedulers enhance the sys-
tem reliability of the schedules compared to TSN schedulers without fault-tolerance
mechanism at the expense of an increased makespan.
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Zusammenfassung

Embedded-Computer-Systeme werden Seit vielen Jahren entwickelt. Sie basie-
ren auf föderierten Architekturen, bei denen jeder Dienst eines Systems auf eine
dedizierte Hardwareeinheit abgebildet wird. Eine föderierte Systemarchitektur er-
fordert trotz mehrerer Vorteile wie geringe Architekturkomplexität und hohe Zuver-
lässigkeit für jede neu hinzugefügte Funktion einen neuen dedizierten Knoten. Da-
her wurden integrierte Systemarchitekturen eingeführt, um die Skalierbarkeitsprob-
leme von föderierten Systemen zu lösen, vorausgesetzt, dass jeder Knoten aus meh-
reren isolierten Partitionen besteht und verschiedene Dienste auf einem einzigen
Knoten ausgeführt werden können. Dennoch erfordern die integrierten Systeme
Modifikationen, wenn sich in einem System Änderungen ergeben, die zu kostspieli-
gen Design-, Integrations-, Verifikations- und Wartungsprozessen führen. Dadurch
kann ein domänenspezifisches integriertes System durch Ressourcenvirtualisierung
in eine generische Lösung umgewandelt werden. Ein solches virtualisiertes integri-
ertes System kann mehrere Funktionen mit unterschiedlichen Zuverlässigkeitsein-
schränkungen und zeitlichen Anforderungen an die virtualisierten Computerres-
sourcen verwalten. Der ausschlaggebende vorteil der virtualisierten integrierten
Systeme besteht darin, dass sie einfach und kostengünstig rekonfigurierbar sind.
Jede Funktion im virtualisierten integrierten System kann sich entweder auf ver-
schiedenen Partitionen eines einzelnen Verarbeitungsknotens oder auf verschiede-
nen Computern befinden und über eine gemeinsame Netzwerkinfrastruktur mit an-
deren Funktionen kommunizieren. Daher hängen die nicht-funktionalen Anforder-
ungen an das virtualisierte integrierte System, einschließlich Zuverlässigkeit, Ver-
fügbarkeit, Integrität, Sicherheit und Wartbarkeit, stark von den Fähigkeiten der
Kommunikationsinfrastruktur ab. Darüber hinaus hat die Netzwerktechnologie des
integrierten Systems einen wesentlichen Einfluss auf das Design, das Komplexitäts-
management und den Integrationsprozess.

Der Ethernet-Standard gilt aufgrund seiner weiten Verbreitung als vielversprec-
hende Netzwerklösung für das virtualisierte Gesamtsystem. Ethernet bietet jedoch
nicht die fehlertolerante und deterministische Kommunikationsinfrastruktur, die für
moderne Embedded-Systeme unerlässlich ist. Daher wird in dieser Arbeit eine Kom-
munikationsschicht eines virtualisierten integrierten Systems vorgestellt, das auf
den Prinzipien des Time-Sensitive Networking (TSN) Standards basiert, der eine
Reihe von Protokollerweiterungen zum Ethernet-Standard umfasst. TSN bietet Ech-
tzeitfähigkeit und Leistungssteigerung und profitiert gleichzeitig von der hohen
Bandbreite und der nahtlosen verbindung von Ethernet-Technologien.

Es ist unerlässlich, die Richtigkeit und Anwendbarkeit von TSN-Mechanismen
als Netzwerklösung für das virtualisierte integrierte System zu überprüfen. Da-
her stellt diese Arbeit einen Simulationsrahmen für den TSN-Standard dar, der als
Multi-Hop-Switched-Ethernet-Netzwerk entwickelt wurde. Das Simulationsfram-
ework ist generisch mit stabilen Schnittstellen zwischen den Simulationskompo-
nenten. Daher kann es universell eingesetzt werden, um verschiedene Anwen-
dungen zu simulieren und Einblicke in verschiedene Architekturentscheidungen
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(z.B. unterschiedliche Topologien, unterschiedliche Redundanzgrade etc) zu gewin-
nen. Darüber hinaus kann es durch zusätzliche Unterprotokolle des TSN erweit-
ert und an zukünftige Änderungen der TSN-Arbeitsgruppe angepasst werden. Der
TSN-Simulator beinhaltet auch dynamische Konfigurationsdienste, die die Model-
lierung dynamischer Anwendungen (z.B. Zuginbetriebnahme) und Systemanpas-
sungen (z.B. Fehlerbehebung) ermöglichen. Darüber hinaus gibt es weder ein beste-
hendes Simulationsframework noch ein aktuelles TSN-Gerät, das verschiedene TSN-
Features wie Fernkonfiguration, Uhrensynchronisation und zeitgesteuerte Formge-
bung gleichzeitig enthält. Damit bietet der vorgestellte TSN-Simulator eine um-
fassende Simulationsplattform zur Modellierung, Leistungs- und Zuverlässigkeits-
bewertung von TSN-Netzen. Die empirischen Ergebnisse, die auf einem realen An-
wendungsfall basieren, zeigen, dass das zentrale Konfigurationsmodell von TSN die
Fernverwaltung und Konfiguration des emulierten Netzwerks ermöglicht. Darüber
hinaus erfüllen die Simulationsmodelle mit TSN-Features nach den experimentellen
Ergebnissen die hohen Anforderungen an Timing und Zuverlässigkeit des virtual-
isierten Gesamtsystems.

TSN bietet Determinismus mit Time-Triggered (TT) Übertragungsplänen, die als
Gate Control Lists (GCL) ausgedrückt werden. Das Planungsproblem, das sich aus
der GCL-Synthese ergibt, ist NP-complete. Darüber hinaus macht die Möglichkeit,
Echtzeitanwendungen über verschiedene virtualisierte Computerressourcen ausz-
uführen, den Suchraum für legitime Zeitpläne noch größer. Daher sind die Op-
timierungsalgorithmen für die Suchraumerkundung ein wesentliches Element für
den Einsatz von TSN. Diese Arbeit stellt einen schnellen genetischen Algorithmus
(GA) und einen heuristischen Listenplaner (HLS) vor, die dazu bestimmt sind, GCLs
zu berechnen, indem sie die Wechselwirkung von Routing und Scheduling-Beschr-
änkungen berücksichtigen. Das Hauptziel des Planer ist es, die Fristen von Echtze-
itanwendungen einzuhalten und gleichzeitig die TT-Übertragungszeit und den Auf-
wand der TT-Kommunikation zu optimieren. Die experimentellen Ergebnisse zeigen,
dass GA und HLS die Übertragungsspanne im Durchschnitt um 31 % bzw. 39 %
verbessern, verglichen mit einer bestehenden Planungsstrategie, die ein festes Rout-
ing verwendet. Darüber hinaus wird in Experimenten beobachtet, dass die Plan-
barkeitsverhältnisse von GA und HLS im Vergleich zu einem zweistufigen Planer
signifikant steigen (durchschnittlich um 71 % bzw. 73 %).

Die nahtlose Wiederherstellung von Fehlverhalten ist für viele moderne einge-
bettete Systeme von entscheidender Bedeutung, da Ausfälle in solchen Systemen
zu irreparablen Umweltschäden und erheblichen finanziellen Verlusten führen kön-
nen. Daher erweitert diese Arbeit die oben beschriebenen Planungsstrategien, um
den TSN Redundanzmanagementmechanismus zu unterstützen. Zu diesem Zweck
werden die Nachrichtenreplikation, die Eliminierung von Replikaten und die redun-
dante Pfadauswahl in die TSN-Scheduler integriert. Das Hauptziel der fehlertoler-
anten TSN-Scheduler ist es, die Gesamtsystemzuverlässigkeit basierend auf Anwen-
dungs- und Plattformmodellen zu optimieren und gleichzeitig die Echtzeitbeschrän-
kungen der Anwendung zu erfüllen. Die Systemzuverlässigkeit berücksichtigt die
Redundanz in den Anwendungsmodellen (z.B. redundante und nicht-redundante
Echtzeitaufträge), die Redundanz in den Plattformmodellen und die Zuverlässigkeit
der TSN-Plattformkomponenten (z.B. Endsysteme, Switches und Links) und neuar-
tige TSN-basierte Fehlertoleranzmechanismen wie IEEE 802.1CB. Die empirischen
Ergebnisse zeigen, dass die fehlertoleranten TSN-Scheduler die Systemzuverlässigk-
eit der Scheduler im Vergleich zu TSN-Schedulern ohne Fehlertoleranzmechanismus
auf Kosten einer erhöhten Makepan verbessern.
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Chapter 1

Introduction

During the last decades, embedded computer systems were used extensively for the
execution of control and measurement applications in different domains like auto-
motive, avionics and industrial automation. For instance, in the automotive domain,
an Electronic Control Unit (ECU) can substitutes a hydraulic control system and also
provide an opportunity to add new services like advanced driver-assistance [1]. For
many years, a domain-specific embedded system was defined based on a federated
architecture, assuming that there is a one-to-one mapping between every service of
a system and a hardware unit. The federated system architecture offers low architec-
tural complexity and a high level of dependability which are significant concerns of
safety-critical systems, but it requires a new dedicated node for every newly added
function. Due to this design principle, the number of hardware units increases con-
siderably to enhance the fault-tolerance of the system [2].

To resolve the scalability issue of the federated system architecture and also to
support the ever-increasing number of new functionalities within an embedded sys-
tem, the integrated distributed system architecture was introduced [3]. In this ar-
chitecture, unlike the federated architecture, every node comprises several isolated
partitions. Consequently, different services can execute on a single node. This sys-
tem architecture integrates several autonomous Distributed Application Subsystems
(DAS) with different levels of criticality. The main goal of the integrated system ar-
chitecture is to dedicate a separate partition of the node to every function of the DAS.
Therefore, this system architecture results in a more compact and cost-efficient em-
bedded system structure by decreasing the number of hardware units. Nevertheless,
the integration of different functions increases the complexity of the overall system.
The integrated system architecture aims to achieve the same level of reliability and
composability as the federated system architecture using a robust synchronization
mechanism, the deterministic communication infrastructure and solid diagnosis ser-
vices [2].

Integrated Modular Avionics (IMA) [4] and AUTOSAR [5] are well-known exam-
ples of integrated distributed system architectures in the field of avionic and auto-
motive systems, respectively. Each of these integrated distributed systems comprises
a computing node with a partitioned operating system and a powerful Central Pro-
cessing Unit (CPU). These systems allocate an operating system partition to every
function within a specific DAS. Each partition of the operating system is protected
from the run-time interference and fault propagation of other partitions. The key
objective of the mentioned integrated systems is to provide reliable mission-critical
services at reduced cost. To achieve a cost-efficient integrated embedded system,
the existing stable components, either hardware units or software components, are
reused to the greatest extent possible. Besides, the cost of the integrated system is
reduced significantly by migrating the services from several nodes with lower com-
putational power to a few powerful computing nodes [1].
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1.1 Virtualized Integrated Systems

In the last years, a system designer generally determined the embedded system ar-
chitecture and integration solutions of a specific problem, considering the resource
constraints, temporal and safety requirements. This type of problem-specific solu-
tions did not apply to other industrial use-cases. Moreover, these solutions required
many modifications in case of any changes in a system like reconfiguration. This ap-
proach leads to a costly design, integration, verification and maintenance processes.
A problem-specific system architecture can be transformed into a more generic so-
lution by using open technologies. The key advantage of the open technologies is
that they are easily reconfigurable and provide lower cost. Cloud computing, as an
example of the open technologies, fits best to the requirements of the generic inte-
grated system architecture. However, it does not meet the stringent temporal and
dependability constraints of mission-critical applications.

Embedded System Virtualization

CF CF NF NF

Computing 
resources

Memory
resources I/O Network

resources

         Cloud Resources

Critical Functions Non-critical 
Functions

FIGURE 1.1: Virtualized integrated system architecture [6]

The virtualized integrated system architecture was introduced as a baseline for
modern embedded systems. This architecture considers the virtualized resources
for the applications with different levels of criticality. To be more specific, the dis-
tributed system with the virtualized integrated architecture allocates the cloud of
virtualized resources to a wide range of functions. Each function may have different
reliability constraints (e.g. fail-operational and fail-safe) and timing requirements
(e.g. hard real-time, soft real-time and best effort). Such cloud-based embedded
systems are capable of configuring any function either critical or non-critical to ac-
cess the necessary computing resources via a common networking infrastructure. A
critical function must have exclusive access to shared resources in specified time in-
tervals. However, this exclusive access should not result in the resource starvation
of non-critical functionalities. The deployment of a function over a cloud of com-
putational and networking resources eliminates the spatial dependencies. Thus it
enables a flat architecture in addition to a hierarchical structure. Furthermore, the
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virtualized integrated system requires a limited number of modifications to support
any domain-specific use-case with a specific application structure and properties.
This feature also makes an incremental and modular certification process feasible.
It also results in cost and time-efficient verification and maintenance activities [7].
Figure 1.1 presents the simplified structure of the virtualized integrated system.

SCARLETT [8] and ASHLEY [9] are two examples of European aerospace projects
which are developed based on the concept of the virtualized integrated system ar-
chitecture. These projects aimed to be compatible with ARINC664 protocols [10]
while meeting the European aerospace industry requirements. The integration so-
lutions that were proposed in these projects share similar challenges as the generic
integrated system architecture in other domains like the next-generation IMA and
Internet-of-Things (IoT) systems that are tailored for mission-critical applications.
The significant challenges of such virtualized embedded systems are the recurring
configuration changes, high complexity of resource management due to the shared
virtualized resources, modular certification and distributed real-time applications.

In the development of virtualized embedded systems, the primary driver is to
provide a highly reliable and reconfigurable distributed integrated platform. This
platform can host and integrate safety-critical functions on a large number of com-
putational and communication resources. Moreover, a virtualized integrated system
architecture enables decoupling of the software components and controlled hard-
ware units (e.g. actuators and sensors)[6].

The system-level requirements of the virtualized integrated system architecture
can be summarized as follows:

• The key objective of the virtualized integrated system is to optimize the time
and cost of the design, implementation, verification, deployment, upgrade, re-
configuration and maintenance activities. For this purpose, the different crit-
ical and non-critical functions are integrated on common communication and
computational resources.

• The virtualized integrated system architecture provides a highly-dependable
platform for the mission-critical applications. This aspect is crucial for the ma-
jority of domain-specific use-cases, because the failure of the mission-critical
applications can lead to irreparable environmental damage and huge financial
losses.

• The virtualized integrated platform should also be fault-tolerant. Since the
hardware units and software components experience different faults during
their life-time and these faults could potentially, result in catastrophic out-
comes for the mission-critical applications (e.g. braking system in a car or
train). The reason is that the mission-critical applications must continue to
operate even in the presence of failures.

• In a virtualized integrated platform, the functions with the highest criticality
level (e.g. braking control subsystem) can be integrated with the non-critical
functions (e.g. entertainment subsystem) without any degradation of perfor-
mance, safety and timing requirements.

• The virtualized integrated platform can be verified and certified independently.
This means that the verification and certification of the platform can be done
without considering the integrated functions. In addition, this platform en-
ables the incremental verification and certification, meaning that for each new
function, the testing of the existing integrated functions is not required.
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• The virtualized integrated platform must be configured so that the strict timing
and reliability requirements of the mission-critical application are met.

• The configuration management system of the virtualized integrated platform
must handle the initial deployment and also the reconfiguration of the soft-
ware components and hardware units in a reliable and cost-efficient manner.

• The virtualized integrated platform provides interoperability between differ-
ent vendor-specific hardware units and software components. This implies
that every function can be allocated to different vendor-specific resources and
can communicate with other functions seamlessly. [6].

1.2 Communication Layer of the Virtualized Integrated Sys-
tem

As stated above, in a virtualized integrated system, different functions, either critical
or non-critical, can be hosted anywhere on the virtualized computing resources. This
implies that each function can reside either on different partitions of a single process-
ing node or on different computers. Consequently, for communication between dif-
ferent functions, a deterministic network is required. The networking infrastructure
plays a key role in the virtualized integrated system due to its distributed nature.
In addition, the non-functional requirements of the virtualized integrated system,
including reliability, availability, integrity, safety and maintainability highly depend
on the capabilities of the communication infrastructure. Moreover, the networking
technology of the integrated system has a major impact on the design, complexity
management and integration process.

Different types of traffic can be exchanged over the network in the virtualized
integrated system. Every traffic class can have its own temporal and safety require-
ments. Hence, the network must guarantee deterministic and reliable communica-
tion services for the mission-critical functions while it serves less critical functions.
For this purpose, the network of the virtualized integrated system uses temporal
and spatial partitioning of the communication resources. [6]

The network of the integrated system should offer the following services:

• Services regarding transportation of Time-Triggered (TT) streams, Rate-Constr-
ained (RC) traffic and best-effort messages

• Services regarding configuration and reconfiguration of network components
like end systems and switches

• Services regarding clock synchronization like distribution of timing informa-
tion

• Services regarding fault prevention, detection and recovery

The communication infrastructure handles each traffic type differently. For in-
stance, it transmits the TT messages which have strict timing constraints at the pre-
defined cycles. For TT communication, Ethernet-based technologies are widely de-
ployed in different industrial systems like automotive, avionics and industrial au-
tomation. In recent years, the Time-Sensitive Networking (TSN) task group [11]
introduced a novel time-aware shaping concept [12] for data transmission with dif-
ferent criticality levels. The TTEthernet and TSN standards as examples of Ethernet-
based technologies, offer determinism in terms of jitter and end-to-end delay for TT
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communication, but they have subtle differences in their mechanisms that may im-
pact the design of the distributed integrated systems. The other types of traffic like
RC messages are transmitted when no TT message is scheduled since the network
of the integrated system offers a deterministic message delivery for the time-critical
functions. The RC streams are commonly dispatched based on either the shaping
mechanism defined in AFDX [10] or TSN credit-based shaper [13].

The virtualized integrated system uses virtualized computing and networking
resources for different functions. Therefore, unlike the existing static industrial plat-
forms in cars and aeroplanes, the structure of the virtualized integrated system can
frequently change due to newly added functionalities. The network should adapt
to modifications via reconfiguration. For configuration and reconfiguration of dif-
ferent network components, the network should provide a service which collects
the information related to system changes, compute the new configuration data and
then disseminates this information to the network components.

The network of the integrated system should provide a robust synchronization
service, because for deterministic communication, the network devices must share
the same notion of time. However, the local clocks in the majority of network pro-
tocols are not synchronized with each other. Hence, a clock synchronization service
aims to synchronize the local clocks of all network devices to a global time base.
To achieve this goal, the clock synchronization service enables a fault-tolerant and
reliable dissemination of timing information as well as the computation of clock cor-
rection terms.

The network should also offer health monitoring services. These services aim
to firstly detect the faulty behaviours and then execute the appropriate recovery
mechanisms based on the type of fault [14].

In addition to the services as mentioned earlier, the network resources in the
virtualized integrated system can be managed in the following ways:

• Bandwidth virtualization: to simulate individual resources for data communi-
cation of critical and non-critical functions

• Topology virtualization: to simulate different network structures over the same
topology. To achieve this goal, the network applies different policing mecha-
nisms so that each network device have access to some parts of the network
while it does not have access to other parts of the network.

• Configuration virtualization: to simulate a common memory for sharing the
global configuration parameters [6].

1.3 Thesis Objectives

This thesis focuses on the modelling and simulation of the communication layer of
a virtualized integrated system. As mentioned before, the virtualized integrated
system is designed to host a wide range of critical and non-critical functions on a
single platform. In the virtualized integrated system, the communication technolo-
gies should be selected considering the networking capabilities and requirements of
the applications with different criticality levels. In addition, the networking infras-
tructure is intended to require less cabling, robust clock synchronization, reliable
transmission of mixed-criticality traffic, simplified system integration and configu-
ration management.
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Ethernet fulfills different needs of various stakeholders from the high bandwidth
demand to the seamless connectivity between vendor-specific devices. Due to wide-
spread usage and massive success of Ethernet technologies, Ethernet is considered
as a promising solution for the industrial and deterministic networks. Temporal
properties and dependability requirements play a vital role in the development of
emerging mission-critical applications and improvements of current technologies
(e.g. industrial automation). However, the Ethernet standard is not designed to pro-
vide deterministic behaviours which are essential for real-time applications [15]. In
conventional Ethernet-based networks, time is only used as a component for perfor-
mance measurements, not as a correctness metric [16]. Therefore, several extensions
of Ethernet were introduced to offer determinism such as bounded end-to-end delay
and low jitter.

The most recent real-time capable Ethernet extension is Time-Sensitive Network-
ing (TSN). The convergence of synchronous, asynchronous and best-effort traffic on
a single network is the key aspect of TSN. Furthermore, TSN introduced a series
of standards that offer high dependability, fault-tolerant clock synchronization and
performance improvements. It is necessary to evaluate and validate the applicability
of TSN solutions for the network of the virtualized integrated system. Networking
experts and technology manufacturers use simulation frameworks extensively to
emulate and validate new networking solutions, since the implementation and de-
ployment of novel protocols on hardware is a very time consuming and expensive
process. Besides, during the development phase, the networking protocols usually
require plenty of modifications due to constant changes in the solution designs. As
many TSN protocols like IEEE 802.1As-Rev [17] are still in the development process
and not finalized yet, the simulation models are developed for the time-based and
non-time-based features of TSN. The TSN simulator introduced in this thesis pro-
vides an opportunity to validate correctness and applicability of different TSN solu-
tions which offer a wide range of services from real-time capabilities to redundancy
management for the communication layer of the virtualized integrated system [18,
19, 20].

For deterministic message delivery, TSN uses the global notion of time and a
transmission schedule which is called Gate Control List (GCL). The GCL is port-
specific and determines at each instant of time which message can be sent [12]. In
TSN like in other time-triggered protocols, the transmission schedule of TT commu-
nication is computed off-line due to the complex nature of the scheduling problem.
Despite GCL advantages, the scheduling problem arising from the GCL synthesis is
NP-complete. Therefore, it is hard to come up with scheduling algorithms that apply
to different network topologies and at the same time are scalable to large TSN sys-
tems. For this reason, the optimization algorithms that are intended for the search
space exploration of the valid schedules play a key role in the deployment of TSN.
This thesis introduces different heuristic scheduling procedures for TT communica-
tion in TSN systems. These scheduling algorithms combine the routing and schedul-
ing constraints and generate static transmission schedules using joint constraints in
a single-step [21, 22]. Furthermore, our TSN schedulers satisfy the timing constraints
of the mission-critical applications while meeting their reliability requirements [23].
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1.4 Thesis Contributions

Highly reliable, scalable and deployable networks with strict temporal constraints
are inevitable for future cyber-physical systems. Due to widespread usage and suc-
cess of Ethernet technologies, the Time Sensitive Networking task group introduces
a series of protocol extensions to the IEEE 802.1 Ethernet standard. These standards
provide real-time capabilities and performance improvements. Simulation environ-
ments are intensively used to investigate the correctness and applicability of new
protocol suites. This trend is driven by timely and costly verification and validation
(V/V) processes of the implementation of protocols on real hardware.

This thesis presents a simulation framework for the TSN standard, which is de-
veloped as an Ethernet-based network for mixed-critically traffic in the Riverbed
simulator [24]. The simulation framework provides generic simulation components
with stable interfaces. Therefore, it can be effortlessly used to simulate different
applications and to verify TSN standards with respect to reliability and timeliness.
Moreover, it can be easily extended to integrate additional features of TSN and also
future changes introduced by the TSN working group. Furthermore, the presented
TSN simulator provides a comprehensive simulation platform for modelling, perfor-
mance and reliability evaluation of TSN networks in absence of simulation frame-
works and actual TSN devices which encompass different TSN services such as re-
mote configuration, clock synchronization and time-aware shaping simultaneously.

The TSN simulator develops simulation models of TSN time-based features in-
cluding IEEE 802.1Qci [25] and IEEE 802.1Qvb [12].To be more specific, our models
implement ingress time-based policing and enhancements for scheduled traffic as
an extension of the Ethernet standard. IEEE 802.1Qci defines a policing mechanism
that is applied to every stream upon reception and grants the filtering decision based
on the local time. On the other hand, IEEE 802.1Qbv introduces a novel scheduling
mechanism called Time-Aware Shaper (TAS). TAS is based on the Gate Control List
(GCL) concept and specifies at each instant of time which frame can be transmitted.
These standards use time as a correctness criterion. Our simulation models provide
an opportunity to simulate and evaluate the temporal behavior of TSN networks
with high precision. The evaluation of TSN time-aware features is performed by
using various network performance metrics like end-to-end delay and jitter [18].

To enforce TAS as well as ingress time-based policing, a TSN-capable device re-
quires to be configured before initiating any message transmission. For this reason,
the TSN task group proposed three different configuration models in IEEE 802.1Qcc
[26]. These models enable dynamic and remote configuration of TSN-capable de-
vices. The configuration process over TSN systems is carried out using the existing
network management protocols (e.g. NETCONF). This thesis develops simulation
models for a fully centralized configuration process, which is one of the proposed
configuration models in IEEE 802.1Qcc. Therefore, the TSN simulator with a cen-
tral configuration model enables the modelling of dynamic applications (e.g. train
inauguration) and system adaptation (e.g. fault recovery). In the fully centralized
approach, first, the configuration model computes the port-specific GCLs based on
the system structure and specification of applications within a TSN system. Then, it
configures TSN capable devices with the generated transmission schedule informa-
tion remotely. This work measures the performance of the centralized configuration
procedure based on simulation models [27].

Apart from the real-time capabilities, in modern cyber-physical systems, safety
is considered as the primary concern. Failures in safety-time critical systems like
industrial automation systems may lead to high economic losses as well as dangers
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for humans and the environment. Therefore, the Time-Sensitive Networking (TSN)
task group not only introduced real-time properties to Standard Ethernet, but also
developed a novel fault-tolerance mechanism called Frame Replication and Elimi-
nation for Reliability (FRER) [28]. FRER offers highly reliable communication for
Time-Triggered (TT) traffic by forwarding messages via redundant routes. This the-
sis incorporates the FRER functionalities in the simulation models that also imple-
ments temporal properties of TSN. Additionally, this work presents a fault injection
model to verify the correctness and applicability of the FRER module. Using this
model, the different faulty behaviours (including transient and permanent errors)
are simulated over the emulated TSN network. Then, the impact of the FRER mod-
ule on the reliability of TT communication is evaluated in the presence of different
faults. The evaluation of TSN fault-tolerance capabilities is carried out by measuring
the end-to-end latency and the number of packet loss for every TT stream [19].

The hard real-time systems like industrial control networks have strict tempo-
ral requirements. To achieve the real-time capabilities, all devices residing in the
mission-critical systems need to be synchronized to a specific reference time. Since in
such systems time is used as a correctness criterion, the Time-Sensitive Networking
(TSN) task group introduced a fault-tolerant and robust clock synchronization mech-
anism in the IEEE 802.1AsRev standard. The execution of TSN clock synchroniza-
tion results in a fully synchronized and scheduled network [17]. This thesis presents
a simulation model for time-aware systems which contain different functionalities
of TSN clock synchronization. The simulation models of time-aware systems are
developed on top of our TSN models that support the time-based features of TSN
(i.e. IEEE 802.1Qbv and IEEE 802.1Qci standards), since a TSN-capable model uses
its local clock for time-based policing and traffic shaping. Moreover, different TSN
synchronization modules including Best Master Clock Algorithm (BMCA), Synchro-
nization process and Peer delay measurement are evaluated using our simulation
framework. In addition, the behaviour of the TSN synchronization mechanism is
studied in the presence of different faulty behaviours [20].

TSN offers determinism within a fully synchronized network using global TT
transmission schedules. The scheduling problem of TSN networks like other time-
triggered systems is NP-complete. In addition, the ever-increasing number of net-
work devices, switches and links of many Ethernet-based systems results in numer-
ous possible routes and consequently a tremendous number of schedule possibilities
for each TT flow. For this reason, most of existing TT scheduling solutions ignore
inter-dependence of routing and scheduling problems to simplify the scheduling
process. Hence, they derive the design space of system implementations only from
scheduling constraints. This strategy limits the capability of former approaches to
compute a global schedule of TT communication for several real-time systems. This
thesis presents a heuristic scheduling strategy based on genetic and list scheduling
algorithms, since the optimization algorithms for the search space exploration are a
crucial element for the deployment of TSN. These solutions combine the routing and
scheduling constraints and generate the port-specific GCLs using joint constraints in
a single-step. The number of scheduling possibilities within the design space that is
derived from joint routing and scheduling constraints increases in comparison to the
approaches that only use the fixed routing. Thereby, the schedulability is improved
significantly by our solutions. Our schedulers also consider the distribution of real-
time applications, multicast patterns and precedence constraints of TT flows in the
scheduling process. Moreover, the optimized task binding and resource allocation
of our scheduling algorithms lead to significant enhancement of TT transmission
efficiency and resource utilization compared to the state-of-art solutions. [21, 22].
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In addition to the abstractions mentioned above, the majority of TT schedulers
assume that the communication infrastructure is fault-free over time. However, this
assumption is unrealistic and in practice, the network experiences different failures
during message exchange. Hence, the TT schedules generated by the schedulers
with this assumption, are not applicable in case of any failure in the network. Due
to stringent temporal and safety requirements of real-time systems, TSN addresses
the faulty behaviours using a new spatial redundancy mechanism (i.e. FRER). In
this thesis, the TSN schedulers which are designed for fault-free mission-critical sys-
tems are expanded considering FRER features. FRER improves the availability and
reliability of TT communication by forwarding messages from redundant routes.
The main goal of our fault- tolerant TSN scheduler is to satisfy all safety-critical ap-
plications deadlines while improving the reliability of the system. For this reason,
a new technique to evaluate the reliability of safety-critical systems is introduced.
This technique assesses the reliability of a mission-critical system using interactions
between real-time tasks in forms of TT messages. Our approach also calculates the
reliability of message transmission as a function of the reliability of the network com-
ponent that engages in message delivery. Consequently, it can be determined which
components are more critical in the overall reliability of the system. The system de-
signers can benefit from this reliability analysis for selection of network components
and also planning of the network [23].

The main contributions of this thesis can be summarized as follows:

• A simulation framework for TSN time-aware policing and scheduling mecha-
nisms. This framework is developed as an Ethernet-based network for mixed-
critically traffic and supports the temporal requirements of real-time systems
[18].

• Simulation models comprising different FRER functions. These models pro-
vide the fault tolerance capabilities that are essential for data communication
of safety-critical applications [19].

• Simulation models containing different TSN clock synchronization procedures
such as BMCA and peer delay measurement. These models share the same
notion of time by participating in the clock synchronization process. However,
the time-aware system models have their local clocks with different drift rates
[20].

• Heuristic scheduling strategies based on a genetic algorithm and list schedul-
ing approach for TT communication in time-sensitive networks. These sched-
ulers compute the port-specific GCLs by employing joint routing and schedul-
ing constraints [21, 22].

• Scheduling strategies for fault-tolerant TT communication in time-sensitive
networks. These scheduling algorithms aim to improve the system reliability
using FRER features while satisfying the deadlines of safety-critical applica-
tions [23].

• Simulation models for TSN fully centralized configuration process. The cen-
tral configuration model calculates the schedules for real-time applications and
corresponding streams. Then, it configures TSN-capable devices with the NET-
CONF protocol. Using this model, the required time interval for remote config-
uration of devices within a mission-critical system is measured and validated
against the maximum permissible configuration duration of TSN-capable de-
vices [27].
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1.5 Thesis Overview

This thesis is structured into seven chapters. Chapter 1 provides a brief overview of
the virtualized integrated system architecture which is introduced to address new
requirements of mixed-criticality systems. Additionally, it details the challenges for
the communication infrastructure, which aims to interconnect different components
of an embedded system with the virtualized integrated architecture. The second
chapter outlines the basic concepts that are used throughout this thesis. For this pur-
pose, chapter 2 starts with a brief overview of distributed real-time systems. Then,
it explores different aspects of real-time systems such as communication paradigms,
timing and dependability requirements. The third chapter provides a detailed in-
troduction to the Ethernet technologies. This chapter studies different features of
the Ethernet standard, including packet switching, quality of service, fault-tolerance
and synchronization. Chapter 3 lists the network capabilities required by virtual-
ized integrated system architecture and explains why Ethernet is not suitable for
such systems. The last sections of this chapter deliver background knowledge about
deterministic Ethernet protocols, which are designed to offer temporal properties
and reliability requirements for real-time systems.

The fourth chapter introduces several scheduling strategies which are designed
to synthesize GCLs for TSN systems. To achieve that, it first discusses the related
work in the context of TT scheduling. After that, the scheduling problem of TT
communication in TSN networks is formulated, and the joint routing and scheduling
constraints considering TSN scheduling are defined. The further sections provide
a detailed description of a Genetic Algorithm (GA) and a Heuristic List Scheduler
(HLS) which aim to solve scheduling and routing of TSN systems in a single-step. In
the last sections of this chapter, the experimental setup is explained, and simulation
results are evaluated.

Chapter 5 describes how the scheduling strategies which are introduced in Chap-
ter 4 can be extended to support reliability requirements of mission-critical systems.
To this end, it first discusses the related work on fault-tolerant TT scheduling. Then
it formulates the scheduling problem of fault-tolerant TT communication. Further
sections propose a novel reliability analysis technique and also describe the fault-
tolerant GA and HLS, which are designed to meet timing requirements of mission-
critical systems while improving the overall system reliability. This chapter is con-
cluded by an extensive evaluation using experimental results.

The sixth chapter presents the simulation models for temporal properties, clock
synchronization, configuration and redundancy management which are introduced
in TSN standard. To achieve that, Chapter 6 starts with discussing the existing simu-
lation frameworks which aimed to emulate different time-triggered communication
infrastructures. Then it specifies the conceptual models which are essential for de-
ployment of TSN features over real-time systems. To this end, Section describes the
centralized configuration model used in TSN simulator precisely. After that, it ex-
plains how a standard Ethernet end system and switch model are modified in order
to accommodate different TSN features. The last section of this chapter provides
a detailed description of experimental setup which is defined based on real world
use case. Furthermore, it evaluates the simulation results collected from different
test scenarios and validates the applicability and correctness of TSN services for the
communication layer of the virtualized integrated system.
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Chapter 2

Basic Concepts

This chapter describes the basic concepts that are used throughout this thesis. The
first section gives a brief overview of distributed real-time systems that are widely
deployed to provide a wide range of services. In the second section, the differences
between time-triggered and even-triggered communication are described. The third
section explains the role of a global time reference in distributed real-time systems.
The last section is dedicated to different aspects of dependability concepts in real-
time systems such as dependability threats and failure modes.

2.1 Distributed Real-Time Systems

A real-time system comprises several subsystems such as real-time computer sys-
tems, controlled objects and human operators. In a real-time system, the state of the
system is changed as a result of the progression of time. In particular, the correctness
of a real-time computer system is determined not only based on the computational
outputs but also by the time instant at which the results are provided [29].

Real-time systems are divided into two categories: hard real-time systems and
soft real-time systems. In hard real-time systems like a brake-by-wire system in a
train, violating the timing requirements can lead to disastrous outcomes. However,
soft real-time systems such as an entertainment system in a train can continue to
operate correctly even under a specific amount of delays [29].

Each real-time system which is also called a cyber-physical system aims to pro-
vide different services. To achieve this goal, the real-time computer systems ex-
change data with controlled objects via actuators and sensors. This data commu-
nication is used to exchange digital information with other computer systems and
analogue and continuous information with the controlled objects. Moreover, the
real-time computer system can be distributed. A distributed computer system com-
prises several nodes which communicate over a real-time networking infrastructure.
The node’s service can be defined as a set of messages. The node produces these
messages by reacting to inputs, the progression of time and its state. Thereby, the
node’s service tightly depends on the real-time network services [30]. The structure
of distributed real-time systems is shown in Figure 2.1.

2.2 Time-Triggered and Event-Triggered Communication

Over the past decades, mixed-criticality systems which contain safety-critical and
non-critical subsystems have drawn more attention. In such systems, the safety-
critical subsystems use the time-triggered communication infrastructure for message
transmissions. In such subsystems, the transmission of TT messages is periodic and
deterministic in terms of delivery delay and jitter. Thereby, for each TT message, the
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FIGURE 2.1: The structure of distributed real-time system [30]

route from a sender node to the receiver nodes is specified statically at the design
time. In addition, for every node on the message forwarding path, the start and
end instants of the transmission interval are determined at the design time. There-
fore, each node in the time-triggered network uses the predefined schedule for TT
message transmissions. The node’s static schedule is repeated over least common
multiple of cycles of TT messages that are destined to the node. Namely, every TT
message is sent at a particular time slot, and this transmission is repeated with the
fixed time interval called the message’s period [30].

On the other hand, non-critical subsystems exchange messages when no TT mes-
sage is scheduled. These messages are event-triggered, meaning that the messages
are transmitted upon reception of a specific event which is not deterministic. Thereby,
for the event-triggered messages unlike TT messages, the start and end instants of
the transmission interval are not known. This feature can lead to contention between
the time slots of TT messages and event-triggered message transmissions [30]. Fig-
ure 2.2 shows an example of a transmission schedule in a mixed-criticality system.

The networking protocols that are used in mixed-criticality systems address the
contention arising from the integration of time-triggered and event-triggered com-
munications in different manners. Some protocols like FlexRay [31] reserve a time
interval before each TT time slot to avoid interference with even-triggered messages.
The length of this time interval is set to the maximum size of an event-triggered mes-
sage so that the contention avoidance between TT time slots and event-triggered
messages is guaranteed. Another group of protocols like TTEthernet, also follow the
static contention-free schedule for the transmission of TT messages. However, they
do not reserve a guard band before each TT time slot. Instead, if transmission of an
even-triggered message interferes with a TT time slot, these protocols preempt the
even-triggered message and start transmitting the TT message. After completing the
transmission of TT messages, the preempted event-triggered message is resent. The
third category of protocols applies neither contention avoidance nor contention de-
tection and preemption. Instead, they are non-preemptive and tolerate contention.
This means that if the transmission of an even-triggered message overlaps with a TT
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FIGURE 2.2: An example of transmission schedule in a mixed critical-
ity system

time slot, the event-triggered message is not preempted and the transmission con-
tinues until completion. Thereby, the transmission of a TT message may be delayed
by a maximum of one event-triggered message transmission [30].

2.3 Global Time Base

In distributed real-time systems, time typically described according to Newtonian
physics. Thereby, a dense timeline comprises an infinite number of instant, and
every event occurs at a specific instant. A node timestamps an event based on its
own local notion of the global time. In a dense timeline, it is not feasible to have
a fully consistent assignment of timestamps distributed system due to the limited
accuracy of the global time and time digitalization. Hence, there is a discrepancy
between the timestamps of a certain event on different nodes [32].

To address this issue, the sparse timeline was introduced [29]. The sparse time-
line is divided into two time intervals: silence and activity intervals where an event
happens during an activity interval. In the sparse timeline, the activity interval
presents the granularity for time-triggered activities and the activity duration de-
pends on the precision of the global time. The events which occur during the same
activity interval either at the same node or on different nodes are considered as si-
multaneous. Nevertheless, the events happening in different activity intervals can
be ordered consistently based on their timestamps. An example of a sparse timeline
is depicted in Figure 2.3.

In distributed real-time systems, time can also be established using an external
time reference such as the global positioning system (GPS). The global time tick in
GPS is encoded by an eight-byte integer where the five upper bytes are used for the
second encoding and the three lower bytes for a fraction of the second [32].

2.3.1 Time and State

Mesarovic et al. [33] defined the state of a system as follow: "The state enables
the determination of a future output solely based on the future input and the state
a deterministic system is in. In other words, the state enables a "decoupling" of
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FIGURE 2.3: A sparse timeline [32]

the past from the present and future. The state embodies all history of a system.
Knowing the state "supplants" knowledge of the past. For this role to be meaningful,
the notion of past and future must be relevant for the system considered."

According to this definition, the state concept highly depends on time modelling.
Namely, every state of a system must be represented by a specific global time tick.
In distributed real-time systems with the sparse timeline, the silence interval draws
a line between the past and the future. This feature enables the distributed systems
to mitigate faulty behaviours by replicating the state and voting on the state copies
within different fault containment regions [32].

2.4 Dependability

A real-time system is called dependable if it provides the expected services with
the desired timing to other systems [30]. For this purpose, dependable services are
developed as a series of distributed fault-tolerant functions which operate correctly
regardless of faulty behaviours. Thereby, a distributed system that offers real-time
and fault-tolerance properties is also called a responsive system [29].

2.4.1 Dependability Threats

Dependability threats can be defined at different levels: When a real-time system
does not deliver the expected services, a failure in the system happens. The state of
the system which causes the failure is called an error. A fault is associated with a
hypothesis that articulates the assumed causes of an error. Depending on the part
of a system that causes a failure, the faults are categorized into internal and external
faults. The internal faults can be a result of physical faults or design faults either in
software or hardware. Similarly, external faults can be caused by physical faults or
wrong inputs [30].

2.4.2 Fault-Containment Regions

A fault-tolerant system comprises several subsystems where every subsystem con-
tinues to deliver the trusted services even in the presence of faulty behaviours out-
side of the subsystem. Thereby, each subsystem forms a Fault-Containment Region
(FCR) [30]. A fault within an FCR must be detected and mitigated before it impacts
the services of other subsystems. For this reason, the error-containment coverage
that defines the probability of error detection within an FCR is introduced. The
fault-containment regions can be defined in different system levels like hardware
units and software components [29]. The separation of FCRs is a critical enabler for
building a highly reliable real-time system. Since the redundant units improve the
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reliability of the system only if the FCRs are entirely independent, it is noteworthy
that shared resources such as power supply and external factors like electromag-
netic interference can threaten the separation of the FCRs. In a distributed real-time
system, a processing node and a communication link are typically considered as an
FCRs where the separation is defined at different levels during the system design
[30].

2.4.3 Failure Modes

The impact of a failure in an FCR which are visible to other subsystems in different
manners are called failure modes. The system designer must select the appropriate
redundancy techniques based on the potential failure modes and the reliability re-
quirements. Some of the possible failure modes in a distributed real-time system can
be listed as follows:

• Fail-Stop Failure: occurs when a node stops delivering services. Other subsys-
tems detect this failure and recover it by resetting the node.

• Crash Failure: occurs when a node stops generating outputs. This failure, un-
like the fail-stop failure, may stay undetected by other operational nodes.

• Omission Failure: occurs when either a sender fails to dispatch a message or a
receiver fails to receive a message. In both cases, a receiver node cannot react to
the sent message. The detection of omission failure is not always guaranteed.

• Timing Failure: occurs when a node does not produce outputs during the ex-
pected time interval [30].

• Byzantine Failure: As stated in [34], it is the loss of a system service in systems
that require consensus". The "two-faced" failure is an example of a byzantine
failure.

• Babbling Idiot: occurs when a node does not meet timing constraints. For
instance, this failure occurs when a sender transmits messages outside of a
predefined time interval.

• Masquerading: occurs when a node sends messages using an other node’s
identity without its consent [30].
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Chapter 3

Ethernet Technologies

For the interconnection of computers, end stations and peripherals residing in a
small geographical area like a campus, the Local Area Network (LAN) concept was
introduced. In such local networks, network devices join and leave at their will.
Ethernet fits well to the LAN requirements such as easy deployment, low cost and
high bandwidth. Wide Area Networks (WANs) also use the Ethernet technologies
extensively for data communication since they are composed of several LANs [35].
Over the last 40 years, the Ethernet standard evolved to more scalable and flexible
solutions by supporting the high demand for bandwidth and different classes of
quality. Unlike the majority of uniform networking standards like PROFIBUS [36]
and CAN [37] which are developed for specific services and are only applicable to
certain systems, Ethernet continues to provide new services and accommodate new
requirements for existing and emerging applications [7]. Ethernet was initially de-
fined as a multiple-access network; however, over past years it evolves to an entirely
switched network where the networking devices have a point-to-point connection to
each other [38]. Ethernet operates in two different modes (i.e. half-duplex and full-
duplex), and both modes of operations share the same principles regarding frame
formatting and fair arbitration of medium access.

3.1 History of Ethernet Networks

In 1973, the Ethernet network was introduced by Robert Metcalfe, who was an engi-
neer at Xerox. This standard was designed for the experimental setup at Xerox Palo
Alto Research Center. The Xerox experimental Ethernet network transmits data at
a rate of 2.94 Mbps. After a successful deployment of the Xerox Ethernet setup, the
first draft of the Ethernet standard which is also known as IEEE Std 802.3-1985 [39]
was proposed jointly by Digital Equipment Corporation (DEC), Intel and Xerox. The
IEEE Std 802.3-1985 described the half-duplex Media Access Control (MAC) proto-
col. Since then, several amendments for IEEE Std 802.3 which aim to support new
technologies and different data rates have been introduced. For instance, a full-
duplex MAC protocol was developed later in 1997. The fast Ethernet which offered
100 Mbps bandwidth was introduced as the IEEE Std 802.3uTM [40]. Later, the IEEE
Std 802.3z [41] and the IEEE Std 802.3ab [42] were dedicated to Gigabit Ethernet and
100 Gigabit Ethernet respectively. It is noteworthy the IEEE Std 802.3-2015 encom-
passes significant amendments which were defined over the last 40 years [43].

3.2 Packet Switching Approaches in Ethernet Networks

Ethernet switches forward frames using one of the following approaches: In the first
method, which is called store-and-forward, the switch first receives the whole frame
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and stores it in its memory. Then it calculates the Frame Check Sequence (FCS) of
the frame and checks the value with the last field of the frame. The switch forwards
the frame to the next hop if the integrity of the frame is preserved according to the
FCS check [44].

The second method, which is used by Ethernet switches to forward frames, is
called cut-through [45]. In contrast to the store-and-forward switching approach,
a cut-through switch starts forwarding the frame immediately after receiving the
header and before obtaining the whole frame. Hence, the switch cannot perform
the error-check calculation, which requires the whole frame. For this reason, if the
frame is corrupted, the invalid frame remains unnoticed and will be forwarded to
other parts of the network [46]. To address this issue and also take advantage of
cut-through approach, the store-and-forward switches can be used at the edge of the
network to eliminate corrupted frames. On the other hand, the cut-through switches
can be utilized in the rest of the network in order to speed up the packet switching
process. It has to be noted that the integrity of the frame can be deteriorated signifi-
cantly after passing several cut-through switches which is not acceptable for systems
with demanding dependability requirements such as avionic [7].

3.3 Quality of Service Management for Ethernet Networks

Quality of Service (QoS) describes certain quality attributes such as performance
or delay. QoS also makes sure that the network satisfies the requirements of every
traffic class [4]. The IEEE Std 802.1D [47] amendment was developed to improve
QoS within bridged LANs through filtering services. Moreover, the IEEE Std 802.1D
enables time-critical communication in bridged LANs by defining expedited traffic
profiles. The expedited traffic classes are determined based on the user-defined pri-
ority parameters. The filtering services provided by the IEEE Std 802.1D facilitate
dynamic configuration of different groups within LANs. Each group is associated
with specific segments of a LAN. Thereby, the frames of every group are only sent
over the corresponding LAN segments and are filtered by the rest of the LAN seg-
ments [48].

The IEEE Std 802.1Q [48] was introduced to advance further the filtering services
of IEEE Std 802.1D through a new concept called virtual bridged LAN. In the IEEE
Std 802.1Q, a bridged LAN is logically divided into different groups and each group
is associated with one or more Virtual LANs (VLANs). This standard simplifies the
establishment of virtual subsets of devices and enables adaptation to changes within
these logical groups. In addition, the traffic belonging to a particular VLAN is only
forwarded over the LAN segment which serves the VLAN [47]. Therefore, network
utilization is improved due to the significant reduction in broadcast traffic. This fea-
ture allows for more deterministic transmission of time-critical traffic. However, the
network resources like bandwidth are still allocated to different applications through
statistical multiplexing. Moreover, the frames are transmitted based on a best effort
mechanism within a bridged LAN. Hence network congestion is likely to occur. To
be more specific, the switches in LAN systems send out frames when the port is idle.
Otherwise, they store frames in the egress port queues until the port becomes free
again. Thereby, if the queues get full, they start discarding the incoming frames. This
behaviour leads to non-deterministic delivery of time-critical messages. Therefore,
even a bridged LAN network offers better QoS management, but it cannot satisfy the
strict timing constraints of time-critical traffic. To mitigate network congestion, the
LAN needs to limit the number of VLANs supported on the links with demanding
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usage. In addition, the applications must be allowed only to send a limited number
of streams at the predefined cycle. However, imposing such constraints to a LAN
is unrealistic since modern cyber-physical systems necessitate several data streams
to operate correctly. Furthermore, LANs encounter different faults over time which
affect the deterministic behaviour for time-critical communication.

The IEEE Std 802.1Q only provides the logical traffic isolation of different VLANs.
Consequently, if the higher priority VLAN frames are sent at, the higher rate, this
behaviour results in starvation of the lower priority VLAN traffic. Thereby, the IEEE
Std 802.1Q is not equipped with the particular mechanism to address this issue[7].

3.4 Fault-Tolerant Properties of Ethernet Networks

Standard Ethernet is unable to recover from either transient faults such as a cor-
rupted frame due to electromagnetic interference or permanent faults like link fail-
ure. Therefore, to address fault-tolerant communication over Ethernet-based net-
works, a wide range of redundancy management mechanisms are introduced. The
IEC 62439 standards are examples of such redundancy mechanisms that were devel-
oped for industrial networks with stringent timing and dependability constraints.
The IEC 62439 standards are divided into seven parts:

• Part 1: Rapid Spanning Tree Protocol (RSTP) [49]

• Part 2: Media Redundancy Protocol (MRP) [50]

• Part 3: Parallel Redundancy Protocol (PRP) and High-availability Seamless
Protocol (HSP) [51]

• Part 4: Cross network Redundancy Protocol (CRP) [52]

• Part 5: Beacon Redundancy Protocol (BRP) [53]

• Part 6: Distributed Redundancy Protocol (DRP) [54]

• Part 7: Ring-based Redundancy Protocol (RRP) [55]

Among the IEC 62439 protocols, only part 3, which describes PRP and HSP, ad-
dresses seamless recovery over Ethernet networks. All protocols as mentioned ear-
lier enhance reliability and availability of systems using redundant paths.

3.4.1 Rapid Spanning Tree Protocol

The Spanning Tree Protocol (STP) enables connectivity between interconnected brid-
ges residing in different LANs. For this purpose, configuration messages are ex-
changed among bridges. The configuration message carries the spanning tree prior-
ity vector, which is used to determine the role of each bridge and also the path cost
from each bridge to the root bridge. The role of the root is assigned to the bridge that
has the lowest bridge identifier. The bridge identifier is obtained from the bridge pri-
ority which is configurable and the bridge address. Therefore, the root bridge has
the lowest priority. In addition to the bridge’s role, the role of each bridge’s port is
also specified using the configuration message. The port with the lowest path cost
to the root bridge is selected as a root port. On the other hand, the designated port
has the lowest path cost from the directly attached LAN to the root bridge.

In RSTP, a Single Spanning Tree (SST) which is also called Common Spanning
Tree (CST) is established, and the state of each port is identified. Every frame in a
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bridged network is switched using the CST regardless of its destination MAC ad-
dress and VLAN ID (VID). Moreover, RSTP guarantees that there is dependable and
symmetric connectivity between every bridge and the directly attached LANs. RSTP
also assures that the CST does not contain any loop even in case of a network recon-
figuration which is triggered by faulty behaviours and joining or leaving specific
devices.

RSTP was designed for the rapid recovery from disconnectivity occurring in a
CST. For this purpose, new roles are assigned to each port of a bridge. Then the
new root and designated ports start forwarding frames instantly. Namely, a new
root port initiates message transmissions irrespectively of received messages from
other bridges whereas a new designated port waits for a message from the bridge
attached to the LAN to start message switching. Thereby, RSTP finds an alternative
path for the existing active route after any failure within up to 2 seconds. Thus, this
approach is not applicable for safety-critical systems with stringent temporal and
dependability constraints [49].
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3.4.2 Media Redundancy Protocol

Media Redundancy Protocol was developed for PROFINET networks based on the
Hiper ring concept. In an MRP ring, one node plays the role of a manager (i.e. Media
Redundancy Manager (MRM)) whereas other nodes are Media Redundancy Clients
(MRCs). In a fault-free network, only one of the MRM’s ports forwards the messages
while all ports of the MRCs are in the forwarding state. In case of a failure, another
port of the MRM is going to the forwarding state and provides connectivity between
different ring nodes [56]. It has to be noted the MRM sends test frames to ensure
connectivity and integrity of the ring. Thereby, if the test frames are not received
by other ports of the MRM, the ring network requires reconfiguration [57]. The
reconfiguration of a PROFINET network which supports MRP takes a maximum of
500 ms [56]. Figure 3.1 demonstrates an example of a ring network that supports
MRP.

3.4.3 Parallel Redundancy Protocol and High-availability Seamless Pro-
tocol

As stated before, part 3 of IEC 62439 introduces two seamless recovery mechanisms
based on message duplication and transmission over at least two disjoint paths.
Therefore, if any network components such as links and bridges residing in one of
the disjoint paths fail, duplicated messages can reach the destination through other
disjoint paths. This approach leads to zero recovery time and no frame loss, which
is crucial for safety-critical systems [51].
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In PRP, nodes have two network interfaces which are connected to two separate
networks, as shown in Figure 3.2. Thus, they duplicate messages and send them
over two independent networks via separate interfaces. Consequently, if one copy
of the frame does not reach the destination node due to a failure (e.g. link failure)
in one of the parallel networks, the second copy will be delivered to the receiver
node from another network without any interruption. On the contrary, if no failure
has occurred within two isolated networks, the destination node only accepts the
first copy of the frame and drops the second copy. In PRP-aware networks, a node
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attached to two independent networks is called Doubly Attached Node (DAN) while
a node is called Single Attached Node (SAN) when it is attached to either one of the
networks or two isolated networks via a Redundancy Box (RedBox) [58].

The node with PRP has a layer two link redundancy module. This module dupli-
cates the message received from the higher layers (e.g. application layer) and adds
the Redundancy Control Trailer (RTC) to the frame. Lastly, it recomputes the CRC
checksum of the message due to the additional trailer (i.e. RTC) and passes the mes-
sage to the lower layer. The PRP frame format is depicted in Figure 3.3. The PRP
redundancy trailer, as shown in Figure 3.3 comprises four parameters:

1. Sequence Number which specifies the order of the messages and will be iden-
tical for duplicated frames.

2. LAN A/B that determines the LAN the message is destined to.

3. Link Service Data Unit (LSDU) which indicates the size of a frame including
the RCT.

4. PRP suffix that has the value of 0x88FB.

Preample Destination Source LT LSDU Sequence
Number LAN LSDU

Size
PRP
Suffix FCS

Frame without reliability control trailer Redundancy Control Trailer (RCT)

0 6 12 14

FIGURE 3.3: PRP Frame Format [58]

On the reception side, the link redundancy module keeps track of the sequence
numbers of incoming messages. Then it uses this knowledge to discard the dupli-
cated frames [59].

MRM

End 
system

MRCMRC

MRC MRC MRC

 RedBox

SAN

DANDAN

DAN DAN DAN

MRM

End 
system

End 
system

End
system

MRCMRC

MRC MRC MRC

MRM

End 
system

End 
system

End
system

MRCMRC

MRC MRC MRC

source

destination

Frame A
Frame B

FIGURE 3.4: HSR network [58]

The maintenance of the two networks is cumbersome. For this reason, HSP uses
the same approach as PRP, but instead of using two separate networks, it transmits
duplicated frames over two redundant paths within one network. An example of
an HSR network is depicted in Figure 3.4. HSR was mainly designed for a network
with ring topology. Thereby, in an HSR-aware network the sender node dispatches
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duplicated frames in two directions while the receiver node accepts the first copy of
the frame and filters out the duplicated frame [58].

As it is shown in Figure 3.5, the HSR redundancy header has few differences with
the PRP RCT header. For instance, in the HSR header, unlike the PRP header, the
HSR ID comes first. It has to be noted that the node without HSR capability cannot
be added to an HSR-aware ring network. Since every node in an HSR network needs
to send frames via two directions and this is not feasible for SAN. This problem can
be resolved by connecting a SAN to a Redbox. In addition, two HSR rings can be
interconnected via a device called QuadBox. A QuadBox connects two rings via its
four ports [59].

Preample Destination Source HSR
Eth Path Sequence

Number LT LSDU FCS

                          HSR tag           Original LPDU (Link
           Protocol Data Unit)

0 6 12 14

LSDU
Size

16

FIGURE 3.5: HSR Frame Format [58]

3.4.4 Cross-Network Redundancy Protocol

Honeywell Corporation introduced the IEC 62439-4 Cross-Network Redundancy
Protocol (CRP). CRP is based on fieldbus networks and uses a concept of dupli-
cated networks for redundancy management. In CRP, unlike MRP, the end systems
run the redundancy protocol instead of switches, and each end system makes the
switchover decision independently. In addition, an end system with CRP can con-
nect to one of the duplicated networks through its own network adapters [52]. An
example of a CRP-capable network is illustrated in Figure 3.6. In CRP-aware net-
works, every frame dispatched from a source node must pass through the inter-LAN
links on the path to a destination [57].
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3.4.5 Beacon Redundancy Protocol

The IEC 62439-5 Beacon Redundancy Protocol (BRP) was introduced by Rockwell
corporation. However, BRP shares the same redundancy principles as CRP, but it
reduces the recovery time using beacon nodes [57].

3.4.6 Distributed Redundancy Protocol

The IEC 62439-6 Distributed Redundancy Protocol (DRP) was designed to offer fault-
tolerance properties for real-time systems. For this reason, DRP-aware switches
share the same notion of time using IEEE 1588 Precision Time Protocol (PTP) [60].
They are interconnected in a ring topology and follow the same principles as MRP
[61].

3.4.7 Ring-based Redundancy Protocol

The IEC 62439-7 Ring-based Redundancy Protocol (RRP) introduced the redundancy
management principles for the Real-time Automation Protocol for Industrial Ether-
net (RAPIEnet). RAPIEnet was designed for real-time industrial networks with line
and ring structures. Moreover, RAPIEnet does not require any external switching
functionality. Thereby, such networks can be reconfigured instantly when a device
is added or leaves the network. RRP was defined based on a concept called redun-
dancy programmable logic controller (PLC). The PLC contains redundant expan-
sion drivers and a redundant CPU. Each CPU communicates with other devices via
RAPIEnet. On the other hand, the expansion base driver supervises devices residing
in the expansion base with the help of the CPU [62].

3.5 Clock Synchronization Protocols for Ethernet Networks

In conventional Ethernet-based networks, the time attribute was only used for per-
formance measurements, not for time synchronization. The synchronized global
time, however, can be achieved through Global Positioning System (GPS) receivers
without any internal synchronization method, but this is not suitable for several real-
time systems. Therefore, to transport timing information over Ethernet networks a
wide range of protocols such as Network Time Protocol (NTP) [63], IEEE 1588 Pre-
cision Time Protocol (PTP) [60], IEEE 802.1AS [64] and IEEE 802.1AS-Rev [17] were
developed. Conversely, NTP is not suitable for many industrial applications due to
its synchronization accuracy in the order of milliseconds.

3.5.1 IEEE 1588 Standard

The IEEE 1588 Standard, which is also called Precision Time Protocol (PTP) aimed
establish a synchronized global clock with sub-microsecond accuracy for measure-
ment and control applications. To be more specific, the IEEE 1588 Standard offers the
following services for the measurement and control applications in mission-critical
systems:

• Scalable to large mission-critical systems

• Timing accuracy in the range of microsecond to sub-microsecond

• No administrative overhead

• Implementable for devices with different levels of complexity
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• Suitable for dependable systems

The first draft of the IEEE 1588 (PTPv1) was published in 2002 and drew atten-
tion of different industries such as telecommunication and military. As a result, the
second draft of the IEEE 1588 was introduced in 2008 so that it can accommodate the
requirements of existing and emerging industrial applications [60].

Table 3.1 presents a comprehensive comparison of state-of-art synchronization
mechanisms with the IEEE 1588 standard. As stated in Table 3.1, PTP, unlike IRIG-B,
1PPS and GPS transmits timing information over the data networks such as Eth-
ernet instead of a dedicated network. In addition, the IEEE 1588 protocol, unlike
NTP, offers sub-microsecond synchronization accuracy through the peer-to-peer de-
lay measurement mechanism [65].

Mechanism Typical Offer time Additional network Scalable
accuracy and date of day not needed

IRIG-B (AM) 1ms X

IRIG-B (DC-shifted) 100µs X

1PPS 100µs

GPS 1µs X

NTP 1-10ms X X

PTPv1 1µs X X

PTPv2 1µs X X X

TABLE 3.1: Characteristics of different synchronization methods [65]

Since IEEE 1588v2 is an extension of IEEE 1588v1 and covers all the basic con-
cepts in PTPv1, the following sections focus on the IEEE 1588v2 standard. In addi-
tion, to simplify the notion of IEEE 1588v2, in the rest of the report, it is referred to
as PTP.

3.5.2 PTP Message Types

PTP is used to synchronize the local clocks of different devices to the global clock
through PTP message transmissions. There are two types of PTP messages:

1. Event Message: A time-aware system creates a time-stamp for event messages
either at egress or ingress units. In short, an accurate time-stamp specifies the
point of time an event message is transmitted or received.

2. General Message: Unlike event messages, general messages are not time-
stamped.

The PTP event messages include:

• Sync Message: This message transfers a precise transmission time-stamp which
is generated by a grandmaster clock to the slave clocks. Consequently, slave
clocks can use this message to calculate the transmission delay between grand-
master and slave clocks.

• Delay_Req Message: This message is used to request a receipt time-stamp
from the receiving node. A Delay_Req message also transfers an accurate
transmission time-stamp which is generated at a slave port.
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• Pdelay_Req Message: This message is used to measure the link delay between
two PTP ports that support the peer delay measurement technique. A Pde-
lay_Req message transfers an accurate transmission time-stamp which is gen-
erated at a PTP port and it is sent to another PTP port.

• Pdelay_Resp Message: Upon reception of a Pdelay_Req message, a Pdelay_Re-
sp message is sent to the sending PTP port. The timing information related to
a Pdelay_Resp message can be transferred as follows:

1. A Pdelay_Resp message carries the time difference between the receipt
time-stamp of the corresponding Pdelay_Req message and the transmis-
sion time-stamp of the Pdelay_Resp message.

2. A Pdelay_Resp_Follow_Up message carries the time difference between
the receipt time-stamp of the corresponding Pdelay_Req message and the
transmission time-stamp of the Pdelay_Resp message.

3. A Pdelay_Resp message carries the receipt time-stamp of the correspond-
ing Pdelay_Req message. On the other hand, a Pdelay_Resp_Follow_Up
message transfers the transmission time-stamp of the Pdelay_Resp mes-
sage.

The following types of PTP general messages can be distinguished:

• Announce Message: This message is exchanged between different nodes in
order to build the synchronization hierarchy. In more detail, an announce
message encompasses the specifications of the sender and the corresponding
grandmaster and is used by a receiver to select the best master clock.

• Follow_Up Message: This message transfers the transmission time-stamp of
the corresponding Sync message in a two-step clock process.

• Delay_Resp Message: This message transfers the receipt time-stamp of the
corresponding Delay_Req message.

• Pdelay_Resp_Follow_Up Message: This message transfers the transmission
time-stamp of the corresponding Pdelay_Resp message where a two-step clock
process performs peer delay measurements.

• Management Message: This message is exchanged between management nod-
es and clocks in order to retrieve and update PTP data sets stored in the clocks.
The management messages, in addition to the system customization, are uti-
lized to set up and manage faulty behaviours in a system.

• Signalling Message: This message is exchanged between clocks in order to
achieve aligned communication parameters.

In short, the Sync, Delay_Req, Follow_Up and Delay_Resp messages transfer the
timing information that is required for clock synchronization and delay measure-
ment. On the other hand, the Pdelay_Req, Pdelay_Resp and Pdelay_Resp_Follow_U-
p messages carry the timing information that is required for link delay measure-
ments. The ordinary and boundary clocks supporting the peer delay measurement
synchronize to the global clock through the timing information in the Sync and Fol-
low_Up messages and the link delay.
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3.5.3 PTP Device Types

The PTP devices are:

• Ordinary Clock

• Boundary Clock

• End-to-end Transparent Clock

• Peer-to-Peer Transparent Clock

• Management Node

PTP defines two methods for measurement of the propagation delay:

1. Delay request-response method

2. Peer delay method

The ports of the ordinary and boundary clocks are capable of implementing both
delay measurement methods. However, the ports of the peer-to-peer clocks can only
support the peer delay method. On the contrary, these methods do not apply to the
end-to-end clocks.
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FIGURE 3.7: Network of PTP Clocks [60]

3.5.3.1 Ordinary Clock

In PTP, an end-device may act as an ordinary clock with either role of grandmaster,
master or slave clock. Thereby, an ordinary clock can only transmit or receive PTP
messages. If the port of an ordinary clock is in the slave state, the local clock is syn-
chronized to the corresponding master clock. In contrast, if the port’s state is master
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and the ordinary clock plays a grandmaster clock role in the network, the local clock
is synchronized to an external source of time (e.g. GPS). Figure 3.7 illustrates the
example of the PTP clock hierarchy.

3.5.3.2 Boundary Clock

In PTP, a bridge acts as a boundary clock. As denoted in Figure 3.8, a boundary clock
plays the role of master and slave clocks simultaneously depending upon the device
that it is connected to. Namely, if a boundary clock is connected to a master clock, it
acts as a slave clock whereas it is a slave clock for an attached device with the role of
a master clock. The PTP messages associated with the synchronization process are
terminated at a boundary clock and recreated with the updated header. However, a
boundary clock forwards management and non-PTP messages in a similar way to a
standard bridge.

Slave MasterPTP
traffic

PTP
traffic

Boundary Clock

FIGURE 3.8: PTP boundary clocks [60]

3.5.3.3 End-to-End Transparent Clock

To achieve accurate clock synchronization, an end-to-end transparent clock first mea-
sures the residence time for PTP event messages that traverse the clock. Then, it
updates the correction field of these messages, or follows up messages based on the
residence time. The residence time specifies the time interval that event messages
remain in a transparent clock. Therefore, a slave clock uses the correction field to
calculate the absolute time difference between its local clock and a master clock. For
measuring a residence time, a transparent clock time-stampes event messages both
on arrival and transmission based on its local clock. However, a transparent clock
does not synchronize to a master clock. Consequently, it is quite likely that the mea-
sured residence time is inaccurate due to rate differences of a transparent clock and
a master clock. The impact of inaccuracy in residence time measurement can be di-
minished through either synchronization to a master clock or using a free-running
local clock. Figure 3.9 depicts how residence time is computed in an end-to-end
transparent clock.

It is noteworthy that an end-to-end transparent clock acts as a standard bridge
for other messages. This means it forwards messages without further processing.

3.5.3.4 Peer-to-Peer Transparent Clock

A peer-to-peer transparent clock similarly to an end-to-end transparent clock en-
hances the accuracy of the clock synchronization process through correction of event
messages. However, as shown in Figure 3.10, a peer-to-peer transparent clock accu-
mulates the correction field not only based on residence time but also considering
link delay. In addition, unlike an end-to-end transparent clock which corrects tim-
ing information of all PTP event messages, a peer-to-peer transparent clock modifies
only the correction field of Sync and corresponding Follow_up messages.
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FIGURE 3.9: PTP end-to-end transparent clock [60]

A peer-to-peer transparent clock calculates the propagation delay corresponding
to the link which is located between the ingress port and the neighbouring port and
traversed by Sync messages. Since a peer-to-peer transparent clock can only attach
to the devices which are equipped with the peer delay measurement mechanism,
it can only communicate with an end-to-end transparent clock through boundary
clocks. Moreover, a master clock running on a network with peer-to-peer transpar-
ent clocks dispatches only Sync, Follow_Up and Pdelay_Resp messages which leads
to lower network load compared to the network with end-to-end transparent clocks.
A Sync message that is forwarded over a network with peer-to-peer clocks carries
the residence time and link delay associated with the forwarding path. Thereby, a
slave clock computes the clock offset concerning the master clock based on timing
information that is encapsulated in Sync or Follow_up messages. On the contrary,
in a network with end-to-end transparent clocks, a slave clock apart from Sync mes-
sages requires Delay_Resp messages to adjust the local clock. As a result, in the
latter case, the clock synchronization procedure takes more time to complete.

3.5.3.5 Management Node

A management node handles management messages through human or programmab-
le interfaces. In addition to the management role, it may also act as any of the clocks
mentioned above.

3.5.4 Synchronization in PTP systems

In PTP systems, the synchronization process is performed in two phases:

1. Establishment of the synchronization tree

2. Synchronizing local clocks to a master clock
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In a PTP domain using the best master clock algorithm, first the best source of a clock
is selected as a grandmaster clock, and then the state of each port is identified. Each
PTP port has one of the following states:

• master: the port provides the reference time for other neighbouring ports.

• Slave: the port synchronizes to a device with a master port.

• Passive: the port acts as neither a master nor a slave port.

After building the master-slave hierarchy, the grandmaster clock transmits Sync
messages periodically with correct egress timing information to the slave clocks. In
addition, transparent clocks modify Sync messages to provide timing information
for end-to-end correction.

3.5.4.1 Best Master Clock Algorithm

In PTP systems, ordinary and boundary clocks send their attributes to all devices
through announce messages. Upon reception of Announce messages, a PTP port
executes the Best Master Clock Algorithm (BMCA) to specify the clock with better
attributes and also the state of the port. For this reason, the BMCA comprises two
different algorithms:

• Data set comparison algorithm: Each clock is identified by a data set which
contains the following parameters:

– Priority1 and Priority2: A user configures these parameters through the
PTP profile.

– ClockClass: This parameter determines the traceability of the rate of the
master clock.

– ClockAccuracy: This parameter indicates the accuracy of the clock.
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– OffsetScaledLogVariance: This parameter specifies the stability of the cloc-
k.

– ClockIdentity: This parameter is used as a unique identifier for the clock.

This algorithm is used to compare the attributes of the local clock with the data
sets of other ordinary and boundary clocks which are provided by Announce
messages. Furthermore, the data set comparison algorithm compares the data
set of the current master clock, which is encapsulated in the grandmaster field
of the announce message with the attributes of the local clock. Therefore, the
port, after executing the data set comparison algorithm, can identify the clock
with better attributes.

• State decision algorithm: Using the outputs of the data set comparison algo-
rithm, this algorithm specifies the state of the port [60].

Peer-to-Peer
Transparent 

Clock-1

 Boundary Clock

End-to-End
Transparent 

Clock-1

Ordinary Clock-1
(Grandmaster)

Ordinary Clock-2
(Grandmaster 

backup)

Peer-to-Peer
Transparent 

Clock-2

End-to-End
Transparent 

Clock-2

Ordinary Clock-3
(Slave)

Ordinary Clock-4
(Slave)

GPS 
Input

Other Time 
Reference

M

S

P

  P

MS

P P

MM

P P

P P

SS

M: Port in Master State
S: Port in Slave State
P: Port in Peer State

FIGURE 3.11: An example of Master-Slave hierarchy [60]

Figure 3.11 denotes an example of a master-slave hierarchy. In this PTP sys-
tem, it is assumed OrdinaryClock-1 has an external clock source and possesses the
best data set among the clocks. Thereby, its port is in the master state. Likewise,
OrdinaryClock-2 is connected to an external clock source. However, its attributes
are not better than the ones of OrdinaryClock-1. As a result, it acts as a backup
for the grandmaster clock (i.e. OrdinaryClock-1) and its port is in the passive state.
BoundaryClock-1 has only one port in the slave state which receives timing informa-
tion from the grandmaster clock and sends this information to other devices via its
master ports. For instance, OrdinaryClock-3, OrdinaryClock-4 and Ordinary Clock-
5 adjust their local clocks using the Sync messages provided by BoundaryClock-1. In
contrast, OrdinaryClock-2 does not react to the Sync messages from BoundaryClock-
1. Since transparent clocks (e.g. peer-to-peer TransparentClock-1) do not execute
BMCA, their ports are in the passive state [66].
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3.5.4.2 Propagation Delay Measurement

In PTP systems, ordinary and boundary clocks are interconnected through separate
communication links. Therefore, slave clocks apart from the Sync messages, requires
knowledge about the propagation delay of the forwarding paths to calculate the
accurate clock offset with respect to the grandmaster clock. Formula 3.1 denotes
how the clock offset is measured:

ClockOffset = Timeslave − Timemaster − PropagationDelay (3.1)

PTP introduced two methods for propagation delay measurement:

• Delay Request-Response method

• Peer Delay Request-Response method

Delay Request-Response Method This method is designed to compute the prop-
agation delay between two PTP ports, one port in the master state and another one
in the slave state. The delay request-response method retrieves the necessary timing
information from Sync, Delay_Req, Delay_Resp and Follow_Up messages.
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FIGURE 3.12: Delay Request-Response mechanism [60]

Slave clocks synchronize to the grandmaster clock through exchanging PTP mes-
sages. As shown in Figure 3.12, the pattern of PTP message exchanges is:
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1. The master port transmits a Sync message with the time-stamp t1 to the slave
port. If the master port runs a two-step clock process, the time-stamp t1 will
be sent in the Follow_Up message [60].

2. The Sync message on the way to the slave port goes through the end-to-end
transparent clock. This transparent clock generates the time-stamps ts1 and
ts2 at transmission and receipt unit respectively. Then, it sets the residence
field of the Sync message (or the Follow_Up message in case of a two-step
clock process) with the value of ts2 − ts1. If several end-to-end transparent
clocks exist between the master port and the slave port, every transparent clock
accumulates the residence time in the residence field of the Sync message (or
the Follow_Up message in case of a two-step clock process) [66].

3. The slave port upon reception of the Sync message generates the time-stamp
t2. It also retrieves the time-stamp t1 and the end-to-end correction from the
received Sync message (or the Follow_Up message).

4. After reception of the Sync message, the slave port dispatches a Delay_Req
message while recording the egress time-stamp t3 [60].

5. The Delay_Req message on the way to the master port goes through the end-
to-end transparent clock. The transparent clock generates the time-stamp ts3
and ts4 at transmission and receipt unit respectively. Then, it sets the residence
field of the Delay_Req message to the value of ts4 − ts3 [66].

6. The master port upon reception of the Delay_Req message generates the time-
stamp t4 and sends back the Delay_Resp message with the time-stamp t4 to
the slave port.

7. The slave port upon reception of the Delap_Resp message retrieves the time-
stamp t4 and the end-to-end correction from the Delay_Resp message [60].

After exchanging these PTP messages, the slave port possesses all necessary tim-
ing information for computing the mean propagation delay and the clock offset with
regard to the master clock as follows:

t1 + to f f set + dms = t2 (3.2)

t3 − to f f set + dsm = t4 (3.3)

Where to f f set is the clock offset, dms indicates the mean propagation delay from
the master port to the slave port and dsm denotes the mean propagation delay from
the slave port to the master port.

As shown in Figure 3.13, the propagation delay is composed of the residence
time and the communication channel delay. The residence time determines the time
interval a PTP message remains in either a bridge or a switch for packet processing
and queuing purposes while the communication channel delay corresponds to the
time duration a PTP message traverses the link. Consequently, dms and dsm can be
formulated as follows:

dms = tresidencems + dlinkms (3.4)

dsm = tresidencesm + dlinksm (3.5)

Using formulas 3.4 and 3.5, the equations 3.2 and 3.3 can be written as follows:
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FIGURE 3.13: Propagation delay between master port and slave port
[66]

t1 + to f f set + tresidencems + dlinkms = t2 (3.6)

t3 − to f f set + tresidencesm + dlinksm = t4 (3.7)

If the communication channel delay from the master port to the slave port (i.e.
dlinkms ) is identical to the link delay from the slave port to the master port (i.e. dlinksm ),
the mean propagation delay can be calculated as follows :

dMeanPathDelay =
(t2 − t1) + (t4 − t3)− tresidencems − tresidencesm

2
(3.8)

Using the equations 3.6 and 3.8, the clock offset can be formulated as follows
[66]:

to f f set =
(t2 − t1) + (t3 − t4)− tresidencems + tresidencesm

2
(3.9)

The clock offset computed from the formula 3.9 is used to correct the local clock.
The equations 3.8 and 3.9 are written assuming symmetrical forwarding paths be-
tween the master port and the slave port. However, it is quite likely that the prop-
agation delay from the master port to the slave port differs from the propagation
delay of the reverse direction (i.e. slave-to-master) which leads to an error in the
computation of the clock offset [60].

Peer Delay Request-Response Method This method is used to measure the link
delay between a pair of PTP ports. Therefore, every two arbitrary ports which im-
plement the peer delay mechanism calculate the link delay regardless of forwarding
paths of Sync messages. The value of link delay is later used for end-to-end correc-
tion during clock synchronization process [60].

The link delay is measured through exchanging Pdelay_Req, Pdelay_Resp and
possibly Pdelay_Resp_Follow_Up messages. As denoted in Figure 3.14, the pattern
of PTP message exchange is:

1. Port_1 dispatches a Pdelay_Req message towards port_2 while recording the
transmission time-stamp t1.

2. Port_2 upon reception of the Pdelay_Req message generates a time-stamp t2.

3. Port_2 sends back the Pdelay_Resp message while generating a transmission
time-stamp t3. Port_2 dispatches the Pdelay_Resp message immediately after
reception of the Pdelay_Req message to mitigate the impact of the clock offset
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between port_1 and port_2. Port_2 provides the time-stamps t2 and t3 to port_1
in one of the following ways:

• the Pdelay_Resp message carries the time difference between the time-
stamps t3 and t2 (i.e. t3 − t2).

• the Pdelay_Resp_Follow_Up message carries the time difference between
the time-stamps t3 and t2 (i.e. t3 − t2).

• the Pdelay_Resp message and the Pdelay_Resp_Follow_Up message carry
the time-stamp t2 and the time-stamp t3 respectively.

4. Port_1 upon reception of the Pdelay_Resp message generates a time-stamp t4.

After exchanging these PTP messages, Port_1 obtains all necessary timing infor-
mation for the mean link delay measurement. Therefore, it calculates the mean link
delay as follows:

dMeanLinkDelay =
(t2 − t1) + (t4 − t3)

2
(3.10)

In Equation 3.10, it is assumed that the communication channel between port_1
and port_2 is symmetrical. Thereby, the difference between the propagation delay
of port_1-to-port_2 and port_2-to-port_1 results in an inaccurate measurement of the
link delay. In addition, if port_1 and port_2 are not synchronized to the grandmaster
clock, the time-stamps t1,t2, t3 and t4 are generated based on different local clocks
which leads to an error in the value of the link delay [60].

3.5.4.3 Generation of Message Time-Stamp

Since the local clocks of the slave ports are adjusted to the grandmaster clock using
the time-stamps provided by PTP event messages, the accuracy of the clock syn-
chronization highly depends on the time-stamping procedure. In PTP systems, the
time-stamping method is implemented either in hardware or software and may be
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located at any layer of the Open System Interconnection (OSI) [67]. Namely, hard-
ware time-stamping is typically realized through a dedicated hardware unit at the
physical layer, whereas a software time-stamping is implemented at higher layers
(e.g. application layer). Therefore, generation of a time-stamp at higher layers is
more susceptible to timing errors since a message traverses the lower layers before
sending over a network. In contrast, after time-stamping at the physical layer, a
message is sent out immediately. Consequently, a hardware time-stamping is more
accurate compared to software time-stamping [60].
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FIGURE 3.15: PTP timestamp generation model [60]

Figure 3.15 presents different PTP devices with associated OSI layers. As illus-
trated in Figure 3.15, there is a Medium Independent Interface (MII) between the
data link layer and the physical layer. The time-stamp unit may be placed at the
MII. However, it cannot reside below this interface [66].

3.5.4.4 Transport of PTP Messages in OSI Model

In the OSI model, PTP messages are transported as follows:

• a PTP message over UDP over IP over Ethernet

• a PTP message over Ethernet

In the first case, a UDP datagram carries a PTP message in its payload field.
Before sending a PTP message over a network, IP and Ethernet headers are also
added to the UDP datagram as denoted in Figure 3.16.

In the latter case, as shown in Figure 3.17, a PTP message comes after an Ethernet
header[68].
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3.5.5 IEEE 802.1AS Standard

The IEEE 802.1AS Standard [64] is designed to establish and maintain clock synchro-
nization among nodes that communicate over bridged and virtual bridged LANs. In
short, the IEEE 802.1AS standard offers synchronization services for time-sensitive
applications. Since the IEEE 802.1AS protocol is defined based on the IEEE 1588
standard while adding new specifications, it is also called generalized Precision
Time Protocol (gPTP). In other words, this standard enhances the PTP functionalities
through new features in order to fulfill the temporal requirements of time-sensitive
applications.

3.5.5.1 Time-Aware Bridged Local Area Network

Several nodes attached to gPTP-capable LANs form a time-aware bridged local area
network. To be more specific, several time-aware systems attached to LANs that
support gPTP services establish a gPTP domain. The time-aware systems are di-
vided into two categories:

• Time-aware end station: It is either a grandmaster clock or slave clock.

• Time-aware bridge: It receives the timing information of the grandmaster
clock, modifies it based on the residence time and the link delay and even-
tually forwards the modified information to other time-aware systems.

In gPTP systems, there are four types of links and associated delay measurement
methods:
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• full-duplex point-to-point Ethernet links

• Ethernet Passive Optical Network (EPON) [69]

• IEEE 802.11 wireless [70]

• generic Coordinated Shared Networks (CSNs) [71]
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FIGURE 3.18: Time-aware network example [64]

Figure 3.18 depicts a gPTP domain that contains all four types of links described
above. In this time-aware network, time-aware systems within the local networks
communicate with the grandmaster clock residing in the backbone network through
the access network.

In gPTP systems, each time-aware system executes the Best Master Clock Algo-
rithm (BMCA) which is very similar to PTP’s BMCA to identify the clock with better
attributes. Therefore, after the execution of BMCA, all time-aware systems within
a gPTP domain use the same grandmaster clock. For example, in Figure 3.18, the
bridge in the backbone network has the best data set, and hence it is selected as a
grandmaster clock. However, as shown in Figure 3.19 when the link between the ac-
cess network and local networks fails, the endpoint connected to the external source
of a clock (i.e. GPS) takes over a role of grandmaster and the time-aware network is
divided into two separate gPTP domains.

3.5.5.2 Synchronization in gPTP Systems

The clock synchronization in gPTP-capable LANs follows the same principles as in
PTP systems. This means a grandmaster clock transmits its timing information to
all neighbouring time-aware systems. If the immediate neighbour of a grandmas-
ter is a bridge, it corrects the received timing information based on the residence
time and the communication channel delay and then resends it to the neighbouring
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FIGURE 3.19: Time-aware network shown in Figure 3.18 after a link
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time-aware systems. The residence time is calculated locally in a bridge, while the
link delay is measured by exchanging a series of messages between two time-aware
systems.

Link Delay Measurement The link delay is measured differently for each type of
link that is used to connect time-aware systems in a bridged LAN. However, the ba-
sic principles for delay measurement are similar in all network technologies. This
means a time-aware system issues a request to a peer system and records the trans-
mission time-stamp. On the other hand, the recipient of the request notes the ingress
time-stamp and sends back the receiving time-stamp in a response message. Figure
3.20 illustrates the process of delay measurement.

The delay measurement methods for different network technologies used in time-
aware bridged LANs are described as follows:

• For full-duplex Ethernet links, the PTP peer-to-peer delay measurement mech-
anism is employed.

• For EPON LANs, the discovery procedure is applied by exchanging GATE and
REGISTER_REQ messages.

• For IEEE 802.11 wireless LANs, the IEEE P802.11v timing measurement method
is utilized.

• A CSN has its own delay measurement procedure, or it uses the PTP delay
measurement method.
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Syntonization The accuracy of clock synchronization depends on the end-to-end
correction, which is measured using the residence time and the link delay. Thereby,
the egress timing information of time-aware systems is accurate if the local clocks
which are used for time-stamping of event messages are frequency locked (syn-
tonized) to the grandmaster. However, syntonization is a timely and error-prone
process. Therefore, time-aware systems compensate the clock offsets through the
grandmaster frequency ratio.

In gPTP systems, there are two ingredients for adjusting the frequency of local
clocks to the grandmaster:

• Neighbour Rate Ratio (NRR): which specifies the frequency ratio of two neigh-
bouring time-aware systems. An NRR is measured for every port of a time-
ware system and identifies the frequency ratio of the clock of the neighbouring
time-aware system which is directly attached to that port to the frequency of
its clock.

• Cumulative Scaled Rate Offset (CSRO): which determines the frequency ratio
of the grandmaster clock and a certain local clock. A CSRO is encapsulated in
the TLV (Type Length Value) field of a Follow_Up message.

An NRR is used to compensate the rate differences in the link delay measurement
method while a CSRO is utilized to correct the clock offset to the grandmaster.

As illustrated in Figure 3.21, the CSRO is calculated from the accumulation of
NRRs. There are two major reasons behind the CSRO measurement mechanism:

1. Since NRRs are continuously measured through the peer-to-peer delay mea-
surement method, if a network encounters any changes (e.g. reconfiguration
or switching to a new grandmaster), there is no need to compute NRRs again.
Besides, upon reception of a first Follow_Up message, a time-aware system
retrieves a new CSRO. Consequently, the bridged LANs remain in a transient
state resulting from network changes for a shorter time.

2. If a time-aware system introduces an error in the clock offset measurement, it
results in an inaccurate measurement of residence time. However, the error
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in the clock offset value does not have a direct impact on the clock offset of
downstream systems.

Grandmaster Selection and Network Establishment For establishing a synchro-
nization tree, all time-aware systems within a gPTP domain execute the BMCA.
Since the forwarding spanning tree which is defined by Rapid Spanning Tree Proto-
col (RSTP) [49] does not serve all synchronization specifications, it typically differs
from the synchronization tree.

In gPTP systems to employ synchronization services, all stations and bridges
must be time-aware systems since the standard bridges cannot transport the timing
information. Each time-aware system examines whether an adjacent node is a time-
aware system or not using the peer delay method. For this reason, a time-aware
system issues a Pdelay_Req message to the neighbour node and then waits for a
response. The time-aware system identifies the neighbour node as a standard bridge
if it receives either no reply, multiple replies or the measured link delay embedded in
the Pdelay_Resp message exceeding the predefined upper-bound. The time-aware
system, however, identifies the peer node as a standard bridge, it continues sending
Pdelay_Req messages to the adjacent node periodically in order to identify the peer’s
gPTP capabilities.

3.5.5.3 Time-Aware System Model

As shown in Figure 3.22, a time-aware system is composed of:

• a time-aware application layer which is either source or recipient of timing
information.

• a media-independent layer which comprises ClockMaster, ClockSlave, Local-
Clock, logical SiteSync and at least one PortSync module. The SiteSync module
sends timing information to the logical ports, the ClockSlave and the Clock-
Master during BMCA execution. On the other hand, the PortSync modules
calculate the communication channel delay.

• a media dependent port maps the abstract MDSyncSend and MDSyncReceive
structures coming from the media-independent layer to the appropriate meth-
ods for the network technology that the port is directly attached to.

For full-duplex Ethernet ports, the PTP Sync and Follow_Up messages are ex-
changed for clock synchronization. Additionally, the propagation delay is calculated
based on the PTP peer-to-peer delay measurement method.
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For IEEE 802.11 ports, the MAC module issues a request for timing measure-
ments. The response to a timing measurement request provides all the necessary
information required for end-to-end correction.

In EPON LANs, "slow protocol" is used to transport timing information. On
the other hand, the timing information is transmitted over CSN through the same
communication infrastructure as the Ethernet LANs.

3.5.5.4 gPTP and PTP differences

The key procedures of gPTP share the same principles as the IEEE 1588 standard,
but there are several differences between gPTP and PTP:

1. gPTP only supports IEEE 802.3 as the link layer. In contrast, PTP allows differ-
ent technologies as the link-layer and also higher layers.

2. gPTP facilitates the interconnection of different networking technologies within
a single gPTP domain through a media-independent layer. For this reason, the
timing information transported across the bridges LANs is generalized, mean-
ing that it conforms to different message structures and management strate-
gies. On the contrary, PTP is limited only to a number of industrial automation
control standards such as Ethernet LANs, IPv4 [72] and IPv6 [73].

3. gPTP-capable devices are either a time-aware end station or a time-aware brid-
ge. On the other hand, PTP systems consist of ordinary clocks, boundary
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clocks and transparent clocks. A time-aware end station acts as a PTP ordi-
nary clock while a time-aware bridge may act as either a boundary clock or a
peer-to-peer transparent clock. Therefore, a time-aware system is capable of
measuring residence time and propagation delay and forwarding timing in-
formation to other time-aware systems.

4. A gPTP domain comprises time-aware systems since a non-gPTP node cannot
participate in the synchronization process. In contrast, in PTP systems non-
PTP nodes can forward PTP messages which leads to an additional jitter in
end-to-end correction measurement.

5. In Ethernet LANs, time-aware systems employ only the peer-to-peer delay
method. However, PTP-aware nodes support the end-to-end delay measure-
ment as well as the peer-to-peer delay method.

6. In Ethernet LANs, a time-aware system supports only the two-step clock syn-
chronization whereas a PTP-aware node supports one-step clock synchroniza-
tion as well as two-step clock synchronization.

7. A time-aware bridged LAN has only one active grandmaster that leads to a
single gPTP domain. On the other hand, a PTP system may consist of more
than one PTP domain.

8. In gPTP systems, the syntonization process is compulsory for time-aware sys-
tems while this process is not mandatory across PTP-aware networks. More-
over, in PTP, syntonization is a timely process.

9. gPTP’s BMCA is very similar to PTP’s BMCA in many aspects, but there are
some differences between them as follows: (a) A slave port instantly retrieves
clock information from Announce messages received from other time-aware
systems. (b) A port that is identified as a master port by BMCA goes to the
master state instantly. (c) There is no need for the uncalibrated state. (d) All
time-aware systems engage in the grandmaster selection regardless of their
gPTP capabilities.

10. gPTP provides precise specifications of interfaces that are used in the applica-
tion layer while PTP does not detail the exchange of timing information be-
tween the application layer and other layers.

3.5.6 IEEE 802.1AS-Rev Standard

The IEEE 802.1As-Rev [17] standard apart from the gPTP basic functionalities prese-
nts some modification to the IEEE 802.1AS standard. These modifications have been
done to accommodate new requirements of modern cyber-physical systems. The
major modification is associated with the number of gPTP domains that can be sup-
ported by a single time-aware network. The IEEE 802.1AS-Rev standard allows mul-
tiple gPTP domains within a time-aware network while the IEEE 802.1AS protocol
only supports a single gPTP domain in a time-aware network.

3.5.6.1 Time-Aware Networks with Multiple gPTP Domains

Figure 3.23 depicts a time-aware network with two gPTP domains: domain 0 is the
universal time domain, and domain 1 is the working clock domain. All time-aware
systems within a gPTP domain which are interconnected via physical links must
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support the same time domain. For instance, a time-aware system within the do-
main 0 cannot connect to other time-aware systems in domain 0 via the time-aware
systems that do not support domain 0. Furthermore, a time-aware system which
belongs to multiple gPTP domains has a separate gPTP instance for each time do-
main. Thereby, each gPTP domain executes the BMCA independently and has its
grandmaster clock.

3.5.6.2 Time-Aware Networks with Fault-Tolerant Structure

IEEE 802.1AS-Rev is designed for time-sensitive applications in which reliability re-
quirements are essential. To achieve reliable clock synchronization, this standard
introduces fault-tolerant synchronization trees which are used to forward timing in-
formation. Figure 3.24 illustrates a time-aware network with a grandmaster which
is part of two redundant synchronization trees. In this network, the timing infor-
mation is sent over both synchronization trees simultaneously. Therefore, in case of
failure in one of these trees, endpoints and bridges continue to receive the timing
data from the redundant synchronization tree.

Aside from the redundant synchronization trees, a time-aware network may
have two redundant grandmasters, where one acts as an active grandmaster, and
another one is a backup grandmaster. There are two operation modes for a backup
grandmaster: hot-standby and cold-standby. A backup grandmaster that operates
in the cold-standby mode does not dispatch Sync messages. Nevertheless, a backup
grandmaster synchronizes to the active clock regardless of the operation mode since
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it is always part of the active clock’s synchronization tree. In this standard, it is as-
sumed that the active and the backup grandmasters possess similar synchronization
capabilities [17].

3.6 Network Capabilities and Limitation of Virtualized Inte-
grated Systems

As described in Chapter 1, the virtualized integrated system aims to host a wide
range of modules on shared embedded resources. Besides, a system with a virtu-
alized integrated architecture can be configured so that every module can commu-
nicate with other modules via the network. The data communication can be either
synchronous (e.g. control messages), asynchronous (e.g. I/O signals), or best-effort
(e.g. video/audio messages). Furthermore, each module in such systems can have
different temporal requirements. For instance, some modules can be hard real-time,
while others require soft real-time capabilities. The virtualized integrated architec-
ture can be adapted to accommodate different industrial use cases. Any changes in
the virtualized integrated system do not have an impact on other existing modules,
especially critical ones. This feature enables a cost-efficient V&V process, incremen-
tal and modular homologation [7].

3.6.1 Required Network Capabilities of Virtualized Integrated Systems

The communication layer of the virtualized integrated system must provide the fol-
lowing capabilities:
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• heterogeneous data communication models so that modules with different re-
quirements can exchange messages over this networking infrastructure.

• robust and fault-tolerant synchronization mechanism that is used for reliable
time information distribution among different modules and eventually syn-
chronization of time-critical modules.

• fine-grained QoS management so that each traffic type achieves its timing re-
quirements (e.g. certain end-to-end delay and jitter).

• different redundancy management mechanisms to ensure reliable and robust
data communication for safety-critical modules.

• network congestion prevention mechanisms to diminish message loss and guar-
antee deterministic behaviours [7].

3.6.2 Limitations of Standard Ethernet for Virtualized Integrated Systems

Standard Ethernet with the help of IEEE Std 802.1Q introduced the VLAN concept
and different priority classes, but it is still unable to fulfill the requirements of the
communication layer of the virtualized integrated system as listed above. However,
Ethernet is used for certain domain-specific use cases through traffic profiling and
deployment of new mechanisms (e.g. credit-based shaping). Such solutions are only
applicable to a limited number of mission-critical systems. Furthermore, any new
system’s requirements can lead to an additional modification and eventually, costly
maintenance and V&V activities.

It has to be noted that the non-functional requirements of the virtualized inte-
grated system such as dependability, reconfigurability and scalability can not be ful-
filled if one of the required network capabilities that are mentioned above is not
provided. For instance, the absence of temporal isolation prevents hosting the con-
trol module, sensors and actuators on the same computational resource. This design
decision limits the scalability and reconfigurability of the overall system, which is
undesirable for the virtualized integrated architecture [7].

3.7 Deterministic Ethernet Protocols for Real-time Systems

A wide range of standards with real-time capabilities was introduced for Ethernet
networks. Each of the deterministic standards is tailored to a particular industry-
specific use case as described in Figure 3.25. The different services of the determin-
istic standards are developed at layer two of the OSI model since the fine-grained
control of data streams is only feasible at lower layers like link and physical layers.

It is clear that the deterministic Ethernet-based technologies such as Profinet RT
[74] and ARINC [75] offer real-time capabilities that are essential for mission-critical
systems, however, the majority of them are not scalable to modern cyber-physical
systems with a large number of safety-critical modules [7].

3.7.1 ARINC664

The ARINC664 standard describes the Ethernet-based network of avionic systems
which is also called Avionics Full Duplex Switched Ethernet (AFDX). AFDX pro-
vides a reliable and deterministic communication infrastructure, which is crucial for
the mission-critical functions of the avionics systems. However, in AFDX network
components including switches and end-systems are not synchronized to a global
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FIGURE 3.25: Deterministic Ethernet variants and protocols for dif-
ferent system requirements and application domains [7]

clock, but still, the transmission and reception of frames follow specific patterns.
This feature allows system designers to calculate a maximum latency for every mes-
sage delivery. Moreover, for scalability purposes, AFDX networks have a cascaded
star structure.

3.7.1.1 QoS in AFDX Networks

In avionic networks, every message irrespective of its type must be delivered within
a guaranteed delay. Consequently, there is only one class of traffic in an AFDX net-
work which is called the guaranteed service and characterized with the bounded
end-to-end latency. To achieve the bounded message delivery delay, guaranteeing a
specific bandwidth of links that form the forwarding routes is inevitable.

3.7.1.2 Virtual Link

In an AFDX network, a logical unidirectional connection between a talker and one
or more listeners is called Virtual Link (VL). Every VL is identified by Bandwidth
Allocation Gap (BAG) and jitter. The BAG specifies the minimum time duration that
is required to send two frames from a particular VL consecutively. This implies that
in an AFDX network, the traffic shaper only permits the transmission of one frame
during every BAG interval. Figure 3.26 depicts the BAG and jitter of an example
Virtual Link.

In each frame, the destination MAC address represents the Virtual Link. The
Virtual Link header comprises the constant field and the Virtual Link Identifier is
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FIGURE 3.26: Jitter Effect for an example data flow [75]

illustrated in Figure 3.27. All end-systems which reside in the same AFDX network
must have the same constant field.

48 bits

Client data field
Constant field

32 bits
Virtual link identifier

16 bits

xxxx xx11 xxxx xxxx xxxx xxxx xxxx xxxx

FIGURE 3.27: Virtual Link Identifier format [75]

3.7.1.3 Redundancy Concept in AFDX Networks

In avionic networks, end-systems transmit frames through two or more redundant
and disjoint networks. Therefore, the messages are delivered to the receiving end-
systems regardless of any failure occurring in one of the redundant networks.

Per VL
End System
Transmission

Per VL
End System
Reception

Network B

Network A

FIGURE 3.28: Network redundancy mechanism in AFDX [75]

In an AFDX network, the redundancy concept is defined for each Virtual Link
as denoted in Figure 3.28. This means a sender first adds a sequence number field
to every frame and then sends out the frame over multiple independent networks.
The sequence number of a specific VL is incremented for each successive frame. On
the reception side, an end-system examines the sequence number field of the frame
in order to ensure that the frames are delivered in the right order. In addition, a
receiving end-system accepts the first frame with the expected sequence number
and discards the successive replicated frames.
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3.7.1.4 Packet Switching over AFDX networks

Upon reception of a frame, each switch in an AFDX network first enforces differ-
ent filtering and policing rules regarding traffic rate, frame size, integrity and valid
destination addresses. The switch also checks whether the incoming frame carries a
valid sequence number and destination MAC address (i.e. VL field). After applying
filtering and policing principles, the switch sends out the frame through the proper
egress port [75].

3.7.2 Time-Triggered Ethernet

In standard Ethernet, an end-system can transmit frames over the network at any
given time, but the frames are only served based on the best effort principles. This
event-triggered message delivery leads to non-deterministic end-to-end delay and
jitter. Therefore, SAE AS6802 Time-Triggered Ethernet (TTEthernet) [76] is intro-
duced to provide real-time capabilities that are key enablers for mission-critical sys-
tems over Ethernet networks. In short, TTEthernet provides a highly reliable and de-
terministic communication infrastructure for safety-critical applications in the con-
text of automotive, aerospace and industrial control systems. TTEthernet achieves
this goal by supporting the time-triggered message transfer where frames are sent
at pre-determined instances of time. Static transmission schedule tables are used
to support contention-free time-triggered transfers. These tables are generally com-
puted offline using appropriate scheduling strategies.

The time-triggered transfer necessitates a global reference time in order to of-
fer time-triggered services such as temporal isolation and fault detection. Hence,
TTEthernet proposes a fault-tolerant and robust synchronization strategy for build-
ing and sharing the global notion of time among different network components, in-
cluding end-systems and switches. The TTEthernet synchronization method at the
network initialization phase synchronizes the local clocks of network components to
the global clock. It also guarantees the synchronization of the local clocks during the
network’s operational mode. For this reason, the synchronization strategy reestab-
lishes the synchronized global time in case of loss of the synchronization among the
network components. In addition, the synchronization algorithm achieves a high-
precision global time by compensating the transmission delay of the synchronization
messages [76].

3.7.2.1 TTEthernet Services

The TTEthernet network supports the following services:

Integrate traffic with different level of time criticality. The primary benefit of
TTEthernet is the feasibility of time-triggered and event-triggered communication
on a single networking infrastructure. Namely, TTEtherent permits the applications
with varying timing constraints to exchange messages over the same physical net-
work [77].

Figure 3.29 denotes the relationship between different layers of the OSI paradigm
and TTEthernet. As Figure 3.29 shows, the packets from higher layers such as TCP
and IP can be encapsulated as TTEtherent frames without any changes in packet’s
payload. The TTEthernet Protocol Control Frame (PCF) has its own format and is
used to establish and keep the synchronized global time [76].

There are three different types of traffic in TTEtherent networks:
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FIGURE 3.29: Relationship between different layers of OSI paradigm
and TTEthernet [78]

• Time-Triggered: A sending end-system dispatches TT messages at pre-plan-
ned time slots where TT messages have collision-free access to the network
resources such as physical links. As a result, the fixed transmission delay and
low jitter are guaranteed for TT communication. The transmission schedules
of TT messages are defined statically based on the network topology, and the
specification of the data flows that are sent over the network. Therefore, any
modification in a network such as adding a new data flow requires recalcula-
tion of transmission tables. This feature may limit the scalability of TT commu-
nication. However, this issue can be addressed through incremental schedul-
ing schemes.

• Rate-Constrained: Rate-constrained (RC) communication which is defined in
ARINC664 part 7 offers a bounded transmission delay through an adequate
bandwidth allocation. Unlike TT communication, RC transfer does not require
the global time base to limit latency. Instead, it specifies the minimum time
interval between two successive messages belonging to the same RC flow (i.e.
BAG). Therefore, if an end-system sends RC messages at a higher rate where
the gap between successive message arrivals is less than the flow’s BAG, mes-
sages will be dropped by a receiver. The RC transfer, however, does not rely
on the global clock for the guaranteed performance, but it requires the com-
putation of the upper bound of the transmission delay based on the network
characteristics. Therefore, the parameters of an RC transfer (e.g. BAG and
maximum end-to-end delay) must be recalculated in case of a network modi-
fication.

• Best-Effort: Unlike TT and RC communication, this class of traffic does not
have timing requirements such as bounded latency and low jitter. Instead, the
transmission of BE frames follows the best-effort communication paradigm,
meaning that a BE message is served when the required network resources are
available; otherwise, it is dropped. Consequently, the BE communication has
a non-deterministic transmission delay and packet loss rate [78].
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Transparent Synchronization. TTEthernet is also known as a transparent synchro-
nization standard since it allows event-triggered (e.g. RC and BE messages) and
time-triggered communication on the same physical network. In a TTEthernet net-
work, the PCF messages which are used to transfer control data such as timing in-
formation have the highest class of service, meaning that they are the first ones to be
served by network components even in the presence of other traffic types (e.g. TT
and RC traffic).

Due to the distributed and fault-tolerant nature of the TTEthernet synchroniza-
tion mechanism, multiple devices act as PCF generators. The PCFs are delivered to
receivers over a multi-hop switched network. Thereby, they are received at desti-
nations with the transmission delays corresponding to their forwarding routes. For
this reason, each device that participates in the PCF delivery puts the transmission
delay in a particular field of the PCF before dissemination.

The dispatch order of PCFs has high importance in the synchronization process,
but it is quite likely that PCFs are not received in the same order as their dispatch
sequence. The devices calculate a parameter called the permanence point in time to
reconstruct the dispatch order of PCFs. The static maximum transmission delay of a
PCF is the first ingredient of the calculation of the permanence point in time. After
that, the permanence point in time can be calculated as follows:

Permanence Point in Time = Receive point in time + Actual Transmission Delay
(3.11)

The permanence point in time permits retrieving the local clock of other devices
as well as the dispatch order of PCFs [76].

Clock Synchronization The TTEthernet clock synchronization is implemented in
two steps. First, the devices with the role of Synchronization Master (SM) send In-
tegration Frames (IN) which are a specific type of PCF towards the Compression
Masters (CM). As a next step, the CMs forge and forward a new IN frame with the
average value of the relative arrival times of incoming IN frames. The role of each
device is selected based on the system design specification [78]. The simplified pro-
cess of the TTEthernet synchronization is shown in Figure 3.30.
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FIGURE 3.30: Simplified TTEthernet two-step synchronization mech-
anism [78]
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TTEthernet Startup/Restart. For either start or restart of a TTEthernet network, an
SM first dispatches a certain type of PCF messages that is called Coldstart frame (CS)
when it is unable to synchronize to the global time within the predefined time inter-
val. The CMs then broadcast the received CS frames to SMs except for the sender
of the CS frame. An SM, upon reception of the CS, first waits for the predefined
time interval and then sends a Coldstart Acknowledge frame (CA) to the CMs. As a
next step, the CMs broadcast the CA frame to other SMs. This process is concluded
by initiating the synchronization procedure from the SMs upon reception of the CA
frame and after the fixed waiting, duration [78].

Scalable Fault-Tolerance For fault-tolerant purposes, the TTEthernet synchroniza-
tion mechanism mitigates different types of faulty behaviours through active redun-
dancy.

The faulty behaviour that may happen while devices communicate over the TTEth-
ernet network can be categorized as follows:

• Fail-Silence Failure Mode: It happens when a device stops dispatching mes-
sages.

• Fail-Omission Failure Mode: It happens when a random number of messages
are not sent/received by a device.

• Fail-Inconsistent Failure Mode: It happens when a message from a certain
sender is received as a valid packet by some receivers whereas it is recognized
as a wrong message by other receivers.

• Fail-Inconsistent-Omission Failure Mode: It happens when a faulty device
perceives some incoming messages as invalid and other received frames as
valid although all those messages are, in fact, correct.

• Fail-Arbitrary Failure Mode: It happens when a device dispatches messages
from random egress ports at arbitrary time slots and with arbitrary payload.

TTEthernet tackles the mentioned failure modes via two failure hypotheses:

1. Single-Failure Hypothesis: TTEthernet network only masks a single failure, ei-
ther an end-system with a fail-arbitrary failure or a switch with a fail-inconsiste-
nt-omission failure.

2. Dual-Failure Hypothesis: TTEthernet network masks two fail-inconsistent-omis-
sion failures in any two devices, including end-systems and switches.

It is noteworthy that TTEthernet switches act as fault-containment boundaries.
The TTEthernet switches, in addition, may contain a central bus guardian function
that changes the faulty behaviour of a set of end-systems from the fail-arbitrary to
the inconsistent-omission failure mode and thus alleviates the effect of these faulty
end-systems. Furthermore, TTEthernet addresses an inconsistent failure through
two disjoint forwarding paths rather than three independent routes [76].

3.7.3 Audio Video Bridging Protocol

Over the last decades, Ethernet technologies have been widely deployed in a wide
range of networks such as LANs and WANs since they fulfill different needs of vari-
ous stakeholders from the high demand for bandwidth to the seamless connectivity
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between the vendor-specific devices [79]. Ethernet due its maturity and efficiency is
seen as a promising communication infrastructure for real-time systems. However,
it does not offer temporal properties that are essential for real-time systems. To ben-
efit from the Ethernet advantages, the Audio/Video Bridging (AVB) [13] task group
introduced a series of protocol extensions to the IEEE 802.1 Ethernet standard which
offers deterministic transmission of Audio and Video (AV) traffic over Ethernet net-
works [80].

The AVB standard defines the following procedures to achieve bounded latency
and low jitter transmission of AV traffic:

• IEEE 802.1AS: is used to synchronize time-sensitive applications. This stan-
dard is thoroughly described in Section 3.5.5.

• IEEE 802.1Qat [81]: is used to set up forwarding paths for AV streams through
resource allocation.

• IEEE 802.1Qav [82]: specifies AVB queuing and scheduling schemes.

• IEEE 802.1BA [83]: includes three IEEE 802.1 protocols. These protocols deter-
mine the number of AVB procedures and configuration profiles [84].

3.7.3.1 Stream Reservation Protocol

IEEE 802.1Qat is also known as Stream Reservation Protocol (SRP) and enables on-
demand resource allocation for a certain stream across a bridged LAN. This protocol
defines methods that are used to identify the necessary resources by AV streams and
maintain the reserved resources during AV traffic transmission. In short, SRP allows
the establishment of AV streams through registration and de-registration.

SRP uses three different signalling protocols for end-to-end stream establish-
ment: Multiple MAC Registration Protocol [85] (MMRP) which is used for registra-
tion of talkers communicating over an Ethernet LAN, Multiple VLAN Registration
Protocol [85] (MVRP) which is used for registration of tagged streams and Multi-
ple Stream Registration Protocol (MSRP) which is used by talkers and listeners for
signaling purposes. MSRP facilitates registration and de-registration of AV streams
in a similar way to MMRP and MVRP, but it also allows dynamic modifications of
registered information, unlike MMRP and MVRP.

MSRP uses five types of declaration (i.e. Talker Advertise, Talker Failed, Listener
Ready, Listener Ready Failed and Listener Asking Failed.) for end-to-end stream
establishment. A talker announces the specification of the stream that it aims to
dispatch through a Talker Advertise declaration. The bridges, upon reception of a
Talker Advertise declaration, register the associated information and forward the
declaration to other nodes. On the other hand, the Talker Advertise declaration
that arrives at a listener will be registered. A listener replies this declaration with
a Listener Ready declaration if it wants to receive the declared stream. The bridge
utilizes the StreamID embedded in the Listener Ready declaration to find the port
where the associated Talker Advertise is registered. Then the bridge sends back
the Listener Ready declaration to the Talker from that port while it allocates the
necessary resources for the declared stream and adjusts its filtering and queuing
schemes accordingly.

When any Bridge between a talker and a listener can not allocate the required
resources (e.g. bandwidth) defined in the Talker Advertise declaration, it forwards
a Talker Failed instead of the Talker Advertise declaration. Likewise, if there are not
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enough resources for the stream, a Listener Asking Failed declaration is sent back to
the Talker instead of the Listener Ready declaration.

The Listener Ready Failed declaration is used where at least one of the listeners
informs the Talker that it can not provide the required resources through a Listener
Asking Failed declaration while other listeners send back a Listener Ready meaning
that it has the necessary resources for the stream. The bridge which receives Lis-
tener Asking Failed and Listener Ready declarations on different ports will forward
a Listener Ready Failed to the Talker.

It is noteworthy that MSRP is also used to transport Stream Reservation (SR)
class specifications among stations in bridged LANs. The nodes which share the
same SR class specification form an SRP domain [81].

3.7.3.2 Forwarding and Queuing Enhancements for Time-Sensitive Streams

IEEE 802.1Qav is also known as Forwarding and Queuing Enhancements for Time-
Sensitive Streams (FQETS) and specifies shaping and queuing schemes for AVB
streams so that AVB-aware nodes can guarantee bounded end-to-end latency and
low jitter transmissions of AV streams. More specifically, this standard defines the
classification of AVB streams and also QoS characteristics for each class of AVB
stream. In addition, FQETS shapes traffic in a way that AVB traffic which has re-
served resources prioritizes over non-AVB traffic [82].

In AVB networks, traffic can be classified as follows:

• SR class A: is associated with the highest priority traffic in AVB networks. The
transmission of SR class A traffic over seven hops may take at worst two mil-
liseconds. To measure end-to-end latency, MSRP utilizes timing information,
including the residence time and the link delay provided by IEEE 802.1AS.

• SR class B: is associated with the second-highest priority traffic in AVB net-
works. The transmission of SR class B traffic over seven hops may take at
worst 50 milliseconds.

• Best-effort traffic: is associated with the lowest priority traffic in AVB net-
works. Any traffic that does not belong to the AVB SR classes, is classified as
best-effort traffic.
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FIGURE 3.31: An example of a queuing scheme in an AVB-aware de-
vice [86]
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At each port, each traffic class has its dedicated queues. Figure 3.31 denotes an
example of a queuing scheme in an AVB-aware device. Therefore, upon reception of
traffic, frames are put into different egress queues based on their priority values that
are embedded in the Class-of-Service (CoS) field. It is quite likely that traffic arriving
from non-AVB networks has a CoS field that maps to the AVB SR classes, while
representing non-AVB traffic. The priority value of every frame is regenerated to
mitigate this issue, before transmitting traffic over AVB networks. After enqueuing
frames, a transmission selection algorithm is used to decide which egress queue is
eligible to send out a frame [84].

Each egress port employs the credit-based shaper algorithm to shape outgoing
traffic so that burstiness of AVB traffic does not lead to the starvation of lower pri-
ority traffic (i.e. best-effort traffic). Using the credit-based shaper, frames associated
with a specific stream are placed into the queue serving the stream’s traffic class.
The enqueuing process is performed based on idleSlope. The idleSlope defines the
maximum percentage of a port’s bandwidth which is assigned to a particular queue
associated with the specific traffic class. Therefore, the idleSlope specifies at which
rate frames are put into the correct egress queue. It is noteworthy that the rate of
enqueuing frames associated with a specific stream, can not exceed the reserved
bandwidth for that stream. On the other hand, the credit-based shaper limits the
transmission rate of frames residing in the queue, which is selected by the transmis-
sion selection algorithm based on sendSlop. SendSlop determines the rate at which
the credit decreases while frames are sent out from egress queues.
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FIGURE 3.32: Credit-based shaper operation-Scenario 1 no conflicting
traffic [82]
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Figures 3.32-3.34 depict how the credit-based shaper operates. In the first sce-
nario, it is assumed that a transmission decision is granted for an AVB frame as soon
as it is placed into the egress queue since the higher priority queues are empty. As
shown in Figure 3.32, the credit decreases with respect to sendSlope while the frame
is sent out. The credit recovers to zero at the rate of idleSlope after finishing the
frame transmission so that other frames can be sent out. In the second scenario,
an AVB frame arrives at the egress queue when another frame is in transmission.
As shown in Figure 3.33, the credit increases with respect to idleSlope until the port
grants transmission for the AVB frame. The accumulated credit decreases during the
transmission of the AVB frame. Since the credit is more than the amount required
by the AVB frame and there are no other frames waiting for transmission, the credit
decreases to zero after finishing the frame transmission. In the last scenario, as il-
lustrated in Figure 3.34, three AVB frames are placed into the egress queue, and the
credit increases with respect to idleSlope until another frame is in transmission. The
port starts transmitting AVB frames as soon as the transmission of the conflicting
frame is completed. Since the first two frames consume all accumulated credit, the
transmission of the third frame starts when the credit recovers to zero [82].
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3.7.4 Time-Sensitive Networking

Highly reliable, scalable and deployable networks with strict temporal constraints
are inevitable for modern cyber-physical systems. Due to widespread usage and suc-
cess of Ethernet technologies, the Time Sensitive Networking [11] task group intro-
duces a series of protocol extensions to the IEEE 802.1 Ethernet standard [43]. These
standards provide real-time capabilities and performance improvements. The con-
vergence of synchronous, asynchronous and best-effort traffic on a single network is
the key aspect of TSN. TSN standards are built on top of the Audio Video Bridging
(AVB) protocol suites [13]. AVB is specified to provide guaranteed latency and fixed
jitter for the audio and video transmission by reserving bandwidth throughout the
path from a sender to a receiver. Despite the success and widespread use of AVB in
automotive networks, AVB is not able to fulfill the requirements of mission-critical
applications like strict timing constraints [87].

The main goal of TSN is to focus on the uncovered areas in AVB sub-standards.
To achieve this, the TSN task group develops a fault-tolerant synchronization mech-
anisms, a time-sensitive transport protocol and enhancement mechanisms for the
Stream Reservation Protocol. The task group also introduces a robust redundancy
procedure to prevent traffic loss in case of any failure at the different levels of the
network. Furthermore, TSN includes time-aware scheduling and policing mecha-
nisms. The features as mentioned above lead TSN to be a real-time capable, reliable
and interoperable standard, which is suitable for different industrial automation and
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control networks (e.g. railway, avionics and automotive).

3.7.4.1 Enhancements for Scheduled Traffic

The Credit-Based Shaping (CBS) mechanism of AVB is unable to fulfill timing con-
straints of Time-Triggered (TT) streams, while time-insensitive traffic is transported
over the same physical infrastructure. The CBS is applied to a minimum of two AVB
traffic classes (i.e. SR class A and B) to avoid burstiness of AVB streams and star-
vation of lower priority traffic. This scheduling scheme is non-preemptive, which
means the lower priority traffic can interfere with TT flows which have strict timing
requirements and block their transmission. Therefore, CBS is unable to offer deter-
ministic end-to-end latency and tight jitter for the mission-critical applications [87].

Time Aware Shaping (TAS) introduced in IEEE 802.1Qbv [12] is developed to re-
solve these problems of the AVB shaping mechanism. TAS is a preemptive schedul-
ing method in which scheduled traffic always preempts lower priority traffic in or-
der to meet its transmission schedule. In non-deterministic networks, delivery delay
is estimated using analytical methods like network calculus [88, 89, 90, 91] and the
trajectory method [92, 93, 94, 95]. However, transmission schedules for TT traffic
in TSN networks are computed offline based on the network topology and the TT
stream characteristics [79]. Thereby, TSN uses a centralized control and configura-
tion mechanism to solve the scheduling problem, which is different from the hop-
by-hop and decentralized reservation approach of AVB.

Similar to regular Ethernet devices, each port of a TSN-aware device has a num-
ber of queues proportional to the number of supported priorities. The higher prior-
ity queues are considered as TT queues, and the remaining queues follow the same
queuing scheme as the AVB-aware devices. It means that few queues are assigned
to AVB classes depending on the number of AVB stream classes supported by the
AVB-aware device. The rest is dedicated to the Best Effort (BE) traffic that does not
have any strict temporal constraints [96].

CBSAVB classes
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BE traffic
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Time Aware shaper

Scheduled traffic
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Transmission
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FIGURE 3.35: Queuing and scheduling scheme of an 802.1Qbv-aware
device [12]

The time-aware shaper is defined based on the Gate Control List (GCL) concept.
In this approach, all TT flows are placed into the queues dedicated to TT traffic and
the GCL is applied to egress port queues unlike other TT protocols (e.g. TTEther-
net) that place each TT flow in a separate buffer and apply a schedule to each buffer
according to its requirements. This is the main reason TAS requires knowledge of
the device queue configuration in addition to requirements of TT streams. The GCL
is specified for each egress port and defines at each instant of time which queue is



58 Chapter 3. Ethernet Technologies

eligible to transmit traffic. TSN extends the set of traffic types in AVB with an ad-
ditional TT traffic type. This traffic type is specified for applications that have strict
timing requirements, and despite AVB stream classes do not allow interference with
less demanding applications. The TT traffic type is a prerequisite for deterministic
networks with hard real-time applications, and it is transmitted periodically. There-
fore, each flow in TSN networks is assigned to one of the following types: TT traffic,
AVB classes or Best Effort (BE) traffic. In TSN, the traffic type assignment strictly
depends on 802.1Qbv-capable switch configurations that specify the characteristics
of incoming TT streams [79].

In an 802.1Qbv-capable device, first, each incoming frame is classified as a spe-
cific traffic type using different priority metrics (e.g. Priority Code Point (PCP) in
802.1Q header) and then based on its traffic type it is placed into the correct egress
port’s queue.

At each egress port, to select a frame for transmission, first, the queues whose
gates are enabled are specified using GCL. If more than one queue is eligible to
transmit traffic, a queuing scheme and transmission selection algorithm like CBS
specifies which queue can transmit a frame. It has to be noted that when the gate of
a TT queue is open, all other queues must be blocked to provide temporal isolation
and deterministic latency for the scheduled traffic. In contrast, the gates of AVB
and BE queues can be enabled at the same time, since these traffic types do not
require freedom of interference from other queues. A TSN-aware device acts as a
standard Ethernet element if the gates of all queues are open permanently. Figure
3.35 presents the queuing configuration and the scheduling scheme of an 802.1Qbv
capable device.
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FIGURE 3.36: An example of transmission scheduling in an 802.1Qbv-
aware switch [79]

For a better understanding of TAS operation, Figure 3.36 illustrates a scenario in
which the 802.1Qbv-capable switch receives the AVB traffic for a while. While the
AVB frames are still arriving at the switch, it starts receiving a TT flow and BE traffic
simultaneously from different ingress ports but destined to the same egress port.
The AVB stream is also directed to the same egress port as the TT and BE traffic. As
Figure 3.36 depicts, the AVB frames would be sent out until the time slot scheduled
for the TT frames starts. The transmission of the AVB stream is possible when the
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control gate of the AVB queue is open based on the GCL, and the queue’s credit is
zero or positive according to CBS.

As shown in Figure 3.36, at t0, the credit of AVB queue is positive, and the trans-
mission of AVB frame 1 starts. The transmission of AVB frame 1 stops at t1 as soon as
the TT time slot starts. The credits of the AVB queue are frozen during the TT trans-
mission window. However, the reception of AVB frames continues during the TT
scheduled slot. The transmission of AVB frame 1 resumes at t2 while the BE traffic is
waiting for transmission in the lower priority queue. At t3, the transmission of AVB
frame one finishes but the credits of the AVB queue become negative. Therefore, the
AVB frame two, which was enqueued during the TT time slot, cannot be transmit-
ted. In addition, no TT flow is scheduled for the time slot starting at t3. Hence, BE
traffic transmission starts while the AVB queue credits are accumulating. The trans-
mission of BE frame 1 completes at t4 and at the same time, the transmission of AVB
frame 2 starts [79].

3.7.4.2 Time-Based Ingress Policing

In fully deterministic networks, each device must know the arrival time of TT flows
at ingress ports so that it can police and transmit frames based on the predefined
schedule tables. The TSN task group develops IEEE 802.1Qci [25] to achieve this
goal. The property, as mentioned earlier, is addressed with the time aware Access
Control List (ACL) and ingress policing. The time-based ACL grants the pass/fail,
Maximum Transmission Unit (MTU) size and target queue decision for each incom-
ing TT frame at each instant of time. An 802.1Qci-capable device uses time as a
correctness criterion for filtering and policing TT traffic. Same as the predefined TT
schedule tables in IEEE 802.1Qbv, the time aware ACL is also defined offline. The
time-based ACL must also be aligned with the GCLs of Ethernet ports. For instance,
a TT frame belonging to a particular TT stream could be successfully transmitted, if
the time aware ACL grants pass permission, and at the same time there is an allo-
cated time slot for the frame in the GCL of the egress port.

The key benefit of time-based ingress policing is to protect an 802.1Qci capable
device from a wide range of network attacks like man-in-the-middle attacks and
babbling idiot faults. This sub-protocol makes the device more robust by blocking
TT frames arriving outside their scheduled windows. Therefore, the possibility of
sending TT frames in arbitrary order can be eliminated. It also results in the op-
timized usage of network and switch resources like link bandwidth and memories
[97].

3.7.4.3 Redundancy Management in TSN

The TSN task group introduces the IEEE 802.1CB [28] standard to improve robust-
ness and reliability of stream transmissions, especially for safety-critical traffic. A
sender or a relay system (e.g. switch) with FRER capability, first generates and en-
codes a sequence number for each outgoing frame. Then it forwards the multiple
copies of the frames towards the destination over multiple routes. Hence, in case of
any failure, the frame is delivered to the destination via the redundant path. There-
fore, the FRER mechanism decreases the probability of traffic loss considerably. In
TSN, the IEEE 802.1Qca [98] protocol is deployed to configure the alternative routes
for each stream. Besides, to avoid network overloading, the duplicated frames are
eliminated either at intermediate relay systems or at a receiver.



60 Chapter 3. Ethernet Technologies

Upper Layer

Sequencing function

Stream splitting

Individual recovery

Sequence encode / decode

Stream identification

Lower Layer

FIGURE 3.37: FRER functions

As shown in Figure 3.37, FRER consists of five different functions. Depending
on the packet processing direction in a FRER-capable device, each function acts dif-
ferently.

Sequencing. This module generates a sequence number for every frame passed
down from the upper layer to the physical layer. In contrast, for each frame passed
up in the protocol stack, the sequencing function examines the sequence number of
a frame and discards the duplicated frames whose copies have been received before.

Stream Splitting Function. This function makes zero, one or more copies of every
frame passed down to the physical layer according to the stream split table. Each
copy of a frame will be transmitted to the destination via separate paths.

Individual Recovery Function. It checks the sequence number of every frame pas-
sed up in the protocol stack and eliminates the frames whose duplicates have been
received previously. This function and sequencing provide similar services, but indi-
vidual recovery functions can apply to multiple ports while the sequencing module
is port specific. It is good to note that the recovery module will process a frame only
if the integrity of the frame is verified by the lower layer (e.g. physical layer) validity
checks.

Sequence Encode/Decode. This function encodes a sequence number generated
by the sequencing function into the frame passed down for transmission. In the re-
ception direction, the function derives the sequence number from the frame passed
up in the protocol stack. FRER introduces the Redundancy tag (R-TAG) as an exam-
ple of sequence number formatting. R-TAG comprises of three parts: 1) EtherType
which has the value F1C1. 2) Reserved field which occupies the second two octets
of R-TAG and is reserved for future revisions of IEEE 802.1CB. 3) Sequence number
field which is encoded in the last two octets of R-TAG. Figure 3.38 illustrates the
format of the R-TAG.

The encoding mechanism must be known to all relay systems and end-systems.
Otherwise, they cannot decode the sequence number from incoming frames.
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FIGURE 3.38: R-TAG header structure

Stream Identification Function This function specifies a stream identifier for ev-
ery frame received either from the physical layer or the upper layer. The stream
identifier determines to which stream the frame belongs and how it should be pro-
cessed by other FRER functions. The four different stream identification approaches
are listed in Table 3.2. The stream identification functions can also overwrite some
of the parameters of the frame’s header to reflect the stream identifier.

Stream Identification functions Stream Identifier

Null Stream identification Dst MAC address, VLAN ID

Source MAC and VLAN Src MAC address, VLAN ID

Destination MAC and VLAN Dst MAC address, VLAN ID

IP octuple
Dst MAC address, VLAN ID
IP src address, IP dst address

IP next protocol, src port, dst port

TABLE 3.2: Stream Identification Functions

Depending on the network design, the FRER functions can be placed in the pro-
tocol stack of the egress port in different orders. To be more specific, each port of a
device selects different FRER functionalities. Due to this flexible design, the FRER-
capable devices can inter-operate with network elements that are unaware of FRER.
Furthermore, FRER protects TSN networks from faulty behaviours like a stuck trans-
mitter. To detect such errors, a network element with FRER capability saves the his-
tory of a stream’s sequence numbers. Using this information, it discards frames with
a sequence number different from the expected value [28].
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FIGURE 3.39: Sequence generation and recovery functions [28]
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Figure 3.39 depicts how FRER operates. The sender (i.e. the leftmost box) gen-
erates a sequence number and embeds that into the outgoing frames. At the next
nodes where two copies of the frames are received, the duplicate frames are elimi-
nated while the first copy of the frames is forwarded. The receiver (i.e. the rightmost
box) passes up the first copy of the frame to the higher layers in the protocol stack.
However, it discards the duplicate frame. In this setup, frames are delivered to the
receiver regardless of any single link failures.

3.7.4.4 Stream Reservation Protocol Enhancements and Performance Improve-
ments

IEEE 802.1Qcc [26] introduces improvements to mechanisms and managed objects
which were used to reserve network resources for time-sensitive applications. For
configuration of TSN features, first talkers and listeners exchange their specification
and then all bridges that are part of the forwarding routes between talkers and lis-
teners are configured accordingly.

The User / Network Interface (UNI) is one of the significant pillars in TSN con-
figuration models. The talkers and listeners reside at the user side of the interface.
On the other hand, the bridges that participate in the forwarding frames are on the
network side of the interface. Every talker declares its stream characteristics to the
network. On the other hand, the network configures the bridges based on its knowl-
edge about the network structure and the stream specifications. The network also
notifies the user about the status of the establishment of the stream.

There are three different configuration models to configure TSN features in users
and bridges:

• Fully distributed model: Each Talker distributes its stream specifications to
other network nodes. Since there is no centralized network configuration ele-
ment in this model, the configuration information is directly forwarded to the
bridges that are part of the forwarding path for the given stream. Every bridge
configures its resources using the received information which may not include
the details about the whole network. This configuration model can be used to
set up parameters associated with the credit-based shaper.

• Centralized network / distributed user mode: Talkers declare their stream
characteristics to the network. However, in this model, unlike the fully dis-
tributed model, the user requirements are sent to a Centralized Network Con-
figuration (CNC) element for further processing. The CNC also gathers infor-
mation on network structure and bridge capabilities through a network man-
agement protocol (e.g. NETCONF). Therefore, the CNC knows the entire net-
work and can use this information for the configuration of TSN features such
as time-aware shaper, frame preemption and FRER. In short, the CNC facili-
tates computation of TSN features which require more resources compared to
a model where all bridges participate in the configuration process. After com-
puting the configuration parameters, the CNC configures the bridges using a
network management protocol.

To use network resources more efficiently, the bridges that are attached directly
to the end stations direct the user requirements to the CNC instead of forward-
ing the information within the network.
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• Fully centralized model: A Centralized User Configuration (CUC) element
first gathers information on user capabilities and requirements and then con-
figures end stations accordingly. This is different from the above models where
talkers and listeners exchange the configuration information over the network.
However, the fully centralized model in a similar way to the models above uses
the CNC to obtain bridge capabilities and configure the bridges. This configu-
ration model, due to its architecture is beneficial for TSN networks where end
stations are configured using a vast number of parameters [26].

In TSN networks, configuration data is encoded using either YANG [99] or TLV
fields and is transported through different management protocols such as NET-
CONF [100].

3.7.4.5 YANG

YANG (Yet Another Next Generation) [99] aims to model data which is transported
over the network using network management protocols, especially NETCONF. Na-
mely, YANG specifies data models for different operations of network management
protocols such as state data, configuration data and notifications. In YANG, the hier-
archical data is modelled as a tree where each node may have specific conditions for
its existence or a set of values that it can get. Additionally, YANG defines data mod-
els as either modules or submodules where modules may consist of definitions from
other submodules or external modules. Each YANG module defines a namespace
which acts as a Uniform Resource Identifier (URI) [101].

In YANG, apart from the built-in types and standard modules, user-defined
types and extensions can also be added. Moreover, the nodes in the hierarchy with
similar characteristics can be grouped [99]. Since data used by the network manage-
ment protocols is encoded in XML or JSON, a YANG module that contains the data
model of the network management features can be converted to XML in a way that
all nodes engaged in configuration process understand each other accurately [26].

An example of a YANG module that corresponds to a NETCONF event notifica-
tion and its XML representation are presented in Figure 3.40 and 3.41 respectively.
As shown in Figure 3.40, the event module specifies a namespace which is used in
the XML representation for referencing the module [102].

module event {
namespace "http: // example.com/event";
prefix "ev";
container event {

leaf event -class {
type string;

}
anyxml reporting -entity;
leaf severity {

type string;
}

}
}

FIGURE 3.40: A YANG model for event notification
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<notification xmlns="
urn:ietf:params:netconf:capability:notification:1
.0">

<eventTime >2019 -05 -17 T10:00:00Z </eventTime >
<event xmlns="eti.uni -siegen.de:es:yang:tsn">

<event -class >topology change </event -class >
<reporting -entity >

<device >switch_1 </device >
</reporting -entity >
<severity >major </severity >

</event >
</notification >

FIGURE 3.41: An example of NETCONF notification

3.7.4.6 Network Configuration Protocol

The Network Configuration Protocol (NETCONF) [100] determines procedures for
deployment, modification and removal of configuration information on network el-
ements. All types of NETCONF messages, including configuration data and state
data, are encoded Extensible Markup Language (XML) [103]. In NETCONF, a net-
work manager acts as a client while other network devices (e.g. bridges) act as
servers. Furthermore, the NETCONF operations are modelled through Remote Pro-
cedure Calls (RPCs) [104]. Thereby, a client and a server which are connected via a
NETCONF session implement NETCONF operations using an RPC-based method.
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FIGURE 3.42: NETCONF protocol layers [100]

As Figure 3.42 illustrates, there are four different layers in the NETCONF archi-
tecture:

1. Secure Transport layer: is used to transport NETCONF messages among net-
work devices. NETCONF, however, can use any transport protocol for this
layer, the selected transport standard must meet the primary requirements.
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2. Messages layer: offers a transport-independent encapsulation for messages
carrying notifications, RPC requests and responses.

3. Operations layer: includes the definition of NETCONF operations and associ-
ated input parameters.

4. Content layer: uses other protocols (e.g. YANG) as a data modelling language.

In a NETCONF system, there are two types of information: configuration data
which is used to configure the system from the initial state and state data, which
consists of statistics and status data. The main reason to differentiate configuration
data from state data is to avoid transferring unnecessary information during the
configuration process.

RPC Models. In NETCONF, a client invokes a certain operation on a server by
issuing an RPC request message. A server, in response to the RPC request mes-
sage, returns an appropriate RPC reply message. In short, NETCONF follows RPC-
based communication principles where NETCONF request and reply messages are
exchanged between a client and a server. NETCONF requests and replies are en-
capsulated using <rpc> and <rpc-reply> elements. Since each <rpc> element and
corresponding <rpc-reply> element has the same identifier (i.e. "message-id" field),
a client can correlate the RPC request message to the corresponding RPC response
message.

Configuration Datastore. A configuration datastore contains all necessary config-
uration data which is used to transform a network device from the initial state to the
running state. The configuration datastore can be specified for different states of the
system (e.g. startup and running). However, a device is only obligated to have a
running datastore that contains its current configuration data.

Operation. NETCONF introduces a limited number of operations to facilitate con-
figuration/reconfiguration of a network device and also retrieval of the device’s
state data. The primary NETCONF operations are:

• get: is used to retrieve the active configuration and state data of a server.

• get-config: is used to retrieve requested information from the device’s config-
uration data.

• edit-config: is used to modify the server’s configuration datastore based on
given configuration information.

• copy-config: is used to replace the server’s configuration datastore with a
given configuration datastore. To perform this operation, a server generates
a new datastore, if it does not have one.

• delete-config: is used to remove the server’s configuration datastore. It has to
be noted that this operation does not apply to the active configuration datas-
tore.

• lock: is used by the client to acquire the lock of the server’s configuration
datastore for a specific interval so that other devices cannot access the datastore
during that time.
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• unlock: is used to release the acquired lock by the lock operation.

• close-session: is used to terminate an active NETCONF session and release all
corresponding resources.

• kill-session: is used to abort an active NETCONF session and release all re-
lated resources.

Since the invocation of a NETCONF operation is not always successful, the client
must check an RPC reply for the operation’s output [100].
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Chapter 4

Scheduling Strategies for
Time-Sensitive Networking

In modern industrial systems, the increasing number of sensors and computing
nodes results in complex network designs and a high volume of data exchanges over
the communication links. Although Ethernet fulfills the high demand for bandwidth
and the seamless connectivity of vendor-specific devices, it does not offer real-time
capabilities which are essential for cyber-physical systems. Time-Sensitive Network-
ing (TSN) [11] is a set of standards that introduces several Ethernet extensions and
a novel scheduling mechanism called Time-Aware Shaper (TAS). TAS uses time as
a correctness criterion instead of a metric for the performance measurements [16].
This feature enables TAS to provide determinism, low latency and low jitter com-
munication for safety-critical applications.

In TSN networks, a fault-tolerant synchronization protocol (i.e. IEEE 802.1AS-
rev [17]) ensures that all devices are synchronized to global time and provides the
basis for deterministic TT communication. Besides, each port of a device dedicates
some queues to the TT flows and the rest for non-TT communication. A TSN capa-
ble device transmits messages according to the Gate Control List (GCL). The GCL
determines at each time instant which queue is eligible to send out messages. TAS
applies the port’s GCL with respect to global time. Therefore, it guarantees that
the allocated time slot for a TT flow will not be occupied by any other message (in-
cluding other TT flows and non-TT messages). The port-specific GCL along with a
fault-tolerant clock synchronization enables Ethernet-based networks to meet strict
timing constraints of mission-critical applications.

In TSN due to the complexity of the scheduling problem, the port-specific GCLs
are computed off-line. Despite GCL advantages, the scheduling problem arising
from the GCL synthesis is NP-complete. Thereby, it is challenging to develop schedul-
ing strategies which can be employed in different networks with varying structures
and sizes.

To synthesize GCLs, both knowledge of the network topology and the TT flow
specifications are required. In modern cyber-physical systems, an ever-increasing
number of network elements including end-systems, switches and links results in
numerous potential forwarding routes and consequently a large number of schedul-
ing possibilities for each TT flow. The feasibility of running real-time applications
over different end-systems makes the search space of legitimate schedules even big-
ger. Therefore, the optimization algorithms for the search space exploration, which
are a vital element for the deployment of TSN gain significant attention. Several
works discuss the scheduling problem of time-triggered networks by reducing the
complexity of the problem using several assumptions. For instance, the majority of
TT scheduling solutions calculate the global schedules regardless of routing possibil-
ities. In other words, they ignore the impact of routing on the scheduling constraints



68 Chapter 4. Scheduling Strategies for Time-Sensitive Networking

and use fixed routes which are generated separately as an input to the schedulers.
This simplified abstraction of the scheduling problem (e.g. using fixed routing) may
lead to the failure of the schedule generation, although the system is schedulable
[105]. A few recent works [105, 106] focus on joint routing and scheduling for the TT
schedule computation. They all use ILP-based approaches, which are rather slow
and not scalable to solve large real-time systems. Additionally, these solutions do
not consider job scheduling, inter-flow dependencies and distributed real-time ap-
plications.

In this chapter, we present two different scheduling algorithms: the first one
is based on a genetic algorithm, while the second one is based on list schedul-
ing. In contrast to state-of-art scheduling solutions, the Genetic Algorithm (GA)
and Heuristic List Scheduler (HLS) generate port-specific GCLs imposing routing
and scheduling constraints at the same time. These solutions transform two sepa-
rate sets of routing and scheduling constraints into one set of constraints and solve
the scheduling problem considering interdependencies of TT flows in a single-step.
The main goal of these schedulers (i.e. GA and HLS) is to satisfy the deadlines of
TT traffic while optimizing the TT transmission makespan and the overhead of TT
communication. To achieve this goal, they minimize the gap between TT time slots
and consequently reduce the number of guard bands that are introduced before ev-
ery TT time slot to avoid interference with other flows. Additionally, these solu-
tions, aside from message scheduling, incorporate job scheduling and as a result,
provides an opportunity to distribute safety-critical applications over available end-
systems rather than placing them on a particular device. This approach is beneficial
for mission-critical applications (e.g. driving assistance) that require considerable
amounts of computational power.

To have a solid base for comparison, we also developed a basic list scheduler
which is a typical example of state-of-art scheduling procedures and solves the rout-
ing and scheduling problems separately. To this end, a basic list scheduler first
finds the shortest paths between all end-systems and then uses these fixed routes
for solving the scheduling problem. In the experiment section, we apply the pro-
posed solutions to different sets of TT flows and network designs. We also compare
the simulation results of the single-step GA and HLS with the two-phase basic list
scheduler. The results demonstrate that GA and HLS improve the scheduling capa-
bility and transmission efficiency of TT communication over the basic list scheduler
considerably.

The remainder of the chapter is structured as follows: In Section 4.1, related work
is discussed. Section 4.2 introduces the system model used in this work. Section 4.3
formulates the scheduling problem of TT communication. The joint routing and
scheduling constraints are defined in Section 4.4. Section 4.5 describes the GA pro-
cedure while Section 4.6 details the heuristic list scheduler and two-phase list sched-
uler which serves as a reference implementation of existing scheduling solutions
and also as a baseline for the experimental analysis. In the last section, experimental
results are evaluated.

4.1 Related Work

Since TSN systems necessitate transmission schedules to guarantee temporal prop-
erties, in recent years, several works addressed the scheduling problem of TAS,
which is also introduced in the IEEE 802.1Qbv [12] extension. However, before the
introduction of TAS, the scheduling problem of time-triggered systems in the context
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of different networking technologies was studied intensively. For instance, a signifi-
cant number of scheduling strategies have been designed for TTEthernet networks.
In [107], Steiner first specified the scheduling constraints for TTEthernet networks
and then developed a Satisfiability Modulo Theory (SMT)-based solution to com-
pute static TT schedule comprising fixed-size time slots overlooking the presence
of other types of traffic (e.g. RC traffic). Steiner [108] also implemented another
SMT-based solver for scheduling of TT communication which intentionally leaves
arbitrary time slots for unscheduled traffic and thus improves end-to-end delay of
this type of traffic. Authors in [109] proposed a Tabu Search-based approach for
generating TT transmission schedules within TTEthernet networks. However, this
work, unlike [107] considered RC traffic as well as variable size time slot during the
scheduling process. This work was extended in [110] in a way that it uses a Tabu
search-based solution for framing data, mapping frames to virtual links and also se-
lecting a forwarding route of each virtual link before computation of TT transmission
schedules. The authors in [111] developed a hybrid genetic algorithm to generate
the static schedule table of TT frames in TTEthernet networks. This work optimizes
the number of allocated TT time slots and consequently improves the transmission
efficiency of TTE communication.

Unlike the scheduling strategies as mentioned earlier, which only address mes-
sage scheduling, Zhang et al. [112] developed a Mixed Integer Programming (MIP)
multi-objective optimization algorithm to schedule TT messages and non-preemptive
jobs simultaneously. Similarly, Craciunas et al. [113] introduced an SMT-based solu-
tion to co-synthesize schedules of TT communication and non-preemptive applica-
tion tasks. This research, also, proposed an incremental scheduling strategy which
scales to larger and more complex time-triggered systems. In [114], the same au-
thors extend their SMT-based solvers [113] in a way that they support preemptive
application tasks as well as non-preemptive ones.

All stated scheduling strategies are tailored to TTEthernet networks. However,
the focus of this chapter is the scheduling problem resulting from GCL. TSN and
TTEthernet standards, however, both provide real-time capabilities while sharing
significant similarities, but they have some essential differences. For instance, a
specific TT flow in TTEthernet comprises a single frame while a TT stream in TSN
may comprise several frames. Additionally, a transmission schedule in TTEthernet
networks is specified per TT flow mainly because each TT flow has its own buffer
whereas in TSN TT frames of different streams are directed to TT queues, and thus
schedule tables are determined for each queue. Thereby, TTEthernet specific sched-
ulers cannot be directly used to synthesize GCLs of TSN systems [115].

For this reason, authors in [96] first determine scheduling constraints of TAS in
multi-hop switched networks and then compute the valid schedule using Satisfiabil-
ity Modulo Theories (SMT) and Optimisation Modulo Theories (OMT) solvers. They
also based on various experiments verified that GCL offers deterministic delivery
of TT messages. Pop et al. [79] designed an ILP-based solver to synthesize port-
specific GCLs for each TSN capable device. This work computes the global schedule
while it allocates resources to TT flows optimally. Authors in [116], in addition to
standard scheduling constraints, consider the load of traffic which is directed to a
specific port during synthesizing GCLs. Namely, they first select forwarding paths
based on traffic load and then compute port-specific GCLs based on chosen routes.
This approach leads to shorter transmission makespan compared to strategies which
neglect the impact of port congestion on GCL computations. Durr et al. [117] pro-
posed a Tabu search-based solver for scheduling of TT communication in TSN sys-
tems. This method enhances network utilization by optimizing the makespan of TT
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transmission schedules, but it supports neither application-specific periodicity nor
job scheduling. Gavrilut et al. [118] introduced a strategy for solving the routing
and scheduling problem of TT communication in TSN systems while considering
the impact of AVB traffic in this context. As a result, this approach finds solutions
where the timing requirements of both TT traffic and AVB streams are met. To this
end, they firstly use a K-Shortest Path (KSP) algorithm [119] to compute forwarding
routes of TT traffic and then generate transmission schedules using a Greedy Ran-
domized Adaptive Search Procedure (GRASP)-based approach [120]. All solutions
mentioned above, first calculate the valid routes of TT frames and then use the fixed
routing information for computing the global schedule. As a result, they neglect the
vital role of routing in the scheduling process.

Smirnov et al. [105] proposed a set of Pseudo-Boolean (PB) constraints to solve
routing and scheduling problems of TT communication in a single-step. Further-
more, this work employs multi-objective optimization to the design space deriv-
ing from joint routing and scheduling constraints. This implementation first uses a
time-consuming ILP-based approach to define the design space from PB constraints.
Then, it applies the NSGA-II optimization algorithm to the exploration model. This
solution does not support application-specific periods for different TT flows which
is essential for TSN deployment. Instead, it is assumed that all scheduled traffic
is sent in the same cycle. In addition to this study, the authors in [106] developed
the ILP-based scheduling solution for the joint routing and scheduling problem and
evaluate the experimental results of different traffic patterns and network topologies
using two performance metrics (i.e. end-to-end delay and scheduling capability).
Nayak et al. [121] also solved the routing and scheduling problem of time-triggered
systems in a single step using different ILP-based solvers. This work used various
optimization algorithms to ensure that the computation of transmission schedules
for large networks would be completed within seconds. Authors in [122] studied
how TT traffic load and the size of the network effect execution time of an ILP-
based solver which employs joint routing and scheduling constraints. This research
enables synthesizing of port-specific GCLs, assuming zero-queuing for TT traffic.
However, it does not optimize the makespan of transmission schedules and also net-
work utilization through different optimization techniques like load balancing. Due
to the ILP-based scheduling process, the solutions above are rather time-consuming
specifically for large-scale time-triggered networks. They also do not consider job
scheduling and inter-flow dependencies in their experiments.

We develop a fast GA and Heuristic List Scheduler to address the interdepen-
dence of routing and scheduling constraints. These algorithms can compute the
global schedule for many real-world scenarios within reasonable time intervals. Due
to the combined routing and scheduling constraints, our scheduling strategies pro-
vide solutions where a scheduler that uses fixed routing would fail to find a legiti-
mate solution. Additionally, our solution makes the distribution of real-time appli-
cations feasible using valid job bindings and resource allocations. Aside from the
mentioned advantages, the GA and the HLS support job scheduling and inter-flow
dependencies which to the best of our knowledge are not integrated with any TSN
joint routing and scheduling solution yet.

4.2 System Model

In this chapter, the network topology and TT flows are modelled through two sepa-
rate graphs: An architecture graph and an application graph. An architecture graph
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FIGURE 4.1: An example of system model

is represented by an undirected graph GA (R, El). This graph comprises TSN end-
systems and switches R = ES

⋃
SW as vertexes and the duplex links between them

as edges. An application graph is shown by a directed acyclic graph GC (J, ETT). GC
consists of computational jobs as vertexes, and the TT flows transmitted between
the jobs as edges. Since each job can have multiple successor jobs, this system mod-
elling supports multicast TT flows as well [123]. Our scheduling algorithms use the
described graphs as inputs. Figure 4.1 presents an example of the system model.

The scheduling possibilities of TT communication are derived from mapping the
application graph to the architecture graph. To compute a valid system implementa-
tion, first, each computational job is assigned to a certain end-system. As a next step,
the TT messages which are transmitted between a computational job and the prede-
cessor jobs are mapped to the physical links that connect the sending end-system to
one or multiple receiving end-systems.

In this model, computational jobs are intended to generate TT messages. There-
fore, they can only run on end-systems, whereas TSN switches relay TT messages.
It is noteworthy that the physical links l ∈ El are bidirectional. Therefore, if a TT
frame is traversing a specific link in one direction, simultaneously another TT mes-
sage can be transmitted over the same link in reverse direction. Additionally, it is
assumed in the mentioned system model that all TSN switches and end-systems are
synchronized to the global time.

4.3 Problem Formulation

In TSN networks, switches and end-systems exchange three types of traffic: TT
flows, AVB streams and Best Effort (BE) messages. Our scheduling algorithms are
developed to generate a valid GCL so that the AVB streams and BE traffic which
do not have strict timing requirements, do not interfere with the transmission of TT
frames. Consequently, these algorithms (i.e. GA and HLS) only compute the static
schedule table of TT messages, and non-TT frames (including AVB and BE traffic)
are sent when no TT message is scheduled.
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Each TT flow ei ∈ ETT is identified by Srcei ∈ J, Recei ∈ J, Pei and Sizeei . TT frames
are sent periodically, therefore the Pei attribute is used to specify the periodicity of
a TT flow. Since in TSN a TT flow may consist of more than one frame, Sizeei is
equal to the number of TT frames which are sent consecutively in one Pei multiplied
by each frame’s length. For simplicity, it is assumed a TT flow remains in a TSN
capable device just for the processing time which is computed as follows:

PTei = ProcessingRatedevice × Sizeei

Additionally, it is assumed that all links in an architecture graph introduce the
identical propagation delay (PropDelayei ) to the time interval required for delivery
of an arbitrary frame from a sender to a receiver. A real-time job j ∈ J is identified
by WETji and Dji where WETji is the worst case execution time of the job and Dji
determines the deadline of the job execution.

The scheduling algorithm determines the GCL of each port of a TSN capable
device, and it reflects the injection time of TT flows routed via that device. The Iei

determines when the sender end-system starts transmitting the TT flow just after
the execution of its predecessor job (i.e. at the worst case it takes WETji to complete).
In order to offer deterministic TT communication in synchronized and scheduled
networks, all port-specific GCLs begin simultaneously and repeat over the Least
Common Multiple (LCM) of all Pei values called hyper-period.

4.4 Scheduling and Routing Constraints

The scheduling constraints definition of TSN systems in [96, 79] can be combined
with the routing constraints as follows:

1. Each computational job is assigned to exactly one end-system. The end-system
where the job can run on is chosen from the eligible end-systems j.CanRunOn
for that specific job. The network designers provide this information within
the application graph using the knowledge of application requirements and
end-system capabilities.

∀j ∈ J, es ∈ j.CanRunOn : j.processor = es

2. To eliminate loops, each frame of a TT flow can only pass through a certain
node at most once. The Routeei consists of all adjacent links which form the
path from the sender to the receiver. It is noteworthy that Routeei is set to one
of the routing possibilities between the sender and the receiver.

li = (u, v) ∈ El : R = {(li, .., li+n), ..., (lj, .., lj+m)}

r ∈ R : Routeei = r

3. Each TT flow can be routed through a specific link, if it can have an exclusive
access to the physical link for the duration of TransDelayeli

+ PropDelayeli
just

after the transmission starts. The transmission delay of a TT flow on a certain
link is calculated as follows:

li ∈ El : TransDelayeli
=

Sizeei

Bandwidthli

Where Bandwidthli specifies the bandwidth of link li.
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It is important to note that it is assumed a TSN capable device (including end-
systems and switches) dedicates only one queue per port to TT traffic. Hence,
to eliminate interleaving of different TT flows in a single TT queue, the device
follows the flow isolation constraint introduced in [96]. This constraint is re-
flected by considering an exclusive access to the egress port and the attached
link for a period of PTei + TransDelayeli

+ PropDelayeli
.

This constraint is applied to all adjacent link in Routeei . For each link, the
time interval of exclusive access is calculated with respect to the period of
PTei + TransDelayeli

+ PropDelayeli
on previous adjacent links within Routeeli

.
For minimizing the makespan of TT applications, we do not permit any gap
between the hops with a duration of PTei +TransDelayeli

+ PropDelayeli
on two

subsequent links of Routeei . This means the buffering of TT frames is not al-
lowed in the system model and devices follow the store and forward approach
for switching TT packets.

li = (u, v), li+1 = (v, k), ∀(li, li+1) ∈ Routeei :

Ieli+1
= Ieli

+ PTei + TransDelayeli
+ PropDelayeli

Based on this assumption, the injection time of a TT flow on each device can
be easily calculated, and the corresponding GCL can be generated.

4. In the system model, TT flows are not restricted to one period and can be trans-
mitted over different cycles. For this reason, the time interval of exclusive ac-
cess on every link of Routeei is calculated considering the periodic accesses of
other TT flows which traverse the same physical links throughout their paths
from the senders to the receivers.

5. Each computational job can start only when the TT flows that are sent by the
predecessor jobs towards this job are delivered. In other words, the job can
start transmitting TT messages only when the computing job is executed, and
all predecessor TT flows are received. The flow’s end to end delay determines
the time interval between the injection time of a flow and its arrival time at the
destination.

∀ei ∈ ETT, ∀ei ∈ pre(ei), j ∈ J, Srcei = j :

e2eDelayei = ∑
l∈Routeei

PTei + TransDelayeli
+ PropDelayeli

Iei + e2eDelayei + WETj ≤ Iei

This constraint reflects inter-flow dependencies and provides an opportunity
to transmit TT flows based on predefined priorities.

6. Each TT flow that is sent by a computational job must be delivered to the suc-
cessor job within its deadline.

∀ei ∈ ETT, Recei = j :
Iei + e2eDelayei ≤ Dj

4.5 GA implementation

The scheduling problem of time-triggered networks can be solved by combining
bin-packing and a genetic algorithm [111]. We introduce a Genetic Algorithm (GA)
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to generate the valid schedule with an optimized transmission time of TT messages.
To be more specific, the main goal of the GA is to minimize the makespan of TT
communication by optimizing the end-to-end delay as a measurement metric.

min(max ∀ei ∈ ETT(Iei + e2eDelayei))

4.5.1 Individual Definition

In GA, a genome builds an individual. Each genome contains an array of genes.
For resource allocation and job binding, the GA needs one gene per job. Each job-
specific gene contains all end-system IDs that the job can run on (i.e. introduced in
j.CanRunOn). In addition, each TT flow is mapped to one gene. The flow specific
gene includes the flow’s routing possibility indexes. Sets of integer numbers encode
each gene.

4.5.2 Population Initialization

The GA was implemented using GAlib [124] that supports different genetic algo-
rithms in C++. The GA first initializes an individual using information derived from
the system model (including GA and GC). Then, it generates an initial population.
In each generation, the GA chooses the individuals with the best fitness and creates
a new population of individuals using the simple-point crossover operator. As a
result, the best individuals are preserved for the next generation.

4.5.3 Fitness Function

The fitness function assigns a fitness score for each individual. In the GA, the fit-
ness function first computes the global schedule of each individual and returns the
makespan as a fitness value. After that, the GA evaluates the eligibility of individu-
als based on their fitness scores and selects the ones with the best fitness for creating
the next generation.

Algorithm 1 Fitness Function

1: procedure FITNESS(Genome g)
2: makespan← 0
3: ETT.sorted ← sort flows based on interdependencies
4: ∀e∈ETT.sorted:
5: Js ← Srcei

6: Jr ← Recei

7: Js.processor← p ∈ Js.CanRunOn job’s genes
8: Jr.processor← p ∈ Jr.CanRunOn job’s genes
9: Routeei ← r ∈ Routes using flow’s genes

10: Iei ← find earliest feasible time slot
11: Arrivalei ← Iei + e2eDelayei

12: if Arrivalei > DJr then return infinity

13: StartTimeJr ← max(StartTimeJr , Arrivalei)
14: FinishTimeJr ← StartTimeJr + WETJr

15: makespan← max(makespan,FinishTimeJr)
16: return makespan

Algorithm 1 presents the GA’s fitness function in more details. In this function,
first the TT flows are sorted based on their interdependencies. For each TT flow



4.6. Heuristic List Scheduler 75

in ETT.sorted, the sender and receiver jobs are assigned to the available end systems
using job-specific genes in a genome. The Routeei is also selected from the possible
routes between sender and receiver using the flow’s genes. For finding all possible
routes we use the multiplication of adjacency matrix approach.

After initialization, the function using constraints (3) and (4) finds the earliest
time instant that the sender job can access all adjacent links in the Routeei exclu-
sively. If the flow’s injection time violates the constraint (6), it means that the indi-
vidual leads to an infeasible system-wide schedule. Therefore, the function returns
infinite as a fitness score to eliminate inheritance of infeasible individuals to the next
generation. Line 13 corresponds to the constraint (5) and updates the start time of
the receiver job accordingly. In the last line, the function returns the makespan as
a fitness score. The makespan corresponds to the time instant that the execution of
all computational jobs is completed. In each generation, the best solutions (individ-
uals with minimum makespan) are stored, and the new population of individuals
in the next generation is compared to the current best candidate. If the individual’s
makespan is bigger than the current minimum makespan, the individual will not
be carried over to the next generation. Consequently, the GA converges faster to a
feasible global schedule.

The GA’s objective is to find the global schedule with the minimum makespan.
This optimization process has the following advantages: 1) The scheduling capabil-
ity will be improved since the transmission time of TT flows is optimized. 2) The
optimized makespan leads to more compact transmission schedules of TT flows.
Therefore, the number of guard bands that are reserved before each TT time slot to
avoid interference with non-TT traffic is reduced significantly. 3) This also results
in better bandwidth utilization and shorter waiting time of non-TT messages which
are blocked due to exclusive TT time slots.

4.6 Heuristic List Scheduler

In addition to the GA, a Heuristic List Scheduler (HLS) is developed to generate
the optimized global schedule for the transmission of TT messages. Similar to the
GA, the primary goal of HLS is to minimize the makespan of TT communication by
applying joint routing and scheduling constraints. Algorithm 2 presents the HLS in
more details.

j1 j2

j3j0

j4

f1: 35
f4: 24

f5: 40

f0: 15

f2: 12

f3: 4

FIGURE 4.2: An application graph, weight on each edge is Costei

As shown in Algorithm 2, HLS first calculates the priority of each job based on
the critical path. The job’s critical path defines the longest path from a predecessor
job to the job according to the communication cost (i.e. Costei = PTei + Sizeei ). For
example, in Figure 4.2 the critical path of job j4 is shown in dashed-lines and the pri-
ority is set to 59 (i.e. Cost f1 + Cost f4). After that, HLS sorts computational jobs based
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Algorithm 2 Heuristic List Scheduler

1: procedure LISTSCHEDULER

2: makespan← 0
3: assign priority to each computational job
4: Jj.sorted ← sort jobs descendingly based on priorities
5: ∀j ∈ Jj.sorted is not scheduled:
6: makespan← Scheduler(j)
7: return makespan
8: procedure SCHEDULER(job j)
9: if job j is not scheduled and has incoming TT flows then

10: ∀ei ∈ Eei .incoming: Scheduler(Srcei )
11: is_pred_jobs_scheduled← true
12: else if is_pred_jobs_scheduled or job j has no child then
13: ST ← 0
14: for p ∈ j.CanRunOn do
15: StartTimej ← 0
16: for ei ∈ Eei .incoming do
17: Arrivalei ← 0
18: Arrival ← 0
19: Routesei ← FindRoutes(sender, receiver)
20: for r ∈ Routesei do
21: InjectTime← FindEarliestTime
22: Arrival ← InjectTime + e2eDelayei

23: if Arrival > Dj then:
24: go to the next end-system
25: if Arrivalei == 0 or Arrival < Arrivalei then
26: Arrivalei ← Arrival
27: Routeei ← r
28: Iei ← InjectTime
29: StartTime← max(StartTime, Arrivalei)

30: if StartTimej == 0 or StartTime < StartTimej then
31: StartTimej ← StartTime
32: j.processor ← p
33: makespan← max(makespan, StartTimej + WETj)
34: return makespan



4.6. Heuristic List Scheduler 77

(A) LS TT transmission schedule

(B) HLS TT transmission schedule

(C) GA TT transmission schedule

FIGURE 4.3: Transmission schedules of LS, HLS and GA

on their priorities. In line 5, HLS schedules jobs from the highest priority to the low-
est one. For each job, first, the job’s incoming TT flows are retrieved. If the job needs
to receive TT flows from other computational jobs before it can start transmitting TT
messages (as formulated in constraint 5), HLS schedules all preceding jobs first (c.f.
line 10). For instance in Figure 4.2, HLS specifies the injection time of f0, f1 and f2
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before it allocates a time slot to f3. On the other hand, if the job does not have any in-
coming flow or all predecessor jobs are already scheduled, an available end-system
from j.CanRunOn is allocated to the job. Then, HLS initializes ST and Arrival pa-
rameters to 0 where ST and Arrival are used to store the possible start time of the
job and the possible arrival time of each incoming TT flow respectively. Further, it
finds all the possible routes between the sender and receiver end systems consider-
ing constraint two and using the multiplication of adjacency matrix approach. For
each routing possibility, HLS finds the earliest injection time considering constraint
3 and 4 (c.f. line 21). If the earliest injection time violates the constraint 6 then the
algorithm assigns another end-system to the job and repeats the same procedure to
find the next best route, which results in the optimized makespan (c.f. line 24). Con-
straint 6 should not be violated because it will lead to infeasible global schedules.
To find the schedule with optimized makespan, the route that results in the mini-
mum arrival time Arrivalei is selected and Routeei and Iei are updated accordingly
(c.f line 26-28). Further, the possible start time of the job is calculated for each poten-
tial end system assigned to the job. In the end, the job is assigned to the end system
that results in the minimum start time of the job and consequently the optimized
transmission makespan (c.f. line 30- 32).

Aside from GA and HLS, a two-step List Scheduler (LS) is developed which
solves the scheduling problem of TT communication using fixed routing. LS serves
as a baseline for the two-step state-of-the-art schedulers and is used to evaluate the
GA and HLS, which are joint routing and scheduling strategies in terms of schedul-
ing capability and efficiency. The implementation of LS follows the same principles
as Algorithm 2. The only difference is that LS, instead of examining all potential
routes between a sender and a receiver end systems, only consider the shortest path
in the process of task scheduling.

period/ route route
deadline LS GA

(µs)

f0 500 / 100 es0, sw0, es1 es0, sw0, es1
f1 400 / 350 es1, sw0, es0 es1, sw0, es0
f2 400 / 250 es0, sw0, es1 es0, sw0, es1
f3 500 / 380 es1, sw0, sw5, es4 es1, sw0, sw1, sw3, sw5, es4
f4 500 / 250 es0, sw0, sw5, es4 es0, sw0, sw2, sw4, es4
f5 1000 / 350 es1, sw0, sw5, es4 es1, sw0, sw5, es4

TABLE 4.1: TT flow parameters

To illustrate the difference between GA, HLS and LS, we use the system model in
Figure 4.1. The flow’s communication cost and periods are given in Figure 4.2 and
Table 4.1 respectively. Table 4.1 also shows that LS always uses the shortest paths,
while GA and HLS find the routing that leads to a more optimal makespan. The
Gantt charts in Figure 4.3 present the global schedules that were computed by LS,
GA and HLS. In the Gantt charts, each box presents the time slot that is dedicated
to a certain TT flow on a specific link. As the graphs show, in GA and HLS, the
makespan of TT flows is improved compared to LS (from 250 µs to 178 µs and 195
µs respectively). The reason is that the fixed routes used in LS cause high traffic load
on certain physical links, although other links are under low utilization. In contrast,
GA and HLS benefit from the load balancing while computing routes using joint
scheduling and routing constraints. The enhancement of the makespan is important
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because the TT transmission schedule plays a key role in the complex time-triggered
systems that comprise several mission-critical applications with short deadlines.

4.7 EXPERIMENTS AND EVALUATION

4.7.1 Experimental Setup

GA, HLS and LS are implemented in C++ and run on a T460 ThinkPad computer
with 2.4GHz Intel i5 CPU and 32GB of memory.

FIGURE 4.4: Topologies used in our experiments. Every switch is
connected to either 3, 4 or 5 end systems in a star structure.

We generate 120 system models (including architecture and application graphs)
using the SNAP library [125]. These system models are given as inputs to GA, HLS
and LS schedulers. We conduct our experiments on two different network topolo-
gies: 1) meshed grid and 2) ring. As depicted in Figure 4.4, each network comprises
nine switches, and every switch is attached to 3 to 5 end systems. We consider the
ring topology to reflect a typical structure of industrial control networks. To evalu-
ate our joint routing and scheduling constraints, we use the meshed grid structure.
This topology has higher connectivity and provides more routing possibilities for
every TT message. It is also assumed that all physical links in our experimental net-
works have a bandwidth of 1 Gbps and all switches require two nanoseconds for
processing each byte.

The flow interdependencies are formulated using a random Forest Fire directed
graph [125]. In each synthetic application graph which includes 15 jobs, we use four
different traffic classes. The characteristics of each traffic class are detailed in Table
4.2. It is noteworthy that the list of eligible end-systems which every job can run
on (i.e. j.CanRunOn) is chosen randomly. Furthermore, each TT flow’s deadline is
selected randomly from a range of 200 to 800 microseconds. It is also assumed that
all end systems are identical, and all computational jobs have the same execution
time (i.e. 4 microseconds).

The GA initializes the genetic algorithm parameters as follows: population size
= 100, the number of generations = 100, the mutation probability = 0.2, the crossover
probability = 0.9 and convergence probability = 1.

4.7.2 Experiments and Evaluation

In this section, the scheduling capability and efficiency of GA and HLS are evaluated
using the experimental results of LS, which serve as a baseline for the state-of-art
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traffic class Sizeei Pei

(bytes) (µs)

class1 200 100
class2 400 200
class3 600 300
class4 800 400

TABLE 4.2: Traffic class parameters

two-phase scheduling solutions.
The first part of the experiments is intended to study the impact of varying load

on schedulability and transmission makespan of LS, HLS and GA schedulers. For
this purpose, the system models with the meshed grid structure (Figure 4.4) and
three different TT traffic loads (i.e. 30, 35 and 40 TT flows) are considered. For every
traffic load, thirty different flow interdependency patterns are generated although
the network topology remains the same during this set of experiments. In short,
ninety synthetic system models are used in this section of experiments.

TT flows LS HLS GA ImpRatio ImpRatio
Avg makespan Avg makespan Avg makespan HLS GA

(µs) (µs) (µs)

30 168.62 60.26 83.8 0.64 0.4
35 179.42 127.77 121.14 0.28 0.32
40 180 133.51 142 0.25 0.21

TABLE 4.3: Transmission makespans for the meshed grid topology
and varying load.

Table 4.3 lists the required time for delivering all TT flows to corresponding des-
tinations. The improved ratio of makespan in this table is calculated as follows:

ImpRatio =
LS average makespan−HLS/GA average makespan

LS average makespan

Both HLS and GA compared to LS improve TT transmission efficiency on average by
0.39 and 0.31, respectively. The enhanced scheduling efficiency of both joint routing
and scheduling strategies (i.e. HLS and GA) imply shorter end-to-end delays, more
compact TT global schedules and better utilization of link bandwidth. To achieve
the optimal makespan, the mentioned strategies distribute the computational jobs
over available end-systems and balance the load over different physical links. Ad-
ditionally, they schedule different TT flows on a certain link with the minimum gap
between their time slots. Furthermore, joining time slots of consecutive TT flows
on a specific link leads to the minimum number of guard bands and better resource
utilization (e.g. link bandwidth).

Table 4.4 presents the average execution time of HLS, GA and LS for each traf-
fic load. As simulation results show, LS solves the scheduling problem faster than
GA and HLS since LS uses the fixed routing and ignores the crucial role of routing
in the scheduling process. In other words, the fixed routing between each sender
and receiver limits the search space and reduces the solving time of LS significantly.
In contrast, GA considers all routing possibilities and employs joint routing and
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TT flows LS HLS GA
Avg Exec Time Avg Exec Time Avg Exec Time

(s) (s) (s)

30 0.01 0.14 52.54
35 0.013 0.28 54.61
40 0.014 0.33 56.75

TABLE 4.4: Execution time for the meshed grid topology and varying
load.

scheduling constraints. Therefore, the design space of system implementations gets
bigger, and both approaches (i.e. HLS and GA) require more time for the global
schedule generation.

Besides, as results depict, the average execution time of HLS, GA and LS increase
when the number of flows increases mainly because, by increasing network load, all
described schedulers take more time to find a job binding and resource allocation
that leads to a valid schedule.

It has to be noted that HLS computes a valid schedule in a shorter time compared
to GA, mainly because the GA-based algorithm is very time-consuming.

FIGURE 4.5: Schedulability of GA, LS and HLS with varying TT loads
and the meshed grid topology

The graphs in Figure 4.5 depict the schedulability of GA, LS and HLS for the
above benchmarks. The schedulability ratio of GA and HLS for test cases with vary-
ing loads is on average, 0.98 and 1, respectively. This implies that HLS computes the
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FIGURE 4.6: Schedulability of HLS, GA and LS with different topolo-
gies

global schedule for all test cases in this set of experiments while GA fails to find a so-
lution for one of the above benchmarks. On the contrary, LS scheduling ratio for the
same test cases is on average, 0.27. As the graphs illustrate, the scheduling capability
of LS compared to GA and HLS decreases significantly when the network utilization
(i.e. the number of TT messages in our experiments) increases. LS, like other state-of-
the-art scheduling solutions, solves the scheduling and routing problems separately.
Thereby, the increasing number of TT flows in the LS scheduler may lead to over-
utilized links and the violation of constraint 6. GA and HLS resolve this issue by
transmitting TT flows over different routes and avoiding bottlenecks in routing TT
frames. In other words, GA and HLS both excel LS by examining different routing
possibilities during the scheduling and optimization process.

However, in the mentioned experiments, GA and HLS, both outperform LS re-
garding TT transmission efficiency and capability, but HLS has a higher schedula-
bility ratio compared to GA.

To evaluate the effects of the network topology on GA and HLS performance
metrics, we repeat the test cases with 30 flows in the first part using the ring structure
(Figure 4.4). To be more specific, the flow interdependency patterns in this set of
benchmarks stay unchanged although the switches are connected in a ring topology
rather than a meshed grid structure. For this part of the experiments, GA changes
the value of the number of generations to 800. However, the other parameters of the
genetic algorithm remain intact.

According to experimental results which are presented in Figure 4.6, when the
ring topology is used, the LS capability to find a valid schedule declines significantly
compared to the HLS and GA scheduler. It is essential to note the similar number of
flows in the ring structure leads to a higher network utilization. Therefore, LS fails
to meet timing requirements of more test cases due to the violation of constraint 6. In
contrast, HLS and GA offer a higher schedulability ratio than two-phase LS for the
test scenarios with a ring network topology since HLS and GA overcome the limi-
tation of LS regarding over-utilized links by balancing loads over different routes.
To this end, HLS and GA examine a higher number of scheduling possibilities that
are derived from the joint scheduling and routing constraints. Additionally, HLS
and GA require, on average 0.06 and 182.7 seconds respectively to solve the joint
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routing and scheduling problems of this set of system models. On the other hand,
LS computes the static schedules for these test cases on average within six ms. It
is noteworthy in this part of experiments that GA takes more time to converge to
the solution since it is initialized to a higher number of generations compared to the
previous experimental section.
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Chapter 5

Fault-Tolerant Scheduler for
Time-Triggered Communication in
Time-Sensitive Systems

The goal of the chapter is to present a time-triggered scheduler for TSN-based appli-
cations which optimizes the overall system reliability based on application and plat-
form models while satisfying the real-time constraints of the application. The system
reliability considers the (1) redundancy in the application models (e.g. redundant
and non-redundant real-time jobs), (2) the redundancy in the platform models and
the reliability of the TSN platform components (e.g. end systems, switches and links)
and (3) novel TSN-based fault-tolerance mechanisms such as FRER.

This chapter also introduces a new reliability analysis technique for safety-critical
systems. The reliability model comprises real-time jobs as system constituents and
interactions between jobs as control dependencies. This technique analyzes the re-
liability of a TSN system as a function of the reliability of its real-time jobs and the
control transfers between them in forms of TT messages. This approach uses the
reliability of TT messages that are exchanged between different real-time jobs as an
input for computing the system reliability. For calculating the reliability of message
transmissions, first, it is essential to select the redundant paths for the message. To
achieve that, it is assumed at least two forwarding paths exist for each TT message
in the network. Then, using the reliability of the platform components which partici-
pate in the message transmission and also based on the principles of reliability of se-
ries and parallel system [126], the reliability of message transmissions is calculated.
This reliability analysis technique determines the impact of different safety-critical
jobs and network components on the overall system reliability. Therefore, the system
designers can choose network components and additionally plan the TSN network
more efficiently.

In addition to the precedence constraints between predecessor and successor
jobs, this work supports conditional precedence constraints between different real-
time jobs. A conditional precedence constraint specifies whether the incoming TT
message from a predecessor job is essential to execute the job or is substitutable with
the TT messages from other predecessor jobs for commencing the execution of the
job.

The computation of a TT communication schedule is NP-complete. Besides,
the distribution of real-time applications and the ever-increasing number of net-
work components leads to a more compute-intensive TT scheduling process. Con-
sequently, several works focus on reducing the computational complexity of the TT
scheduling problem by making different abstractions. Most of the state-of-the-art
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TT schedulers [96, 79, 111, 116, 118] solve the routing and scheduling problems se-
quentially. A few recent works [105, 106, 121, 122] proposed ILP-based solutions
that employ joint routing and scheduling constraints. These solutions are very time-
consuming and not scalable to large real-time systems. Besides, they do not con-
sider inter-flow dependencies and job scheduling. Therefore, in Chapter 4 a Genetic
Algorithm (GA) was presented that addresses the impact of the routing problem
on the scheduling constraints while supporting application-specific periods, prece-
dence constraints and job scheduling.

Aside from the aforementioned simplifications, the majority of TT schedulers
[96, 79, 111, 105, 106, 116, 121, 122] assume that the communication infrastructure
is fault-free. However, in practice, the network can experience changes such as so-
licited ones like reconfigurations or unsolicited ones like failures while exchanging
messages. In TSN networks, due to stringent temporal and safety requirements of
real-time systems, faulty behaviours must be mitigated using redundancy. The re-
dundancy can be temporal or spatial [127]. For temporal redundancy, more than
one copy of the message is scheduled to be sent during one period. This type of
redundancy protects TSN networks against transient and intermittent failures, al-
though the temporal redundancy can not handle the permanent faults. To alleviate
permanent failures, the TSN task group develops a new spatial redundancy mech-
anism that is called Frame Replication and Elimination for Reliability (FRER) [28].
In FRER, every message is replicated and transmitted over one or more redundant
paths. Thus, FRER offers bounded end-to-end latency and low packet loss which are
the major concerns of mission-critical systems. The seamless recovery from faulty
behaviours is vital for cyber-physical systems, since failures in such systems may
result in irreparable environmental damages and huge financial losses.

To support FRER features and also benefit from fault-tolerant communication,
the message replication, elimination of replicas and the redundant path selection
need to be considered in the process of the message scheduling. These considera-
tions lead to a bigger search space for valid transmission schedules and also a more
complicated schedule exploration process. Hence, optimization algorithms that fa-
cilitate finding the schedule for fault-tolerant TT communication from the vast sys-
tem design space play an essential role in the deployment of TSN networks. In this
chapter, the GA [22] and HLS [21] which are introduced in Chapter 4 and employ the
joint routing and scheduling constraints, are extended in order to meet the reliability
requirements of real-time systems. This work mainly focuses on permanent hard-
ware failures, although the FRER redundancy mechanism also alleviates transient
failures. For this purpose, it is assumed that each message is duplicated at desig-
nated devices and each copy is sent over only one disjoint path mainly because the
scheduler needs to allocate additional network resources like bandwidth for each
copy of the message and an increase in the number of message replicas increases
network utilization considerably. Additionally, the permanent crash failures (e.g.
link failure) are not as frequent as transient failures [126]. Therefore, this scheduling
scheme which considers only duplication of TT messages and forwarding them over
the redundant route offers a reasonable degree of reliability.

It has to be noted that the fault-tolerant scheduler proposed in this chapter is the
first scheduling solution that is developed based on TSN redundancy management
(i.e. FRER). To this end, the fault-tolerant TSN scheduler takes into consideration
the message replication, redundant path selection, and message elimination during
the TT scheduling process. Therefore, this solution can play a vital role in the de-
ployment of TSN. Apart from the aforementioned distinctive features, this work is
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not limited to any specific network topology and applicable to a wide range of time-
triggered systems.

The remainder of the chapter is structured as follows: Section 5.1 discusses re-
lated work on fault-tolerant TT scheduling. Section 5.2 describes the system model
used in this work. In Section 5.3, the scheduling problem of fault-tolerant TT com-
munication is formulated. In Section 5.4, the reliability analysis technique is de-
scribed. The following sections describe the fault-tolerant GA and HLS. In the last
section, experimental results are evaluated.

5.1 Related Work

In the last years, several studies have been done on the scheduling problem which
arises from the TAS concept. In [96, 79, 111, 116, 118], scheduling solutions use
fixed routing to synthesize the GCL of TSN-aware devices. These works ignore the
inter-dependencies of routing and scheduling constraints, and consequently, they
provide sub-optimal solutions. To address this issue in Chapter 4, GA-based and list
scheduling schemes are developed that apply the routing and scheduling constraints
in a single-step. These schedulers, unlike the few recent works [105, 106, 121, 122]
that also follow similar principles (i.e. joint routing and scheduling constraints),
support inter-flow dependencies and job scheduling. These features play key roles in
the deployment of TSN networks since they are essential for modern cyber-physical
systems.

However, all discussed scheduling solutions optimize the length of the transmis-
sion schedule while fulfilling the temporal requirements, but they assume that the
network is fault-free during the execution of safety-critical applications and does not
face any failures. This assumption is very optimistic, and in practice, the system con-
stituents encounter different types of failures over time. The complexity of the TT
scheduling problem in fault-free real-time systems is already quite high. Hence, ful-
filling the fault-tolerance requirements of the safety-critical system leads to an even
more computationally complex scheduling process. To simplify this process, several
works investigate different aspects of the fault-tolerant scheduling problem. For in-
stance, in [128, 129, 130, 131] different scheduling mechanisms were introduced for
real-time systems with multiprocessor architectures. These solutions addressed po-
tential processor failures using a Primary-Backup (P/B) approach. Qin et al. [132]
developed a scheduler that can only mitigate one processor failure. This work com-
putes the primary schedule using a greedy scheme and deploys the backup schedule
in case of fault occurrence. Authors in [133] proposed a Contention-Aware Fault-
Tolerant (CAFT) scheduler which addresses the occurrence of an arbitrary number
of processor failures using active replication. This work did not require any further
fault detection and recovery strategy. Likewise, Izosimove et al. [134] introduced
several optimization techniques which combine active replication and re-execution
of jobs in order to compute fault-tolerant schedules. These algorithms use optimal
task binding and resource allocation to prevent the need for any additional hard-
ware resources. In [135], authors enhanced the efficiency of a replication scheme by
identifying the worst-case finish time of jobs under the worst-case fault occurrences.

All studies above only consider crash failures of processors which can lead to
a failure in the execution of a safety-critical application. However, fault tolerance
concerning failures in message delivery is not covered in these scheduling strategies.

Avni et al. [127] proposed a method that aims to find a (k, l)-resistant trans-
mission schedule using a CEGAR-based approach. To achieve this goal, switches
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ensure that at least l copies of a particular message are delivered to the receiver ap-
plication in the presence of at most k faulty links. In [136], a new schedule for TT
communication was introduced that masks multiple link failures using the local-
ized fault-tolerant protocol instead of spatial redundancy. Thereby, this scheduling
scheme increases the available bandwidth for non-critical traffic, mainly when links
are fault-free. Atallah et. al [137] developed an incremental algorithm for planning
of an 802.1Qbv-aware network considering joint routing and scheduling constraints.
This approach aimed to optimize the overall cost of the network. Unlike the first cat-
egory of scheduling solutions, the aforementioned schedulers mask crash failures of
links occurring during message transmission, while they neglect processor failures
over the execution period.

The authors in [138, 139] developed a scheduling scheme that considered both
processor and communication infrastructure failures during the scheduling process
of multiprocessor computing systems. Dogan et al. [139] proposed a scheduling
solution that optimizes the execution time and reliability of distributed systems si-
multaneously. Smirnov et al. [140] formulated the constraints for finding redundant
routings in a vehicular networks in a way that the overall system reliability can be
optimized. The authors showed that the state-of-art design space explorations such
as SAT-Decoding are not scalable to optimization problem of the system reliability in
the automotive domain. They therefore proposed an Evolutionary Algorithm (EA)
where every genome is encoded efficiently considering optimization objectives (i.e.
the number of critical links and Mean Time To Failure (MTTF) of communication
flow). However, these works did not consider timing constraints of real-time sys-
tems and did not use redundancy to mitigate failures.

In this chapter, fault-tolerant TT schedulers are developed that meet temporal
requirements of hard real-time systems while optimizing the reliability of the sys-
tem. Namely, the main goal of these schedulers is to maximize system reliability. To
calculate the system reliability, a novel reliability analysis technique is introduced.
This technique, in contrast to state-of-the-art algorithms which aimed to mitigate
either processor crashes or link failures, calculates the reliability of a system based
on the reliability of every network component that has a role in the message deliv-
ery. Moreover, the conditional precedence constraints between safety-critical jobs are
modelled using a conditional application graph. This conditional application graph
accurately reflects the job dependencies, which leads to more realistic and efficient
transmission schedules.

5.2 System Model

To model real-time applications and the architecture of the physical platform on
which jobs run and communicate, two different graphs are defined: A conditional
application graph and an architecture graph. These graphs contain all parameters
of the application graph and the architecture graph that are specified in Chapter 4.
However, they include new parameters to address reliability requirements.

5.2.1 Conditional Application Graph

In this work, the conditional application graph is a directed acyclic graph GC defined
by the tuple < J, ETT >. Each vertex in this graph presents one real-time job. Addi-
tionally, a dummy sink vertex js is also introduced in GC to formulate the reliability
of a safety-critical system. ETT is a set of conditional directed edges which represent
TT message transmissions between real-time jobs. A real-time job ji ∈ J is identified
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FIGURE 5.1: Example of system model based on train communication
network

by < WETji , Relji , Dji > where WETji is the worst-case execution time of the job, Relji
defines the reliability of the job and Dji determines the deadline of the job execution.
The reliability of the real-time job Relji is defined as the probability of correct execu-
tion of the job. The job deadline denotes the maximum permissible time by which
all essential predecessor jobs provide the TT messages, and the execution of the job
is finished.

On the other hand, each edge ei ∈ ETT models the TT message transmissions be-
tween two jobs. In this work, the conditional edge is represented by < Sei , Recei , Pei , Tei

, Relei , Cei , Iei > tuple where Sei and Recei specify the sender job and the receiver job
of TT messages respectively, Pei defines the periodicity of the TT messages, Tei is
the transmission time of TT messages, Relei determines the probability of successful
delivery of messages to the receiver job, Cei denotes whether TT messages from the
predecessor job Sei are essential (Cei = 1) or substitutable (Cei = 0) with messages
from other predecessor jobs and Iei is the injection time of the TT messages. To be
specific, Iei identifies when the sender job Sei starts the transmission of the TT mes-
sages to the receiver job Recei after its execution. The control transfer Cei from one
job to another job can be essential, meaning that the job cannot run before receiving
the TT messages from the predecessor job. On the contrary, the TT messages from
the predecessor job can be substituted with the TT messages from other predecessor
jobs. This implies that the jobs that send the substitutable TT messages are redun-
dant jobs. It is assumed a job may have at least two incoming conditional edges with
the latter case condition Cei . Therefore, the job needs to receive an input from at least
one of its predecessor jobs with the substitutable condition in order to proceed with
the execution. Namely, if the job has multiple incoming TT flows with the substi-
tutable condition, at least one of its predecessor jobs needs to deliver TT messages
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before commencing the job’s execution.

5.2.2 Architecture Graph

An architecture graph is an undirected graph GA, which is presented by the tuple
< R, El >. In this graph, each vertex represents either a TSN end system or a TSN
switch (R = (SW

⋃
ES)). On the other hand, El denotes the duplex physical links

between TSN-aware devices (i.e. TSN end system and TSN switch). From the TT
scheduling perspective, the duplex link implies that a TT message can traverse a
certain link while another message is sent over the same link but in the opposite
direction. For each network component c ∈ (R

⋃
El), the reliability Relci is defined

as the probability of correct operation.
Figure 5.1 depicts an example of a system model. This system model is based on

an example layout of a train network [141]. In this model, the sensors that reside in
different consist networks sample data and forward samples to the consist’s Central
Computing Unit (CCU). After that, the sensor samples are forwarded to Human
Machine Interface (HMI) for further processing.

5.2.3 Fault Model

In this work, it is assumed that every network component (including end systems
and switches) forms a Fault-Containment Region (FCR). Thereby, the failure of each
network component is considered to be independent. It is also assumed that only
a single permanent hardware failure can occur in any network component which
forms a separate forwarding route and engages in the message transmission. This
means that if a network component fails, it will not be operational for the rest of
the execution of the safety-critical applications. This solution only considers the du-
plication of a TT message at a device residing at one border of two disjoint routes,
forwarding each copy of messages over a disjoint path and eventually the elimina-
tion of duplicated messages at a device residing at another border of two disjoint
routes. However, this scheduler can be extended to tolerate several permanent com-
ponent crash failures by considering more than two message replicas and redundant
routes at the expense of higher network load. Furthermore, the concept of redundant
real-time jobs is introduced using conditional precedence constraints. Based on this
concept, if one of the redundant real-time jobs executes correctly and the rest of the
redundant jobs fail, the mission-critical system can still operate correctly.

5.3 Problem Formulation

In this chapter, the fault-tolerant scheduler is proposed, which employs joint schedul-
ing and routing constraints. These constraints are derived from the scheduling con-
straints defined in [96, 79] and the routing constraints as follows:

1. Resource Allocation Constraint: Each job is executed on exactly one end-
system. The target end-system is selected from the eligible end-systems that
are specified in j.CanRunOn.

2. Path-Dependent Constraint: Each TT message traverses a certain network
component at most once in order to prevent loops.

3. Contention-free Constraint: Each TT message can be forwarded through a
certain link, only if it can access the physical link exclusively for the duration
of Tei .
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4. Message-Specific Periodicity Constraint: In this system model, TT messages
can be sent over different cycles. Hence, the duration of exclusive access on
every physical link needs to take into account the periodic accesses of other TT
messages that are sent over the same links.

5. Inter-Flow Dependency Constraint: Each job can run only after reception of
all essential TT messages from the predecessor jobs.

6. Delivery Deadline Constraint: Each TT message must reach the destination
within the deadline of the receiver job. The message’s end-to-end delay EDei

specifies the time interval between the injection time of message Iei and its
arrival time at the receiver end-system [21, 22].

∀e ∈ ETT, Recei = j
Iei + EDei < Dji

In addition to imposing the joint scheduling and routing constraints, the schedul-
ing strategy maximizes the reliability of a safety-critical system. To achieve this goal,
the reliability of a system is modelled and computed using a novel reliability analy-
sis technique.

The fault-tolerant scheduling algorithm uses the described graphs for job bind-
ing and resource allocation. Namely, a specific end system is allocated for each real-
time job, since it is assumed only TSN end systems can initiate sending of TT frames.
In addition to job scheduling, the message scheduling is performed by the temporal
and spatial allocation of network components (c ∈ (R

⋃
El)) that lie between sender

and receiver end systems.
This work only focuses on the scheduling of TT communication. However, TSN-

capable devices transmit different types of traffic (e.g. AVB streams and best-effort
traffic). The TSN-capable devices guarantee deterministic delivery of TT messages
through TAS. For this purpose, TAS does not permit non-TT streams (e.g. BE frames)
to be sent during the transmission of TT messages over the same physical links.
Furthermore, a fault-tolerant start-up algorithm is assumed for the real-time system
[17].

5.4 Reliability Model of Safety-critical Systems

The reliability of a safety-critical system is modelled using the reliability of real-time
jobs and the reliability of TT communication between them. As the first step in the
reliability analysis technique, it is required to calculate the reliability of TT message
delivery.

5.4.1 Reliability of Message Transmission

To deliver a TT message successfully all network components which form the for-
warding paths, need to function correctly. In this work, the reliability of a network
component Relci which has a constant failure rate, is formulated by a Poisson process
as follows [126]:

Relci(t) = e−λt (5.1)

The failure rate λ specifies the number of faults that a component experiences
per unit of time (e.g. second). However, formulating the Relci using a Poisson pro-
cess does not correspond to the actual failure model of a network component but
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according to experimental results in [142] it leads to a practical failure modelling
[139].

As stated before, every TT message is duplicated at a device which resides at a
border of two disjoint paths. Then, each copy is sent over one of the routes. The de-
vice that resides at another border of these two paths forwards only one copy of the
message and discards the second copy. This approach may result in high variance
of the delivery latency, which can happen due to redundant paths with different
lengths and also considering zero queuing for TT frames in devices. For this pur-
pose, it is assumed that the second boundary device forwards the frame based on
the arrival time of the message from the longer path. As a result, TT frames are
buffered in the boundary devices until the expected arrival time of the messages
from the longer forwarding route, which is different from the zero queuing assump-
tion applied to other devices.

l0 SW0

l2 SW3 l3

l1
SW1 l4

FIGURE 5.2: Reliability model of message m1

To calculate the message reliability, the redundant path for a specific message is
modelled as series and parallel systems where each network component c ∈ (R

⋃
El)

is represented as one module and these modules are connected based on the topol-
ogy of the redundant route. For instance, Figure 5.2 illustrates the reliability model
of message m1. As it is shown in Figure 5.2, each network component is mapped to a
separate module. The module has a series connection to other modules if the failure
of the component causes the message transmission to fail. The reliability of a series
system is calculated as follows [126]:

Rel(t) =
N

∏
i=1

Relci(t) (5.2)

Where Relci(t) is the reliability of a network component that is part of a series system.
In contrast, if the message is delivered to the destination while at least one net-

work component out of sets of components operates correctly, the components form
a parallel system. The reliability of a parallel system is computed as follows [126]:

Rel(t) = 1−
N

∏
i=1

(1− Relci(t)) (5.3)

To simplify the notation of the reliability, in the rest of this chapter the reliability
is not shown as a function of the time, although all reliabilities are still dependent on
time. In Figure 5.1, it is assumed that all physical links are identical and thus have
the same failure rate. The same assumption is made for TSN switches, meaning that
all switches are identical. Therefore, the reliability of a link and a switch are denoted
with Rell and Relsw respectively. Hence, according to the described method, the
reliability of message m1 in Figure 5.1 is equal to:

Relm1 = Rell1 Relsw3 [1− (1− Rell3)(1− Rell2 Relsw4 Rell4)]Relsw2 Rell5
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and we can summarize it as follow:

Relm1 = Rel2
l Relsw

2(Rell + Rel2
l Relsw − Rel3

l Rsw) (5.4)

5.4.2 Reliability of Safety-Critical Jobs

After calculating the reliability of message transmissions, it is time to compute the
reliability of a safety-critical job Relei , which is the probability of correct execution
of the job. The job correctly runs when it receives all essential TT messages from
the predecessor jobs, and the dedicated end system for execution operates correctly.
Therefore, the reliability of jobs which do not have any incoming TT flows is equal
to the reliability of the assigned end system. In the above section, the concept of
conditional precedence constrains between two jobs is introduced. The job reliability
is formulated so that it reflects the Cei attribute. To calculate the reliability of a job, the
principles of series and parallel systems are used. In this context, every predecessor
job and corresponding TT flow are mapped to separate modules, and the topology
of a system is defined based on the conditional control dependencies.

j0 m0

j3 m2

j4 m4

FIGURE 5.3: Reliability model of job j6

Figure 5.3 presents the reliability model of job j6 from Figure 5.1. As Figure 5.3
demonstrates, j6 can start its execution only after receiving the TT frames from job
j1, however, the TT messages from either j3 or j5 are sufficient to proceed with the
execution. Hence, the reliability of job j6 is formulated as follows:

Relj6 = Relj1 Relm2 [1− (1− Relj3 Relm5)(1− Relj5 Relm8)]

Where Relj1 , Relj3 and Relj1 are calculated as follows:

Relj1 = RelCCU1 Relj0Relm1 , Relj3 = RelCCU2 Relj2 Relm4 , Relj5 = RelCCU3 Relj4 Relm7

As shown in Figure 5.1, jobs j0, j2 and j4 do not have any incoming edge and
they run on sensor1, sensor2 and sensor3 respectively. In this example, it is assumed
that the sensors are fault free and all CCUs have the same failure rates. Thus the
reliability of job j6 can be written as follows:

Relj6 = RelCCURelm1 Relm2(RelCCURelm4 Relm5 + RelCCURelm7 Relm8−
RelCCU

2Relm4 Relm5 Relm7 Relm8)
(5.5)

Each of the message reliabilities (e.g. Rm1) in the above formula needs to be
calculated separately using the approach that is introduced in the previous section.
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(C) Reliability model of s1 after expanding on SW4 (when SW4 is fault-free)
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(D) Reliability model of s1 after expanding on SW4 (when SW4 is faulty)
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(E) Reliability model of s1 after expanding on l4 (when l4 and SW4 fault-free)

FIGURE 5.4: Diagrams of reliability model of s1 when it is expanded
on common network components

It is noteworthy that the described approach for the calculation of job reliability
is applicable only if all modules of the job reliability model, including predeces-
sor jobs and incoming TT messages, are independent. However, it is quite likely
that the reliability models of incoming messages and predecessor jobs share com-
mon network components. In such cases, the reliability of a job cannot be calculated
directly from the reliability of series/parallel structures. Instead, first, the job reli-
ability model needs to be expanded on every common network component. After
that, the job reliability is computed based on different operational conditions of the
common network components and the total probability formula as follows [126]:

Relji = Relci · Prob{job run correctly|ci}+ (1− Relci) · Prob{job run correctly|c̄i} (5.6)

where ci presents a condition in which the component ci is fault-free whereas c̄i
correspond to the faulty condition of component ci.

Let’s consider the reliability model of the first statement in Formula 5.5 (i.e.
Rels1 = RelCCU1 Relm1 Relm2) which is denoted in Figure 5.4a. As the diagram shows,
there are four common network components (i.e. ECN SW4, l4, ECN SW2, l5) in this
model. However, component l5, ECN SW2 are repeated in a series structure. Hence,
only one of these components can be considered in the reliability model of s1 as
denoted in Figure 5.4b. After that, this reliability model is expanded on different
combinations of the remaining common components (i.e. ECN SW4, l4) as shown in
Formula [5.7-5.9].
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Rels1 = RelSW4 · Prob{s1 works|SW4}+ (1− RelSW4) · Prob{s1 works| ¯SW4} (5.7)

Prob{s1|SW4} = Rell4 · Prob{s1|SW4,l4}+ (1− Rell4) · Prob{s1|SW4,l̄4} (5.8)

Prob{s1| ¯SW4} = Rell4 · Prob{s1| ¯SW4,l4}+ (1− Rell4) · Prob{s1| ¯SW4,l̄4} (5.9)

The diagrams [5.4c-5.4e] present the expanding of the reliability model s1 on
ECN SW4 and l4. The expansion process continues until the reliability model only
comprises the independent modules, and thus the reliability can be calculated from
the series/parallel structure. For example in s1, the diagrams 5.4d and 5.4e which
are derived from Formula 5.8 and 5.9, do not contain any common network com-
ponents. Thereby, the reliability of these diagrams can be computed based on the
reliability of the series/parallel structure.

This approach is applied to every statement that constitutes job reliability until
the reliability model of the job does not encompass any dependent modules.

5.4.3 Reliability of Safety-critical System

In the previous sections, it is explained how to compute the reliability of message
transmissions and safety-critical jobs which are considered as building blocks of the
reliability model. The reliability of a safety-critical system is the probability of correct
execution of all mission-critical jobs within the system. In other words, the reliabil-
ity of a sink node in an application graph is defined as the system reliability. For
instance, the reliability of the system in Figure 5.1 is:

Rel = Relj6 · Relm10 · Relj7 · Relm11

As the reliability of all conditional edges that end at the sink node is one, the
above equation can be written as follows:

Rel = Relj6 · Relj7

The reliability of jobs j6 and j7 can be computed recursively using the reliability
of predecessor jobs, and incoming TT flows as it is shown in the previous section.

5.5 Fault-tolerant GA Scheduler

In this chapter, the Genetic Algorithm (GA) [22], which is explained in details in the
previous chapter is extended to compute a transmission schedule of TT communica-
tion with the maximum system reliability. To optimize the reliability of the system,
the reliability of safety-critical jobs that do not have any outgoing TT flows needs to
be maximized:

max( ∏
∀j∈Jl

Relj(t)) (5.10)

In Formula 5.10, Jl comprises leaf nodes of a conditional application graph.
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5.5.1 Genome Definition

In the fault-tolerant GA, each genome encompasses a set of genes. On the one hand,
for job scheduling, one gene is assigned to every job. The job-specific gene de-
termines on which end systems the job can run. On the other hand, for message
scheduling, one gene is assigned to each TT message. The message-specific gene
specifies the possibilities of the redundant route for that message. For encoding of a
gene, a set of integers is used.

5.5.2 Population Initialization

The fault-tolerant GA generates initial individuals from the given system model,
which leads to the first generation of individuals. The scheduler selects the best
fitting individuals of every generation, mutates them based on a certain probability
and then uses the simple-point crossover to create the next generation [143].

5.5.3 Fitness Function

To identify the best individuals, a fitness function is defined. This function calculates
the reliability of the system for each individual as a fitness score. Then the scheduler
chooses the individual with the best fitness score (i.e. the system reliability) for the
next generation.

Algorithm 3 Fitness Function

1: procedure FITNESS(Genome g)
2: ETT.sorted ← sort flows based on inter-dependencies
3: ∀ei ∈ ETT.sorted:
4: Sei .processor← p ∈ Sei .CanRunOn job’s genes
5: Recei .processor← p ∈ Recei .CanRunOn job’s genes
6: RedPathei ← opt redundant path using message genes
7: Iei ← find earliest feasible time slot
8: Aei ← Iei + EDei

9: if Aei > DRecei
then return 0

10: RelSei
← calculate the reliability of sender job

11: SystemReliability← calculate the system reliability
12: return SystemReliability

Algorithm 3 denotes the fitness function of the fault-tolerant GA. This function
first sorts TT flows according to their precedence constraints. Then for every TT
flow, the function allocates the available end systems to the sender and receiver jobs
based on a job-specific gene in the genome (c.f. lines 4,5). The fitness function also
determines the redundant path between the sender and the receiver end-system us-
ing the message-specific gene. To be more precise, the function first finds all possible
redundant routes between sending and receiving end systems using the multiplica-
tion adjacency matrix procedure and then it selects the redundant path as a message
forwarding route based on the message-specific gene.

After specifying the message forwarding routes, the fitness function finds the
earliest feasible injection time of the TT messages considering the contention-free
and the message-specific periodicity constraints. Then it calculates the arrival time
of the message (Aei ) to the receiver end system using the message’s end-to-end la-
tency (EDei ) which is defined in Chapter 4. If the message’s arrival time exceeds the
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deadline of the receiver job that means the violation of the delivery deadline con-
straint, the individual leads to an invalid solution. Therefore, the function returns
0 as a fitness score to prevent carrying over an unfeasible genome to the next gen-
eration. In the counter case, the function calculates the reliability of the sender job
(Relsei

) as explained in section 5.4.2. After scheduling all TT messages, the function
calculates the system reliability and returns it as a fitness score.

The fault-tolerant GA, apart from the advantages of the basic GA such as im-
provement of schedulability and resource utilization, aims to compute the TT trans-
mission schedule with optimized system reliability. This optimization algorithm
enhances the tolerance of time-triggered systems against crash failures at two lev-
els: 1) This technique selects the forwarding routes whose constituent (including
end-systems, switches, and links) are less probable to fail over time. 2) The sched-
uler also assigns a safety-critical job to the processing nodes which are less likely to
encounter crash failures.

Algorithm 4 Fault-tolerant List Scheduler

1: procedure FAULTTOLERANTLISTSCHEDULER

2: Assign priority to each job
3: Jsorted ← sort jobs descending based on priorities
4: ∀j ∈ Jsorted is not scheduled:
5: Scheduler(j)
6: SystemReliability← calculate the system reliability
7: return SystemReliability
8: procedure SCHEDULER(Job j)
9: if unscheduled job j has incoming flow then

10: ∀ei ∈ ETT.incoming: Scheduler(Sei)
11: is_pre_job_schedule← true
12: else if is_pre_job_schedule or job j has no child then
13: for p ∈ j.CanRunOn do
14: for ei ∈ ETT.incoming do
15: RedPathei ← find most reliable redundant paths
16: Iei ← find earliest injection time
17: Aei ← Iei + EDei

18: if Aei > Dj then go to next end-system

19: Relj ← calculate job reliability
20: Relei ← calculate message reliability
21: return

5.6 Fault-tolerant List Scheduler

The heuristic list scheduler presented in Chapter 4 is modified in a way that it meets
the stringent timing requirements of the mission-critical applications while improv-
ing the overall reliability of the system. The list scheduler operates in two steps
[144]: first, the priority of each job is computed, and after that, the jobs are mapped
to the available end systems considering their priorities and precedence constraints.
Likewise, the critical path is used in the heuristic list scheduler for calculating the
priorities of the jobs. After the priority assignments, the scheduler sorts the jobs in
descending order of their priorities and then schedules the jobs one by one from
the highest priority to the lowest priority by assigning them to eligible end systems
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(J.CanRunOn). After mapping the job to the desired end system, the scheduler finds
all possible routes between the sender and receiver end systems using the multi-
plication adjacency matrix and then permutes them to compute all the feasible re-
dundant paths between the sender and the receiver. The reliability of the message
forwarding is calculated for each redundant routes and the redundant routes with
the best reliability value is chosen for TT message delivery. As the following step, the
scheduler finds the earliest injection time of each incoming TT flow of the job con-
sidering the contention-free and the message-specific periodicity constraints. Then
it computes the message’s arrival time (Aei ) using the end-to-end transmission delay
(EDei ). Section 4.4 provides a detailed description of the end-to-end delay calcula-
tion. If the chosen time slot results in a message’s arrival time (Aei ) which exceeds
the job’s deadline (i.e. violating the delivery deadline constraint), then another end
system is selected and the same procedure is repeated until all ingress TT flows are
scheduled. Algorithm 4 gives a pseudo-code representation of the fault-tolerant list
scheduler.

5.7 Experiments and Evaluation

The fault-tolerant GA and the heuristic list scheduler are developed in C++, and the
experiments are carried out on a T460 ThinkPad computer with 32GB of memory
and an Intel i5 CPU. The behaviour of the fault-tolerant GA and list scheduler are
studied thoroughly using 625 different system models which are synthesized with
the SNAP library [125].

Grid structure

  Ring structure

FIGURE 5.5: Grid network structure used in use case 1. Every switch
is connected to 3 end-systems

For these experiments, five different use cases are used. The first three use cases
aim to study the impact of TSN redundancy management on the overall system re-
liability, and each of these use cases contains 75 different system models. The fourth
use case investigates the sensitivity of the system reliability to various network com-
ponents through 200 synthetic system models. Similarly, the last use case utilizes 200
system models to study the impact of a varying degree of job redundancy on sys-
tem reliability. The properties of the experimental use cases are listed in Table 5.1.
The network structure in all use cases is the grid topology with a different number
of devices, as described in Table 5.1. For example, Figure 5.5 presents the network
structure of use case 1. Moreover, the conditional application graphs are generated
in the form of a random Forest Fire directed graph [125]. In the experiment setup,
the periodicity of TT flows is chosen from three different values (i.e. 50, 100 and
150 ms). Additionally, it is assumed that all switches and links in the experimental
networks are identical. Therefore, the transmission time of each TT frame from one
device to the neighbour device (Tei) is considered 40 µs since the processing delay
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Use Case 1 2 3 4 5

Number of switches 12 14 16 12 6

Number of end-systems 36 56 80 36 18

Number of links 52 75 102 52 25

Number of jobs 12 6

Link/Device reliability distribution

0.991:10% 0.993:25%
0.992:10% 0.995:25%

..
0.998:10% 0.997:25%
0.999:10% 0.999:25%

TABLE 5.1: The properties of the experimental use cases

of all switches and also the transmission rate and the propagation delay of the links
are similar. It is also assumed that all jobs have the same WET and deadline (i.e.
100 µs and 3.5 ms respectively). Besides the potential end systems for execution of a
safety-critical job (j.CanRunOn) are selected randomly.

For the fault-tolerant GA, the number of generations is set to 100, the population
size to 25, the crossover probability to 0.9 and the mutation probability to 0.2.

The first section of experiments illustrates the difference in the system reliabil-
ity of the TT transmission schedules that are computed by the Fault-Tolerant HLS
(FTHLS) and the Fault-Tolerant GA (FTGA) compared to the schedules generated
by HLS and GA which do not support FRER. The test cases which are carried out
for this purpose, are divided into three use cases (i.e. use case 1, 2 and 3) where
each use case comprises different numbers of devices and links. The main goal of
these use cases is to study the impact of different numbers of devices and links on
the overall system reliability. In addition, each of the above use cases runs for three
different numbers of TT messages (i.e. 15, 35 and 55 TT messages) to investigate the
impact of network load on the overall system reliability. It is also assumed that all
TT messages are essential in these use cases for the execution of successor jobs. For
simplicity purposes and without loss of generality, it is assumed that the reliability
of every network component remains constant for the duration of the application
execution. As stated in Table 5.1, in this set of test cases, the reliability of devices
and links alternates between 0.991 to 0.999 by the probability of 10%. For each use
case, 25 synthetic system models are generated where each system model has dif-
ferent inter-flow dependency patterns and the grid network structure with the same
number of devices and links as presented in Table 5.1.

As the diagram in Figure 5.6.a demonstrates, in use case 1 that runs for a differ-
ent number of TT messages, the average of the system reliability of the transmission
schedules which are computed by the FTGA is improved by 9% compared to the
average system reliability of the schedules that are generated by the basic GA. Sim-
ilarly, the FTHLS increases the average of the system reliability of the generated
schedules by 9% compared to the HLS, which does not support the fault-tolerance
features. The FTHLS and FTGA achieve a significant improvement in the system re-
liability by employing message duplication and transmissions of messages over the
redundant paths. However, the HLS and the GA for every TT message only schedule
one instance of the message over a particular route. This implies that the FTHLS and
FTGA accomplish the reliability enhancement at the expense of makespan raise. The
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FIGURE 5.6: Average system reliability and makespan of schedules
generated by FTHLS, HLS, FTGA and GA for different number of

nodes, links and TT messages
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average makespan of transmission schedules for the use case 1 is denoted in Figure
5.6.d. As the graph illustrates, the average makespan of the TT schedules, which are
computed by the FTGA is increased by 42% compared to the average makespan of
the schedules that are generated by the basic GA. Similarly, the FTHLS increases the
average makespan of the generated transmission schedules by 30% compared to the
basic HLS. Thereby the results show that the FTGA improves the system reliability
of the transmission schedules by 9% at the expense of 42% makespan growth. The
graph depicts a similar trend for the fault-tolerant HLS and the basic HLS where
the FTHLS enhances the system reliability of the schedules on average by 9% at the
expense of 30% makespan raise. Moreover, according to the graphs in Figure 5.6.a,
when the number of TT messages increases while the number of devices and links in
the network remains intact, the average of the system reliability decreases slightly.

The Figures 5.6.b and 5.6.e present the experimental results from the use case
2. As the graph in Figure 5.6.b depicts, the average of the system reliability of the
schedules that are generated either by the FTGA or the FTHLS for different num-
bers of TT messages is improved compared to use case 1 mainly because the in-
creased number of network elements in the grid network structure results in redun-
dant routes with a higher reliability. Additionally, the diagrams (i.e. Figure 5.6.b) of
use case 2 depict that the FTGA improves the average of the system reliability by 7%
compared to the GA. To be more specific, in use case 2, the FTGA enhances the sys-
tem reliability by 7% at the expense of 45% makespan raise. The graph, also, depicts
that for the FTHLS the system reliability of the generated transmission schedules is
improved by 9% at the expense of 28% makespan growth.

The simulation results of the use case 3 are demonstrated in Figures 5.6.c and
5.6.f. As shown in the diagrams (i.e. Figure 5.6.c), the average of the system reliabil-
ity of the schedules that are computed by both the FTGA and the FTHSL for various
numbers of TT messages is increased compared to use case 1 and 2. In use case 3, the
FTGA enhances the average system reliability by 4% compared to the basic GA. Like
in the former use cases, the FTGA achieves a system reliability improvement at the
expense of 53% makespan growth. Similarly, the FTHLS increases the average sys-
tem reliability of the transmission schedules by 7% at the expense of 30% makespan
raise.

It has to be noted that in all above use cases which are carried out for different
loads of networks the FTGA outperforms the FTHLS in terms of the system relia-
bility. Since the FTGA during the scheduling process always selects the redundant
paths for forwarding TT messages, it leads to an optimized overall system reliability.
However, the FTHLS for each TT flow chooses the most reliable redundant routes
between sender and receiver end systems which results in neglecting the inter-flow
dependencies and the collective impact of the message reliabilities in the system re-
liability.

Scheduler use case 1 use case 2 use case 3
(s) (s) (s)

HLS 8.46 26.13 56.87
FTHLS 9.02 29.23 60.9

GA 172 134 125
FTGA 450 719 5317

TABLE 5.2: Average execution time of HLS, FTHLS, GA and FTGA
for use cases 1-3.
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Furthermore, as presented in Table 5.2, the average execution time of the FTGA
is significantly longer than the basic GA since the FTGA needs to explore a big-
ger search space of the legitimate fault-tolerant schedule possibilities. On the other
hand, the FTHLS solves the scheduling problem in a slightly longer time than the
HSL mainly because it explores a bigger system implementation design space. It is
noteworthy that the average solving time of the FTGA is considerably longer than
the FTHLS in similar use cases. Nevertheless, in the mentioned test cases, the aver-
age of the system reliability of the schedules generated by the FTGA is higher than
the system reliability of the schedules computed by the FTHLS.

Scheduler Use case 4 Use case 4 Use case 5 Use case 5
Avg. Makespan Avg.Exec time Avg.Makespan(µs) Avg.Exec time

(µs) (s) (µs) (s)

FTLS 1024 8.5 933 0.99
FTGA 1420 50 1254 791

TABLE 5.3: Average execution time and makespan of the schedules
generated by FTHLS and FTGA for use case 4-5.

Our reliability model identifies which network components have more impact
on the overall system reliability. The second part of the experimental results aims
to evaluate the sensitivity of the system reliability to different network components.
To achieve this goal, two sets of experiments are conducted based on the use case 4
set up that is described in Table 5.1. In the first set of experiments, it is assumed that
all physical links are fault-free while the network devices, including end systems
and switches, are failing over time. In the counter set of test cases, it is assumed
that the devices are fault-free, although the communication links encounter crash
failures over time. Namely, in the first set of experiments, the reliability of links is
set to 1 (Rell = 1) while the different values of reliability for network devices are
considered (i.e. 0.993, 0.995, 0.997 and 0.999). In the opposite set of test cases, the
device reliability remains constant (Relsw, Reles = 1) while the link reliability varies
from 0.993 to 0.999. For each set, as mentioned earlier of test cases, 25 synthetic
system models like in the first section of experiments are generated.

As the graph in Figure 5.7.a denotes, for FTGA when the reliability of a link is in-
creased, the average reliability of the system is improved by 4% compared to the test
cases where the same growth happens for the device reliability. The diagram 5.7.b
denotes a similar improvement (i.e. 4%) in the system reliability of the transmission
schedules that are computed by FTHLS. Therefore, according to the experimental re-
sults, the reliability of a link plays a key role in the average reliability of our synthetic
system models. This implies that the more reliable physical links lead to transmis-
sion schedules with higher system reliability. Nevertheless, both FTGA and FTHLS
offer the same average of the system reliability for these sets of experiments, but ac-
cording to Table 5.3 the FTGA generates the transmission schedules with a longer
makespan compared to the FTHLS. In use case 4 like the previous use cases, the
FTGA takes a longer time to find the schedules with the optimal system reliability
compared to the FTHLS. The average execution time and makespan of the schedules
which are generated for use case 4 and 5 by FTHLS and FTGA are presented in Table
5.3.

The third part of the experimental results has studied the impact of a varying
conditions of the control transfer in forms of TT messages between mission-critical
jobs. For this purpose, two sets of test cases are considered based on the use case
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FIGURE 5.7: Average of system reliability of schedules generated by
FTGA and FTHLS for different component reliability

5 set up. In both sets of test cases, links are fault-free while the device reliability
alternates between values of 0.993, 0.995,0.997 and 0.999 by the probability of 25%.
In the first set of test benches, every process with incoming edges requires the TT
messages from all its predecessor jobs for execution. However, in the second set of
experiments, the condition of all control transfers between mission-critical jobs is
substitutable. Like the previous experimental sections, for every use case, 25 system
models are generated.
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FIGURE 5.8: Average of system reliability of schedules generated by
FTGA and FTHLS for different conditional precedence constraints

According to the graphs in Figure 5.8.a, the average of the system reliability
of the transmission schedules generated by FTGA for the latter set of experiments
where all TT flows are substitutable, is enhanced by 4% compared to the first set
of test cases in which all TT flows are essential. The diagram 5.8.b illustrates the
same enhancement in the system reliability of the schedules computed by FTHLS
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for the mentioned test cases. However, the FTHLS improves the average makespan
of the schedules compared to the FTGA. Hence, the experimental results of both
schedulers (i.e. FTGA and FTHLS) show that the higher level of redundancy for the
safety-critical jobs results in more reliable TT communication. According to Table
5.3 the FTHLS outperforms the FTGA in terms of the average makespan and the ex-
ecution time, although both schedulers accomplish the same degree of reliability in
the transmission schedules computed for use case 5.
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Chapter 6

Time-Sensitive Networking
Simulation Framework

As described in chapter 1, the virtualized integrated system hosts several critical and
non-critical modules and offers these functions the necessary resources and services
through well-defined software abstraction layers [149]. Moreover, the communica-
tion layer of the virtualized integrated system needs to provide reliable network
services, mixed-criticality traffic and the simplified integration and configuration
management. For this reason, the communication layer of the virtualized integrated
system is defined based on the principles of the TSN standard, which is the most
recent real-time Ethernet extension and supports the requirements mentioned ear-
lier. Networking experts and technology manufacturers use simulation frameworks
extensively to emulate and validate new networking solutions mainly because the
implementation and deployment of novel protocols on hardware is a very time con-
suming and costly process. Since TSN is chosen as a networking solution for the
virtualized integrated system, this work presents a simulation framework for TSN,
which is developed as an Ethernet-based network for mixed-critically traffic. To this
end, firstly the simulation models implement the time-based features of TSN, in-
cluding the time-aware shaper and a policer in the Riverbed Modeler framework.
A model of the TSN-aware device uses the standard MAC unit for switching mes-
sages, however, at the same time it adds the necessary functionalities to support
strict temporal requirements. The described implementation is modular and can be
easily integrated into different vendor-specific network elements. The evaluation of
the time-based features of TSN is performed using several use cases and network
configurations, and the simulation results are compared against the temporal con-
straints of safety-critical applications.

Further, the TSN models, as described earlier, are extended to support differ-
ent FRER functionalities since the fault tolerance capability of TSN is essential for
message exchanges between mission-critical applications. The FRER functions are
implemented in a modular manner so that they can seamlessly be integrated into
the existing TSN models at appropriate stages. Moreover, this work presents a fault
injection model to verify the correctness and applicability of the FRER module. The
fault injector model simulates different faulty behaviours (including transient and
permanent errors) in the emulated TSN network. The experimental results are used
to evaluate the impact of the FRER module on the reliability of TT communication.

Aside from TSN time-aware features (i.e. time-based filtering, policing and shap-
ing) and a non-time-aware feature (i.e. FRER), the model of a TSN-capable device
implements the TSN clock synchronization mechanism. Namely, the TSN-aware
model uses TSN synchronization procedures instead of the static reference time to
enforce time-based features of TSN. As a result, this simulation model provides an
opportunity to evaluate the correctness of the real-time capability of TSN solutions



6.1. Related Work 105

in more realistic networking scenarios. Additionally, the time-aware system model
aims to study the correctness and applicability of the Best Master Clock Algorithm
(BMCA), the delay measurement and the synchronization process which are intro-
duced in the IEEE 802.1AS-Rev protocol mainly because this sub-protocol is not fi-
nalized yet.

A time-aware system requires a local clock with high accuracy to guarantee the
deterministic delivery of time-triggered traffic. Therefore, this work models the local
clock of each time-aware system with different drift rates (including linear and non-
linear drift rates). Furthermore, the behaviour of the time synchronization modules
is studied in the presence of crash failures. For this purpose, first, the re-execution
of BMCA is emulated by failing either the primary grandmaster node or the directly
attached link using the fault injector model. After that, the accuracy of the device’s
clock is evaluated during both the grandmaster failure and the handover period.

A TSN-aware model needs to be configured to employ TSN features. For this
reason, this work develops a fully centralized TSN model that aims to provide a
method for dynamic configuration of TSN-capable devices. In the fully central-
ized configuration model, a central network configurator firstly acquires knowledge
about the network topology and the associated traffic profiles and then computes
the schedules for the real-time applications and the corresponding TT traffic using
the received information. In the end, the central entity remotely configures the TSN-
capable devices so that their temporal and reliability requirements are met.

To sum up, this work develops the simulation models with both time-based and
non-time-based services of TSN. Consequently, it provides a comprehensive simu-
lation platform for modelling, performance and reliability evaluation of TSN net-
works.

The rest of the chapter is structured as follows: In section 6.1, related work on
time-triggered simulation frameworks is discussed. Section 6.2 presents the concep-
tual models used in the TSN simulation framework. Additionally, this section details
the implementation of the described models in the Riverbed simulation framework.
In the last section, the correctness and applicability of TSN services, including con-
figuration, redundancy management, clock synchronization, time-aware scheduling
and filtering are studied through several test scenarios. The simulation scenarios are
carried out based on an example train network layout to obtain realistic experimen-
tal results.

6.1 Related Work

For the evaluation of deterministic networks, a wide range of simulation frame-
works has been developed. Alderisi et al. [150] use the OMNET++ simulation
framework to show that an AVB in-vehicle network with a double-star structure ful-
fills timing requirements of automotive applications including infotainment and Ad-
vanced Driver Assistance Services (ADAS). Zinner et al. [151] discussed the problem
of co-existence of the AVB networks with the legacy vehicular network technologies
such as MOST and FlexRay mainly because in practice the transformation of an auto-
motive network to the fully AVB-compliant network happens incrementally. For this
reason, the authors introduced a method to map the QoS services offered by MOST
and FlexRay to the predefined priorities in an AVB network. Further, they confirmed
the viability of co-existence of legacy technologies and AVB-aware devices within an
automotive network using a simulation framework.
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Steinbach et al. [152] implemented a simulation framework called INET-Framew-
ork for TTEthernet in OMNeT++. The same authors in [153] examine the suitability
of AVB and TTEthernet technologies for time-triggered communication within a ve-
hicular network using the extended INET-Framework. The empirical results illus-
trated that both standards offer temporal isolation required by automotive traffic.
However, the performance of TTEthernet is less affected by background traffic than
AVB. Alderisi et al. [154] provided the same results regarding performance compari-
son of AVB and TTEthernet for in-vehicle networks. The authors in [86] extended the
INET-Framework with the AVB standards to evaluate the effect of co-existence of the
time-critical flows and the AVB stream classes on the shared physical infrastructure.
This framework was extensively used to analyze the impact of AS6802 (TTEthernet)
and AVB on the real-time applications in the automotive use cases. Furthermore,
several works such as Kawahara et al. [155] and Tuohy et al. [156] focus on the
performance evaluation of the AVB solution in vehicular networks using simulation
models in OMNeT++ and ns-3 respectively. Imtiaz et al. [157] investigated the ap-
plicability of AVB scheduling mechanism for industrial systems. For this purpose,
they conducted a test scenario where the transmission of a lengthy BE frame has an
overlap with the dissemination of AVB traffic. The simulation results illustrated that
in such use cases, the AVB standard is unable to offer deterministic transmission for
audio and video traffic. The same authors in [158] addressed this issue by a new pre-
emptive shaping approach whereby a conflicting large BE frame is preempted, and
its transmission will be resumed after sending the AVB traffic. Lim et al. conducted
extensive research on the suitability of the AVB standard for vehicular networks
[159, 160]. For instance, in [159] the authors developed an AVB network simulator
using OMNeT++ whereby they demonstrated that in the simulated network the de-
livery latency and jitter of AVB traffic classes significantly improved compared to the
IEEE 802.1Q-based network. On the contrary, the simulation results showed that the
transmission of control data as the highest 802.1Q priority frame offers better per-
formance in terms of end-to-end delay, jitter and packet loss compared to the AVB
networks.

Results derived from the simulation frameworks mentioned above validate the
conclusions drawn from mathematical analysis, stating that AVB does not meet strict
timing requirements necessary for mission-critical traffic [157, 161, 159].

This chapter develops the simulation model of 802.1Qbv and Qci capable de-
vices (including end systems and switches) to evaluate the differences between the
scheduling method of TSN and the credit-based shaping of AVB. Several studies
recently focus on different aspects of the new scheduling mechanism proposed in
TSN. The authors in [96] discussed the key parameters that impact the solution for
the TSN scheduling problem. Craciunas et al. [113] listed the scheduling constraints
for IEEE 802.1Qbv and provide them to Satisfiability Modulo Theories (SMT) and
Optimisation Modulo Theories (OMT) solvers to synthesize the valid Gate Control
List (GCL), which provides a bounded end-to-end delay and delivery variation of
safety-critical traffic. In [79], Pop et al. proposed the optimized configuration ap-
proach for the scheduled networks. This work used the ILP approach to synthesize
the GCL for each egress port so that all TT streams are schedulable and the minimum
number of queues are dedicated to the TT flows to satisfy their timing requirements.
In [162], Park et al. using the OMNET++-based simulation framework ensured that
TAS provides deterministic delivery of TT messages in the presence of AVB streams
and BE traffic. However, they only studied a limited aspect of the TAS mechanism.
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Similarly, the authors in [163] implemented a simulation model for an 802.1Qbv ca-
pable switch that shapes outgoing traffic based on predefined GCLs. This work val-
idated that the IEEE 802.1Qbv standard offers deterministic behaviours for mission-
critical systems. Nasrallah et al. [164] carried out extensive studies on the Time
Aware Shaper (TAS) and Asynchronous Traffic Shaper (ATS) that are introduced by
the TSN task group. For this purpose, the authors proposed two new methods (i.e.
Adaptive Bandwidth Sharing (ABS) and an Adaptive Slot Window (ASW)) to en-
hance the performance of standard TAS. Both of these mechanisms ensured that TT
traffic meets their stringent timing constraints while improving the quality of service
of the lower priority traffic (e.g. BE traffic). Additionally, this work showed that ATS
outperforms TAS for sporadic streams. Nevertheless, TAS, unlike ATS, provides ad-
equately low latency delivery for TT traffic regardless of the number of conflicting
lower priority messages.

The IEEE 802.1CB protocol is also modelled in this chapter to address the re-
liability requirements of cyber-physical systems. Over the last years, many works
studied the suitability of different fault-tolerant techniques for time-sensitive sys-
tems. Kehrer et al. [165] delivered a detailed comparison between two different
fault-tolerant methods of TSN networks (i.e. a decoupling stream reservation and
redundancy protocol and also a harmonized stream reservation and redundancy
protocol) where both approaches aim to offer the deterministic reconfiguration time
interval. In [166], Qian et al. firstly provided a comprehensive overview of the IEEE
802.1CB standard and then emulated an 802.1CB-aware network in visual studio.
The authors in [167] introduced a Priced Timed Automata (PTA) model to deter-
mine potential failures in the TSN networks. Thereby, they used the PTA to assess
the fault-resilience of the transmission schedules, particularly under Single Event
Upsets (SEUs). Prinz et al. [168] integrated the implementation of the TSN redun-
dancy method to the Industry 4.0 (I4.0) framework that was developed previously
by the same authors [169]. The empirical results verified the fault-resilient of the TSN
redundancy mechanism against different network failures in the I4.0 framework.

IEEE 802.1CB is a spatial-based redundancy protocol. Therefore, it is not cost-
efficient to mask transient and intermittent faults which can frequently happen due
to environmental changes with TSN spatial redundancy mechanisms. To address
this issue, Alvarez et al. [170] designed a time-based redundancy mechanism called
Proactive Transmission of Replicated Frames (PTRF) in which multiple copies of
each TT message are sent over the same forwarding path within a single transmis-
sion period. As a result, even in the presence of transient failures, at least one copy of
the message is delivered to the destination. The authors additionally combined the
PTRF mechanism with the TSN spatial redundancy method to enhance the overall
system reliability while optimizing network utilization.

Over the last decades, the focus of several works were clock synchronization pro-
cedures of real-time systems. The authors in [171] provided a detailed description
of the synchronization process for both logical and physical clocks. Lundelius et al.
[172] investigated the factors that practically have an impact on the precision of the
synchronized global time. Besides, the fault-tolerant clock synchronization mecha-
nisms are utterly discussed in [173, 174]. Stanton et al. [175] provided a compre-
hensive overview of the TSN clock synchronization procedure which plays a critical
role in cyber-physical systems.

In recent years, simulation tools are extensively used to assess the performance
of IEEE 1588 and IEEE 802.1AS. Hao Guo [176] emulated a PTP-aware network us-
ing the OPNET simulation framework. However, the simulated PTP-aware system
was vastly simplified, comprising only two boundary clocks and one end-to-end
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transparent clock. Additionally, this work assigned the role of each device statically.
As a result, the simulation framework was only used to evaluate the delay measure-
ment and the synchronization processes. Furthermore, the authors evaluated the
impact of using a regular switch instead of an end-to-end transparent clock on the
synchronized accuracy. The simulation results showed that the synchronization er-
ror is substantially raised when the load of cross traffic increases mainly because in
such cases a standard Ethernet switch measures the residence time of PTP messages
inaccurately. In [177], the author developed simulation models for IEEE 1588 in the
OMNeT++ framework to study the interdependence of different configuration pa-
rameters and the synchronization precision. According to the experimental results,
the selected periodicity of synchronization messages has a significant impact on the
precision of the synchronized time. In more detail, the simulated network containing
50 nodes achieved a synchronization precision of 0.7 µs when the synchronization
interval was set to 31.25 ms

Garner et al. conducted numerous studies on the IEEE 802.1AS standard [178,
179, 180, 181]. Namely, they assessed the performance of different functionalities
of IEEE 802.1AS through both simulation and a real-life prototype. However, these
evaluations are only limited to small-sized networks and also ignored the synchro-
nization error such as physical layer communication jitter. Lim et al. [160] presented
an OMNeT++-based simulator which aimed to emulate automotive networks sup-
porting the IEEE 802.1AS standard. The authors simplified the implementation of
AVB clock synchronization by using the static assignment of clock roles, excluding
external clock sources and neglecting measurement of the phase and frequency dis-
continuity. Consequently, this work evaluated only the performance of IEEE 802.1AS
peer delay measurement and synchronization process. The empirical results showed
that the measured peer delay using two different sampling filters converged to the
actual propagation delay (i.e. 40 ns) within an error range of ±10 ns. For evaluation
of the synchronization process, a daisy-chain based topology comprising time-aware
and non-time-aware systems was simulated. Then the precision of clock synchro-
nization was measured for two different synchronization intervals (i.e. 62.5 ms and
125 ms). For a synchronization interval of 125 ms, the simulated network with 100%
load of background traffic achieved the synchronization precision of 1 µs. On the
other hand, a synchronization interval of 62.5 ms decreased the synchronization er-
ror by 50% compared to a synchronization interval of 125 ms. Gutierrez et al. [182]
unlike the works as mentioned above investigated the impact of different sources of
synchronization errors like the clock granularity and the jitter of the communication
layer especially for larger time-sensitive systems since the synchronization error is
accumulated while transporting timing information across the large network.

Le et al. [183] modelled the time-aware shaping mechanism in OMNeT++ sim-
ulation framework. They additionally emulated the TSN clock synchronization me-
thod to enable more accurate evaluation of TSN time-aware features. However, this
work did not provide any information on the implementation details and opera-
tion of different functionalities of IEEE 802.1ASRev. In [184], the authors discussed
how to integrate the TSN services to the legacy industrial networks. For this reason,
they presented the simulation framework that modelled the Sercos as an example of
legacy technologies and TSN features in a single network.

This chapter details TSN synchronization modules which are implemented on
top of our TSN simulation models that support IEEE 802.1Qbv, IEEE 802.1Qci and
IEEE 802.1CB. Unlike the described studies, this work is not limited to the mod-
elling of TSN delay measurement and synchronization mechanisms but it also dy-
namically assigns the role of each device’s port by executing BMCA. In contrast to
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existing clock synchronization simulation frameworks, this simulator considers net-
work faults in real-time systems. To this end, various faulty behaviours such as crash
and link failure are simulated within the synchronized network. Then the impact of
each failure on the performance of the clock synchronization is assessed thoroughly.

Several recent studies [185, 186, 187] discussed how the Software Defined Net-
work (SDN) concept could facilitate the complex configuration process of real-time
systems. The authors in [188] developed the first SDN-based prototype for a deter-
ministic Ethernet network. This proof-of-concept which used Powerlink Ethernet
and the OpenFlow protocol showed how SDN reacts to link failures in real-time
systems.

[189, 190] presented complete configuration solutions for industrial networks
based on the fully centralized model introduced in IEEE 802.1Qcc. These solutions
examined the feasibility of the integration of the machine to machine communica-
tion protocol (OPC UA) to TSN networks in a way that the timing and reliability
requirements of mission-critical systems are met. In [190], the authors proposed the
Configuration Agent, which enables self-configuration of TSN features particularly
transmission schedule tables within real-time systems. This work additionally stud-
ied protocols such as YANG, NETCONF and OPC-UA which are used for encoding
and transporting the configuration information. The authors further proposed the
enhancement to these protocols so that they can fulfill the requirements of real-time
networks. However, in the mentioned works, the authors did not validate their
proposal through any proof-of-concept. The same authors in [191] proposed the
TSN standard as an appropriate communication solution for cyber-physical systems
which use fog computing. The framework in [190], benefited from a configuration
agent to support dynamic configuration of network components, particularly con-
figuration challenges related to scheduling. Said et al. [192] introduced a more com-
prehensive SDN-based framework for configuring different TSN services, particu-
larly clock synchronization. Besides, they verified the proposed solution through a
proof-of-concept.

This chapter, aside from modelling a device with real-time and reliability capa-
bilities, describes the implementation of a fully centralized configuration model and
other necessary functionalities which are specified in IEEE 802.1Qcc for dynamic and
remote configuration of TSN-capable devices. Since the IEEE 802.1Qcc protocol re-
stricts the system designers to neither a specific network management standard nor
a particular network discovery mechanism, this work uses the NETCONF protocol
for managing the network and the Rapid Spanning Tree Protocol [49] for topology
changes detection. This simulation framework provides an opportunity to analyze
the performance of the configuration process, which is measured as the time inter-
val required for the convergence of the application and the network after initiating
configuration. Therefore, this work indicates whether the centralized configuration
model which uses RSTP messages for setup forwarding paths and transmits the
NETCONF messages as best-effort traffic is suitable for the use in an actual TSN
system.

To sum up, this chapter introduces a simulation framework, which consists of
simulation models for both time-based and non-time-based services of TSN. Thereby,
this TSN simulator is different from the prior TSN simulation frameworks that fo-
cused only on specific TSN features. TsimNet [145] is one of the most recent TSN
simulation frameworks which is implemented on top of the INET framework. This
work addressed TSN sub-protocols which are not time-based such as frame pre-
emption, frame replication and elimination and per-stream filtering mainly because
TsimNet is aimed to evaluate TSN standards for the domain of avionics, where no
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time synchronization mechanism is used till now due to the certification overheads.
Consequently, the TSN simulator proposed in this chapter offers a more compre-
hensive simulation platform for modelling, performance and reliability evaluation
of TSN networks.

To perform an accurate evaluation, this work conducts experiments using a real-
life use case based on a train communication network.

6.2 TSN Simulation Framework

It is essential to evaluate and validate the applicability of TSN solutions for the com-
munication layer of the virtualized integrated system. The manufacturing and ver-
ification process of switches and end-systems which are compliant to the TSN stan-
dard is expensive and time-consuming. As a result, simulation tools are considered
as a cost and time-efficient options for analyzing the temporal and non-temporal
attributes of TSN. The TSN features are evaluated through different network perfor-
mance metrics such as end-to-end delay and jitter. The simulation models provide
an opportunity for industrial manufacturers and operators to simulate various in-
dustrial network topologies and use cases at low cost and with high precision (e.g.
in order of nanoseconds).

However, there are a large number of network simulation frameworks in the
market. NS-2, OMNeT++ and OPNET simulators are among the most popular
simulation tools. The Network Simulator-2 (NS-2) [193] and the Objective Modu-
lar Network Testbed in C++ (OMNeT++) [194] are both open-source discrete-event
triggered simulation tools. On the other hand, Riverbed Modeler (formerly called
OPNET) [24] is a robust commercial simulation framework which is widely used
in industry and academia to simulate and evaluate different communication layers,
network elements and protocols mainly because it provides a reliable and robust
evaluation of the simulated system. Due to widespread usage, Riverbed Modeler
evolves continuously to support a broader range of network protocols and tech-
nologies. Besides, Riverbed Modeler has a comprehensive Graphical User Inter-
face (GUI) that enables the user to model a network topology on different layers
(e.g. physical layer). The visual design of a network topology maps to the real sys-
tem implementation using an object-oriented programming approach. Furthermore,
Riverbed Modeler is a discrete-event triggered simulation tool, meaning that when a
user develops a use case, the events are used to simulate the system operation. This
simulator also offers a programming technique to implement user-defined network
protocols and message formats.

The Riverbed’s core functionalities are modelling, simulating, and analysis. In
Riverbed Modeler, the simulation results are presented in different readable forms
(e.g. graphs, statistics). Some of Riverbed’s capabilities based on the OPNET white-
paper can be listed as follows: parallel and event-triggered simulation kernel, pow-
erful GUI for model development, user-friendly debugging and data analysis tools,
discrete event simulation engine, several standard components with source code,
object-oriented modelling and open interface for importing external models [195].

To develop a customized network model in Riverbed, a user needs to specify
the simulation network, node and process models. The network model simulates
a distributed communication system using standard and customized components.
The node model represents network devices and consists of different modules. In a
node model, modules communicate with each other via packet streams. Each mod-
ule is defined using one or more process models. A process model is implemented
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by Finite State Machines (FSM) and can be configured via process interface. An FSM
specifies the behaviour of the module through a set of states and conditions [66].
Finite state machine models are programmed in C and C++ [196].

This work uses Riverbed simulator for modelling the communication infrastruc-
ture of the virtualized integrated system because Riverbed Modeler is known as a ro-
bust simulation framework for the modelling and performance evaluation of a wide
range of communication systems. More specifically, the Riverbed Modeler provides
a platform to build upon already developed models for different time-triggered pro-
tocols to satisfy the timing and reliability requirements of the virtualized integrated
system.
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<!-- Definition of the switch configuration -->
<SwitchConfiguration >
<node name="TSN_switch1" min_match_score="

strict_matching" ignore_questions="true"
model="ethernet16_switch_adv_tsn">

<ext -attr name="config_file" type="string">
<default -value value=""/>
</ext -attr>
<ext -attr name="CGL_file" type="string">
</ext -attr>
<attr name="BridgeParameters.count" value="1"/>
<attr name="BridgeParameters [0]. QoSParameters.

count" value="1"/>
<attr name="BridgeParameters [0]. QoSParameters

[0]. QoSSupport" value="Enabled" symbolic="
true"/>

<attr name="BridgeParameters [0]. QoSParameters
[0]. DefaultPortQoSScheme" value="
Strict_Priority" symbolic="true"/>

<attr name="Switch_Port_Configuration.count"
value="16"/>

<attr name="config_file" value="config"/>
<attr name="CGL_file" value="CGL"/>
</node>
...
</SwitchConfiguration >
<!-- Definition of the link configuration -->
<LinkConfiguration >
<link name="TSN_switch_3 -Server_2"

min_match_score="strict_matching"
ignore_questions="true" model="100
Gbps_Ethernet" destNode="Server_2" srcNode="
TSN_switch3" class="duplex">

<attr name="transmitter_a" value="TSN_switch3.
hub_tx_1"/>

<attr name="receiver_a" value="TSN_switch3.
hub_rx_1"/>

<attr name="transmitter_b" value="Server2.
hub_tx_0_0"/>

<attr name="receiver_b" value="Server_2.
hub_rx_0_0"/>

<attr name="doc_file" value="nt_link"/>
<attr name="tooltip" value="

Ethernet_100Gbps_Link"/>
</link>
...
</LinkConfiguration >

FIGURE 6.1: An example of network setup XML file
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This chapter presents a TSN network simulator and the associated models of
switches and end-systems which implement the subsets of mechanisms proposed
in the TSN protocol-suites. Therefore, these TSN simulation models can be used
to simulate several industrial use cases at a network level. This network simulator
particularly supports the time-based (IEEE 802.1Qbv and Qci) and non-time-based
(FRER) features of TSN. Furthermore, all components in the TSN simulator imple-
ment IEEE 802.1ASRev clock synchronization mainly because TSN-aware devices
use the global time to police and schedule mixed-criticality traffic. The TSN sim-
ulator also contains a central entity which is responsible for the configuration of
TSN-capable devices.

"platform": {
"nodes": [

{
"id": 0,
"is_ETBN": false ,
"is_CS": false

},
{
"id": 1,
"is_ETBN": false ,
"is_CS": false

},
{
"id": 2,
"is_ETBN": true ,
"is_CS": false

}
],
"links": [

{
"start": 0,
"end": 2

},
{
"start": 1,
"end": 2

}
]

FIGURE 6.2: An example of network setup JSON file

6.2.1 Network Generator Model

In Riverbed, there is a possibility to create an arbitrary network topology by import-
ing an XML file. This XML file describes all node models which form a simulation
network and the connections between them. This feature allows defining various in-
dustrial use cases without accessing Riverbed’s GUI, selecting network devices one
by one and making a connection between them. Consequently, several industrial
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networks can be imported to Riverbed and simulated in a time-efficient manner.
The example of a network XML file is presented in Figure 6.1.

To simplify the process of defining a simulation network, a network topology
generator model is defined which gets the description of network components and
physical links between them in JSON format and converts them to the XML for-
mat. As shown in Figure 6.2, the JSON file only contains the high-level definition
of the network topology. Therefore, the network topology generator sets several
parameters of node models to the default values. This approach, however, makes
the creation of a simulation network faster and independent from the node model
specifications, but it limits the flexibility of network setup definitions.

6.2.2 Configuration of TSN Devices

The TSN switch model integrates time-based ingress policing and time-aware egress
shaping into the existing queuing and scheduling methods of the standard switch.
Besides, in the TSN simulation framework, the conventional end systems are modi-
fied to dispatch and receive different types of messages based on predefined traffic
profiles. Therefore, each TSN-capable node model in the TSN simulator requires the
profiles of ingress traffic and the port-specific GCLs to police incoming traffic and
shape outgoing frames at certain time instants. In TSN networks, there are three
types of traffic: time-triggered, rate constraint and best effort. Each TT traffic profile
comprises the following parameters:

• Source MAC address: It specifies the MAC address of the end system that
sends frames.

• Phase: It defines a time instant at which a TSN device expects that the recep-
tion of the TT flow starts. This value is an offset in the range of [0, flow’s
period].

• Period: Each TT stream is received and transmitted periodically. This value
defines the period time.

• Transmission window: In TSN, a TT flow can consist of more than one Eth-
ernet frame. Thus, this parameter specifies how long the arrival of TT frames
can continue.

• VLAN ID: It determines a VLAN identifier for the IEEE 802.1Q header.

• Destination ports: For a TT flow, apart from the arrival time, the route from a
sender to the receiver is specified offline. Therefore, this parameter lists egress
ports.

Aside from the TT traffic profile, there are non-TT traffic profiles which contain
Rate Constrained (RC) traffic parameters. The RC traffic is identified with attributes
similar to TT stream parameters. The only difference is related to the period field.
For RC traffic, this field is called BAG and specifies the minimum time interval be-
tween two consecutive frames which belong to the same RC traffic.

In a TSN-capable device, when the incoming frame attributes do not match any
TT or RC traffic profile, the packets are classified as BE traffic because they do not
have any timing constraints. This is the reason why the BE traffic parameters are
not defined as a part of non-TT traffic profiles. However, the BE traffic attributes are
provided to the end-system model, which is responsible for generating BE messages.
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It has to be noted that the GCL is specified for each egress port separately and
contains the following parameters:

• Queue mask: This attribute specifies the state of each queue’s gate in the time
interval between start time and end time.

For instance, consider 10000000 as a queue mask while start and end time are set
to 0 and 10 microseconds respectively. This parameter means the gate of queue num-
ber 7 would be open and enabled to transmit traffic at any time between 0 and 10
microseconds. All other queues are closed in the defined period. Each port-specific
GCL runs over a period that is assigned to the Least Common Multiple (LCM) of
periods of all the TT flows destined to that port. Furthermore, all TSN devices start
running GCLs at the same time.

The port-specific transmission schedule of a TSN device (i.e. GCL) can be gen-
erated using any of schedulers that are introduced in Chapter 4 and 5. However,
in the TSN simulator the Fault-Tolerant Heuristic List Scheduler (FTHLS) is utilized
to calculate port-specific GCLs. FTHLS takes a description of the network structure
and a specification of the jobs that execute on the network and associated TT mes-
sages as inputs. In the output, FTHLS specifies the end system that each job should
run on and also the routes that each TT message should traverse to the receiving end
system. FTHLS additionally calculates the injection time at which each job starts the
transmission of corresponding TT messages.

In the TSN simulation framework, the configuration model, which is developed
according to the TSN fully centralized configuration model manages components
residing in the network through the NETCONF protocol. Moreover, a central con-
figuration entity acts as both CNC and CUC, meaning that it collects data about the
capabilities and requirements of both switches and end systems and further con-
figures these components accordingly. The reason behind this design decision is to
avoid additional communication overhead between these two modules.

6.2.2.1 Modeling TSN Configuration Parameters

It is necessary to model the TSN configuration parameters introduced above with
the YANG modelling language. These models are used to encode the configura-
tion information related to switches and end systems which can be modified using
NETCONF RPCs. Figure 6.3 and Figure 6.4 present the YANG models which are
designed for formatting the configuration parameters of TSN switches.
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grouping groupStreamConfiguration {

leaf num_TT {type uint32 ;}

list TT {
key "src_address ,vlan_id";

leaf src_address {type int64 ;}
leaf phase {type decimal64 ;}
leaf period_duration {type decimal64 ;}
leaf transmission_duration {type decimal64

;}
leaf vlan_id {type vlanid ;}
container dest_ports {

leaf num_dest_ports {type uint16 ;}
leaf -list port_id {type uint16 ;}

}
}

}

FIGURE 6.3: YANG model of the configuration data responsible for
stream scheduling in a TSN switch

grouping groupGCLPortConfiguration {
list GCL {

leaf num_GCR {type uint32 ;}
list GCR {

leaf start_time {type uint64 ;}
leaf end_time {type uint64 ;}
leaf queue_mask {type queuemask ;}

}
}

}

FIGURE 6.4: YANG model of the configuration data responsible for
the GCLs in a TSN switch

6.2.2.2 NETCONF Implementation for TSN devices

The secure transport layer of the NETCONF protocol is not the focus of this work
mainly because several protocols such as SSH [197] are already developed for this
purpose. Thereby, the implementation of NETCONF in the TSN simulation models
starts from the message layer.

A TSN device upon reception of a NETCONF message processes the textual rep-
resentation of the message using an XML parser and further retrieves the necessary
configuration data such as a message type. The message type field, as shown in
Figure 6.5 is encoded as the root element of the XML representation and can be set
to either notification, RPC or RPC reply. During the configuration process, all TSN
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devices except a central configuration entity act as servers and only receive the RPC
messages since they need to be configured to offer TSN services.

<rpc message -id="1" xmlns="
urn:ietf:params:xml:ns:netconf:base:1 .0">

<get -config >
<source >

<running/>
</source >

</get -config >
<filter type="subtree">

<TSNBridgeConfigurationData xmlns="eti.uni -siegen.
de:es:yang:tsn">

<top/>
</TSNBridgeConfigurationData >

</filter >
</rpc>

FIGURE 6.5: NETCONF get-config RPC queried for configuration
data of a TSN device

An RPC, however, can be used to invoke several operations, but this work only
supports two main operations: the get-config operation and the edit-config opera-
tion. The get-config operation is utilized to obtain capabilities and requirements of
TSN devices. More specifically in the TSN simulator, first, the central configuration
model that acts as a configuration client sends an RPC message with the get-config
RPC to query information about network structure and the active ports of devices.
Then, this entity uses the acquired configuration data to compute port-specific GCLs
and also to schedule jobs running on the simulated network. Figure 6.5 presents an
example of a NETCONF get-config RPC. The TSN simulator only supports the run-
ning datastore. Hence as shown in Figure 6.5, the source field of the get-config oper-
ation is set to <running/>. On the other hand, a TSN device generates the RPC-reply
message while processing an RPC message with the get-config RPC since the RPC
and RPC-reply messages share many common attributes such as the message-id.
The TSN device after a successful process of an RPC message encodes the requested
configuration data under the <data> element of the RPC-reply message and then
sends back the message to the central entity. However, if the parsing of the RPC
message fails, the device sends back the RPC-reply message with an <rpc-error> el-
ement to inform the central entity about errors. Figure 6.6 represents a YANG model
which is used to retrieve the configuration information from TSN devices. Addition-
ally, Figure 6.7 depicts the reply message to the NETCONF get-config RPC, which
is generated based on the YANG model shown in Figure 6.6. It has to be noted the
YANG models used throughout this work are solely defined based on the capabili-
ties and the requirements of the network components in the TSN simulator and most
likely cannot directly apply to actual TSN devices.
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grouping groupTop {
leaf name {type string ;}
leaf address {type int64 ;}
leaf devicetype {type string ;}

leaf num_ports {type uint16 ;}
container ports {

list port {
key "port_id";

leaf port_id {type uint16 ;}
leaf connected {type boolean ;}
leaf state {type portstate ;}

}
}

}

FIGURE 6.6: A simplified YANG model for the configuration data
queried by the get-config operations in the TSN simulation frame-

work

<rpc -reply xmlns="urn:ietf:params:xml:ns:netconf:base:1
.0" message -id="1">

<data>
<TSNBridgeConfigurationData xmlns="eti.uni -siegen.

de:es:yang:tsn">
<top>

<name>switch_1 </name>
<address >1111</address >
<devicetype >switch </devicetype >
<num_ports >1</num_ports >
<ports >

<port>
<port_id >0</port_id >
<connected >true</connected >
<state >3</state >

</port>
</ports >

</top>
</TSNBridgeConfigurationData >

</data>
</rpc -reply >

FIGURE 6.7: Response to a NETCONF get-config RPC as shown in
Fig.6.5
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<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1 .0"
message -id="2">

<edit -config >
<target >

<running/>
</target >
<config >

<TSNBridgeConfigurationData xmlns="eti.uni -
siegen.de:es:yang:tsn">
<StreamConfiguration >

<num_TT >1</num_TT >
<TT>

<src_address >30</src_address >
<phase >0.000050 </phase >
<period_duration >0.200000 </

period_duration >
<transmission_duration >0.000010 </

transmission_duration >
<vlan_id >10</vlan_id >
<dest_ports >

<num_dest_ports >1</num_dest_ports >
<port_id >0</port_id >

</dest_ports >
</TT>

</StreamConfiguration >
</TSNBridgeConfigurationData >

</config >
</edit -config >

</rpc>

FIGURE 6.8: NETCONF edit-config RPC containing configuration
data to configure stream scheduling in a TSN switch based on the

YANG model in Fig.6.3

The TSN simulator also implements the edit-config operation that is used to ad-
just configuration data of TSN devices. The central configuration model dispatches
a separate NETCONF message with an edit-config RPC for each device in the net-
work. The device-specific NETCONF message contains the necessary data which is
used to configure the corresponding device. A TSN device creates the stream iden-
tity table and transmission schedule tables from the configuration data, including
the ingress traffic profiles and the port-specific GCLs. Like the get-config opera-
tion, the central entity sets the target field of the NETCONF get-config RPC to the
value <running/> since TSN devices in the simulation framework only support the
running datastore. Figure 6.8 denotes an example of a NETCONF edit-config RPC
where the configuration data is specified based on the YANG model shown in Fig-
ure 6.3. Upon reception of a NETCONF message with edit-config RPC, a TSN de-
vice first retrieves the configuration data from the content of the message using an
XML-parser and then modifies its configuration parameters accordingly. It has to be
noted that a TSN device does not always process NETCONF messages successfully.
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Therefore, each device replies to the edit-config RPC by sending back a RPC-reply
message with either <ok> or <rpc-error> element.

6.2.2.3 Implementation of the CNC/CUC Entity

In the TSN simulator as described before, the central configuration model imple-
ments both CNC and CUC entities. The central entity is mainly responsible to ac-
quire knowledge about the device capabilities and the network topology and then
based on the collected information computes valid schedules for the jobs running on
the network and the associated messages. To this end, the central entity dispatches
the NETCONF messages with the get-config RPCs towards all TSN devices. Fur-
ther, this entity receives the specification of devices in response to the NETCONF
get-config RPCs. The acquired information is used for scheduling of jobs and corre-
sponding traffic.

6.2.3 TSN End System Model

In the TSN simulator, the Riverbed regular Ethernet workstation (i.e. ethernet_stati-
on_adv) is used as a basis for modelling a TSN-capable end system. Therefore, the
Ethernet workstation is modified to accommodate different TSN features, including
time-based filtering, clock synchronization, TAS and FRER. The motivation of hav-
ing a standalone TSN end system drives the integration of TSN services to other
existing protocols in this model. Figure 6.9 presents the model of TSN-aware end
system in Riverbed.

FIGURE 6.9: TSN end system model in Riverbed simulation frame-
work

The end system model comprises four modules as follows:

• local time functionality
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• tsn_message_process

• eth_mac_interface

• mac

6.2.3.1 Local Time Functionality

The primary task of a physical clock is to measure time. A clock consists of a counter
and a physical oscillation method that triggers an increment of the counter by gen-
erating periodic events named the clock microticks. The time interval between two
consecutive microticks specifies the granularity of the clock. It can be measured by
the nominal number of microticks of the reference clock z during this time interval.
Moreover, the frequency ratio between the clock k and the reference clock z at mi-
crotick i determines the drift of a clock k. More specifically, the drift as stated in
Equation 6.1 is computed by dividing the granularity of clock k with respect to the
reference clock z by the nominal number nk of microticks of the reference clock z
[29].

dri f tk
i =

z(microtickk
i+1)− z(microtickk

i )

nk (6.1)

The drift of a clock can be formulated either linearly or non-linearly. In a clock
with linear drift, the drift rate is constant while in a clock with the nonlinear drift,
the drift rate varies according to the environmental factors such as temperature.

In Riverbed simulation framework, all devices use the simulation time as a refer-
ence time during the execution of different modules. Thereby, each device model in
the TSN simulator originally does not have a clock drift. However, every time-aware
system in a real-world network has its drift rate. For this reason, the local clock of
each time-aware system in the TSN simulator, which is used to time-stamp gPTP
messages, is modelled as follows:

local_time = Sync_time + time_dri f t + clock_tick (6.2)

In Equation 6.2, SyncTime is set to the Riverbed simulation time during the net-
work initialization phase and changes to the grandmaster time after completion of
the synchronization process. In the TSN simulation framework, the local clock of the
grandmaster refers to the simulation time (i.e. op_sim_time()). As stated in Equa-
tion 6.2, the local time of a time-aware system is calculated from the summation of
synchronization time, time drift, mean path delay and time duration of a clock tick.

The clock tick is measured as follows:

clock_tick = current_absolute_time− previous_absolute_time (6.3)

Where the previous_absolute_time represents the local time of a time-aware sys-
tem when it is synchronized to the grandmaster clock. Furthermore, the mean path
delay is calculated according to the principle that is illustrated in Figure 3.20.

time_dri f t = dri f t_rate ∗ clock_tick (6.4)

Equation 6.4 presents the linear clock drift that is obtained from the multiplica-
tion of the clock tick and the constant drift rate of a time-aware system. In the TSN
simulator, the value of the drift rate for every time-aware system is assigned by a
user.
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compensated_time = local_time− compensated_time_o f f set
compensated_time_o f f set = (NRR + CSRO) ∗ clock_tick

(6.5)

Equation 6.5 denotes how the linear clock drift of a slave system is compensated
using the NRR and the CSRO ratios. In the TSN simulation framework, it is assumed
that the grandmaster has zero drift rate and its local clock is set to the simulation time
(i.e. op_sim_time()) and is further used to time stamp synchronization messages.

NRR =
PresOriginTimestamp−MasterPreviousAbsoluteTime
PresReceiptTimestamp− SlavePreviousAbsoluteTime

(6.6)

As shown in Equation 6.4, the clock drift from the reference time (i.e. the grand-
master time) increases linearly over time and results in an inaccurate local time. As
described in Section 3.5.5.2, NRR specifies the frequency ratio between two neigh-
bouring systems and along CSRO aim to compensate the clock drift as stated in
Equation 6.5. As denoted in Equation 6.6, Neighbor Rate Ratio (NRR) is obtained
from the ratio of a time duration of a neighbour time-aware system and a time
duration of a desired time-aware system. In this equation, PresOriginTimestamp
and PresReceiptTimestamp parameters refer to the timestamps which are associated
with either sent or received synchronization messages and have the highest drift
from the grandmaster time. On the other hand, MasterPreviousAbsoluteTime and
SlavePreviousAbsoluteTime are representatives of the local time with zero drift from
the grandmaster time. It is visible when the local clocks of two neighbouring time-
aware systems have an identical drift rate, the NRR would be one. Calculating NRR
can be seen as a linearization process because NRR is used to compensate the clock
drift. The computation of NRR for two time-aware systems with the linear drift
is rather simple. On the contrary, for neighbouring time-aware systems with non-
linear clock drifts, the frequency ratio is calculated approximately. Therefore, in the
latter case, selecting the appropriate synchronization interval affects the accuracy of
the synchronization process significantly.

As described earlier, the frequency ratio between two neighbour time-aware sys-
tems with identical drift rates is equal to one which may lead to an inaccurate com-
putation of the synchronized time due to an actual frequency offset between the
slave clock and the grandmaster clock. Therefore, Cumulative Scaled Rate Offset
(CSRO) is calculated and embedded in synchronization messages to address this
frequency offset.

The CSRO is obtained from the summation of NRRs as described in Section
3.5.5.2. It is noteworthy that every time-aware relay between the slave and the
grandmaster clock calculates the NRR and updates the CSRO field of a synchro-
nization message accordingly. As a result, even the slave time-aware systems with
unity NRR can compensate their drift from the grandmaster clock using the CSRO
ratio.

In Equation 6.5, CSRO and NRR ratios are used to compensate the slave clock
drift in a way that the compensated time converges to the grandmaster time. In the
TSN simulator, the compensated time is utilized as a reference time for scheduling
and filtering.
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6.2.3.2 tsn_message_process

In this model, the tsn_message_process module is responsible for TSN services such
as TAS and FRER. This module comprises one main process and five child processes
as follows:

• tsn_be_source

• tsn_rc_source

• tsn_tt_source

• tsn_end_station

• tsn_dequeue

The main process model defines the status flag parameters, which are later used
to determine whether the associated child process is available for invocation or not.
It also spawns the child processes mentioned above. In TSN networks, an end-
system can be either talker or listener. Thereby, depending on the role and traffic
type, a specific child process is invoked, and the particular flow control mechanism
is executed. It has to be noted that the FRER logic of end-system and switch models
is identical.

For transmitting TT streams, the tsn_tt_source process is invoked. In this pro-
cess, first, the source module generates a frame according to the outgoing TT traf-
fic profiles. After that, the frame is passed to the sequence generation module to
compute the appropriate sequence number. This module stores the last generated
sequence number for every TT stream as a parameter called LastGenSeqNum in the
stream identity table. For the first frame, the sequence generation function sets the
LastGenSeqNum to one. For subsequent frames, this function increments the Last-
GenSeqNum by one. It is noteworthy that in the TSN simulator the LastGenSeqNum
is reset to zero after reaching the value 50. As a next step, the sequence encoding
function encodes the stream’s LastGenSeqNum into the R-TAG format. Then, the
enqueue module puts the frame into the TT queue. The end-system model uses the
queuing scheme as illustrated in Figure 6.10.

Async queue

Async queue

BE

Egress
Port  

Strict
Priority

TAS

TT queue

FIGURE 6.10: The queuing scheme of the TSN end system model

The primary task of the tsn_dequeue process is to send the generated frames
to the lower layer (i.e. MAC layer). To this end, the process continually examines
the status of the queue gates through the egress time-aware shaping module. On
the other hand, the dequeue module in this process is responsible for sending out
the frames from the eligible queue to the MAC layer. For instance, to dequeue TT
frames, first, the egress time-aware shaping function checks whether the gate of the
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TT queue is enabled according to the given GCL. Then, if the gate of the TT queue is
open, the dequeue module sends out the frame over the directly attached link.

The tsn_rc_source process is invoked to generate RC frames. As shown in Figure
6.11, the RC flow control mechanism on the transmission side is similar to the TT
flow control mechanism. The only difference is related to the dequeue module. In
the stream identity table, for every RC stream, the time instant that the last frame of
a specific stream was sent is stored in a parameter called LastSentFrame. For each
RC frame before dequeuing, the current local time is checked against the stream’s
LastSentFrame. The RC frame is transmitted only if the time interval between the
current local time and the LastSentFrame is equal or more than the specified BAG.
Otherwise, the RC frame will remain in the queue.

For dispatching BE traffic, the tsn_be_source process is invoked. As denoted in
Figure 6.11, the FRER logic is excluded from the BE flow control mechanism since
the loss of BE traffic does not cause any critical failures. However, like other types
of traffic, the egress time-aware shaping function retrieves the status of the corre-
sponding BE queue’s gate. If this function declares the gate of the target queue as
enabled, the dequeue module sends out the BE frame over the attached link.
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FIGURE 6.11: Ingress and egress flow controls of a TSN end-system

Figure 6.11 presents the ingress and egress flow control mechanisms within a
TSN end-system model.

The time-aware end system plays the role of an 802.1ASRev ordinary clock with
the specific functionalities. For this reason, the tsn_end_station process in a TSN
switch model incorporates BMCA, synchronization and peer delay measurement
mechanisms.

During the initialization phase, a time-aware system generates gPTP Announce
messages to communicate its configuration parameters which are derived from the
external clock source and broadcasts the messages to all other time-aware systems
residing in a gPTP domain. The state-decision algorithm later uses this configuration
information for the establishment of a master-slave hierarchy. Figure 6.12 depicts the
structure of the Announce message.

As shown in Figure 6.12, an Announce message contains the following fields:

• currentUtcOffset: Time difference between TAI and UTC with respect to the
active grandmaster.
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FIGURE 6.12: Announce message format

• grandmasterPriority1: This is a one-octet user-configurable field where the
lowest value maps to the highest priority. In a gPTP network, the value of
this field for master capable devices is set to 128 while for slave clocks it is set
to 255.

• grandmasterClockQuality: The field consists of the Clock Class, Clock Accu-
racy and Clock Variance.

• grandmasterPriority2: This field like the grandmasterPriority1 is user-configurable
and used to identify primary and backup grandmaster clocks among clocks
with the same attributes.

• grandmasterIdentity: This consists of port information of a time-aware system.

• stepsRemoved: The field is used by a receiver to verify the correctness of the
Announce message.
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• timeSource: This specifies the type of time source used by a time-aware system.

• Path trace Type Length Value (TLV): It determines the devices that an An-
nounce message traverses.[17]

In the TSN simulator, every time-aware system uses an internal clock. Besides,
only two fields of an Announce message (i.e. Priority1 and Priority2) are used to
identify the best master clock concerning the drift rate.

The BMCA is divided into two algorithms: The data set comparison algorithm
compares its clock data set with the data sets of other time-aware systems. After
that, the state decision algorithm determines the role of a time-aware system and
also the state of every port. Further, the algorithm updates the data set of the lo-
cal clock accordingly. Each time-aware system in the TSN simulator apart from its
clock data set, maintains a parent clock data set containing two attributes for the
current grandmaster. Before dispatching the first Announce message, the parent
dataset is set to the local clock dataset. Upon reception of an Announce message, the
tsn_end_station process executes BMCA, where the received clock data set, is com-
pared with the parent data set. The time-aware system is identified as a slave clock
and the parent data set is changed to the received clock data set when the clock data
set of the sender is better than its own and the parent clock data sets. In contrast, if
the clock data set of the recipient time-aware system is better than the sender data
set, then the receiver time-aware system is configured as a master clock.

For a better understanding of BCMA execution, consider a gPTP domain with
three time-aware end stations where the priorities of system ’A’ are 128 and 128, the
priority1 and priority2 of system ’B’ are 128 and 129 respectively, and the priorities
of system ’C’ are 128 and 130. It is worthy to note that on start-up all time-aware
systems configure their priority attributes and also update the corresponding pa-
rameters in the parent data sets. Once all time-aware systems dispatch their first
Announce messages, each system would receive two Announce messages from its
neighbouring devices. When system ’B’ receives the Announce messages originated
from system ’A’, it first compares its data set with the system ‘A’ data set and then
identifies itself as a slave clock. The reason behind this decision is that the system
‘A’ has a better data set. Therefore, system ’B’ updates its parent data set with the
system ’A’ dataset. On the contrary, when this system compares its data set with
system ’C’ data set, it recognizes itself as a better clock source. However, its parent
data set (i.e. system ’A’) still presents a better clock. As a result, system ’B’ remains
as a slave clock. Systems ’A’ and ’B’ also perform the same procedure and at the
end, system ‘A’ is selected as a grandmaster in the described gPTP domain mainly
because it has a better clock data set compared to systems ’B’ and ’C’.

Upon reception of a Pdelay_Req message, the tsn_end_station process executes
the peer delay mechanism. If a TSN end system plays the role of a slave clock, it
sends Pdelay_Req messages periodically to neighbour devices. Figure 6.13 presents
the Pdelay_Req message structure.

When a time-aware system receives a Pdelay_Req message, first it stores the time
instant at which the message is received (i.e. receiving timestamp) and then creates a
Pdelay_Resp message containing this value. In the TSN simulator, a time-aware sys-
tem also appends to a Pdelay_Resp message the sending timestamp of the message
mainly because it implements the one-step clock processing. Figure 6.14 illustrates
the format of the Pdelay_Resp message.

Once a slave clock receives a Pdelay_Resp message, the time-aware system has
all four timestamps required for peer delay measurement. Thereby, it calculates the
mean path delay based on Equation 3.10 as follows:
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FIGURE 6.13: Pdelay_Req message format

mean_path_delay =
(t2 − t1) + (t4 − t3)

2
(6.7)

Where t1 is the egress timestamp of the Delay_Req message, t2 is the ingress times-
tamp of the Delay_Req message, t3 is the egress timestamp of the Delay_Resp mes-
sage and t4 is the ingress timestamp of the Delay_Resp message. The slave clock
maintains the measured mean link delay and later uses it during the synchroniza-
tion process.

The tsn_end_station process, in addition to BMCA and Peer delay mechanism,
implements the synchronization module. This method is executed upon reception
of Sync messages to syntonize the local clock to the grandmaster time. To this end,
a slave gPTP device measures the time difference between the slave clock and the
grandmaster clock based on data embedded in a Sync message as follows:

Time difference from grandmaster = ingress timestamp Sync− egress timestamp Sync−
link delay between slave and grandmaster− correctionField of Sync (6.8)

Where ingress timestamp Sync indicates the time instant at which the Sync mes-
sage is received, egress timestamp Sync presents the time instant at which the grand-
master clock sends Sync message, and correctionField of Sync contains the residence
time of a Sync message in intermittent devices.
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FIGURE 6.14: Pdelay_Resp message format

A time-aware system identified as a grandmaster clock sends the Announce and
Sync messages to slave clocks periodically. The grandmaster clock also sends back a
Pdelay_Resp message in response to a Pdelay_Req message originated from a slave
gPTP device. However, a slave gPTP device schedules an announce_receipt_timeout
event to examine the state of a current grandmaster clock periodically. If a slave
clock does not receive any Announce message from the active grandmaster clock
within announce_receipt_timeout interval, it starts sending an Announce message
to other time-aware systems to select a new grandmaster clock. It is good to mention
that in the tsn_end_station process, Sync and Announce messages are scheduled at
different cycles. Figure 6.15 represents a Sync message format.

6.2.3.3 eth_mac_interface

The TSN end system model uses the eth_mac_interface process of the standard Eth-
ernet workstation without any modification. This process sets up an Interface Con-
trol Information (ICI) structure which is used to exchange data between the higher
layer processes (e.g. tsn_message_process) and the mac process.

6.2.3.4 MAC Process

The mac process receives frames from either the higher layer or the physical layer.
For a frame that is received from the physical link, the mac process first invokes the
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FIGURE 6.15: Sync message format

stream identification function to determine the stream that the frame belongs to us-
ing the source MAC address and the VLAN ID fields. Depending on the traffic type,
the mac process uses different flow control mechanisms. For TT streams, the ingress
time-based filtering function checks the arrival time of a TT frame against the cur-
rent local time. If the frame belongs to a TT flow that arrives outside the predefined
reception window, the filtering function will drop the frame. In the counter case
where a TT frame arrives at the expected time interval, the function passes control
to the sequence decoding function. The sequence decoding function retrieves the
sequence number of the frame from the last two octets of the R-TAG header. In the
stream identity table, the last received sequence number of every RC and TT stream
is stored in a parameter called LastRecSeqNum. Therefore, the sequence recovery
function compares the sequence number of the frame against the stream’s LastRec-
SeqNum. If the frame carries the sequence number other than LastRecSeqNum + 1,
the sequence recovery function discards the frame. Otherwise, it passes control to
the sink module mainly because this function is designed based on the VectorRecov-
eryAlgorithm [28]. In the end, the sink module terminates the receiving frames.

As shown in Figure 6.11, on the reception side, the flow control of RC streams
is similar to the TT flow control. The only difference is that the ingress time-based
filtering function would not be invoked for this type of traffic. Moreover, the re-
ceived BE traffic from the physical layer is terminated at the sink module without
any further processing.

The timestamping operation plays a crucial role in a time-aware system mainly
because it determines the synchronization accuracy, which is provided by the IEEE
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802.1As-Rev protocol. A gPTP device could achieve a synchronization accuracy as
good as one microsecond if timestamping takes place close to the physical layer.
In an actual time-aware system as illustrated in Figure 6.16, the timestamp opera-
tion occurs at the sublayer MII which is located between the MAC and Logical Link
Control (LLC) sublayers within the Data Link Layer (DLL). However, a TSN end
system model in Riverbed simulator does not have the MII layer. Consequently, the
timestamping of event message happens either when the message is sent from the
mac module towards the transmitter module (hub_tx0) or when it is sent from the
receiver module (hub_rx0) towards the mac module.

Higher layers

MD

LLC

MS

ISS

 Media-dependent
 time-aware system
           entities

MAC

   PHY

Ingress timestamp 
measurement plane

Egress timestamp 
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Ingress event message
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ingressLatency
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FIGURE 6.16: gPTP timestamping mechanism [17]

As shown in Figure 6.16, the timestamping of an event message within a time-
aware system takes place when the message timestamp point passes the reference
plane which separates the network from a gPTP device. The timestamps are gener-
ally created at a timestamp measurement plane which results in an additional delay
between the reference plane and the measurement plane. For this reason, the intro-
duced time offsets are removed from the generated timestamps of either incoming
or outgoing event messages, as shown in Equation 6.9.

egress_timestamp = egress_measured_timestamp + egress_latency
ingress_timestamp = ingress_measured_timestamp− ingress_latency

(6.9)

In Equation 6.9, the timestamps relative to the reference plane (i.e. egress_timest-
amp and ingress_timestamp) are calculated based on the timestamps relative to the
measurement plane (i.e. egress_measured_timestamp and ingress_measured_timestamp)
and the corresponding delays (i.e. egress_latency and ingress_latency). Since the
timestamping of an event message should occur when the Start of Frame Delim-
iter (SFD) of the message is passed to the reference plane, the equation mentioned
above can be formulated more precisely as follows:

actual_egress_timestamp = egress_timestamp +
(preamble+SDF)

data rate

actual_ingress_timestamp = ingress_timestamp− packet size− (preamble+SDF)
data rate

(6.10)
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FIGURE 6.17: Timestamping point in TSN end system model [66]

Figure 6.17 depicts how the timestamping operation is implemented within a
TSN end system model in Riverbed. In the TSN simulation framework, egress_latency
and egress_latency are zero since the mac module is attached to the transmitter and
the receiver modules directly via point-to-point connections (See Figure 6.9). Fur-
thermore, the transmission delay between a time-aware system and the network
is negligible (in the order of nanoseconds) mainly because the 100 Gbps physical
links are used to interconnect gPTP devices. Thereby, in the TSN end system model
egress_timestamp and ingress_timestamp are expressed as:

egress_timestamp = egress_measured_timestamp
ingress_timestamp = ingress_measured_timestamp

(6.11)

When a grandmaster clock sends Sync messages towards slave clocks, the egress
timestamp relative to the local clock is embedded into the originTimestamp field
of a Sync message. Moreover, when a time-aware system receives a Pdelay_Req
message, it records the ingress timestamp of a message and stores the timestamp
into the receiveTimestamp field of the subsequent Pdelay_Resp message. On the
other hand, a slave clock retrieves the timestamp encapsulated in a Sync message
during the synchronization phase. Besides, it stores the egress timestamp of the
Pdelay_Req message and uses it for the link delay measurement.

6.2.4 TSN Switch Model

For modelling a TSN switch, the Riverbed Ethernet switch model called "ether-
net16_switch_adv" is modified in a way that it supports subsets of non-time-based
and time-based features of TSN.

The regular Ethernet switch forwards the incoming frames to the target device
based on the MAC destination address since it operates at link layer of OSI. If the
destination address of the frame is set to an Ethernet broadcast address, the switch
sends out the copies of the frame from all egress ports. Aside from broadcast frames,
the Ethernet switch supports multicast traffic patterns. Furthermore, the switch par-
ticipates in identifying the spanning tree topology through the Bridge Protocol Data
Unit (BPDU) messages.

The TSN switch model comprises three different modules, namely local time
functionality, switching and MAC.
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6.2.4.1 Local Time Functionality

The local time functionality of a TSN switch model and a TSN end system model is
implemented identically. Therefore, a TSN switch in a similar way to an end system
model contains time attributes such as local time and timestamps related to peer
delay measurements and further uses these values to calculate the grandmaster time.

6.2.4.2 Switch Module

The switch module operates through one main process and seven child processes.
The main process first sets up all egress ports based on the device attributes. Then, it
creates a port map table where the status of every port is stored. Moreover, the main
process spawns seven child processes. Each child process is invoked by the main
process to handle a specific type of incoming traffic. The following sections describe
the mentioned child processes briefly.

bridge_protocol_entity This process runs the spanning tree algorithm upon recep-
tion of BPDU messages.

lacp_l2 This process executes the Link Aggregation Control Protocol (LACP) for
every enabled port to identify the state and the operational mode of the port. Once
the execution of LACP is completed, the lacp_l2 process stores the LACP related
information of each port.

mst_bpe This process runs the Multiple Spanning Tree Protocol (MSTP) upon re-
ception of BPDU messages. After that, it stores the spanning tree data associated
with each tree instance.

pvst_bpe This process like bridge_protocol_entity and mst_bpe processes runs STP
upon reception of BPDU messages. However, it stores data associated with the IEEE
802.1D protocol.

TT_bridge_mac_relay The main process spawns a TT_bridge_mac_relay and an
RC_bridge_mac_relay process for every port since the destination ports of TT and
RC streams are defined in the corresponding traffic profiles. On the contrary, all BE
messages are handled in a BE_bridge_mac_relay process regardless of the outgoing
port.

In the TSN switch model, all frames received from the mac module are passed
to the main process. This process calls the stream identification function for all in-
coming frames. As described in Section 3.7.4.3 FRER introduces different stream
identification functions. In the TSN switch model, the main process identifies in-
coming frames using the source MAC address and VLAN ID fields. Therefore, the
stream identification function is passive and does not modify the frame passed ei-
ther up or down in the protocol stack. The stream identification function using the
stream identity table categorizes packets to the following traffic types:

• TT frames

• RC messages

• BE traffic
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After identifying a frame as a TT traffic, the main process invokes the TT_bridge-
_mac_relay process corresponding to the destination port of the frame. As a next
step, the TT_bridge_mac_relay process executes the ingress time-based filtering
function. This function plays a critical role in TSN switches since the timing re-
quirement of the TT communication is strict and vital. The ingress time-aware fil-
tering function checks the arrival time of a TT frame against the current local time
of the switch model. If a TT frame arrives outside its reception window, the filter-
ing function will drop the TT frame. Consequently, this function protects the switch
from the faulty devices that are trying to delay TT frames or flood the network with
unexpected TT flows. In the opposite case, if the frame belongs to a TT flow that
is expected to arrive at the current local time, the function passes control to the se-
quence decoding module.

The sequence decoding function determines whether the packet contains an R-
TAG header or not. If the frame carries the R-TAG header, the function retrieves
the sequence number from the last two octets of the R-TAG header and then calls
the sequence recovery function. On the other hand, if the frame does not contain
an R-TAG header which means the frame is sent from a FRER-unaware device, the
sequence generation function is invoked. This assumption provides an opportunity
to simulate a TSN network with a combination of FRER-unaware and FRER-aware
network components.

The stream identity table, which is created during the configuration phase, main-
tains the last received sequence number of each RC and TT stream in a parameter
called LastRecSeqNum. The sequence recovery function examines the sequence
number of the received frame against the LastRecSeqNum of the stream to which
the frame belongs to. This function is designed based on the VectorRecoveryAlgo-
rithm. Therefore, if the frame’s sequence number is equal to the expected sequence
number (i.e. LastRecSeqNum + 1), the enqueue module is invoked. Otherwise, the
frame with the wrong sequence number would be dropped.

For the first frame of a specific stream, the sequence generation function sets
the LastGenSeqNum to zero. For subsequent frames, this function increments the
LastGenSeqNum by one. As a next step, the sequence encode function is called. It is
noteworthy that the LastGenSeqNum is reset after reaching the value 50.

The sequence encode function encodes the LastGenSeqNum of the stream which
is set by the sequence generation module in the R-TAG format. To be more specific,
the function creates the R-TAG header for the frame and sets the last two octets of the
R-TAG to the value of the LastGenSeqNum parameter. After encoding the sequence
number, control is passed to the enqueue module.

FIGURE 6.18: Queuing scheme of TSN switch model
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The time-aware shaping mechanism is only applied to egress port queues. The
switch model can use the egress queues for shaping traffic only when the QoS-
enabled attribute is set. For this reason, in the TSN switch model the QoS parameter
is enabled. The enqueue module puts the frame to the appropriate egress queue
according to the priority of the frame. The queuing scheme of a TSN switch model
is presented in Figure 6.18. It has to be noted that in the standard Ethernet switch
model, the internal priority of a frame is derived from the information encoded in
the packet header (e.g. PCP in the Ethernet header or Differentiated Services Code
Point (DSCP) in the IPv4 header) and is used to map packets to the corresponding
egress queues. However, the TSN switch model does not follow this principle for
the TT frame. Instead, it assigns the internal priority based on the traffic type to
reflect the priority of TT streams over the other traffic classes. For non-TT traffic,
the frame’s internal priority is directly derived from the data encapsulated in the
message header. In the TSN simulation framework, it is assumed that the highest
priority is reserved for the safety-critical traffic (i.e. TT flows). This implies that the
priority of non-TT frames cannot be set to the highest priority in the simulated TSN
network.

In the TT_bridge_mac_relay process, the enqueue module places all TT mes-
sages destined to a specific port to the TT queue associated with that port. After
enqueuing the frame, the control is passed to the egress time-aware shaping func-
tion. The egress time-based shaping function specifies which queue is eligible to
transmit the next packet. If the TT queue’s gate is open according to the port’s GCL,
this function checks the required time for the frame transmission against the time
interval where the state of the gate remains enabled. If the time interval is sufficient
for transmission of the entire frame, the dequeue module is invoked. Otherwise, the
frame remains in the queue. This check mainly is performed to prevent initiating a
non-TT frame transmission in its time slot and continuing it over a scheduled time
slot. To guarantee deterministic behaviour, the TSN switch reserves a fixed time slot
called guard band before each TT time slot. The guard band is usually set to the re-
quired time for forwarding the Ethernet frame with the maximum length (i.e. 1526
bytes). This approach results in a reduction of the bandwidth usage. Therefore, the
presented TSN switch model uses a dynamic guard band, in which the required time
for the transmission of a non-TT message is checked against the GCL, instead of a
static one. This design decision significantly improves link bandwidth utilization.

It is quite likely that the gate of more than one queue is enabled. In such cases,
the transmission selection module decides which frame is sent out over the physical
link. This selection is made based on the switch’s queuing policy. In this TSN switch
model, as shown in Figure 6.18, each egress port has eight queues, and a strict prior-
ity selection scheme is applied among TT, RC and BE queues. At the final stage, the
dequeue module transmits the packet from the TT queue to the attached link.

RC_bridge_mac_relay In the switch module, the main process upon reception of
RC frames invokes the RC_bridge_mac_relay process corresponding to the destina-
tion port of the frame. Moreover, the stream identity table for every RC stream main-
tains the time instant that the last frame belonging to the stream was sent in a param-
eter called LastSentFrame. As denoted in Figure 6.19, the RC_bridge_mac_relay pro-
cess handles the incoming RC frames in a similar way to the TT_bridge_mac_relay
process. However, the ingress time-base filtering function in this process checks the
arrival time of an RC frame (i.e. current local time) against the corresponding RC
stream’s LastSentFrame parameter which is different from the ingress time-based
filtering functionality of TT flows. For each RC frame before dequeuing, the current
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FIGURE 6.19: Packet processing phases in the TSN switch model

local time is checked against the stream’s LastSentFrame. The RC frame is passed to
the enqueue module only if the time interval between the current local time and the
LastSentFrame is equal or more than the stream’s BAG. Otherwise, the RC frame is
dropped.

An additional difference is related to the enqueue module where RC packets are
put into either queue number 6 or queue number 5 depending on RC frame’s priority
which is defined in the RC traffic profile (priority one maps to queue six and priority
zero maps to queue five). It is noteworthy that TT and RC frames can be passed to
more than one TT_bridge_mac_relay and RC_bridge_mac_relay processes. For this
reason, the switch model does not require a separate split stream function for FRER
mechanism.

BE_bridge_mac_relay Upon reception of a BE message, the main process in the
switch module invokes the BE_bridge_mac_relay process. As shown in Figure 6.19,
the BE_bridge_mac_relay process does not contain the FRER logic mainly because
the loss of BE traffic does not result in any severe failures. In the BE_bridge_mac_relay
process, the enqueue module specifies the destination port of BE traffic using the
MAC database and stores the message in an appropriate BE queue depending on
the frame’s priority. Like TT flows and RC streams, the BE frame is sent out when
the gate of the corresponding queue is enabled for a period of time that is sufficient
for transmitting the entire frame.

tsn_bridge_mac_relay_entity The time-aware switch plays the role of an 802.1AS-
Rev boundary clock with the respective functionalities. To this end, the tsn_bridge-
_mac_relay_entity process implements all TSN clock synchronization methods in-
cluding BCMA, link delay measurement and synchronization mechanisms. The
logic of all TSN clock synchronization mechanisms in a TSN switch model is the
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same as the corresponding functionalities in a TSN end system model. In more de-
tails, if a time-aware switch is identified as a grandmaster clock, the tsn_bridge_ma-
c_relay_entity process dispatches Announce and Sync messages periodically. In con-
trast, if a time-aware switch is marked as a slave clock, the process upon reception
of Sync and peer delay messages executes the synchronization and peer delay mea-
surement methods respectively.

6.2.4.3 MAC Module

The mac module of a TSN switch model operates in the same way as the mac module
of an end system model. This means the mac module stores the timestamps corre-
sponding to all incoming gPTP messages (e.g. Pdelay Req and Pdelay Resp reception
time). On the other hand, this module timestamps all outgoing gPTP messages (e.g.
Pdelay Req and Pdelay Resp transmission time). Moreover, the mac module mini-
mizes the potential synchronization error by running the synchronization procedure
instantly after the reception of a Sync message.

When a TSN switch is marked as a grandmaster clock, all its ports go to the mas-
ter state and start sending Announce and Sync messages to all slave clocks within
the same gPTP domain. Furthermore, a TSN switch with grandmaster role does not
perform the link delay measurement since it does not require to run the synchro-
nization procedure. In the counter case, when a TSN switch is marked as a slave
clock, at most one port goes to the slave state and the rest of the ports transit to the
master state. A mac module corresponding to a port in the slave state, stores all
timestamps related to peer delay messages. These values are later used to measure
the link delay.

6.2.5 Fault Injector

FRER is introduced to protect the TSN systems against faulty behaviours. To vali-
date safety and fault tolerance mechanisms that are offered by FRER, a fault injector
model is developed in the TSN simulation framework. This model simulates dif-
ferent faults (e.g. link failure). Therefore, the fault injector provides an opportunity
to investigate the behaviours of TSN capable devices in such fault states. The fault
injector emulates the following faults:

• Link Failure: This failure can be emulated by enabling the link failure param-
eter for a specific link.

• Crash Failure: The crash failure can be emulated by setting the device-specific
failure/recovery attribute.

• Stuck Transmitter: This failure occurs when a sender transmits messages with
the same sequence numbers instead of incremental values. To simulate this
failure, the end-system model sends frames with repetitive sequence numbers.

• Omission: The omission failure happens when a sender fails to transmit a par-
ticular frame, or a specific packet is not delivered to the receiver. The sending
end-system emulates this failure by sending frames with non-consecutive se-
quence numbers.

• Resequencing: When the frames which belong to a particular stream arrive
at the receiver in a wrong order, the resequencing failure occurs. To simulate
this failure, the sending end-system delays transmitting frames with the lower
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sequence numbers. Hence, it first sends frames with the higher sequence num-
bers.

6.3 Experiments and Evaluation

The main goal of the TSN simulator is to emulate a multi-hop switched Ethernet
network in which all devices support time-based (e.g. IEEE 802.1Qbv and 802.1Qci)
and non-time-based features (e.g. IEEE 802.1CB) of TSN and communicate with each
other via full-duplex 100 Gbps physical links. This simulation executes on a PC with
32 GB memory and a dual-core 2.4 GHz CPU.

6.3.1 Experimental Setup

To evaluate the TSN simulation framework with respect to determinism, fault-toler-
ance, configurability and clock synchronization, an example layout of an Ethernet-
based Train Communication Network (TCN) [141] is used because it provides a re-
alistic setup for studying different aspects of TSN features. This network, like other
Ethernet-based train topologies comprises an Ethernet Train Backbone (ETB) and
an Ethernet Consist Network (ECN). As shown in Figure 6.20, all devices in ECNs
are connected to the ETB via two redundant ETB lines and also two separate ETB
switches. Besides, within every consist network, ECN switches are connected using
a ring topology. Consequently, this layout offers redundant paths at both ECN and
ETB level to meet the high safety demands of mission-critical train applications (e.g.
braking system).
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FIGURE 6.20: Experimental network structure. The redundant paths
of stream s1 are shown by orange and purple arrows while green and

pink arrows illustrate the stream s2 redundant routes.

In this setup, within every consist network (except ECN1), each sensor first col-
lects data every 100 ms and then sends samples to the corresponding Central Com-
puting Unit (CCU). After that, every CCU sends sensor data to the Human Machine
Interface (HMI) and the monitoring application which resides in ECN1. Finally, the
HMI processes the sensor samples and sends back process messages towards the
respective CCU. It is noteworthy that all streams mentioned above are assumed as
TT traffic. To achieve a more realistic experimental setup, it is assumed that there is
background traffic from the monitoring application towards all CCUs. Table 6.1 de-
tails the parameters of all TT streams which are sent over the experimental network.
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Stream Src→ Dst Period (ms)

s1 CCU1→ HMI 200

s2 CCU2→ HMI 200

s3 CCU3→ HMI 200

s4 temp sensor→ CCU1 100

s5 light sensor→ CCU2 100

s6 door sensor→ CCU3 100

s7 CCU1→ monitoring app 200

s8 CCU2→ monitoring app 200

s9 CCU3→ monitoring app 200

s10 HMI→ CCU1 200

s11 HMI→ CCU2 200

s12 HMI→ CCU3 200

TABLE 6.1: TT Stream Specifications

In the experimental network apart from the ECN switches, ETB nodes, sensors
and CCUs, there is a configuration manager node that models a CNC/CUC entity.
Additionally, in TSN simulator, the NETCONF messages that facilitate the configu-
ration of TSN capable devices, are identified as BE traffic. Consequently, these mes-
sages can not be sent over the network before configuring a forwarding spanning
tree.

At the beginning of the simulation, RSTP calculates a spanning tree for the exper-
imental network. The convergence of RSTP for the simulated network takes around
5.2 seconds. After that, the configuration manager starts sending NETCONF mes-
sages with get-config RPCs toward all devices residing in the network. In response,
TSN capable devices send back the RPC reply messages containing their data to the
configuration manager within the NETCONF sessions. Therefore, the configuration
manager acquires the knowledge on the structure of the entire network and the asso-
ciated traffic profiles through the RPC replies and further using this data generates
the necessary configuration information (e.g. port-specific GCLs) for deploying dif-
ferent TSN features to devices. As a next step, the configuration manager creates
a NETCONF message with edit-config RPC per device in a way that each message
contains the generated configuration information for the particular device. The ini-
tialization phase is concluded once all devices adjust their configuration parameters
according to information embedded into the edit-config RPCs. The completion of
the configuration process can be observed from the simulation statistics which illus-
trate the number of sent and received TT frames belonging to the streams listed in
Table 6.1 at each device. In more details, the simulation results show that the sen-
sors start sending sample data at 6th seconds, mainly because the calculation of the
spanning tree takes quite long. The timely start-up process reflects the design de-
cision made regarding the transmission of NETCONF messages based on the best
effort paradigm. For instance, this initialization delay meets the requirements of the
inauguration process in trains. However, the mentioned startup interval does not
satisfy the initialization requirements of several mission-critical systems.



6.3. Experiments and Evaluation 139

The start-up duration can be shortened significantly if NETCONF messages are
configured as TT traffic. To this end, all devices within the network need to be con-
figured statically to exchange NETCONF messages immediately after the simulation
startup. In other words, all configuration parameters related to NETCONF messages
need to be deployed to devices at the beginning of the simulation and before send-
ing any message. In this case, the configuration process of the simulated network
can not be dynamic as the configuration models of IEEE 802.1Qcc are designed to
be.

6.3.2 Experiments and Results

The first part of experiments is dedicated to studying the impact of FRER function-
alities on the reliability of mission-critical applications. Namely, the behaviours of
TSN capable devices in the presence of different transient and permanent faults are
investigated by simulating the following test scenarios:

6.3.2.1 Messages with Identical R-TAG Header

In the first scenario, the fault injector forces the HMI to send process messages with
repetitive sequence numbers towards the CCUs for specific time intervals (i.e. from
7.2 to 9 seconds). As the graph in Figure 6.21 depicts, CCU1 is not receiving any
process message from the HMI during this period. The FRER logic of ECN switch
one discards all process messages with the same R-TAG header and does not per-
mit the malformed packets to consume the network resources (e.g. bandwidth and
memory). Therefore, FRER protects the TSN network against this transient fault.
CCU1 resumes receiving the process messages just after the HMI recovers from this
failure (at 9th seconds). As the behaviours of all CCUs in the described condition is
identical, we only present the results for CCU1.
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FIGURE 6.21: The number of process packets are received by CCU1
in presence of repetition failure in the HMI

6.3.2.2 Injecting Frames with Wrong Sequence Numbers

To emulate the omission failure, the fault injector modifies the sequence number
generation function of CCU1 so that it increments the LastGenSeqNum by three
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instead of 1. Consequently, ECN switch 2 notices that some CCU1 messages are
missing. Therefore, it discards all frames that originated from CCU1 to mitigate this
faulty behaviour. As the graphs in Figure 6.22 denote, the HMI and the monitoring
application are not receiving any message from CCU1 just after the fault injected to
the network (i.e. at 7.2th seconds). CCU1 recovers from this failure at 9th seconds
and starts to send frames with the consecutive sequence number. ECN switch 2
continues discarding messages that are sent from CCU1, because in ECN switch
2, the LastRecSeqNum of CCU1 stream is not aligned with the R-TAG header of
messages sent from CCU1. ECN switch2 resumes accepting CCU1 frames at 13.2th
seconds. The reason is that the CCU1 messages start carrying the expected sequence
numbers due to resetting the LastGenSeqNum parameter in CCU1. The behaviours
of the HMI and the monitoring application in this test scenario, as shown in Figure
6.22 are identical.
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FIGURE 6.22: The number of s1 and s7 packets received by the HMI
and monitoring applications in case of an omission failure

The fault injector also modifies the sequence number generation function of CC-
U2 so that for every two consecutive frames first it increments the LastGenSeqNum
by two and then decrements this parameter by 1. Due to this modification which
simulates a resequencing failure, ECN switch five first receives a CCU2 frame with
a higher sequence number and then a message with the lower sequence number.
Hence, as shown in Figure 6.23, ECN switch five does not forward any CCU2 mes-
sage to the HMI and the monitoring application just after noticing this faulty be-
haviour (i.e. at 7.2th seconds). In both scenarios as mentioned above, the first switch
on the path to the HMI (i.e. ECN switch two and ECN switch five respectively), dis-
cards faulty frames until it receives again the frames carrying the expected sequence
numbers. Therefore, FRER, in addition to enhancing the network fault tolerance,
improves the overall network resource utilization. To achieve this, FRER eliminates
the probability of forwarding the malformed packets over the TSN network.

6.3.2.3 Testing FRER against Link Failures

As described before, FRER offers safety and fault-tolerance capabilities using re-
dundant paths. For this purpose, the redundant paths for s1 and s2 are configured
during simulation initialization. It has to be noted in the simulated network TSN
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FIGURE 6.23: The number of s2 and s8 packets that are discarded by
ECN switch 5 in case of a resequencing failure in CCU2

capable devices forward the frames belong to s1 and s2 flows over redundant routes
regardless of the states of their ports which are assigned by RSTP.

The fault injector at 7.2th second makes link l1 fail. Before the occurrence of the
l1 failure, ECN switch 1 receives s1 and s2 frames from two separate paths (which
are illustrated in Figure 6.20). Then it forwards the frames which arrive first and
eliminates the duplicated messages. As the graph in Figure 6.24a shows, the HMI
and the monitoring application do not experience any traffic loss from s1 and s2. Af-
ter the l1 failure, ECN switch one still receives s1 and s2 frames from the redundant
paths and delivers them to the HMI and monitoring application. These applications
are not receiving any s3 messages after the l1 breakdown. The reason is that no re-
dundant paths are set up for the s3 stream. Hence as shown in Figure 6.24a, after the
failure in the primary route, s3 frames are not delivered to the HMI and monitoring
application anymore.

It is good to note that the redundant routes of s1 comprise different numbers
of links. Consequently, as the graph in Figure 6.24b presents, the end-to-end delay
of s1 has different values before and after the l1 failure. However, the s2 end-to-end
latency remains unchanged during the simulation. The redundant paths of s2 unlike
the s1 routes have the same number of physical links. In the TSN simulator, every
frame remains in the TSN switch for 2 µs (i.e. Dprocessing). Moreover, the size (sm) of
all frames which are sent over our network is set to 64 bytes and the bandwidth (bl)
of all links is 100 Gbps. Thereby, the transmission delay (Dt) of a frame leaving the
TSN switch is calculated as follows:

Dt = sm/bl = (64bytes)/(100Gbps) = 5.12ns

As the propagation delay (Dpropagation) of each link is set to 8 µs, the frame’s end-
to-end delay considering the chosen route is calculated as follows:

De2e = num.hops ∗ (Dprocessing + Dt + Dpropagation)

For instance, De2e of s1 before and after the l1 failure is computed as follows:

Before failure : De2e = 4 ∗ (2µs + 5.12ns + 8µs) = 40.02µs
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After failure : De2e = 6 ∗ (2µs + 5.12ns + 8µs) = 60.03µs

6.3.2.4 Testing FRER against Crash Failures

To evaluate the impact of crash failures, the fault injector sets the failure attribute
of ETB switch 2. Consequently, ETB switch 2 stops forwarding frames to neighbour
switches. After ETB switch two crashes (i.e. at 7.2th seconds), the HMI and mon-
itoring application do not receive s3 anymore, because the only route of s3 passes
through ETB switch 2. However, these applications continue receiving s2 from the
redundant route which does not pass through the ETB switch 2. The crash failure
results are presented in Figure 6.25.

It is good to mention that FRER cannot protect TSN networks from crash failures
of all devices. For instance, when the fault injector sets the ECN switch 1 to a crash
failure, no TT stream can flow between ECN1 and the other ECNs. ECN switch 1
is a single point of communication between the HMI and the other devices in the
simulated network.
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(A) Number of s1, s2 and s3 packets that are received by the HMI in case of l1 failure
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FIGURE 6.24: Reliability of s1, s2 and s3 streams in case of l1 failure
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FIGURE 6.25: Number of s2 and s3 packets that are received by the
HMI, and the monitoring application in case ETB switch two crashes

In the second part of the experiments, the behaviours of different TSN synchro-
nization modules are studied thoroughly. To this end, several test scenarios are de-
signed where each time-aware system is configured as follows:

• Announce message interval is configured to 3 seconds.

• Announce message time-out is set to 5 seconds.

• Synchronization message interval for the first five synchronization messages
is set to 100 ms and after that, it is changed set to 1 second.

• The Pdelay_Req message is created right after reception of a synchronization
message.

• A time-aware system sends the initial announce message at 5.2th seconds mai-
nly because in the TSN simulator the gPTP messages are identified as BE traffic
and this type of messages can only be sent after the RSTP convergence.

• The grandmaster clock dispatches the initial synchronization message at 5.3th
seconds because BCMA needs to be executed first to elect a grandmaster gPTP
device.

• In the experimental network, two priority attributes are defined for every time-
aware system. Additionally, a drift rate of 500 ppm is configured for each sys-
tem.

It has to be noted that the parameters described above are user-configurable. There-
fore, they can be adjusted to meet the network requirements such as synchronization
precision.

6.3.3 Time-Aware Network Simulation

As explained earlier immediately after the RSTP convergence, each time-aware sys-
tem declares its pre-defined clock priorities to other systems through announce mes-
sages. The experimental setup comprises 23 time-aware systems. Therefore, every
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time-aware system receives 22 announce messages from other systems within the
simulated network. Each time-aware system upon reception of an announce mes-
sage, executes the BMCA to specify its role as either a grandmaster or a slave clock.

All time-aware systems in the simulated network take part in the best master
clock selection since they are all capable of taking the grandmaster role. In the ex-
perimental setup, HMI is marked as a grandmaster clock because it has the highest
priority value among other devices. Once the execution of BMCA is completed,
HMI begins to send synchronization and announce messages periodically. On the
other hand, the rest of the time-aware systems which are slave clocks, schedule an
announce message time-out event at which the operational state of the grandmaster
clock is checked.

Once a slave clock receives a Sync message, it corrects its local time with the
help of the grandmaster time embedded in a Sync message and the mean link delay.
However, the peer delay mechanism is initiated upon reception of a Sync message.
Hence, there is a time difference between the slave clock and the grandmaster clock
during transmission of the first few Sync messages mainly because the mean link
delay is not measured yet.

As described in section 3.5.5, the frequency offset between the grandmaster clock
and slave clock (CSRO) is calculated using NRRs. A time-aware system calculates
NRR each time it measures the mean path delay. After NRR computation, CSRO is
calculated based on the principle depicted in Figure 3.21. It has to be noted that if
NRR is calculated immediately after receiving a Sync message, the frequency offset
between the grandmaster clock and slave clock would be negligible since the correc-
tion of the slave clock occurs.
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FIGURE 6.26: Time offset of sensor 3 with 500ppm drift rate

Figure 6.26 depicts the synchronization process of sensor 3 (i.e. slave gPTP de-
vice). As the graphs in Figure 6.26 show, the actual and the compensated time offset
of sensor3 are the same until 5.3th seconds because sensor3 receives the first Sync
message at that time instant. Therefore, during this time interval, the actual time



6.3. Experiments and Evaluation 145

offset and compensated time offset remain the same because sensor3 has not calcu-
lated NRR, CSRO and link delay yet. After reception of the first five Sync messages,
the compensated time offset converges to zero, which implies there is no time dif-
ference between the slave clock and the grandmaster clock. Thereby, it is important
to configure the periodicity of Sync messages, particularly in the start-up interval so
that the compensated time offset converges to zero faster. To this end, during the
initialization phase the period of Sync messages is configured to 100 ms and after
clock convergence, it changes to 1 s.

As mentioned earlier, in the emulated network, HMI is elected as a grandmaster
clock, and other gPTP devices are marked as a slave clock. All slave gPTP devices
behave similarly during the clock synchronization process. Therefore, the time offset
of sensor3 is illustrated in Figure 6.26 as an example of a slave clock. It is notewor-
thy that the Sync messages traverse six intermediate time-aware bridges on the path
from HMI to sensor3. Furthermore, the actual time-offset is reset to zero upon re-
ception of a Sync message with the help of the measured link delay and CSRO. Then
it increases linearly until the device receives the next Sync message.

6.3.4 Injecting Faults in a Time-aware Network

The above simulation run illustrates how the execution of BMCA, synchronization
and link delay measurement result in clock convergence over the time-aware net-
work. However, the mentioned scenario does not investigate the role of the An-
nounce message time-out event in the synchronization process. To this end, first, the
primary grandmaster clock fails, and then the behaviour of the compensated time
offset is investigated during the failure and handover period.

In a time-aware network, a slave clock updates the Announce message time-
out attribute upon reception of an Announce message from the grandmaster clock.
On the other hand, if a slave gPTP device does not receive any Announce message
during the Announce message time-out interval, it records the data of the current
grandmaster clock for future rollback. It sends its clock information to other time-
aware systems to initiate the BMCA mechanism. After BMCA execution, the new
grandmaster clock replaces the current one until the primary grandmaster recov-
ers. The primary grandmaster after recovery sends Announce messages to all time-
aware systems. Therefore, all slave gPTP devices start synchronizing to the primary
grandmaster clock. Moreover, the secondary grandmaster goes back to the slave
state and stops sending Sync messages.

Like in the previous test scenario after initial BMCA execution, HMI is selected
as a grandmaster while the other time-aware systems take the slave role and sched-
ule an announce time-out event at 10th seconds. Further, the compensated time
offset of all slave gPTP devices converges to zero after reception of the first five Sync
messages and with the help of measured link delay and CSRO.

The fault injector fails the primary grandmaster for a time interval of approx-
imately 7 seconds (i.e. from 6th seconds until 12.4th seconds). As illustrated in
Figure 6.27, the compensated time-offset of sensor 3 remains zero throughout the
grandmaster failure period, mainly because the clock frequency of sensor3 has been
already locked with the clock frequency of the grandmaster. At 10th seconds, the
announce time-out event is invoked in all slave clocks, including sensor3, which
results in initiating BMCA. After BMCA execution, the monitoring application is
marked as a new grandmaster and begins to send sync and Announce messages pe-
riodically towards other time-aware systems. As the graphs in Figure 6.27 show the
compensated time-offset of sensor three does not change during grandmaster clock



146 Chapter 6. Time-Sensitive Networking Simulation Framework

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 1.8 3.6 5.3 6.4 8.2 10 11.4 13 14.6 16 17.6 19

Ti
m

e
-O

ff
se

t 
in

 s
e

co
n

d
s

Time in Seconds

Compensated Time-Offset

compensated time-offset

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 1.8 3.6 5.3 6.4 8.2 10 11.4 13 14.6 16 17.6 19

Ti
m

e
-o

ff
se

t 
in

 s
e

co
n

d
s

Time in seconds

Actual Time-Offset

Actual Time-offset

FIGURE 6.27: Time offset of sensor 3 with 500ppm drift rate when the
primary grandmaster fails and recovers

handover since the local clock of a primary and newly elected grandmaster are iden-
tical (i.e. Riverbed simulation time) and therefore the frequency offset between the
slave clock and the grandmaster clock (i.e. CSRO) remains constant. This is one
the primary reason IEEE 802.1AS-Rev protocol is considered as a more robust clock
synchronization mechanism compared to the existing synchronization methods.

HMI (i.e. the primary grandmaster) recovers at 12.4th seconds and starts send-
ing Announce messages at 14th seconds because the Sync message interval is set to
1 second. All time-aware systems upon reception of a Sync message from HMI, roll-
back to the primary grandmaster clock properties. Moreover, the monitoring app
(i.e. the current grandmaster) takes the slave role again and stops sending periodic
Sync and Announce messages.

As explained earlier and shown in Equation 6.4, the local clock of a time-aware
system is modelled with the linear drift rate. Therefore, the clock offset increases
according to the time interval. The actual time offset of sensor3 as illustrated in
Figure 6.27 increases linearly until 5.2th seconds and reaches its maximum value
because sensor3 does not receive any Sync message during this period. After that,
sensor3 receives a Sync message every 100 ms, which results in the correction of the
clock.

Between 6th and 10th seconds, there is no grandmaster clock to send periodic
Sync messages. Therefore, the graph in Figure 6.27 denotes that the actual time offset
increases linearly during this period. Moreover, sensor3 does not receive any Sync
messages between 12th seconds and 14th seconds due to grandmaster handover. As
a result, Figure 6.27 depicts that the actual time offset of sensor3 during this period
reaches a higher value compared to the other synchronization intervals.

Aside from the described use case, another test scenario is carried out where the
link between HMI and the neighbour time-aware bridge (i.e. ECN switch1) fails.
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The experimental results show the same behaviour as the above test scenario over
the simulated time-aware network.

The computation of NRR for the local clock with linear drift rate is straightfor-
ward. However, this calculation could be challenging for a clock with an non-linear
drift rate. To investigate this issue, the above simulation scenario is repeated with
a non-linear clock model. Namely, the drift of the local clock of each time-aware
system is modelled as follows [198]:

c(t) = ρ0t + σt2 (6.12)

Where ρ0 and σ correspond to a skew rate and clock drift rate respectively. For
this simulation run, the skew rate is set to 0.01, and the drift rate is configured to
1000 ppm. We measure the compensated time offset for the local clock with linear
and non-linear drift rates after completion of the synchronization process. In this
duration, the maximum time offset of sensor3 clock from the grandmaster clock is
50 ns when the clock drift increases linearly while the maximum time offset is 200
ns for the clock with non-linear drift rate. For NRR computation, linearization is
used. Therefore, there is a difference between the maximum compensated time off-
set of a clock with linear clock drift and non-linear drift rate. The non-linear clock
drift could be linearized over a short period. Consequently, the synchronization ac-
curacy for a non-linear clock could be improved if the synchronization interval is
shortened. On the other hand, selecting the non-optimal periodicity for Sync mes-
sages leads to either an inefficient network usage or an inaccurate NRR. Therefore
the synchronization interval needs to be chosen carefully by taking into account the
clock drift and the required synchronization precision.

6.3.5 Time-aware Network with IEEE 802.1Qbv and Qci Integration

Each time-aware system within the simulated network models its local clock based
on Equation 6.2. Therefore, before the convergence of clock synchronization, it is
highly probable that the TT frames arrive outside the expected reception window
and are dropped by the ingress time-based filtering module because there is a time
difference among the clocks of different devices. In the TSN simulator, gPTP mes-
sages are classified as BE traffic. Therefore, ingress time-based filtering is not applied
to gPTP messages. This design decision enables the establishment of a fully synchro-
nized network, although, during the synchronization phase, all time-aware systems
do not share the same notion of time. However, if gPTP messages are declared as TT
frames, it is quite likely that at the beginning of the simulation, the time-based filter-
ing module discards them due to clock drifts among different time-aware systems.

In the emulated network, an 802.1Qbv and Qci capable device filters incoming
packets and schedules outgoing frames based on its own local time. Thereby, the
transmission of TT frames should start after 6th seconds because time-aware systems
start exchanging gPTP messages after 5.2th seconds. Moreover, they achieve the syn-
chronization precision of sub microseconds after reception of five Sync message at
approximately 6th seconds according to the simulation results from the above sce-
nario. Figure 6.28 depicts the compensated time offset of CCU1 and the number of
TT frames received by CCU1 from sensor 1 in the simulation run mentioned above.
The experimental results showed that all frames sent from sensor1 reach CCU1 while
the clock drifts of all time-aware systems, including sensor1 and CCU1, are corrected
with the help of different gPTP mechanisms. In contrast, when sensor1 is configured
to start sending TT frames towards CCU1 at the beginning of the simulation, CCU1
does not receive any frame from sensor1 according to the simulation results.
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FIGURE 6.28: IEEE 802.1Qbv and Qci-capable device (i.e. CCU1) us-
ing gPTP local time for filtering and shaping traffic

The above simulation scenario is re-executed, but this time the local clock of all
devices is directly obtained from the Riverbed simulation time instead of from Equa-
tion 6.2. Therefore, there are no clock drifts among TSN devices within the emulated
network throughout the simulation run. The simulation results show the same trend
as the previous use case, where there are clock drifts among gPTP devices.

To sum up, the empirical results show that the TSN centralized configuration
model successfully collects configuration data from all network components, calcu-
lates the necessary configuration parameters and remotely deploys the computed
information to the devices residing in the network. Therefore, dynamic configu-
ration services in the TSN simulator provides an opportunity to simulate dynamic
applications and system adaptation. Moreover, the experimental results illustrate
that all devices in the simulated network achieve the synchronization accuracy in
the order of sub microseconds using TSN time synchronization modules. Besides,
the simulation results show that FRER modules offer reliable communication and
protect the emulated network against transient and permanent errors. Furthermore,
the experimental outputs depict that TSN time-based features provide the tempo-
ral isolation within the simulated system. Therefore, based on the empirical results
we can conclude that TSN standard offers mixed-criticality traffic, reliable network
services and the simplified configuration management, which are essential for the
communication layer of the virtualized integration system.
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Chapter 7

Conclusion

This chapter first summarizes the contributions of this thesis and then highlights
potential future work.

7.1 Summary

Due to massive success and widespread deployment of Ethernet technologies, the
Time-Sensitive Networking (TSN) task group introduces a series of IEEE 802.1 sub-
protocols to offer a fault-tolerant and deterministic communication infrastructure
for mission-critical systems over Ethernet-based networks. In TSN networks based
on IEEE 802.1AS-Rev, all devices share a global clock which is realized using a
fault-tolerant synchronization mechanism. Furthermore, TSN-aware components
distinguish different message types in a stream (e.g. time-triggered and best effort)
and store messages in separate egress queues. The TSN scheduling approach called
Time-Aware Shaper (TAS) enforces the Gate Control List (GCL) of each port using a
global notion of time. The GCL presents a transmission schedule table of all streams
which are destined to a specific port.

This thesis introduces a GA-based procedure and a Heuristic List Scheduling
strategy (HLS) for generating TT transmission schedules. In contrast to state-of-art
scheduling solutions with fixed routing, the GA and HLS combines the routing and
scheduling constraints and computes a system-wide schedule in a single-step. To
make job binding and resource allocation feasible, a system model is specified in
the form of an application graph and an architecture graph. Furthermore, in this
thesis, the joint scheduling and routing constraints are defined and employed in the
scheduling and optimization process of GA and HLS. Besides, these novel schedul-
ing strategies support the distributed processing of real-time applications.

To have a solid base for comparison, a list scheduler is developed as an example
of existing scheduling procedures which solve the routing and scheduling problems
separately. The experimental results illustrate the impact of network load and sys-
tem structure on GA, HLS and two-phased list scheduler performance indicators
(i.e. scheduling capability and efficiency). GA and HLS extend the search space
of scheduling possibilities using the joint constraints. Therefore, the scheduling ca-
pability of GA and HLS is enhanced significantly over a two-phased list scheduler,
particularly under high network load. In the experiments, it is observed that GA and
HLS improve the transmission makespan on average by 31 % and 39 % respectively
compared to a two-phased list scheduler. The optimal makespan resulting from GA
and HLS implies more compressed TT transmission schedules and a lower number
of guard bands.

Moreover, this thesis presents a Fault-Tolerant GA (FTGA) and a Fault-Tolerant
Heuristic List Scheduler (FTHLS) as extensions of TSN schedulers described earlier
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with the primary goal of fulfilling the timing requirements of mission-critical ap-
plications while maximizing the system reliability. To achieve that, these strategies
integrate TSN redundancy management mechanism including message duplication,
message replica elimination and redundant paths selection into the scheduling pro-
cess. Besides, the fault-tolerant TSN schedulers use a reliability analysis technique
to compute the system reliability based on the reliability of each network compo-
nent participating in message transmission. Therefore, these schedulers are differ-
ent from the former fault-tolerant scheduling solutions that address either link fail-
ures or crash failures of devices. Apart from the novel reliability analysis technique,
this work models the conditional control transfer between different safety-critical
jobs using a conditional application graph. The conditional application graph pro-
vides an opportunity to formulate the precedence constraints of jobs more realisti-
cally and as a result, achieves more accurate schedulability analysis. The simulation
results denote that FTGA and FTHLS improve the average of the system reliability
compared to the basic GA and HLS, which does not support TSN redundancy man-
agement, at the expense of the makespan growth. This thesis additionally studies
the impact of different component failure rates on system reliability through several
synthetic system models. The experimental results illustrate that the reliability of the
system is more sensitive to the failure rate of physical links compared to other com-
ponents in the system. Furthermore, this work investigates the impact of redundant
jobs on system reliability. The results demonstrate that the average of the system re-
liability is increased significantly as the number of substitutable TT messages grows.

The virtualized integrated system hosts several critical and non-critical modules
that communicate with each other through a common networking infrastructure.
Therefore, the communication layer of the integrated system shall provide reliable
network services, mixed-criticality traffic, the simplified integration and configu-
ration management. To achieve that, the TSN standard, which is the most recent
real-time Ethernet extension and offers different features such as real-time capabil-
ity, fault-tolerance and clock synchronization, is chosen as a networking solution
for the virtualized integrated system. Simulation tools are seen as a cost and time-
efficient approach to evaluate and verify network protocols, particularly during the
development phase and before the actual implementation. This thesis presents a
simulation framework for TSN, which is developed as an Ethernet-based network
for mixed-critically traffic. The TSN simulation framework comprises the simula-
tion models with both time-based and non-time-based services of TSN. Therefore,
this work provides a more comprehensive simulation platform compared to the ex-
isting TSN simulators for modelling, performance and reliability evaluation of TSN
networks. Moreover, this thesis uses an example layout of an Ethernet-based train
network to evaluate the TSN simulation framework on configuration, determinism,
fault-tolerance and clock synchronization because this simulated network provides
a more realistic setup for studying different aspects of TSN features.

In more details, the TSN simulation framework contains the fully centralized
configuration model, as proposed in IEEE 802.1Qcc. This configuration model pro-
vides an efficient way to centralize the network resource allocation, the computa-
tions of transmission schedules and other necessary configuration information. Be-
sides, the central entity sends the NETCONF messages carrying configuration data
to TSN devices. The NETCONF standard, however, offers several features which
are essential for managing the complex real-time system, but it does not satisfy the
stringent timing and reliability requirements of many safety-critical systems. The
reason is that NETCONF transmits messages based on the best-effort paradigm.
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Aside from the central configuration model, the TSN simulation framework com-
prises the simulation models of TSN switches and end systems. These simulation
models implement the egress time-aware shaping and ingress time-based filtering
modules which are key enablers for temporal isolation over TSN networks. Fur-
thermore, the simulation models develop different FRER functionalities to support
reliable communication. The fault-tolerance capability of TSN devices is evaluated
using a highly redundant train network. The simulation results show that the IEEE
802.1CB standard protects time-sensitive systems against transient errors (e.g. stuck
transmitter, resequencing) and offers bounded end-to-end delay and zero packet loss
in case of permanent errors (e.g. link failure, node crash). The simulation models ad-
ditionally incorporate TSN clock synchronization to establish and maintain the syn-
chronized global clock within the network. The empirical results illustrate that the
TSN synchronization process offers the synchronization accuracy of one microsec-
ond even in the presence of other traffic in the emulated network. Nevertheless,
the synchronization precision highly depends on the clock drift rate, the synchro-
nization interval, the accuracy of NRR calculation, the announce time-out and the
accuracy of the measured timestamps.

7.2 Future Work

The studies carried out in this thesis can be extended in many aspects. Therefore,
potential future work is listed as follows:

1. The scheduling strategies proposed in this thesis compute a valid GCL in a
way that the AVB streams and BE traffic which do not have strict timing re-
quirements, do not interfere with the transmission of TT frames. Consequently,
these schedulers only compute the static transmission schedule tables of TT
messages, and non-TT frames (including AVB and BE traffic) are sent when
no TT message is scheduled. Therefore, the described schedulers ignore the
impact of TT transmission schedules on the end-to-end delay of AVB streams
which may result in loss of AVB messages. To address this issue, the AVB
stream requirements need to be considered during the routing and scheduling
process of TT traffic. Moreover, the main goal of the scheduling strategies shall
satisfy the deadlines of real-time applications while optimizing TT transmis-
sion makespan and delivery delay of AVB streams.

2. The fault-tolerant schedulers proposed in this thesis only focus on permanent
failures and calculate the system reliability based on the hardware reliability
model. Thereby, these scheduling strategies can be extended to address inter-
mittent and transient failures according to a more realistic reliability model of
the network components.

3. The simulated TSN network only consists of a single gPTP domain. However,
the IEEE 802.1As-Rev standard supports multiple gPTP domains. Hence, the
simulation framework can be extended so that it could emulate a network with
multiple gPTP domains.

4. The IEEE 802.1As-Rev standard permits multiple time scales within a single
gPTP domain. However, the TSN simulation framework does not contain this
feature. Therefore, the TSN simulator can be extended to support multiple
time scales.
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5. In gPTP systems, time-aware systems can interconnect via four different types
of links. Nonetheless, the simulated time-aware network only uses full-duplex
Ethernet links for interconnecting devices. The experimental setup can be
modified to include other link technologies. Besides, the simulation models
need to implement the delay measurement mechanism associated with each
transmission link.

6. IEEE 802.1Qcc proposes three different configuration models. Nevertheless,
the TSN simulation framework only deploys the centralized configuration mo-
del for network management and configuration purposes. Therefore, future
work can implement other TSN configuration models and further evaluate the
impact of these configuration model on the emulated network performance.

7. Last but not least, the correctness and applicability of the simulation results
should be verified by conducting the same experiments on the setup with ac-
tual TSN devices and Ethernet links.



153

Bibliography

[1] R. Obermaisser, C. El Salloum, B. Huber, and H. Kopetz, “From a Federated
to an Integrated Automotive Architecture”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 28, no. 7, pp. 956–965, 2009.

[2] H. Kopetz, “An Integrated Architecture for Dependable Embedded Systems”,
in Proceedings of the 23rd IEEE International Symposium on Reliable Distributed
Systems, 2004., IEEE, 2004, pp. 160–161.

[3] A. Grasset, “Design of Critical Embedded Systems: from Early Specifications
to Prototypes”, in 2015 International Symposium on Rapid System Prototyping
(RSP), IEEE, 2015, pp. 38–38.

[4] A. Specification, “651: Design Guidance for Integrated Modular Avionics”,
Aeronautical Radio, Inc, Annapolis, MD, 1991.

[5] G. AUTOSAR, “AUTOSAR Technical Overview”, Technical Overview Version,
vol. 2, no. 1, 2006.

[6] M. Jakovljevic, A. Geven, N. Simanic-John, and D. Saatci, “Next-Gen Train
Control/Management (TCMS) Architectures:“Drive-By-Data” System Inte-
gration Approach”, in 2018 9th European Congress Embedded Real-Time Software
and Systems, 2018.

[7] M. J. e. all, “State-Of-The-Art Document on Drive-by-Data”, European Union,
Tech. Rep., 2016, Safe4Rail project. [Online]. Available: https://safe4rail-
1.safe4rail.eu/downloads/deliverables/Safe4RAIL-D1.1-State-of-
the-Art-Drive-by-Data-PU-M3.pdf (visited on 03/10/2019).

[8] R. Fuchsen, “IMA NextGen: a New Technology for the Scarlett Program”,
IEEE Aerospace and Electronic Systems Magazine, vol. 25, no. 10, pp. 10–16, 2010.

[9] “ASHLEY PROJECT”, European Aerospace Industry, Tech. Rep., 2016. [On-
line]. Available: http://www.ashleyproject.eu/the- project- summary
(visited on 03/10/2019).

[10] A. Draft, of Project Paper 664: Aircraft Data Network, Part 7-Avionics Full Duplex
Switched Ethemet (AFDX) Network, 3.

[11] “Institute of Electrical and Electronics Engineers, Time-Sensitive Network-
ing”, in Time-Sensitive Networking Task Group, IEEE, 2017. [Online]. Available:
http://www.ieee802.org/1/pages/tsn.html.

https://safe4rail-1.safe4rail.eu/downloads/deliverables/Safe4RAIL-D1.1-State-of-the-Art-Drive-by-Data-PU-M3.pdf
https://safe4rail-1.safe4rail.eu/downloads/deliverables/Safe4RAIL-D1.1-State-of-the-Art-Drive-by-Data-PU-M3.pdf
https://safe4rail-1.safe4rail.eu/downloads/deliverables/Safe4RAIL-D1.1-State-of-the-Art-Drive-by-Data-PU-M3.pdf
http://www.ashleyproject.eu/the-project-summary
http://www.ieee802.org/1/pages/tsn.html


154 Bibliography

[12] “Institute of Electrical and Electronics Engineers, Inc. 802.1Qbv - Enhance-
ments for Scheduled Traffic”, in Time-Sensitive Networking Task Group, IEEE,
2016. [Online]. Available: http://www.ieee802.org/1/pages/802.1bv.html.

[13] “Institute of Electrical and Electronics Engineers, Audio/Video Bridging”, in
The Audio/Video Bridging Task Group, IEEE, 2011. [Online]. Available: http:
//www.ieee802.org/1/pages/tsn.html.

[14] M. J. e. all, “Initial Drive-by-Data Draft Concept Design”, European Union,
Tech. Rep., 2016, SAfe4Rail project. [Online]. Available: https://safe4rail-
1.safe4rail.eu/downloads/deliverables/Safe4RAIL- D1.3- Initial-
Drive-by-Data-Draft-Concept-Design-PU-M6.pdf (visited on 03/10/2019).

[15] J.-D. Decotignie, “Ethernet-based real-time and industrial communications”,
Proceedings of the IEEE, vol. 93, no. 6, pp. 1102–1117, 2005.

[16] M. W. et al., “Time-aware applications, computers, and communication sys-
tems”, Tech. rep. 2015, Technical Note (NIST TN)-1867.

[17] “Institute of Electrical and Electronics Engineers, Inc. 802.1AS-Rev - Timing
and Synchronization for Time-Sensitive Applications”, in Time-Sensitive Net-
working Task Group., IEEE, 2017. [Online]. Available: http://www.ieee802.
org/1/pages/802.1AS-rev.html.

[18] M. Pahlevan and R. Obermaisser, “Evaluation of Time-Triggered Traffic in
Time Sensitive Networks using the OPNET Simulation Framework”, in 2018
26th Euromicro International Conference on Parallel, Distributed and Network-
based Processing (PDP), IEEE, 2018, pp. 283–287.

[19] M. Pahlevan and R. Obermaisser, “Redundancy Management for Safety Crit-
ical Applications with Time Sensitive Networking”, in 2018 28th International
Telecommunication Networks and Applications Conference (ITNAC), IEEE, 2018,
pp. 1–7.

[20] M. Pahlevan, B. Balakrishna, and R. Obermaisser, “Simulation Framework
for Clock Synchronization in Time Sensitive Networking”, in 2019 IEEE 22nd
International Symposium on Real-Time Distributed Computing (ISORC), IEEE,
2019, pp. 213–220.

[21] M. Pahlevan, N. Tabassam, and R. Obermaisser, “Heuristic list scheduler for
time triggered traffic in time sensitive networks”, ACM Sigbed Review, vol. 16,
no. 1, pp. 15–20, 2019.

[22] M. Pahlevan and R. Obermaisser, “Genetic Algorithm for Scheduling Time-
Triggered Traffic in Time-Sensitive Networks”, in 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, vol. 1,
2018, pp. 337–344.

[23] M. Pahlevan, S. Amin, and R. Obermaisser, “Fault-Tolerant List Scheduler
for Time-Triggered Communication in Time-Sensitive Networks”, in 2019 4th
International Conference on System Reliability and Safety, IEEE, 2019.

http://www.ieee802.org/1/pages/802.1bv.html
http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/tsn.html
https://safe4rail-1.safe4rail.eu/downloads/deliverables/Safe4RAIL-D1.3-Initial-Drive-by-Data-Draft-Concept-Design-PU-M6.pdf
https://safe4rail-1.safe4rail.eu/downloads/deliverables/Safe4RAIL-D1.3-Initial-Drive-by-Data-Draft-Concept-Design-PU-M6.pdf
https://safe4rail-1.safe4rail.eu/downloads/deliverables/Safe4RAIL-D1.3-Initial-Drive-by-Data-Draft-Concept-Design-PU-M6.pdf
http://www.ieee802.org/1/pages/802.1AS-rev.html
http://www.ieee802.org/1/pages/802.1AS-rev.html


Bibliography 155

[24] “Introduction to Riverbed Modeler Academic Edition”, 2018. [Online]. Avail-
able: https:splash.riverbed.com/docs/DOC-4833.

[25] “Institute of Electrical and Electronics Engineers, Inc. 802.1Qci -Per-Stream
Filtering and Policing”, in Time-Sensitive Networking Task Group, IEEE, 2016.
[Online]. Available: http://www.ieee802.org/1/pages/802.1ci.html.

[26] “Institute of Electrical and Electronics Engineers,P802.1Qcc – Stream Reser-
vation Protocol (SRP) Enhancements and Performance Improvements, Draft
1.6”, in Time-Sensitive Networking Task Group, IEEE, 2017. [Online]. Available:
http://www.ieee802.org/1/files/private/cc-drafts/d1/802-1Qcc-d1-
6.pdf.

[27] M. Pahlevan, J. Schmeck, and R. Obermaisser, “Evaluation of TSN Dynamic
Configuration Model for Safety-Critical Applications”, in 2018 17th IEEE In-
ternational Symposium on Parallel and Distributed Processing with Applications
(ISPA), IEEE, 2019.

[28] “Institute of Electrical and Electronics Engineers, Inc. 802.1CB - Frame Repli-
cation and Elimination for Reliability”, in Time Sensitive Networking Task Group,
IEEE, 2017. [Online]. Available: http://www.ieee802.org/1/files/private/
cb-drafts/d2/802-1CB-D2-9.pdf.

[29] H. Kopetz, Real-time systems: design principles for distributed embedded applica-
tions. Springer Science & Business Media, 2011.

[30] R. Obermaisser, Time-triggered communication. CRC Press, 2011.

[31] F. Consortium et al., FlexRay communications system protocol specification version
2.1, 2005.

[32] H. Kopetz and G. Bauer, “The time-triggered architecture”, Proceedings of the
IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[33] M. D. Mesarovic and Y. Takahara, “Abstract systems theory”, 1989.

[34] K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Sivencrona, “The real
byzantine generals”, in The 23rd Digital Avionics Systems Conference (IEEE Cat.
No. 04CH37576), IEEE, vol. 2, 2004, pp. 6–D.

[35] “IEEE Standard for Local and Metropolitan Area Networks:Overview and
Architecture”, in LAN/MAN Standards Committee, IEEE, 2014.

[36] “IEC 61158 Type 3 - PROFIBUS Standard”, in International Electrotechnical
Commission, IEC, 2014.

[37] “ISO 11898-1, Controller area network (CAN)”, in ISO/TC 22/SC 31 Data com-
munication, ISO, 2018.

[38] N. Warden, “Overview and effect of deterministic ethernet on test strategies”,
in 2017 IEEE AUTOTESTCON, IEEE, 2017, pp. 1–3.

https:splash.riverbed.com/docs/DOC-4833
http://www.ieee802.org/1/pages/802.1ci.html
http://www.ieee802.org/1/files/private/cc-drafts/d1/802-1Qcc-d1-6.pdf
http://www.ieee802.org/1/files/private/cc-drafts/d1/802-1Qcc-d1-6.pdf
http://www.ieee802.org/1/files/private/cb-drafts/d2/802-1CB-D2-9.pdf
http://www.ieee802.org/1/files/private/cb-drafts/d2/802-1CB-D2-9.pdf


156 Bibliography

[39] “Institute of Electrical and Electronics Engineers, IEEE Std 802.3-1985”, in
LAN/MAN Standards Committee, IEEE, 1985.

[40] “IEEE 802.3u IEEE Standards for Local and Metropolitan Area Networks:
Supplement-Media Access Control Parameters, Physical Layer, Medium At-
tachment Units, and Repeater for 100Mb/s Operation, Type 100BASE-T”, in
LAN/MAN Standards Committee, IEEE, 1995.

[41] “IEEE 802.3z-1998 - Media Access Control Parameters, Physical Layers, Re-
peater and Management Parameters for 1,000 Mb/s Operation, Supplement
to Information Technology - Local and Metropolitan Area Networks”, in LAN/-
MAN Standards Committee, IEEE, 1998.

[42] “IEEE 802.3ab-1999 - Carrier Sense Multiple Access with Collision Detec-
tion (CSMA/CD) Access Method and Physical Layer Specifications - Physical
Layer Parameters and Specifications for 1000 Mb/s Operation”, in LAN/MAN
Standards Committee, IEEE, 1999.

[43] “Institute of Electrical and Electronics Engineers, IEEE Std 802.3™-2018”, in
LAN/MAN Standards Committee, IEEE, 2018.

[44] R. Cole, “An introduction to packet switched computer networks”, Science
Progress (1933-), pp. 127–142, 1982.

[45] P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer com-
munication switching technique”, Computer Networks (1976), vol. 3, no. 4,
pp. 267–286, 1979.

[46] M. Ilyas and S. Bhatia, “Cut-through switching for integrated services packet
networks”, in [1988] Proceedings. Computer Networking Symposium, IEEE, 1988,
pp. 405–410.

[47] “IEEE Std 802.1D™, IEEE Standards for Local and metropolitan area net-
works - Media Access Control (MAC) Bridges”, in LAN/MAN Standards Com-
mittee, IEEE, 2003.

[48] “IEEE Std 802.1Q™, IEEE Standards for Local and metropolitan area net-
works - Virtual Bridged Local Area Networks”, in LAN/MAN Standards Com-
mittee, IEEE, 2003.

[49] “IEEE Std 802.1D, IEEE Standard for Local and metropolitan area networks
Media Access Control (MAC) Bridges”, IEEE, 2004.

[50] “IEC 62439-2 Ed.01, Industrial communication networks - High availabil-
ity automation networks - Part 2: Media Redundancy Protocol (MRP)”, IEC,
2010.

[51] “IEC 62439-3 Ed.03, Industrial communication networks - High availability
automation networks - Part 3: Parallel Redundancy Protocol (PRP) and High-
availability Seamless Redundancy (HSR)”, IEC, 2016.



Bibliography 157

[52] “IEC 62439-4 Ed.02, Industrial communication networks - High availability
automation networks - Part 4: Cross-network Redundancy Protocol”, IEC,
2010.

[53] “IEC 62439-5 Ed.02, Industrial communication networks - High availability
automation networks - Part 5: Beacon Redundancy Protocol”, IEC, 2016.

[54] “IEC 62439-6 Ed.01, Industrial communication networks - High availability
automation networks - Part 6: Distributed Redundancy Protocol”, IEC, 2010.

[55] “IEC 62439-7 Ed.01, Industrial communication networks - High availability
automation networks - Part 7: Ring-based Redundancy Protocol”, IEC, 2012.

[56] A. Giorgetti, F. Cugini, F. Paolucci, L. Valcarenghi, A. Pistone, and P. Castoldi,
“Performance analysis of media redundancy protocol (MRP)”, IEEE Transac-
tions on Industrial Informatics, vol. 9, no. 1, pp. 218–227, 2013.

[57] H. Kirrmann, “Highly Available Automation Networks Standard Redundancy
Methods -Rationales behind the IEC 62439 standard suite”, ABB Switzer-
land Ltd, Tech. Rep., 2012. [Online]. Available: http://caxapa.ru/thumbs/
767218/IEC_62439_Summary.pdf (visited on 04/10/2019).

[58] J. Araujo, J Lazaro, A Astarloa, A Zuloaga, and A Garcia, “PRP and HSR
version 1 (IEC 62439-2), improvements and a prototype implementation”, in
IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society,
IEEE, 2013, pp. 4410–4415.

[59] C. Hoga, “Seamless communication redundancy of IEC 62439”, in 2011 Inter-
national Conference on Advanced Power System Automation and Protection, IEEE,
vol. 1, 2011, pp. 489–494.

[60] “Institute of Electrical and Electronics Engineers, IEEE 1588 Standard for a
Precision Clock Synchronization Protocol for Networked Measurement and
Control Systems”, IEEE, 2008. [Online]. Available: https : / / standards .
ieee.org/findstds/interps/1588-2008.html.

[61] L. Han-Rong, W. Wei-Jiang, Z. Feng, and L. Li, “Recovery Time Analysis of
a Distributed Redundancy Protocol”, in Proceedings of the 2012 International
Conference on Communication, Electronics and Automation Engineering, Springer,
2013, pp. 9–15.

[62] G. Yoon, S.-G. Lee, D.-H. Kwon, S.-C. Kwon, and Y.-O. Park, “RAPIEnet based
redundancy control system”, in 2011 11th International Conference on Control,
Automation and Systems, IEEE, 2011, pp. 140–145.

[63] “Internet Engineering Task Force, Network Time Protocol”, IETF, 2010. [On-
line]. Available: https://tools.ietf.org/html/rfc5905.

http://caxapa.ru/thumbs/767218/IEC_62439_Summary.pdf
http://caxapa.ru/thumbs/767218/IEC_62439_Summary.pdf
https://standards.ieee.org/findstds/interps/1588-2008.html
https://standards.ieee.org/findstds/interps/1588-2008.html
https://tools.ietf.org/html/rfc5905


158 Bibliography

[64] “Institute of Electrical and Electronics Engineers, Inc. 802.1AS - Timing and
Synchronization for Time-Sensitive Applications in Bridged Local Area Net-
works”, in Time-Sensitive Networking Task Group., IEEE, 2010. [Online]. Avail-
able: http://www.ieee802.org/1/files/private/as-drafts/d7/802-1AS-
d7-6.pdf.

[65] “IEEE 1588 Precision Time Synchronization Solution for Electric Utilities”,
Siemens AG, Tech. Rep., 2011. [Online]. Available: http://www.fujitsu.
com/downloads/TEL/fnc/pdfservices/ethernet-prerequisite.pdf.

[66] B. Balakrishna, Developing a simulation platform for Time-Sensitive Networking,
Germany, 2019.

[67] M. D. Pardue, “Fine-tuning the osi model: Layer functions and services”,
in MILCOM 1987-IEEE Military Communications Conference-Crisis Communi-
cations: The Promise and Reality, IEEE, vol. 1, 1987, pp. 0199–0203.

[68] “Implementing IEEE 1588v2 for use in the mobile backhaul”, Calnex Solu-
tions Ltd, Tech. Rep., 2009.

[69] M. Beck, Ethernet in the First Mile: the IEEE 802.3 ah EFM standard. McGraw
Hill Professional, 2005.

[70] B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai, “IEEE 802.11 wireless local
area networks”, IEEE Communications magazine, vol. 35, no. 9, pp. 116–126,
1997.

[71] K. Matheus and T. Königseder, Automotive ethernet. Cambridge University
Press, 2017.

[72] J. Postel, “Internet protocol”, 1981.

[73] R. Hinden, “Internet protocol, version 6 (IPv6) specification”, 2017.

[74] PROFIBUS & PROFINET International, “Profinet system description tech-
nology and application”, PROFIBUS & PROFINET International, Tech. Rep.,
2014.

[75] A. E. E. Committee et al., “Aircraft Data Network Part 7, Avionics Full Duplex
Switched Ethernet (AFDX) Network, ARINC Specification 664”, Aeronautical
Radio, 2005.

[76] S. AS6802, “Time-Triggered Ethernet”, SAE International, 2011.

[77] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, “The time-triggered
ethernet (TTE) design”, in Eighth IEEE International Symposium on Object Ori-
ented Real-Time Distributed Computing (ISORC’05), IEEE, 2005, pp. 22–33.

[78] W. Steiner and G. Bauer, “TTethernet: Time-triggered services for ethernet
networks”, in Digital Avionics Systems Conference, 2009. DASC’09. IEEE/AIAA
28th, 2009, p. 1.

http://www.ieee802.org/1/files/private/as-drafts/d7/802-1AS-d7-6.pdf
http://www.ieee802.org/1/files/private/as-drafts/d7/802-1AS-d7-6.pdf
http://www.fujitsu.com/downloads/TEL/fnc/pdfservices/ethernet-prerequisite.pdf
http://www.fujitsu.com/downloads/TEL/fnc/pdfservices/ethernet-prerequisite.pdf


Bibliography 159

[79] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner, “Design optimisation
of cyber-physical distributed systems using IEEE time-sensitive networks”,
IET Cyber-Physical Systems: Theory & Applications, vol. 1, no. 1, pp. 86–94, 2016.

[80] “Audio Video Bridging (AVB)”, Arista Networks, Tech. Rep., 2009.

[81] “IEEE P802.1Qat/D6.1 - Stream Reservation Protocol (SRP)”, in Audio/Video
Bridging Task Group, IEEE, 2010. [Online]. Available: https://standards.
ieee.org/findstds/standard/802.1Qat-2010.html.

[82] “IEEE P802.1Qav/D7.0 - Forwarding and Queuing Enhancements for Time-
Sensitive Streams”, in Audio/Video Bridging Task Group, IEEE, 2009. [Online].
Available: https://standards.ieee.org/findstds/standard/802.1Qav-
2009.html.

[83] “IEEE Standard for Local and metropolitan area networks— Audio Video
Bridging (AVB) Systems”, in Audio/Video Bridging Task Group, IEEE, 2011. [On-
line]. Available: http://standards.ieee.org/getieee802/download/802.
1BA-2009.html.

[84] Cisco, “Cisco Audio Video Bridging Design and Deployment for Enterprise
Networks”, Cisco, Tech. Rep., 2018.

[85] “IEEE P802.1ak/D8.0 - Multiple Registration Protocol (SRP)”, in Interwork-
ing Task Group of IEEE 802.1, IEEE, 2006. [Online]. Available: http://www.
ieee802.org/1/files/private/ak-drafts/d8/802-1ak-d8-0.pdf.

[86] P. Meyer, T. Steinbach, F. Korf, and T. C. Schmidt, “Extending IEEE 802.1
AVB with time-triggered scheduling: A simulation study of the coexistence
of synchronous and asynchronous traffic”, in 2013 IEEE Vehicular Networking
Conference, IEEE, 2013, pp. 47–54.

[87] E. Heidinger, F. Geyer, S. Schneele, and M. Paulitsch, “A performance study
of Audio Video Bridging in aeronautic Ethernet networks”, in 7th IEEE In-
ternational Symposium on Industrial Embedded Systems (SIES’12), IEEE, 2012,
pp. 67–75.

[88] F. Frances, C. Fraboul, and J. Grieu, “Using network calculus to optimize the
AFDX network”, 2006.

[89] R. Queck, “Analysis of Ethernet AVB for automotive networks using Net-
work Calculus”, in 2012 IEEE International Conference on Vehicular Electronics
and Safety (ICVES 2012), IEEE, 2012, pp. 61–67.

[90] L. Zhao, P. Pop, Z. Zheng, and Q. Li, “Timing analysis of AVB traffic in TSN
networks using network calculus”, in 2018 IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), IEEE, 2018, pp. 25–36.

[91] L. Zhao, F. He, and J. Lu, “Comparison of AFDX and audio video bridging
forwarding methods using network calculus approach”, in 2017 IEEE/AIAA
36th Digital Avionics Systems Conference (DASC), IEEE, 2017, pp. 1–7.

https://standards.ieee.org/findstds/standard/802.1Qat-2010.html
https://standards.ieee.org/findstds/standard/802.1Qat-2010.html
https://standards.ieee.org/findstds/standard/802.1Qav-2009.html
https://standards.ieee.org/findstds/standard/802.1Qav-2009.html
http://standards.ieee.org/getieee802/download/802.1BA-2009.html
http://standards.ieee.org/getieee802/download/802.1BA-2009.html
http://www.ieee802.org/1/files/private/ak-drafts/d8/802-1ak-d8-0.pdf
http://www.ieee802.org/1/files/private/ak-drafts/d8/802-1ak-d8-0.pdf


160 Bibliography

[92] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Improving the worst-case delay
analysis of an AFDX network using an optimized trajectory approach”, IEEE
Transactions on Industrial informatics, vol. 6, no. 4, pp. 521–533, 2010.

[93] L. Zhao, H. Xiong, Q. Li, and F. He, “Using memo recursive computation
in the Trajectory approach for the worst-case delay analysis of AFDX net-
works”, in 2011 International Conference on Electrical and Control Engineering,
IEEE, 2011, pp. 5633–5638.

[94] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Worst-case backlog evaluation of
avionics switched ethernet networks with the trajectory approach”, in 2012
24th Euromicro Conference on Real-Time Systems, IEEE, 2012, pp. 78–87.

[95] X. Li, O. Cros, and L. George, “The Trajectory approach for AFDX FIFO net-
works revisited and corrected”, in 2014 IEEE 20th International Conference on
Embedded and Real-Time Computing Systems and Applications, IEEE, 2014, pp. 1–
10.

[96] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner, “Scheduling real-
time communication in IEEE 802.1 Qbv time sensitive networks”, in Pro-
ceedings of the 24th International Conference on Real-Time Networks and Systems,
ACM, 2016, pp. 183–192.

[97] e. a. Marc Weiss, “Time-aware applications, computers, and communication
systems (TAACCS)”, Technical Note (NIST TN)-1867, Tech. Rep., 2015. [On-
line]. Available: http://www.fujitsu.com/downloads/TEL/fnc/pdfservices/
ethernet-prerequisite.pdf.

[98] “Institute of Electrical and Electronics Engineers, Inc. 802.1Qca - Path Control
and Reservation”, in Time-Sensitive Networking Task Group, IEEE, 2015.

[99] “Internet Engineering Task Force, the YANG 1.1 Data Modeling Language”,
IETF, 2016. [Online]. Available: https://tools.ietf.org/html/rfc7950#
section-45.

[100] “Internet Engineering Task Force, Network Configuration Protocol”, IETF,
2011. [Online]. Available: https://tools.ietf.org/html/rfc6241#section-
4.5.

[101] “Network Working Group, Uniform Resource Identifier (URI): Generic Syn-
tax”, NWG, 2005. [Online]. Available: https : / / tools . ietf . org / html /
std66.

[102] J. Schmeck, Dynamic configuration for safety-critical applications in TSN networks,
Germany, 2019.

[103] “Extensible Markup Language (XML) 1.0”, W3C, 2000. [Online]. Available:
https://www.w3.org/TR/2000/REC-xml-20001006-review.html.

[104] B. J. Nelson, “Remote Procedure Call”, XEROX, Tech. Rep., 1981.

http://www.fujitsu.com/downloads/TEL/fnc/pdfservices/ethernet-prerequisite.pdf
http://www.fujitsu.com/downloads/TEL/fnc/pdfservices/ethernet-prerequisite.pdf
https://tools.ietf.org/html/rfc7950#section-45
https://tools.ietf.org/html/rfc7950#section-45
https://tools.ietf.org/html/rfc6241#section-4.5
https://tools.ietf.org/html/rfc6241#section-4.5
https://tools.ietf.org/html/std66
https://tools.ietf.org/html/std66
https://www.w3.org/TR/2000/REC-xml-20001006-review.html


Bibliography 161

[105] F. Smirnov, M. Glaß, F. Reimann, and J. Teich, “Optimizing message routing
and scheduling in automotive mixed-criticality time-triggered networks”, in
Design Automation Conference (DAC), 2017 54th ACM/EDAC/IEEE, IEEE, 2017,
pp. 1–6.

[106] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and G. Mühl,
“ILP-based joint routing and scheduling for time-triggered networks”, in Pro-
ceedings of the 25th International Conference on Real-Time Networks and Systems,
ACM, 2017, pp. 8–17.

[107] W. Steiner, “An evaluation of SMT-based schedule synthesis for time-triggered
multi-hop networks”, in 2010 31st IEEE Real-Time Systems Symposium, IEEE,
2010, pp. 375–384.

[108] W. Steiner, “Synthesis of static communication schedules for mixed-criticality
systems”, in 2011 14th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops, IEEE, 2011, pp. 11–18.

[109] D. Tamas-Selicean, P. Pop, and W. Steiner, “Synthesis of communication sched-
ules for TTEthernet-based mixed-criticality systems”, in Proceedings of the 8th
IEEE/ACM/IFIP international conference on Hardware/software codesign and sys-
tem synthesis, ACM, 2012, pp. 473–482.
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