
Language Recognition

in the Sliding Window Model

DISSERTATION

zur Erlangung des Grades eines Doktors

der Naturwissenschaften

vorgelegt von

Moses Ganardi, M.Sc.

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät

der Universität Siegen

Siegen 2019

Betreuer und erster Gutachter

Prof. Dr. Markus Lohrey

Universität Siegen

Zweiter Gutachter

Prof. Dr. Thomas Schwentick

Technische Universität Dortmund

Tag der mündlichen Prüfung

16. Oktober 2019

Abstract

In many streaming applications recent elements in the stream are considered
more important than older elements. In the sliding window model we are given
an unbounded stream of elements and the goal is to maintain a data structure
which allows performing a certain query (e.g. computing a numerical quantity
or verifying a property) on the set or sequence of the last n elements. The
number n is called the window size, which can be either a fixed number or
controlled online. The challenge is to devise streaming algorithms which avoid
maintaining the window explicitly using Θ(n) space.

This thesis considers the language recognition problem in the sliding window
problem: Given a formal language (in other words, a property) and a stream
of symbols, maintain a small data structure which allows testing whether the
current window, i.e. the suffix of length n, belongs to the language (satisfies the
property). The main question that we aim to answer is: Which languages admit
sliding window algorithms using sublinear space?

The first main result is a space trichotomy (constant, logarithmic, linear) for
the space complexity of regular languages in the fixed- and the variable-size
sliding window model, together with language-theoretic descriptions of the
space classes. We also study the uniform setting where the regular language is
considered as part of the input. On this basis we extend these results in various
directions: (i) randomness, (ii) approximation, and (iii) subclasses of context-
free languages. We prove a quatrochotomy for the randomized space complexity
of regular languages. Concerning approximation, we present a constant-space
sliding window property tester for every regular language, which distinguishes
between words in the language and words that have large Hamming distance
from the language. Finally, we give partial results on context-free languages over
sliding windows and extend the space trichotomy for regular languages to the
class of visibly pushdown languages.

v

vi

Acknowledgements

First of all, I would like to thank my advisor Markus Lohrey who has been a great
mentor to me and has been always open for ideas and discussions. Thanks for
bearing a lot of my sloppy mistakes and for supporting me to become a better
scientist. I am also very grateful to Thomas Schwentick for coexamining this
thesis.

I am very glad for many opportunities to work with various coauthors. Thanks
go to Stefan Göller, Artur Jeż, Konstantinos Mamouras, Tatiana Starikovskaya,
and Georg Zetzsche. I would like to thank Andreas Krebs for contributing many
ideas at the TüFTLeR seminar in 2016 and for hosting me for a week in Tübingen.
In 2018, I had the wonderful opportunity to spend a month in Auckland and to
work with Bakh Khoussainov on automatic structures.

I would like to thank various people from my years of study at RWTH Aachen,
in particular Erich Grädel, Christof Löding, Peter Rossmanith, and Wolfgang
Thomas, who sparked my interest in theoretical computer science. I am deeply
grateful for Wolfgang Thomas who supported me to pursue a doctoral degree.

Furthermore, I would also like to thank all my current and former colleagues
at the Lehrstuhl für Theoretische Informatik at University of Siegen: Michael
Figelius, Danny Hucke, Seungbum Jo, Daniel König, Eric Nöth, Carl Philipp Reh,
and Louisa Seelbach Benkner. You created a wonderful work atmosphere with
many enjoyable conversations and interesting discussions.

Last but not least, I owe a lot of thanks to my friends, to my family, and to
my wonderful Lionnie. Thanks for your love and for always cheering me on.

vii

viii

Contents

1 Introduction 1
1.1 The streaming model . 1
1.2 The sliding window model . 2
1.3 Outline . 4

2 Preliminaries 7
2.1 Basic notation . 7
2.2 Words, languages, monoids . 8
2.3 Automata and regular languages 9
2.4 Context-free languages . 12
2.5 Rational transductions . 14

3 The sliding window model 17
3.1 Streaming algorithms . 17
3.2 Fixed-size sliding window model 19
3.3 Variable-size sliding window model 21
3.4 Alternative characterizations . 23
3.5 Related complexity measures . 25
3.6 Connection to language growth 27
3.7 Closure properties . 28
3.8 Remarks . 31

4 Regular languages 33
4.1 Space trichotomy . 33
4.2 Characterization of the space classes 43
4.3 The uniform problem . 51
4.4 Deciding the space complexity . 59
4.5 Conclusion . 64

5 Rational functions 67
5.1 Suffix expansions . 67
5.2 Finite index right congruences . 69
5.3 Regular look-ahead . 71
5.4 Critical tuples in Rt . 72
5.5 Well-behaved transducers . 75

ix

5.6 Space trichotomy . 79
5.7 Conclusion . 81

6 Randomized sliding window algorithms 83
6.1 Randomized streaming algorithms 83
6.2 Space quatrochotomy . 86
6.3 The Bernoulli counter . 87
6.4 Suffix-free languages . 88
6.5 Lower bounds with two-sided error 90
6.6 Lower bounds in the variable-size model 94
6.7 Lower bounds with one-sided error 95
6.8 Conclusion . 97

7 Sliding window property testing 99
7.1 Introduction . 99
7.2 Sliding window testers for regular languages 100
7.3 Trivial languages . 102
7.4 Upper bounds . 104
7.5 Lower bounds . 114
7.6 Conclusion . 118

8 Strict correctness 119
8.1 Introduction . 119
8.2 Derandomization . 120
8.3 Polynomially long streams . 123
8.4 Conclusion . 124

9 Context-free languages 127
9.1 Introduction . 127
9.2 Below logarithmic space . 128
9.3 Above logarithmic space . 134
9.4 Deterministic one-counter languages 137
9.5 Conclusion . 140

10 Visibly pushdown languages 141
10.1 Visibly pushdown automata . 141
10.2 Description of the Myhill-Nerode classes 144
10.3 Proof strategy . 146
10.4 Reduction to transducers . 147
10.5 Bounded overapproximation . 150
10.6 Conclusion . 153

11 Conclusion 155

Resulting publications 157

Bibliography 161

x

Chapter 1

Introduction

1.1 The streaming model

With increasing amounts of data, it has become a challenge how to process these
data efficiently. In particular, the design and analysis of streaming algorithms has
attained a lot of interest in recent years, both in practice and theory. Streaming
algorithms receive their input as a sequence of elements or data items (in contrast
to algorithms with random-access) and have to process each incoming element
quickly, using only a small amount of memory. Such small space requirements
arise for instance when searching in large databases (e.g. genome databases
or web databases), analyzing internet traffic (e.g. click stream analysis), and
monitoring networks. For surveys on data streaming, we refer to [2, 92].

From the perspective of this thesis we can summarize the literature on the
streaming model roughly in three lines of research. Firstly, the vast majority
of papers deals with computing aggregates and statistics over data streams,
and related techniques. These include works on computing quantiles over data
streams by Munro and Paterson [91], the AMS-algorithm (Alon, Matias, Szegedy)
for computing frequency moments over data streams [5], the count-min sketch
for computing heavy hitters [35], and Indyk’s work on stable distributions and
approximating the Lp-norm [68]. Concerning related techniques, let us also
mention the probabilistic counters by Flajolet and Martin [50], and Vitter’s
reservoir sampling algorithm [111].

Secondly, there has been a growing body of research on streaming algorithms
for formal languages. Hartmanis, Lewis and Stearns have studied the space
complexity of context-free and context-sensitive languages on online Turing
machines [84, 105]. More recently, Magniez, Mathieu and Nayak have presented
a randomized streaming algorithm for the Dyck languagesDs usingO(

√
n logn)

space and polylogarithmic time per letter [86]. Furthermore, they prove almost
matching lower bounds. For the subclass DLIN of deterministic linear languages
a randomized streaming algorithm usingO(logn) space was given in [14]. Krebs,
Limaye and Srinivasan considered streaming algorithms for the Dyck-2 language
where the input may contain errors [80]. François et al. [52] presented a

1

2 Chapter 1. Introduction

streaming property tester for visibly pushdown languages, which distinguishes
words in the language from words that are ε-far from it, and works in space
(logn/ε)O(1).

Thirdly, we list the fundamental problem of pattern matching. Here we
are given a pattern of length n and a streaming text, and at each moment the
algorithm must decide if the current suffix of length n matches the pattern.
The classical algorithms by Knuth, Morris, Pratt [77], and Karp and Rabin [73]
solve this problem in linear time and O(n) space. Porat and Porat [98] showed
that pattern matching can be solved in O(logn) space (in words) and O(logn)
time per symbol of the text, and Breslauer and Galil [24] improved this result
to O(logn) space and O(1) time. Later the pattern matching problem was
generalized to the case of multiple patterns [30, 63] and streams [62]. Golan,
Kopelowitz and Porat [61] also considered the problem of pattern matching with
d wildcards. More formally, the algorithm receives as an input a pattern, i.e. a
string of length n that contains at most d wildcards (special symbols that match
any symbol of the alphabet), and must find all substrings of the text matching
the pattern. Their algorithm uses O(d+ logn) time per symbol and O(d logn)
space. Finally, the problem of pattern matching has been also studied in the
variant where we must compute the distance (Hamming or edit) between the
pattern and the current suffix [31, 32, 33, 62, 98, 104].

1.2 The sliding window model

In many applications data items in a stream are outdated after a certain time.
The typical application is the analysis of a time series as it may arise in medical
monitoring, web tracking or financial monitoring. In all these applications, newer
data items are more important than older ones. An easy and mathematically
clean way to model this is the sliding window model. The user specifies a property
ϕ and the length n of the window in which the property should be verified.
For a given input stream the task of the algorithm is to decide at every time
instant whether the suffix of length n satisfies the property ϕ or not. More
generally ϕ may be an arbitrary function computed from the suffix of length n.
Let us quote from the overview paper by Babcock et al. [11]: “In fact, for many
such applications, sliding windows can be thought of not as an approximation
technique reluctantly imposed due to the infeasibility of computing over all
historical data, but rather as part of the desired query semantics explicitly
expressed as part of the user’s query.”

The pattern matching problem and its variants can be considered as a partic-
ular sliding window problem; however, we usually consider properties ϕ over
windows of arbitrary length.

The sliding window model was introduced in the seminal work by Datar
et al. [36] where the authors considered the basic counting problem: Given a
window length n and a stream of bits, maintain a count of the number of 1’s
in the window. One can easily observe that an exact solution would require
Θ(n) bits. Intuitively, the reason is that the algorithm cannot see the bit which is

1.2. The sliding window model 3

H L S̄ S̄ L H S̄ L S L S̄ S H L L · · ·

Figure 1.1: A stream of signals with a sliding window of length n = 5. Signals in
gray will arrive in the future.

about to expire (the n-th most recent bit) without storing it explicitly. However,
the authors show that using O(1

ε
log2 n) memory bits one can maintain an

approximate count up to a multiplicative factor of 1 ± ε. Furthermore, they
extend this result to arbitrary functions which satisfy certain additivity properties,
e.g. Lp-norms for p ∈ [1, 2]. Braverman and Ostrovsky introduced the smooth
histogram framework [22], to compute so-called smooth functions over sliding
windows, which include all Lp-norms and frequency moments. Further work on
computing aggregates, statistics and frequent elements in sliding window model
can be found in [10, 13, 16, 17, 21, 37, 45, 56, 60]. The problem of sampling
over sliding windows was first studied in [12] and later improved in [23]. As
an alternative to sliding windows, Cohen and Strauss consider the problem of
maintaining stream aggregates where the data items are weighted by a decay
function [34].

A natural problem that has been surprisingly neglected is the language
recognition problem over sliding windows. As a concrete motivating problem,
consider a fire monitoring system that uses input data from a smoke detector
and a heat detector. The data arrives in a streaming fashion and for simplicity
suppose the smoke detector emits signals S (smoke) and S̄ (no smoke) and the
heat detector emits signals H (high temperature) and L (low temperature). The
signals from the two detectors are interleaved into one stream, and we define
the following patterns over the stream that indicate the existence of fire: (i) the
smoke detector emits two consecutive S signals, or (ii) the heat detector emits
three consecutive H signals, or (iii) both signals S and H appear in either order
(not necessarily consecutive). We want to trigger an alarm if any of the above
patterns is identified in the last 10 minutes, and this 10-minute long window
slides every time a new signal arrives. We assume that the signals arrive at
regular intervals and hence the window always contains a fixed number of n
signals.

In particular, this means that if the alarm is triggered because of an single
occurrence of two consecutive S, after 10 minutes this occurrence will fall off
from the window and the alarm will stop unless it is triggered again. This
problem can be viewed as a sliding window problem where the property is a
language over the alphabet Σ = {S, S̄, H, L} of sensor values, namely the union of
three languages defined by the following regular expressions:

ei = Σ
∗ · S · (H+ L)∗ · S · Σ∗

eii = Σ
∗ · H · (S+ S̄)∗ · H · (S+ S̄)∗ · H · Σ∗

eiii = Σ
∗ · (S · Σ∗ · H+ H · Σ∗ · S) · Σ∗

4 Chapter 1. Introduction

A näıve approach to solve this problem would be to maintain the entire window
of 10 minutes using Θ(n) bits, where n is the window size, and update it on
every incoming signal. Then one could verify (offline) whether one of the three
expressions match the window. It is not hard to see that there is a more efficient
solution for this particular problem. For example, to verify the first property
(smoke detector emits two consecutive S signals) one can maintain two numbers
p1,p2 ∈ {1, . . . ,n,∞} where pi is the position of the i-th most recent S-signal
in the window, if it exists, or pi =∞ otherwise. The window matches ei if and
only if p1,p2 6 n, and one can clearly encode p1 and p2 using O(logn) bits.
This thesis mainly deals with the question which languages admit space efficient
streaming algorithms in the sliding window model.

1.3 Outline

In the following we briefly summarize the main results of this thesis and outline
its structure. The thesis can roughly be divided into three main parts.

Deterministic algorithms for regular languages After introducing basic no-
tions from formal languages and automata theory in Chapter 2, we formalize
the fixed-size and the variable-size sliding window model in Chapter 3, and prove
basic properties. In contrast to the fixed-size model (covered so far), variable-
size windows are controlled by a sequence of operations (insert new symbol
or remove the oldest symbol). Our first main result on regular languages is
presented in Chapter 4. We prove that the sliding window space complexity of
every regular language is either constant, logarithmic, or linear in the window
size (both for fixed-size and variable-size windows). Furthermore we give de-
scriptions of the O(logn) and the O(1) classes. Next, we consider the uniform
problem where the regular language is part of the input. We determine the
computational complexity of deciding the space complexity, and prove almost
tight bounds for the combined complexity, measured in the window size and the
size of the automaton. In Chapter 5 we turn from regular languages to rational
functions, which are functions computed by finite state transducers. We prove a
dichotomy theorem on so-called suffix expansions of rational functions. Using
this result we will extend the space trichotomy in the variable-size model to
rational functions and later in Chapter 10 to visibly pushdown languages.

Randomized algorithms for regular languages The next part (Chapters 6
to 8) deals with the question if and how randomness can improve the space
bounds of sliding window algorithms for languages. In Chapter 6 we present a
O(log logn) space randomized sliding window algorithm for regular suffix-free
languages, and show that almost all other lower bounds from the deterministic
setting transfer to the randomized setting. In light of this marginal improvement,
we propose the framework of property testing over sliding windows in Chapter 7,
which can be viewed as an approximate membership problem. The main result

1.3. Outline 5

is a constant-space randomized sliding window property tester with two-sided
error for all regular languages. Finally, in Chapter 8 we show that randomized
sliding window algorithms satisfying a strict correctness definition can always be
derandomized.

Context-free and visibly pushdown languages In Chapter 9 we investigate
whether the results on regular languages can be extended to subclasses of context-
free languages. We construct context-free languages with space complexity
Θ(n1/c) for every number c, which indicates that context-free languages deviate
strongly from regular languages in this context. The reason for this is that the
sliding window space complexity is preserved under taking complements, and
co-context free languages can encode computations of Turing machines. We
prove that any sliding window algorithm for a context-free language which works
in o(logn) space can in fact be reduced to O(1) space. Finally, in Chapter 10
we prove a space trichotomy in the variable-size model for the class of visibly
pushdown languages.

6 Chapter 1. Introduction

Chapter 2

Preliminaries

2.1 Basic notation

The set of natural numbers, including 0, is denoted by N and the set of integers
is denoted by Z. The logarithm of n to the base 2 is denoted by logn, and
we define log 0 = 0. The symmetric difference of two sets A,B is defined as
A�B = (A ∪ B) \ (A ∩ B). If f : X→ Y is a function and A ⊆ X is a subset, then
f(A) = {f(x) | x ∈ A} denotes the image of A under f. If B ⊆ Y is a subset, then
f−1(B) = {x ∈ X | f(x) ∈ B} denotes the pre-image of B under f. For a partial
function f : X→ Y we denote by dom(f) = {x ∈ X | f(x) defined} the domain and
by im(f) = {f(x) | x ∈ dom(f)} the image of f. We identify a partial function
f : X→ Y with its graph {(x, f(x)) | x ∈ dom(f)} ⊆ X× Y.

Given functions f,g : Nk → R�0, we use the following common asymptotic
notation:

˛ g(n) = O(f(n)) ⇐⇒ ∃c > 0 ∃n0 ∈ N ∀n = (n1, . . . ,nk) ∈ Nk

with n1, . . . ,nk � n0 : g(n) � c · f(n)
˛ g(n) = o(f(n)) ⇐⇒ ∀c > 0 ∃n0 ∈ N ∀n = (n1, . . . ,nk) ∈ Nk

with n1, . . . ,nk � n0 : g(n) � c · f(n)
˛ g(n) = Ω(f(n)) ⇐⇒ f(n) = O(g(n))

˛ g(n) = ω(f(n)) ⇐⇒ f(n) = o(g(n))

˛ g(n) = Θ(f(n)) ⇐⇒ g(n) = O(f(n)) and g(n) = Ω(f(n))

These notations should be viewed as one-way equalities. Often we will show lower
bounds of the form g(n) � c · f(n) for some c > 0 and infinitely many n ∈ N. In
this case we write “g(n) = Ω(f(n)) for infinitely many n” or “g(n) = Ω(f(n))

infinitely often”, see [76] for a discussion. A function g(n) is polynomial or
polynomially bounded if g(n) = O(nd) for some d � 1. We say that g(n) is
exponential if g(n) � cn for some c > 1 and infinitely many n ∈ N.

7

8 Chapter 2. Preliminaries

2.2 Words, languages, monoids

Words and languages An alphabet Σ is a nonempty set of letters or symbols,
which is usually finite. A word or string over an alphabet Σ is a finite sequence
w = a1a2 · · ·an of letters a1, . . . ,an ∈ Σ. The length of w is the number |w| = n.
The empty word is denoted by ε whereas small positive numbers are denoted
by the lunate epsilon ε. The set of all words over Σ is denoted by Σ∗. A subset
L ⊆ Σ∗ is called a language over Σ.

Let w = a1 · · ·an ∈ Σ∗ be a word. Any word of the form a1 · · ·ai is a prefix
of w, a word of the form ai · · ·an is a suffix of w, and a word of the form
ai · · ·aj is a factor of w. The set of all prefixes of a word w is denoted by Pref(w).
For a language L we define Pref(L) =

⋃
w∈L Pref(w) to be the set of prefixes

of words in L. Similarly, Suf(w) and Suf(L) are the sets of suffixes of w and
of words in L, respectively. The reversal of a word w = a1a2 · · ·an is defined
as wR = an · · ·a2a1 and the reversal of a language L is LR = {wR | w ∈ L}. A
factorization of w ∈ Σ∗ is formally a sequence (w1, . . . ,wk) of words wi ∈ Σ∗

such that w = w1 · · ·wk. We specify the factorization informally by simply
writing w = w1 · · ·wk.

Monoids A monoid (M, ·, 1M) consists of a set M, a binary operation · : M×
M→M and a distinguished element 1 = 1M ∈M such that

˛ · is associative, i.e. (x · y) · z = x · (y · z) for all x,y, z ∈M,

˛ 1 is an identity, i.e. 1 · x = x · 1 = x for all x ∈M.

Usually we only specify the set M instead of (M, ·, 1M) and write st instead of
s · t. A submonoid of M is a subset N ⊆M which is closed under products and
contains the identity, i.e. s, t ∈ N implies st ∈ N and 1M ∈ N. A homomorphism
from a monoidM to a monoidN is a function ϕ : M→ N such that ϕ(1M) = 1N

and ϕ(xy) = ϕ(x)ϕ(y) for all x,y ∈M.

Example 2.1. Let us give some examples for monoids.

˛ Clearly, every group is a monoid.

˛ If Q is a nonempty set then the set QQ of all functions τ : Q→ Q forms the
full transformation monoid with function composition (σ · τ)(q) = τ(σ(q))

as multiplication and the identity function on Q as the monoid identity.

˛ The free monoid over a set Σ is the set Σ∗ with concatenation as the
operation and the empty word as its identity. It has the universal property
that for every monoid M and for every function ϕ : Σ→M there exists a
unique extension to a homomorphism ϕ : Σ∗ →M.

˛ Given two monoids M and N the Cartesian product M×N = {(x,y) | x ∈
M, y ∈ N} forms a monoid, called the direct product of M and N, where
(x1,y1)(x2,y2) = (x1x2,y1y2) and (1M, 1N) is the identity.

2.3. Automata and regular languages 9

A right action of a monoid M on a set Q is a function · : Q ×M → Q such
that

˛ (q · x) · y = q · (xy) for all q ∈ Q and x,y ∈M,

˛ q · 1 = q for all q ∈ Q.

Dually, a left action of a monoid M on a set Q is a function · : M×Q→ Q such
that

˛ x · (y · q) = (xy) · q for all x,y ∈M and q ∈ Q,

˛ 1 · q = q for all q ∈ Q.

Any function δ : Q× Σ→ Q can be extended to a right action · : Q× Σ∗ → Q of
the free monoid Σ∗ on Q: It is defined by q · ε = q and q · (wa) = δ(q ·w,a) for
all q ∈ Q, w ∈ Σ∗ and a ∈ Σ. Dually a function δ : Σ×Q→ Q can be extended
to a left action · : Σ∗ × Q → Q by ε · q = q and (aw) · q = δ(a,w · q) for all
q ∈ Q, w ∈ Σ∗ and a ∈ Σ.

The product of two sets X, Y ⊆ M is X · Y = XY = {xy | x ∈ X, y ∈ Y}. The
power Xn is defined inductively by X0 = {1M} and Xn+1 = XnX for all n ∈ N.
The submonoid generated by a subset X ⊆ M is the inclusion-wise smallest
submonoid containing X, or equivalently, the set X∗ =

⋃
n∈N

Xn of all products
over X. It is also called the Kleene-star of X. The set of products of length at most
n is denoted by X�n =

⋃
0�k�n X

k. Similarly, we define the sets X�n, X<n and
X>n.

2.3 Automata and regular languages

For a good introduction into the theory of formal languages and automata we
refer to [18, 66, 78].

Automata An automaton over a monoid M is a tuple A = (Q,M,Q−,Δ,Q+)

where Q is the set of states, Q−,Q+ ⊆ Q are designated sets of states, and
Δ ⊆ Q×M×Q is the set of transitions. A run of A on an elementm ∈M is a finite
sequence π = q0a1q1a2q2 · · ·qn−1anqn ∈ Q(MQ)∗ such that m = a1 · · ·an
and (qi−1,ai,qi) ∈ Δ for all 1 � i � n. We call π successful if q0 ∈ Q− and
qn ∈ Q+. The subset accepted by A is defined as

L(A) = {m ∈M | there exists a successful run of A on m}.

If π = q0a1q1 · · ·anqn and ρ = p0b1p1 · · ·b�p� are runs such that qn = p0 then
their composition πρ is defined as πρ = q0a1 · · ·anp0b1 · · ·b�p�. If Q and Δ
are finite then A is finite and its size |A| is defined as the number of states. If
|Q−| = 1 or |Q+| = 1 we only specify that particular state in the definition of A
instead of Q− or Q+, respectively. We call A trim if every state in A occurs in
some successful run. Clearly, one can make A trim by removing all states which
do not occur in a successful run without changing L(A).

10 Chapter 2. Preliminaries

We will view an automaton either as a left automaton or a right automaton
to distinguish whether we view the automaton as reading the input from left to
right, or from right to left. To prevent confusion we usually denote left automata
with the letter A and right automata with the letter B. We emphasize that left
automata and right automata are formally the same objects.

Let A = (Q,M, I,∆, F) be a left automaton. We call I the set of initial states
and F the set of final states. A transition (p,a,q) ∈ ∆ is viewed as going from p

to q and is depicted by p a−→ q. A run π = q0a1q1 · · ·qn−1anqn in A is said to
go from q0 to qn and is depicted by

π : q0
a1−→ q1

a2−→ q2 · · · qn−1
an−−→ qn,

or simply π : q0
a1···an−−−−→ qn. If q0 ∈ I then π is initial; if qn ∈ F then π is final.

Now let B = (Q,M, F,∆, I) be a right automaton. We call I the set of initial
states and F the set of final states. A transition (p,a,q) ∈ ∆ is viewed as going
from q to p and is depicted by a labeled arrow p

a←− q pointing to the left. A run
π = q0a1q1 · · ·qn−1anqn in B is said to go from qn to q0 and is depicted by

π : q0
a1←− q1

a2←− q2 · · · qn−1
an←−− qn,

or simply π : q0
a1···an←−−−− qn. If qn ∈ I then π is initial; if q0 ∈ F then π is final.

Notice that the distinction between left and right automata only affects the
definitions of initial and final states, and the direction in which we read and
write runs, but not the semantics, i.e. the accepted language.

Rational subsets A subset L ⊆ M of a monoid M is rational if it is accepted
by a finite automaton A over M. Rational languages L ⊆ Σ∗ are called regular.
The class of all regular languages is denoted by Reg. A nondeterministic finite au-
tomaton (NFA) is a finite automaton A = (Q,Σ∗,Q−,∆,Q+) over a free monoid
Σ∗ with ∆ ⊆ Q× Σ×Q, which is written in the form A = (Q,Σ,Q−,∆,Q+). A
language is regular if and only if it is recognized by an NFA.

It is known that the set of rational subsets over a monoid M is the smallest
set containing all finite subsets L ⊆ M which is closed under union, products
and Kleene-star. A regular expression α over M is built from single monoid
elements, union ∪ (or also +), product · and Kleene-star ∗, which defines a
subset L(α) ⊆M in the natural way. Hence a subset in M is rational if and only
if it is definable by a regular expression. This statement was proved by Kleene for
the case of free monoids [75], and the general case is a straightforward adaption,
cf. [57].

The rational subsets over a commutative monoid (M,+) are precisely the
semilinear sets, which are finite unions of linear sets a + B∗ = {a + b | b ∈ B∗}
where B ⊆M is finite [42]. For example, linear sets over the free commutative
monoid (Nd,+) have the form

{u+

m∑
i=1

kivi | k1, . . . ,km ∈ N}

2.3. Automata and regular languages 11

a a

b b

b

a

a,b

Figure 2.1: A deterministic finite automaton for the language {aa,bb}∗.

where u, v1, . . . , vm ∈ Nd. In dimension d = 1 it is easy to see that the semilin-
ear sets over (N,+) are precisely finite unions of singleton sets and arithmetic
progressions c+ dN = {c+ dn | n ∈ N}, for c ∈ N, d > 1.

Deterministic automata A (left-)deterministic automaton is a left automaton
of the form A = (Q,Σ,q0, δ, F) where for all p ∈ Q and a ∈ Σ there exists exactly
one transition (p,a,q) ∈ δ. We view δ as a transition function δ : Q × Σ → Q.
The transition function δ can be extended to a right action · : Q× Σ∗ → Q of the
free monoid Σ∗ on the state set Q. We write A(w) instead of q0 ·w. Deterministic
finite automata (DFAs) are the standard description for regular languages. An
example for a DFA can be seen in Figure 2.1.

It is known that any NFA can be turned into an equivalent DFA by the
powerset construction. If A = (Q,Σ, I,∆, F) is a NFA then the powerset automaton
2A = (2Q,Σ, I, δ,F) is defined by δ(P,a) = {q ∈ Q | p ∈ P, (p,a,q) ∈ ∆} for all
P ∈ 2Q and a ∈ Σ, and F = {P ∈ 2Q | P ∩ F 6= ∅}. It is a DFA which equivalent to
A and has 2|A| many states.

Equivalence relations For any equivalence relation ∼ on a set X we write [x]∼
for the ∼-class containing x ∈ X. If Y ⊆ X is a subset then Y/∼ = {[y]∼ | y ∈ Y}
is the set of all ∼-classes of elements in Y (the quotient set of Y). The index of ∼
is the cardinality of X/∼. We denote by ν∼ : X → X/∼ the canonical projection
with ν∼(x) = [x]∼. If ∼1 and ∼2 are equivalence relations on a set X with
∼1⊆ ∼2 then ∼1 is called finer than ∼2 (or ∼1 refines ∼2), and ∼2 is called coarser
than ∼1. The intersection ∼1 ∩ ∼2 is again an equivalence relation on X. An
equivalence relation ∼ on X saturates a subset L ⊆ X if L is a union of ∼-classes,
i.e. L =

⋃
L/∼. The kernel of a function f : X → Y is the equivalence relation

ker(f) = {(x, x ′) ∈ X2 | f(x) = f(x ′)}.

Congruences An equivalence relation ∼ on a monoid M is a right (left) con-
gruence if x ∼ y implies xz ∼ yz (zx ∼ zy), and it is a congruence if it is both
a right congruence and a left congruence. If ∼ is a congruence on M then the
set of ∼-classes M/∼ forms again a monoid with the well-defined multiplication
[x]∼[y]∼ = [xy]∼.

There is a correspondence between right congruences and deterministic
automata. Any deterministic automaton A = (Q,Σ,q0, δ, F) defines a right

12 Chapter 2. Preliminaries

congruence ∼A on Σ∗ by u ∼A v if and only if A(u) = A(v), which saturates
L(A). Conversely, if ∼ is a right congruence on Σ∗ which saturates a language
L ⊆ Σ∗ then AL,∼ = (Σ∗/∼,Σ, [ε]∼, δ,L/∼) is a deterministic automaton for L
where δ([w]∼,a) = [wa]∼ for all w ∈ Σ∗ and a ∈ Σ.

For any language L ⊆ Σ∗ we define the Myhill-Nerode right congruence ∼L on
Σ∗ by

u ∼L v ⇐⇒ (uw ∈ L ⇐⇒ vw ∈ L) for all w ∈ Σ∗,

which is the coarsest right congruence on Σ∗ saturating L. The Myhill-Nerode
theorem states that L is regular if and only if ∼L has finite index [78]. The minimal
deterministic automaton for L is AL := AL,∼L

. It is the coarsest deterministic
automaton for L (up to isomorphism) in the sense that ∼AL

is coarser than ∼A

for any deterministic automaton A for L.

Syntactic monoid The syntactic congruence of a language L ⊆ Σ∗ is the equiva-
lence relation defined by

u ≡L v ⇐⇒ (xuy ∈ L ⇐⇒ xvy ∈ L for all x,y ∈ Σ∗).

It is finer than the Myhill-Nerode right congruence ∼L. The monoid Σ∗/≡L is
called the syntactic monoid of L and ν≡L

: Σ∗ → Σ∗/≡L is called the syntactic ho-
momorphism of L. If A = (Q,Σ,q0, δ, F) is the minimal deterministic automaton
for L then the syntactic monoid of L can be derived from A (and computed if A
is finite). Every word w ∈ Σ∗ induces a state transformation τ(w) : Q → Q by
(τ(w))(q) = q ·w. Since · is a right action on Q, the function τ : Σ∗ → QQ is a
homomorphism from the free monoid Σ∗ into the monoid QQ of all functions
τ : Q→ Q. Its image τ(Σ∗) is the transition monoid of A and is isomorphic to the
syntactic monoid of L.

2.4 Context-free languages

A context-free grammar G = (N,Σ,S,P) over an alphabet Σ consists of a finite
set of nonterminals or variables N (which is disjoint from Σ), a start nonterminal
S ∈ N and a set of productions P ⊆ N × (Σ ∪N)∗. Productions (A,α) ∈ P are
written as A→ α. The one-step derivation ⇒G ⊆ (Σ∪N)∗ × (Σ∪N)∗ is defined
by x⇒G y if there exist u, v ∈ (Σ ∪N)∗ and a production A→ α ∈ P such that
x = uAv and y = uαv. Its transitive reflexive closure is the derivation relation
∗⇒G. The language defined by G is

L(G) = {w ∈ Σ∗ | S
∗⇒G w}.

Languages L ⊆ Σ∗ defined by context-free grammars are called context-free.
Given a context-free grammar G = (N,Σ,S,P), a derivation tree for w ∈ Σ∗ is a
node-labeled rooted ordered tree with the following properties:

˛ Inner nodes are labeled by nonterminals A ∈ N and the root is labeled by

2.4. Context-free languages 13

the start nonterminal S.

˛ Leaves are labeled by letters in Σ or ε. In the latter case, the leaf must be
the only child of its parent.

˛ If a node s has children s1, . . . , sk where s is labeled by A and s1, . . . , sk
are labeled by α1, . . . ,αk then there exists a production A→G α1 · · ·αk.

˛ If a1, . . . ,a� are the labels of the leaves read from left to right then w =

a1 · · ·a�.

An important result in formal language theory is Parikh’s theorem. Let
Σ = {a1, . . . ,ak} be an ordered alphabet. Then the Parikh mapping Ψ : Σ∗ → Nk

is defined by
Ψ(w) = (|w|a1 , . . . , |w|ak

)

where |w|ai
is the number of occurrences of ai in w.

Theorem 2.2 ([94]). If L is context-free then its Parikh image Ψ(L) is semilinear.

Language growth The growth (function) of a language L ⊆ Σ∗ is the function
g(n) = |L ∩ Σn|, i.e. it counts the number of words in L of length n. The
cumulative growth (function) of L is the function g(n) = |L∩Σ�n|. We remark that
some authors also refer to the cumulative growth of a language as its growth. For
most parts of this work the distinction between growth and cumulative growth
is negligible because we only distinguish between polynomial and exponential
growth. Notice that the following relations hold:

|L ∩ Σn| � |L ∩ Σ�n| =

n∑
i=0

|L ∩ Σi|

Lemma 2.3. Let g(n),G(n) be a functions such that g(n) � G(n) �
∑n

k=0 g(k)

for all n ∈ N. Then g(n) is polynomial (exponential) if and only if G(n) is
polynomial (exponential).

Proof. If g(n) = O(nd) then G(n) = O(nd+1). The only nontrivial statement
left to show is that, if G(n) is exponential then also g(n) is exponential. Assume
that G(n) � cn for some c > 1 and infinitely many n ∈ N. By averaging we
obtain that for infinitely many n ∈ N there exists k � n such that

g(k) � cn

n
.

If n is large enough then cn/n � dn for some 1 < d < c. Let P be the set of
all pairs (n,k) with k � n which satisfy the inequality above. Since dn tends
towards infinity there must be infinite number of k-components in P. In other
words, there exist infinitely many k and n � k such that g(k) � dn � dk. This
shows that g(n) is exponential.

14 Chapter 2. Preliminaries

Corollary 2.4. The growth of a language is polynomial (exponential) if and only
if its cumulative growth is polynomial (exponential).

A language L is a bounded language if there exist words w1, . . . ,wk such that
L ⊆ w∗

1 · · ·w∗
k. The classic growth theorem for context-free languages states that

all context-free languages have either polynomial or exponential growth. We
summarize related results in the following theorem.

Theorem 2.5 ([55, 59, 107, 110]). Let L be a context-free language.

˛ The (cumulative) growth of L is either polynomial or exponential.

˛ L has polynomial growth if and only if L is a bounded language.

˛ If L has polynomial growth then there exists d ∈ N such that the growth of L
is O(nd), and Ω(nd) infinitely often (d is the order of growth).

˛ If L has exponential growth then its cumulative growth is 2Ω(n).

2.5 Rational transductions

Let Σ be a finite input alphabet and Ω be a finite output alphabet. A transduction
is any relation T ⊆ Σ∗ ×Ω∗. A transduction T ⊆ Σ∗ ×Ω∗ is rational if it is a
rational subset of the product monoid Σ∗ ×Ω∗. Hence rational transductions
are accepted by finite automata over Σ∗ × Ω∗, which are called finite state
transducers. A rational function is a partial function t : Σ∗ → Ω∗ whose graph
{(x, t(x)) | x ∈ dom(t)} is a rational transduction. Here we define transducers as
finite automata over Σ∗ ×Ω∗ which can append a word to the output at the end
of a run.

Left and right transducers A left transducer is a tuple A = (Q,Σ,Ω, I,Δ, F,o)
such that (Q,Σ∗ ×Ω∗, I,Δ, F) is an automaton over Σ∗ ×Ω∗ and o : F→ Ω∗ is
a terminal output function. The notion of runs is inherited from the underlying

automaton over Σ∗ ×Ω∗. To omit parentheses we write runs p
(x,y)−−−→ q in the

form p
x|y−−→ q and depict o(q) = y by a transition q

|y−→ without input word and

target state. If π is a run p
x|y−−→ q we also say that π is a run on x ∈ Σ∗, and we

define out(π) = y and outF(π) = yo(q). The transduction defined by A is

T(A) = {(x, outF(π)) | there exists a successful run π in A on x ∈ Σ∗}.

Since the terminal output function can be eliminated by ε-transitions, left trans-
ducers precisely recognize all rational transductions.

Example 2.6. Let Σ = Ω = {a,b}. The transduction

T = {(aw,wa) | w ∈ Σ∗} ∪ {(bw,wb) | w ∈ Σ∗}

is rational as witnessed by the left transducer in Figure 2.2. It takes a nonempty
word over Σ as input and shifts the leftmost symbol to the right end.

2.5. Rational transductions 15

a | ε

b | ε

a | a

b | b

a | a

b | b

| a

| b

Figure 2.2: A transducer which shifts the leftmost symbol to the right end.

A right transducer is a tuple A = (Q,Σ,Ω, F,∆, I,o) such that (Q,Σ∗ ×
Ω∗, F,∆, I) is a right automaton over Σ∗ × Ω∗ and o : F → Ω∗ is a terminal
output function. Runs are viewed as going from right and left, and we depict

o(q) = y by a transition
|y←− q. If π is a run q

x|y←−− p we define out(π) = y and
outF(π) = o(q)y. The transduction defined by A is defined precisely as for left
transducers, i.e. the set T(A) of all pairs (x, outF(π)) such that π is a successful
run in A on x.

Closure properties Similar to the regular languages, the class of rational trans-
ductions enjoy good closure properties [18]. The class of rational transductions
is closed under inverse, reversal and composition where the inverse of T is
T−1 = {(y, x) | (x,y) ∈ T }, the reversal of T is TR = {(xR,yR) | (x,y) ∈ T }, and
the composition of two transductions T1, T2 is

T1 ◦ T2 = {(x, z) | there exists y such that (x,y) ∈ T1 and (y, z) ∈ T2}.

If T ⊆ Σ∗ ×Ω∗ is rational and L ⊆ Σ∗ is regular then the restriction {(x,y) ∈ T |

x ∈ L} is also rational. If K ⊆ Σ∗ is regular (context-free) and T ⊆ Σ∗ ×Ω∗ is
rational then TK = {y ∈ Ω∗ | (x,y) ∈ T for some x ∈ K} is also regular (context-
free). In particular the domain {x | (x,y) ∈ T } and the image {y | (x,y) ∈ T } of
every rational transduction T is regular.

Left and right-subsequential functions Let A = (Q,Σ,Ω,Q−,∆,Q+,o) be a
(left or right) transducer. We call A real-time if ∆ ⊆ Q × Σ ×Ω∗ × Q. A left-
subsequential transducer is a real-time left transducer A = (Q,Σ,Ω,q0,∆, F,o)
which is deterministic, i.e. for every p ∈ Q and a ∈ Σ there exists at most one

transition p
a|y−−→ q. A right-subsequential transducer is a real-time right transducer

A = (Q,Σ,Ω, F,∆,q0,o) which is deterministic, i.e. for every p ∈ Q and a ∈ Σ
there exists at most one transition q

a|y←−− p. Clearly, left- and right-subsequential
transducers define rational functions, the so-called left- and right-subsequential
functions.

16 Chapter 2. Preliminaries

A result by Elgot and Mezei [43] states that every rational function t can
be decomposed into a left- and a right-subsequential function, i.e. t = ` ◦ r
for some left-subsequential function ` and some right-subsequential function r.
Reutenauer and Schützenberger [100] strengthened this result by making this
decomposition canonical using Eilenberg’s bimachines [40].

Synchronous rational relations Synchronous rational relations are a sub-
class of rational relations with better closure properties [74]. They are rec-
ognized by automata with k synchronous heads where k is the arity of the
relation. Fix an alphabet Σ and let � /∈ Σ be a fresh symbol. Given words
w1 = a1,1 · · ·a1,n1 , . . . ,wk = ak,1 · · ·ak,nk over Σ with lengths n1, . . . ,nk ∈ N
and maximum length n = max{n1, . . . ,nk}. We define the convolution of
w1, . . . ,wk by

⊗(w1, . . . ,wk) =


a ′1,1
a ′2,1

...
a ′k,1



a ′1,2
a ′2,2

...
a ′k,2

 · · ·

a ′1,n1

a ′2,n2
...

a ′k,nk


where a ′i,j = ai,j for 1 6 i 6 k and 1 6 j 6 ni and a ′i,j = � otherwise. It is a
word of length n over the alphabet (Σ∪ {�})k. The convolution of a k-ary relation
R ⊆ (Σ∗)k is ⊗R = {⊗(w1, . . . ,wk) | (w1, . . . ,wk) ∈ R}. A relation R ⊆ (Σ∗)k is
synchronous rational (or automatic) if its convolution ⊗R is a regular language
over (Σ ∪ {�})k. Synchronous rational relations form the basis for automatic
structures [74]. Their good closure properties lead to decision procedures for
automatic structures.

Proposition 2.7 ([74]). Let R,R1,R2 ⊆ (Σ∗)k be synchronous rational k-ary
relations. Then (Σ∗)k \ R and R1 ∪ R2 are synchronous rational. For every 1 6
i 6 k the (k − 1)-ary relation {(x1, . . . , xi−1, xi+1, . . . , xk) | (x1, . . . , xk) ∈ R} is
synchronous rational.

Chapter 3

The sliding window model

3.1 Streaming algorithms

Before introducing sliding window algorithms we formalize the notion of stream-
ing algorithms. A stream is a finite sequence of elements a1 · · ·am, which
arrive element per element from left to right. We make the assumption that
these elements are from a finite set Σ, i.e. a stream is simply a finite word
x = a1a2 · · ·am ∈ Σ∗. Furthermore we assume that the symbols arrive in dis-
crete time steps, i.e. at time instant 0 6 t 6 m the prefix a1 · · ·at has been read.
A computational problem is a function ϕ : Σ∗ → Y where Σ is a finite alphabet
and Y is a possibly infinite set of output values. In the simplest case the output is
Boolean, i.e. Y = {0, 1}, and ϕ : Σ∗ → {0, 1} is the decision problem or membership
problem for the language L = {w ∈ Σ∗ | ϕ(w) = 1}. We identify a language
L ⊆ Σ∗ with its characteristic function χL : Σ∗ → {0, 1}. Another example is the
basic counting problem count : {0, 1}∗ → N where count(a1 · · ·an) =

∑n
i=1 ai

counts the number of 1’s in the input bitstring a1 · · ·an.
In contrast to classical (offline) algorithms, streaming algorithms may read

the input only once from left to right. The algorithm maintains some data struc-
ture in memory. In the beginning the algorithm may perform some computation
to build up the initial data structure. Then, at every time instant 1 6 t 6 m
the algorithm has only access to the symbol at and the current data structure
and updates the data structure. We will mostly abstract away from the actual
computation and only analyze the space requirement. The current data structure
in memory will be abstractly referred to as the current (memory) state of the
algorithm. Furthermore, the streaming algorithm produces an output value
yt ∈ Y from the memory state at every time instant 0 6 t 6 m. Most streaming
algorithms use randomness, i.e. the memory update operation can depend on
coin tosses.

We remark that many streaming algorithms in the literature only produce a
single answer after completely reading the entire stream. Also, the length of the
stream is often known in advance. However, in the sliding window model we
rather assume an input stream of unbounded and unknown length, and need to

17

18 Chapter 3. The sliding window model

compute output values for every window, i.e. at every time instant.

3.1.1 Streaming algorithms as automata

As a formal and abstract model of streaming algorithms we extend the classical
notions of automata which either accept or reject inputs to automata with
arbitrary output. Initially we will focus on deterministic streaming algorithms
and discuss randomized streaming algorithms in Chapter 6. A deterministic
streaming algorithm or a deterministic automaton with output P = (M,Σ,m0, δ,o)
consists of

˛ a set M of memory states,

˛ a finite alphabet Σ,

˛ an initial state m0 ∈M,

˛ a transition function δ : M × Σ → M, which extends to a right action
· : M× Σ∗ →M,

˛ and an output function o : M→ Y into some set Y of output values.

The letter P stands for program. We view (standard) deterministic automata
as deterministic streaming algorithms with output function o : M → {0, 1}. As
for deterministic automata we define P(x) = m0 · x. The function ϕP : Σ∗ → Y

computed by P is given by ϕP(x) = o(P(x)).
We are mainly interested in space complexity of streaming algorithms. The

space of P (or number of bits used by P) is given by s(P) = log |M| ∈ R�0∪ {∞}. If
s(P) = ∞ we will later measure the space restricted to input streams of bounded
length or bounded window size. If a deterministic algorithm reads its input
from left to right and uses O(s) bits, say a Turing machine on its work tape or a
random access machine in its registers, then it can be regarded as a deterministic
streaming algorithm P as above with space complexity s(P) = O(s). Conversely,
if P is a deterministic algorithm with finitely many memory states, then the
memory states of P can be encoded using O(s(P)) bits.

As in the case of languages there exists a canonical minimal deterministic
automaton for every function ϕ : Σ∗ → Y. Any deterministic automaton A =

(Q,Σ,q0, δ,o) for ϕ induces a right congruence ∼A on Σ∗ which refines ker(ϕ),
namely

u ∼A v ⇐⇒ A(u) = A(v).

Conversely, if ∼ is a right congruence on Σ∗ which saturates ker(ϕ) then one can
define a deterministic automaton with output Aϕ,∼ = (Σ∗/∼,Σ, [ε]∼, δ, ϕ̄) which
computes ϕ as follows. Set δ([w]∼,a) = [wa]∼ for all w ∈ Σ∗ and a ∈ Σ, and
ϕ̄([w]∼) = ϕ(w) for all w ∈ Σ∗. The Myhill-Nerode right congruence ∼ϕ on Σ∗

is defined by

u ∼ϕ v ⇐⇒ ϕ(uw) = ϕ(vw) for all w ∈ Σ∗,

3.2. Fixed-size sliding window model 19

b b b

b b b

b b b

a

a

a

a

a

a

a

a

a

Figure 3.1: The minimal deterministic automaton for counting the maximum
number of a’s and b’s.

which is the coarsest right congruence on Σ∗ which refines ker(ϕ). The minimal
deterministic automaton with output for ϕ is Aϕ := Aϕ,∼ϕ . It is the coarsest
deterministic automaton for ϕ (up to isomorphism) in the sense that ∼Aϕ is
coarser than ∼A for any deterministic automaton A for ϕ.

Example 3.1. Consider the function ϕ : {a,b}∗ → N which counts the maximum
number of a’s or b’s. Then x ∼ϕ y if and only if x and y contain the same number
of a’s and b’s. Therefore the minimal deterministic automaton for ϕ needs to
store the number of a’s and b’s read so far (the state space is N×N) and outputs
in state (na,nb) the maximum of na and nb. An excerpt of the automaton is
displayed in Figure 3.1.

3.2 Fixed-size sliding window model

We fix an arbitrary padding symbol � ∈ Σ. Given a stream x = a1a2 · · ·am ∈ Σ∗
and a window length or window size n ∈ N, we define lastn(x) ∈ Σn by

lastn(x) =

{
am−n+1am−n+2 · · ·am, if n 6 m,

�n−ma1 · · ·am, if n > m,

which is called the window of length n, or the active or current window. In other
words lastn(x) is the suffix of length n, padded with �-symbols at the left. We
view �n as the initial window; its choice is completely arbitrary.

Let ϕ : Σ∗ → Y be a computational problem. The sliding window problem
SWn(ϕ) for ϕ and window length n ∈ N is the function ϕ ◦ lastn : Σ∗ → Y. A
sliding window algorithm (SW-algorithm) for ϕ and window length n ∈ N is a
streaming algorithm for SWn(ϕ). The function Fϕ : N→ R>0 ∪ {∞} is defined by

Fϕ(n) = inf {s(Pn) | Pn is an SW-algorithm for ϕ and window length n}.

It is called the space complexity of ϕ in the fixed-size sliding window model.
We draw similarities to circuit complexity where a language L ⊆ {0, 1}∗ is

recognized by a family of circuits (Cn)n∈N in the sense that Cn recognizes the

20 Chapter 3. The sliding window model

slice L ∩ {0, 1}n. The sliding window problem SWn(ϕ) is solely defined by the
restriction ϕ|Σn : Σn → Y. If we speak of an SW-algorithm for ϕ and omit
the window length n, then this parameter is implicitly universally quantified,
meaning that there exists a family of streaming algorithms (Pn)n∈N such that
every Pn is an SW-algorithm for ϕ and window length n.

Recall that we identify a language L ⊆ Σ∗ with its characteristic function
χL : Σ

∗ → {0, 1}. Therefore the sliding window problem for L is

SWn(L) = {x ∈ Σ∗ | lastn(x) ∈ L}.

A subtle point is that the space complexity FL(n) of a language L may depend on
the underlying alphabet. This becomes apparent in Example 3.3 below, if the
alphabet is restricted.

Lemma 3.2. For any problem ϕ we have Fϕ(n) = O(n).

Proof. A trivial SW-algorithm Pn for ϕ explicitly stores the active window of
length n in a queue so that its value under ϕ can be computed. Formally, the
state set of Pn is Σn and it has transitions of the form au

b−→ ub for a,b ∈ Σ,
u ∈ Σn−1. Viewed as an edge-labeled graph this automaton is also known under
the name de Bruijn graph [25]. Since every word w ∈ Σn can be encoded with
O(log |Σ| · n) bits the algorithm uses O(n) bits.

Depending on the function ϕ there are more space efficient solutions. Usually
sliding window algorithms are devised in the following way:

1. Specify some information or property I(w) of the active window w and
show that it can be maintained by a streaming algorithm. This means that
given I(bw) and a ∈ Σ one can compute I(wa).

2. Show that one can compute ϕ(w) from the information I(w).

Let us give simple examples of sliding window algorithms for regular lan-
guages.

Example 3.3. Let Σ = {a,b} be the alphabet.

(i) Let L = Σ∗a be the set of all words ending with a. Then FL(n) = O(1)
because a streaming algorithm can maintain the last symbol of the stream,
which is also the last symbol of the active window, in a single bit (either a
or b).

(ii) Let L = Σ∗aΣ∗ be the set of all words containing a and let n ∈ N be the
window size. A streaming algorithm can maintain the position 1 6 i 6 n
(from the right) of the most recent a-symbol in the window or set i =∞
if the window contains no a-symbols. Depending on the chosen initial
window we initialize i appropriately. On input a we set i := 1 and on input
b we increment i and then set i := ∞ if i > n. The algorithm accepts if
and only if i 6 n. Since the position i can be stored using O(logn) bits we
have shown FL(n) = O(logn).

3.3. Variable-size sliding window model 21

(iii) Let L = aΣ∗ be the set of all words starting with a. We claim that FL(n) =
Θ(n). Since the trivial sliding window algorithm uses O(n) bits it suffices
to prove the lower bound. Let Pn be any SW-algorithm for L and window
length n ∈ N. We claim that Pn(x) 6= Pn(y) for all x,y ∈ Σn with x 6= y.
Let x = a1 · · ·an ∈ Σn and y = b1 · · ·bn ∈ Σn with ai 6= bi for some
1 6 i 6 n. Since exactly one of the words lastn(xbi−1) = ai · · ·anbi−1 and
lastn(ybi−1) = bi · · ·bnbi−1 belongs to L the algorithm Pn must accept
exactly one of the words xbi−1 and ybi−1. Since Pn is deterministic,
Pn(x) = Pn(y) would imply Pn(xb

i−1) = Pn(yb
i−1), which proves the

claim. Therefore Pn must contain at least |Σn| = 2n memory states and
hence FL(n) = Ω(n).

Notice that the complexity function Fϕ(n) is not necessarily monotonic.
For instance, let L be the intersection of aΣ∗ and the set of words with even
length. By Example 3.3(iii), we have FL(2n) = Θ(n) but clearly we have
FL(2n+1) = O(1) since for odd window lengths the algorithm can always reject.
Therefore FL(n) = Ω(n) only holds for infinitely many n ∈ N.

Note that the fixed-size sliding window model is a nonuniform model: for
every window size we have a separate streaming algorithm and these algorithms
do not have to follow a common pattern. Working with a nonuniform model
makes lower bounds stronger. In contrast, the variable-size sliding window
model that we discuss next is a uniform model in the sense that there is a single
streaming algorithm that works for every window length.

3.3 Variable-size sliding window model

For an alphabet Σ we define the extended alphabet Σ↓ = Σ ∪ {↓}. In the variable-
size model the active window wnd(u) ∈ Σ∗ for a stream u ∈ Σ∗↓ is defined as
follows, where a ∈ Σ:

wnd(ε) = ε wnd(u↓) = ε if wnd(u) = ε

wnd(ua) = wnd(u)a wnd(u↓) = v if wnd(u) = av

The symbol ↓ represents the pop operation. We emphasize that a pop operation
on an empty window leaves the window empty. Let ϕ : Σ∗ → Y be a function.
The variable-size sliding window problem SW(ϕ) is the function ϕ ◦wnd : Σ∗↓ → Y.
A variable-size sliding window algorithm (variable-size SW-algorithm) P for ϕ is a
streaming algorithm for SW(ϕ).

Let mwl(a1 · · ·am) = max{|wnd(a1 · · ·ai)| : 0 6 i 6 m} be the maximum
window length of a stream u ∈ Σ∗. If P = (M,Σ,m0, δ,o) is a streaming
algorithm over the alphabet Σ↓ we define

M6n = {P(w) | w ∈ Σ∗↓, mwl(w) 6 n}

and
Mn = {P(w) | w ∈ Σ∗↓, mwl(w) = n}.

22 Chapter 3. The sliding window model

The space complexity of P in the variable-size sliding window model is

v(P,n) = log |M6n| ∈ R>0 ∪ {∞}.

Notice that v(P,n) is a monotonic function. To prove upper bounds above logn
for the space complexity of P it suffices to bound log |Mn| instead as shown in
the following.

Lemma 3.4. If s(n) > logn is a monotonic function and log |Mn| = O(s(n))

then v(P,n) = O(s(n)).

Proof. Since M6n =M0 ∪M1 ∪ · · · ∪Mn we have

log |M6n| = log
n∑
i=0

|Mi| 6 log
(
(n+ 1) · max

06i6n
|Mi|

)
= log(n+ 1) + max

06i6n
log |Mi|

6 log(n+ 1) + max
06i6n

O(s(i))

6 log(n+ 1) +O(s(n)) 6 O(s(n)),

which proves the statement.

Lemma 3.5. Let ϕ : Σ∗ → Y be a problem. There exists a space optimal variable-
size SW-algorithm P for ϕ, i.e. v(P,n) 6 v(Q,n) for every variable-size SW-
algorithm Q for ϕ and every n ∈ N.

Proof. Let P be the minimal deterministic automaton for SW(ϕ) = ϕ◦wnd and Q

be any deterministic automaton for SW(ϕ). Let W6n = {w ∈ Σ∗↓ | mwl(w) 6 n}.
Since ∼P is coarser than ∼Q we have

v(P,n) = log |{P(w) | w ∈W6n}|
= log |W6n/∼P| 6 log |W6n/∼Q|

= log |{Q(w) | w ∈W6n}| = v(Q,n),

which proves the statement.

We define the space complexity of ϕ in the variable-side sliding window
model by Vϕ(n) = v(P,n), where P is a space optimal variable-size SW-algorithm
for SW(ϕ) from Lemma 3.5.

Lemma 3.6. For any problem ϕ and n ∈ N we have Fϕ(n) 6 Vϕ(n).

Proof. If P is a space optimal variable-size SW-algorithm for ϕ then one obtains
an SW-algorithm Pn for window length n ∈ N as follows. Let us assume n > 1
(for n = 0 we use the trivial SW-algorithm). First one simulates P on the initial
window �n. For every incoming symbol a ∈ Σ we perform a pop operation ↓ in
P, followed by inserting a. Since the maximum window length is bounded by n
on any stream, the space complexity is bounded by v(P,n) = Vϕ(n).

3.4. Alternative characterizations 23

A problem ϕ : Σ∗ → Y is trivial if it is a constant function, i.e. ϕ(u) = ϕ(v)
for all u, v ∈ Σ∗. Correspondingly a language L ⊆ Σ∗ is trivial if it is either
empty or universal, i.e. L = ∅ or L = Σ∗. The following lemma states that in the
variable-size model one must at least maintain the current window size if the
problem is nontrivial.

Lemma 3.7. Let P be a variable-size SW-algorithm for a nontrivial problem
ϕ : Σ∗ → Y. Then P(x) determines1|wnd(x)| for all x ∈ Σ∗↓ and therefore Vϕ(n) >
log(n+ 1).

Proof. Let y ∈ Σ∗ be length-minimal such that ϕ(ε) 6= ϕ(y). Let x ∈ Σ∗↓
with |wnd(x)| = m. We read x into P, followed by y and an infinite sequence
of ↓. Then in state P(xy ↓m) the algorithm outputs ϕ(y), and in all states
P(xy↓i) where i > m it outputs ϕ(ε), by minimality of |y|. Clearly this run
determines m. For the second statement: If the algorithm reads any stream
a1 · · ·an ∈ Σn it must visit n + 1 pairwise distinct memory states and hence
v(P,n) > log(n+ 1).

Clearly, the issue at hand is performing a pop operation on an empty window.
Alternative definitions of the variable-size model are conceivable, e.g. one could
neglect streams where the popping of an empty window occurs, or assume that
the window size is always known to the algorithm.

3.4 Alternative characterizations

The problem of determining the space complexity Fϕ(n) and Vϕ(n) for a given
problem ϕ boils down to understanding which windows have to be distinguished
by the SW-algorithm, and which can be identified. In this section we study right
congruences which capture the sliding window models. It turns out that the
variable-size model has a clearer description in terms of right congruences than
the fixed-size model. Since in many cases VL(n) and FL(n) are asymptotically
equal we can view the variable-size model as an approximation of the fixed-size
model which is easier to analyze.

3.4.1 Fixed-size model

For any problem ϕ : Σ∗ → Y we define the equivalence relation ρϕ on Σ∗ by

x ρϕ y ⇐⇒ |x| = |y| = n and ϕ(lastn(xz)) = ϕ(lastn(yz)) for all z ∈ Σ6n.

Let us show that this equivalence relation (in fact, right congruence) captures
the space complexity Fϕ(n). Clearly we can extend the quantification from
z ∈ Σ6n to z ∈ Σ∗ since for any z ∈ Σ>n we have lastn(xz) = lastn(yz) and thus
ϕ(lastn(xz)) = ϕ(lastn(yz)). Therefore we have

x ρϕ y ⇐⇒ |x| = |y| = n and x ∼SWn(ϕ) y. (3.1)
1In other words, for all x1,x2 ∈ Σ∗↓, if P(x1) = P(x2) then |wnd(x1)| = |wnd(x2)|.

24 Chapter 3. The sliding window model

Lemma 3.8. We have x ∼SWn(ϕ) lastn(x) for any x ∈ Σ∗.

Proof. It suffices to show that lastn(xz) = lastn(lastn(x) z), which can be verified
by a simple case distinction. Let � ∈ Σ be the padding symbol. If |xz| < n then
lastn(xz) = �n−|xz|xz and lastn(lastn(x) z) = lastn(�n−|x| xz) = �n−|xz|xz. If
|xz| > n then lastn(xz) is the suffix of xz of length n. If |z| > n then lastn(xz) is
in fact a suffix of z; if |z| < n then lastn(xz) = x ′z where x ′ is the suffix of x of
length n− |z|. In either case lastn(xz) is the suffix of lastn(x) z of length n.

Proposition 3.9. For every problem ϕ : Σ∗ → Y we have Fϕ(n) = log |Σn/ρϕ|.

Proof. We have Fϕ(n) = log |Σ∗/∼SWn(ϕ)|. According to Lemma 3.8 we know
that |Σ∗/∼SWn(ϕ)| = |Σn/∼SWn(ϕ)| and by (3.1) the equivalence relations ∼SWn(ϕ)

and ρϕ coincide on Σn. Therefore Fϕ(n) = log |Σn/ρϕ|.

In particular this proves that the definition of the space complexity in the
fixed-size sliding window model is independent of the choice of the padding
symbol.

3.4.2 Variable-size model

Suffix expansions Consider an equivalence relation ∼ on Σ∗. The suffix expan-
sion of ∼ is the equivalence relation ≈ on Σ∗ defined by

a1 · · ·an ≈ b1 · · ·bm ⇐⇒ n = m and ai · · ·an ∼ bi · · ·bn, for all 1 6 i 6 n.

Notice that ≈ saturates each subset Σn. Furthermore, if ∼ is a right congru-
ence then so is ≈ since |u| = |v| implies |ua| = |va| and ai · · ·an ∼ bi · · ·bn
implies ai · · ·ana ∼ bi · · ·bna. The suffix expansion of the Myhill-Nerode right
congruence ∼ϕ is denoted by ≈ϕ. We also define suffix expansions for partial
functions t : Σ∗ → Y with suffix-closed domains dom(t). A language L ⊆ Σ∗ is
suffix-closed if xy ∈ L implies y ∈ L. The suffix expansion of t is the total function
~t : dom(t)→ Y∗ defined by

~t(a1 · · ·an) = t(a1 · · ·an) t(a2 · · ·an) · · · t(an−1an) t(an)

for all a1 · · ·an ∈ dom(t). Here the range of ~t is the free monoid (alternatively,
the set of all sequences) over Y. Notice that ~t is a length-preserving function. If
∼ is an equivalence relation on Σ∗ then its suffix expansion ≈ is the kernel of ~ν∼.

Let ϕ : Σ∗ → Y be a computational problem. For better readability we write
[x]ϕ instead of [x]∼ϕ and νϕ instead of ν∼ϕ . Using this notation the suffix
expansion ~νϕ : Σ∗ → (Σ∗/∼ϕ)

∗ is the length-preserving function

a1 · · ·an 7→ [a1 · · ·an]ϕ [a2 · · ·an]ϕ · · · [an]ϕ.

The following propositions state that the minimal information that any variable-
size sliding window algorithm for ϕ has to maintain is the ≈ϕ-class of the active
window.

3.5. Related complexity measures 25

Proposition 3.10. For every problem ϕ there exists a variable-size SW-algorithm
P for ϕ with P(x) = �νϕ(wnd(x)) for all x ∈ Σ∗

↓.

Proof. We exhibit a streaming algorithm P which maintains the tuple �νϕ(w) for
the active window w ∈ Σ∗. In particular we know the window size n at every
time instant. Initially the memory state is �νϕ(ε), which is the empty sequence.
Assume that the active window is w = a1 · · ·an ∈ Σ∗.

˛ Suppose that P receives ↓. If n � 1 then �νϕ(a2 · · ·an) can be obtained
from the sequence �νϕ(a1 · · ·an) by removing the first ∼ϕ-class [a1 · · ·an]ϕ.
If n = 0 then nothing is changed.

˛ Suppose that P receives a symbol a ∈ Σ. From the sequence �νϕ(a1 · · ·an)
we can compute �νϕ(a1 · · ·ana) = [a1 · · ·ana]ϕ[a2 · · ·ana]ϕ · · · [a]ϕ since
∼ϕ is a right congruence.

˛ The first ∼ϕ-class in �νϕ(a1 · · ·an) determines the value ϕ(a1 · · ·an).
These remarks define a variable-size SW-algorithm for ϕ.

Proposition 3.11. Ifϕ is nontrivial then Vϕ(n) = log | �νϕ(Σ
�n)| = log |Σ�n/≈ϕ|.

Proof. In the algorithm from Proposition 3.10, the set of states reachable by
streams with maximum window length n is precisely �νϕ(Σ

�n), which proves
that Vϕ(n) � log | �νϕ(Σ

�n)|.
Now consider a variable-size SW-algorithm P for ϕ with space complexity

v(P,n). We have to show that v(P,n) � log | �νϕ(Σ
�n)|, i.e. |M�n| � | �νϕ(Σ

�n)|

where M�n = {P(x) | mwl(x) � n}. Let x = a1a2 · · ·am ∈ Σ∗ be an input
word of length m � n. By Lemma 3.7 the memory state P(x) determines the
length m = |x|. It suffices to show that P(x) determines every congruence class
[ak · · ·am]ϕ for 1 � k � m: Starting from memory state P(x) we read k − 1
times ↓ into P. Then, the active window is ak · · ·am. We can determine the
congruence class [ak · · ·am]ϕ by reading every word z ∈ Σ∗ in parallel into P

and computing ϕ(ak · · ·amz). To sum up, we have constructed an injection from
�νϕ(Σ

�n) to M�n, which proves the claim.
Finally, observe that a well-defined bijection Σ�n/≈ϕ → �νϕ(Σ

�n) is given
by

[a1 · · ·an]≈ϕ
�→ [a1 · · ·an]ϕ · · · [an]ϕ,

which proves the second equality.

Note that Proposition 3.11 does not hold for trivial problems ϕ. In these
cases, we have Vϕ(n) = 0 and log | �νϕ(Σ

�n)| = log(n+ 1).

3.5 Related complexity measures

In the following we uncouple two concepts which underlie the variable-size
model, namely that windows can grow to the right and shrink at the left end.
These concepts yield lower bounds on Vϕ(n).

26 Chapter 3. The sliding window model

Standard streaming Firstly, if we only consider streams without ↓-operations
then variable-size sliding window model becomes the standard streaming model.
Given a streaming algorithm P for a problem ϕ we define the standard streaming
space complexity as the logarithm of the number states reached on streams of
length at most n, i.e. log |{P(w) | w ∈ Σ6n}|. The optimal streaming algorithm is
the minimal deterministic automaton with output for ϕ whose space complexity
is given by

Eϕ(n) = log |Σ6n/∼ϕ|.

Here we have adopted the notation Eϕ(n) from Hartmanis-Shank [65] who de-
fined EL(n) = |Σ6n/∼L| where ∼L is the canonical Myhill-Nerode left-congruence
for L. We have Eϕ(n) 6 Vϕ(n) since any variable-size sliding window algorithm
for ϕ can be restricted to a (standard) streaming algorithm for ϕ.

A language L has constant complexity EL(n) = O(1) if and only if it is regular.
Every deterministic one-counter language L satisfies EL(n) = O(logn). In fact,
the latter also holds for every language recognized by a deterministic pushdown
automaton whose set of stack contents has polynomial growth.

Suffix complexity Secondly, we define the suffix complexity of ϕ by

Sϕ(n) = log | ~ϕ(Σ6n)|.

Essentially2, it specifies the minimal size of a data structure which supports
suffix queries on a string a1 · · ·am ∈ Σ6n: Given a position 1 6 i 6 m,
output ϕ(ai · · ·am). Since [w]ϕ determines ϕ(w) we have log | ~ϕ(Σ6n)| 6
log |Σ6n/≈ϕ| and thus Sϕ(n) 6 Vϕ(n) for all nontrivial problems ϕ by Proposi-
tion 3.11.

There are simple languages L which show that, in general, EL(n) and SL(n)
do not imply upper bounds on VL(n).

Proposition 3.12. Let Σ = {a,b, c}. The language

L = Σ∗{vbk | v ∈ {a, c}∗, |v|a > k}

satisfies EL(n) = O(logn), SL(n) = O(logn) and VL(n) = Ω(n).

Proof. For a word w ∈ {a,b, c}∗ define p(w) = (|v|a,k) ∈ N2 where vbk is the
maximal suffix of w satisfying v ∈ {a, c}∗. One can see that p(w) = p(w ′) implies
w ∼L w

′. Since p({a,b, c}6n) ⊆ {0, . . . ,n}2 we obtain EL(n) = log |Σ6n/∼L| =
O(logn). For the second statement notice that L is a left ideal, i.e. v ∈ L and
u ∈ Σ∗ implies uv ∈ L. Therefore ~χL(Σ

6n) ⊆ 1∗0∗ and SL(n) = O(logn).
It remains to show that VL(n) = Ω(n). Let P be a variable-size SW-algorithm

for L and read in parallel two distinct words w 6= w ′ ∈ {a, c}n into P. After a
suitable number of ↓-operations the windows have the form aw ′′ and cw ′′ for
somew ′′ ∈ {a, c}∗. By inserting k = |aw ′′|a many b-symbols we obtain a window

2under the assumption that the lengthm is stored and hence Sϕ(n) > log(n+ 1).

3.6. Connection to language growth 27

aw ′′bk ∈ L and a window cw ′′bk /∈ L. This proves that P must distinguish all
2n words in {a, c}n and hence its space complexity is Ω(n).

3.6 Connection to language growth

If a language is sparse then its sliding window problem becomes easy.

Proposition 3.13. If L ⊆ Σ∗ has growth g(n), then FL(n) = O(logg(n) + logn).

Proof. Let n ∈ N be a window size and let w1, . . . ,wm be an arbitrary enu-
meration of L ∩ Σn where m = g(n). We can solve this problem using the
Aho-Corasick algorithm [3] for the dictionary matching problem: Given a text t
and a set of dictionary words (or keywords) {d1, . . . ,dm}, report all occurrences
of the dictionary words in the text. It builds a deterministic automaton of size at
most

∑m
i=1 |di| and runs it over the text. In our case the dictionary words are

w1, . . . ,wm, which have total size g(n) · n. Hence the states of the Aho-Corasick
automaton can be encoded using O(logg(n) + logn) bits.

For completeness sake let us describe the Aho-Corasick algorithm in our
abstract computation model to solve the problem in the specified space bounds.
If L ∩ Σn = ∅ then the SW-algorithm for window length n always rejects, and so
we can assume the contrary. We show that a streaming algorithm can maintain
the longest suffix v = ai · · ·an of the active window w = a1 · · ·an such that v
is a prefix of a word wj ∈ L ∩ Σn. Since the empty suffix v = ε is always the
prefix of some word in L ∩ Σn, which was assumed to be nonempty, the suffix v
is well-defined. Notice that v can be encoded by the binary encoded number j
using O(logg(n)) bits and the binary encoded number i using O(logn) bits. Of
course, there may exist several words wj having v as a prefix; in this case the
concrete choice of wj does not matter. This information clearly suffices to check
whether the active window w belongs to L since w ∈ L if and only if |v| = n.
Moreover, we can update the information: If an+1 ∈ Σ is the next symbol from
the stream, then the longest suffix v ′ of a2 · · ·anan+1 with v ′ ∈ Pref(L ∩ Σn) is
also a suffix of van+1 = ai · · ·anan+1. Therefore we can compute v ′ from v and
an+1.

In particular FL(n) = O(logn) for all languages with polynomial growth. We
can extend this statement to the variable-size model under the stronger condition
that L is bounded. We need a known fact on bounded languages.

Lemma 3.14 ([59, Lemma 1.1(c)]). If L is a bounded language and K is a set of
factors of words in L then K is bounded.

Proposition 3.15. Let L be a language.

(i) If Pref(L) has cumulative growth g(n) then VL(n) = O(logg(n)).

(ii) If L is bounded then VL(n) = O(logn).

28 Chapter 3. The sliding window model

Proof. Let us describe a variable-size SW-algorithm for L with space complexity
O(logn). Again we maintain the longest suffix v = ai · · ·an of the active window
w = a1 · · ·an which is a prefix of some word in L, i.e. v is the longest suffix of w
with v ∈ Pref(L). This suffix v ∈ Pref(L) of w can be encoded using O(logg(|v|))
bits, which is bounded by O(logg(|w|)) since cumulative growth functions are
monotonic. Therefore this SW-algorithm has space complexity O(logg(n)).

The second statement follows from the first since Pref(L) is bounded when-
ever L is bounded by Lemma 3.14.

We remark that Proposition 3.15(ii) fails under the weaker conditions that L
is polynomially growing.

Proposition 3.16. There exists a language L with polynomial growth such that
VL(n) = Θ(n).

Proof. Define L to be the set of all words of the form axbm where x ∈ {a,b}∗

with 2|x| 6 m. Then |L ∩ {a,b}n| 6 |{x ∈ {a,b}∗ : |x| 6 logn}| = O(n) and hence
the growth of L is polynomial.

However, we claim that VL(n) = Θ(n). Consider any variable-size SW-
algorithm P for L and two distinct words x 6= y from {a,b}n for some n ∈ N. To
show the lower bound it suffices to show that P(x) 6= P(y). Let 1 6 i 6 n be
any position where x and y differ. Then the active window of x ↓i−1 and y ↓i−1

are of the form ax ′ and by ′ (or vice versa) for some x ′,y ′ ∈ {a,b}n−i. Since
ax ′bm ∈ L but bx ′bm /∈ L for sufficiently large m ∈ N the algorithm P must
distinguish x and y.

3.7 Closure properties

Throughout this work we need simple closure properties in the streaming and
the sliding window model.

Lemma 3.17. Let Pi be a streaming algorithm for ϕi : Σ∗ → Y for 1 6 i 6
k, and let τ : Yk → Z be any function. Define ϕ : Σ∗ → Z where ϕ(x) =

τ(ϕ1(x), . . . ,ϕk(x)).

(i) There exists a streaming algorithm P for ϕ such that s(P) 6
∑k
i=1 s(Pi).

(ii) Fϕ(n) 6
∑k
i=1 Fϕi(n)

(iii) Vϕ(n) 6
∑k
i=1 Vϕi(n)

Proof. For (i) let P be the product automaton of the k automata Pi. If Pi

outputs some value yi for 1 6 i 6 k, then P outputs τ(y1, . . . ,yk). It has∏k
i=1 2s(Pi) = 2

∑k
i=1 s(Pi) many states and hence s(P) =

∑k
i=1 s(Pi).

Point (ii) follows immediately from point (i) and the observation that

ϕ(lastn(x)) = τ(ϕ1(lastn(x)), . . . ,ϕk(lastn(x)))

for all x ∈ Σ∗.

3.7. Closure properties 29

For (iii) let Pi be the minimal deterministic automaton for ϕi and let P be
the product automaton as in (i). If x ∈ Σ∗↓ is a stream with maximum window
length 6 n then P(x) = (P1(x), . . . ,Pk(x)). We can bound the number of such
memory states by

∏k
i=1 2v(Pi,n). By the calculation above we get v(P,n) =∑k

i=1 v(Pi,n).

In the following let X ∈ {F,V} and Σ be an alphabet. Let us look at lan-
guage closure properties in the sliding window models. A simple corollary of
Lemma 3.17 is that space complexity classes form a Boolean algebra, i.e. they are
closed under union, intersection and complementation, for both the fixed-size
and the variable-size model.

Corollary 3.18. For any function s(n), the class {L ⊆ Σ∗ | XL(n) = O(s(n))}

forms a Boolean algebra.

For a word u ∈ Σ∗ and a language L ⊆ Σ∗ we define the left quotient
u−1L = {w ∈ Σ∗ | uw ∈ L} and the right quotient Lu−1 = {w ∈ Σ∗ | wu ∈ L}.

Lemma 3.19. Consider a function s(n) satisfying s(n+k) = O(s(n)) for all k ∈ N,
e.g. s(n) = nc or s(n) = logc n for some c > 0. Then {L ⊆ Σ∗ | XL(n) = O(s(n))}
is closed under right quotients but in general not under left quotients.

Proof. Consider u ∈ Σ∗ and L ⊆ Σ∗. First we consider the fixed-size model. Let
P be an SW-algorithm for L and window length n + |u| for some n ∈ N. The
algorithm P ′ simulates P where a memory state s in P ′ is accepting if and only if
s · u is accepting in P. Then we have

P ′ accepts x ⇐⇒ P ′ accepts xu

⇐⇒ lastn+|u|(xu) = lastn(x)u ∈ L
⇐⇒ lastn(x) ∈ Lu−1

for all x ∈ Σ∗, i.e. P ′ is an SW-algorithm for L and window length n which has
the same space complexity as P. A similar argument holds for the variable-size
model.

A counterexample that the statement does not for left quotients is the
following. Let L = ca{a,b}∗ over the alphabet {a,b, c}. One can see that
VL(n) = O(logn) since an SW-algorithm can track the position of the most
recent ca-factor using O(logn) bits. On the other hand c−1L = a{a,b}∗ has
complexity Fc−1L(n) = Ω(n) by Example 3.3.

In particular, space complexity classes do not form a variety of languages
[109]: a class of languages L ⊆ 2Σ

∗
is a variety if it is closed under (i) Boolean

operations, (ii) left and right quotients, and (iii) inverse homomorphisms, i.e.
if L ∈ L and ψ : Σ∗ → Σ∗ is a homomorphism then ψ−1(L) ∈ L. There is
a one-to-one correspondence between varieties of languages and varieties of
monoids [41], which allows one to use algebraic tools in formal language theory.
For example, the class of star-free languages (the closure of all finite languages
under products and Boolean operations) contains exactly those languages whose

30 Chapter 3. The sliding window model

syntactic monoid is aperiodic. Because of the restricted closure properties in the
sliding window model we have to analyse automata and cannot reason purely
algebraically about monoids.

For completeness we also prove nonclosure under inverse homomorphisms.

Lemma 3.20. The class {L ⊆ Σ∗ | XL(n) = O(logn)} is not closed under inverse
homomorphisms.

Proof. Let E ⊆ {a,b}∗ be the set of words with even length. We have VE(n) =
O(logn) because it suffices to maintain the window length. Consider the ho-
momorphism defined by ψ(a) = a and ψ(b) = ε. Then ψ(x) ∈ E if and only if
x contains an even number of a’s. We can prove Fψ−1(E) = Ω(n) by a fooling
argument as in Example 3.3. Let Pn be a sliding window algorithm for ψ−1(E)

and window length n. Let w 6= w ′ ∈ {a,b}n be two distinct windows, which are
read into Pn in parallel. After inserting a suitable number of b-symbols the two
windows are identical up to the first symbol. Hence, one window contains an
even number of a’s whereas the other contains an odd number. Therefore Pn

has space complexity Ω(n).

Finally, we will look at reductions between languages. A function τ : Σ∗ → Γ∗

is a reduction from K ⊆ Σ∗ to L ⊆ Γ∗ if x ∈ K if and only if τ(x) ∈ L. The
reductions that we use are computed by a right-sequential transducers which
output a single output letter per input letter.

A right Mealy machine M = (Q,Σ,Ω, δ,q0) consists of a finite state set Q, an
input alphabet Σ, an output alphabetsΩ, a transition function δ : Σ×Q→ Q×Ω
and an initial state q0 ∈ Q. We view M as a right-subsequential transducer
M = (Q,Σ,Ω,Q,∆,q0,o) where

∆ = {(q,a,b,p) | δ(p,a) = (q,b),p ∈ Q,a ∈ Σ}

and o(q) = ε for all q ∈ Q. Functions computed by right Mealy machines are
called←-transduction. Every←-transduction τ : Σ∗ → Γ∗ is length-preserving, i.e.
|τ(x)| = |x| for all x ∈ Σ∗. A reduction from K to L which is a←-transduction, is
a←-reduction from K to L, and we say that K is←-reducible to L.

Lemma 3.21. If K is ←-reducible to L via a Mealy machine with m states, then
XK(n) 6 m·XL(n). In particular, for any function s(n) the class {L ⊆ Σ∗ | XL(n) =
O(s(n))} is closed under←-reductions.

Proof. Let τ : Σ∗ → Γ∗ be a ←-reduction from K ⊆ Σ∗ to L ⊆ Γ∗ where τ is
computed by the right Mealy machine M = (Q,Σ,Ω, δ,q0). For a state p ∈ Q let
τp = T(Mp) where Mp = (Q,Σ,Ω, δ,p). We assume that Q = {1, . . . ,m}.

Let us start with the fixed-size model. Consider an SW-algorithm Pn for L
and window length n. We construct an SW-algorithm Qn for K which simulates
m copies of Pn in parallel. It maintains the tuple

(Pn(τ1(x)), . . . ,Pn(τd(x))),

3.8. Remarks 31

which is possible since Pn(τp(xa)) can be computed by determining the unique

transition q
a|b←−− p in M and computing Pn(τp(xa)) = Pn(τq(x)b). Clearly, the

number of bits used by Qn is m times the number of bits used by Pn.
For the variable-size model define the Mealy machine M = (Q,Σ↓,Ω↓, δ ′,q0)

obtained from M by adding the transitions q
↓|↓←−− q for every q ∈ Q. Let

τ : Σ∗↓ → Γ∗↓ be the transduction computed by M and τp be the transduction
computed by M in state p.

Let us prove τp(wnd(x)) = wnd(τp(x)) for all x ∈ Σ∗↓ and p ∈ Q by induction
on |x|. If x = ε this is clear. Assume x = ya for some y ∈ Σ∗↓ and a ∈ Σ. If

q
a|b←−− p then

τp(wnd(x)) = τp(wnd(y)a) = τq(wnd(y))b = wnd(τq(y))b

= wnd(τq(y)b) = wnd(τp(ya)) = wnd(τp(x)).

Now assume x = y↓ for some y ∈ Σ∗↓. If wnd(y) = ε then wnd(x) = ε and hence
τp(wnd(x)) = ε = wnd(τp(x)). Otherwise wnd(y) = cw for some c ∈ Σ and
w ∈ Σ∗. By induction hypothesis we know that τp(wnd(y)) = wnd(τp(y)). Since
τp is length-preserving we have |cw| = |τp(wnd(y))| = |wnd(τp(y))|. Therefore
we can decompose wnd(τp(y)) = dv into d ∈ Σ and v ∈ Σ∗ with |v| = |w|. By
the properties of a Mealy machine we have τp(w) = v. This implies

τp(wnd(x)) = τp(wnd(y↓)) = τp(w) = v = wnd(dv↓)
= wnd(τp(y)↓) = wnd(τp(y↓)) = wnd(τp(x)),

which concludes the proof of the claim.
Now consider a variable-size SW-algorithm P for L. We construct a variable-

size SW-algorithm Q for K which simulatesm copies of P in parallel. It maintains
the tuple

(P(τ1(x)), . . . ,P(τd(x))) (3.2)

for an input stream x ∈ Σ∗↓. Clearly the memory state P(τq0(x)) = P(τ(x))

determines whether wnd(τ(x)) = τ(wnd(x)) belongs to L. Since τ is a reduction
from K to L we have wnd(x) ∈ K if and only if τ(wnd(x)) ∈ L. On input a ∈ Σ↓
we can update the tuple in (3.2) since P(τp(xa)) is the memory state P(τq(x)b)

where q
a|b←−− p is a transition in M.

The bound on the space complexity is easy to verify: If x ∈ Σ∗↓ is an input
stream for Q with |wnd(x)| = n then Q(x) is a tuple of length m containing
memory states of the form P(τp(x)). Since |wnd(τp(x))| = |τp(wnd(x))| =
|wnd(x)| = n each memory state P(τp(x)) can be stored using v(P,n) bits.

3.8 Remarks

Some authors distinguish between sequence-based and time-based windows, see
[23, 60]. Sequence-based windows correspond to our fixed-size sliding window

32 Chapter 3. The sliding window model

model whereas a time-based window at time t contains those elements whose
timestamp lies in some interval [t−T , t] for some interval length T . The difference
to the variable-size model is that deletions from the window are implicit.

A time-efficient algorithm for many sliding window problems is the De-
amortized Banker’s Aggregator (DABA) by Tangwongsan, Hirzel and Schneider
[108]. It receives a stream of monoid elements and maintains a O(n) size data
structure in worst case constant-time per element which allows to compute the
monoid product over a sliding window.

The space complexity EL(n) in the standard streaming model is related to the
notion of automaticity [102]. The automaticity of a language L measures for all
n ∈ N the minimal size of a DFA whose language coincides with L on all words of
length at most n. Clearly every regular language has constant automaticity. Karp
[72] proved that every nonregular language has automaticity at least (n+ 3)/2
for infinitely many n. Since the automaticity of L is a lower bound on 2EL(n) this
implies that EL(n), and hence VL(n), must be at least Ω(logn) infinitely often
for every nonregular language L.

Chapter 4

Regular languages

In this chapter we will show that the space complexity of every regular language
in both sliding window models is either constant, logarithmic or linear. In
Example 3.3 we have already seen prototypical languages for these three space
complexities, namely Σ∗a (constant), Σ∗aΣ∗ (logarithmic) and aΣ∗ (linear).
Intuitively, for languages of logarithmic space complexity it suffices to maintain
a constant number of positions in the window. For languages of constant space
complexity it suffices to maintain a constant-length suffix of the window.

Next, we characterize the regular languages with logarithmic space com-
plexity as the Boolean combinations of regular left ideals and regular length
languages. This holds for both the fixed-size and the variable-size model. The
regular languages with constant space complexity in the fixed-size model are the
Boolean combinations of suffix testable languages and regular length languages.
In the variable-size model the only regular languages with constant complexity
are the empty and the universal language.

If a regular language is given as a DFA A and it admits a sliding window
algorithm with O(logn) complexity then we devise a O(2|A| · |A| · logn) space
algorithm. We will prove that this exponential dependence on the DFA size is
unavoidable. Finally we study the decision problems whether a given regular
language has logarithmic or constant space complexity in the two sliding window
models. Both problems are NL-complete if the regular language is given as a
DFA. They become PSPACE-complete if the regular language is given as an NFA.

The results of this chapter appeared in [G1, G2].

4.1 Space trichotomy

It turns out that the appropriate representation of a regular language for the
analysis in the sliding window model are right-deterministic finite automata.
A right-deterministic finite automaton (rDFA) is a finite right automaton B =

(Q,Σ, F,∆,q0) where for all p ∈ Q and a ∈ Σ there exists exactly one transition
(q,a,p) ∈ ∆. We write B in the form B = (Q,Σ, F, δ,q0) where δ : Σ×Q→ Q

is the transition function, which extends to a left action · : Σ∗ ×Q→ Q.

33

34 Chapter 4. Regular languages

p1p2p3pk

π1τ1π2τ2τk−1πk

Figure 4.1: The SCC-factorization of a run.

The reason why we use rDFAs instead of DFAs can be explained intuitively
for the variable-size sliding window model as follows. The variable-size model
contains operations in both “directions”: On the one hand a variable-size window
can be extended on the right. On the other hand the window can be shortened
to an arbitrary suffix. For regular languages the extension to longer windows is
“tame” because the Myhill-Nerode right congruences have finite index. Hence
it remains to control the structure of all suffixes with respect to the regular
language, which is best captured by an rDFA for the language.

4.1.1 Logarithmic space

In the following let B = (Q,Σ, F, δ,q0) be a right-deterministic finite automaton.
A state q ∈ Q is reachable from p ∈ Q if there exists a run from p to q, and we
write q �B p. We say that q is reachable if it is reachable from the initial state
q0. A set of states P ⊆ Q is reachable if all p ∈ P are reachable. The reachability
relation �B is a preorder on Q, i.e. it is reflexive and transitive. Two states
p,q ∈ Q are strongly connected if p is reachable from q and q is reachable from
p. The equivalence classes of �B are the strongly connected components (SCCs)
of B. A subset P ⊆ Q is strongly connected if it is contained in a single SCC, i.e.
all pairs p,q ∈ P are strongly connected.

Path summaries Consider a run π in B. We call π a P-run for a subset P ⊆ Q
if all states occurring in π are contained in P. We call π internal if π is a P-
run for some SCC P. The SCC-factorization of π is the unique factorization
π = πkτk−1 · · · τ2π2τ1π1 into maximal internal (possibly empty) subruns πi
and transitions τi in B. By maximality of the πi each transition τi connects
two distinct SCCs. An SCC-factorization is abstractly visualized in Figure 4.1.
Let pk, . . . ,p1 ∈ Q be the starting states of the runs πk, . . . ,π1. Then the path
summary of π is defined as

ps(π) = (|πk|,pk), . . . , (|τ2π2|,p2), (|τ1π1|,p1) ∈ (N×Q)∗.

In other words, it specifies the first state that is visited in an SCC, and the length
of the run until reaching the next SCC or the end of the word, respectively. The
leftmost length |πk| can be zero but all other lengths |τiπi| are positive. We define
πw,q to be the run of B on w starting from q, and PSB(w) = {ps(πw,q) | q ∈ Q}.

Example 4.1. Consider the rDFA B in Figure 4.2. It consists of three SCCs, namely
the blue SCC {p}, the red SCC {q, r}, and the purple SCC {s, t}. All its runs on the

4.1. Space trichotomy 35

p

qr

ts

ab

c

a,b

b

c

c

a

c

a,b,c
a,b

Figure 4.2: An rDFA partitioned into its SCCs.

word w = babccbaa are listed here:

t b←− s a←− r b←− q c←− q c←− q b←− p a←− p a←− p

t b←− t a←− t b←− t c←− s c←− t b←− s a←− r a←− q

t b←− t a←− t b←− t c←− s c←− t b←− t a←− s a←− r

t b←− t a←− t b←− t c←− s c←− t b←− t a←− t a←− s

t b←− t a←− t b←− t c←− s c←− t b←− t a←− t a←− t

Then PSB(w) contains the following path summaries:

(1, s)(4,q)(3,p), (6, s)(2,q), (7, s)(1, r), (8, s), (8, t).

The path summary algorithm for B is a streaming algorithm over Σ↓ described
in Algorithm 4.1 where the acceptance condition is defined later.

Lemma 4.2. Algorithm 4.1 correctly maintains PSB(w) for the active window
w ∈ Σ∗.

Proof. Initially PSB(ε) contains the path summary of every empty run from every
state, which is formally {0}×Q.

Assume S = PSB(w) for some window w ∈ Σ∗ and a ∈ Σ. The claim
is that the algorithm computes S ′ = PSB(wa) from S. Suppose that π ′ is
a run in B on wa. It has the form π ′ = π (p1,a,p0) and ps(π) ∈ S. Let
π = πkτk−1 · · · τ2π2τ1π1 be the SCC-factorization of π. If p0 and p1 are strongly
connected then the SCC-factorization of π ′ is π ′ = πkτk−1 · · · τ2π2τ1π

′
1 where

π ′1 = π1 (p1,a,p0), and otherwise π ′ = πkτk−1 · · · τ2π2τ1π1 (p1,a,p0). In this
way the algorithm computes ps(π ′) from ps(π).

Now consider the case a = ↓. We have w = ε if and only if PSB(w) = {0}×Q,
and in this case the set of path summaries S is unchanged. Otherwise assume
w = bv for some b ∈ Σ. We claim that the algorithm computes S ′ = PSB(v)

from S. Suppose that π ′ is a run in B on v which ends in state p ∈ Q. If q b←− p in
B then let π = (q,b,p)π ′, and we have ps(π) ∈ S. Let π = πkτk−1 · · · τ2π2τ1π1

36 Chapter 4. Regular languages

Algorithm 4.1: The path summary algorithm

initialize S = {0}×Q;
foreach input a ∈ Σ↓ do

S ′ = ∅;
if a ∈ Σ then

for p0 ∈ Q do
let p1 = a · p0 and (`k,pk) · · · (`1,p1) ∈ S;
if p0 and p1 are strongly connected then

add (`k,pk) · · · (`1 + 1,p0) to S ′;
else

add (`k,pk) · · · (`1,p1)(1,p0) to S ′;

if a = ↓ then
if S = {0}×Q then

S ′ = S;
else

for (`k,pk) · · · (`1,p1) ∈ S do
if `k > 1 then

add (`k − 1,pk) · · · (`1,p1) to S ′;
else

add (`k−1 − 1,pk−1) · · · (`1,p1) to S ′;

replace S by S ′;

be the SCC-factorization of π. If |πk| > 1 then π ′ = π ′kτk−1 · · · τ2π2τ1π1 is the
SCC-factorization of π ′ where πk = (q,b,p)π ′k. Otherwise πk is empty and
τk−1 = (q,b,p). Therefore π ′ = τk−1 · · · τ2π2τ1π1 is SCC-factorization of π ′. In
this way the algorithm computes ps(π ′) from ps(π).

Proposition 4.3. The path summary algorithm for B has space complexity O(|B|2 ·
(logn+ log |B|)).

Proof. A single path summary ps(π) consists of a sequence of at most |B| states,
which can be encoded in O(|B| · log |B|) bits, and a sequence (`k, . . . , `1) of
k 6 |B| numbers up to |π|, which can be encoded in O(|B| · log |π|). Since
PSB(w) contains |B| such path summaries in total PSB(w) can be encoded in
O(|B|2 · (log |w|+ log |B|)) bits.

Well-behaved rDFAs Now we describe the class of automata B for which the
set of path summaries determines whether the window is accepted by B. A
subset P ⊆ Q is convex (with respect to the preorder �B) if p �B q �B r and
p, r ∈ P implies q ∈ P. In particular, every SCC is convex, and every convex
set is a union of SCCs. A convex subset P ⊆ Q is well-behaved if for any two
P-runs π1,π2 which start in the same state and have equal length, either both
π1 and π2 are accepting or both are rejecting. If every reachable SCC in B is

4.1. Space trichotomy 37

well-behaved then B is called well-behaved. A path summary is called accepting
if it is the path summary of some accepting run. Notice that a path summary
ps(π) = (`k,pk) · · · (`1,p1) is accepting if and only if there exists an accepting
run of length `k starting in pk.

Lemma 4.4. Let B be well-behaved and let π be a run in B starting in a reachable
state. Then π is accepting if and only if ps(π) is accepting.

Proof. The direction from left to right is immediate by definition. For the other
direction consider the path summary ps(π) = (`k,pk) · · · (`1,p1) and the SCC-
factorization π = πkτk−1 · · · τ2π2τ1π1. Since ps(π) is accepting there is an
accepting run π ′k that starts in pk and has length `k. Since B is well-behaved,
the SCC of pk is well-behaved. Therefore, since π ′k is accepting, πk must also be
accepting and thus π is accepting.

Hence, we let path summary algorithm for B accept if the path summary
starting in q0 is accepting. Combining Proposition 4.3 and Lemma 4.4 yields:

Proposition 4.5. If B is well-behaved then L = L(B) has space complexity VL(n) =
O(|B|2 · logn), which is O(logn) for fixed B.

Proof. Let n ∈ N be a window size. If n 6 |B| then the trivial streaming algorithm
for SWn(L) uses O(n) 6 O(|B|) bits. If n > |B| then we use the path summary
algorithm for SWn(L) which uses O(|B|2 · (logn + log |B|)) 6 O(|B|2 · logn)
bits.

Implementation details To implement the above algorithm on a realistic com-
putation model, we have to be able to efficiently determine whether a path
summary is accepting. Given a number d > 1, a set of natural numbers X ⊆ N is
d-periodic if we have x ∈ X if and only if x+ d ∈ X. A state q ∈ Q is transient if
x · q 6= q for all x ∈ Σ+. Every transient state in B forms an SCC of size one (a
transient SCC); however, not every SCC of size one is transient.

Lemma 4.6. Let P ⊆ Q be a well-behaved subset in B and p0 ∈ P be nontransient.
Then Acc(P,p0) = {|π| : π is an accepting P-run starting in p0 } is d-periodic for
some d 6 |Q|.

Proof. Let π0 be any nonempty run from p0 to p0, which exists because p0 is
nontransient. Furthermore, we can choose π0 such that its length d := |π0| is at
most |Q|.

If ` ∈ Acc(P,p0), then there exists an accepting P-run π starting in p0 of length
`. Then ππ0 is also an accepting P-run and we conclude |ππ0| = `+d ∈ Acc(P,p0).

Now we need to show that ` /∈ Acc(P,p0) implies `+d /∈ Acc(P,p0). Towards
a contradiction assume that ` /∈ Acc(P,p0) and ` + d ∈ Acc(P,p0), i.e. there
exists an accepting P-run π starting in p0 of length ` + d. Factorize π = π1π2

where |π2| = `. Now π2 must be rejecting since ` /∈ Acc(P,p0). But then π2π0 is
a rejecting P-run of length ` + d, which contradicts the well-behavedness of P
since `+ d ∈ Acc(P,p0).

38 Chapter 4. Regular languages

In the following we describe how to implement Proposition 4.5. We do the
following preprocessing on the well-behaved rDFA B. Using depth-first search we
compute all SCCs in B. For every SCC P we pick a state p ∈ P and compute the
distance dist(p,q) from p to all states q ∈ P using any shortest paths algorithm.
Furthermore let d be the minimal length of a nonempty run from p to p itself,
which is the period d from Lemma 4.6. If no such run exists then we store the
information that p is transient. Otherwise we assign to each state q ∈ P the
distance from p modulo d. By traversing an arbitrary P-run of length d from p

we can compute a bit vector of length d which represents Acc(P,p0). Using this
information we can easily answer whether a path summary (`k,pk) · · · (`1,p1) is
accepting: it is accepting if and only if either pk is transient, `k = 0 and pk ∈ F,
or dist(p0,pk) + `k mod d belongs to Acc(P,p0) where P is the SCC of pk and
p0 is the picked state in P.

Non-well-behaved rDFAs Now let us prove a linear lower bound for automata
which are not well-behaved. Let L ⊆ Σ∗ be a language. We say that L separates
two words x,y ∈ Σ∗ if |{x,y} ∩ L| = 1. We say that L separates two languages
K1,K2 ⊆ Σ∗ if K1 ⊆ L and K2 ∩ L = ∅, or K2 ⊆ L and K1 ∩ L = ∅.

Lemma 4.7. If B is not well-behaved then there exist words u1,u2, v1, v2, z ∈ Σ∗
where |ui| = |vi| for i = 1, 2 such that L = L(B) separates u2{u1u2, v1v2}

∗z and
v2{u1u2, v1v2}

∗z.

Proof. Since B is not well-behaved there are states p ∈ Q, q ∈ F, r ∈ Q \ F and
words u = u1u2, v = v1v2, z ∈ Σ∗ such that |u2| = |v2| and

p
u1←− q u2←− p z←− q0 and p v1←− r v2←− p z←− q0.

We can ensure that |u1| = |v1| and hence also |u| = |v|: If k = |u| and ` = |v| we
replace u1 by u`−1u1 and v1 by vk−1v1, which preserves all properties above.
Then u2{u, v}∗z and v2{u, v}∗z are separated by L.

Proposition 4.8. Under the conditions of Lemma 4.7 the language L = L(B)

satisfies FL(n) = Ω(n) for infinitely many n, and VL(n) = Ω(n).

Proof. Let u1,u2, v1, v2, z ∈ Σ∗ be the words from Lemma 4.7 and let u = u1u2

and v = v1v2. Now consider an SW-algorithm Pn for L and window length
n = |u2|+ |u| · (m− 1) + |z| for some m > 1. We prove that Pn has at least 2m

many states by showing that Pn(x) 6= Pn(y) for any x 6= y ∈ {u, v}m. Notice that
|{u, v}m| = 2m since u 6= v and |u| = |v|.

Read two distinct words x,y ∈ {u, v}m into two instances of Pn. Consider the
last {u, v}-block where x and y differ. Without loss of generality assume x = x ′us
and y = y ′vs for some x ′,y ′, s ∈ {u, v}∗. By reading x ′z into both instances the
window of the x-instance becomes lastn(xx ′z) = u2sx

′z and the window of the
y-instance becomes lastn(yx ′z) = v2sx

′z. By Lemma 4.7 the two windows are
separated by L, and therefore the algorithm Pn must accept one of the streams
xx ′z and yx ′z, and reject the other. In conclusion Pn(x) 6= Pn(y) and hence Pn

must use Ω(m) = Ω(n) bits.

4.1. Space trichotomy 39

q0p

q

r

z

u2

u1

v2

v1

Figure 4.3: Forbidden pattern for well-behaved rDFAs where |u1| = |v1| and
|u2| = |v2|.

The argument above shows that there exist numbers c,d ∈ N such that for all
m > 1 we have VL(cm+d) > FL(cm+d) > Ω(m). If n is sufficiently large then
m = b(n−d)/cc = Ω(n) satisfies cm+d 6 n. Therefore VL(n) > VL(cm+d) =

Ω(m) by monotonicity and hence VL(n) = Ω(n).

From Proposition 4.5 and Proposition 4.8 we obtain:

Corollary 4.9. Let X ∈ {F,V}. A regular language L ⊆ Σ∗ satisfies XL(n) =

O(logn) if and only if L is recognized by a well-behaved rDFA.

Finally, let us observe that the lower bound from Proposition 4.8 already
holds for the suffix complexity SL(n):

Proposition 4.10. Under the conditions of Lemma 4.7 the language L = L(B) has
suffix complexity SL(n) = Ω(n).

Proof. We claim that |{u1u2, v1v2}
mz/≈L| > 2m. This holds because any two dis-

tinct words from {u1u2, v1v2}
mz have equal-length suffixes of the form u2xz and

v2xz for some x ∈ {u1u2, v1v2}
∗, which are separated by L. Hence SL(m) =

log |Σ6m/≈L| = Ω(m) holds over an arithmetic progression and therefore
SL(n) = Ω(n) by monotonicity of SL(n).

Together with SL(n) 6 VL(n) this implies that for every regular language L all
three functions FL(n), VL(n) and SL(n) are (simultaneously) at most logarithmic
or at least linear.

4.1.2 Constant space

Next we study which regular languages have sublogarithmic complexity. Recall
that in the variable-size model any such language must be trivial because the
algorithm must at least maintain the current window size by Lemma 3.7.

Corollary 4.11. The empty language L = ∅ and the universal language L = Σ∗

satisfy VL(n) = O(1). All other languages satisfy VL(n) = Ω(logn).

Theorem 4.12 (Trichotomy in the variable-size model). Every regular language
has space complexity Θ(1), Θ(logn) or Θ(n) in the variable-size sliding window
model.

40 Chapter 4. Regular languages

Proof. Let L be regular. If L empty or universal then the space complexity is
O(1). Otherwise, it is Ω(logn) by Corollary 4.11. Furthermore, if it is accepted
by a well-behaved rDFA then its space complexity is Θ(logn) by Proposition 4.5,
and otherwise Θ(n) by Proposition 4.8.

Now we can focus on the fixed-size model. Let U(B) ⊆ Q be the set of states
q ∈ Q such that exists a nontransient state p ∈ Q such that q is reachable from
p and p is reachable from the initial state q0. Notice that q ∈ U(B) if and only
if there exist runs of unbounded length from q0 to q (hence the symbol U for
unbounded).

Proposition 4.13. If U(B) is well-behaved then L has space complexity FL(n) =
O(|B|), which is O(1) for fixed B.

Proof. Let k = |B|. The SW-algorithm Pn for SWn(L) maintains lastk(x) for an
input stream x ∈ Σ∗ using O(k) bits. If n < k then lastn(x) is a suffix of lastk(x)
and hence Pn can determine whether lastn(x) ∈ L. If n > k then lastk(x) is
a suffix of lastn(x), say lastn(x) = s · lastk(x). We can decide lastn(x) ∈ L as
follows: Consider the initial run

r
s←− q lastk(x)←−−−− q0

of B on lastn(x). By the choice of k some state p ∈ Q must occur twice in the

run q
lastk(x)←−−−− q0, Therefore, p is nontransient and all states in the run r s←− q

belong to U(B). Since U(B) is well-behaved r is final if and only if some run of
length |s| starting in q is accepting. This can be determined since |s| = n− k is
known.

Lemma 4.14. If U(B) is not well-behaved then there exist words x,y, z ∈ Σ∗ where
|x| = |y| such that L = L(B) separates xy∗z and y∗z.

Proof. Since U(B) is not well-behaved there are U(B)-runs π and ρ from the
same starting state q such that |π| = |ρ| and exactly one of the runs π and ρ is
accepting. By definition ofU(B) the state q is reachable from a nontransient state
p via some run σ, which itself is reachable from the initial state q0, say p z←− q0.
We can replace π by πσ and ρ by ρσ preserving the properties of being U(B)-runs
and |π| = |ρ|. Assume that π and ρ are runs on words v ∈ Σ∗ and w ∈ Σ∗. Since p
is nontransient we can construct internal runs from p to p of unbounded lengths.
Consider such a run p u←− p of length |u| > |v| = |w|. Then L separates vu∗z
and wu∗z. Factorize u = u1u2 such that |u2| = |v| = |w|. Notice that all words
in u2u

∗z reach the same state in B and hence either u2u
∗z is either contained

in L or disjoint from L. Then L separates u2u
∗z and vu∗z, or u2u

∗z and wu∗z.
Hence L also separates (u2u1)

∗u2u1u2z from either vu1(u2u1)
∗u2u1u2z or from

wu1(u2u1)
∗u2u1u2z.

Proposition 4.15. Under the conditions of Lemma 4.14 the language L = L(B)

satisfies FL(n) = Ω(logn) for infinitely many n.

4.1. Space trichotomy 41

Proof. Let x,y, z ∈ Σ∗ be the words from Lemma 4.14. Consider an SW-algorithm
Pn for L and window length n = |x| + |y| ·m + |z| for some m � 1. We prove
that Pn has at least m many states by showing that Pn(xy

i)
= Pn(xy
j) for any

1 � i < j � m. Let 1 � i < j � m. Then we have

lastn(xyiym−iz) = lastn(xymz) = xymz

and
lastn(xyjym−iz) = lastn(xym+j−iz) = ym+1z.

Since exactly one of the words xymz and ym+1z belongs to L, also exactly one
of the streams xyiym−iz and xyjym−iz is accepted by Pn. This proves that Pn

must reach different memory states on inputs xyi and xyj. In conclusion Pn

must use Ω(logm) = Ω(logn) bits.

This implies the space trichotomy in the fixed-size model:

Theorem 4.16 (Trichotomy in the fixed-size model). In the fixed-size sliding
window model every regular language has space complexity

˛ O(1),

˛ O(logn) and Ω(logn) infinitely often, or

˛ O(n) and Ω(n) infinitely often.

4.1.3 Alternative proofs

In the rest of this section we give alternative proofs for the space trichotomies,
using the equivalence relations defined in Section 3.4. Recall that by Proposi-
tion 3.11 for any nontrivial language L we have

VL(n) = log | �νL(Σ
�n)|

for all n ∈ N. If L is regular then ∼L has finite index and νL has a finite range,
which yields a regular representation of �νL(Σ

∗).

Lemma 4.17. If L ⊆ Σ∗ is regular, then �νL is a ←-transduction. In particular,
�νL(Σ

∗) and �νL(L) are regular. Furthermore �νL is a ←-reduction from L to �νL(L).

Proof. Since L is regular the quotient set Σ∗/∼L is finite. Let h : Σ∗ → M be
the syntactic homomorphism of L into the syntactic monoid M of L. Since
the syntactic congruence refines the Myhill-Nerode congruence, there exists a
function ν : M→ Σ∗/∼L such that [x]L = ν(h(x)) for all x ∈ Σ∗. Define the right
Mealy machine M = (M,Σ,Σ∗/∼L, δ, 1) and transitions

h(a) ·m a|ν(h(a)·m)←−−−−−−−− m

for all m ∈M, a ∈ Σ. This Mealy machine computes the ←-transduction �νL.

42 Chapter 4. Regular languages

To see that ~νL is indeed a reduction from L to ~νL(L) notice x ∈ L clearly
implies ~νL(x) ∈ ~νL(L). Conversely, if ~νL(x) ∈ ~νL(L) then there exists y ∈ L
with ~νL(x) = ~νL(y). Therefore we have x ≈L y, which implies x ∼L y and thus
x ∈ L.

The trichotomy theorem for variable-size windows can now be reproven.

Alternative proof of Theorem 4.12. If L is empty or universal then VL(n) = O(1),
and otherwise VL(n) = Ω(logn) by Corollary 4.11. In the latter case its space
complexity is VL(n) = log | ~νL(Σ

6n)| by Proposition 3.11, which is the logarithm
of the cumulative growth function of the language ~νL(Σ

∗). Since ~νL(Σ
∗) is

regular by Lemma 4.17 its cumulative growth is either polynomial or 2Ω(n).
Therefore VL(n) is either O(logn) or Ω(n).

For the fixed-size model recall the equivalence relation ρL on Σ∗ defined as:

x ρL y ⇐⇒ |x| = |y| = n and

(lastn(xz) ∈ L ⇐⇒ lastn(yz) ∈ L) for all z ∈ Σ6n.

Lemma 4.18. If L ⊆ Σ∗ is regular then ρL is synchronous rational.

Proof. First consider the relation T ⊆ (Σ∗)3 of all tuples (x,y, z) such that
n = |x| = |y| > |z|, lastn(xz) ∈ L and lastn(yz) /∈ L. We claim that T is
synchronous rational by constructing an automaton for ⊗T . Notice that x ρL y
if and only if |x| = |y| = n and there exists no z ∈ Σ6n such that (x,y, z) ∈ T or
(y, x, z) ∈ T . If T is synchronous rational then so is ρL by the closure properties
of synchronous rational relations.

It remains to show that T is synchronous rational. Observe that ⊗T contains
all convolutions x1

y1

z1

 · · ·
xkyk
zk

xk+1

yk+1

�

 · · ·
xnyn
�

 (4.1)

such that x1, . . . , xn,y1, . . . ,yn, z1, . . . , zk ∈ Σ, 0 6 k 6 n, xk+1 · · · xnz1 · · · zk ∈
L and yk+1 · · ·ynz1 · · · zk /∈ L. Let A = (Q,Σ,q0, δ, F) be a DFA for L. For
all tuples (p,q,p ′,q ′) ∈ Q4 one can construct an automaton Ap,q,p′,q′ which
accepts exactly all convolutions of the form (4.1) such that q0 · xk+1 · · · xn = p,
q0 · yk+1 · · ·yn = q, p · z1 · · · zk = p ′ and q · z1 · · · zk = q ′. It first simulates two
copies of A on z1 · · · zk starting from p and q, respectively, and verifies whether p ′

and q ′ are reached. Then it simulates two copies of A on the suffixes xk+1 · · · xn
and yk+1 · · ·yn, starting from the initial state q0 and verifying whether p and q
are reached. Then we have ⊗T =

⋃
p,q,p′,q′∈Q L(Ap,q,p′,q′), and therefore T is

synchronous rational.

Alternative proof of Theorem 4.16. Proposition 3.9 states FL(n) = log |Σn/ρL|.
By definition every ρL-class is contained in some Σn. Let R ⊆ Σ∗ be the set
of all lexicographic minimal representatives from each ρL-class. It satisfies
FL(n) = log |R∩Σn|. Since the lexicographic linear ordering on Σ∗ is synchronous

4.2. Characterization of the space classes 43

rational, R is a regular set. By Theorem 2.5 the growth of R is either (i) O(1), or
(ii) polynomial in n and Ω(n) for infinitely many n, or (iii) exponential in n. By
taking logarithms we get the trichotomy for FL(n).

4.2 Characterization of the space classes

Next we will provide natural characterizations of the languages with space
complexity O(logn) and O(1). For the log-space class this will be done by the
characterization via well-behaved rDFAs. For the constant space class we will
utilize a distance notion between states in a DFA.

4.2.1 Constant space complexity

We now start with the description for constant space. Recall that this class only
contains the trivial languages in the variable-size model by Corollary 4.11.

A language L ⊆ Σ∗ is called a length language if for all n ∈ N, either Σn ⊆ L
or L ∩ Σn = ∅. A language L ⊆ Σ∗ is called k-suffix testable if for all x,y ∈ Σ∗
and z ∈ Σk we have

xz ∈ L ⇐⇒ yz ∈ L.

Equivalently, L is a Boolean combination of languages of the form Σ∗w where
w ∈ Σ6k. We call L suffix testable if it is k-suffix testable for some k > 0. We
emphasize that the notions of length languages and suffix testable languages
only make sense with respect to an underlying alphabet. Clearly, every finite
language is suffix testable: If k is the maximum length of a word in L ⊆ Σ∗ then
L is (k+1)-suffix testable since L =

⋃
w∈L{w} and {w} = Σ∗w \

⋃
a∈Σ Σ

∗aw. The
class of suffix testable languages corresponds to the variety D of definite monoids
[106]. The main theorem of this section is:

Theorem 4.19. Let L ⊆ Σ∗ be regular. The following statements are equivalent:

(i) FL(n) = O(1)

(ii) L is a finite Boolean combination of suffix testable languages and regular
length languages.

The following definitions are useful, which are also studied in [54]. We
define the distance d(K,L) by

d(K,L) =

{
supu∈K4L |u|+ 1, if K 6= L,

0, if K = L.

Notice that d(K,L) <∞ if and only if K4L is finite. For a DFA A = (Q,Σ,q0, δ, F)
and a state p ∈ Q, we define Ap = (Q,Σ,p, δ, F). For two states p,q ∈ Q, we
define the distance d(p,q) = d(L(Ap), L(Aq)). If we have two runs p u−→ p ′

and q u−→ q ′ where p ′ ∈ F, q ′ /∈ F and |u| > |Q|2 then some state pair occurs
twice in the runs and we can pump the runs to unbounded lengths. Therefore

44 Chapter 4. Regular languages

d(p,q) <∞ implies d(p,q) 6 |Q|2. In fact d(p,q) <∞ implies d(p,q) 6 |Q| by
[54, Lemma 1].

Lemma 4.20. Let L ⊆ Σ∗ be regular and A = (Q,Σ,q0, δ, F) be its minimal DFA.
We have:

(i) d(p,q) 6 k if and only if δ(p, z) = δ(q, z) for all p,q ∈ Q and z ∈ Σk.

(ii) L is k-suffix testable if and only if d(p,q) 6 k for all p,q ∈ Q.

(iii) If there exists k > 0 such that L is k-suffix testable, then L is |Q|-suffix testable.

Proof. The proof of (i) is an easy induction: If k = 0, the statement is d(p,q) = 0
iff p = q, which is true because A is minimal. For the induction step, we have
d(p,q) 6 k+ 1 iff d(δ(p,a), δ(q,a)) 6 k for all a ∈ Σ iff δ(p, z) = δ(q, z) for all
z ∈ Σk+1.

For (ii), assume that L is k-suffix testable and consider two states p = A(x)

and q = A(y). If z ∈ L(Ap)4L(Aq), then |z| < k because xz ∈ L iff yz /∈ L and L
is k-suffix testable.

Now assume that d(p,q) 6 k for all p,q ∈ Q and consider x,y ∈ Σ∗, z ∈ Σk.
Since d(A(x),A(y)) 6 k, (i) implies A(xz) = A(yz), and in particular xz ∈ L iff
yz ∈ L. Therefore, L is k-suffix testable.

Point (iii) follows from (ii) and from [54, Lemma 1].

Lemma 4.21. For any L ⊆ Σ∗ and n > 0, the language SWn(L) is 2FL(n)-suffix
testable.

Proof. Let Pn be an SW-algorithm for L and window length n with space com-
plexity FL(n). Therefore Pn has at most 2FL(n) states. The language SWn(L) is
n-suffix testable because

SWn(L) = {x ∈ Σ6n−1 | lastn(x) ∈ L} ∪ Σ∗(L ∩ Σn).

By Lemma 4.20(iii) SWn(L) is 2FL(n)-suffix testable.

Corollary 4.22. Let L ⊆ Σ∗ be a language. Then FL(n) = O(1) if and only if there
exists a k > 0 such that SWn(L) is k-suffix testable for all n > 0.

Proof. The left-to-right direction follows from Lemma 4.21. If each SWn(L)

is k-suffix testable, then an SW-algorithm for window length n only needs to
maintain the last k symbols in the stream to test membership of the active
window of length n in SWn(L), or equivalently in L.

Proof of Theorem 4.19. First, let L ⊆ Σ∗ be a regular language with FL(n) =

O(1). By Lemma 4.21 there exists k > 0 such that SWn(L) is k-suffix testable
for all n > 0. We can express L as the Boolean combination

L = (L ∩ Σ6k−1) ∪
⋃
z∈Σk

(Lz−1) z = (L ∩ Σ6k−1) ∪
⋃
z∈Σk

((Lz−1)Σk ∩ Σ∗z)

4.2. Characterization of the space classes 45

where the right quotient Lz−1 = {x ∈ Σ∗ | xz ∈ L} is regular [18, Chapter 3, Ex-
ample 5.7]. The set L ∩ Σ6k−1 is finite and hence suffix testable. It remains to
show that each Lz−1 is a length language. Consider two words x,y ∈ Σ∗ of the
same length |x| = |y| = n. Since |xz| = |yz| = n + k and SWn+k(L) is k-suffix
testable we have xz ∈ L iff yz ∈ L, and hence x ∈ Lz−1 iff y ∈ Lz−1.

For the other direction note that: (i) If L is a length language or a suffix
testable language then clearly FL(n) = O(1), and (ii) {L ⊆ Σ∗ | FL(n) = O(1)} is
closed under Boolean operations by Corollary 3.18. This proves the theorem.

We give another characterization of the regular languages with constant space
complexity based on the minimal DFA, which will be used later for a decision
procedure.

Proposition 4.23. Let L ⊆ Σ∗ be regular and A = (Q,Σ,q0, δ, F) be its minimal
DFA. Then FL(n) = O(1) if and only if for all x,y ∈ Σ∗ with |x| = |y| and z ∈ Σ|Q|

we have A(xz) = A(yz).

Proof. Assume that FL(n) = O(1). By Corollary 4.22 there exists k > 0 such
that each SWn(L) is k-suffix testable. Let x,y ∈ Σ∗ with |x| = |y| = n. For all
z ∈ Σ>k we have xz ∈ SWn+|z|(L) iff yz ∈ SWn+|z|(L). Thus, xz ∈ L iff yz ∈ L
for all z ∈ Σ>k, and hence d(A(x),A(y)) 6 k. Again by [54, Lemma 1] we get
d(A(x),A(y)) 6 |Q|. By Lemma 4.20(i) we have A(xz) = A(yz) for all z ∈ Σ|Q|.

Conversely, assume that A(xz) = A(yz) for all x,y ∈ Σ∗ with |x| = |y| and
z ∈ Σ|Q|. This means that one can simulate the automaton on the window of
length n by only storing the last |Q| many symbols and hence in space O(1).

4.2.2 Characterization of the log-space class

In the following we will give two natural characterizations of the regular lan-
guages with space complexity O(logn). By Corollary 4.9 we can equivalently
consider the fixed- or the variable-size model. A language L ⊆ Σ∗ is called a left
ideal if Σ∗L ⊆ L, or equivalently Σ∗L = L. Every suffix testable language is a
Boolean combination of languages Σ∗w and therefore of regular left ideals. In
this section we will prove the following theorem.

Theorem 4.24. Let L ⊆ Σ∗ be regular. The following statements are equivalent:

(i) FL(n) = O(logn)

(ii) VL(n) = O(logn)

(iii) L is recognized by a well-behaved rDFA.

(iv) L is←-reducible to a regular language of polynomial growth.

(v) L is a finite Boolean combination of regular left ideals and regular length
languages.

46 Chapter 4. Regular languages

The equivalence of the points (i), (ii), (iii) is stated in Corollary 4.9. The other
equivalences are shown by the chain of implications (ii)→ (iv)→ (v)→ (iii).

The implication from (ii) to (iv) follows from previous statements: If VL(n) =
O(logn) and L is nontrivial then by Proposition 3.11 has ~νL(Σ

∗) polynomial
(cumulative) growth and hence also its subset ~νL(L) has polynomial growth. By
Lemma 4.17 there exists a←-reduction from L to ~νL(L) (namely ~νL), and ~νL(L)

is regular. If L = ∅ then it has polynomial growth and is←-reducible to itself. If
L = Σ∗ then it is←-reducible to a unary universal language a∗. In the rest of the
section, we prove the implications (v)→ (iii) and (iv)→ (v).

Implication (v)→ (iii)

The implication (v)→ (iii) follows from the following two lemmas.

Lemma 4.25. If a regular language L ⊆ Σ∗ is a left ideal or a length language,
then any rDFA B for L is well-behaved.

Proof. Let B be an rDFA for L. If L is a length language then for all reachable
states q and all runs π,π ′ starting from q with |π| = |π ′| we have π is accepting
if and only if π ′ is accepting.

If L is a left ideal, then whenever a final state p is reachable, and q is
reachable from p, then q is also final. Hence, for every reachable SCC P in B

either all states of P are final or all states of P are nonfinal.

Lemma 4.26. The class of languages L ⊆ Σ∗ recognized by well-behaved rDFAs is
closed under Boolean operations.

Proof. If B is well-behaved then the complement automaton B is also well-
behaved. Given two well-behaved rDFAs B1,B2, we claim that the product
automaton B1 ×B2 recognizing the intersection language is also well-behaved.
Suppose that Bi = (Qi,Σ, Fi, δi,qi) for i = 1, 2. The product automaton for the
intersection language is defined by B1 ×B2 = (Q1 ×Q2,Σ, F1 × F2, δ, (q1,q2))

where δ(a, (q1,q2)) = (δ1(a,q1), δ2(a,q2)) for all q1 ∈ Q1,q2 ∈ Q2 and a ∈ Σ.
Consider an SCC S of B1 ×B2 which is reachable from the initial state and let
(p1,p2), (q1,q2), (r1, r2) ∈ S such that

(q1,q2)
u←− (p1,p2) and (r1, r2)

v←− (p1,p2)

for some words u, v ∈ Σ∗ with |u| = |v|. Since for i ∈ {1, 2} we have qi
u←− pi and

ri
v←− pi, and {pi, ri,qi} is contained in an SCC of Bi (which is also reachable

from the initial state), we have

(q1,q2) is final ⇐⇒ q1 and q2 are final

⇐⇒ r1 and r2 are final

⇐⇒ (r1, r2) is final,

and therefore B1 ×B2 is well-behaved.

4.2. Characterization of the space classes 47

Implication (iv) → (v)

It remains to show the implication from (iv) to (v).

Lemma 4.27. The class of finite Boolean combinations of regular left ideals and
regular length languages is closed under pre-images of ←-transductions.

Proof. For any function τ : Σ∗ → Γ∗ and K,L ⊆ Γ∗ we have τ−1(K ∪ L) =

τ−1(K) ∪ τ−1(L) and τ−1(Γ∗ \ L) = Σ∗ \ τ−1(L). Now assume that τ is a ←-
transduction. If L is regular then τ−1(L) is also regular by the closure properties
of rational transductions. Since τ is length-preserving, the pre-image of a length
language L under τ is again a length language (namely L itself). Finally, we
claim that τ−1(Γ∗L) = Σ∗τ−1(L), i.e. pre-images of left ideals under τ are
left ideals again, and hence, regular left ideals are closed under preimages of
←-transductions.

Since τ is recognized by a Mealy machine we have Suf(τ(x)) = τ(Suf(x)).
The statement x ∈ τ−1(Γ∗L) is equivalent to the existence of a suffix x ′ of x with
τ(x ′) ∈ L. Since τ is recognized by a Mealy machine, this is again equivalent
to saying that some suffix of τ(x) belongs to L. This can also be written as
x ∈ Σ∗τ−1(L), which concludes the proof.

Towards the proof of the direction (iv) to (v) in Theorem 4.24 it remains
to prove that every regular language of polynomial growth is a finite Boolean
combination of regular left ideals and regular length languages. Since L and
its reversal LR have the same growth we can equivalently write every regular
language of polynomial growth as a finite Boolean combination of regular right
ideals and regular length languages. A right ideal is a language L ⊆ Σ∗ with
LΣ∗ ⊆ L. The idea is to decompose every regular language of polynomial growth
as a finite union of languages recognized by so-called linear cycle automata,
which can be viewed as regular expressions v0u

∗
1v1 · · ·u∗

kvk that can be parsed
uniquely from left to right.

A partial DFA A = (Q,Σ,q0, δ, F) is defined as a DFA except that its transition
function δ : Q×Σ→ Q is a partial function. If the language accepted by a partial
DFA A is nonempty it can be reduced by removing all states which are either not
reachable from q0 or from which no final state can be reached.

Theorem 4.28 ([107, Theorem 1 and Lemma 6]). Let A be a reduced partial
DFA for L. Then L has polynomial growth if and only if for every state p in A there
exists at most one transition p a−→ q such that p and q are strongly connected.

A partial DFA A = (Q,Σ,q0, δ, F) is a linear cycle automaton if

˛ the set of SCCs is linearly ordered by the reachability order,

˛ for all p,q ∈ Q there exists at most one symbol a ∈ Σ such that p a−→ q,

˛ for all 1 � i � m and p ∈ Ci there exists at most one transition p a−→ q

with q ∈ Ci,

48 Chapter 4. Regular languages

˛ for all 1 � i � m− 1 there exists exactly one transition p a−→ q with p ∈ Ci

and q /∈ Ci, and this state q belongs to Ci+1 (we call p the exit state of Ci

and q the entry state of Ci+1),

˛ |F| = 1 and F ⊆ Cm.

Notice that every SCC in a linear cycle automaton is either transient or a cycle,
i.e. restricted to the SCC, every state has exactly one incoming and one outgoing
transition.

Lemma 4.29. If L is a regular language with polynomial growth, then L is a finite
union of languages recognized by linear cycle automata.

Proof. We can assume that L
= ∅ (since L = ∅ is the empty union). Let A =

(Q,Σ,q0, δ, F) be a reduced partial DFA for L. If π is a run in A let d(π) =

(s1, t1, . . . , sm, tm) ∈ Q2m be the sequence of states in A such that π traverses
exactly m SCCs where si and ti are the first and the last state visited in the i-th
SCC. We call d(π) the path description of π. Notice that there are only finitely
many path descriptions.

Now consider a single path description d = (s1, t1, . . . , sm, tm) which starts in
the initial state s1 = q0 and ends in a final state tm ∈ F. We obtain a partial DFA
Ad from A as follows: restrict A to all SCCs containing s1, . . . , sm, and remove
all transitions between two distinct SCCs except for the transitions {(ti, si+1) |

1 � i � m− 1}. Finally, tm is declared as the only final state. By Theorem 4.28,
Ad is indeed a linear cycle automaton and we have L(A) =

⋃
d L(Ad) where the

union is taken over all path descriptions d starting in q0 and ending in a final
state.

Lemma 4.30. Let A be a linear cycle automaton. There are linear cycle automata
A1, . . . ,As such that L(A) =

⋃s
i=1 L(Ai) and in each Ai all cycles have uniform

length.

Proof. Let m1, . . . ,mk be the lengths of each cycle in A and m be the least
common multiple of m1, . . . ,mk. The language L(A) is the finite union of all
languages accepted by linear cycle automata that are obtained from A by doing
the following replacement for every nontrivial cycle

C : q1
a1−→ q2

a2−→ q3 · · · qmi−1
ami−1−−−−→ qmi

ami−−−→ q1

of A. W.l.o.g. assume that q1 is either the initial state of A or the entry state of
C. Choose an arbitrary number 0 � di < m/mi (we then take the finite union
over all such choices). We replace C by a path P of length dimi followed by
cycle C ′ of length m, having the form

P : q ′
1

(a1···ami
)di−−−−−−−−→ q1, C ′ : q1

a1−→ q2
a2−→ q3 · · ·qm−1

am−1−−−→ qm
am−−→ q1,

where a1a2 · · ·am = (a1a2 · · ·ami
)m/mi . All states on the path P except for q1

are new and also all states qmi+1, . . . ,qm are new. If q1 is the initial state of

4.2. Characterization of the space classes 49

A then q ′1 is the new initial state. Otherwise, the unique transition entering C
is redirected to the new state q ′1. The union of the languages recognized by all
automata of this form is L(A).

Lemma 4.31. Let A be a linear cycle automaton in which all cycles have uniform
length. Then L(A) is a Boolean combination of regular right ideals and regular
length-languages.

Proof. Let L ⊆ Σ∗ be the language recognized by A. There are numbers p,q > 0
such that each word in L has length p+qn for some n > 0. Here q is the uniform
cycle length in A. We claim that L is the intersection of the three languages

(i) L · Σ∗, which is a regular right ideal,

(ii) {x ∈ Σ∗ | Pref(x) ⊆ Pref(L)}, which is the complement of the regular right
ideal (Σ∗ \ Pref(L)) · Σ∗,

(iii) Σp(Σq)∗, which is a regular length language.

Clearly L is contained in the described intersection. Conversely, consider a word
x in the intersection. We can factorize x = yz for some y ∈ L by (i). Hence,
|y| = p+ qn for some n by the assumption above. Since |x| = p+ qn ′ for some
n ′ by (iii), the length |z| = |x|− |y| is divided by q. By (ii) x is a prefix of a word
in L and hence A has some initial run π on x, say π : q0

y−→ s
z−→ t. Since y ∈ L,

the state s must be the unique final state of A, which belongs to the unique
minimal SCC C of A. If C is a cycle, then it has length q and hence t = s, i.e.
x ∈ L. If C is transient, then z = ε and therefore x = y ∈ L.

This concludes the proof for the direction from (iv) to (v) in Theorem 4.24.

4.2.3 Boolean combinations of regular left ideals

Let us look at the subclass of finite Boolean combinations of regular left ideals.
Such languages describe Boolean combinations of the form “there exists a suffix
with some regular property” and “every suffix has some regular property”. They
can furthermore be described by weak rDFAs, i.e. rDFAs B = (Q,Σ, F, δ,q0)

where every reachable SCC is either contained or disjoint from F. Every weak
rDFA is well-behaved.

Theorem 4.32 ([69]). A language is a finite Boolean combination of regular left
ideals if and only if it is recognized by a weak rDFA.

Alternatively, this language class can be characterized using the notion of
alternation points. Given a word x = a1 · · ·an ∈ Σ∗ and a language L ⊆ Σ∗,
a position 1 6 i 6 n is an L-alternation point if ai · · ·an and ai+1 · · ·an are
separated by L. Denote by altL(x) the number of L-alternation points in x.

Lemma 4.33. If L ⊆ Σ∗ is a Boolean combination of at most k left ideals then
altL(x) 6 k for all x ∈ Σ∗. Conversely, if L ⊆ Σ∗ is regular and altL(x) 6 k for all
x ∈ Σ∗ then L is a Boolean combination of at most k regular left ideals.

50 Chapter 4. Regular languages

Proof. If L is a Boolean combination of left ideals L1, . . . ,Lk, then each L-
alternation point in a word is an Li-alternation point for some 1 6 i 6 k.
Since Li is a left ideal, each word has at most one Li-alternating point and we
obtain altL(x) 6 k for all x ∈ Σ∗.

Conversely, assume that altL(x) 6 k for all x ∈ Σ∗. Without loss of generality
assume ε ∈ L, which ensures that x ∈ L if and only if altL(x) is even. If ε 6∈ L,
then x ∈ L if and only if altL(x) is odd, and we can argue similarly as below. We
define Pi = {x ∈ Σ∗ | altL(x) > i} for i > 0 and write L as

L =
⋃

06i6k even

(Pi \ Pi+1).

Each Pi is a left ideal because prolonging a word on the left only increases the
number of L-alternation points. Furthermore, each Pi is regular: by enriching
a DFA for L with a counter up to i, a DFA can verify that the input x satisfies
altL(x) > i. Using the fact that P0 = Σ∗ and Pi = ∅ for all i > k, we can write L
as

L =

{
(Σ∗ \ P1) ∪ (P2 \ P3) ∪ · · · ∪ (Pk−2 \ Pk−1) ∪ Pk, if k is even

(Σ∗ \ P1) ∪ (P2 \ P3) ∪ · · · ∪ (Pk−1 \ Pk), if k is odd.

This proves that L is a Boolean combination of the regular left ideals P1, . . . ,Pk,
which concludes the proof.

We can add yet another equivalent statement to Theorem 4.24.

Proposition 4.34. Let L ⊆ Σ∗ be regular and assume that L is a finite Boolean
combination of left ideals and length languages. Then any rDFA for L is well-
behaved.

Proof. Let B be an rDFA for L and assume that B is not well-behaved. By
Lemma 4.7 there exist words u1,u2, v1, v2, z such that |ui| = |vi| for i = 1, 2 and
L separates u2{u1u2, v1v2}

∗z and v2{u1u2, v1v2}
∗z.

The given representation yields left ideals L1, . . . ,Lk and sets of lengths
N1, . . . ,Nm ⊆ N such that membership of a word w to L is determined by
whether w ∈ Li for 1 6 i 6 k and whether |w| ∈ Nj for 1 6 j 6 m. Let
c : N → C be the finite coloring where C = {0, 1}m and the bitvector c(n) =

(c1, . . . , cm) indicates whether n ∈ Nj for 1 6 j 6 m. Then there exists an
infinite monochromatic subset N ⊆ {|u2| + d|u1u2| + |z| : d ∈ N}, say N =

{|u2|+ d|u1u2|+ |z| : d ∈ D} where

D = {d1,d1 + d2,d1 + d2 + d3, . . . }

for some d1,d2, . . . > 1. Hence membership of a wordw in {u2, v2}{u1u2, v1v2}
∗z

of length n ∈ N to L is only determined by whether w ∈ Li for 1 6 i 6 k.
Equivalently, there exists a Boolean combination L ′ of L1, . . . ,Lk such that L and
L ′ agree on all words of length n ∈ N.

4.3. The uniform problem 51

Define w1 = u2(u1u2)
d1z. For even i � 2 let wi = v2(u1u2)

di−1u1wi−1;
for odd i � 2 let wi = u2(u1u2)

di−1v1wi−1. Observe that for all i � 1 we
have |wi| ∈ N, wi is a suffix of wi+1, and L separates wi and wi+1. Hence the
words wi have an unbounded number of L ′-alternation points, which contradicts
Lemma 4.33.

4.2.4 Summary of language classes

Let us summarize the language classes (over a fixed alphabet Σ) discussed in
this chapter:

˛ Reg: the class of all regular languages over Σ

˛ Len: the class of regular length languages

˛ LI: the class of regular left ideals

˛ ST: the class of suffix testable languages

A class of languages A over Σ is Boolean closed if K,L ∈ A implies Σ∗ \ L ∈ A and
K ∪ L ∈ A. If A1, . . . , An are classes of languages over some alphabet Σ, then
〈A1, . . . , An〉 denotes the Boolean closure of

⋃n
i=1 Ai, i.e. the smallest Boolean

closed class which contains
⋃n

i=1 Ai. By the results from this chapter for every
regular language L ⊆ Σ∗ we have:

Theorem 4.35 (Fixed-size model). For every regular language L we have:

˛ If L ∈ 〈ST, Len〉 then FL(n) = O(1).

˛ If L /∈ 〈ST, Len〉 then FL(n) = Ω(logn) infinitely often.

˛ If L ∈ 〈LI, Len〉 then FL(n) = O(logn).

˛ If L /∈ 〈LI, Len〉 then FL(n) = Ω(n) infinitely often.

Theorem 4.36 (Variable-size model). For every regular language L we have:

˛ If L is trivial then VL(n) = O(1).

˛ If L is nontrivial then VL(n) = Ω(logn).

˛ If L ∈ 〈LI, Len〉 then VL(n) = O(logn).

˛ If L /∈ 〈LI, Len〉 then VL(n) = Ω(n).

4.3 The uniform problem

In this section we consider the setting where the automaton is part of the input.
Let us first summarize the results from Section 4.1 which are based on properties
of the right-deterministic finite automaton. Suppose that B is an rDFA for L ⊆ Σ∗.
Then:

52 Chapter 4. Regular languages

(i) If B is well-behaved then VL(n) = O(|B|2 · logn) (Proposition 4.5).

(ii) If U(B) is well-behaved then FL(n) = O(|B|) (Proposition 4.13).

Let us first provide matching lower bounds for the above upper bounds.
Afterwards we consider the problem where the regular language is given by a
DFA/NFA.

4.3.1 Bounds for rDFAs

Proposition 4.37. For every m ∈ N there exists a language Lm ⊆ {a,b, 0}∗

recognized by a well-behaved rDFA Bm with 2m + 1 states such that FLm
(n) �

1
18 · |Bm|2 · logn for sufficiently large n ∈ N1.

Proof. For m ∈ N we define an rDFA Bm = (Qm,Σ, Fm, δ,q0) as follows. The
state set is Qm = {q0, . . . ,q2m}, the alphabet is Σ = {a,b, 0} and the initial state
is q0. The transitions in Bm are

˛ qi+1
b←− qi for all 0 � i � m− 1,

˛ qi+1
a←− qi for all m � i � 2m− 1,

˛ and the loops qi
a←− qi for all 0 � i � m− 1, qi

b←− qi for all m � i � 2m
and r 0←− r for all r ∈ Q.

Finally we set F = {qi ∈ Qm | i even}. Notice that the SCCs in Bm are singletons
and Qm is linearly ordered by �Bm

. Let π : {a,b, 0}∗ → {a,b}∗ be the projection
to the subalphabet {a,b}. Since 0 is a neutral letter in Bm we have x ·q = π(x) ·q
for all q ∈ Q and x ∈ {a,b, 0}∗.

Now consider the set X = π−1((am−1b)m). If n � m2 then X contains(
n
m2

)
words of length n. Let n � m2 and Pn be an SW-algorithm for L(Bm)

and window length n. Read two distinct words x,y ∈ X of length n into two
instances of Pn, which will be distinguished in the following. We can factorize
x = x1cz and y = y1c

′z such that x1,y1, z ∈ {a,b, 0}∗, and {c, c ′} is either {a, 0}
or {b, 0}. Without loss of generality let c ′ = 0.

First assume that c = b. By inserting k = n − |bz| of 0-symbols into both
instances we obtain the windows bz0k and 0z0k. Since the number of b’s in
the windows differs by one and the windows contain at most m many b’s the
windows are separated by L(Bm).

Now assume that c = a. There exist numbers 0 � i, j � m − 1 such that
π(z) = aib(am−1b)j. Since x1 contains m− j− 1 many b-symbols we can insert
into both instances of Pn the word bm−j−10k where k = n− (m− j− 1) − |az|

and obtain the windows azbm−j−10k and 0zbm−j−10k. Since

π(azbm−j−10k) = ai+1b(am−1b)jbm−j−1

1Here and in Theorem 4.42 the bounds hold for all n � nm for some threshold nm depending
on m.

4.3. The uniform problem 53

q0q1q2q3q4q5q6
bbbaaa

a, 0a, 0a, 0b, 0b, 0b, 0a,b, 0

Figure 4.4: Lower bound automaton A3 from Proposition 4.37.

and
π(0zbm−j−10k) = aib(am−1b)jbm−j−1,

the window lastn(xbm−j−10k) reaches state qm+i+1 in Bm whereas the window
lastn(xbm−j−10k) reaches state qm+i. Hence the windows are separated by
L(Bm).

Since X contains
(
n
m2

)
words of length n we have

(
n
m2

)
many streams which

are pairwise distinguished by Pn. Therefore Pn uses at least

log
(
n

m2

)
> m2 · log

n

m2

bits. If n is sufficiently large (satisfying
√
n > m2) then this is at least

m2 · log
√
n =

1
2
m2 logn >

1
2

(
|Bm|

3

)2

logn =
1

18
|Bm|2 logn

bits.

Proposition 4.38. For every m ∈ N there exists a language Lm ⊆ {a,b}∗ rec-
ognized by an rDFA Bm such that U(Bm) is well-behaved, |Bm| = m + 2 and
FLm(n) > m for all n > m.

Proof. Let Lm be the set of words whose m-th last letter is a. It is recognized by
an rDFA Bm consisting of m transient states, a single final state, and a single
nonfinal sink state. Furthermore U(Bm) is well-behaved. Let Pn be a sliding
window algorithm for Lm and window size n > m. We claim that Pn(x) 6= Pn(y)

for all x 6= y ∈ {a,b}m: If x 6= y ∈ {a,b}m differ at some position 1 6 i 6 m
then lastn(xai−1) and lastn(yai−1) differ at the m-th last position. Therefore
Pn accepts exactly one of the streams xai−1 and yai−1, and thus Pn must
distinguish x and y. In conclusion Pn must have at least 2m states.

Hence, the upper bounds in Proposition 4.5 and Proposition 4.13 are optimal.

4.3.2 Upper bounds for DFAs/NFAs

If the regular language is given by a NFA A = (Q,Σ, I,∆, F), one can convert it
into an equivalent rDFA by reversing the transitions (formally, we just view it as
a right automaton) and applying the powerset construction, which entails an

54 Chapter 4. Regular languages

exponential blowup (it has 2|A| states). We obtain the rDFA ARD = (2Q,Σ, I, δ, F).
with transitions

δ(a,P) = {q ∈ Q | p ∈ P, (q,a,p) ∈ Δ}, for all P ⊆ Q,a ∈ Σ,

and final states
I = {P ⊆ Q | P ∩ I
= ∅}.

By applying the bounds for rDFAs we get the following space bounds:

˛ If ARD is well-behaved then VL(A) = O(4|A| · logn) by Proposition 4.5.

˛ If U(ARD) is well-behaved then FL(A) = O(2|A|) by Proposition 4.13.

We will improve both bounds in the case where A is a DFA.

Theorem 4.39. Let A be a finite automaton for L ⊆ Σ∗ and assume that B = ARD

is well-behaved.

˛ If A is a DFA then VL(n) = O(2|A| · |A| · logn).

˛ If A is an NFA then VL(n) = O(4|A| · logn).

Proof. The NFA case was already discussed above. Now assume that A is a
DFA for L. We need the following combinatorial result. Consider a family
of m pairwise distinct sets {X1, . . . ,Xm}. Then it is known that there exists a
differentiating set D of size at most m − 1, i.e. for any 1 � i < j � m we have
D ∩ (Xi �Xj)
= ∅ [95].

A set D ⊆ Σ∗ distinguishes L if for all x,y ∈ Σ∗ with x
∼L y there exists
z ∈ D such that exactly one of the words xz and yz belongs to L. We apply the
result above to the set of left quotients. Since there are at most |A| distinct left
quotients x−1L we get a set D of size at most |A|− 1 that distinguishes L.

For a window w = a1 · · ·an we define a 0-1-matrix Mw : D × {1, . . . ,n} →
{0, 1} by Mw(z, i) = 1 iff ai · · ·anz ∈ L. Notice that the i-th column Mw(·, i)
determines [ai · · ·an]∼L

, and vice versa, for all 1 � i � n. Thus Mw determines
[a1 · · ·an]≈L

, and vice versa. By Proposition 3.11 it suffices to provide an
encoding of Mw with the desired bounds.

We can encode each row Mw(z, ·) of Mw succinctly as follows. Consider one
row indexed by z ∈ D. Let πz be the initial run of B on the word wz and π̃z
be the subrun of πz which only reads the prefix w of wz. One can reconstruct
Mw(z, ·) from the path summary of π̃z by Lemma 4.4 because B is well-behaved.
Thus Mw can be represented by a list of |D| many path summaries. A single path
summary ps(πz) for z ∈ D can be encoded using O(|B| · (logn+ log |B|)). Hence
we can encode Mw using O(2|A| · |A| · (logn+ |A|)) bits.

To get rid of the addend |A| we do a case distinction on the window size as
in the proof of Proposition 4.5. Parallel to the above algorithm which preserves
the matrix Mw succinctly, we maintain the suffix of length |A| in the stream
and the window length n ∈ N. Whenever the window size is strictly smaller
than |A| we remove the representation of Mw. Then the algorithm only uses

4.3. The uniform problem 55

0 1 2 · · · s t · · · k
0

0

1

2

0

2

0, 1 t < s

t > s

0, . . . ,k− 1

Figure 4.5: An automaton for Lk. Omitted transitions lead to a sink state. All
states are final, except from the initial and the sink state.

O(|A| + logn) bits, which satisfies the claimed bound. Whenever the window
size is increased from |A| − 1 to |A| we reconstruct the representation of Mw

from the explicitly stored window of length n = |A|. The representation of Mw

(using path summaries) takes O(2|A| · |A| · (logn+ |A|)) bits, which is bounded
by O(2|A| · |A| · logn).

Theorem 4.40. Let A be a finite automaton for L ⊆ Σ∗, let B = ARD, and assume
that U(B) is well-behaved.

˛ If A is a DFA then FL(n) = O(|A|).

˛ If A is an NFA then FL(n) = O(2|A|).

Proof. The NFA case was already discussed above. If A is a DFA with k states then
the sliding window algorithm Pn for window size n simply maintains lastk(w)

where w is the stream prefix read so far. This requires O(|A|) bits. If n < k

then we know the window explicitly and we can test membership to L. If n � k

then the active window lastn(w) and the word lastn(lastk(w)) have the common
suffix lastk(w). By Proposition 4.23 we can decide whether the window belongs
to L, using the fact that lastn(w) ∈ L if and only if lastn(lastk(w)) ∈ L.

4.3.3 Lower bounds for DFAs

In the following we show that the exponential space bound in Theorem 4.39
is unavoidable, already for the fixed-size sliding window model. For k � 0 we
define the language Lk ⊆ {0, . . . ,k}∗ by

˛ L0 = 0+, and

˛ Lk = Lk−1 ∪ Lk−1 k {0, . . . ,k− 1}∗ for k � 1.

Observe that a word a1 · · ·an ∈ {0, . . . ,k}∗ belongs to Lk if and only if n � 1,
a1 = 0 and for each 1 � i � n it holds that ai = 0 or ai
= max1�j�i−1 aj. We
can construct a DFA Ak for Lk with k + 3 states, which stores the maximum
value seen so far in its state, see Figure 4.5.

To prove that each Lk has space complexity O(logn) in the variable-size
model, we show that Lk is a Boolean combination of regular left ideals by
showing that the number of Lk-alternation points is bounded.

56 Chapter 4. Regular languages

Lemma 4.41. For all k > 0 and x ∈ N∗ we have altLk(x) 6 2k+2 − 2 and hence
VLk(n) = O(logn).

Proof. We prove the lemma by induction on k > 0. Clearly each word has at
most 2 alternation points with respect to L0 = 0+. Now let k > 1 and x ∈ N∗. If
all occurring numbers in x are at most k− 1, then altLk(x) = altLk−1(x) and the
claim follows by induction. Otherwise consider the last occurrence of a number
> k and factorize x = y`z where y ∈ N∗, ` > k and z ∈ {0, . . . ,k− 1}∗. If ` > k,
then the first |y| positions of x cannot contain Lk-alternation points and we get

altLk(x) 6 1 + altLk(z) = 1 + altLk−1(z) 6 2k+1 − 1 6 2k+2 − 2.

Now assume x = ykz. By the definition of Lk each Lk-alternation point in x is
either (i) an Lk−1-alternation point in y, (ii) an Lk−1-alternation point in z, or
(iii) position |y|+ 1 (i.e. the last position, where k occurs). Hence we have

altLk(x) 6 1+ altLk−1(y)+ altLk−1(z) 6 1+(2k+1 −2)+ (2k+1 −2) 6 2k+2 −2.

By Lemma 4.33 and Theorem 4.24 we also conclude VLk(n) = O(logn).

Theorem 4.42. For each k > 1 there exists a language Lk ⊆ {0, . . . ,k}∗ recognized
by a DFA Ak with k + 3 states such that VLk(n) = O(logn) and FLk(n) >
1

32 · 2
|Ak| · logn for sufficiently large n ∈ N.

Proof. Of course, we take the languages Lk considered in this section. We define
the languages Z0 = 0∗ and Zk = Zk−1 k Zk−1 for k > 1. An example word from
Z3 is 0010002100300010020010. The crucial fact about words x ∈ Zk that we
are using is the following: Every suffix of x that starts with 0 belongs to Lk and
every suffix of x that starts with a > 0 does not belong to Lk. The former follows
by induction on k; the latter holds since words in Lk start with 0.

Fix some k > 1 and let Pn be an SW-algorithm for Lk and window length
n > 2k − 1. We claim that Pn distinguishes all

(
n

2k−1

)
words in Zk of length

n. Let x,y ∈ Zk such that |x| = |y| = n and x 6= y. Read x and y into two
instances of Pn. We can write x = zau and y = zbv with a,b ∈ {0, . . . ,k}, a 6= b.
We must have a = 0 and b > 0 or vice versa. Assume that a = 0 and b > 0.
Thus, au ∈ Lk and bv 6∈ Lk. Hence, we have lastn(x0|z|) = au0|z| ∈ Lk and
lastn(y0|z|) = bv0|z| 6∈ Lk. Therefore we can distinguish x and y in Pn by the
word 0|z|, which proves the claim.

The claim above implies that Bn has at least
(
n

2k−1

)
many states. Hence, the

space complexity of B is at least

log
(

n

2k − 1

)
> (2k − 1) log

(
n

2k − 1

)
many bits. If n is sufficiently large (satisfying

√
n > 2k − 1) then this is at least

2k−1 · log
√
n = 2k−2 · logn = 2|Ak|−5 · logn

4.3. The uniform problem 57

many bits.

Notice that the lower bound matches the upper bound of O(2|A| · |A| · logn)
from Theorem 4.39 up to a linear factor in |A|. In particular the space complexity
must be the exponential in the DFA size |A|. A matching lower bound of 4|A| ·logn
for the NFA case remains open.

In the following we reduce the alphabet size of the DFA Ak in Theorem 4.42 to
a constant with a logarithmic size blowup. Let Σ = {0, . . . ,k} be a linearly ordered
alphabet and let bin : Σ→ {0, 1}dlogke be the binary encoding function where the
most significant bit is to the left. We define the bijection code : Σ∗ → {0, 1, #}∗

by code(a1 · · ·an) = # bin(a1)# bin(a2) · · ·# bin(an). Notice that |code(x)| =

(dlogke+ 1) · |x| for all x ∈ Σ∗. We need to prove that Lk and code(Lk) have the
same asymptotic space complexity and that code(Lk) has a small DFA.

Lemma 4.43. Let Σ be an alphabet, c = dlog |Σ|e + 1 and L ⊆ Σ∗. We have
FL(n) 6 Fcode(L)(cn) 6 FL(n) +O(c+ log(cn)) for all n ∈ N.

Proof. Let n ∈ N, and m = c · n. If Qm is an SW-algorithm for code(L) and
window size m then we can construct an SW-algorithm P for L and window size
n. If � ∈ Σ is the padding symbol then initially Pm is simulated on code(�n) to
reach its initial state. Then, on every input symbol a ∈ Σ it reads # bin(a) into
Qm and copies its output. This shows that FL(n) 6 Fcode(L)(cn) for all n ∈ N.

Now let Pn be an SW-algorithm for L and window size n. We describe an
SW-algorithm Qm for code(L) and window size m. Notice that if the window
length is not divided by c then the sliding window problem for code(L) becomes
trivial. Now assume thatm is divided by c. For an input stream let s be its longest
suffix which is a prefix of some word in code(Σ∗). The algorithm maintains its
length |s| up to threshold m + 1. This can be done by memorizing the last c
symbols explicitly. If s is not the complete window, i.e. |s| = m, the algorithm
always rejects. Otherwise it adopts the output of the following simulation of Pn.
If the suffix of length c in the window contains two or more #-symbols, we reset
Pn, i.e. it is set back to its initial state. If the suffix of length c in the window is
of the form # bin(a) for some a ∈ Σ, we simulate Pn on a, otherwise we also
reset Pn.

It is easy to construct a DFA A ′k for code(Lk) of size O(|Ak| · k) 6 O(k2).
Using the properties of Ak we can improve this bound to O(k logk).

Lemma 4.44. For all k > 1 there exists a DFA A ′k for code(Lk) with O(k logk)
states.

Proof. Recall that in each state s of Ak (except from the initial and the sink state)
the input symbol t is compared to s. If s = t then the automaton goes to a sink
state. If s < t then it moves to state t, and if s > t then it stays in state s.

Figure 4.6 shows the DFA A ′3 for code(L3). In general a DFA A ′k for code(Lk)
contains a tree of states which are labeled with bit strings from {0, 1}6dlogke.
Every state s from Ak is represented by state code(s) in A ′k, which is a leaf in
the tree. Attached to it is a gadget of size O(logk) which processes inputs of the

58 Chapter 4. Regular languages

00 01 10 11

0 1

ε

0 0

0 1

0 1 0 1

1

01

#

0

0

1

1

01

1

#

0

10

1

10 11

#

1

0

0

0, 1 1

11

#

1

1

0

0
0, 1

Figure 4.6: The automaton A ′
3 for code(L3). Omitted transitions lead to a sink

state. States with the same name are identified.

form # code(t) for t ∈ Σ. If s = t then the automaton leads to a sink state. If the
automaton detects that s < t (in Figure 4.6 it branches off to the right) then it
moves to the corresponding state in the tree. If the automaton detects that t < s
(it branches off to the left) then it reads the remaining bits in the code word and
returns to state code(s).

Theorem 4.45. There exists a number d > 0 such that for each k � 1 there exists
a language L ′

k ⊆ {0, 1, #}∗ recognized by a DFA A ′
k with Θ(k logk) states such

that VL′
k
(n) = O(logn) and FL′

k
(n) � d · 2|A′

k|/ log |A′
k| · logn for infinitely many

n ∈ N.

Proof. Let A ′
k be the automaton for L ′

k = code(Lk) of size O(k logk) from
Lemma 4.44 By Lemma 4.43 we know that

˛ FL′
k
(cn) � FLk

(n), where c = �logk�+ 2, and

˛ VL′
k
(n) = O(logn) because VLk

(n) = O(logn).

For n ∈ N large enough Theorem 4.42 implies

FL′
k
(cn) � FLk

(n) � 2k−2 · logn

and hence
FL′

k
(n) � 2k−2 · log

√
n � 2k−3 · logn

for infinitely many n with
√
n � c. Since |A ′

k| = O(k logk) we have k =

Ω(|A ′
k|/ log |A ′

k|), and therefore 2k−3 � d · 2|A′
k|/ log |A′

k| for some d > 0 and k
large enough. This implies the desired bound.

4.4. Deciding the space complexity 59

4.4 Deciding the space complexity

In this section we consider the computational complexity of the following deci-
sion problems.

˛ DFA(1): Given a DFA A for L, does FL(n) = O(1) hold?

˛ NFA(1): Given an NFA A for L, does FL(n) = O(1) hold?

˛ DFA(logn): Given a DFA A for L, does FL(n) = O(logn) hold?

˛ NFA(logn): Given an NFA A for L, does FL(n) = O(logn) hold?

In the following we will show that both DFA-problems are NL-complete whereas
the NFA-problems are PSPACE-complete (under logspace reductions). The DFA
(NFA) universality problem asks whether a given DFA (NFA) over Σ accepts Σ∗. It
is NL-complete for DFAs and is PSPACE-complete for NFAs [88].

Of course we can also replace FL(n) by VL(n) in the two latter problems
DFA(logn) and NFA(logn) by Corollary 4.9.

Proposition 4.46. The following question is NL-complete (PSPACE-complete):
Given a DFA (NFA) A for L, does VL(n) = O(1) hold?

Proof. By Corollary 4.11 one has to check whether L(A) = ∅ or L(A) = Σ∗. The
upper bounds hold since emptiness of DFAs and NFAs can be tested in NL (by
guessing an accepted word) and testing universality for DFAs (NFAs) is in NL
(PSPACE). For the lower bounds, we can reduce the universality problem to the
question L(A) ∈ {∅,Σ∗}. Given a DFA (NFA) A we can test in logspace whether
the empty word is accepted by A by testing whether there exists an initial state
which is final. If ε /∈ L(A) then L(A)
= Σ∗ and we can return a negative instance
(say, an automaton for the nontrivial language {a}). Otherwise, we know that
L(A)
= ∅ and we can return A itself.

4.4.1 The DFA case

We start with the NL-hardness for the DFA case:

Theorem 4.47. DFA(1) and DFA(logn) are NL-hard.

Proof. We reduce from the NL-complete reachability problem in finite directed
graphs. Given a finite directed graph G = (V,E) and two vertices s, t ∈ V,
the question is whether there exists a path from s to t. We can assume that
s
= t and that each vertex v ∈ V has exactly two successors va, vb ∈ V. Let
A = (V ∪ {⊥}, {a,b, c}, s, δ, {t}) be a DFA where

δ(v, x) =

⎧⎪⎪⎨
⎪⎪⎩
vx if v ∈ V \ {t}, x ∈ {a,b},

t if v = t, x ∈ {a,b, c},

⊥ otherwise,

60 Chapter 4. Regular languages

and let L = L(A). Since s 6= t, we can write L as K {a,b, c}∗ for some K ⊆ {a,b}+.
Furthermore, there exists a path from s to t in G if and only if K 6= ∅. If
K = ∅, then L = ∅ and FL(n) = O(1). If K 6= ∅, then we claim that FL(n) is
not in O(logn). Take any word x ∈ K of length |x| = k. Then x{x, ck}∗ ⊆ L
and ck{x, ck}∗ ∩ L = ∅. By Proposition 4.8 we know FL(n) = Ω(n) infinitely
often.

Theorem 4.48. DFA(1) is NL-complete.

Proof. Let us first assume that the input DFA A = (Q,Σ,q0, δ, F) for L = L(A)

is minimal. Later, we will argue how to handle the general case. Since nonde-
terministic logspace is closed under complement, it suffices to decide whether
FL(n) is not in O(1). By Proposition 4.23 this is the case if and only if there exist
words x,y, z ∈ Σ∗ such that |x| = |y|, |z| = |Q| and A(xz) 6= A(yz). The existence
of such words can be easily verified in nondeterministic logspace: One simulates
A on two words of the same length (the words x,y), and thereby only stores the
current state pair. At every time instant, the algorithm can nondeterministically
decide to continue the simulation from the current state pair (p,q) with a single
word (the word z) for |Q| steps. The algorithm accepts if at the end the two
states are distinct.

The general case, where A is not minimal is handled as follows: Assume
that A = ({1, . . . ,k},Σ, 1, δ, F) is the input DFA. It is known that DFA equivalence
is in NL [28]. Hence, one can test in nondeterministic logspace, whether two
states p,q ∈ Q are equivalent (in the sense that δ(p,w) ∈ F iff δ(q,w) ∈ F for all
w ∈ Σ∗). We will use this problem as an NL-oracle in the above NL-algorithm for
minimal DFAs. More precisely, let A ′ = (Q,Σ, 1, δ ′, F ′) be the minimal DFA for
A, where we assume that Q is the set of all states q ∈ {1, . . . ,k} such that there
is no state p < q that is equivalent to q. We run the NL-algorithm above for
minimal DFAs on A ′ without explicitly constructing A ′. If we have to compute a
successor state δ ′(q,a) (where q ∈ Q) we compute, using the above NL-oracle
the smallest state that is equivalent to δ(q,a).

The above argument shows that DFA(1) belongs to NLNL. Finally, we use the
well-known identity NL = NLNL [67].

In the rest of the section, we show that one can also decide in nondeterminis-
tic logspace whether VL(n) = O(logn) (or equivalently FL(n) = O(logn)). As
in the proof of Theorem 4.48 we can assume that L is given by its minimal DFA
A = (Q,Σ,q0, δ, F). An equivalence relation ∼ on a set X separates two subsets
X1,X2 ⊆ X if x1 6∼ x2 for all x1 ∈ X1 and x2 ∈ X2. Recall that the Myhill-Nerode
right congruence ∼L satisfies A(x) = A(y) if and only if x ∼L y. Therefore, two
sets of words X1,X2 ⊆ Σ∗ are separated by ∼L if and only if the sets of reached
states {A(xi) | xi ∈ Xi} are disjoint for i = 1, 2.

Given a right congruence ∼ over Σ∗. A tuple (u2, v2,u, v) ∈ (Σ∗)4 of words
is critical in ∼ if |u2| = |v2|, u2 is a suffix of u, v2 is a suffix of v, and ∼ separates
u2{u, v}∗ and v2{u, v}∗.

Lemma 4.49. We have VL(n) = Θ(n) if and only ∼L has a critical tuple.

4.4. Deciding the space complexity 61

Proof. If VL(n) = Θ(n), then any rDFA B for L is not well-behaved by Theo-
rem 4.12 and Proposition 4.5. By Lemma 4.7 there are words u1,u2, v1, v2, z ∈ Σ∗
such that |u2| = |v2|, u = u1u2, v = v1v2, and L separates u2{u, v}∗z and
v2{u, v}∗z. For all x,y ∈ {u, v}∗ the words u2xz and v2yz are separated by L, and
hence u2x 6∼L v2y.

Conversely, assume that there are words u1,u2, v1, v2 ∈ Σ∗ where |u2| = |v2|,
u = u1u2 and v = v1v2, such that ∼L separates u2{u, v}∗ and v2{u, v}∗. We clearly
have u2 6= v2 and hence u 6= v. Further, we can choose numbers k, ` > 1 such
that uk and v` have the same length. We redefine u1 to be uk−1u1 and v1 to
be v`−1v1. This ensures |u| = |v| and |u1| = |v1|. Moreover, the new resulting
sets u2{u, v}∗ and v2{u, v}∗ are contained in the original sets and therefore also
separated by ∼L.

Now consider a variable-size SW-algorithm P for L and let m ∈ N. We claim
that P must distinguish any distinct streams x,y ∈ {u, v}m, i.e. P(x) 6= P(y). This
is because after |u1| = |v2| many pop-operations, the windows are of the form u2w

and v2w for somew ∈ {u, v}∗. By assumption u2w 6∼L v2w, and hence there exists
a word z ∈ Σ∗ such that L separates u2wz and v2wz. Hence we can separate
the states in P by reading z, which implies P(x) 6= P(y). This implies that
VL(n) = Ω(n) infinitely often and in fact VL(n) = Θ(n) by Theorem 4.12.

In the following we show how to decide whether a finite index right congru-
ence (presented by a DFA) has a critical tuple. This requires basic arguments in
the language of finite semigroups. A semigroup S is right zero if xy = y for all
x,y ∈ S. An element e ∈ S is idempotent if e2 = e. It is known that for every
finite semigroup S there exists a number ω ∈ N \ {0} such that sω is idempotent
for all s ∈ S.

Lemma 4.50. Let h : Σ∗ →M be a homomorphism into a finite monoid M. For
any u, v ∈ Σ∗ there exist u ′ ∈ {u, v}∗u and v ′ ∈ {u, v}∗v such that {h(u ′),h(v ′)}
forms a right zero subsemigroup.

Proof. Let u ′ = (uωvω)ωuω and v ′ = (uωvω)ω. Setting e ′ = h(u ′) and
f ′ = h(v ′) we have the equations e ′e ′ = f ′e ′ = e ′ and f ′f ′ = e ′f ′ = f ′.

Lemma 4.51. Assume that ∼ is a finite index right congruence with a critical tuple.

(i) For any homomorphism h : Σ∗ → M into a finite monoid M there exists a
critical tuple (u2, v2,u, v) in ∼ such that |h(u2{u, v}∗)| = |h(v2{u, v}∗)| = 1.

(ii) There exists a critical tuple (u2, v2,u, v) in ∼ such that u2{u, v}∗ and v2{u, v}∗

are contained in single ∼-classes.

Proof. Assume that (u2, v2,u, v) is a critical tuple. By Lemma 4.50 there exist
u ′ ∈ {u, v}∗u and v ′ ∈ {u, v}∗v such that {h(u),h(v)} forms a right zero subsemi-
group. Notice that u2 is a suffix of u ′ and v2 is a suffix of v ′. Furthermore, since
{u ′, v ′}∗ ⊆ {u, v}∗ the subsets u2{u

′, v ′}∗ and v2{u
′, v ′}∗ are still separated by ∼,

therefore (u2, v2,u ′, v ′) is a critical tuple.
Now replace u by u ′ and v by v ′. Observe that (u2u, v2u,uu, vu) is again a

critical tuple because u2u is a suffix of uu, v2u is a suffix of vu, |u2u| = |v2u|, and

62 Chapter 4. Regular languages

p

r

u2

v2

u,v

u,v

Figure 4.7: The minimal DFA contains this pattern if (u2, v2,u, v) is a critical
tuple where u2{u, v}∗ and v2{u, v}∗ are contained in single ∼L-classes.

because u2u{uu, vu}∗ ⊆ u2{u, v}∗ and v2u{uu, vu}∗ ⊆ v2{u, v}∗. Furthermore we
have h(u2u{uu, vu}∗) = {h(u2u)} and h(v2u{uu, vu}∗) = {h(v2u)}. This proves
statement (i).

Statement (ii) is a simple corollary of (i). Define x ≡ y if and only if �x ∼ �y
for all � ∈ Σ∗, which is a congruence on Σ∗ and refines ∼. Every class [x]≡ can
be associated with the function Σ∗/∼ → Σ∗/∼ given by [�]∼ �→ [�x]∼. Since ∼ has
finite index the number of such functions is also finite and hence ≡ has finite
index. Hence we can take the canonical homomorphism h : Σ∗ → Σ∗/≡ and
apply (i).

We are ready to present the decision procedure.

Lemma 4.52. Given a minimal DFA A, one can test in nondeterministic logspace
whether A has a critical tuple.

Proof. Let A = (Q,Σ,q0, δ, F) be a minimal DFA. Figure 4.7 illustrates the struc-
ture we need to detect in A. To do so, we represent all critical tuples by a regular
language. Consider the language of all words u1#v1#(u2 ⊗ v2) such that there
are states p
= r ∈ Q and

˛ q0
u2−→ p,

˛ q0
v2−→ r,

˛ p
u1u2−−−→ p and r u1u2−−−→ r,

˛ p
v1v2−−→ p and r v1v2−−→ r,

˛ and |u2| = |v2| � 1.

One can construct in logspace an NFA for the language above, which can be
tested for emptiness in NL. The NFA initially guesses the two distinct states p
and r, and verifies the six runs. The length constraint can be verified due to the
encoding as a convolution u2 ⊗ v2. The language above is empty if and only if A
has a critical tuple.

Lemma 4.49, Lemma 4.52 and Theorem 4.16 together imply:

Corollary 4.53. DFA(logn) is NL-complete.

4.4. Deciding the space complexity 63

4.4.2 The NFA case

In this section, we show that the problems NFA(1) and NFA(logn) are both
PSPACE-complete. The upper bounds follow easily from Theorem 4.48 and
Corollary 4.53 and the following fact (see [85, Lemma 1]): If a mapping f can
be computed by a Turing-machine with a polynomially bounded work tape (the
output can be of exponential size) and L is a language that can be decided in
polylogarithmic space, then f−1(L) belongs to PSPACE. Note that from a given
NFA A one can compute an equivalent DFA using polynomially bounded work
space: One iterates over all subsets of the state set of A; the current subset is
stored on the work tape. For every subset and input symbol one then writes the
corresponding transition of the DFA on the output tape.

Theorem 4.54. NFA(1) is PSPACE-complete.

Proof. By the above remark it suffices to establish PSPACE-hardness of NFA(1).
For this we will reduce the NFA universality problem to NFA(1). W.l.o.g. consider
the alphabet Σ = {a,b}. For an NFA A = (Q,Σ, I,∆, F) we define ρ(A) to be the
automaton that results from A by adding a new initial state q̄ with an a-labeled
self-loop and a b-labeled transition from every state of F to q̄. The only final
state of ρ(A) is q̄. More formally, we define ρ(A) as follows:

ρ(A) = (Q ∪ {q̄},Σ, I ∪ {q̄},∆ ∪ {(q,b, q̄) | q ∈ F} ∪ {(q̄,a, q̄)}, {q̄}).

Notice that the ρ-construction implies L(ρ(A)) = a∗∪L(A)ba∗. It is then easy to
verify that L(A) = Σ∗ iff L(ρ(A)) = Σ∗. If L(A) = Σ∗ then clearly FL(ρ(A))(n) =

O(1). Conversely, assume that FL(ρ(A))(n) = O(1). By Theorem 4.19 there exists
a number k ∈ N such that a∗ ∪ L(A)ba∗ is a Boolean combination of k-suffix
testable languages and regular length languages. Let x ∈ {a,b}n be any word of
length n. Since an+1+k ∈ L(ρ(A)) and xbak share the same k-suffix and are of
the same length, we also know that xbak ∈ L(ρ(A)) and hence x ∈ L(A). This
proves that A is universal.

We have thus established that the log-space construction A 7→ ρ(A) reduces
the universality problem for NFAs to NFA(1).

Theorem 4.55. NFA(logn) is PSPACE-complete.

Proof. It remains to show that NFA(logn) is PSPACE-hard, which can be shown
by reducing the NFA universality problem to NFA(logn). W.l.o.g. the alphabet of
the input automaton is Σ = {a,b}, and we also consider the extended alphabet
Γ = {a,b, c}. We will view the automaton as a finite right automaton B =

(Q,Σ, F,∆, I) with ∆ ⊆ Q×Σ×Q. We define B ′ to be the automaton that results
from B by adding a new initial and final state q̄ with a- and b-labeled self-loops,
a c-labeled transition from every state of I to q̄, and a c-labeled transition from
q̄ to every state of B. The only initial state of B ′ is q̄. More formally, we define

B ′ = (Q ∪ {q̄}, Γ , F ∪ {q̄},∆ ′, {q̄}), where

∆ ′ = ∆ ∪ {(q, c, q̄) | q ∈ I} ∪ {(q̄, c,q) | q ∈ Q} ∪ {(q̄, x, q̄) | x ∈ {a,b}}.

64 Chapter 4. Regular languages

We claim that L(B) = Σ∗ if and only if FL(B′)(n) = O(logn). To prove this we
consider the powerset automaton 2B′

= (2Q∪{q̄}, Γ ,F, δ, {q̄}) with transitions

{q | p ∈ P,q x←−B p}
x←− P for all P ⊆ Q ∪ {q̄}, x ∈ Γ

and
F = {P ⊆ Q ∪ {q̄} | P ∩ (F ∪ {q̄})
= ∅}.

All transitions which are reachable from the initial state {q̄} are of the form

˛ {q̄}
x←− {q̄} for x ∈ {a,b},

˛ I
c←− {q̄},

˛ P ′ x←− P for x ∈ {a,b} and P,P ′ ⊆ Q,

˛ {q̄}
c←− P for P ⊆ Q.

In particular, the reachable part is strongly connected. Because of the self-loops
on the initial final state {q̄} the rDFA 2B′

is well-behaved if and only if all
reachable states are final, i.e. L(2B′

) = L(B ′) = Γ∗. It suffices to prove that
L(B) = Σ∗ if and only if L(B ′) = Γ∗.

First assume that L(B) = Σ∗. Take any word w ∈ Γ∗, which can be written
as w = wkcwk−1c · · · cw1cw0 where w0, . . . ,wk ∈ Σ∗. Then there exist initial
accepting runs qi

wi←−− pi in B for 0 � i � k. This allows to construct a run on w
in B ′, namely

· · ·q2
w2←−− p2

c←− q̄
w1←−− q̄

c←− q0
w0←−− p0.

It ends in q if k is odd, and in qk if k is even. In any case it is an initial accepting
run, which proves that L(B ′) = Γ∗.

Now assume that L(B)
= Σ∗, i.e. there exists a word x ∈ Σ∗ \ L(B). Then one
can easily verify that xc is not accepted by B, hence L(B ′)
= Γ∗.

So, we have established that the log-space construction B �→ B ′ reduces the
universality problem for rNFAs to NFA(logn).

4.5 Conclusion

In this chapter we have identified 〈LI, Len〉 as the class of regular languages with
logarithmic space complexity in both sliding window models. Notice that regular
left ideals over a sliding window express statements of the form “recently in the
stream some regular event happened”. Dually, complements of left ideals over a
sliding window express statements of the form “at all recent times in the stream
some regular event happened”.

Open problems

1. It would be desirable to have a logic which precisely captures 〈LI, Len〉 (or
some fragment of it) and admits sliding window algorithms with decent
space complexity in the formula size.

4.5. Conclusion 65

2. A regular left ideal L = Σ∗K can also be specified by a finite automaton
A for K. An interesting question would be whether one can always find a
|A|O(1) logn space SW-algorithm for L.

3. The lower bound in Theorem 4.45 for the dependence on the DFA size over
bounded alphabets is not tight. For NFAs (over unbounded alphabets) the
gap between the upper bound 4|A| logn and the lower bound 2|A| logn also
remains to be closed. In this context one could also look at unambiguous
finite automata.

4. Likewise, it is open whether the bounds in Theorem 4.40 are optimal.

Left Cayley graphs In the paper [G1] we originally proved the space tri-
chotomy using the left Cayley graph of the syntactic monoid. Suppose L ⊆ Σ∗ is a
regular language. Then the left Cayley graph of the syntactic monoidM = Σ∗/≡L
of L can be viewed as a particular rDFA: Its state set is M, its initial state is [ε]≡L ,
its set of final states is L/≡L, and its transitions have the form [aw]≡L

a←− [w]≡L
for w ∈ Σ∗ and a ∈ Σ. If the left Cayley graph is well-behaved then one can
construct a path summary algorithm for L with O(logn) space.

The advantage is that it suffices to store the path summary of the initial run
on the active window (instead of all runs on the active window starting from
any state). The disadvantage is that the hidden O-constant is proportional to the
height of the reachability order � of the left Cayley graph, i.e. the maximum
length of a chain C1 ≺ C2 ≺ · · · ≺ Ch. This parameter is also known as the
L-height of M and can be a priori as large as |M|, which in turn can have |A||A|

elements where A is the minimal DFA for L. Fleischer and Kufleitner presented a
sequence of minimal DFAs Am over a fixed alphabet such that Am has m states
and its transition monoid has L-height Ω(2m/m9.5) [51].

66 Chapter 4. Regular languages

Chapter 5

Rational functions

In this chapter we study the space complexity of rational functions in the sliding
window model. We will first prove a closely related dichotomy result, namely that
the suffix expansion of any rational functions has a polynomially or an exponen-
tially growing image (Theorem 5.2). This dichotomy result has two applications:
Firstly, we can extend the space trichotomy from regular languages to rational
functions. For the variable-size model we prove that every rational function has
either constant, logarithmic or linear space complexity (Corollary 5.23). For the
fixed-size model we show that the space complexity is at most logarithmic or
linear (Corollary 5.24). Secondly, in Chapter 10 we will apply this dichotomy
theorem to prove a space trichotomy for the class of visibly pushdown languages.
Parts of this chapter have appeared in [G6].

5.1 Suffix expansions

Let t : Σ∗ → Ω∗ be a partial function with suffix-closed domain. Recall that its
suffix expansion ~t : dom(t)→ (Ω∗)∗ is defined by

~t(a1 · · ·an) = t(a1 · · ·an) t(a2 · · ·an) · · · t(an−1an) t(an).

We emphasize that the range of ~t is not Ω∗ but the free monoid over Ω∗,
consisting of all finite sequences of words over Ω. In this chapter we analyze the
growth of im(~t).

Example 5.1. Consider the transduction t : {a,b}∗ → a∗ defined by

t = {(an,an) | n ∈ N} ∪ {(anbw,an) | n ∈ N, w ∈ {a,b}∗},

which projects a word over {a,b} to its leftmost (maximal) a-block and is rational.
We can identify im(~t) ⊆ (a∗)∗ with the set of all sequences of natural numbers
which are concatenations of monotonically decreasing sequences of the form
(k,k− 1, . . . , 0). There are exactly 2n of such sequences of length n and hence
im(~t) has exponential growth.

67

68 Chapter 5. Rational functions

Fooling schemes A witness for exponential growth of im(�t) can be given by a
fooling scheme. A partial function t : Σ∗ → Y separates subsets X1,X2 ⊆ dom(t) if
t(X1)∩t(X2) = ∅. A fooling scheme of a partial function t : Σ∗ → Y in X ⊆ dom(t)

is a tuple (u2, v2,u, v, z) ∈ (Σ∗)5 such that

˛ {u2, v2}{u, v}∗z ⊆ X,

˛ |u2| = |v2|,

˛ u2 is a suffix of u, v2 is a suffix of v,

˛ and t separates u2{u, v}∗z and v2{u, v}∗z.

We omit X if X = dom(t). The function t from Example 5.1 has the fooling
scheme (a,b,a,b, ε) since t(a{a,b}∗) = a+ and t(b{a,b}∗) = {ε} are disjoint.
Our main theorem for rational functions in this chapter is the following.

Theorem 5.2 (Dichotomy for rational functions). Let t : Σ∗ → Ω∗ be a rational
function with suffix-closed domain.

1. If im(t) is a bounded language and t has no fooling scheme then im(�t) has
polynomial growth.

2. In all other cases im(�t) has exponential growth.

Here we will make use of a representation of rational functions due to
Reutenauer and Schützenberger, as the composition of a left-subsequential and
a right-subsequential function [100]. In fact, the left-subsequential function is
represented by a certain syntactic right congruence Rt; the input a1 · · ·an is
read deterministically from left to right, and each letter ai is annotated with
the congruence class [a1 · · ·ai−1]Rt

. In total, there are three “barriers” for
polynomial growth of im(�t).

(i) The image of t has exponential growth.

(ii) The right congruence Rt has a critical tuple.

(iii) A right transducer for t is not well-behaved.

Finally we will prove that the absence of the three properties above ensures
polynomial growth.

Lower bounds The second statement in Theorem 5.2 follows from the follow-
ing two statements.

Proposition 5.3. If a partial function t : Σ∗ → Ω∗ with suffix-closed domain has
a fooling scheme in X ⊆ dom(t) then �t(X) has exponential growth.

Proof. Let (u2, v2,u, v, z) be a fooling scheme of t in X. Let n ∈ N and let
w
= w ′ ∈ u2{u, v}nz ⊆ X. There exists a word w ′′ ∈ {u, v}∗ such that w and w ′

have the suffixes u2w
′′z and v2w

′′z, respectively. The fooling scheme property
states that t(u2w

′′z)
= t(v2w
′′z) and, since u2w

′′z and v2w
′′z have equal length,

we obtain �t(w)
= �t(w ′). Therefore �t(X) contains at least 2n words of length at
most |u2|+ cn+ |z| = O(n) where c = max{|u|, |v|}.

5.2. Finite index right congruences 69

Proposition 5.4. Let t : Σ∗ → Ω∗ be a rational function with suffix-closed domain.
If im(t) has exponential growth then the following statements hold:

(i) |t(Σ6n)| = 2Ω(n).

(ii) |t(Σn)| grows exponentially.

(iii) im(~t) has exponential growth.

Proof. We claim that every word y ∈ im(t) has a preimage under t of length
O(|y|). One way to show this is the rational uniformization theorem. Let
t ′ : Ω∗ → Σ∗ be a rational function which uniformizes the inverse relation t−1 =

{(t(x), x) | x ∈ dom(t)}, i.e. dom(t ′) = dom(t−1) = im(t) and t(t ′(y)) = y for
all y ∈ dom(t ′). Such a rational uniformization exists by [40, Chapter XI, Propo-
sition 8.2]. Since t ′ is rational its output length is linearly bounded in the input
length. This proves our claim.

We have shown that im(t) ∩Ω6n ⊆ t(Σ6cn) for some constant c > 0 and
sufficiently large n. If im(t) has exponential growth then its cumulative growth is
2Ω(n) by Theorem 2.5 and hence |t(Σ6n)| = 2Ω(n). Since |t(Σn)| 6 |t(Σ6n)| 6∑n
i=0 |t(Σ

i)| also |t(Σn)| must grow exponentially by Lemma 2.3.
Since ~t(x) is a tuple of length |x| whose first entry is t(x), also im(~t) has

exponential growth.

5.2 Finite index right congruences

Let ∼ be a finite index right congruence on Σ∗ and ≈ its suffix expansion. We
show that |Σ6n/≈| grows polynomially if ∼ has no critical tuple, and otherwise it
grows exponentially. This can be viewed as a special case of Theorem 5.2 since
ν∼ : Σ

∗ → Σ∗/∼ is rational. Implicitly we have already treated the case where ∼

is the Myhill-Nerode right congruence ∼L of a regular language L.

Lemma 5.5. If L ⊆ Σ∗ is regular, then |Σ6n/≈| grows polynomially if and only if
∼L has no critical tuple.

Proof. If L is empty or universal then |Σ6n/≈| grows linearly and ∼L is the
universal congruence, which has no critical tuple. Otherwise log |Σ6n/≈L| is
exactly the space complexity VL(n) by Proposition 3.11. By the trichotomy
theorem (Theorem 4.12) the growth of |Σ6n/≈L| is polynomial or exponential.
By Lemma 4.49 the growth is exponential if and only if ∼L has a critical tuple.

Proposition 5.6. If ∼ has a critical tuple then |Σ6n/≈| grows exponentially.

Proof. Let n ∈ N and let w 6= w ′ ∈ {u, v}n. There exists a word w ′′ ∈ {u, v}∗

such that w and w ′ have the suffixes u2w
′′ and v2w

′′ of equal length. By
the definition of critical tuples we have u2w

′′ 6∼ v2w
′′, which implies w 6≈ w ′.

Therefore |Σ6cn/≈| > 2n where c = max{|u|, |v|}.

Lemma 5.7. The class of right congruences on Σ∗ which have no critical tuple is
closed under coarsening and intersection.

70 Chapter 5. Rational functions

Proof. Closure under coarsening is clear because the property “∼ has no critical
tuple” is positive in ∼:

∀u = u1u2 ∀v = v1v2(|u2| = |v2|→ ∃w ∈ {u, v}∗ : u2w ∼ v2w).

Consider two right congruences ∼, ∼ ′ which have no critical tuples. One can
verify that their intersection ∼ ∩ ∼ ′ is again a right congruence. Towards a
contradiction assume that ∼ ∩ ∼ ′ has a critical tuple (u2, v2,u, v). Let us first
ensure that u2{u, v}∗ and v2{u, v}∗ are contained in single ∼- and ∼ ′-classes. Let
≡ and ≡ ′ be any finite index congruences which refine ∼ and ∼ ′, respectively. For
example, we can define x ≡ y if and only if `x ∼ `y for all ` ∈ Σ∗, and similarly
for ≡ ′, as in the proof of Lemma 4.51. Define the homomorphism

h : Σ∗ → (Σ∗/≡)× (Σ∗/≡ ′)
x 7→ ([x]≡, [x]≡′).

By Lemma 4.51 ∼ ∩ ∼ ′ has a critical tuple (u2, v2,u, v) such that h(u2{u, v}∗)
and h(v2{u, v}∗) have size one, and hence u2{u, v}∗ and v2{u, v}∗ are contained
in single ∼- and ∼ ′-classes. By assumption ∼ and ∼ ′ have no critical tuple,
and therefore all words in u2{u, v}∗ must be ∼- and ∼ ′-congruent to all words
in v2{u, v}∗. This would imply that all words in u2{u, v}∗ must be (∼ ∩ ∼ ′)-
congruent to all words in v2{u, v}∗, contradicting that (u2, v2,u, v) is a critical
tuple in ∼ ∩ ∼ ′.

Theorem 5.8. |Σ6n/≈| is polynomially bounded if and only if ∼ has no critical
tuple.

Proof. Let u1, . . . ,um be representatives from each ∼-class. Each equivalence
class [ui]∼ is regular since it is saturated by the finite right congruence ∼. There-
fore each Myhill-Nerode right congruence ∼[ui]∼ has finite index. Observe that
∼=

⋂m
i=1 ∼[ui]∼ because ∼ saturates each class [ui]∼ and

⋂m
i=1 ∼[ui]∼ also sat-

urates each class [v]∼. Let us write ∼i instead of ∼[ui]∼ and let ≈i be its suffix
expansion ≈[ui]∼ . Then we have ∼=

⋂m
i=1 ∼i and ≈=

⋂m
i=1 ≈i. This implies

that

max
16i6m

|Σ6n/≈i| 6 |Σ6n/≈| 6
m∏
i=1

|Σ6n/≈i|. (5.1)

Since [ui]∼ is regular the growth of |Σ6n/≈i| is polynomial if and only if ∼i has
no critical tuple by Lemma 5.5.

(⇒): If |Σ6n/≈| is polynomially bounded then the same holds for |Σ6n/≈i| for
all 1 6 i 6 k by (5.1). By Lemma 5.5 the right congruence ∼i has no critical
tuple for all 1 6 i 6 k and therefore Lemma 5.7 implies that ∼=

⋂m
i=1 ∼i has no

critical tuple.

(⇐): If ∼ has no critical tuple then each congruence ∼i has no critical tuple by
Lemma 5.7 because ∼i is coarser than ∼. Lemma 5.5 implies that |Σ6n/≈i| is

5.3. Regular look-ahead 71

polynomially bounded for all 1 6 i 6 k. By (5.1) also |Σ6n/≈| is polynomially
bounded.

5.3 Regular look-ahead

We follow the notation from the survey paper [47] where the Reutenauer-
Schützenberger representation is viewed a sequential machine with regular
look-ahead. The only difference is in our setting that the direction is reversed
and thus the term “look-ahead” is a slight misnomer. Let R be a right congruence
on Σ∗ with finite index. The look-ahead extension is the injective function
eR : Σ∗ → (Σ× Σ∗/R)∗ defined by

eR(a1 · · ·an) = (a1, [ε]R)(a2, [a1]R)(a3, [a1a2]R) · · · (an, [a1 · · ·an−1]R).

Let t : Σ∗ → Ω∗ be a partial function. We define

t[R] : (Σ× Σ∗/R)∗ → Ω∗

to be the unique partial function with dom(t[R]) = eR(dom(t)) and

t[R](eR(x)) = t(x), for all x ∈ dom(t).

Furthermore we define a canonical right congruence Rt on Σ∗. For this we need
the distance function ‖x,y‖ = |x| + |y| − 2|x ∧ y| where x ∧ y is the longest
common suffix of x and y. Equivalently, ‖x,y‖ is the length of the reduced word
of xy−1 in the free group generated by Σ. Notice that ‖·, ·‖ satisfies the triangle
inequality. We define u Rt v if and only if

(i) u ∼dom(t) v, and

(ii) sup{‖t(uw), t(vw)‖ : w ∈ u−1dom(t)} <∞.

One can verify that Rt is a right congruence on Σ∗. As an example, recall the
rational transduction t from Example 5.1. The induced right congruence Rt has
two classes, which are a∗ and its complement.

Theorem 5.9 ([100]). A partial function t : Σ∗ → Ω∗ is rational if and only if Rt
has finite index and t[Rt] is right-subsequential.

For the rest of this chapter let t : Σ∗ → Ω∗ be a rational function with
suffix-closed domain. Let B = (Q,Σ × Σ∗/Rt,Ω, F,∆,q0,o) be a trim right-
subsequential transducer for t[Rt]. One obtains a real-time right transducer A
for t by projection to the first component, i.e. A = (Q,Σ,Ω, F,Λ,q0,o) where
Λ = {(q,a,y,p) | (q, (a,b),y,p) ∈ ∆}. Notice that A is strongly unambiguous,
i.e. for every word x ∈ Σ∗ and all states p,q ∈ Q there exists at most one run
from p to q with input word x. Therefore, the state pair (p,q) and the input
word x uniquely determine the run (if it exists) and we can simply write q x←− p.

Notice that every run q
x|y←−− p in A induces a corresponding run q

(x,z)|y←−−−− p in B

72 Chapter 5. Rational functions

z

z

u2

v2

u,v

u,v

Figure 5.1: If Rt has a critical tuple then the right-transducer B contains this
pattern where ‖t(u2z), t(v2z)‖ can be made arbitrarily large.

for some z ∈ (Σ∗/Rt)
∗ and that this correspondence is a bijection between the

sets of all runs in A and B.

5.4 Critical tuples in Rt

In the following we prove that if Rt has a critical tuple then t has a fooling
scheme. First we identify the structure displayed in Figure 5.1.

Lemma 5.10. If Rt has a critical tuple then there exists a critical tuple (u2, v2,u, v)
in Rt with the following property: For every m ∈ N there exists a word z ∈ Σ∗ such
that ‖t(u2z), t(v2z)‖ > m and for each s ∈ {u2, v2} there exists a successful run in
A of the form rs

s←− qs
z←− q0 and runs qs

u←− qs and qs
v←− qs.

Proof. By Lemma 4.51 we can assume that u2{u, v}∗ and v2{u, v}∗ are contained
in Rt-classes, and in particular in ∼dom(t)-classes. Furthermore we claim that
u2x ∼dom(t) v2y for all x,y ∈ {u, v}∗. Let x,y ∈ {u, v}∗, z ∈ Σ∗, and assume that
u2xz ∈ dom(t) (the other direction is analogous). Since u2{u, v}∗ is contained
in a single Rt-class we have u2x Rt u2xvy and therefore u2xz Rt u2xvyz. In
particular we have u2xz ∼dom(t) u2xvyz, and thus u2xvyz ∈ dom(t). Since
dom(t) is suffix-closed we conclude v2yz ∈ dom(t). The claim implies that

sup
z∈Z
‖t(u2xz), t(v2yz)‖ =∞ (5.2)

for all x,y ∈ {u, v}∗ where Z = u−1
2 dom(t) = v−1

2 dom(t). In particular Z is
nonempty.

Next we define look-ahead extensions where the congruence classes are
shifted by some word s ∈ Σ∗. Given s ∈ Σ∗ we define es : Σ∗ → (Σ × Σ∗/Rt)∗
where es(w) is the unique word such that eRt(sw) = eRt(s)es(w). Explicitly
written, for w = a1 · · ·an ∈ Σ∗ it is defined as

es(a1 · · ·an) = (a1, [s]Rt)(a2, [sa1]Rt) · · · (an, [sa1 · · ·an−1]Rt).

5.4. Critical tuples in Rt 73

We have es(xy) = es(x)esx(y) for all s, x,y ∈ Σ∗. If s ∈ {u2, v2}, x ∈ {u, v}∗ and
y ∈ Σ∗ then esx(y) = es(y) because sx and s are Rt-congruent. Therefore

es|{u,v}∗ : {u, v}∗ → (Σ× Σ∗/Rt)∗

is a monoid homomorphism for all s ∈ {u2, v2}. Hence for all s ∈ {u2, v2}, z ∈ Z
and x = x1 · · · xn where x1, . . . , xn ∈ {u, v} we have

eRt(sxz) = eRt(sx)esx(z) = eRt(s)es(x1) · · · es(xn)es(z).

Let M be the monoid of partial functions τ : Q → Q with equipped with the
composition (τ ◦ σ)(q) = τ(σ(q)) as multiplication. Let h : (Σ × Σ∗/Rt)∗ →M

be the homomorphism where h(w)(q) is the state p reached on the unique run
p
w←− q in B, if it exists. Hence we have the following homomorphism

ϕ : {u, v}∗ →M×M
w 7→ (h(eu2(w)),h(ev2(w))).

By Lemma 4.50 there exist words u ′ ∈ {u, v}∗u and v ′ ∈ {u, v}∗v such that
{ϕ(u ′),ϕ(v ′)} is a right zero semigroup. Let us replace u by u ′ and v by v ′.
Notice that (5.2) still holds.

The right zero property allows us to cycle in the transducer. Suppose that

there is a run q
es(x)←−−− p in B where s ∈ {u2, v2} and x ∈ {u, v}. For any

x ′ ∈ {u, v} we have ϕ(x ′)ϕ(x) = ϕ(x) and therefore q
es(x

′)es(x)←−−−−−−− p. Since B is

right-subsequential the run q
es(x

′)←−−−− q exists in B.
Now let m ∈ N be any bound. By (5.2) there exists z ∈ Z such that

‖t(u2uz), t(v2uz)‖ > m. Let s ∈ {u2, v2} and consider the successful run

rs
eRt(s)←−−−− qs

es(u)←−−− ps
es(z)←−−− q0

in B. As remarked above we also have runs qs
es(u)←−−− qs and qs

es(v)←−−− qs. By
replacing z by uz we conclude the proof.

We need a simple lemma which states how distinct arithmetic progressions
can be made disjoint by synchronous pumping.

Lemma 5.11. Given two arithmetic progressions p1(n) = d1n+ c1 and p2(n) =

d2n + c2 where di, ci ∈ N such that c1 6= c2. Then there exists an arithmetic
progression p(n) = dn + c where d > 1 such that {p1(p(n)) | n ∈ N} and
{p2(p(m)) | m ∈ N} are disjoint.

Proof. We will do a case distinction on whether the numbers d1,d2 are zero or
not.

Case 1. If d1 = d2 = 0 then p1(n) = c1 6= c2 = p2(m) for all m,n ∈ N.

74 Chapter 5. Rational functions

Case 2. If d1 > 1 and d2 = 0 then p1(n+ c2 + 1) > d1(c2 + 1) + c1 is strictly
bigger than c2 = p2(m+ c2 + 1) for all m,n ∈ N. The case d2 > 1 and d1 = 0 is
analogous.

Case 3. Assume d1,d2 > 1. Let d > |c2 − c1| > 1. We claim that p1(dn) 6=
p2(dm) for all m,n ∈ N. Otherwise there exist m,n ∈ N such that

dd1n+ c1 = dd2m+ c2

and hence
d(d1n− d2m) = c2 − c1,

which implies that d divides |c2 − c1| and therefore contradicts d > |c2 − c1|.

Similarly to [112], we define the parameter

iml(A) = max ({|y| : (q,a,y,p) ∈ ∆} ∪ {|o(q)| : q ∈ Q}) .

For every run π on a word x ∈ Σ∗ we have |out(π)| 6 iml(A) · |x| and |outF(π)| 6
iml(A) · (|x|+ 1).

Lemma 5.12. If Rt has a critical tuple then t has a fooling scheme.

Proof. Let (u2, v2,u, v) be the critical tuple from Lemma 5.10. We use the same
state names as in the lemma. Let m = iml(A) · (|u2| + 1), which is an upper
bound on |outF(q

s←− p)| for any run q s←− p on s ∈ {u2, v2}. By Lemma 5.10 we
can choose z ∈ Σ∗ such that ‖t(u2z), t(v2z)‖ > 2m + 1. We distinguish two
cases.

Case 1. First assume that |t(u2z)| = |t(v2z)|. Let y = t(u2z) ∧ t(v2z) be the
longest common suffix. We have

t(sz) = outF(rs
s←− qs) out(qs

z←− q0)

for s ∈ {u2, v2}. Assume that out(qs
z←− q0) is a suffix of y for some s ∈ {u2, v2}.

This would imply that

‖t(u2z), t(v2z)‖ = |t(u2z)|+ |t(v2z)|− 2|y|

6 2|t(sz)|− 2|out(qs
z←− q0)|

6 2|outF(rs
s←− qs)| 6 2m,

which contradicts the assumption that ‖t(u2z), t(v2z)‖ > 2m+1. This proves that
y is a proper suffix of both out(qu2

z←− q0) and out(qv2

z←− q0). By maximality
of |y| the words out(qu2

z←− q0) and out(qv2

z←− q0) have distinct suffixes of
length |y|+ 1. Since for all s ∈ {u2, v2} every word in t(s{u, v}∗z) has the suffix
out(qs

z←− q0), the sets u2{u, v}∗z and v2{u, v}∗z are separated by t.

5.5. Well-behaved transducers 75

Case 2. Now assume that |t(u2z)| 6= |t(v2z)|. For s ∈ {u2, v2} define

ds = |out(qs
u←− qs)|+ |out(qs

v←− qs)|

and
cs = |outF(rs

s←− qs
z←− q0)|.

These parameters satisfy

|t(sxz)| = dsn+ cs, for all x ∈ {uv, vu}n,

We have cu2 = |t(u2z)| 6= |t(v2z)| = cv2 . By Lemma 5.11 there exist numbers
d > 1, c ∈ N such that

{du2(dn+ c) + cu2 | n ∈ N} ∩ {dv2(dm+ c) + cv2 | m ∈ N} = ∅.

This implies that t separates

u2{(uv)
d, (vu)d}∗(uv)cz and v2{(uv)

d, (vu)d}∗(uv)cz.

This concludes the proof.

5.5 Well-behaved transducers

Let (Q,�) be the quasi-order defined by q � p iff there exists a run from p to
q in A, or equivalently in B. Its equivalence classes are the strongly connected
components (SCCs) of A and B. A run π in A is internal if all states in π are
contained in single SCC. A word w ∈ Σ∗ is guarded by a state p ∈ Q if there
exists an internal run q w←− p in A. Notice that the set of all words which are
guarded by a fixed state p is suffix-closed. A run q w←− p in A is guarded if w
is guarded by p. We say that A is well-behaved if for all p ∈ Q and all guarded
accepting runs π,π ′ from p with |π| = |π ′| we have outF(π) = outF(π

′).

Lemma 5.13. If A is not well-behaved then t has a fooling scheme.

Proof. If A is not well-behaved then it contains the structure from Figure 5.1
where the two z-runs are identical, and the u2- and v2-runs have distinct output
words. Assume there exist states p,q, r ∈ Q, and guarded accepting runs q u2←− p
and r v2←− p with |u2| = |v2| and outF(q

u2←− p) 6= outF(r
v2←− p). The latter

property also shows that |u2| = |v2| > 1. Furthermore let q ′, r ′ ∈ Q be states
such that p u1←− q ′ u2←− p, p v1←− r ′ v2←− p and p z←− q0. Finally define u = u1u2 and
v = v1v2.

Case 1. If out(p u←− p) = out(p
v←− p) = ε then t(u2xz) = t(u2z) 6= t(v2z) =

t(v2yz) for all x,y ∈ {u, v}∗. Hence t separates u2{u, v}∗z and v2{u, v}∗z.

Case 2. Assume out(p
u←− p) = ε and out(p

v←− p) 6= ε. First we can ensure that
|u| = |v| by replacing u by u|v|, and v by v|u|. Next we can ensure that |t(u2z)| <

76 Chapter 5. Rational functions

|t(v2z)| by replacing (u2, v2,u, v) by (u2u
i, v2v

i,ui+1, vi+1) for sufficiently large
i. Notice that |u2u

i| = |v2v
i| because |u2| = |v2| and |u| = |v| by assumption. This

shows that |t(u2xz)| = |t(u2z)| < |t(v2z)| 6 |t(v2yz)| for all x,y ∈ {u, v}∗. Hence
t separates u2{u, v}∗z and v2{u, v}∗z.

The case out(p
u←− p) 6= ε and out(p

v←− p) = ε is analogous.

Case 3. Finally assume that both out(p
u←− p) and out(p

v←− p) are nonempty.
We can establish |out(p

u←− p)| = |out(p
v←− p)| by replacing u and v with suitable

powers uk and v`. By picking k, ` large enough we can further assume that

|out(p
u←− p)| = |out(p

v←− p)| > max{outF(q
u2←− p), outF(r

v2←− p)}. (5.3)

Now assume that there exist x,y ∈ {u, v}∗ such that t(u2xz) = t(v2yz). We can
compute these values as

t(u2xz) = outF(q
u2←− p)out(p x←− p)out(p z←− q0)

and
t(v2yz) = outF(r

v2←− p)out(p y←− p)out(p z←− q0).

By (5.3) the factors out(p x←− p) and out(p
y←− p) must have equal length. There-

fore outF(q
u2←− p) = outF(r

v2←− p), which contradicts the assumption. Hence t
separates u2{u, v}∗z and v2{u, v}∗z.

Run keys If π is a nonempty run p a1···an←−−−− q in A and p
(a1,ρ1)···(an,ρn)←−−−−−−−−−−− q is

the corresponding run in B then we call ρ1 the key of π, denoted by ρ1 = key(π).
The following lemma justifies the name, stating that π is determined by the state
q, the word a1 · · ·an and the key ρ1.

Lemma 5.14. If p w←− q and p ′ w←− q are nonempty runs in A with the same key
then the runs must be identical.

Proof. Assume that w = a1 · · ·an and let

π : p
(a1,ρ1)···(an,ρn)←−−−−−−−−−−− q

be a run in B. Since B is trim there exist an accepting run π ′ on eRt(u) from p

for some word u. By definition of t[Rt] the run π ′π is on the word

eRt(uw) = eRt(u)(a1, [u]Rt)(a2, [ua1]Rt) · · · (an, [ua1 · · ·an−1]Rt).

This shows that ρi = [ua1 · · ·ai]Rt and that ρ1 determines all classes ρ2, . . . , ρn.
Hence, any two nonempty runs in A on the same word starting from q with the
same key must be identical.

Tree summaries We define a data structure, called a tree summary, on the
transducer A similar to the path summary from Section 4.1. For each word

5.5. Well-behaved transducers 77

w ∈ Σ∗ and each state q ∈ Q we define the tree summary Tq,w recursively, which
is a node- and edge-labeled tree. The root is labeled by the tuple (q, |w|, ~νRt(w)).
If w is guarded by q then the root is the only node in the tree. Otherwise let
w = uv such that v is the shortest suffix of w which is not guarded by q. For
each run p v←− q in A we attach Tp,u to the root as a direct subtree. The edge is
labeled by the pair (key(p v←− q), out(p v←− q)). By Lemma 5.14 distinct outgoing
edges from the root are labeled by distinct keys.

Lemma 5.15. The tree summary Tq,w indicates whether w is guarded by q, and if
not, it determines the length of the shortest suffix of w which is not guarded by q.

Proof. The word w is guarded by q if and only if Tq,w has size one. If the root
does have children, then one can factor w = uv such that v is the shortest suffix
that is unguarded by q and all children are all labeled by tuples of the form
(p, |u|, ~νRt(u)) for some state p ∈ Q. Hence we can determine |v| = |w| − |u|

where |w| can be determined from the root label of Tq,w.

If Tp,u is a subtree of Tq,w then p ≺ q. Therefore the tree Tq,w has height at
most |Q| and size at most |Q||Q|, which are constants in |w|.

Lemma 5.16. Assume that im(t) is bounded and Rt has no critical tuple. Then the
number of tree summaries Tq,w with q ∈ Q and w ∈ dom(t)∩Σ6n is polynomially
bounded in n.

Proof. All occurring numbers have at most magnitude n, the state set Q has
constant size, and the set of possible keys Σ∗/Rt has constant size. The output
words out(p

v←− q) are factors of words from the bounded language im(t) and
have length at most iml(A) · |v| = O(n). Thus, by Lemma 3.14 there are at most
polynomially many of such output words. By Theorem 5.8 there are also at most
polynomially many node labels ~νRt(u) where |u| 6 n. In conclusion, the number
of tree summaries is polynomially bounded.

Guarded factorizations Let π be any run on a word w ∈ Σ∗. If π is not
guarded, we can factorize π = π ′π ′′ such that π ′′ is the shortest suffix of π
which is unguarded, and then repeat this process on π ′. This yields unique
factorizations π = π0π1 · · ·πm and w = w0w1 · · ·wm where πi is a run on wi
from a state pi+1 to a state pi such that wi is the shortest suffix of w0 · · ·wi
which is not guarded by pi for all 1 6 i 6 m, and π0 is guarded. The factorization
π = π0π1 · · ·πm is the guarded factorization of π.

Proposition 5.17. If A is well-behaved and π is an accepting run on w from q

then Tq,w determines outF(π). In particular, if w ∈ dom(t) then Tq0,w determines
t(w).

Proof. Let π = π0π1 · · ·πm be the guarded factorization of π and w0w1 · · ·wm
be the corresponding factorization of w. We prove the statement by induction
on m.

78 Chapter 5. Rational functions

The root of Tq,w is labeled by (q, |w|, �νRt
(w)). If m = 0 then w is guarded

by q and Tq,w has size one. Since A is well-behaved outF(π) is determined by q
and |w| only.

Now assumem � 1 and suppose that πi is a run pi
wi←−− pi+1 for all 1 � i � m

with pm+1 = q. Then wm is the shortest suffix of w which is not guarded by q.
All children of the root of Tq,w are labeled by

(p, |w0 · · ·wm−1|, �νRt
(w0 · · ·wm−1))

for some state p ∈ Q. Hence, we can determine �νRt
(w0 · · ·wm−1), which in

turn determines |w0 · · ·wm−1| and [w0 · · ·wm−1]Rt
. Notice that [w0 · · ·wm−1]Rt

is the key of πm. Therefore, the root has an outgoing edge which is labeled
by ([w0 · · ·wm−1]Rt

, out(πm)). By Lemma 5.14 it is the unique outgoing edge
with key [w0 · · ·wm−1]Rt

. It leads to the direct subtree Tpm,w0···wm−1 of Tq,w. By
induction hypothesis this subtree determines outF(π0 · · ·πm−1). Finally, we can
determine

outF(π0 · · ·πm) = outF(π0 · · ·πm−1) out(πm),

concluding the proof.

It remains to show that the tree summary Tq,w determines the output value
of every suffix of w. In fact, we will prove that we can compute the tree summary
of every suffix.

Lemma 5.18. Suppose that w = xy ∈ Σ∗. Given the tree summary Tq,w and |y|,
one can determine the tree summary Tq,y.

Proof. We proceed by induction on the height of Tq,w. Its root is labeled by
(q, |w|, �νRt

(w)). The root of Tq,y is labeled by (q, |y|, �νRt
(y)). Notice that

�νRt
(y) is the suffix of �νRt

(w) of length |y|.
If |Tq,w| = 1 then w and also all its suffixes are guarded by q and thus Tq,y

also only consists of its root.
Now factorize w = uv where v is the shortest suffix which is not guarded

by q. By Lemma 5.15 we can determine |u| and |v| from Tq,w. The suffix y is
guarded by q if and only if |y| < |v|. If y is guarded by q, then, as above, Tq,y

only consists of its root. Otherwise assume |y| � |v|, and hence y = sv for some
word s. We can determine �νRt

(s) from �νRt
(u) as its suffix of length |s| = |y|− |v|.

It remains to construct the subtrees. For this, observe the following.

˛ The direct subtrees of Tq,w are of the form Tp,u where p v←− q is any run.

˛ The direct subtrees of Tq,y are of the form Tp,s where p v←− q is any run.

By induction hypothesis we can determine each subtree Tp,s from Tp,u and the
length |s|. The edge labels are directly copied: The edge (in either tree) induced
by the run p v←− q is labeled by (key(p

v←− q), out(p v←− q)).

Proposition 5.19. Assume that im(t) is bounded, A is well-behaved and Rt has
no critical tuple. Then im(�t) has polynomial growth.

5.6. Space trichotomy 79

Proof. Consider the function ψ which maps a word w ∈ dom(t) to Tq0,w. By
Lemma 5.16 we know that |ψ(dom(t) ∩ Σ6n)| is polynomially bounded in n. By
Lemma 5.18 the tree summary Tq0,w determines the tree summaries Tq0,v of all
suffixes v of w. Hence, by Proposition 5.17 the values t(v) of all suffixes v of w
are also determined.

Proof of Theorem 5.2. If t has no fooling scheme then A must be well-behaved
by Lemma 5.13 and Rt has no critical tuple by Lemma 5.12. If additionally im(t)

is a bounded language then im(~t) has polynomial growth by Proposition 5.19.
Otherwise t has a fooling scheme or im(t) has exponential growth. Then im(~t)

must have exponential growth by Proposition 5.3 and Proposition 5.4.

5.6 Space trichotomy

Finally, we will prove the space trichotomy for rational functions in the sliding
window model. So far we have shown that the suffix complexity Sϕ(n) of any
rational function ϕ is either O(logn) or Ω(n) infinitely often. In fact, we will
see that, as for regular languages, these complexity bounds can be transferred to
Vϕ(n) and Fϕ(n). Notice that this holds although ∼ϕ does not have finite index
for arbitrary rational functions ϕ.

First we observe that one can maintain the set of all tree summaries on the
active window w. By Lemma 5.18 we already know that the ↓-operation is
supported.

Proposition 5.20. Given the set of all tree summaries {Tq,w | q ∈ Q} for a word
w ∈ Σ∗ and a letter a ∈ Σ, one can determine {Tq,wa | q ∈ Q}.

Proof. Observe that a word va is guarded from p if and only if there exists an
internal transition q a←− p such that v is guarded from q. Suppose we want to
compute Tp,wa for some state p ∈ Q. We distinguish three cases:

Case 1. Assume that a is not guarded from p, i.e. there exists no internal
transition q a←− p. The root of Tp,wa is labeled by (p, |wa|, ~νRt(wa)), which can
be computed from the label (p, |w|, ~νRt(w)) of the root of Tp,w because Rt is a
right congruence. For every transition q a←− p we attach Tq,w as a direct subtree
with the edge label (key(q a←− p), out(q a←− p)). Since all tree summaries Tq,w are
given, we are done in this case.

Case 2. Assume that a is guarded from p. Further assume that there is an
internal transition q a←− p such that q guards w, and hence p guards wa. Using
Lemma 5.15 we can determine whether this case holds. In this case Tp,wa only
consists of a root labeled by (p, |wa|, ~νRt(wa)).

80 Chapter 5. Rational functions

Case 3. Otherwise for every internal transition q a←− p there exists a shortest
suffix vq of w which is not guarded by q. Choose q such that |vq| is maximal. We
claim that vqa is not guarded by p. Otherwise there exists an internal run

q ′′
vq←− q ′ a←− p

and therefore q ′ guards vq. This implies that |vq′ | > |vq|, which contradicts the
maximality of |vq|. Furthermore every proper suffix of vqa is guarded by p since
every proper suffix of vq is guarded by q. In conclusion vqa is the shortest suffix
of wa which is not guarded by p.

Hence we can compute Tp,wa from Tq,w as follows. First, we change the root
label from (q, |w|, ~νRt(w)) to (p, |wa|, ~νRt(wa)), similar to case 1. Next, take an
outgoing edge from the root which is induced by a run of the form r

vq←− q. We
change its edge label from

(key(r
vq←− q), out(r vq←− q)) to (key(r

vqa←−− p), out(r vqa←−− p)).

Notice that the two keys above are actually equal and out(r
vqa←−− p) can be

determined since

out(r
vqa←−− p) = out(r

vq←− q) out(q a←− p).

This concludes the case distinction and the proof of the statement.

Theorem 5.21. Let ϕ : Σ∗ → Ω∗ be a total rational function. If im(ϕ) is a
bounded language and ϕ has no fooling scheme then Vϕ(n) = O(logn).

Proof. Assume that im(ϕ) is a bounded language and ϕ has no fooling scheme.
Let B be a trim right-subsequential transducer for ϕ[Rϕ] with state set Q, and let
A be the right transducer for ϕ obtained by projecting the transitions in B to the
first component. Lemma 5.12 and Lemma 5.13 state that Rϕ has no critical tuple
and that A is well-behaved. By Lemma 5.18 and Proposition 5.20 a streaming
algorithm for ϕ can maintain the set of all tree summaries {Tq,w | q ∈ Q} for
the active window w ∈ Σ∗. By Proposition 5.17 this information suffices to
compute the value ϕ(w). By Lemma 5.16 the space complexity of the algorithm
is O(logn).

Theorem 5.22. Let ϕ : Σ∗ → Ω∗ be a total rational function. If im(ϕ) is not a
bounded language or ϕ has a fooling scheme then Vϕ(n) = Ω(n), and Fϕ(n) =
Ω(n) for infinitely many n.

Proof. Assume that im(ϕ) is not bounded. By Proposition 5.4 the growth of
|ϕ(Σn)| is exponential and |ϕ(Σ6n)| = 2Ω(n). Hence for infinitely many window
sizes n any SW-algorithm Pn for ϕ must output an exponential number of values
and thus Pn must have space complexity Ω(n). Analogously, every variable-size
SW-algorithm P for ϕ must output an exponential number of values on streams
of maximum window length 6 n, and thus its space complexity is Ω(n).

5.7. Conclusion 81

Assume that (u2, v2,u, v, z) is a fooling scheme of ϕ. We can assume |u| = |v|

by replacing u by u|v| and replacing v by v|u|. Consider an SW-algorithm Pn forϕ
and window length n = |u2|+ |u| ·(m−1)+ |z| for somem > 1. Read two distinct
words x,y ∈ {u, v}m into two instances of Pn. Consider the last {u, v}-block
where x and y differ, say x = x1x2s and y = y1y2s for some x1,y1, s ∈ {u, v}∗ and
{x2,y2} = {u, v}. By reading x1z into both instances the windows become u2sx1z

and v2sx1z. Since ϕ(u2sx1z) 6= ϕ(v2sx1z) the algorithm Pn must distinguish the
streams x and y. Therefore Pn has space complexityΩ(n). Since Vϕ(n) > Fϕ(n)
and the linear lower bound for Fϕ(n) holds over an arithmetic progression
(namely n = |u2|+ |u| · (m− 1) + |z|) we get Vϕ(n) = Ω(n) by monotonicity of
Vϕ(n).

Together with theΩ(logn) lower bound from Lemma 3.7 for every nontrivial
problem we obtain the following space trichotomy.

Corollary 5.23. Every total rational function has space complexity Θ(1), Θ(logn),
or Ω(n) infinitely often in the variable-size sliding window model.

In the fixed-size sliding window model we only obtain a dichotomy theorem
and leave it as an open problem to analyze rational functions with sublogarithmic
complexity.

Corollary 5.24. Every total rational function has space complexity O(logn), or
Ω(n) infinitely often in the fixed-size sliding window model.

We conjecture that one can extend the techniques from Section 4.1.2 to
rational functions and prove that Fϕ(n) is either O(1) or Ω(logn) infinitely
often for every rational function ϕ.

5.7 Conclusion

In this chapter we have studied the suffix expansions of rational functions and
have shown a dichotomy for their growth functions. From this dichotomy we
have derived a space trichotomy for rational functions in the variable-size sliding
window model.

Open problems

1. Is the space complexity of every rational function in the fixed-size model
either O(1) or Ω(logn) infinitely often?

2. Find a simple characterization of those rational functions t where im(~t)

has polynomial growth. This class of rational functions could be related
to the class of (right) multisubsequential functions [29]. A function is
multisubsequential if its domain can be decomposed into regular subsets
such that the restriction to each subset is subsequential.

82 Chapter 5. Rational functions

Related work Filiot et al. have studied the question which word functions
can be computed by a deterministic streaming algorithm using small memory
[46]. In contrast to our model the output symbols are written left-to-right to
an output tape. They observe that a rational function can be computed using
constant space in the input length if and only if it is left-sequential. Furthermore,
they consider so-called nested word transductions, which are computed by finite
state transducers equipped with a visibly pushdown. The authors prove that it is
decidable in CONP, whether a nested word transduction is streamable in height
bounded memory, i.e. the memory only depends on the height of the input word.

Chapter 6

Randomized sliding window
algorithms

Most of the work in the context of streaming use randomness and/or approxi-
mation to design space- and time-efficient algorithms. For example, the AMS-
algorithm [5] approximates the number of distinct elements in a stream with
high probability in O(logm) space where m is the size of the universe. Fur-
thermore, it is proved that any deterministic approximation algorithm and any
randomized exact algorithm must use Ω(n) space [5]. On the other hand, the
exponential histogram algorithm by Datar et al. [36] is a deterministic slid-
ing window approximation algorithm using O(1

ε
log2

n) bits. It is proven that
Ω(1

ε
log2

n) bits are necessary even for randomized (Monte Carlo or Las Vegas)
sliding window algorithms.

In this chapter we will study if and how randomness helps for testing member-
ship to regular languages over sliding windows. The main result of this chapter is
a space quatrochotomy in the fixed-size sliding window model, stating that every
regular language has space complexity O(1), Θ(log logn), Θ(logn) or Θ(n) if
the algorithms may have a two-sided error. For algorithms with one-sided error
we obtain the same trichotomy as in the deterministic setting.

The results of this chapter appeared in [G3].

6.1 Randomized streaming algorithms

Probabilistic automata with output In the following we will introduce proba-
bilistic automata [97, 99] as a model of randomized streaming algorithms which
produce an output after each input symbol. A randomized streaming algorithm or
a probabilistic automaton with output P = (Q,Σ, ι, ρ,o) consists of

˛ a (possibly infinite) set of states Q,

˛ a finite alphabet Σ,

˛ an initial state distribution ι : Q→ [0, 1],

83

84 Chapter 6. Randomized sliding window algorithms

˛ a transition probability function ρ : Q× Σ×Q→ [0, 1],

˛ and an output function o : Q→ Y,

such that

(i)
∑

q∈Q ι(q) = 1,

(ii)
∑

q∈Q ρ(p,a,q) = 1 for all p ∈ Q, a ∈ Σ.

If ι and ρ map into {0, 1}, then P can be viewed as a deterministic automaton
with output. We call P a probabilistic automaton if the output set is Y = {0, 1};
in this case we specify the set F ⊆ Q of final states instead of the output
function o. A run on a word a1 · · ·am ∈ Σ∗ in P from q0 to qm is a sequence
π = q0a1q1a2 . . .amqm ∈ Q(ΣQ)∗ where ρ(qi−1,ai,qi) > 0 for all 1 � i � m.
We write runs in the usual way

π : q0
a1−→ q1

a2−→ · · · am−−→ qm

or also omit the intermediate states: π : q0
a1···am−−−−−→ qm. We extend ρ to runs

in the natural way: If π : q0
a1−→ q1

a2−→ · · · am−−→ qm is a run in A then ρ(π) =∏n
i=1 ρ(qi−1,ai,qi). Furthermore we define ρι(π) = ι(q0) · ρ(π). We denote by

Runs(P,w) the set of all runs on w in P. Furthermore Runs(P,p,w) contains
those runs on w that start in p ∈ Q; similarly, Runs(P,w,q) contains those runs
on w that end in q ∈ Q. Also we define Runs(P,p,w,q) = Runs(P,p,w) ∩
Runs(P,w,q). Usually we omit the automaton P in this notation. Notice that
for each w ∈ Σ∗ the function ρι is a probability distribution on Runs(w), and
for each p ∈ Q the restriction of ρ to Runs(p,w) is a probability distribution
on Runs(p,w). Given a word w ∈ Σ∗ and a state p ∈ Q we define the random
variable p ·w to be the state reached from p on input w, i.e. the distribution is
given by

Pr[p ·w = q] =
∑

π∈Runs(P,p,w,q)

ρ(π).

The random variable P(w) is the state reached on input w, i.e. for a state q ∈ Q
we have

Pr[P(w) = q] =
∑

π∈Runs(P,w,q)

ρι(π).

Hence the random output of P on w is o(P(w)). The space of P (or number of bits
used by P) is given by s(P) = log |Q| ∈ R�0 ∪ {∞}. We say that P is a randomized
streaming algorithm for ϕ : Σ∗ → Y with error probability 0 � λ � 1 if

Pr[o(P(x)) = ϕ(x)] � 1 − λ

for all x ∈ Σ∗. If ϕ has binary output then we view λ as the two-sided error. If
we omit λ we choose λ = 1/3.

Probability amplification We need the following Chernoff bound, which can
be found in [89, Theorem 4.5].

6.1. Randomized streaming algorithms 85

Theorem 6.1 (Chernoff bound). Let X1, . . . ,Xk be independent Bernoulli variables,
and let X =

∑k
i=1 Xi with expectation µ = E[X]. For any 0 < δ < 1 we have

Pr[X 6 (1 − δ)µ] 6 exp
(
−
µδ2

2

)
.

For a randomized streaming algorithm P = (Q,Σ, ι, ρ,o) and a number k > 1
let P(k) be the randomized streaming algorithm which simulates k instances of P
in parallel with independent random bits and outputs the majority vote. Formally
the states of P(k) are multisets of size k over Q. Therefore s(P(k)) 6 k · s(P).

Lemma 6.2 (probability amplification). For all 0 6 λ < 1/2 and 0 < λ ′ < 1/2
there exists a number k = O(log

(
1
λ′

)
·
(

1
2 − λ

)−2
) such that the following holds:

If P is a randomized streaming algorithm and Pr[o(P(x)) = y] > 1 − λ then
Pr[o(P(k)(x)) = y] > 1 − λ ′.

Proof. We will choose k later. Let X1, . . . ,Xk be independent Bernoulli random
variables with Pr[Xi = 0] = λ and Pr[Xi = 1] = 1 − λ. Since λ is an upper bound
on the error probability of P on x, the algorithm P(k) errs on x with probability
at most Pr[X 6 k/2] where X =

∑k
i=1 Xi. By choosing µ = E[X] = k(1 − λ) and

δ = 1 − 1
2(1−λ) ∈ (0, 1

2] we get (1 − δ)µ = k/2. The Chernoff bound gives the
following estimate:

Pr[P(k) errs on x] 6 Pr[X 6 k/2]

6 exp

(
−
k(1 − λ)(1 − 1

2(1−λ))
2

2

)

= exp

(
−
k

2
·
(1

2 − λ)2

1 − λ

)

6 exp

(
−
k

2
·
(

1
2
− λ

)2
)

.

By choosing

k > 2 · ln
(

1
λ ′

)
·
(

1
2
− λ

)−2

.

we can bound the error probability of P(k) on x by λ ′.

Derandomization Rabin proved that any probabilistic finite automaton with a
so-called isolated cut-point can be made deterministic with an exponential size
increase [99]. Let P = (Q,Σ, ι, ρ, F) be a probabilistic finite automaton. We call
λ ∈ [0, 1] an isolated cut-point with radius δ > 0 if |Pr[P accepts x] − λ| > δ for
all x ∈ Σ∗.

Theorem 6.3 ([99, Theorem 3]). Let P be a probabilistic finite automaton with
m states. Let L = {x ∈ Σ∗ | Pr[P accepts x] > λ} where λ is an isolated cut-
point of P with radius δ > 0. Then there exists a DFA A for L with at most
(1 +m/δ)m−1 = 2O(m logm) states.

86 Chapter 6. Randomized sliding window algorithms

Reg

〈LI, Len〉

〈ST, Len〉

Reg

〈LI, Len〉

〈ST, SF, Len〉

〈ST, Len〉

O(n)

O(logn)

O(log logn)

O(1)

complexity deterministic two-sided error

Figure 6.1: The deterministic and randomized space complexity of regular
languages.

6.2 Space quatrochotomy

A randomized sliding window algorithm for a problem ϕ and window size n is a
randomized streaming algorithm for SWn(ϕ). The randomized space complexity
Frϕ(n) of ϕ in the fixed-size sliding window model is the minimal space complex-
ity s(Pn) of a randomized sliding window algorithm Pn for ϕ and window size
n. Clearly we have Frϕ(n) 6 Fϕ(n). Furthermore, we prove that for decision
problems randomness can reduce the space complexity at most exponentially
using Theorem 6.3. Notice by our definition any randomized SW-algorithm for a
language L has 1/2 as an isolated cutpoint with radius 1/3.

Lemma 6.4. For any language L we have FL(n) = 2O(FrL(n)).

Proof. Let Pn be a minimal probabilistic finite automaton for SWn(L) with m
states, and let Qn be an equivalent DFA Qn with |Qn| 6 2O(m logm) states. The
statement follows from FL(n) 6 log |Qn| = O(m logm) = O(2F

r
L(n) · FrL(n)),

which is bounded by 2O(FrL(n)).

Let us now state the main result of this chapter, which is a quatrochotomy for
the randomized space complexity of regular languages in the fixed-size sliding
window model. A language L is suffix-free if xy ∈ L and x 6= ε implies y /∈ L. We
denote by SF the class of all regular suffix-free languages.

Theorem 6.5. Let L ⊆ Σ∗ be a regular language.

(1) If L ∈ 〈ST, Len〉 then FrL(n) = O(1).

(2) If L /∈ 〈ST, Len〉 then FrL(n) = Ω(log logn) infinitely often.

(3) If L ∈ 〈ST, SF, Len〉 then FrL(n) = O(log logn).

(4) If L /∈ 〈ST, SF, Len〉 then FrL(n) = Ω(logn) infinitely often.

6.3. The Bernoulli counter 87

(5) If L ∈ 〈LI, Len〉 then FrL(n) = O(logn).

(6) If L /∈ 〈LI, Len〉 then FrL(n) = Ω(n) infinitely often.

Figure 6.1 compares the deterministic and the randomized space complexity.
Points (1) and (5) already hold in the deterministic setting, see Theorem 4.35.
In the next sections we prove points (2), (3), (4), and (6). Observe that we can
transfer Corollary 3.18 to the randomized setting.

Lemma 6.6. For any function s(n), the class {L ⊆ Σ∗ | FrL(n) = O(s(n))} forms a
Boolean algebra.

Proof. Let n ∈ N be a window size. If Pn is an SW-algorithm for L then Pn is an
SW-algorithm for Σ∗ \ L where Pn simulates Pn and returns the negated output.
Let Pn and Qn be SW-algorithms for K and L. By Lemma 6.2 we can reduce error
probability to 1/6 with a constant space increase. Then the algorithm which
simulates Pn and Qn in parallel, and returns the disjunction of the outputs is
an SW-algorithm for K ∪ L. Its error probability is at most 1/3 by the union
bound.

6.3 The Bernoulli counter

Let us start by defining a simple probabilistic counter. It is inspired by the
approximate counter by Morris [49, 90], which uses O(log logn) bits. For
our purposes, it suffices to detect whether the counter has exceeded a certain
threshold, which can be accomplished using only O(1) bits.

Formally, a probabilistic counter is a probabilistic automaton with output
Z = (C, {inc}, ι, ρ,o) over the unary alphabet {inc} where o : C→ {⊥,!} distin-
guishes low and high states. The random state reached after k increments is
Z(inck), for which we also write Z(k). Given numbers 0 � � < h we say that Z
is an (h, �)-counter with error probability λ < 1

2 if for all k ∈ N we have:

˛ If k � �, then Pr[Z(k) is high] � λ.

˛ If k � h, then Pr[Z(k) is low] � λ.

In other words, a probabilistic counter can distinguish values below � from values
above h but does not make any statements for counter values strictly between �
and h. A Bernoulli counter Zp is parameterized by a probability 0 < p < 1 and
has the state set {0, 1}, where 0 is a low state and 1 is a high state. Initially the
counter is in the state x = 0. On every increment we set x = 1 with probability
p; the state remains unchanged with probability 1 − p. We have

Pr[Zp(k) is low] = (1 − p)k and Pr[Zp(k) is high] = 1 − (1 − p)k.

Let us first show the following claim.

Lemma 6.7. For all h, �, ξ > 0 with ξ < 1 and � � (1−ξ)h there exists 0 < p < 1
such that Zp is an (h, �)-counter with error probability 1/2 − ξ/8.

88 Chapter 6. Randomized sliding window algorithms

Proof. We need to choose p such that (i) 1 − (1 − p)(1−ξ)h 6 1/2 − ξ/8, or
equivalently, 1/2 + ξ/8 6 (1 − p)(1−ξ)h, and (ii) (1 − p)h 6 1/2 − ξ/8, or
equivalently, (1 − p)(1−ξ)h 6 (1/2 − ξ/8)1−ξ. It suffices to show

1
2
+
ξ

8
6

(
1
2
−
ξ

8

)1−ξ

, (6.1)

then one can pick p = 1 − (1/2 − ξ/8)1/h. Note that (ii) holds automatically
for this value of p. Taking logarithms shows that (6.1) is equivalent to ln(4 +

ξ) − ln 8 6 (1 − ξ) · (ln(4 − ξ) − ln 8), and by rearranging we obtain ln(4 + ξ) 6
ln(4 − ξ) + ξ(ln 8 − ln(4 − ξ)). Since ln 8 − ln(4 − ξ) > ln 8 − ln 4 = ln 2, it
suffices to prove

ln(4 + ξ) 6 ln(4 − ξ) + ξ ln 2. (6.2)

One can verify 3 ln 2 ≈ 2.0794 > 2. We have:

4 + ξ 6 4 + (3 ln 2 − 1)ξ = 4 + (4 ln 2 − 1)ξ− ξ ln 2 6

6 4 + (4 ln 2 − 1)ξ− ξ2 ln 2 = (4 − ξ)(ξ ln 2 + 1)

By taking logarithms and plugging in ln x 6 x− 1 for all x > 0, we obtain

ln(4 + ξ) 6 ln(4 − ξ) + ln(ξ ln 2 + 1) 6 ln(4 − ξ) + ξ ln 2

This proves (6.2) and hence (6.1), and thus the statement.

Proposition 6.8. For all h, `, ξ > 0 and 0 < λ ′ < 1/2 with ` 6 (1−ξ)h there exists
an (h, `)-counter Z with error probability λ ′ which usesO(log log(1/λ ′)+log(1/ξ))
bits.

Proof. We apply Lemma 6.2 to Lemma 6.7 with λ = 1/2− ξ/8, which states that
we need to run k = O(log(1

λ′
) · 1
ξ2) copies to reduce the error probability to λ ′.

The states of Z(k)
p are multisets over {0, 1} of size k, which can be encoded by

O(logk) = O(log log 1
λ′

+ log 1
ξ
) bits by specifying the number of 1-bits in the

multiset.

6.4 Suffix-free languages

In this section we prove Theorem 6.5(3). Since languages in ST ∪ Len have
constant space SW-algorithms it suffices to show:

Theorem 6.9. If L is regular and suffix-free then FrL(n) = O(log logn).

Fix a suffix-free regular language L ⊆ Σ∗ and let B = (Q,Σ, F, δ,q0) be an
rDFA for L where all states are reachable. Excluding the trivial case L = ∅, we
assume that B contains at least one final state. Furthermore, since L is suffix-free,
any run in B contains at most one final state. Therefore, we can assume that F
contains exactly one final state qF, and all outgoing transitions from qF lead to a

6.4. Suffix-free languages 89

sink state. For a stream w ∈ Σ∗ define the function �w : Q→ N ∪ {∞} by

�w(q) = inf{k ∈ N | lastk(w) · q = qF}, (6.3)

where we set inf(∅) = ∞. Notice that lastn(w) ∈ L if and only if �w(q0) = n. A
deterministic streaming algorithm can maintain the value �w where w ∈ Σ∗ is
the stream prefix read so far: If a symbol a ∈ Σ is read, we can determine

�wa(q) =

{
0, if q = qF,

1 + �w(a · q), otherwise,
(6.4)

where 1 +∞ = ∞. Since this would require storing O(logn) bit numbers we
use probabilistic counters instead.

Let n ∈ N be a window size. The sliding window algorithm Pn for L consists
of two parts: a constant-space threshold algorithm Tn, which rejects with high
probability whenever �w(q0) � 2n, and a modulo-counting algorithm Mn, which
maintains �w modulo a random prime number with O(log logn) bits.

Lemma 6.10 (Threshold counting). There exists a randomized streaming algo-
rithm Tn with O(1) bits such that for all w ∈ Σ∗ we have:

˛ Pr[Tn accepts w] � 2/3, if �w(q0) � n, and

˛ Pr[Tn rejects w] � 2/3, if �w(q0) � 2n.

Proof. By Proposition 6.8 there is a (2n,n)-counter Z with error probability 1/3
which uses O(1) space. Let C be its state space and let c∞ ∈ C be an arbitrary
high state. The algorithm Tn maintains a random function c : Q→ C such that
on input stream w ∈ Σ∗ we have

c(q) =

{
Z(�w(q)), �w(q) <∞,

c∞, �w(q) = ∞.

Initially we set the states accordingly, i.e. for every state q ∈ Q, if �ε(q) < ∞
then we initialize an instance of Z in c(q) and increment it �ε(q) times, and
otherwise we set c(q) = c∞. Given an input symbol a ∈ Σ, we compute the new
function c ′ from c. First we set c ′(qF) = c∞, since no nonempty run from qF is
accepting. For all q ∈ Q \ {qF} we set c ′(q) = c(a · q) · inc since

c ′(q) = c(a · q) · inc = Z(1 + �w(a · q)) = Z(�wa(q)).

The algorithm accepts if and only if c(q0) is low. Correctness follows from the
properties of Proposition 6.8.

Lemma 6.11 (Modulo counting). There exists a randomized streaming algorithm
Mn with O(log logn) bits such that for all w ∈ Σ∗ we have:

˛ Pr[Mn accepts w] = 1, if �w(q0) = n, and

90 Chapter 6. Randomized sliding window algorithms

˛ Pr[Mn rejects w] � 2/3, if �w(q0) < 2n and �w(q0)
= n.

Proof. Let pi be the i-th prime number and let s(m) be the product of all prime
numbers � m. It is known that ln(s(m)) > m · (1 − 1/ lnm) for m � 41
[101, p. 3.16] and pi < i · (ln i + ln ln i) for i � 6 [101, p. 3.13]. Let k be
the first natural number such that

∏k
i=1 pi � n. By the above bounds we get

k = O(logn) and p3k = O(logn · log logn). The algorithm Mn initially picks
a random prime p ∈ {p1, . . . ,p3k}, which is stored throughout the run using
O(log logn) bits. Then, after reading w ∈ Σ∗, Mn stores for every q ∈ Q a bit
telling whether �w(q) <∞ and, if the latter holds, the values �w(q) mod p using
O(|Q| · log logn) bits. This can be maintained according to (6.4). The algorithm
accepts if and only if �w(q0) ≡ n mod p.

If �w(q0) = n then the algorithm always accepts. Now assume �w(q0) < 2n
and �w(q0) < n. Since −n � �w(q0) − n � n and any product of at least k+ 1
pairwise distinct primes exceeds n, the number �w(q0) − n
= 0 has at most k
prime factors. Therefore, Mn rejects with probability at least 2/3.

By combining both algorithms above we can prove Theorem 6.9. The al-
gorithm Pn is the conjunction of the threshold algorithm Tn and the modulo
counting algorithm Mn. Recall that lastn(w) ∈ L if and only if �w(q0) = n. If
�w(q0) = n then both algorithms accept with probability 2/3. If �w(q0)
= n

then either Mn or Tn rejects with probability 2/3.

6.5 Lower bounds with two-sided error

In this section, we prove the lower bounds from Theorem 6.5. Point (2) from
Theorem 6.5 follows easily from the relation FL(n) = 2O(Fr

L(n)) (Lemma 6.4).
Since every language L ∈ Reg \ 〈ST, Len〉 satisfies FL(n) = Ω(logn) infinitely
often by Section 4.2.4 it also satisfies FrL(n) = Ω(log logn) infinitely often.

For (4) and (6) we apply known lower bounds from communication com-
plexity by deriving a randomized communication protocol from a randomized
SW-algorithm. This is in fact a standard technique for obtaining lower bounds
for streaming algorithms.

6.5.1 Communication complexity

We present the necessary background from communication complexity; see [82]
for a detailed introduction. We only need the one-way setting where Alice sends
a single message to Bob. Consider a function f : X× Y → {0, 1} for some finite
sets X and Y. A randomized one-way (communication) protocol P = (a,b) consists
of functions a : X× Ra → {0, 1}∗ and b : {0, 1}∗ × Y × Rb → {0, 1}, where Ra and
Rb are finite sets of random choices of Alice and Bob, respectively. The cost of P
is the maximum number of bits transmitted by Alice, i.e.

cost(P) = max
x∈X,ra∈Ra

|a(x, ra)|.

6.5. Lower bounds with two-sided error 91

Moreover, probability distributions are given on Ra and Rb. Alice computes
from her input x ∈ X and a random choice ra ∈ Ra the value a(x, ra) and sends
it to Bob. Using this value, his input y ∈ Y and a random choice rb ∈ Rb he
outputs b(a(x, ra),y, rb). The random choices ra ∈ Ra, rb ∈ Rb are chosen
independently from each other. The protocol P computes f if for all (x,y) ∈ X×Y
we have

Pr
ra∈Ra,rb∈Rb

[P(x,y)
= f(x,y)] � 1
3

. (6.5)

where P(x,y) is the random variable b(a(x, ra),y, rb). The randomized one-
way communication complexity C(f) of f is the minimal cost among all one-way
randomized protocols that compute f (with an arbitrary number of random bits).
The choice of the constant 1/3 in (6.5) is arbitrary in the sense that changing
the constant to any λ < 1/2 only changes the cost C(f) by a fixed constant
(depending on λ), see [82, p. 30]. We will use established lower bounds on the
following functions:

Theorem 6.12 ([81, Theorem 3.7 and 3.8]). Let n ∈ N.

˛ The index function

IDXn : {0, 1}n × {1, . . . ,n} → {0, 1}

(a1 · · ·an, i) �→ ai.

has randomized one-way communication complexity Θ(n).

˛ The greater-than function

GTn : {1, . . . ,n}× {1, . . . ,n} → {0, 1}

with GTn(i, j) = 1 iff i > j has randomized one-way communication com-
plexity Θ(logn).

The bounds above also hold for the deterministic one-way communication
complexity as witnessed by the trivial deterministic protocols. We also define the
equality function EQn : {1, . . . ,n}2 → {0, 1} by EQn(i, j) = 1 if and only if i = j.
Its randomized one-way communication complexity is Θ(log logn) whereas its
deterministic one-way communication complexity is Θ(logn) [82].

6.5.2 Linear lower bound

We start with the proof of (6) from Theorem 6.5, which extends our linear space
lower bound from the deterministic setting to the randomized setting.

Proposition 6.13. If L ∈ Reg \ 〈LI, Len〉 then FrL(n) = Ω(n) infinitely often.

Proof. By Theorem 4.24 any rDFA for L is not well-behaved and by Lemma 4.7
there exist words u = u1u2, v = v1v2, z ∈ Σ∗ such that |u1| = |v1|, |u2| =

|v2| and L separates u2{u, v}∗z and v2{u, v}∗z. Let η : {0, 1}∗ → {u, v}∗ be the
homomorphism defined by η(0) = u and η(1) = v.

92 Chapter 6. Randomized sliding window algorithms

Now consider a randomized SW-algorithm Pn for L and window length
n = |u2| + |u| ·m + |z| for some m > 1. We describe a randomized one-way
communication protocol for IDXm.

Let α = α1 · · ·αm ∈ {0, 1}m be Alice’s input and i ∈ {1, . . . ,m} be Bob’s input.
Alice reads η(α) into Pn and sends the memory state using O(s(P)) bits to Bob.
Continuing from the received state, Bob reads uiz into Pn. Then the active
window is

lastn(η(α)uiz) = s η(αi+1 · · ·αm)uiz ∈ {u2, v2}{u, v}∗z

where s = u2 if αi = 0 and s = v2 if αi = 1. Hence from the output of Pn
Bob can determine whether αi = 1. The cost of the protocol Pm is bounded by
O(s(Pn)) and must be at least Ω(m) = Ω(n) by Theorem 6.12 we conclude that
s(Pn) = Ω(n). Therefore FrL(n) = Ω(n) infinitely often.

6.5.3 Logarithmic lower bound

Next we prove point (4) from Theorem 6.5. For that, we need the following
automaton property. In the following let B = (Q,Σ, F, δ,q0) be an rDFA.

A pair (p,q) ∈ Q × Q of states is called synchronized if there exist words
x,y, z ∈ Σ∗ with |x| = |y| = |z| > 1 such that q x←− q, q

y←− p, p z←− p. A pair (p,q)
is called reachable if p and q are reachable from q0. A state pair (p,q) is called
F-consistent if either {p,q} ∩ F = ∅. or {p,q} ⊆ F. We remark that synchronized
state pairs have no connection to the notion of synchronizing words.

Lemma 6.14. A state pair (p,q) is synchronized if and only if p and q are
nontransient and there exists a nonempty run q

y←− p whose length is divided by
|Q|!.

Proof. Let x,y, z ∈ Σ+ with |x| = |y| = |z| = k such that q x←− q, q
y←− p, p z←− p.

Then p and q are nontransient and we have q
x|Q|!−1y←−−−−− p where x|Q|!−1y has

length (|Q|! − 1) · k+ k = |Q|! · k.
Conversely, assume that p and q are nontransient and there exists a nonempty

run q
y←− p whose length is divided by |Q|!. Since the states p and q are

nontransient, there are words x and z of length at most |Q| with q x←− q and
p
z←− p. These words can be pumped up to have length |y|.

Let Q = T ∪ N be the partition of the state set into the set T of transient
states and the set N of nontransient states. A function β : N→ {0, 1} is k-periodic
if β(i) = β(i+ k) for all i ∈ N.

Lemma 6.15. Assume that every reachable synchronized pair in B is F-consistent.
Then for every word v ∈ Σ∗ of length at least |Q|!·(|T |+1) there exists a |Q|!-periodic
function βv : N→ {0, 1} such that the following holds: If w ∈ Σ∗v and w · q0 ∈ N,
then we have w ∈ L iff β(|w|) = 1.

Proof. Let v = ak · · ·a2a1 with k > |Q|! · (|T |+ 1), and consider the run

qk
ak←− · · · a2←− q1

a1←− q0 (6.6)

6.5. Lower bounds with two-sided error 93

of B on v. Clearly, each transient state can occur at most once in the run. First
notice that for each 0 6 i 6 |Q|! − 1 at least one of the states in

Qi = {qi+j|Q|! | 0 6 j 6 |T |}

is nontransient because otherwise the set would contain |T |+ 1 pairwise distinct
transient states. Furthermore, we claim that the nontransient states in Qi are
either all final or all nonfinal: Take two nontransient states qi+j1|Q|! and qi+j2|Q|!

with j1 < j2. Since we have a run of length (j2− j1)|Q|! from qi+j1|Q|! to qi+j2|Q|!,
the states form a synchronized pair by Lemma 6.14. Hence, by assumption the
two states are F-consistent.

Now define βv : N→ {0, 1} by

βv(m) =

{
1, if the states in Qm mod |Q|! ∩N are final,

0, if the states in Qm mod |Q|! ∩N are nonfinal,

which is well-defined by the remarks above. Clearly βv is |Q|!-periodic.
Let w = am · · ·a2a1 ∈ Σ∗v be a word of length m > k. The initial run of B

on w prolongs the run in (6.6):

qm
am←−− · · · a2←− q1

a1←− q0

Assume that qm ∈ N. As argued above, there is a position 0 6 i 6 k such
that i ≡ m (mod |Q|!) and qi ∈ N. Hence (qi,qm) is a synchronized pair by
Lemma 6.14, which is F-consistent by assumption. Therefore w ∈ L iff qm ∈ F
iff qi ∈ F iff βv(|w|) = 1.

Lemma 6.16. Assume that every reachable synchronized pair in B is F-consistent.
Then L(B) belongs to 〈ST, SF, Len〉.

Proof. Given a subset P ⊆ Q let L(B,P) := L(Q,Σ,P, δ,q0). Let FN = N ∩ F and
FT = T ∩ F. We disjointly decompose L into

L = L(B, FN) ∪
⋃
q∈FT

L(B, {q}).

First observe that L(B, {q}) ∈ SF for all q ∈ FT because a transient state q can
occur at most once in a run of B.

It remains to show that L(B, FN) belongs to 〈ST, SF, Len〉. Using the threshold
k = |Q|! · (|T | + 1), we distinguish between words of length at most k − 1 and
words of length at least k, and group the latter set by their suffixes of length k:

L(B, FN) = (L(B, FN) ∩ Σ6k−1) ∪
⋃
v∈Σk

(L(B, FN) ∩ Σ∗v).

The first part L(B, FN) ∩ Σ6k−1 is finite and thus suffix testable. To finish the
proof, we will show that L(B, FN) ∩ Σ∗v ∈ 〈ST, SF, Len〉 for each v ∈ Σk. Let
v ∈ Σk and let βv : N → {0, 1} be the |Q|!-periodic function from Lemma 6.15.

94 Chapter 6. Randomized sliding window algorithms

The lemma implies that

L(B, FN) ∩ Σ∗v = (Σ∗v ∩ {w ∈ Σ∗ | β(|w|) = 1}) \ L(B, T).

The language {w ∈ Σ∗ | β(|w|) = 1} is a regular length language, Σ∗v is suffix
testable and L(B, T) is a finite union of suffix-free regular languages.

The following lemma is an immediate consequence of Lemma 6.16.

Lemma 6.17. If L ∈ Reg \ 〈ST, SF, Len〉 then there exist u, x,y, z ∈ Σ∗ with
|x| = |y| = |z| > 1 such that L separates u∗xy∗z and y∗z.

Proposition 6.18. If L ∈ Reg \ 〈ST, SF, Len〉 then FrL(n) = Ω(logn) infinitely
often.

Proof. Consider the words u, x,y, z ∈ Σ∗ described in Lemma 6.17. Let n =

|y| ·m + |z| for some m > 1 and let Pn be a randomized SW-algorithm for L.
We describe a randomized one-way protocol for GTm: Let 1 6 i 6 m be the
input of Alice and 1 6 j 6 m be the input of Bob. Alice starts reads umxym−i

into Pn and she sends the reached state to Bob using O(s(Pn)) bits. Bob then
continues the run of Pn from the transmitted state with the word yjz. Hence Pn

is simulated on the word w := umxym−iyjz = umxym−i+jz. We have

lastn(w) =

{
ui−1−jxym−i+jz, if i > j,

ymz, if i 6 j.

By Lemma 6.17, lastn(w) belongs to L in exactly one of the two cases i > j and
i 6 j. Hence Bob can distinguish these two cases with probability at least 2/3.
It follows that the protocol computes GTm and its cost is bounded by s(Pn).
By Theorem 6.12 we can conclude that s(Pn) = Ω(logm) = Ω(logn), and
therefore FrL(n) = Ω(logn) infinitely often.

6.6 Lower bounds in the variable-size model

In the following we look at randomized algorithms in the variable-size model.
First we transfer the definitions from Section 3.3 randomized setting in a straight-
forward way. A variable-size sliding window algorithm P for ϕ : Σ∗ → Y is a
randomized streaming algorithm for SW(ϕ). Its space complexity is v(P,n) =
| logM6n| ∈ N ∪ {∞} where M6n contains all memory states in P which are
reachable with positive probability in P on inputs w ∈ Σ∗↓ with mwl(w) 6 n.
Since the variable-size sliding window model subsumes the fixed-size model
we have Frϕ(n) 6 v(P,n) for every randomized variable-size sliding window
algorithm P for ϕ.

Again we raise the question if randomness can improve the space complexity
in the variable-size model. We claim that, in contrast to the fixed-size model, here
the space complexity is unaltered. First, the upper bounds are inherited from the
deterministic setting, i.e. languages in 〈LI, Len〉 have O(logn) space complexity,

6.7. Lower bounds with one-sided error 95

and trivial languages have O(1) space complexity. For every regular language
L which is not contained in 〈LI, Len〉 we proved a linear lower bound on FrL(n)
(Proposition 6.13), which is also a lower bound on the space complexity of any
randomized variable-size sliding window algorithm for L. It remains to look at
nontrivial languages, for which we have proved a logarithmic lower bound in
the deterministic setting (Lemma 3.7).

Lemma 6.19. If P is a randomized variable-size SW-algorithm for a nontrivial
problem then v(P,n) = Ω(logn).

Proof. Let ϕ : Σ∗ → Y be a nontrivial problem. Hence there is a length-minimal
word a1 · · ·ak ∈ Σ∗ such that ϕ(ε) 6= ϕ(a1 · · ·ak). By minimality we have
ϕ(a1 · · ·ak) 6= ϕ(a2 · · ·ak). Let P be a randomized variable-size SW-algorithm
for ϕ. By Lemma 6.2 we can assume that the error probability of P is at most
1/6, which increases its space complexity v(P,n) by a constant factor.

For every n ∈ N we construct a protocol for GTn with cost O(v(P,n)). Let
1 6 i 6 n be the input of Alice and 1 6 j 6 n be the input of Bob. Alice starts
two instances of P (using independent random bits) and reads ai1 into both of
them. She sends the memory states to Bob using O(v(P, i)) 6 O(v(P,n)) bits.
Bob then continues from both states, and reads ↓j a2 · · ·ak into the first instance
and ↓j+1 a1 · · ·ak into the second instance. Let y1,y2 ∈ Y be the outputs of the
two instances of P. With high probability, namely 1 − (1 − 1/6)2 > 2/3, the
answers are correct, i.e.

y1 = ϕ(wnd(ai1 ↓j a2 · · ·ak)) and y2 = ϕ(wnd(ai1 ↓j+1 a1 · · ·ak)).

Bob returns true, i.e. he claims i > j, if and only if y1 = y2.
Let us prove the correctness. If i > j then

ϕ(wnd(ai1 ↓j a2 · · ·ak)) = ϕ(ai−j1 a2 · · ·ak) = ϕ(wnd(ai1 ↓j+1 a1 · · ·ak))

and hence Bob returns true. If i 6 j then

ϕ(wnd(ai1 ↓j a2 · · ·ak)) = ϕ(a2 · · ·ak)

and
ϕ(wnd(ai1 ↓j+1 a1 · · ·ak)) = ϕ(a1 · · ·ak).

By assumption these values are distinct and therefore Bob returns false.

6.7 Lower bounds with one-sided error

So far, we have only considered randomized SW-algorithms with a two-sided
error (analogously to the complexity class BPP). Randomized SW-algorithms with
a one-sided error (analogously to the classes RP and CORP) can be motivated
by applications, where all “yes”-outputs or all “no”-outputs, respectively, have
to be correct. We distinguish between true-biased and false-biased algorithms.

96 Chapter 6. Randomized sliding window algorithms

A true-biased (randomized) streaming algorithm P for a language L satisfies the
following properties:

˛ If w ∈ L then Pr[P accepts w] � 2/3.

˛ If w /∈ L then Pr[P rejects w] = 1.

A false-biased (randomized) streaming algorithm P for a language L satisfies the
following properties:

˛ If w ∈ L then Pr[P accepts w] = 1.

˛ If w /∈ L then Pr[P rejects w] � 2/3.

Let F0L(n) (and F1L(n)) be the minimal space complexity s(Pn) of any true-biased
(false-biased) streaming algorithm Pn for L and window size n. Since algorithms
with one-sided error are stronger than algorithms with two-sided error, but
weaker than deterministic algorithms we have the relations FrL(n) � FiL(n) �
FL(n) for i ∈ {0, 1}, and F0L(n) = F1Σ∗\L(n).

We show that for all regular languages SW-algorithms with a one-sided error
have no advantage to their deterministic counterparts.

Theorem 6.20 (One-sided error). For every regular language L we have:

(1) If L ∈ 〈ST, Len〉 then F0L(n) and F1L(n) are O(1).

(2) If L /∈ 〈ST, Len〉 then F0L(n) and F1L(n) are Ω(logn) infinitely often.

(3) If L ∈ 〈LI, Len〉 then F0L(n) and F1L(n) are O(logn).

(4) If L /∈ 〈LI, Len〉 then F0L(n) and F1L(n) are Ω(n) infinitely often.

The upper bounds in (1) and (3) already hold for deterministic SW-algorithms
(Theorem 4.35). Moreover, the lower bound in (4) already holds for SW-
algorithms with two-sided error (Theorem 6.5(5)). It remains to prove point
(2) of the theorem. In fact we show that any nondeterministic SW-algorithm
for a regular language L /∈ 〈ST, Len〉 requires Ω(logn) space. A nondetermin-
istic SW-algorithm for a language L and window size n is an NFA Pn with
L(Pn) = SWn(L), and its space complexity is s(Pn) = log |Pn|. If we have a
true-biased randomized SW-algorithm for L we can turn it into a nondetermin-
istic SW-algorithm by keeping only those transitions with positive probabilities
and making all states q initial which have a positive initial probability ι(q) > 0.
Therefore, it suffices to show the following statement:

Proposition 6.21. Let L ∈ Reg \ 〈ST, Len〉. Then for infinitely many n every
nondeterministic SW-algorithm Pn for L has Ω(

√
n) many states.

For the proof of Proposition 6.21 we need the following lemma.

Lemma 6.22. Let L ⊆ a∗ and n ∈ N such that L separates {an} and {ak | k > n}.
Then every NFA for L has at least

√
n many states.

6.8. Conclusion 97

Proof. The easy case is an ∈ L and ak /∈ L for all k > n. If an NFA for L
would have at most n states then any successful run on an must have a state
repetition. By pumping one can construct a successful run on ak for some k > n,
contradiction.

Now assume an /∈ L and ak ∈ L for all k > n. The proof is essentially the
same as for [70, Lemma 6], where the statement of the lemma is shown for
L = a∗ \ {an}. Let us give the proof for completeness. It is known that every
unary NFA has an equivalent NFA in so-called Chrobak normal form. A unary
NFA in Chrobak normal form consists of path starting in the unique initial state.
From the last state of the path, edges go to a collection of disjoint cycles. In
[53] it is shown that an m-state unary NFA has an equivalent NFA in Chrobak
normal form whose initial path consists of m2 −m states. Now assume that L is
accepted by an NFA with m states and let A be the equivalent Chrobak normal
form NFA, whose initial path consists of m2 −m states. If n � m2 −m then all
states that are reached in A from the initial state via an belong to a cycle and
every cycle contains such a state. Since an /∈ L, all these states are rejecting.
Hence, an+x·d /∈ L for all x � 0, where d is the product of all cycle lengths. This
contradicts the fact that ak ∈ L for all k > n. Hence, we must have n < m2 −m

and therefore m >
√
n.

Proof of Proposition 6.21. Let L ∈ Reg \ 〈ST, Len〉. By Theorem 4.19 and the
results from Section 4.1.2 there are words x,y, z ∈ Σ∗ such that |x| = |y| and L
separates xy∗z and y∗z. Note that we must have x
= y.

Fix an m � 0 and consider the window size n = |x| + m|y| + |z|. Let
Pn = (Q,Σ, I,Δ, F) be a nondeterministic SW-algorithm for L, i.e. it is an NFA
for SWn(L). Notice that Pn separates {xymz} and {xykz | k > m}. We define an
NFA A over the unary alphabet {a} as follows:

˛ The state set of A is Q.

˛ The set of initial states of A is {q ∈ Q | ∃p ∈ I : p x−→ q in Pn}.

˛ The set of final states of A is {p ∈ Q | ∃q ∈ F : p z−→ q in Pn}.

˛ The set of transitions of A is {(p,a,q) | p
y−→ q in Pn}.

It recognizes the language L(A) = {ak | xykz ∈ SWn(L)}, and therefore L(A)

separates {am} and {ak | k > m}. By Lemma 6.22, A and thus Pn has at least√
m = Ω(

√
n) many states.

This proves F0L(n) = Ω(logn) infinitely often for L ∈ Reg \ 〈ST, Len〉. Since
Reg \ 〈ST, Len〉 is closed under complement this also implies a Ω(logn) lower
bound on F1L(n) for all L ∈ Reg \ 〈ST, Len〉.

6.8 Conclusion

We proved that most of the space lower bounds for deterministic sliding window
algorithms for regular languages also hold for randomized algorithms. The

98 Chapter 6. Randomized sliding window algorithms

only exception are the languages in 〈SF, ST, Len〉, which have deterministic
space complexity O(logn) but randomized space complexity O(log logn). The
situation is similar to the one-way communication complexity of index (Θ(n)),
greater-than (Θ(logn)), and equality function (deterministic Θ(logn) and ran-
domized Θ(log logn)).

Uniform setting One can again consider the setting where the language
L ∈ 〈LI, Len〉 is given as an automaton. In Theorem 4.42 we showed that
an exponential dependence of the automaton size is unavoidable. We conjecture
that the same holds for randomized algorithms.

Streaming algorithms with small failure ratio In [G3] we proposed a more
relaxed definition of correctness of randomized sliding window algorithms. A
randomized SW-algorithm is said to have failure ratio φ if the portion of all time
instants where the algorithm gives a correct answer with probability > 1/3 is at
most φ. Let us only summarize the results.

Theorem 6.23. For every regular language L ⊆ Σ∗ we have:

˛ If L ∈ 〈LI, PF, Len〉 and 0 < φ � 1 then L has a randomized SW-algorithm
which has failure ratio φ and uses O(1) space.

˛ If L /∈ 〈LI, PF, Len〉 then there exist 0 < φ � 1 and infinitely many window
sizes n for which any randomized SW-algorithm for L uses Ω(n) space.

Theorem 6.24. For every regular language L ⊆ Σ∗ we have:

˛ If L ∈ 〈LB, PF, SF, Len〉 and 0 < φ � 1 then L has a deterministic SW-
algorithm which has failure ratio φ and uses O(logn) space.

˛ If L /∈ 〈LB, PF, SF, Len〉 then there exist 0 < φ � 1 and infinitely many
window sizes n for which any deterministic SW-algorithm for L uses Ω(logn)
space.

˛ If L ∈ 〈LI, PF, Len〉 and 0 < φ � 1 then L has a deterministic SW-algorithm
which has failure ratio φ and uses O(logn) space.

˛ If L /∈ 〈LI, PF, Len〉 then there exist 0 < φ � 1 and infinitely many window
sizes n for which any deterministic SW-algorithm for L uses Ω(n) space.

Here PF denotes the class of regular prefix-free languages, and LB denotes the
class of all languages Σ∗L where L is a regular language which is both prefix-free
and suffix-free.

Chapter 7

Sliding window property
testing

7.1 Introduction

The results presented so far show that simple languages as a{a,b}∗ require linear
space in the sliding window model, even for randomized algorithms. This gives
the motivation to seek for alternative approaches in order to achieve efficient
algorithms for all regular languages. We take our inspiration from the property
testing model introduced by Goldreich et al. [64]. In this model, the task is to
decide (with high probability) whether the input has a particular property P,
or is “far” from any input satisfying it. The distance measure on words that is
commonly used is the Hamming distance, which counts the positions at which
two words differ. For a function γ(n), we say that a word w of length n is
γ(n)-far from satisfying P, if the Hamming distance between w and any word
w ′ satisfying P is at least γ(n). We will call the function γ(n) the Hamming
gap of the tester. We must make the decision by querying as few symbols of the
input as possible, and the query complexity of the algorithm is defined to be
equal to the number of inspected symbols. The motivation is that when working
with large-scale data, accessing a data item is a very time-expensive operation.
The membership problem for a regular language in the property testing model
was studied by Alon et al. [4] who showed that for every regular language L
and every ε > 0, there is a property tester with Hamming gap γ(n) = εn and
two-sided error for deciding membership in L that makes only a constant number
of queries.

In this chapter we introduce a class of algorithms called sliding window
(property) testers, which must accept if the active window has the property P
and reject if it is far from satisfying P. We consider deterministic sliding window
property testers and randomized sliding window property testers with one-sided
and two-sided error. A similar but simpler model of streaming property testers,
where the whole stream is considered, was introduced by Feigenbaum et al. [44].

99

100 Chapter 7. Sliding window property testing

François et al. [52] continued the study of this model in the context of language
membership problems and came up with a streaming property tester for visibly
pushdown languages that uses polylogarithmic space.

While at first sight the only connection between property testers and sliding
window property testers is that we must accept the input if it satisfies P and reject
if it is far from satisfying P, there is, in fact, a deeper link. In particular, the above
mentioned result of Alon et al. [4] combined with an optimal sampling algorithm
for sliding windows [23], immediately yields a O(logn)-space, two-sided error
sliding window property tester with Hamming gap γ(n) = εn for every regular
language. We will improve on this observation. Our main contribution are tight
complexity bounds for deterministic and randomized sliding window property
testers for regular languages.

The results of this chapter appeared in [G8].

7.2 Sliding window testers for regular languages

The Hamming distance between two words u = a1 · · ·an and v = b1 · · ·bn of
equal length is the number of positions where u and v differ, i.e. dist(u, v) =
|{i | ai
= bi}|. If |u|
= |v| we set dist(u, v) = ∞. The distance of a word u to
a language L is defined as dist(u,L) = inf{dist(u, v) | v ∈ L} ∈ N ∪ {∞}. In this
chapter γ : N → R�0 is always a function with γ(n) � n for all n ∈ N.

Sliding window testers with one- and two-sided error A deterministic sliding
window (property) tester for a language L ⊆ Σ∗ and window size nwith Hamming
gap γ(n) is a deterministic streaming algorithm Pn over the alphabet Σ with the
following properties:

˛ If lastn(w) ∈ L, then Pn accepts w.

˛ If dist(lastn(w),L) > γ(n), then Pn rejects w.

A randomized sliding window tester for a language L ⊆ Σ∗ and window size
n with Hamming gap γ(n) is a randomized streaming algorithm Pn over the
alphabet Σ with the following properties. It has two-sided error if for every input
stream w ∈ Σ∗ we have:

˛ If lastn(w) ∈ L, then Pr[Pn accepts w] � 2/3.

˛ If dist(lastn(w),L) > γ(n), then Pr[Pn rejects w] � 2/3.

It is true-biased if for every input stream w ∈ Σ∗ we have:

˛ If lastn(w) ∈ L, then Pr[Pn accepts w] � 2/3.

˛ If dist(lastn(w),L) > γ(n), then Pr[Pn rejects w] = 1.

It is false-biased if for every input stream w ∈ Σ∗ we have:

˛ If lastn(w) ∈ L, then Pr[Pn accepts w] = 1.

7.2. Sliding window testers for regular languages 101

˛ If dist(lastn(w),L) > γ(n), then Pr[Pn rejects w] � 2/3.

We remark that all known property testers with one-sided error are false-biased,
cf. [4, 52, 64]. Again, the success probability 2/3 is an arbitrary choice in
light of Lemma 6.2. The case of Hamming gap γ(n) = 0 corresponds to exact
membership testing to L from the previous chapters. We will focus on the two
cases γ(n) = O(1) and γ(n) = εn for some ε > 0.

Main results Our first main result is a deterministic logspace sliding window
tester for every regular language.

Theorem 7.1. For every regular language L there exists a deterministic sliding
window tester for L with constant Hamming gap which uses O(logn) space.

Again we use the path summary algorithm for (possibly not well-behaved)
rDFAs. If the path summary of a run is accepting then the run itself might not be
accepting but it can be made accepting by modifying a short prefix.

Theorem 7.1 cannot be improved whenever L is a nontrivial regular language.
A language is L ⊆ Σ∗ is γ(n)-trivial if there exists a number n0 such that for all
n � n0 with L ∩ Σn
= ∅ and all w ∈ Σn we have dist(w,L) � γ(n). Hence for
large enough n, whenever L ∩ Σn
= ∅, then there is a trivial sliding window
tester, which always accepts, and has Hamming gap γ(n). If L is O(1)-trivial
we say that L is trivial. Note that Alon et al. [4] call a language L trivial if L is
(εn)-trivial for all ε > 0 according to our definition. In fact, we will prove that
both definitions coincide for regular languages (Corollary 7.10).

Theorem 7.2. For every nontrivial regular language L there exist ε > 0 and
infinitely many window sizes n ∈ N for which every true-biased sliding window
tester with Hamming gap εn uses space Ω(logn).

Next we consider randomized sliding window property testers. With the
help of Bernoulli counters we can construct a constant-space randomized sliding
window property tester with two-sided error for any regular language.

Theorem 7.3. For every regular language L and every ε > 0 there exists a ran-
domized sliding window tester for L with two-sided error and Hamming gap εn
that uses space O(1/ε).

While the randomized setting with two-sided error allows ultra-efficient
testers, one could argue that allowing a two-sided error is a strong relaxation.
To this end, we study the randomized setting with one-sided error. In this setting
only unions of trivial and suffix-free languages admit sliding window testers
working in space o(logn).

Theorem 7.4. If L is a finite union of trivial regular languages and suffix-free
regular languages then there exists a false-biased randomized sliding window tester
for L with constant Hamming gap which uses O(log logn) space.

Theorem 7.5. Let L be a regular language.

102 Chapter 7. Sliding window property testing

(1) If L is not a finite union of trivial regular languages and suffix-free regular
languages there exist ε > 0 and infinitely many window sizes n for which
every false-biased sliding window tester for L with Hamming gap εn uses
space Ω(logn).

(2) If L is nontrivial then there exist ε > 0 and infinitely many window sizes n
for which every false-biased sliding window tester for L with Hamming gap
εn uses space Ω(log logn).

(Co-)nondeterministic sliding window algorithms The lower bounds from
Theorem 7.2 and Theorem 7.5 will in fact be proven for (co-)nondeterministic
algorithms, which include algorithms with one-sided error and deterministic
algorithms. A co-nondeterministic finite automaton (coNFA) P has the same
format as an NFA but accepts a word w if and only if all initial runs of P on w are
accepting. A (co-)nondeterministic sliding window tester Pn for a language L with
Hamming gap γ(n) is an (co-)NFA Pn which accepts a stream w if lastn(w) ∈ L,
and rejectsw if dist(lastn(w),L) > γ(n). Its space complexity is s(Pn) = log |Pn|.
Every true-biased sliding window tester can be turned into a nondeterministic
sliding window tester; every false-biased sliding window tester can be turned
into a co-nondeterministic one.

7.3 Trivial languages

Let us start by analyzing trivial regular languages. The reason we introduce
trivial languages the way we do (and a justification to call them “trivial”) is
stated in the following theorem:

Theorem 7.6. If L is a trivial language (not necessarily regular), then for every
window size n there is a deterministic sliding window tester for L with constant
Hamming gap which uses constant space. The converse is also true: Let L be
a language which has a deterministic constant-space sliding window tester with
Hamming gap γ(n) for every window size n. Then there exists a constant c such
that L is (γ(n) + c)-trivial.

Proof. Assume first that L is trivial. Let n ∈ N be a window size. If L ∩ Σn = ∅,
then the algorithm always rejects, which is obviously correct since any active
window of length n has infinite Hamming distance to L. Otherwise, the algorithm
always accepts. In this case, we use the fact that L is trivial, i.e. there is a constant
c such that the Hamming distance between an arbitrary active window of length
n and L is at most c.

We now show the converse statement. For each window size n ∈ N let Pn
be a deterministic sliding window tester for L with Hamming gap γ(n) with a
constant number of states, say s states. Let N ⊆ N be the set of all n such that
L ∩ Σn 6= ∅. Note that every Pn with n ∈ N accepts a nonempty language. The
number of deterministic sliding window testers (DFAs) with at most s states
over the input alphabet Σ is bounded by a fixed constant d (up to isomorphism).

7.3. Trivial languages 103

Hence, at most d different DFAs can appear in the list (Pn)n∈N. We therefore
can choose numbers n1 < n2 < · · · < ne from N with e 6 d such that for every
n ∈ N there exists a unique ni 6 n with Pn = Pni (here and in the following we
do not distinguish between isomorphic DFAs). Let us choose for every 1 6 i 6 e
some word ui ∈ L of length ni. Now take any n ∈ N and assume that Pn = Pni
where ni 6 n. Consider any word u ∈ Σ∗ui. Since lastni(u) = ui ∈ L, Pni has
to accept u. Hence, Pn accepts all words from Σ∗ui. In particular, for every
word x of length n − ni, Pn accepts xui. This implies that dist(xui,L) 6 γ(n)
for all x ∈ Σn−ni . Recall that this holds for all n ∈ N and that N is the set of all
lengths realized by L. Hence, if we define c := max{n1, . . . ,ne}, then every word
w of length n ∈ N has Hamming distance at most γ(n) + c from a word in L.
Therefore L is (γ(n) + c)-trivial.

In the rest of the section we show that every nontrivial regular language L
is already not εn-trivial for some ε > 0. For this we first show some auxiliary
results that will be also used in Section 7.5. Given i, j > 0 and a word w of
length at least i + j we define cuti,j(w) = y such that w = xyz, |x| = i and
|z| = j. If |w| < i+ j, then cuti,j(w) is undefined. For a language L we define the
cut-language cuti,j(L) = {cuti,j(w) | w ∈ L}.

Lemma 7.7. If L is regular, then there are finitely many languages cuti,j(L).

Proof. Let A = (Q,Σ,q0, δ, F) be a DFA for L. Given i, j > 0, let I be the set of
states reachable from q0 via i symbols and let F ′ be the set of states from which
F can be reached via j symbols. Then the NFA Ai,j = (Q,Σ, I, δ, F ′) recognizes
cuti,j(L). Since there are at most 22|Q| such choices for I and F ′, the number of
languages of the form cuti,j(L) must be finite.

Lemma 7.8. If cuti,j(L) is a length language for some i, j > 0, then L is trivial.

Proof. Assume that cuti,j(L) is a length language. Let n ∈ N such that L∩Σn 6= ∅
and n > i + j. We claim that dist(w,L) 6 i + j for all w ∈ Σn. Let w ∈ Σn and
w ′ ∈ L ∩ Σn. Then cuti,j(w ′) ∈ cuti,j(L) and hence also cuti,j(w) ∈ cuti,j(L).
Therefore there exist x ∈ Σi and z ∈ Σj such that x cuti,j(w) z ∈ L satisfying
dist(w, x cuti,j(w) z) 6 i+ j.

The restriction of a language L to a set of lengths N ⊆ N is L|N = {w ∈ L :

|w| ∈ N}. A language L excludes a word w as a factor if w is not a factor of any
word in L. A simple but important observation is that if L excludes w as a factor
and v contains k disjoint occurrences of w, then dist(v,L) > k: If we change at
most k− 1 many symbols in v, then the resulting word v ′ must still contain w as
a factor and hence v ′ /∈ L.

Proposition 7.9. Let L be regular. If cuti,j(L) is not a length language for all i, j >
0, then L has an infinite restriction L|N to an arithmetic progression N = d+ eN
which excludes a factor.

Proof. First notice that cuti,j(L) determines cuti+1,j(L) and cuti,j+1(L): we have
cuti+1,j(L) = cut1,0(cuti,j(L)) and similarly for cuti,j+1(L). Since the number

104 Chapter 7. Sliding window property testing

of cut-languages cuti,j(L) is finite there exist numbers i > 0 and d > 0 such
that cuti,0(L) = cuti+d,0(L). Hence, we have cuti,j(L) = cuti+d,j(L) for all
j > 0. By the same argument, there exist numbers j > 0 and e > 0 such that
cuti,j(L) = cuti,j+e(L) = cuti+d,j(L) = cuti+d,j+e(L), which implies cuti,j(L) =
cuti,j+h(L) = cuti+h,j(L) = cuti+h,j+h(L) for some h > 0 (we can take h = ed).
This implies that cuti,j(L) is closed under removing prefixes and suffixes of length
h.

By assumption cuti,j(L) is not a length language, i.e. there exist words y ′ ∈
cuti,j(L) and y /∈ cuti,j(L) of the same length k. Let N = {k+ i+ j+ hn | n ∈ N}.
For any n ∈ N the restriction L|N contains a word of length k+ i+ j+hn because
y ′ ∈ cuti,j(L) = cuti+hn,j(L). This proves that L|N is infinite.

Let u be an arbitrary word which contains for every remainder 0 6 r 6 h− 1
an occurrence of y as a factor starting at a position which is congruent to r mod
h. We claim that L|N excludes aiuaj as a factor where a is an arbitrary symbol.
Assume that there exists a word w ∈ L|N which contains aiuaj as a factor. Then
cuti,j(w) contains u as a factor, has length k+ hn for some n > 0, and belongs
to cuti,j(L). Therefore cuti,j(w) also contains h many occurrences of y, one per
remainder 0 6 r 6 h− 1. Consider the occurrence of y in cuti,j(w) which starts
at a position which is divisible by h, i.e. we can factorize cuti,j(w) = xyz such
that |x| is a multiple of h. Since cuti,j(w) has length k+ hn also |z| is a multiple
of h. Therefore y ∈ cuti+|x|,j+|z|(L) = cuti,j(L), which is a contradiction.

Corollary 7.10. For every regular language L, the following statements are equiva-
lent:

(i) L is trivial.

(ii) L is εn-trivial for every ε > 0.

(iii) cuti,j(L) is a length language for some i, j > 0.

Proof. If cuti,j(L) is a length language then L is trivial by Lemma 7.8, and thus
also εn-trivial for any ε > 0. It remains to show the direction (ii) to (iii). If (iii)
would not hold then some infinite restriction L|N of L excludes a factor w by
Proposition 7.9. Hence if n ∈ N and v is any word of length n, which contains
at least bn/|w|c many disjoint occurrences of w, then dist(v,L) > bn/|w|c.

Examples of trivial languages include all prefix testable and all suffix testable
languages, and also the set of all words over {a,b} which contain an even number
of a’s.

7.4 Upper bounds

For this section we fix a regular language L and an rDFA B = (Q,Σ, F, δ,q0). All
presented sliding window testers are based on the path summary algorithm from
Section 4.1.

7.4. Upper bounds 105

7.4.1 Preliminary results

First observe that in sliding window property testing, space complexity is pre-
served under finite unions since dist(w,L1 ∪ L2) = min(dist(w,L1), dist(w,L2)).

Lemma 7.11. Let P1 and P2 be randomized sliding window testers for L1 and L2,
respectively, for window size n with Hamming gap γ(n) and two-sided error. Then
there exists a sliding window tester for L1 ∪ L2 for window size n with Hamming
gap γ(n) and two-sided error using O(s(P1) + s(P2)) bits. The same holds for
randomized algorithms with one-sided error and deterministic algorithms.

Proof. Using Lemma 6.2 we reduce the error of P1 and P2 to 1/6. Then we run
both algorithms in parallel and accept if and only if one of them accepts.

If the window belongs to L1 ∪L2 then either P1 or P2 accepts with probability
5/6. If the window w satisfies dist(w,L1 ∪ L2) > γ(n) then dist(w,Li) > γ(n)
for both i = 1, 2. Hence both algorithms falsely accept with probability at most
1/6 + 1/6 = 1/3.

Strongly connected graphs With the rDFA B we associate the directed graph
(Q,E) with edge set E = {(p, δ(a,p)) | p ∈ Q,a ∈ Σ}. The period g(G) of a
directed graph G is the greatest common divisor of all cycle lengths in G. If G is
acyclic we define the period to be ∞. We will apply the following lemma to the
SCCs of B.

Lemma 7.12 ([4]). Let G = (V,E) be a strongly connected directed graph with
E
= ∅ and finite period g. Then there exist a partition V =

⋃g−1
i=0 Vi and a constant

m(G) � 3|V |2 with the following properties:

˛ For every 0 � i, j � g − 1 and for every u ∈ Vi, v ∈ Vj the length of every
directed path from u to v in G is congruent to j− i modulo g.

˛ For every 0 � i, j � g − 1, for every u ∈ Vi, v ∈ Vj and every integer
r � m(G), if r is congruent to j − i modulo g, then there exists a directed
path from u to v in G of length r.

If G = (V,E) is strongly connected with E
= ∅ and finite period g, and
V0, . . . ,Vg−1 satisfy the properties from Lemma 7.12, then we define the shift
from u ∈ Vi to v ∈ Vj by

shift(u, v) = (j− i) mod g ∈ {0, . . . ,g− 1}. (7.1)

Notice that this definition is independent of the partition
⋃g−1

i=0 Vi since any path
from u to v has length � ≡ shift(u, v) (mod g) by Lemma 7.12. Also note that
shift(u, v) + shift(v,u) ≡ 0 (mod g).

Lemma 7.13 (Uniform period). There exists an rDFA B ′ for L and a number g
such that every nontransient SCC C in B ′ has period g(C) = g.

106 Chapter 7. Sliding window property testing

Proof. Let g be the product of all periods g(C) over all nontransient SCCs C in
B. In the following we compute in the additive group Zg = {0, . . . ,g − 1}. We
define

B× Zg = (Q× Zg,Σ, F× Zg, δ ′, (q0, 0)),

where for all (p, i) ∈ Q× Zg and a ∈ Σ we set

δ ′(a, (p, i)) =

{
(δ(a,p), i+ 1), if p and δ(a,p) are strongly connected,

(δ(a,p), 0), otherwise.

Clearly, B × Zg is equivalent to B. We show that every nontransient SCC of
B×Zg has period g. The nontransient SCCs of B×Zg are the sets C×Zg, where
C is a nontransient SCC of B. Let C be a nontransient SCC of B. Clearly, every
cycle length in C× Zg is a multiple of g. Moreover, by Lemma 7.12 the SCC C
contains a cycle of length k · g(C) for every sufficiently large k ∈ N (k > m(C)

suffices). Since g is a multiple of g(C), C also contains a cycle of length k · g
for every sufficiently large k. But every such cycle induces a cycle of the same
length k · g in C × Zg. Hence there exists k ∈ N such that C × Zg contains
cycles of length k · g and (k+ 1) · g. It follows that the period of C× Zg divides
gcd(k · g, (k+ 1) · g) = g. This proves that the period of C× Zg is exactly g.

Henceforth, we assume that B has property from Lemma 7.13 and fix the
number g such that all nontransient SCCs have period g.

Periodic acceptance sets For a ∈ N and X ⊆ N we use the standard notation
X + a = {a + x | x ∈ X}. For a state q ∈ Q we define Acc(q) = {n ∈ N | ∃w ∈
Σn : δ(w,q) ∈ F}. A set X ⊆ N is eventually d-periodic, where d > 1 is an integer,
if there exists a threshold t ∈ N such that for all x > t we have x ∈ X if and only
if x + d ∈ X. If X is eventually d-periodic for some d > 1, then X is eventually
periodic.

Lemma 7.14. For every q ∈ Q the set Acc(q) is eventually g-periodic.

Proof. It suffices to show that for all 0 6 r 6 g−1 the set Sr = {i ∈ N | r+ i ·g ∈
Acc(q)} is either finite or co-finite. Consider a remainder 0 6 r 6 g− 1 where Sr
is infinite. We need to show that Sr is indeed co-finite. Let i ∈ Sr with i > |Q|,
i.e. there exists an accepting run π from q of length r+ i · g. Since π has length
at least |Q| it must traverse a state q in a nontransient SCC C. Choose j0 such
that j0 · g > m(C) where m(C) is the reachability constant from Lemma 7.12. By
Lemma 7.12 for all j > j0 there exists a cycle from q to q of length j ·g. Therefore
we can prolong π to a longer accepting run by j · g symbols for any j > j0. This
proves that x ∈ Sr for every x > i+ j0 and that Sr is co-finite.

Two sets X, Y ⊆ N are equal up to a threshold t ∈ N, in symbol X =t Y, if for
all x > t: x ∈ X iff x ∈ Y. Two sets X, Y ⊆ N are almost equal if they are equal up
to some threshold t ∈ N.

7.4. Upper bounds 107

Lemma 7.15. A set X ⊆ N is eventually d-periodic iff X and X + d are almost
equal.

Proof. Let t ∈ N be such that for all x > t we have x ∈ X if and only if x+ d ∈ X.
Then X and X + d are equal up to threshold t + d. Conversely, if X =t X + d,
then for all x > t we have x+ d ∈ X if and only if x+ d ∈ X+ d, which is true if
and only if x ∈ X.

Lemma 7.16. Let C be a nontransient SCC in B, p,q ∈ C and s = shift(p,q).
Then Acc(p) and Acc(q) + s are almost equal.

Proof. Let k ∈ N such that k ·g > m(C) wherem(C) is the large enough constant
from Lemma 7.12. By Lemma 7.12 there exists a run from p to q of length s+k·g,
and a run from q to p of length (k+ 1) · g− s (the latter number is congruent to
shift(q,p) modulo g). By prolonging accepting runs we obtain

Acc(q) + s+ k · g ⊆ Acc(p) and Acc(p) + (k+ 1) · g− s ⊆ Acc(q).

Adding s+ k · g to both sides of the last inclusion yields

Acc(p) + (2k+ 1) · g ⊆ Acc(q) + s+ k · g ⊆ Acc(p).

By Lemma 7.14 and Lemma 7.15 the three sets above are almost equal. Also
Acc(q) + s+ k · g is almost equal to Acc(q) + s by Lemma 7.14 and Lemma 7.15.
Since almost equality is a transitive relation, this proves the statement.

Corollary 7.17. There exists a threshold t ∈ N such that

(i) Acc(q) =t Acc(q) + g for all q ∈ Q, and

(ii) Acc(p) =t Acc(q) + shift(p,q) for all nontransient SCCs C and all p,q ∈ C.

We fix the threshold t from Corollary 7.17 in the following. The following
lemma is the main tool to prove the correctness of our sliding window testers. It
states that if a word of length n is accepted from p and ρ is any internal run from
p of length at most n, then, up to a bounded length prefix, ρ can be extended to
an accepting run of length n. Formally, a run π k-simulates a run ρ if one can
factorize ρ = ρ1ρ2 and π = π ′ρ2 where |ρ1| 6 k.

Lemma 7.18. If ρ is an internal run starting from p of length at most n and
n ∈ Acc(p), then there exists an accepting run π from p of length n which t-
simulates ρ.

Proof. If |ρ| 6 t, then we choose any accepting run π from p of length n ∈ Acc(p).
Otherwise, if |ρ| > t, then the SCC C containing p is nontransient and we can
factor ρ = ρ1ρ2 such that |ρ1| = t where ρ2 leads from p to q. Set s := shift(q,p),
which satisfies s + |ρ2| ≡ 0 (mod g) by the properties in Lemma 7.12. Since
Acc(q) =t Acc(p) + s by Corollary 7.17, n > t and n ∈ Acc(p), we have
n+s ∈ Acc(q). Finally since n+s ≡ n−|ρ2| (mod g) and n−|ρ2| = n−|ρ|+t > t
we know n − |ρ2| ∈ Acc(q). This yields an accepting run π ′ from q of length
n− |ρ2|. Then ρ is t-simulated by π = π ′ρ2.

108 Chapter 7. Sliding window property testing

7.4.2 Deterministic sliding window tester

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. Let n ∈ N be a window size. If n < |Q| we use a trivial
streaming algorithm which stores the window explicitly. By Lemma 4.2 we
can maintain the set of all path summaries PSB(w) = {ps(πw,q) | q ∈ Q} for
the active window w ∈ Σn. In fact, the path summary algorithm works for
variable-size windows but we do not need this here. By Proposition 4.3 the path
summary algorithm requires O(logn) bits.

It remains to define a proper acceptance condition. Consider the SCC-
factorization of πw,q0 , say πw,q0 = πmτm−1πm−1 · · · τ1π1 and its path summary
(`m,qm) · · · (`1,q1). The algorithm accepts if and only if the path summary is
accepting, i.e. `m = |πm| ∈ Acc(qm). If w ∈ L then clearly |πm| ∈ Acc(qm). If
|πm| ∈ Acc(qm) then the internal run πm can be t-simulated by an accepting run
π ′m of equal length by Lemma 7.18. The run π ′mτm−1πm−1 · · · τ1π1 is accepting
and witnesses that pdist(w,L) 6 t.

7.4.3 Sliding window tester with two-sided error

Fix a parameter 0 < ε < 1 and a window length n ∈ N. The goal is to construct a
randomized sliding window tester for L with two-sided error and Hamming gap
εn that uses O(1/ε) bits. If εn/4 < t+ 1 then we use a trivial sliding window
tester that stores the window explicitly with n = O(1/ε) bits. Now assume
t + 1 6 εn/4 and define the parameters h = n − t and ` = (1 − ε)n + t + 1,
which satisfy

`

h
=

(1 − ε)n+ t+ 1
n− t

6
(1 − ε)n+ ε

4n

n− ε
4n

=
1 − 3

4ε

1 − 1
4ε

=
1 − 1

4ε

1 − 1
4ε

−
1
2ε

1 − 1
4ε
6 1 −

1
2
ε.

(7.2)

Let Z be the (h, `)-counter with error probability 1/(3|Q|) from Proposition 6.8,
which uses O(log(1/ε)) space by (7.2). The counter is used to define so-called
compact summaries of runs.

A compact summary κ = (qm, rm, cm) · · · (q2, r2, c2)(q1, r1, c1) is a sequence
of triples, where each triple (qi, ri, ci) consists of a state qi ∈ Q, a remainder
0 6 ri 6 g − 1, and a state ci of the (h, `)-counter Z. The state c1 is always
low, and r1 = 0. We say that κ represents a run π if the SCC-factorization of π
has the form πmτm−1πm−1 · · · τ1π1, and the following properties hold for all
1 6 i 6 m:

(C1) πi starts in qi;

(C2) ri = |τi−1πi−1 · · · τ1π1| mod g;

(C3) if |τi−1πi−1 · · · τ1π1| 6 (1 − ε)n+ t+ 1 then ci is a low state;

7.4. Upper bounds 109

qi−1qiqi+1 q1qm

πi−1τi−1πiτi

ci and ri (mod g)

Figure 7.1: A compact summary of a run π.

(C4) if |τi−1πi−1 · · · τ1π1| � n− t then ci is a high state.

The idea of a compact summary is visualized in Figure 7.1. If m > |Q| then
the above compact summary cannot represent a run. Therefore, we can assume
that m � |Q|. For every triple (qi, ri, ci), the entries qi and ri only depend
on the rDFA B, and hence can be stored with O(1) bits. Every state ci of the
probabilistic counter needs O(log(1/ε)) bits. Hence, a compact summary can
be stored in O(log(1/ε)) bits. In contrast to Theorem 7.1, we maintain a set of
compact summaries which represent all runs of B on the complete stream read
so far (not only on the active window) with high probability.

Proposition 7.19. For a given input stream w ∈ Σ∗, we can maintain a set of
compact summaries S containing for each q ∈ Q a compact summary κq ∈ S

starting in q such that κq represents the unique run πw,q with probability at least
2/3.

Proof. For each state in Q, we initialize the compact summary so that it repre-
sents the run πε,q. Consider a compact summary κ = (qm, rm, cm) · · · (q1, r1, c1),
which represents a run πx,q1 . We prolong κ by a transition q1

a←− p in B as fol-
lows:

˛ if p and q are not in the same SCC, then we increment all counter states
ci, increment all remainders ri mod g, and append a new triple (p, 0, c1);

˛ if p and q belong to the same SCC, then we increment all counter states
ci for 2 � i � m, increment the remainder ri mod g for 2 � i � m, and
replace q1 by p.

If a ∈ Σ is the next input symbol of the stream, then S is updated to the new
set S ′ of compact summaries by iterating over all transitions q a←− p in B and
prolonging the compact summary starting in q by that transition.

To verify correctness, consider a compact summary κ computed by the algo-
rithm. Properties (C1) and (C2) are satisfied by construction. Furthermore, since
the length of κ is bounded by |Q| and each instance of Z has error probability
1/(3|Q|) the probability that property (C3) or (C4) is violated is at most 1/3 by
the union bound.

It remains to define an acceptance condition on compact summaries. For
every q ∈ Q we define

Accmod(q) = {� mod g | � ∈ Acc(q) and � � t}.

110 Chapter 7. Sliding window property testing

Let κ = (qm, rm, cm) · · · (q1, r1, c1) be a compact summary. Since c1 is the
low initial state of the probabilistic counter, there exists a maximal index i ∈
{1, . . . ,m} such that ci is low. We say that κ is accepting if n − ri (mod g) ∈
Accmod(qi).

Proposition 7.20. Assume that εn > t. Let w ∈ Σ∗ with |w| > n and let κ be a
compact summary which represents πw,q0 .

(i) If lastn(w) ∈ L, then κ is accepting.

(ii) If κ is accepting, then pdist(lastn(w),L) 6 εn.

Proof. Consider the SCC-factorization of π = πw,q0 = πmτm−1 · · · τ1π1. Let
κ = (qm, cm, rm) · · · (q1, c1, r1) be a compact summary representing π. Thus,
q1 = q0. Consider the maximal index 1 6 i 6 m where ci is low, which means
that |τi−1πi−1 · · · τ1π1| < n − t by (C4). The run of B on lastn(w) has the
form π ′kτk−1πk−1 · · · τ1π1 for some suffix π ′k of πk. We have |π ′kτk−1 · · ·πi| =
n− |τi−1πi−1 · · · τ1π1| > t. By (C2) we know that

ri = |τi−1πi−1 · · · τ1π1| mod g = n− |π ′kτk−1 · · ·πi| mod g.

For point 1 assume that lastn(w) ∈ L. Thus, π ′kτk−1πk−1 · · · τ1π1 is an accepting
run starting in q0. By (C1) the run π ′kτk−1 · · ·πi starts in qi. Hence, π ′kτk−1 · · ·πi
is an accepting run from qi of length at least t. By definition of Accmod(qi) we
have

|π ′kτk−1 · · ·πi| mod g = n− ri mod g ∈ Accmod(qi),

and therefore κ is accepting.
For point 2 assume that κ is accepting, i.e.

(n− ri) mod g = |π ′kτk−1 · · ·πi| mod g ∈ Accmod(qi).

Recall that |π ′kτk−1 · · ·πi| > t. By definition of Accmod(qi) there exists an accept-
ing run from qi whose length is congruent to |π ′kτk−1 · · ·πi| mod g and at least
t. By point (i) from Corollary 7.17 we derive that |π ′kτk−1 · · ·πi| ∈ Acc(qi). We
claim that |πiτi−1πi−1 · · · τ1π1| > (1 − ε)n + t by a case distinction. If i = m,
then clearly |πiτi−1πi−1 · · · τ1π1| > n > (1 − ε)n+ t. If i < m, then ci+1 is high
by maximality of i, which implies |τiπi · · · τ1π1| > (1−ε)n+ t+1 by (C3). Since
τi has length one, we have |πiτi−1πi−1 · · · τ1π1| > (1 − ε)n+ t.

Since |π ′kτk−1 · · ·πi| ∈ Acc(qi), we can apply Lemma 7.18 and obtain an ac-
cepting run ρ of length |π ′kτk−1 · · ·πi| ∈ Acc(qi) starting in qi which t-simulates
the internal run πi. The prefix distance from ρ to π ′kτk−1 · · ·πi is at most

|π ′kτk−1 · · · τi|+ t = n− |πiτi−1πi−1 · · · τ1π1|+ t 6 n− (1 − ε)n = εn.

Therefore the prefix distance from the accepting run ρτi−1πi−1 · · · τ1π1 to the run
π ′kτk−1πk−1 · · · τ1π1 is also at most εn. This implies pdist(lastn(w),L) 6 εn.

We are now ready to prove Theorem 7.3.

7.4. Upper bounds 111

Proof of Theorem 7.3. As mentioned above we use a trivial sliding window al-
gorithm whenever εn/4 < t + 1, using O(1/ε) bits. Otherwise, we use the
algorithm from Proposition 7.19, which is initialized by reading �n. It maintains
a compact summary which represents πw,q0 with probability 2/3 for the read
stream prefix w. The algorithm accepts if that compact summary is accepting.
From Proposition 7.20 we get:

˛ If lastn(w) ∈ L, then the algorithm accepts with probability at least 2/3.

˛ If pdist(lastn(w),L) > εn, then the algorithm rejects with probability at
least 2/3.

This concludes the proof of Theorem 7.3.

7.4.4 Sliding window tester with one-sided error

Let L be a finite union of trivial regular languages and suffix-free regular lan-
guages. In this section, we present a randomized sliding window tester for L
with one-sided error and Hamming gap γ(n) = εn that uses space O(log logn).
By Lemma 7.11 and Theorem 7.6, it suffices to consider the case when L is a
suffix-free regular language. Since L is suffix-free, B has the property that no
final state can be reached from a final state by a nonempty run. We decompose
B into a finite union of partial rDFAs, cf. Section 4.2.2.

A path description is a sequence

(qk,ak,pk−1),Ck−1, . . . , (q2,a2,p1),C1, (q1,a1,p0),C0,q0

where Ck−1, . . . ,C0 is a chain (read from right to left) in the SCC-ordering of B,
pi,qi ∈ Ci, qi+1

ai+1←−−− pi is a transition in B for all 0 � i � k− 1, and qk ∈ F.
Each path description defines a partial rDFA BP = (QP,Σ, {qk}, δP,q0) by

restricting B to the state set QP =
⋃k−1

i=0 Ci ∪ {qk}, restricting the transitions of
B to internal transitions from the SCCs Ci and the transitions qi+1

ai+1←−−− pi, and
declaring qk to be the only final state. The rDFA is partial since for every state
pi and every symbol a ∈ Σ there exists at most one transition q a←− pi. Since the
number of path descriptions P is finite and L(B) =

⋃
P L(BP), we can fix a single

path description P and provide a sliding window tester for L(BP) (we again use
Lemma 7.11 here).

From now on, we fix a path description

P = (qk,ak,pk−1),Ck−1, . . . , (q2,a2,p1),C1, (q1,a1,p0),C0,q0

and the partial automaton BP = (QP,Σ, {qk}, δP,q0) corresponding to it. The
acceptance sets Acc(q) are defined with respect to BP. If all Ci are transient,
then L(BP) is a singleton and we can use a trivial sliding window tester with
space complexity O(1). Now assume the contrary and let 0 � e � k − 1 be
maximal such that Ce is nontransient.

112 Chapter 7. Sliding window property testing

Lemma 7.21. There exist numbers r0, . . . , rk−1, s0, . . . , se ∈ N such that the
following holds:

(i) For all e+ 1 6 i 6 k, the set Acc(qi) is a singleton.

(ii) Every run from qi to qi+1 has length ri (mod g).

(iii) For all 0 6 i 6 e, Acc(qi) =si
∑k−1
j=i rj + gN.

Proof. Point (i) follows immediately from the definition of transient SCCs. Let
us now show the second part of the claim.

Let 0 6 i 6 k − 1 and let Ni be the set of lengths of runs of the form
qi+1

ai+1←−−− pi
w←− qi in BP. If Ci is transient, then Ni = {1}. Otherwise, by

Lemma 7.12 there exist a number ri ∈ N and a cofinite set Di ⊆ N such that
Ni = ri + gDi. We can summarize both cases by saying that there exist a
number ri ∈ N and a set Di ⊆ N which is either cofinite or Di = {0} such that
Ni = ri + gDi. This implies point (ii). Then the acceptance sets in BP satisfy

Acc(qi) =
k−1∑
j=i

Nj =

k−1∑
j=i

(rj + gDj) =

k−1∑
j=i

rj + g

k−1∑
j=i

Dj.

For all 0 6 i 6 e we get Acc(qi) =si
∑k−1
j=i rj + gN for some threshold si ∈ N

(note that a nonempty sum of cofinite subsets of N is again cofinite).

Let p be a random prime with Θ(log logn) bits. We choose p as in the proof
of Lemma 6.11 such that Pr[` ≡ n (mod p)] 6 1/3 for all 0 6 ` < 2n, ` 6= n.
Define a threshold s = max{k,

∑k−1
j=0 rj, s0, . . . , se} and for a word w ∈ Σ∗ define

the function `w : Q→ N ∪ {∞} where

`w(q) = inf{` ∈ N | δP(last`(w),q) = qk}

(we set inf ∅ = ∞). We now define an acceptance condition on `w(q). If
n /∈ Acc(q0), we always reject. Otherwise, we accept w iff `w(q0) ≡ n (mod p).

Lemma 7.22. Let n ∈ Acc(q0) be a window size with n > s + |QP | and w ∈ Σ∗
with |w| > n. There exists a constant c > 0 such that:

(i) if lastn(w) ∈ L(BP), then w is accepted with probability 1;

(ii) if pdist(lastn(w), L(BP)) > c, then w is rejected with probability at least
2/3.

Proof. Assume first that lastn(w) ∈ L(BP). Since L(BP) ⊆ L is suffix-free,
`w(q0) = n (mod p) and w is accepted with probability 1.

Consider now the case when lastn(w) /∈ L(BP). By definition, in this case
`w(q0) 6= n. In other words, only two cases are possible: either `w(q0) < n,
or `w(q0) > n. If `w(q0) < n, then by the choice of p we have `w(q0) 6≡ n

(mod p) with probability at least 2/3.
We finally consider the case `w(q0) > n. We will show that in this case the

prefix distance between lastn(w) and L(BP) is bounded by a constant c, which

7.4. Upper bounds 113

means that we can either accept or reject. Let π be the initial run of BP on
lastn(w), and let π = πmτm−1πm−1 · · · τ0π0 be its SCC-factorization. We have
|π| = n. Since `w(q0) > n, the run π can be strictly prolonged to a run to qk and
hence we must have m < k. For all 0 6 i 6 m, the run πi is an internal run in
the SCC Ci from qi to pi. For all 0 6 i 6 m − 1 we have τi = (qi+1

ai+1←−−− pi)
and |τiπi| ≡ ri (mod g), by point (ii) from Lemma 7.21. We claim that there
exists an index 0 6 i0 6 m such that the following three properties hold:

1. qi0 is nontransient,

2. |πmτm−1πm−1 · · · τi0πi0 | > s,

3. |πmτm−1πm−1 · · · τi0+1πi0+1| 6 s+ |QP |.

Indeed, let 0 6 i 6 m be the smallest integer such that qi is nontransient
(recall that n > |QP | and hence π must traverse a nontransient SCC). Then
τi−1πi−1 · · · τ0π0 only passes transient states and hence its length is bounded by
|QP |. Therefore we have

|πmτm−1πm−1 · · · τiπi| = n− |τi−1πi−1 · · · τ0π0| > n− |QP | > s.

Now let 0 6 i0 6 m be the largest integer satisfying properties 1 and 2.
If πmτm−1πm−1 · · · τi0+1πi0+1 only passes transient states, then its length is
bounded by m− i0 6 s+m, and we are done. Otherwise, let i0 + 1 6 j 6 m be
the smallest integer such that qj is nontransient. The run τj−1πj−1 · · · τi0+1πi0+1

only passes transient states and therefore it has length j− i0 − 1. By maximality
of i0, we have |πmτm−1πm−1 · · · τjπj| < s and hence property 3 holds:

|πmτm−1πm−1 · · · τi0+1πi0+1| = |πm · · · τjπj|+ |τj−1πj−1 · · · τi0+1πi0+1|

< s+ j− i0 6 s+m.

Let 0 6 i0 6 m be the index satisfying properties 1-3. Since qi0 is nontran-
sient, we have i0 6 e and therefore Acc(qi0) =s

∑k−1
j=i0

rj + gN. We have
|πmτm−1πm−1 · · · τi0πi0 | ∈ Acc(qi0) because it is larger than s (by property 2)
and

|πmτm−1πm−1 · · · τi0πi0 | = n− |τi0−1πi0−1 · · · τ0π0|

≡ n−

i0−1∑
j=0

rj ≡
k−1∑
j=i0

rj (mod g),

where the last congruence follows from the fact that n ∈ Acc(q0) =s
∑k−1
j=0 rj +

gN.

By Lemma 7.18 there exists an accepting run π ′ which t-simulates πi0 and
has length |πmτm−1πm−1 · · · τi0πi0 |. The prefix distance between the runs π =

114 Chapter 7. Sliding window property testing

πmτm−1πm−1 · · · τ0π0 and π ′τi−1πi0−1 · · · τ0π0 is at most

|πmτm−1πm−1 · · · τi0 |+ t = |πmτm−1πm−1 · · · τi0+1πi0+1|+ 1 + t

6 1 + s+m+ t

by property 3.

Proof of Theorem 7.4. Let n ∈ N be the window size. From the discussion above,
it suffices to give a sliding window tester for a fixed partial automaton BP.
Assume n > s + |Q|, otherwise a trivial tester can be used. If n /∈ Acc(q0),
the tester always rejects. Otherwise, the tester picks a random prime p with
Θ(log logn) bits and maintains `w(q) (mod p) for all q ∈ QP, where w is the
stream read so far, which requires O(log logn) bits. When a symbol a ∈ Σ
is read, we can update `wa using `w: If q = qk, then `wa(q) = 0, otherwise
`wa(q) = 1 + `w(δP(a,q)) (mod p) where 1 +∞ = ∞. The tester accepts if
`w(q0) ≡ n (mod p). Lemma 7.22 guarantees that the tester is false-biased.

7.5 Lower bounds

7.5.1 Tradeoff between Hamming gap and space

Comparing Theorem 7.1 and Theorem 7.3 leads to the question whether one
can replace the Hamming gap γ(n) = εn in Theorem 7.3 by a sublinear function
γ(n) while retaining constant space at the same time. We show that this is not
the case:

Lemma 7.23. Let L = a∗ ⊆ {a,b}∗. Every randomized sliding window tester with
two-sided error for L and window size n with Hamming gap γ(n) needs space
Ω(logn− logγ(n)).

Proof. We reduce from the greater-than-function GTm, whose randomized one-
way communication complexity isΩ(logm) (Theorem 6.12). Consider a random-
ized sliding window tester Pn for a∗ and window size n with Hamming gap γ(n).
Let k := γ(n) + 1 and define m = bn/kc. Hence we have n = mk+ r for some
r < k. We divide the window intom blocks of length k. We then obtain a random-
ized one-way protocol for the greater-than-function on the interval {1, . . . ,m}:
Alice produces from her input i ∈ {1, . . . ,m} the word wi = bkar+(m−i)k. She
then runs Pn on wi and sends the memory state to Bob. Bob continues the run
of the randomized sliding window tester, starting from the transferred memory
state, with the input stream ajk. He obtains the memory state reached after
the input bkar+(m−i+j)k. Finally, Bob outputs the negated answer given by the
randomized sliding window tester. If i 6 j, then lastn(bkar+(m−i+j)k) = an ∈ L.
On the other hand, if i > j, then

|bkar+(m−i+j)k| = k+ r+ (m− i+ j)k 6 k+ r+ (m− 1)k = r+mk = n

7.5. Lower bounds 115

and hence lastn(bkar+(m−i+j)k) contains at least k many b’s. Since the Ham-
ming distance between this window and a∗ is at least k = γ(n) + 1, the al-
gorithm must reject with high probability. Therefore s(Pn) = Ω(logm) =

Ω(logn− logγ(n)).

For example if γ(n) 6 nc for some 0 < c < 1 then the space complexity must
be at least Ω(logn).

7.5.2 Nontrivial languages

Next we prove Theorem 7.2 and Theorem 7.5(2). Since every true-biased
sliding window tester can be turned into a nondeterministic one (by forgetting
probabilities), we obtain Theorem 7.2 from the following proposition.

Proposition 7.24. Let L be regular and nontrivial. Then there exists 0 < ε 6 1
and infinitely many window sizes n such that every nondeterministic sliding window
tester for L with Hamming gap εn uses at least logn−O(1) space.

Proof. By Lemma 7.8, cuti,j(L) is not a length language for all i, j > 0. Let N
be the set of lengths from Proposition 7.9 such that L|N is infinite and excludes
some factor wf. Let c = |wf| > 0 and choose 0 < ε < 1/c. Since N is an
arithmetic progression, L|N is regular. Recall that every word v that contains k
disjoint occurrences of wf has Hamming distance at least k from any word in
L|N. Let A = (Q,Σ,q0, δ, F) be a DFA for L|N. Since L(A) is infinite, there must
exist words x,y, z such that y 6= λ and for δ(q0, x) = q we have δ(q,y) = q and
δ(q, z) ∈ F. Let d = |xz| and e = |y| > 0, which satisfy d+ eN ⊆ N.

Fix a window length n ∈ N and consider a nondeterministic sliding window
tester Pn for L and n with Hamming gap εn. Define for k > 0 the input streams

uk = wnf xy
k and vk = ukz = w

n
f xy

kz.

Let α = cε < 1. If 0 6 k 6 b (1−α)n−c−d
e

c, then the suffix of vk of length n
contains at least⌊
n− d− ek

c

⌋
>

⌊
n− d− (1 − α)n+ c+ d

c

⌋
=

⌊
αn+ c

c

⌋
= bεn+ 1c > εn

many disjoint occurrences of wf. Hence, Pn must reject any of the input streams
vk for 0 6 k 6 b (1−α)n−c−d

e
c.

Assume now that the window size n satisfies n > d and n ≡ d (mod e).
Write n = d + le for some l > 0. We have l > b (1−α)n−c−d

e
c. The suffix of

vl = wnf xy
lz of length n is xylz ∈ L|N. Therefore Pn accepts vl, i.e. there

exists a successful run π of Pn on vl. Let m be the number of states of Pn. For
0 6 i 6 l let pi be the state on the run π that is reached after the prefix wnf xy

i

of vl.
Assume now that m 6 b (1−α)n−c−d

e
c. Then there must exist numbers i and

j with 0 6 i < j 6 b (1−α)n−c−d
e

c such that pi = pj =: p. By cutting off cycles
at p from the run π and repeating this, we finally obtain a run of Pn on an

116 Chapter 7. Sliding window property testing

input stream vk = wn
f xy

kz with k � � (1−α)n−c−d

e
�. This run is still successful,

and hence Pn accepts vk with k � � (1−α)n−c−d

e
�. This contradicts our previous

observation. Hence, Pn must have more than � (1−α)n−c−d

e
� states. This implies

s(Pn) � log
(
(1 − α)n− c− d

e

)
� logn+ log(1 − α) −O(1),

which proves the theorem.

Proposition 7.25. Let L be regular and nontrivial. Then there exists 0 < ε � 1
and infinitely many window sizes n such that every co-nondeterministic sliding
window tester for L with Hamming gap εn uses at least log logn−O(1) space.

Proof. We can transform any coNFA P = (Q,Σ, I,Δ, F) into an equivalent DFA
over the state set 2Q using the powerset construction. The only difference to
the powerset construction for NFAs is that a state P ⊆ Q is declared final if
and only if P ⊆ F. Since the lower bound from Proposition 7.24 also holds
for deterministic sliding window testers we obtain log logn −O(1) as a lower
bound for the space complexity of co-nondeterministic sliding window testers
for nontrivial regular languages.

7.5.3 Finite unions of suffix-free and trivial languages

Finally, we need to show the Ω(logn) lower bound in Theorem 7.5(1), which
will be proven for co-nondeterministic SW-testers. We start with the following
observation.

Lemma 7.26. Every regular suffix-free language excludes a factor.

Proof. Let B = (Q,Σ, F, δ,q0) be an rDFA for L. Since L is suffix-free, we can
assume that there is a single minimal SCC that consists of a single state qfail /∈ F
(if a minimal SCC would contain a final state, then L would not be suffix-free).
We have δ(a,qfail) = qfail for all a ∈ Σ. We construct a word wf ∈ Σ∗ such
that δ(p,wf) = qfail for all p ∈ Q. Let p1, . . . ,pm be an enumeration of all
states in Q \ {qfail}. We then construct inductively words w0,w1, . . . ,wm ∈ Σ∗

such that for all 0 � i � m: δ(wi,p) = qfail for all p ∈ {p1, . . . ,pi}. We start
with w0 = ε. Assume that wi has been constructed for some i < m. There
is a word x such that that δ(x, δ(wi,pi+1)) = qfail. We set wi+1 = xwi. Then
δ(wi+1,pi+1) = δ(xwi,pi+1) = qfail and δ(wi+1,pj) = δ(wix,pj) = δ(x,qfail) =

qfail for 1 � j � i. We finally define wf = wm.

Lemma 7.27. Every regular language L satisfies one of the following properties:

˛ L is a finite union of regular trivial languages and regular suffix-free lan-
guages.

˛ L has a restriction L|N which excludes some factor and contains y∗z for some
y, z ∈ Σ∗, |y| > 0.

7.5. Lower bounds 117

Proof. Let B = (Q,Σ, F, δ,q0) be an rDFA for L. Let Br = (Q,Σ, Fr, δ,q0) where
Fr is the set of nontransient final states and Bq = (Q,Σ, {q}, δ,q0) for q ∈ Q.
We can decompose L as a union of Lr = L(Br) and all languages L(Bq) over
all transient states q ∈ F. Notice that L(Bq) is suffix-free for all transient q ∈ F
since any run to q cannot be prolonged to another run to q. If Lr is trivial,
then L satisfies the first property. If Lr is nontrivial, then by Lemma 7.8 and
Proposition 7.9 there exists an arithmetic progression N = a + bN such that
Lr|N is infinite and excludes some word w ∈ Σ∗ as a factor. Let z ∈ Lr|N be any
word. Since Br reaches some nontransient final state p on input z there exists a
word y which leads from p back to p. We can ensure that |y| is a multiple of b by
replacing y by a suitable power yi. Then y∗z ⊆ Lr|N ⊆ L|N. Furthermore since
each language L(Bq) excludes some factor wq by Lemma 7.26 the language
L|N ⊆ Lr|N ∪

⋃
q L(Bq) excludes any concatenation of w and all words wq as a

factor.

Theorem 7.28. Let L be a regular language that is not a finite union of regular
trivial languages and regular suffix-free languages. Then there exist 0 < ε 6 1 and
infinitely many window sizes n for which every co-nondeterministic sliding window
tester for L with Hamming gap εn uses at least logn−O(1) space.

Proof. By Lemma 7.27, L has a restriction L|N which excludes some factor wf
and contains y∗z for some y, z ∈ Σ∗, |y| > 0. Let c = |wf| > 1. We choose
ε < 1/c. Let d = |z| and e = |y|. Fix a window length n ∈ N and define
for k > 0 the input streams uk = wnf y

k and vk = ukz = wnf y
kz. Consider

a co-nondeterministic sliding window tester Pn for L and window size n with
Hamming gap εn. Let α = cε < 1 and r = b (1−α)n−c−d

e
c. If 0 6 k 6 r, then the

suffix of vk of length n contains at least⌊
n− d− ek

c

⌋
>

⌊
n− d− (1 − α)n+ c+ d

c

⌋
=

⌊
αn+ c

c

⌋
= bεn+ 1c > εn

many disjoint occurrences of wf. Hence, Pn must reject the input stream vk
for 0 6 k 6 r, i.e. there is an Pn-run on vk that starts in an initial state and
ends in a nonaccepting state. Consider such a run π for vr. For 0 6 i 6 r let pi
be the state in π that is reached after the prefix wnf y

i of vr. Let now m be the
number of states of Pn and assume m 6 r. There must exist numbers i and j
with 0 6 i < j 6 r such that pi = pj =: p. It follows that there is an Pn-run on
yj−i that starts and ends in state p. Using that cycle we can now prolong the run
π, i.e. for all t > 0 there is an Pn-run on vr+(j−i)·t = w

n
f y
r+(j−i)·tz that starts

in an initial state and ends in a nonaccepting state.
Assume now that the window size satisfies n > d and n ≡ d (mod e). Write

n = d + le for some l > 0. Note again that each n with this property satisfies
n ∈ N since the word ylz belongs to L|N. We have l > b (1−α)n−c−d

e
c = r. For

every k > l, the suffix of vk = wnf y
kz of length n is ylz ∈ L. Therefore Pn

accepts vk, i.e. for all k > l, every Pn-run on vk that starts in an initial state has
to end in an accepting state. This contradicts our observation that for all t > 0
there is an Pn-run on vr+(j−i)·t that goes from an initial state to a nonaccepting

118 Chapter 7. Sliding window property testing

state. Hence, An has at least r+ 1 > (1−α)n−c−d
e

states. It follows that

s(Pn) > log
(
(1 − α)n− c− d

e

)
> logn−O(1).

This proves the theorem.

7.6 Conclusion

In this chapter we proved that every regular language has a randomized (deter-
ministic) sliding window tester using constant (logarithmic) space. We described
the regular languages that are trivial in the context of property testing. Further-
more, we characterized the regular languages that admit sliding window testers
with one-sided error and o(logn) space.

Open problems

1. In the introduction we mentioned the sampling algorithm over sliding
windows [23], which uses O(1) memory words, i.e. O(logn) bits (to store
positions in the window). Using this result, any sampling-based property
tester which makes q(n) queries can be turned into a sliding window
property tester using O(q(n) logn) bits of space, see [23, Theorem 5.1].
We pose the question whether one can rule out a o(logn)-space sampling
algorithm over sliding windows.

2. Does every context-free language have a deterministic sliding window
tester with Hamming gap εn using O(logn) space (or at least space o(n))?

3. Does every context-free language have a randomized sliding window tester
with Hamming gap εn that uses constant space (or at least space o(n))?

Related work The third open problem is related to the question whether every
context-free language has a property tester making o(n) many queries. While the
general case seems to be open, some progress has been done for Dyck languages
[48, 96]. Alon et al. [4] presented a two-sided error property tester for D1

with O(1) queries. For Dm where m > 2 there currently best upper bound on
the query complexity is O(n2/5+δ) for any δ > 0 and the best lower bound is
Ω(n1/5) [48].

Lachish, Newman and Shapira studied the relation between (offline) space
complexity and the query complexity of languages [83]. They construct lan-
guages with space complexity O(s(n)) and query complexity 2Ω(s(n)) for every
log logn 6 s(n) 6 1

10 logn. Furthermore, the authors conjecture that any
language with space complexity s(n) can be tested with 2O(s(n)) many queries.

Chapter 8

Strict correctness

8.1 Introduction

In this chapter we look at a stronger correctness definition of randomized sliding
window algorithms. Let Φ ⊆ Σ∗ × Y be an approximation problem, which
associates with each word w ∈ Σ∗ a set of admissible or correct outputs values
in Y. This generalizes the previous definition of computational problems as
functions ϕ : Σ∗ → Y. For example, let ϕ : Σ∗ → N be a statistical function,
say counting the occurrences of a certain symbol or the number of distinct
symbols. We can define the ε-approximation problem of ϕ to be the set Φε ⊆
Σ∗ × N of all pairs (w,k) such that (1 − ε)ϕ(w) � k � (1 + ε)ϕ(w). To every
approximation problem Φ we associate the sliding window problem SWn(Φ) =

{(x,y) | (lastn(x),y) ∈ Φ} for window length n.
Let P be a randomized streaming algorithm, modelled as a probabilistic

automaton over an alphabet Σ with an output set Y. We look at two correctness
definitions that can be found in the literature.

˛ For every input stream w = a1 · · ·am the probability that after reading w,
P outputs a value y with (w,y) /∈ Φ is at most λ. In this case, we say that
P is λ-correct for Φ. This extends the definition of randomized streaming
algorithms from Chapter 6 to approximation problems.

˛ For every input stream w = a1 · · ·am the probability that on input w,
there exists a time instant 0 � t � m where P outputs a value y with
(a1 · · ·at,y) /∈ Φ is at most λ. In this case, we say that P is strictly λ-correct
for Φ.

If an algorithm is λ-correct, then a priori it is strictly correct, i.e. it produces a
correct output at every time instant, only with probability (1 − λ)m where m is
the length of the stream, which tends to 0 for m→ ∞.

A (strictly) λ-correct randomized sliding window algorithm Pn for Φ and win-
dow size n is a (strictly) λ-correct randomized streaming algorithm for SWn(Φ).
Hence a strictly λ-correct sliding window algorithm produces correct outputs for
all windows during a (potentially long) run with high probability.

119

120 Chapter 8. Strict correctness

Strict correctness is used, without being explicitly mentioned, for instance
in [17, 36]. For instance, Ben-Basat et al. write “We say that algorithm A is
ε-correct on a input instance S if it is able to approximate the number of 1’s
in the last W bits, at every time instant while reading S, to within an additive
error of Wε”. In these papers, the lower bounds shown for deterministic sliding
window algorithms are extended with the help of Yao’s minimax principle [113]
to strictly λ-correct randomized sliding window algorithms. The main result
of this chapter states that this is a general phenomenon: we show that every
strictly λ-correct sliding window algorithm for an approximation problem can be
derandomized without increasing the space usage. The results of this chapter
have appeared in [G7].

8.2 Derandomization

Let Φ ⊆ Σ∗ × Y be an approximation problem and P = (Q,Σ, ι, ρ,o) be a
randomized streaming algorithm. A run π = q0a1 · · ·amqm in P is strictly
correct for Φ if for all 0 6 i 6 m we have (a1 · · ·ai,o(qi)) ∈ Φ, i.e. if the value
returned by the algorithm after reading the prefix a1 · · ·ai is correct. We say
that P is strictly λ-correct for Φ if for all w ∈ Σ∗ we have

Pr
π∈Runs(P,w)

[π is strictly correct for Φ] > 1 − λ.

Recall that the probability for a run π ∈ Runs(P,w) is given by ι(q0) ·ρ(π) where
q0 is the initial state of π.

Fix an approximation problem Φ ⊆ Σ∗ × Y, a window size n ∈ N and a
randomized SW-algorithm Pn = (Q,Σ, ι, ρ,o) which is strictly λ-correct for Φ
where 0 6 λ < 1. In this section we will prove that one can extract a deterministic
SW-algorithm Dn for Φ from Pn such that s(Dn) 6 s(Pn).

Fix a window size n > 0 and let Pn = (Q,Σ, ι, ρ,o). Consider a run

π : q0
a1−→ q1

a2−→ · · · am−−→ qm

in Pn. A subrun of π is a run of the form

qi
ai+1−−−→ qi+1

ai+2−−−→ · · ·qj−1
aj−→ qj.

The run π is simple if qi 6= qj for 0 6 i < j 6 m. Consider a nonempty
subset S ⊆ Q and a function δ : Q × Σ → Q such that S is closed under δ,
i.e. δ(S × Σ) ⊆ S. We say that the run π is δ-conform if δ(qi−1,ai) = qi for
all 1 6 i 6 m. We say that π is (S, δ)-universal if for all q ∈ S and x ∈ Σn
there exists a δ-conform subrun π ′ : q x−→ q ′ of π. Finally, π is δ-universal if it is
(S, δ)-universal for some nonempty subset S ⊆ Q which is closed under δ.

Lemma 8.1. Let π be a strictly correct run in Pn for Φ, let S ⊆ Q be a nonempty
subset and let δ : Q × Σ → Q be a function such that S is closed under δ. If π

8.2. Derandomization 121

is (S, δ)-universal, then there exists q0 ∈ S such that Dn = (Q,Σ,q0, δ,o) is a
deterministic sliding window algorithm for Φ and window size n.

Proof. Let q0 = δ(p,�n) ∈ S for some arbitrary state p ∈ S and define Dn =

(Q,Σ,q0, δ,o). Let w ∈ Σ∗ and consider the run σ : p �n−−→ q0
w−→ q in Dn

of length > n. We have to show that (lastn(w),o(q)) ∈ Φ. We can write
�nw = x lastn(w) for some x ∈ Σ∗. Thus, we can rewrite the run σ as σ : p x−→
q ′

lastn(w)−−−−−→ q. We know that q ′ ∈ S because S is closed under δ. Since π is

(S, δ)-universal, it contains a subrun q ′
lastn(w)−−−−−→ q. By strict correctness of π we

obtain (lastn(w),o(q)) ∈ Φ.

For the rest of this section we fix an arbitrary function δ : Q× Σ → Q such
that for all q ∈ Q, a ∈ Σ,

ρ(q,a, δ(q,a)) = max{ρ(q,a,p) | p ∈ Q}.

Note that
ρ(q,a, δ(q,a)) >

1
|Q|

.

for all q ∈ Q, a ∈ Σ. Furthermore, let Dn = (Q,Σ,q0, δ,o) where the initial
state q0 will be defined later. We define for each i > 1 a state pi, a run π∗i in Dn

on some word wi, and a set Si ⊆ Q. We abbreviate Runs(Pn,w1 · · ·wm) by Rm.
For 1 6 i 6 m let Hi denote the event that for a random run π = π1 · · ·πm ∈ Rm,
where each πj is a run on wj, the subrun πi is (Si, δ)-universal. Notice that Hi is
independent of m > i.

First, we choose for p1 a state that maximizes

Pr
π∈Ri−1

[π ends in pi | ∀j 6 i− 1 : Hj],

which is at least 1/|Q|. Note that p1 is a state such that ι(p1) is maximal, since
R0 only consists of empty runs. Let � be the preorder on Q defined by p � q if
and only if there exists a run q is reachable from p in Dn. For Si we take any
maximal SCC of Dn which is reachable from pi. Finally, we define the run π∗i . It
starts in pi. Then, for each state q ∈ Si and each word x ∈ Σn the run π∗i leads
from the current state to q via a simple run and reads the word x from q. Since
Si is a minimal SCC of Dn such a run exists. Hence, π∗i is a run on a word of the
form

wi =
∏
q∈Si

∏
x∈Σn

yq,x x.

Since we choose the runs on the words yq,x to be simple, the lengths of the
words wi are bounded independently of i. More precisely, we have |wi| 6
|Q| · |Σ|n · (|Q|+ n). Let us define

µ =
1

|Q||Q|·|Σ|n·(|Q|+n)+1 .

122 Chapter 8. Strict correctness

Lemma 8.2. For all m > 0 we have Prπ∈Rm [Hm | ∀i 6 m− 1 : Hi] > µ.

Proof. In the following, let π be a random run from Rm and let πi be the subrun
on wi. Notice that under the assumption that the event [πm−1 ends in pm] holds,
the events [πm = π∗m] and [∀i 6 m − 1 : Hi] are conditionally independent.1

Thus, we have

Pr
π∈Rm

[πm = π∗m | πm−1 ends in pm ∧ ∀i 6 m− 1 : Hi]

= Pr
π∈Rm

[πm = π∗m | πm−1 ends in pm].

Since the event [πm = π∗m] implies the event [πm−1 ends in pm], we obtain:

Pr
π∈Rm

[Hm | ∀i 6 m− 1 : Hi]

> Pr
π∈Rm

[πm = π∗m | ∀i 6 m− 1 : Hi]

= Pr
π∈Rm

[πm = π∗m ∧ πm−1 ends in pm | ∀i 6 m− 1 : Hi]

= Pr
π∈Rm

[πm = π∗m | πm−1 ends in pm ∧ ∀i 6 m− 1 : Hi] ·

Pr
π∈Rm

[πm−1 ends in pm | ∀i 6 m− 1 : Hi]

= Pr
π∈Rm

[πm = π∗m | πm−1 ends in pm] ·

Pr
π∈Rm

[πm−1 ends in pm | ∀i 6 m− 1 : Hi]

> Pr
πm∈Runs(pm,wm)

[πm = π∗m] · 1
|Q|

>
1

|Q||wm|+1 > µ

This proves the lemma.

Lemma 8.3. Prπ∈Rm [π is δ-universal] > Prπ∈Rm [∃i 6 m : Hi] > 1 − (1 − µ)m.

Proof. The first inequality follows from the definition of the event Hi. Moreover,
we have

Pr
π∈Rm

[∃i 6 m : Hi] = Pr
π∈Rm

[∃i 6 m− 1 : Hi] +

Pr
π∈Rm

[Hm | ∀i 6 m− 1 : Hi] · Pr
π∈Rm

[∀i 6 m− 1 : Hi]

= Pr
π∈Rm−1

[∃i 6 m− 1 : Hi] +

Pr
π∈Rm

[Hm | ∀i 6 m− 1 : Hi] · Pr
π∈Rm−1

[∀i 6 m− 1 : Hi]

> Pr
π∈Rm−1

[∃i 6 m− 1 : Hi] + µ · Pr
π∈Rm−1

[∀i 6 m− 1 : Hi].

1Two events A and B are conditionally independent assuming event C if Pr[A∧ B | C] =
Pr[A | C] · Pr[B | C], which is equivalent to Pr[A | B∧C] = Pr[A | C].

8.3. Polynomially long streams 123

Define rm = Prπ∈Rm [∃i 6 m : Hi]. We get

rm > rm−1 + µ · (1 − rm−1) = (1 − µ) · rm−1 + µ.

Since r0 = 0, we get rm > 1 − (1 − µ)m by induction.

Theorem 8.4. There exists q0 ∈ Q such that Dn = (Q,Σ,q0, δ,o) is a determinis-
tic SW-algorithm for Φ and window size n.

Proof. We use the probabilistic method. With Lemma 8.3 we get

Pr
π∈Rm

[π is strictly correct for Φ and δ-universal]

= 1 − Pr
π∈Rm

[π is not strictly correct for Φ or is not δ-universal]

> 1 − Pr
π∈Rm

[π is not strictly correct for Φ] − Pr
π∈Rm

[π is not δ-universal]

> Pr
π∈Rm

[π is δ-universal] − λ

> 1 − (1 − µ)m − λ.

We have 1 − (1 − µ)m − λ > 0 for m > log(1 − λ)/ log(1 − µ) (note that λ < 1
and 0 < µ < 1). Hence there exists an m > 0 and a strictly correct run π ∈ Rm
which is δ-universal. The statement follows directly from Lemma 8.1.

Corollary 8.5. There exists a deterministic sliding window algorithm Dn for Φ
and window size n such that s(Dn) 6 s(Pn).

8.3 Polynomially long streams

The wordw1w2 · · ·wm (withm > log(1−λ)/ log(1−µ)), for which there exists a
strictly correct and δ-universal run has a length that is exponential in the window
size n. In other words: We need words of length exponential in n in order
to transform a strictly λ-correct randomized SW-algorithm into an equivalent
deterministic SW-algorithm. We remark that this is unavoidable: if we restrict
to inputs of polynomial length then strictly λ-correct SW-algorithms can yield a
proper space improvement over deterministic SW-algorithms.

Take the language Kpal = {wwR | w ∈ {a,b}n} of all palindromes of even
length, which belongs to the class DLIN of deterministic linear context-free
languages, and let L = $Kpal.

Lemma 8.6. Any deterministic sliding window algorithm for L and window size
2n+ 1 uses Ω(n) space.

Proof. Let D2n+1 be a deterministic SW-algorithm for L and window size 2n+ 1,
and take two distinct words $x and $y where x,y ∈ {a,b}n. Since D2n+1 accepts
$xxR and rejects $yxR, the algorithm reaches two different states on the inputs
$x and $y. Therefore, D2n+1 must have at least |{a,b}n| = 2n states.

Let us now fix a polynomial p(n).

124 Chapter 8. Strict correctness

Lemma 8.7. Let n ∈ N be a window size. There is a randomized streaming
algorithm Pn with s(Pn) = O(logn) such that

Pr
π∈Runs(Pn,w)

[π is strictly correct for L] � 1 − 1/n

for all w ∈ Σ∗ with |w| � p(n).

Proof. Babu et al. [14] have shown that for every language K ∈ DLIN there
exists a randomized streaming algorithm using space O(logn) which, given an
input w of length n,

˛ accepts with probability 1 if w ∈ K,

˛ and rejects with probability at least 1 − 1/n if w /∈ K.

We remark that the algorithm needs to know the length of w in advance. To
stay consistent with our definition, we view the algorithm above as a family
(Sn)n�0 of randomized streaming algorithms Sn. Furthermore, it is easy to see
that the error probability 1/n can be further reduced to 1/nd where p(n) � nd

for sufficiently large n (by picking random primes of size Θ(nd+1) in the proof
from [14]).

Now we prove our claim for L = $Kpal. The streaming algorithm Pn for
window size n works as follows: After reading a $-symbol, the algorithm Sn−1

from above is simulated on the longest factor from {a,b}∗ that follows. Simulta-
neously we maintain the length � of the maximal suffix over {a,b}, up to n, using
O(logn) bits. If � reaches n − 1, then Pn accepts if and only if Sn−1 accepts.
Notice that Rn only errs if the stored length is n − 1 (with probability 1/nd),
which happens at most once in every n steps. Therefore the number of time
instants where Pn errs on w is bounded by |w|/n � nd/n = nd−1. By the union
bound we have for every stream w ∈ {$,a,b}�p(n):

Pr
π∈Runs(Pn,w)

[π is not strictly correct for L] � nd−1 · 1
nd

=
1
n

.

This concludes the proof.

8.4 Conclusion

To the best of our knowledge, this is the first investigation on the general power
of randomness in sliding window algorithms. We emphasize that our proof does
not utilize Yao’s minimax principle, which would require the choice of a “hard”
distribution of input streams specific to the problem. It remains open, whether
such a hard distribution exists for every approximation problem.

The “easy” direction of Yao’s minimax principle can be viewed as a weak de-
randomization result: For any randomized algorithm (e.g. streaming algorithm,
communication protocol, Boolean circuit) which computes a function f with high

8.4. Conclusion 125

probability there exists a deterministic algorithm with essentially the same com-
plexity which computes f on almost all inputs. However, this argument does not
give a way to construct this deterministic algorithm. Shaltiel [103] proved that,
amongst others, for a given polynomial-time computable family of randomized
streaming algorithms (one for each stream length) computing functions fn there
is a polynomial-time computable family of deterministic streaming algorithms
which compute fn on almost all inputs.

In the proof we construct for each randomized SW-algorithm a strictly correct
“worst case” stream (the δ-universal run), from which we can extract a determin-
istic SW-algorithm. It would be interesting whether such a worst case stream can
be constructed independently from the randomized SW-algorithm.

Let us also remark that it is crucial for our proof that the input alphabet (i.e.
the set of data values in the input stream) is finite. This is for instance the case
when counting the number of 1’s in a 0/1-sliding window. On the other hand,
the problem of computing the sum of all data values in a sliding window of
arbitrary numbers (a problem that is considered in [36] as well) is not covered
by our setting, unless one puts a bound on the size of the numbers in the input
stream.

126 Chapter 8. Strict correctness

Chapter 9

Context-free languages

9.1 Introduction

In this chapter we investigate to which extent the results for regular languages
can be generalized to context-free languages. Our first main result (Theorem 9.1)
states that any context-free language L with space complexity FL(n) 6 logn−

ω(1) must be regular. By Theorem 4.16 the space complexity FL(n) is indeed
constant and hence L is a Boolean combination of suffix-testable languages and
regular length languages by Theorem 4.19. Our proof uses a variant of the
classical pumping lemma. The crucial observation is that taking a reversed
Greibach normal form grammar for L, we can ensure that pumping in a word of
length n does not affect a suffix of length o(n).

Theorem 9.1 shows that, analogous to regular languages, there is a gap
between O(1) and O(logn) in the space complexity spectrum for context-free
languages. This leads to the question whether there is also a gap between
O(logn) and O(n) (as it is the case for regular languages). We answer this
question negatively. For this we construct from a linear bounded automaton
(LBA) a context-free language, whose sliding window space complexity is related
to the time complexity of the LBA. In this way we obtain for every c ∈ N
a context-free language, whose optimal sliding window algorithm uses space
O(n1/c) (Theorem 9.10). This result holds for both the fixed-size and the
variable-size model.

The context-free languages from the proof of Theorem 9.9 are nondeterminis-
tic. They are obtained by taking the complement of all accepting computations of
an LBA on an input from a∗ (as usual, a computation is encoded by a sequence of
configuration words). These complements are context-free since one can guess
errors, but they are not deterministic context-free. This leads to the question
whether there exist deterministic context-free languages for which the optimal
sliding window algorithm has space complexity between logn and n. We answer
this question positively by constructing deterministic one-counter languages
with sliding window space complexity (logn)2. Again this result holds for both
fixed-size windows (Corollary 9.13) and variable-size windows (Theorem 9.15).

127

128 Chapter 9. Context-free languages

Finally, we prove that our results for deterministic one-counter languages
can be also shown for the reversals of the latter (i.e. for languages that can
be accepted by a deterministic one-counter automaton that works from right
to left). This is not obvious, since the reversal of a deterministic context-free
language is in general not deterministic context-free. Since the arguments for
our space trichotomy result for regular languages mainly use a DFA for the
reverse language, one might think that these arguments extend to reversals of
deterministic context-free languages.

The results of this chapter have appeared in [G5].

9.2 Below logarithmic space

In this section we prove the following result:

Theorem 9.1. If L is a context-free language with FL(n) = logn−ω(1), then L
is regular and FL(n) = O(1).

We start with some definitions. Recall that a language is k-suffix testable if
for all u, v,w ∈ Σ∗ where |w| = k we have

uw ∈ L ⇐⇒ vw ∈ L.

Let f : N → N be a function. A language L ⊆ Σ∗ is f-suffix definable if for all
n ∈ N and words u, v,w ∈ Σ∗ such that |uw| = |vw| = n and |w| = f(n) we have

uw ∈ L ⇐⇒ vw ∈ L.

If L is k-suffix definable for a constant k ∈ N then it is also k-suffix definable, but
not vice versa. For example, if L is the union of {a,b}∗a and the set of all words
over {a,b} with even length, then L is 1-suffix definable but not 1-suffix testable.
Similarly, one defines prefix testable and f-prefix definable languages. We prove
Theorem 9.1 in two steps:

Theorem 9.2. Every language L ⊆ Σ∗ is 2FL(n)-suffix definable.

Proof. By Lemma 4.21 for all n ∈ N the language SWn(L) = {w ∈ Σ∗ |

lastn(w) ∈ L} is 2FL(n)-suffix testable For all words u, v,w ∈ Σ∗ such that
|uw| = |vw| = n and |w| = 2FL(n) we have lastn(uw) = uw, lastn(vw) = vw

and

uw ∈ L ⇐⇒ uw ∈ SWn(L) ⇐⇒ vw ∈ SWn(L) ⇐⇒ vw ∈ L,

which shows that L is 2FL(n)-suffix definable.

Theorem 9.3. If a context-free language L is f-suffix definable for a function
f(n) = o(n), then L is a finite Boolean combination of suffix testable languages and
regular length languages.

9.2. Below logarithmic space 129

We remark that the requirement f(n) = o(n) above cannot be relaxed: For
every k > 1, the language {xay | x,y ∈ {a,b}∗, |x| = k|ay|} is context-free and
dn/(k+ 1)e-suffix definable but not even regular.

Combining Theorem 9.2 and Theorem 9.3 yields Theorem 9.1: If a context-
free language L satisfies FL(n) = logn − ω(1) then L is f-suffix definable for
a function f(n) = o(n) by Theorem 9.2. Theorem 9.3 implies that L is a finite
Boolean combination of suffix testable languages and regular length languages.
Hence L is regular and FL(n) = O(1). The rest of this section is devoted to the
proof of Theorem 9.3.

We prove the variant of Theorem 9.3 that talks about prefix-definability.
This makes no difference, since the reversal of a context-free language is again
context-free. First, we show that in the proof of Theorem 9.3 we can restrict
ourselves to functions f with the following property: A monotonic function
f : N→ N has the increasing plateau property if for every k > 1 there exists an n0

such that for all n > n0 we have: f(n+ k) − f(n) 6 1.

Lemma 9.4. If a monotonic function f has the increasing plateau property then
f(n) = o(n).

Proof. Let k > 1. The increasing plateau property implies that there exists an n0

such that for all n > n0 and t ∈ N we have f(n+ tk) − f(n) 6 t and hence

f(n) = f(n0 +
n− n0

k
k) 6 f(n0 + d

n− n0

k
ek)

6 f(n0) + d
n− n0

k
e 6 n

k
+ f(n0) −

n0

k
+ 1.

By choosing n ′0 > n0 such that f(n0) − n0/k+ 1 6 n ′0/k we can bound

f(n) 6
n

k
+
n ′0
k
6

2n
k

for all n > n ′0. This proves that f(n) = o(n).

Lemma 9.5. Let f : N → R>0. If f(n) = o(n) then there exists a monotonic
function g : N→ N with the increasing plateau property and such that f(n) 6 g(n)
for all n ∈ N.

Proof. For a linear function g : R>0 → R>0 of the form g(x) = α · x + β we
call α the slope of g. We will first define a sequence of natural numbers n1 <

n2 < n3 · · · such that f is bounded by a continuous piecewise linear function
h : R>0 → R>0 that has slope 1/i on the interval [ni,ni+1] and slope 0 on the
interval [0,n1]. Then we show that g : N → N with g(n) = dh(n)e has the
properties from the lemma.

First, for every i > 1 we define ni ∈ N and a linear function hi : R>0 → R>0

of slope 1/i such that: (i) ni+1 > ni, (ii) for all natural numbers n > ni we
have f(n) 6 hi(n), and (iii) hi(ni+1) = hi+1(ni+1).

Let n1 > 0 be the smallest natural number such that f(n) 6 n for n > n1

and f(n) 6 n1 for n < n1. Clearly such an n1 exists, as f(n) = o(n). Define h1

by h1(x) = x for all x ∈ R>0. Hence, we have f(n) 6 h1(n) for all n > n1.

130 Chapter 9. Context-free languages

For the induction step, assume that ni and the linear function hi : R>0 → R>0

(of slope 1/i) are defined such that f(n) 6 hi(n) for all n > ni. Define
the linear function ui+1(x) = hi(ni) + (x − ni)/(i + 1), which has a slope
1/(i + 1) and ui+1(ni) = hi(ni). Then there is a smallest natural number
ni+1 such that ni+1 > ni and ui+1(n) > f(n) for each n > ni+1. This holds
because f(n) = o(n), and hence for any constants α > 0,β ∈ R we have
f(n) 6 α · n+ β for large enough n. Take this ni+1 and define the function hi+1

by hi+1(x) = hi(ni+1) + (x− ni+1)/(i+ 1). It has slope 1/(i+ 1) and satisfies
hi+1(ni+1) = hi(ni+1). Finally, for all n > ni+1 we have

hi+1(n) = hi(ni+1) + (n− ni+1)/(i+ 1)

= hi(ni) + (ni+1 − ni)/i+ (n− ni+1)/(i+ 1)

> hi(ni) + (ni+1 − ni)/(i+ 1) + (n− ni+1)/(i+ 1)

= hi(ni) + (n− ni)/(i+ 1) = ui+1(n) > f(n).

Hence, ni+1 and hi+1 have all the desired properties.
We now define the function h : R>0 → R>0:

h(x) =

{
n1 if x ∈ [0,n1]

hi(x) if x ∈ [ni,ni+1] for some i > 1.

Since hi(ni+1) = hi+1(ni+1) and h1(n1) = n1, h is uniquely defined. Finally, let
g(n) = dh(n)e for all n ∈ N.

Since f(n) 6 hi(n) for all n > ni and f(n) 6 f(n1) 6 n1 for all n 6 n1, we
have f(n) 6 h(n) 6 g(n) for all n ∈ N. Moreover, h is clearly monotonic, which
implies that g is monotonic, too. It remains to show that g has the increasing
plateau property.

Let k > 1 and n > nk. Since h is continuous and piecewise linear with slopes
6 1/k on [nk,∞), we have h(n+ k) − h(n) 6 (n+ k− n)/k = 1. This implies
g(n+ k) − g(n) 6 1.

Consider the following variant of the pumping lemma for context-free lan-
guages (see also [66, Chapter 6.1]), which simultaneously considers all languages
defined by various nonterminals of the grammar; it can be shown in the same
way as the standard variant.

Lemma 9.6. Given a context-free grammar G = (N,Σ,S,P) and let L(A) = {w ∈
Σ∗ | A

∗⇒G w}. Then there exists a natural number c1 depending only on G

and not on A, such that every word w ∈ L(A) with |w| > c1 can be written as
w = w1w2w3w4w5 with:

(i) w1w
k
2w3w

k
4w5 ∈ L(A) for every k > 0,

(ii) |w2w3w4| 6 c1,

(iii) and |w2w4| > 0.

9.2. Below logarithmic space 131

In particular, the word w1w
1+c1!/|w2w4|

2 w3w
1+c1!/|w2w4|
4 w5 of length |w| + c1!

belongs to L(A).

Lemma 9.7. Let L be a context-free language and f : N → N \ {0} be monotonic
with f(n) = o(n). There are constants n0 and c > 0 (only depending on L and f)
such that the following hold for every n � n0:

˛ n � f(n) + c and

˛ for all words u, v with uv ∈ L, |uv| = n, |u| = f(n), and |v| = n− f(n), there
exist words v ′, v ′′ with |v ′| = |v|− c, |v ′′| = |v|+ c, and uv ′,uv ′′ ∈ L.

Proof. Let G = (N,Σ,P,S) be a grammar for L in Greibach normal form, i.e.
all productions are of the form A → aA1 · · ·Ak for k � 0, nonterminals
A,A1, . . . ,Ak and a terminal a (such a grammar exists for every context-free
language); see also [66, Chapter 4.6]. Let r = maxA→α∈P |α| be the maximal
length of the productions’ right-hand sides and let c1 be the constant from the
above pumping lemma for G. We can assume that r � 2, otherwise L is finite and
the lemma holds. Define c = c1! and choose an n0 such that for all n � n0 the
following three inequalities hold:

n

f(n)
> 1 + (r− 1)r2|N|·(rc1|N|+1)! (9.1)

n

f(n)
> 1 + c1(r− 1) (9.2)

n > f(n) + c

As the right-hand sides are constant and f(n) = o(n), such an n0 exists. Hence,
for all n � n0 the following two inequalities hold ((9.1) is equivalent to (9.3)
and (9.2) is equivalent to (9.4)):

logr

(
n− f(n)

f(n)(r− 1)

)
> 2|N|(rc1|N|+ 1)! (9.3)

n− f(n)

f(n)(r− 1)
> c1 (9.4)

Consider a string uv of length n � n0 generated by G, where |u| = f(n). Fix a
leftmost derivation of uv and consider the first moment, at which the current
sentential form has u as a prefix. This happens after |u| = f(n) derivation steps
since G is in Greibach normal form. Apart from the prefix u, the rest of the
sentential form has length at most 1 + f(n)(r− 2) � f(n)(r− 1) and it derives
the word v of length n− f(n). So one of the nonterminals in the sentential form,
say A, generates a word x with

|x| � n− f(n)

f(n)(r− 1)
(9.4)
> c1. (9.5)

The further analysis splits into several cases depending on the claim we want to
prove.

132 Chapter 9. Context-free languages

We first show the second claim of the lemma, that there exists v ′′ such that
|v ′′| = |v|+ c and uv ′′ ∈ L. Since |x| � c1, we can apply the pumping lemma and
replace in the derivation of uv the word x by a word of length |x|+ c1! = |x|+ c.
The resulting derivation yields a word uv ′′ with |v ′′| = |v|+ c, as claimed.

So let us now prove that there is v ′ such that uv ′ ∈ L, where |v ′| = |v| − c.
Again, consider the nonterminal A that generates a string x satisfying (9.5).
Since the length of each right-hand side is at most r, there is a path Π in the
derivation tree of length at least

logr

(
n− f(n)

f(n)(r− 1)

)
> 2|N| · (rc1|N|+ 1)! ,

where the estimation follows from (9.3). We are going to color some nodes on
the path Π black or gray: if a node v on Π has a child that does not belong to Π
and derives a string of length at least c1, then we color v black. Then, as long as
there are two uncolored nodes v, v ′ on Π (v above v ′) such that (i) v and v ′ are
labeled with the same nonterminal, (ii) the path from v to v ′ has length at most
|N|, and (iii) does not contain a black node, then we color v black and v ′ gray.

There can be at most |N| consecutive nodes on the path that are not colored
and there are at least as many black nodes as gray nodes. Thus, the number of
black nodes is at least⌊

1
2

⌊
2|N| · (rc1|N|+ 1)!

|N|

⌋⌋
= (rc1|N|+ 1)!

For each black node we can shorten the derivation such that the derived word is
shorter by at least 1 and at most rc1|N| without affecting other colored nodes:

˛ For the first type of black nodes this follows directly from the pumping
lemma. Note that we can apply the pumping lemma to a subtree that is
disjoint from Π.

˛ For the second kind of black nodes, let v and v ′ be the corresponding nodes
colored black and gray, respectively. We can delete the subtree rooted in v
and replace it with the one rooted in v ′. The length of the path is � |N|,
the arity of the rules � r and each deleted nonterminal derived a string of
length � c1 (otherwise it would be black).

So for some m ∈ {1, 2, . . . , rc1|N|} there are (rc1|N|+1)!
rc1|N|

> (rc1|N|)! different
possibilities to shorten the derived word by m letters. We choose (rc1|N|)!/m
of them so that the word is shortened by (rc1|N|)! letters. Thus we showed that
there exists v ′ such that uv ′ ∈ L and |uv ′| = n − (rc1|N|)!. As c = c1! divides
(rc1|N|)!, by applying ((rc1|N|)!/c− 1) times the already proved second claim of
the lemma we can first obtain a word uz ∈ L such that |uz| = n+ (rc1|N|)! − c
and then use the argument above to obtain a word uv ′ ∈ L such that |uv ′| =
|uz| − (rc1|N|)! = |uv| − c. Here, we use monotonicity of f, which ensures that
the prefix u is not touched when using the above argument for the longer word
uz.

9.2. Below logarithmic space 133

Lemma 9.8. Let L be a context-free language that is f-prefix definable for a function
f(n) = o(n). Then there exists a constant α such that L is α-prefix definable.

Proof. By Lemma 9.5 there exists a monotonic function g(n) = o(n) having the
increasing plateau property and such that f(n) 6 g(n) for all n > 0. Hence, L is
still g-prefix definable. Moreover, let f ′ = o(n) be defined by f ′(n) = g(n) + 1
for all n. Take the constants n0 and c from Lemma 9.7 for L and f ′ (instead of f).
Choose m such that (i) m > n0 + c and (ii) g(n) − g(n− c) 6 1 for all n > m,
which is possible by the increasing plateau property. We take α = g(m). Heading
for a contradiction, let us take words u, v,w such that |u| = α, |v| = |w|, uv ∈ L
and uw 6∈ L. We can assume that |v| = |w| is minimal with these properties. Let
n = |uv| = |uw| in the following. We now distinguish two cases.

Case 1. Assume n 6 m, which implies g(n) 6 g(m) = |u|. Hence, uv and
uw have the same prefix of length g(n). Since L is g-prefix definable, we have
uv ∈ L iff uw ∈ L, which is a contradiction.

Case 2. Assume n > m, and thus n > n0 + c and g(n) > g(m) = |u|. Since
n − g(m) > n − g(n) = n − f ′(n) + 1 > c > 0, we can write v = v1av2

and w = w1bw2 such that a 6= b ∈ Σ and |uv1| = |uw1| = g(n). Thus,
|uv1a| = |uw1b| = f

′(n). By Lemma 9.7 there exists a word v ′2 with |v ′2| = |v2|−c

and uv1av
′
2 ∈ L. Take any word w ′2 of length |w ′2| = |w2| − c. By the length-

minimality of v and w we must have uw1bw
′
2 ∈ L (note that c > 0). Note

that |uw1bw
′
2| = |uw| − c = n − c > n0. Therefore, we can apply Lemma 9.7

to the word uw1bw
′
2. Note that g(n) − g(n − c) 6 1 since n > m. Thus,

f ′(n − c) = g(n − c) + 1 > g(n) and the prefix of uw1bw
′
2 of length f ′(n − c)

starts with uw1. We can conclude with Lemma 9.7 that there is a word w ′′2 such
that uw1w

′′
2 ∈ L and |uw1w

′′
2 | = n. But since |uw1| = g(n) and |uw1w

′′
2 | = n,

the g-prefix definability of L implies that uw1y ∈ L for all words y of length
n− g(n). In particular, we get uw1bw2 = uw ∈ L, which is a contradiction.

We can now prove (the prefix version of) Theorem 9.3:

Proof of Theorem 9.3. Let L be a f-prefix definable context-free language with
f(n) = o(n). Let α be the constant from Lemma 9.8. For every word u of
length α the language u−1L is context-free and by Lemma 9.8 it is a length
language. It is a direct consequence of Parikh’s theorem (or the fact that every
unary context-free language is regular) that a context-free length language is
regular. Hence, every u−1L (for |u| = α) is a regular length language. We can
now decompose L as follows:

L = (L ∩ Σ<α) ∪
⋃
u∈Σα

u(u−1L) = (L ∩ Σ<α) ∪
⋃
u∈Σα

(uΣ∗ ∩ Σα(u−1L)).

Since u−1L is a regular length language, also Σα(u−1L) is a regular length
language. Moreover, uΣ∗ is prefix testable. Finally, every finite language (and

134 Chapter 9. Context-free languages

hence L∩Σ<α) is a finite Boolean combination of prefix testable languages. This
shows the theorem.

9.3 Above logarithmic space

In this section, we show that the trichotomy result for regular languages does
not carry over to the context-free languages. More precisely, we show that
for every natural number c > 1 there exists a one-counter language Lc such
that FLc(n) = O(n1/c) and FLc(n) = Ω(n1/c) infinitely often. Furthermore it
satisfies VLc(n) = Θ(n

1/c). Recall that a one-counter language is a language that
can be accepted by a nondeterministic pushdown automaton with a singleton
pushdown alphabet (a so-called one-counter automaton). Also recall that a
linear bounded automaton (LBA for short) is a Turing machine that only uses
the space that is occupied by the input word; see also [66, Chapter 9.3]. We first
show the following technical result:

Theorem 9.9. Let t(k) be a monotonically increasing function and M be an LBA
which halts on input ak after exactly t(k) steps. Let f(n) be the function with

f(n) =

{
k, if n = k(t(k) + 3) for some k,1

0, else,

and let g(n) = max{f(m) | m 6 n}. There is a one-counter language L such that
FL(n) = Θ(f(n)) and VL(n) = Θ(g(n)).

Proof. Let Γ be the tape alphabet of M and Q the set of states of M. A con-
figuration of M is encoded by a word from Γ∗(Q × Γ)Γ∗ over the alphabet
∆ := Γ ∪ (Q× Γ). We reserve a binary alphabet {0, 1} which is disjoint from ∆.
A computation of M on an input ak (k > 1) is a sequence of configurations
c0 `M · · · `M ct(k) where |ci| = k for all 1 6 i 6 t(k), c0 = (q0,a)ak−1 is the
start configuration on input ak, every ci+1 is obtained from ci by applying a
transition of M for 0 6 i 6 t(k) − 1, and ct(k) is an accepting configuration. Let
∆ = {x | x ∈ ∆} be a disjoint copy of ∆ and define the function

· : ∆∗ → ∆
∗
, a1 · · ·an = an · · ·a1.

Finally, let K be the set of all words

c0 c1 c2 c3 · · · ct(k) s sR or (9.6)

c0 c1 c2 c3 · · · ct(k) s sR (9.7)

such that k > 1, c0 `M · · · `M ct(k) is a computation on input ak, s ∈ {0, 1}∗ is
an arbitrary word of length k, and t(k) even in case (9.6) and odd in case (9.7).
Notice that the words in (9.6) and (9.7) have length k(t(k) + 3). We can assume

1Since t(k) is monotonically increasing, this number k is unique.

9.3. Above logarithmic space 135

that M never goes back to the initial state q0. This ensures that every word has
at most one nonempty suffix that is a prefix of a word from K.

For the language L from the theorem, we take the complement of K. It is
not hard to see that L can be recognized by a nondeterministic one-counter
automaton by guessing an error in the input word w. Factorize w = u1 · · ·um

into blocks ui which is a maximal factor from Δ+ ∪ Δ+ ∪ {0, 1}+ in w. Possible
errors are the following:

1. m < 2,

2. u1 is not an initial configuration, i.e. of the form (q0,a)ak−1 for some
k � 1,

3. for some odd i < m, ui is not a configuration,

4. for some even i < m, ui is not a configuration,

5. um−1 is not an accepting configuration,

6. there exists 1 � i < m− 1 with |ui|
= |ui+1|,

7. |um|
= 2|um−1|,

8. there exists 1 � i < m− 1 odd such that ui "M ui+1 does not hold,

9. there exists 1 � i < m− 1 even such that ui "M ui+1 does not hold,

10. um is not a palindrome over the alphabet {0, 1}.

The conditions in points 1–5 are regular. Points 6–10 can be checked with a
single counter.

The upper bound in the theorem has to be shown for the variable-size model.
Since FK(n) = FL(n) and VK(n) = VL(n), it is enough to show the bounds for
the language K. Let us first present a variable-size streaming algorithm with
space complexity O(g(n)). Assume that w = a1 · · ·an is the active window. The
algorithm stores the following data n, i, t, k, �, s:

˛ n = |w| is the length of the active window.

˛ i is the smallest position 1 � i � n+ 1 such that ai · · ·an is a prefix of a
word from K. If this prefix is empty, then i = n+ 1.

˛ t is the number of blocks in ai · · ·an minus 1 (where i is from the previous
point); this tells us the number of computation steps that M has executed.

˛ k is the largest number such that ai · · ·an starts with (q0,a)ak−1; hence,
k tells us the input length.

˛ In case 1 � t � t(k), � is the length of the last block of ai · · ·an (if t = 0
or t = t(k) + 1 we store some dummy value in �).

˛ In case t = t(k) + 1, s is the maximal suffix of ai · · ·an from {0, 1}∗. If the
length of this suffix exceeds k then s stores only its prefix of length k.

136 Chapter 9. Context-free languages

It is easy to see that these variables can be updated. The main observation is that
in case 1 6 t 6 t(k) and ` < k then the algorithm internally simulates M for
t steps on input ak. In this way, the algorithm can check whether the arriving
symbol is the right one, namely the (possibly overlined) (`+ 1)-th symbol of the
configuration reached after t steps on input ak. In this case, the algorithm sets
` := `+ 1, otherwise the algorithm sets i := n+ 1. If t is set to t(k) + 1 then the
algorithm starts to accumulate the window suffix s ∈ {0, 1}∗ up to length k. If s
has length k then the next k arriving symbols are compared in reversed order
with s. If a match is obtained, the algorithm accepts if i = 1 at the same time.

Let us now compute the space complexity of the algorithm. The numbers
n, i, t, k and ` need O(logn) bits. Recall that s has maximal length k. But
we only store symbols in s if n > k(t(k) + 1) > bk/3c(t(bk/3c) + 3), since
the window must already contain a complete computation on input ak before
s becomes nonempty. We get bk/3c = f(bk/3c(t(bk/3c) + 3)) 6 g(n), i.e.
k 6 3g(n)+3. Finally, since g(n) is the maximal value k such that k(t(k)+3) 6 n
and t(k) ∈ 2O(k), we get g(n) = Ω(logn). This shows that the algorithm works
in space O(g(n)).

To show that FK(n) = O(f(n)) we can argue similarly. Of course, in the
fixed-size model, we do not have to store the window size n. If the window size
n is not of the form k(t(k) + 3) for some k then the algorithm always rejects and
no memory is needed. Otherwise, since t(k) is monotonically increasing, there is
a unique k with n = k(t(k) + 3).

Finally, we show that FK(n) > f(n) for all n ∈ N, which implies that VK(n) >
g(n) for all n ∈ N since VK(n) > FK(n) and VK(n) is monotonic. It suffices
to consider a window size n = k(t(k) + 3) for some k, as otherwise f(n) = 0.
Hence, f(n) = k. Moreover, consider an accepting computation c0 `M c1 `M
· · · `M ct(k) where |c0| = · · · = |ct(k)| = k. Let us assume that k is even; the case
that k is odd is analogous. Now consider the 2k many distinct words

w(s) := 0k c0 c1 c2 c3 · · · ct(k) s

for s ∈ {0, 1}k. The length of these words is n = k(t(k)+3), which is the window
size.

Consider a sliding window algorithm Pn for the language K and window
size n. We have Pn(w(s)) 6= Pn(w(u)) for all s,u ∈ {0, 1}k with s 6= u because
lastn(w(s)sR) ∈ K and lastn(w(u)sR) /∈ K. Hence, Pn must distinguish 2k many
streams, and thus FK(n) > k = f(n).

Theorem 9.9 yields quite a dense spectrum of space complexity functions for
context-free languages. We only prove the existence of context-free languages
with sliding window space complexity n1/c for c ∈ N, c > 1:

Theorem 9.10. For every c ∈ N, c > 1, there exists a one-counter language Lc
such that FLc(n) = O(n1/c), FLc(n) = Ω(n1/c) infinitely often, and VLc(n) =

Θ(n1/c).

Proof. One can easily construct a deterministic LBA M that on input ak termi-

9.4. Deterministic one-counter languages 137

nates after exactly kc−1 steps. For instance, an LBA that terminates after exactly
k2 steps makes k phases, where in each phase the read-write head moves from
the left input end to the right end or vice versa and thereby replaces the first a
that is seen on the tape by a b-symbol. This construction can be iterated to obtain
the above LBA M for an arbitrary k. The mapping f(n) from Theorem 9.9 then
satisfies f(k(t(k)+3)) = f(k(kc−1 +3)) = f(kc+3k) = k and f(n) = 0 if n is not
of the form kc + 3k for some k. This implies f(n) = O(n1/c), f(n) = Ω(n1/c)

infinitely often, and g(n) = Θ(n1/c) for the mapping g(n) from Theorem 9.9.
Hence, by Theorem 9.9 there is a one-counter language Lc with the properties
stated in the theorem.

To fully exploit Theorem 9.9 one would have to analyze the spectrum of time
complexity functions of linear bounded automata. We are not aware of specific
results in this direction.

9.4 Deterministic one-counter languages

The context-free language Lc from Theorem 9.10 is not deterministic context-free
and it is open whether the deterministic context-free languages also have such
a dense spectrum of space complexity functions. In this section we exhibit a
deterministic one-turn one-counter language with space complexity Θ((logn)2)

in the variable-size and in the fixed-size model. A t-turn pushdown automaton has
the property that in any accepting run there are at most t alternations between
push and pop operations [58].

We start with the variable-size model. In the following a maximal factor β in
a word w ∈ {a,b}∗ of the form β = abi is called a block of length i + 1 in w.2

Define the language

L = {abkav | k > 0, v ∈ {a,b}6k} ∪ ab∗, (9.8)

which is recognized by a deterministic one-turn one-counter automaton. Put
differently, L contains those words w ∈ {a,b}∗ which begin with a block of length
> |w|/2.

Lemma 9.11. We have VL(n) = O((logn)2).

Proof. Any word w ∈ {a,b}∗ can be uniquely factorized as w = bsβm · · ·β2β1

where s,m > 0 and each βi is a block. A block βi is relevant if it is at least
as long as the remaining suffix, i.e. |βi| >

∑i−1
j=1 |βj|. For an active window

w ∈ {a,b}∗ our variable-size algorithm maintains the window size and for each
relevant block βi its starting position and its length. If the first symbol in the
window expires, every relevant block stays relevant (and the starting position
is decremented) with the possible exception of a relevant block with starting
position 1, which is removed. If an a-symbol arrives, we create a new relevant
block of length 1. If a b-symbol arrives, we prolong the rightmost relevant

2This notion is not related to the blocks used in the proof of Theorem 9.9).

138 Chapter 9. Context-free languages

block (which is also rightmost among all blocks) by 1. Furthermore, using this
information we can determine whether w ∈ L: This is the case if and only if the
leftmost relevant block starts at the first position and its length is at least n/2
where n is the current window size.

To show that the space complexity of the algorithm is O((logn)2), it suf-
fices to show that each word w ∈ {a,b}n has O(logn) relevant blocks. Let
γk,γk−1, . . . ,γ2,γ1 be the sequence of relevant blocks in w. Then we know that
|γi| >

∑i−1
j=1 |γj| for all 1 6 i 6 k. Inductively, we show that |γi| > 2i−2|γ1| for

all 2 6 i 6 k. This is immediate for i = 2 and for the induction step, observe
that |γi| > |γ1| +

∑i−1
j=2 |γj| > |γ1|+ |γ1|

∑i−1
j=2 2j−2 = 2i−2|γ1| for all i > 3. This

proves k = O(logn), which concludes the proof.

We remark that the structure of relevant blocks resembles the exponential
histogram from [36], which stores exponentially growing buckets.

Lemma 9.12. We have VL(n) = Ω((logn)2).

Proof. For each k > 0 we define arrangements of length 3k: The word a is
the only arrangement of length 30 = 1. An arrangement of length 3k+1 is
any word of the form ub3kv where u, v ∈ {a,b}3

k

, u begins with a and has at
most one other a-symbol and v is any arrangement of length 3k. Notice that
an arrangement ub3kv contains one or two blocks in the factor ub3k , one of
which is relevant. If α1 6= α2 are distinct arrangements of length 3k, then k > 1
and there exists the maximal common suffix α3 of α1 and α2 that is again an
arrangement. Consider the suffixes of α1,α2 of length 3|α3|. By the construction,
these suffixes are also arrangements. Hence, their “middle parts” consist solely
of b’s, so they have the common suffix b|α3|α3. Since α1 and α2 differ, there
exists a number ` > |α3| such that α1 has the suffix ab`α3 and α2 has the suffix
b`+1α3, or vice versa.

Now consider a variable-size sliding window algorithm for L. We claim that
the algorithm can distinguish any two distinct arrangements α1 6= α2 of length
3k. Consider two instances of the algorithm, where the active windows are α1

and α2, respectively. By performing a suitable number of ↓-operations the two
windows contain the words ab`α3 and b`+1α3, respectively. Since |α3| 6 `, we
have ab`α3 ∈ L and b`+1α3 6∈ L.

It is easy to see that the number nk of arrangements of length 3k is exactly∏k−1
i=0 3i: to construct an arrangement of length 3k, note that among its first 3k−1

letters the first one is a and there is at most one further a. So, there are 3k−1

choices for the prefix of length 3k−1. The next 3k−1 letters are fixed, and then
one of nk−1 many arrangements of length 3k−1 follows. Thus nk = 3k−1nk−1

and n0 = 1, which yields the claim. Note that log3(nk) =
∑k−1
i=0 i = Θ(k2).

Therefore, the algorithm needs Ω((logn)2) bits of space.

Corollary 9.13. There exists a deterministic one-turn one-counter language L such
that VL(n) = Θ((logn)2).

The language L from (9.8) is an example where the space complexity in the
fixed-size model is strictly below the space complexity in the variable-size model:

9.4. Deterministic one-counter languages 139

Lemma 9.14. We have FL(n) = O(logn).

Proof. Let n > 0 be the window size. For the active window we store (i) the
starting position of the leftmost block of length at least n/2 (if such a block
does not exist we set a special flag) and (ii) the length of the unique suffix from
ab∗ (again, a flag is set if the window content is in b∗). This information can
be stored with O(logn) bits and it can be updated at each step. Moreover, the
active window belongs to L if the leftmost block of length at least n/2 starts at
position 1.

We now prove the variant of Corollary 9.13 for the fixed-size model: For the
language L from (9.8) let K = Lc∗, which is a deterministic one-turn one-counter
language.

Theorem 9.15. We have FK(n) = Θ((logn)2).

Proof. Let n be the window size. Consider the maximal suffix of the active
window which has the form vci where v ∈ {a,b}∗. Using O(logn) bits we
maintain the starting position of that suffix and the length |v|. Furthermore, we
maintain the same data structure as in the proof of Lemma 9.11 for the word
v ∈ {a,b}∗. The algorithm accepts iff v begins at the first position, the leftmost
relevant block also starts at the first position and has length at least |v|/2. In
total, the space complexity is bounded by O((logn)2).

The proof for the lower bound is similar to the proof of Lemma 9.12. Let k
be maximal such that 3k 6 n. Then the number of bits required to encode an
arrangement of length 3k is Ω((logn)2). The rest of the proof follows the proof
of Lemma 9.12; we only have to replace every ↓-operation by the insertion of a
c-symbol.

Finally we will look at reversals of deterministic context-free languages since
the proof of the trichotomy for regular languages also uses right-deterministic
automata. For the language L from (9.8) let

L ′ = {#juRv$i | u ∈ L, i > 0, v ∈ {a,b}i, j > 1}.

Its reversal L ′R is accepted by a deterministic one-counter three-turn automaton:
The one-counter automaton first stores the number i of $-symbols and ignores
the next i symbols over {a,b}. Then it simulates the one-counter automaton for
L, and finally reads a sequence of #-symbols.

Theorem 9.16. We have VL′(n) = O((logn)2), and FL′(n) = Ω((logn)2) for
infinitely many n.

Proof. We first exhibit a variable-size sliding window algorithm for L ′. Of course,
we maintain the window size n. For the active window consider its longest suffix
of the form #jw$i where w ∈ {a,b}∗ and i, j > 0. Using O(logn) bits we can
maintain the numbers i, j, the length |w|, and the maximal number k such that
bk is a suffix of w.

140 Chapter 9. Context-free languages

Furthermore, if j > 1 we maintain for each relevant block in wR its start-
ing position and its length, which requires O((logn)2) bits (see the proof of
Lemma 9.11). Let us argue why this information can be maintained. Let n, i, j,k
and w have the meaning from the previous paragraph. If j is set from 0 to 1,
then w is empty and wR contains no blocks. If j > 1 we can prolong w as long
as the active window does not end with $-symbols (i = 0). In this case, every
time an a-symbol arrives, a new block in wR is formed, which has length k+ 1.
If it is not relevant, then it is immediately discarded. Also notice that when w is
prolonged by a or b, all relevant blocks in wR stay relevant. A ↓-operation only
affects w if j ∈ {0, 1} and n = j+ |w|+ i. In this case j is set to zero, and we no
longer have to store the relevant blocks of w.

It remains to show the lower bound. Let the window size n be of the form
2 · 3k. Again we show that any fixed-size sliding window algorithm for L ′ must
distinguish any two distinct arrangements. Let α1 6= α2 be two arrangements
of length 3k. As shown in the proof of Lemma 9.12, there exists a number
0 6 ` < 3k and an arrangement α3 of length at most ` such that α1 and α2 have
the suffixes ab`α3 ∈ L and b`+1α3 /∈ L, respectively (or vice versa). Without loss
of generality, α1 = v1ab

`α3 and α2 = v2b
`+1α3 for some v1, v2 ∈ {a,b}∗. Both

words v1 and v2 have length r := 3k − (`+ 1 + |α3|). We have

lastn(#3kαR
1 $r) = #3k−r(ab`α3)

R vR1 $r ∈ L ′ and

lastn(#3kαR
2 $r) = #3k−r(b`+1α3)

R vR2 $r /∈ L ′.

This shows that the algorithm must distinguish the words #3kαR
1 and #3kαR

2 .
Note that adding a $ at the right end of the word removes the rightmost symbol
(a or b) in the factor which has to belong to LR in order to have a word from L ′.
The rest of the proof follows the arguments from the proof of Lemma 9.12.

9.5 Conclusion

The results in this chapter indicate that, to a wide extent, the class of context-
free languages is too rich for classification results in the sliding window model.
We suggest to consider context-free languages in approximate settings (see
Chapter 7) and deterministic context-free languages. A particular open question
is: Is there a (reverse) deterministic context-free (one-counter) language whose
space complexity (either FL(n) or VL(n)) is between between (logn)2 and n, or
between logn and (logn)2?

Aaronson, Grier and Schaeffer [1] study the quantum query complexity of
formal languages and prove that every regular language has quantum query
complexity Θ(1), Θ̃(

√
n) or Θ(n). Furthermore they construct for every limit

computable number 1/2 6 c 6 1 a context-free language with quantum query
complexity Θ(nc). Here c is limit computable if there is a Turing machine which
on input k computes a rational number ck such that ck tends to c for k → ∞.
Their proof technique could be used to extend Theorem 9.9.

Chapter 10

Visibly pushdown languages

In this chapter we extend the trichotomy for regular languages in the variable-size
sliding window model to the class of visibly pushdown languages. This language
class has already been considered under the name of input-driven languages in
the 80’s [20, 39] and was reintroduced by Alur and Madhusudan [9]. They are
recognized by visibly pushdown automata where the alphabet is partitioned into
call letters, return letters and internal letters, which determine the behavior of the
stack height. Since visibly pushdown automata can be determinized, the class
of visibly pushdown languages turns out to be very robust (it is closed under
Boolean operations and other standard language operations) and more tractable
in many algorithmic questions than the class of context-free languages [9]. The
main theorem of this chapter is the following:

Theorem 10.1 (Trichotomy for VPL). If L is a visibly pushdown language then
VL(n) is either O(1), Θ(logn) or Θ(n) for infinitely many n.

The proof uses the dichotomy theorem for rational functions (Theorem 5.2).
A simple characterization of the O(logn)-class as well as a study of the fixed-size
model are left as open problems. The results of this chapter have appeared in
[G6].

10.1 Visibly pushdown automata

A pushdown alphabet is a triple Σ̃ = (Σc,Σr,Σint) consisting of three pairwise
disjoint alphabets: a set of call letters Σc, a set of return letters Σr and a set of
internal letters Σint. We identify Σ̃ with the union Σ = Σc ∪ Σr ∪ Σint. A visibly
pushdown automaton (VPA) has the form A = (Q, Σ̃, Γ ,⊥,q0, δ, F) where Q is a
finite state set, Σ̃ is a pushdown alphabet, Γ is the finite stack alphabet containing
a special symbol ⊥ (representing the empty stack), q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states and δ = δc ∪ δr ∪ δint is the transition function
where δc : Q× Σc → (Γ \ {⊥})×Q, δr : Q× Σr × Γ → Q and δint : Q× Σint → Q.
The set of configurations Conf is the set of all words αq where q ∈ Q is a state

141

142 Chapter 10. Visibly pushdown languages

and α ∈ ⊥(Γ \ {⊥})∗ is the stack content. We define δ : Conf × Σ→ Conf for all
p ∈ Q, a ∈ Σ, α ∈ ⊥(Γ \ {⊥})∗, γ ∈ Γ as follows:

˛ If a ∈ Σc and δ(p,a) = (γ,q) then δ(αp,a) = αγq.

˛ If a ∈ Σint and δ(p,a) = q then δ(αp,a) = αq.

˛ If a ∈ Σr, δ(p,a,γ) = q and γ ∈ Γ \ {⊥} then δ(αγp,a) = αq.

˛ If a ∈ Σr and δ(p,a,⊥) = q then δ(⊥p) = ⊥q.

As usual we inductively extend δ to a function δ : Conf × Σ∗ → Conf where
δ(c, ε) = c and δ(c,wa) = δ(δ(c,w),a) for all w ∈ Σ∗ and a ∈ Σ. The initial
configuration is ⊥q0 and a configuration c is final if c ∈ Γ∗F. A word w ∈ Σ∗

is accepted from a configuration c if δ(c,w) is final. The VPA A accepts w if w
is accepted from the initial configuration. The set of all words accepted by A

is denoted by L(A); the set of all words accepted from c is denoted by L(c). A
language L is a visibly pushdown language (VPL) if L = L(A) for some VPA A.

Example 10.2. Let Σ̃ = (Σc,Σr,Σint) where Σc = {a}, Σr = {b}, Σint = ∅. Let L be
the set of all words w ∈ {a,b}∗ whose maximal suffix of the form aibj satisfies
i � j. We claim that L is a VPL. One can recognize L by a deterministic one-
counter automaton which resets the counter if a new a-block is read. Since VPAs
cannot clear the stack we need to push a special marker to the stack whenever
new block of a-symbols starts. Let A = (Q, Σ̃, Γ ,⊥,qF, δ, {qF}) be the following
VPA: The state set is Q = {qa,qb,qF}, qF is the initial state and the only final
state, the stack alphabet is Γ = {⊥,A,A}, and the transitions are

δ(qF,a) = (qa,A) δ(qa,a) = (qa,A) δ(qb,a) = (qa,A)

and

δ(q,b,γ) =

{
qb, if q ∈ {qa,qb} and γ = A,

qF, otherwise.

One can also define nondeterministic visibly pushdown automata in the usual
way, which can always be converted into deterministic ones [9]. This leads to
good closure properties of the class of all VPLs.

Theorem 10.3 ([9]). Nondeterministic VPAs can be made deterministic. The class
of VPLs is closed under Boolean operations, concatenation and Kleene star.

To exclude some pathological cases we assume that Σc
= ∅ and Σr
= ∅. In
fact, if Σc = ∅ or Σr = ∅ then any VPL over that pushdown alphabet would be
regular. The set of well-matched words W over Σ is defined as the smallest set
which contains {ε}∪Σint, is closed under concatenation, and if w is well-matched,
a ∈ Σc, b ∈ Σr then also awb is well-matched. The set W of well-matched
words forms a submonoid of Σ∗. The stack height function sh : Σ∗ → Z is the

10.1. Visibly pushdown automata 143

homomorphic extension of

sh(a) =


+1, if a ∈ Σc,
0, if a ∈ Σint,

−1, if a ∈ Σr.

We emphasize that sh(w) does not specify the stack height in the reached con-
figuration δ(⊥q0,w) since sh does not truncate at stack height 0. A word w is
well-matched if sh(w) = 0 and sh(v) > 0 for every prefix v of w. The black plot
in Figure 10.1 displays the stack height function over all prefixes of an example
word w. Furthermore, the gray lines display for all factors v of w the stack height
of δ(⊥q0, v): We start at stack height 0 (the gray dots) and follow the gray lines
to the right.

Notice that a VPA can only see the top of the stack when reading return
symbols. Therefore, the behavior of a VPA on a well-matched word is determined
by the current state and independent of the current stack content. More precisely,
there exists a monoid homomorphism θ : W → QQ into the finite monoid of all
state transformations Q→ Q such that δ(αp,w) = αθ(w)(p) for all w ∈W and
αp ∈ Conf.

Monotonic factorizations A word is called descending (ascending) if it can
be factorized into well-matched factors and return (call) letters. The set of
descending words is denoted by D.

A factorization of w = w0w1 · · ·wm ∈ Σ∗ into factors wi ∈ Σ∗ is monotonic if
w0 is descending (possibly empty) and for each 1 6 i 6 m the factor wi is either
a call letter wi ∈ Σc or a nonempty well-matched factor. The descending prefix
w0 can be further factorized in well-matched factors and all return letters which
do not have a matching call letter in w. The factors wi which are call letters
are precisely those call letters which do not have a matching return letter. The
number of such unmatched call letters specifies the stack height in δ(⊥q0,w).

Lemma 10.4. Every word w ∈ Σ∗ has a monotonic factorization.

Proof. Consider the set of nonempty maximal well-matched factors in w (maxi-
mal with respect to inclusion). Observe that two distinct maximal well-matched
factors in a word cannot overlap because the union of two overlapping well-
matched factors is again well-matched. Since every internal letter is well-matched
the remaining positions contain only return and call letters. Furthermore, every
remaining call letter must be to the right of every remaining return letter, which
yields a monotonic factorization of w.

Figure 10.1 shows a monotonic factorization w = w0w1 · · ·wm where the
descending prefix w0 is colored red and call letters wi are colored blue. If
w0w1 · · ·wm is a monotonic factorization then w ′iwi+1 · · ·wj is a monotonic
factorization for any 0 6 i 6 j 6 m and any suffix w ′i of wi.

144 Chapter 10. Visibly pushdown languages

b c a b b c a b a a b c a a a b a b b a

Figure 10.1: The stack height function for a word (Σc = {a}, Σr = {b}, Σint = {c})
and a monotonic factorization bcabb cab a abc a aababb a.

10.2 Description of the Myhill-Nerode classes

Fix a VPA A = (Q, Σ̃, Γ ,⊥,q0, δ, F) and let L = L(A) for the rest of this chapter.
In the following we show how to describe the Myhill-Nerode classes of L using
a regular set of representative configurations. This allows us to derive that the
growth of n 7→ |Σ6n/∼L| is polynomial or exponential. In the latter case this also
yields an exponential lower bound for |Σ6n/≈L| since ≈L refines ∼L.

Two configurations c1, c2 ∈ Conf are equivalent, denoted by c1 ∼ c2, if
L(c1) = L(c2). We follow the approach in [15] of choosing length-lexicographic
minimal configurations. Since their definition slightly differs from ours1 we
briefly recall their argument.

Lemma 10.5 ([15]). The equivalence relation ∼R is synchronous rational.

Proof. We present a finite automaton which recognizes the complement of ∼R. It
reads two reversed configurations (αp)R = pαR and (βq)R = qβR synchronously,
which are aligned to the left. The automaton stores a pair of states of A, starting
with the pair (p,q). It then guesses a word w by its monotonic factorization
which witnesses that w belongs to exactly one of the languages L(αp) and L(βq).
Notice that it suffices to read the maximal descending prefix of w and test
whether the reached state pair (p ′,q ′) belongs to some fixed set of state pairs
since the remaining ascending suffix cannot access the stack contents of the
reached configurations. To simulate A on a descending prefix in each step the
automaton either guesses a return symbol and removes the top most stack symbol
of both configurations (or leaves ⊥ at the top), or guesses a state transformation
τ ∈ θ(W) which only modifies the current state pair.

Let rConf = {δ(⊥q0,w) | w ∈ Σ∗} be the set of all reachable configurations in
A, which is known to be regular [19, 26]. By fixing arbitrary linear orders on Γ
and Q we can consider the length-lexicographical order 6llex on rConf. It is well-
known that 6llex is a synchronous rational relation. Now let rep : rConf→ rConf
be the function which chooses the minimal representative from each ∼-class, i.e.
for all c ∈ rConf we have rep(c) ∼ c and for any c ′ ∈ rConf with c ∼ c ′ we have
rep(c) 6llex c

′. The closure properties of synchronous rational relations imply
the following fact.

1According to their definition, a VPA may not read a return letter if the stack is empty.

10.2. Description of the Myhill-Nerode classes 145

Corollary 10.6 ([15]). The function rep is rational.

The set of representative configurations is denoted by Rep = rep(rConf).
Finally we define νA : Σ∗ → Rep by νA(w) = rep(δ(⊥q0,w)) for all w ∈ Σ∗. It
represents ∼L in the sense that L(νA(w)) = w−1L(A) for all w ∈ Σ∗ and hence
∼L= ker(νA).

Example 10.7. Recall the VPL L over {a,b} from Example 10.2. The set of
reachable configurations is

rConf = {⊥qF} ∪ ⊥A{A,A}∗Q.

The set of length-lexicographical minimal representatives configurations is given
by

Rep = {⊥qF} ∪ ⊥AA∗qa ∪ ⊥AA∗qb

since any configuration ⊥αAAiqx is equivalent to ⊥AAiqx for α ∈ {A,A}∗ and
x ∈ {a,b}.

Since the set of representative configurations Rep is regular it has either
polynomial or exponential cumulative growth.

Lemma 10.8. If Rep has polynomial (exponential) cumulative growth then also
|Σ6n/∼L| has polynomial (exponential) growth.

Proof. Consider the function which maps a class [w]∼L to rep(δ(⊥q0,w)). It
is well-defined because, if w ∼L w

′ are equivalent, then also δ(⊥q0,w) ∼

δ(⊥q0,w ′) are equivalent configurations. By definition of Rep it is a bijection
between |Σ∗/∼L| and Rep.

First, any word of length n can reach a configuration δ(⊥q0,w) with stack
height at most n. Since rep picks length-minimal representatives the configura-
tion rep(δ(⊥q0,w)) has a stack of height at most n. Hence, if r(n) = |{c ∈ Rep :

|c| 6 n}| then |Σ6n/∼L| 6 r(n + 2). Therefore if r(n) is polynomially bounded
then so is |Σ6n/∼L|.

Conversely, let c ∈ Rep be a configuration of length n and let c = δ(⊥q0,w).
Let w = w0w1 · · ·wm be a monotonic factorization. Notice that there are at
most n many factors wi which are call letters. By choosing the well-matched
factors in the monotonic factorization maximal (as in the proof of Lemma 10.4)
this implies m 6 2n+ 1. Since w0 is descending we have δ(⊥q0,w0) ∈ ⊥Q and
we can replace it by a length-minimal word w ′0 with δ(⊥q0,w0) = δ(⊥q0,w ′0).
Every well-matched factor wi is replaced by a length-minimal well-matched
word w ′i with θ(wi) = θ(w ′i). Since the number of states and the number of
state transformations is constant, the new word w ′ = w ′0w

′
1 · · ·w ′m consists

of factors of constant length and hence |w ′| = O(m) = O(n). It satisfies
rep(δ(⊥q0,w ′)) = c. Hence r(n) 6 |Σ6dn/∼L| for some constant d > 0 and
sufficiently large n. Hence any exponential lower bound on r(n) transfers to
|Σ6n/∼L|.

As a corollary we obtain a dichotomy for the standard streaming space
complexity of VPLs.

146 Chapter 10. Visibly pushdown languages

Corollary 10.9. In the standard streaming model the space complexity EL(n) =
log |Σ6n/∼L| of every VPL L is either O(logn) or Ω(n) infinitely often.

10.3 Proof strategy

The rest of the chapter is dedicated to the proof of Theorem 10.1. If L is either
empty or universal then VL(n) is O(1), and otherwise Ω(logn) by Lemma 3.7.
Hence we can assume that ∅ (L (Σ∗ and prove that the space complexity
is either O(logn) or Ω(n) for infinitely many n. Recall the definition of the
suffix expansion of an equivalence relation or a function, see Section 3.4. By
Proposition 3.11 and the definition of νA we have

2VL(n) = |Σ6n/≈L| = | ~νL(Σ
6n)| = | ~νA(Σ

6n)| = |im(~νA) ∩ Rep6n|, (10.1)

and therefore it suffices to prove that im(~νA) has polynomial or exponential
growth. Notice that ~νA maps a word over Σ of length n to a sequence of n
representative configurations from Rep, which is a “two-dimensional” object.

Example 10.10. Let us compute ~νA(w) for an example word w and the VPA A

from Example 10.7. For example ~νA(abaaaaabb) is the sequence

(⊥AAAqb,⊥AAAqb,⊥AAAqb,⊥AAqb,⊥Aqb,⊥qF,⊥qF,⊥qF,⊥qF)

because applying νA to all suffixes of w = abaaaaabb yields:

νA(abaaaaabb) = ⊥AAAqb
νA(baaaaabb) = ⊥AAAqb
νA(aaaaabb) = ⊥AAAqb
νA(aaaabb) = ⊥AAqb
νA(aaabb) = ⊥Aqb
νA(aabb) = ⊥qF
νA(abb) = ⊥qF
νA(bb) = ⊥qF
νA(b) = ⊥qF

Notice that νA need not be rational in general and hence we cannot directly
apply Theorem 5.2. Intuitively one would need a stack to compute the configu-
ration δ(⊥q0,w). In the example above we have νA(aibj) = ⊥AAi−j−1qb for
all 1 6 j < i and a simple pumping argument shows that νA cannot be rational.
Using a different representation of the input word we will describe νA by a
rational function and apply Theorem 5.2.

Let us give an overview of the proof of Theorem 10.1. Figure 10.2 gives an
overview of the used sets and abstractions. We identify three sufficient conditions
for the linear growth of VL(n).

10.4. Reduction to transducers 147

Condition 1 The context-free set ~νA(D) has exponential growth.

Since ~νA(D) ⊆ ~νA(Σ
∗) this condition immediately implies a linear lower bound

on VL(n). In order to simulate A by a finite transducer we will “flatten” the input
word in the following way. The input wordw is factorizedw = w0w1 · · ·wm into
a descending prefix w0, and call letters and well-matched factors w1, . . . ,wm.
The descending prefix and each well-matched factor wi are replaced by so-called
D- and W-sequences which describe the behavior of A on the factor wi and on
each of its suffixes. The set of all (syntactically correct) flattenings is denoted by
AllFlat, which is regular; the set Flat of all realized flattenings is only context-free.
There exists a rational function νf : AllFlat→ Rep such that, if s is a flattening of
a word w ∈ Σ∗ then νf(s) is a configuration representing the Myhill-Nerode class
νL(w) (Proposition 10.15). Hence, we can reduce proving the main theorem
to the question whether the growth of ~νf(Flat) is always either polynomial or
exponential.

This question is resolved positively as follows. If Condition 1 does not hold,
we can approximate Flat by a regular superset RegFlat with νf(RegFlat) =

νf(Flat) = Rep and some other properties. If ~νf(RegFlat) has polynomial growth
then the same holds for the subset ~νf(Flat) and therefore VL(n) = O(logn). Oth-
erwise, the dichotomy theorem (Theorem 5.2), applied to the rational restriction
~νf|RegFlat, states that ~νf(RegFlat) has exponential growth if one of the following

two conditions hold:

Condition 2 The regular set Rep has exponential growth.

Condition 3 νf has a fooling scheme in RegFlat.

If Condition 2 holds then Lemma 10.8 states that |νA(Σ6n)| = |Σ6n/∼L| grows
exponentially, which is a lower bound on | ~νA(Σ

6n)|. If Condition 3 holds we can
ensure that the fooling scheme is already contained in Flat. In both cases we
obtain a linear lower bound on VL(n).

10.4 Reduction to transducers

D- and W-sequences We first define abstractions for the descending prefix
and well-matched factors. A D-sequence is any sequence q1 · · ·qn ∈ Q∗, and a
W-sequence is any sequence τq2 · · ·qn ∈ QQQ∗.

If x = a1 · · ·an ∈ D is a descending word then δ(⊥q0, x) = ⊥p for some
p ∈ Q. Since rep chooses length-minimal configurations there exists a state
q ∈ Q with νA(x) = ⊥q. Since each suffix of x is also descending we have
~νA(x) = (⊥q1,⊥q2, . . . ,⊥qn) for some q1, . . . ,qn ∈ Q. The D-sequence of x is

defined as σD(x) = q1 · · ·qn ∈ Q∗, i.e. we remove the redundant ⊥-symbols
from ~νA(x). If x is nonempty and well-matched with σD(x) = q1 · · ·qn and
n > 1 we additionally define its W-sequence as σW(x) = τq2 · · ·qn ∈ QQQ∗
where τ = θ(x).

We denote by SD = σD(D) and SW = σW(W \ {ε}) the set of all realized D-
and W-sequences, respectively. Since descending words are exactly the (proper)

148 Chapter 10. Visibly pushdown languages

Σ∗ rConf Rep

Flat

⊆

RegFlat

⊆

AllFlat

δ(⊥q0, ·) rep

tf νf

νA

Figure 10.2: On input w ∈ Σ∗ the VPA A reaches configuration δ(⊥q0,w).
Its representative configuration is νA(w). We abstract the words from Σ∗ by
flattenings from Flat.

suffixes of well-matched words SD is exactly the set of proper suffixes of words
from SW . Notice that σD and σW preserve suffixes in the following sense: If
σD(a1 · · ·an) = q1 · · ·qn or σW(a1 · · ·an) = τq2 · · ·qn then σD(ai · · ·an) =

qi · · ·qn for all 2 6 i 6 n.

Lemma 10.11. The languages SD and SW are context-free.

Proof. Since SD is the set of all proper suffixes of words from SW it suffices to
consider SW . We will prove that {w ⊗ σW(w) | w ∈ W \ {ε}} is a VPL over the
pushdown alphabet (Σc × Σf,Σr × Σf,Σint × Σf). Since the class of context-free
languages is closed under projections it then follows that SW is context-free. A
VPA can test whether the first component w = a1 · · ·an is well-matched and
whether the second component has the form τq2 · · ·qn ∈ QQQ∗. Since VPLs are
closed under Boolean operations, it suffices to test whether τ 6= θ(w) or there
exists a state qi with νA(ai · · ·an) 6= ⊥qi. To guess an incorrect state we use a
VPA whose stack alphabet contains all stack symbols of A and a special symbol
representing the stack bottom. We guess and read a prefix of the input word
and push/pop only the special symbol # on/from the stack. Then at some point
we store the second component qi in the next symbol and simulate A on the
remaining suffix. Finally, we accept if and only if the reached state is q and
rep(⊥q) 6= ⊥qi. Similarly, we can verify τ by testing whether there exists a state
p ∈ Q with θ(w)(p) 6= τ(p).

Lemma 10.12. The language SD is bounded if and only if SW is bounded. If SD
is not bounded then im(~νA) grows exponentially.

Proof. Assume that SD ⊆ s∗1 · · · s∗k is bounded. Since SW ⊆
⋃
{τSD | τ ∈ QQ} we

have SW ⊆ τ∗1 · · · τ∗ms∗1 · · · s∗k for any enumeration τ1, . . . , τm of QQ. Conversely,
if SW is bounded then each word in SD is a factor, namely a proper suffix, of a
word from SW . By Lemma 3.14 then also SD must be bounded.

10.4. Reduction to transducers 149

If the context-free language SD = σD(D) ⊆ Q∗ is not bounded then its
growth must be exponential. Recall that �νA(w) and σD(w) are equal for all
w ∈ D up to the ⊥-symbol. Hence | �νA(Σ

�n)| � | �νA(D ∩ Σ�n)| = |σD(D ∩
Σ�n)| = |SD ∩Q�n|, which proves the growth bound.

Flattenings Define the alphabet Σf = Σc ∪ Q ∪ QQ. A flattening is a word
s0s1 · · · sm ∈ Σ∗

f where s0 ∈ Q∗ is a D-sequence and si ∈ Σc ∪QQQ∗ is a call
letter or a W-sequence for all 1 � i � m. The factorization into the initial
D-sequence, the call letters and the W-sequences is unique. The set of all
flattenings is AllFlat = Q∗(Σc ∪ QQQ∗)∗, which is suffix-closed. We say that
s = s0s1 · · · sm ∈ AllFlat is a flattening of a word w ∈ Σ∗ if there exists a
monotonic factorization w = w0w1 · · ·wm ∈ Σ∗ such that s0 = σD(w0), and for
all 1 � i � m if wi is well-matched, then si = σW(wi), and if wi ∈ Σc then
si = wi. The set of realized flattenings is Flat = SD(Σc ∪ SW)∗. Since a word
may have different monotonic factorizations, it may also have many flattenings.

Lemma 10.13. If s = b1 · · ·bn ∈ Σ∗
f is a flattening of a word w = a1 · · ·an ∈ Σn,

then bi · · ·bn is a flattening of ai · · ·an for all 1 � i � n. In particular Flat is
suffix-closed.

Proof. Letw = w0w1 · · ·wm be a monotonic factorization and let s = s0s1 · · · sm
be the associated flattening. This means σD(w0) = s0, and for all 1 � i � m,
if wi is a call letter then wi = si, and if wi is a well-matched factor then
σW(wi) = si. Now take any suffix w ′ of w, which has a monotonic factorization
of the form w ′

kwk+1 · · ·wm where w ′
k is a possibly empty suffix of wk. Let

s ′ = s ′ksk+1 · · · sm where s ′k is the length-|w ′
k| suffix of sk. One can see that s ′ is

the associated flattening of w ′ since σD(wk) = sk implies σD(w ′
k) = s ′k.

We define a function tf : AllFlat → rConf as follows. Let s = s0s1 · · · sm ∈ Σ∗
f

be a flattening and we define tf(s) by induction on m:

˛ If s0 = ε then tf(s0) = ⊥q0. If s0 = q1 · · ·qn ∈ Q+ then tf(s0) = ⊥q1.

˛ If sm ∈ Σc and m � 1 then tf(s) = δ(tf(s0 · · · sm−1), sm).

˛ If sm = τq2 · · ·qm ∈ QQQ∗ and m � 1 and tf(s0 · · · sm−1) = αq then
tf(s) = ατ(q).

Define the function νf : AllFlat → Rep by νf = rep ◦ tf.
Lemma 10.14. The functions tf and νf are rational.

Proof. We first define a transducer A1 which handles flattenings where the initial
D-sequence is empty. Let A1 = (Q,Σf,Q ∪ Γ ,q0,Δ ′,Q,o) with the following
transitions:

˛ p
q|ε−−→ p for all p,q ∈ Q

˛ p
a|γ−−→ q for all δ(p,a) = (γ,q) where a ∈ Σc

150 Chapter 10. Visibly pushdown languages

˛ p
τ|ε−−→ τ(p) for all p ∈ Q, τ ∈ QQ

and o(q) = q. For each p ∈ Q let tp be the rational function defined by A1

with the only initial state p. One can easily show that for all s ∈ (QQQ∗ ∪ Σc)
∗

we have tf(s) = ⊥tq0(s) and tf(q1 · · ·qks) = ⊥tq1(s) for all q1 · · ·qk ∈ Q+.
Hence we can prove that tf is rational by providing a transducer for tf: First
it verifies whether the input word s belongs to the regular language AllFlat ⊆
Σ∗
f. Simultaneously, it verifies whether s begins with a nonempty D-sequence
q1 · · ·qk. If so, it memorizes q1 and simulates A1 on the remaining suffix s ′

starting from state q1. Otherwise A1 is directly simulated on s from q0. Since
rep is rational by Corollary 10.6, νf is also rational.

Proposition 10.15. If s ∈ AllFlat is a flattening of w ∈ Σ∗ then νf(s) = νA(w).
Therefore νf(Flat) = Rep and | �νA(Σ

�n)| = | �νf(Flat) ∩ Rep�n|.

Proof. Let w = w0w1 · · ·wm ∈ Σ∗ be a monotonic factorization and let s =

s0s1 · · · sm ∈ Flat be the associated flattening. We prove tf(s) ∼ δ(⊥q0,w) by
induction on m.

˛ If m = 0 and s0 = ε then tf(s) = ⊥q0 = δ(⊥q0, ε).

˛ If m = 0 and s0 = q1 · · ·qk ∈ Q+ then tf(s) = ⊥q1 and νA(w) =

rep(δ(⊥q0,w)) = ⊥q1.

˛ If m � 1 and sm ∈ Σc then sm = wm. By induction hypothesis we
know that tf(s0 · · · sm−1) ∼ δ(⊥q0,w0 · · ·wm−1). Since δ(⊥q0,w) =

δ(δ(⊥q0,w0 · · ·wm−1),wm) and tf(s) = δ(tf(s0 · · · sm−1), sm) we obtain
δ(⊥q0,w) ∼ tf(s).

˛ If m � 1 and sm = τq2 · · ·qk ∈ QQQ∗ then wm is well-matched and
θ(wm) = τ. Assume that tf(s0 · · · sm−1) = αp and δ(⊥q0,w0 · · ·wm−1) =

βq. By induction hypothesis we know that αp ∼ βq. Since tf(s) = ατ(p) =

δ(αp,wm) and δ(⊥q0,w) = δ(βq,wm) we obtain tf(s) ∼ δ(⊥q0,w).

Since νf = rep ◦ tf and νA(w) = rep(δ(⊥q0,w)) we have νf(s) = νA(w). The
consequence follows from the suffix preservation (Lemma 10.13).

10.5 Bounded overapproximation

In this section we will assume that SD and SW are bounded languages. Otherwise
Lemma 10.12 implies that im(�νA) grows exponentially and hence L has linear
sliding window space complexity by (10.1). To apply Theorem 5.2 we will
approximate Flat by a regular language RegFlat. Define the function

Φ(a1 · · ·an) = {(a1,n), (a2,n− 1) . . . , (an, 1)}

and Φ(K) =
⋃

w∈KΦ(w). It summarizes which symbols occur at which positions
across all words in a language K (read from right to left).

10.5. Bounded overapproximation 151

Lemma 10.16. Let K be a bounded context-free language. Then there exists a
bounded regular superset R ⊇ K such that {|w| : w ∈ K} = {|w| : w ∈ R} and
Φ(K) = Φ(R), called a bounded overapproximation of K.

Proof. We use Parikh’s theorem, which implies that for every context-free lan-
guage K ⊆ Σ∗ the set {|w| : w ∈ K} is semilinear, i.e. a finite union of arithmetic
progressions, and hence {v ∈ Σ∗ | ∃w ∈ K : |v| = |w|} is a regular language.
Assume that K ⊆ w∗

1 · · ·w∗
k for some w1, . . . ,wk ∈ Σ∗. We define

R = (w∗
1 · · ·w∗

k) ∩ {v ∈ Σ∗ | ∃w ∈ K : |v| = |w|} ∩ {w ∈ Σ∗ | Φ(w) ⊆ Φ(K)}.

Clearly, K is contained in R and it remains to verify that the third part is regular. It
suffices to show that for each a ∈ Σ the set Pa = {i | (a, i) ∈ Φ(K)} is semilinear
because then an automaton can verify the property Φ(w) ⊆ Φ(K). Consider the
transduction

Ta = {(a1 · · ·an,�n−i+1) | a1 · · ·an ∈ Σ∗, ai = a}.

It is easy to see that Ta is rational and TaK = {�i | i ∈ Pa}. The claim follows
again from Parikh’s theorem.

For each τ ∈ QQ let Rτ be a bounded overapproximation of τ−1SW and let
RW =

⋃
τ∈QQ(τRτ). Let RD =

⋃
τ∈QQ Suf(Rτ), which is the set of all proper

suffixes of words in RW . Both RD and RW are also bounded languages. Finally,
set RegFlat = RD(Σc ∪ RW)∗, which is a suffix-closed subset of AllFlat, since
RegFlat = Suf((Σc ∪ RW)∗). According to the definition of bounded overapproxi-
mations we can approximate a W-sequence v = τq2 · · ·qk ∈ RW in two possible
ways:

˛ There exists a W-sequence of the form τp2 · · ·pk ∈ SW of length |v|. It is
called a length approximation of v.

˛ For all 2 � i � k there exists a W-sequence of the form τs ′qipi+1 · · ·pk ∈
SW . It is called an approximation of v along qi.

If r = r0r1 · · · rm ∈ RegFlat then we can replace any W-sequence ri ∈ RW by an
approximation of ri (of either type) without changing the value of νf(r) since
the state transformations are preserved.

Proposition 10.17. νf(Flat) = νf(RegFlat).

Proof. We clearly have νf(Flat) ⊆ νf(RegFlat) and it remains to show the other
inclusion. Consider a flattening r = r0r1 · · · rm ∈ RegFlat. First, we replace
any W-sequence ri ∈ RW by a length approximation r ′i ∈ SW of ri, which
preserves the value of νf(r). If r0 is empty, we are done. Otherwise suppose
that r0 = q1 · · ·qk ∈ RD is nonempty. By definition q1 · · ·qk is a proper suffix of
some word x = τp2 · · ·pi−1q1 · · ·qk ∈ RW . Take an approximation y ∈ SW of x
along q1, which has a proper suffix of the form q1q

′
2 · · ·q ′

k belonging to SD. We
can replace q1 · · ·qk by q1q

′
2 · · ·q ′

k in r without changing the value of νf(r).

152 Chapter 10. Visibly pushdown languages

Lemma 10.18. If νf has a fooling scheme in RegFlat then it also has a fooling
scheme (u2, v2,u, v, z) in Flat.

Proof. Let (u2, v2,u, v, z) be a fooling scheme of νf in RegFlat. First we ensure
that u, v, z ∈ (Σc ∪ RW)∗.

Since u2 and v2 are distinct words of equal length {u2, v2}{u, v}n contains
2n distinct words and therefore {u2, v2}{u, v}∗ is not bounded. We claim that
{u, v}
⊆ Q∗. Otherwise {u2, v2}{u, v}∗ ⊆ Q∗ would be contained in the set of
prefixes of words in RD. This is a contradiction because RD is bounded by
assumption and {u2, v2}{u, v}∗ has exponential growth.

Without loss of generality, assume that u = u3u4 such that u4 either starts
with a call letter a ∈ Σc or a transformation τ ∈ QQ. We claim that

(u2u3, v2u3,u4uu3,u4vu3,u4z)

is a fooling scheme for νf. It has the following properties:

˛ {u2u3, v2u3}{u4uu3,u4vu3}
∗u4z ⊆ {u2, v2}{u, v}∗z ⊆ RegFlat,

˛ u2u3 is a suffix of u4uu3,

˛ v2u3 is a suffix of u4vu3,

˛ |u2u3| = |v2u3|,

˛ νf separates u2u3{u4uu3,u4vu3}
∗u4z and v2u3{u4uu3,u4vu3}

∗u4z.

Since (u2u3)(u4uu3)(u4vu3)(u4z) belongs to RegFlat = RD(Σc ∪ RW)∗ and u4

starts with a call letter or a transformation, the words u4uu3,u4vu3,u4z must
belong to (Σc ∪ RW)∗.

Now, let (u2, v2,u, v, z) be a fooling scheme of νf in RegFlat such that u, v, z ∈
(Σc ∪ RW)∗. We replace occurring factors from RW by factors from SW while
maintaining the values νf(swz) for all s ∈ {u2, v2} and w ∈ {u, v}∗.

1. First we replace each RW-factor in z by a length approximation, which
ensures that z ∈ (Σc ∪ SW)∗.

2. Next consider u and v, and assume that u = u1u2 and v = v1v2 for some
u1, v1 ∈ Σ∗

f. Let us consider RW-factors which cross the factorization
u = u1u2 or v = v1v2, respectively. If u2 starts with some state we can
factorize u1 and u2 as u1 = u3τq2 · · ·qi−1 and u2 = qi · · ·qku4 where
u3,u4 ∈ (Σc∪RW)∗ and τq2 · · ·qk ∈ RW . Let y ∈ SW be an approximation
of τq2 · · ·qk along qi, say y = τs ′qipi+1 · · ·pk. We replace u1 by u3τs

′

and u2 by qipi+1 · · ·pku4. Notice that the length of u2 has not changed
(this maintains |u2| = |v2|) and the first state of u2 has not changed either
(this maintains the values νf(u2wz)). If v2 starts with some state we do
the analogous replacements for v1 and v2.

3. Finally, each RW -factor in u1, u2, v1 and v2 is replaced by a length approxi-
mation.

10.6. Conclusion 153

One can verify that the new tuple (u2, v2,u, v, z) is a fooling scheme of νf in
Flat.

Now we are ready to prove the main theorem:

Proof of Theorem 10.1. If L = ∅ or L = Σ∗ then VL(n) = O(1). Now assume
∅ (L (Σ∗, in which case we have VL(n) = Ω(logn). Furthermore we know
that 2VL(n) is the cumulative growth of im(~νA) by (10.1).

If the constructed languages SD and SW are not bounded then im(~νA) grows
exponentially by Lemma 10.12 (Condition 1). Now assume that SD and SW
are bounded, in which case we can construct RegFlat. We apply Theorem 5.2
to the rational restriction νf|RegFlat. The latter theorem states that the growth of
~νf(RegFlat) is either polynomial or exponential. If ~νf(RegFlat) has polynomial

growth then the same holds for its subset ~νf(Flat). Otherwise, either the image
νf(RegFlat) is not bounded (Condition 2) or νf has a fooling scheme in RegFlat
(Condition 3).

First assume Condition 2 holds. Then the regular set Rep has exponen-
tial growth because νf(RegFlat) = νf(Flat) = Rep by Proposition 10.15 and
Proposition 10.17. By Lemma 10.8 we know that |Σ6n/∼L| = |νA(Σ

6n)| grows
exponentially and hence also | ~νA(Σ

6n)|.
If Condition 3 holds then νf has a fooling scheme in Flat by Lemma 10.18.

Then ~νf(Flat) has exponential growth by Proposition 5.3. By Proposition 10.15
also | ~νA(Σ

6n)| grows exponentially. This concludes the proof.

10.6 Conclusion

We have proved that every visibly pushdown language has constant, logarithmic
or linear space complexity in the variable-size sliding window model. Let us
summarize the open questions.

Open problems

1. Does every VPL have constant, logarithmic or linear space complexity in the
fixed-size model? If L is a VPL with FL(n) = o(logn) then FL(n) must be
constant by Theorem 9.1. We conjecture that the linear lower bounds for
VL(n) can be transferred to FL(n). To do so, one would have to reexamine
the three conditions from Section 10.3.

2. It also remains open to give a simple characterization of the visibly push-
down languages with logarithmic complexity. This question is related to
characterizing the rational functions whose suffix expansions have poly-
nomial image growth. We remark that the example language L from
Proposition 3.12 is a visibly pushdown language and a left ideal which has
linear space complexity in the fixed-size model.

154 Chapter 10. Visibly pushdown languages

3. Finally, we pose the question whether the ideas from this chapter can be
used to analyze the sliding window space complexity of other language
classes. In general, one would need to find a suitable “flattened” repre-
sentation of the window on which a finite state transducer can compute
representative configurations.

Related work In [8] Alur et al. define a natural syntactic congruence for
languages over a pushdown alphabet, and prove that a language containing only
well-matched words is a VPL if and only if its syntactic congruence has finite
index. Subclasses of visibly pushdown languages with low “complexity” were
also studied in other contexts. Bárány, Löding and Serre [15] consider visibly
counter automata, which can use the stack to count up to a constant threshold.
They prove that it is decidable whether a given visibly pushdown automaton
is equivalent to a visibly counter automaton. One can easily see that a visibly
counter automaton can be viewed a VPA whose set of configurations has constant
growth (or linear cumulative growth). Therefore we have |Σ6n/∼L| = O(n) for
every visibly counter language L. Krebs, Lange and Ludwig [79] show that it is
decidable whether a given visibly counter language is contained in the circuit
complexity class AC0.

Chapter 11

Conclusion

In this thesis we have analyzed the sliding window streaming model, with an
emphasis on the space complexity of monitoring properties over sliding windows.
We have pursued the question, which properties, viewed as formal languages,
admit space efficient sliding window algorithms and have provided a complete
picture for the case of regular languages. The sliding window model and, more
generally, the streaming model yield interesting automata theoretic questions,
which can give new insights into language classes and their properties.

Let us give an outlook of possible research directions.

Languages classes A widely open question is which other language classes
admit a structured analysis in the sliding window model. Besides the already
mentioned class of deterministic context-free languages, one could consider
languages accepted by constrained automata [27] in the sliding window model,
which are regular languages with semilinear constraints. In a preceding step one
should study such language classes in the standard streaming model.

Going in the other direction, one should also restrict the class of regular
languages and find appropriate input representations that capture queries from
real-world applications.

Quantitative queries and data streams Instead of qualitative statements over
the sliding window one is often interested in computing quantitative values. Our
investigation of rational functions is a starting point for that. In the literature
there is a large variety of quantitative models which compute values from words.
One of the standard models of quantitative systems are weighted automata [38],
which compute a value over a semiring. Other models include cost register
automata [6] and quantitative regular expressions [7]. The latter form the core
of StreamQRE [87], which is a specification language for streaming queries.

A related topic concerns the fact that streams usually consist of complex
data values, e.g. tuples of real numbers, which may represent sensor values or
timestamps. Such streams can be modeled by so-called data words. A popular
formalism for specifying set of data words (so-called data languages) are register

155

156 Chapter 11. Conclusion

automata, which are also known as finite memory automata [71]; see also [93]
for a comparison with other models.

Time-based windows In some streaming applications the data items may
arrive at irregular intervals and it may be more interesting to consider time-
based windows. The path summary algorithm can be easily adapted to work over
time-based windows whenever the given rDFA is weak, i.e. each SCC contains
only final or only nonfinal states. Recall that weak rDFAs capture precisely
the class 〈LI〉 (Theorem 4.32). It would be interesting to compare the space
complexity of languages under the fixed-size, variable-size and the time-based
window model.

Resulting publications

Relevant for this thesis

[G1] M. Ganardi, D. Hucke, and M. Lohrey. “Querying Regular Languages over
Sliding Windows”. In: Proceedings of the 36th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2016). Ed. by A. Lal, S. Akshay, S. Saurabh, and S. Sen. Vol. 65.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, 18:1–
18:14. DOI: 10.4230/LIPIcs.FSTTCS.2016.18.

[G2] M. Ganardi, D. Hucke, D. König, M. Lohrey, and K. Mamouras. “Au-
tomata Theory on Sliding Windows”. In: Proceedings of the 35th Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2018). Ed. by
R. Niedermeier and B. Vallée. Vol. 96. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2018, 31:1–31:14. DOI: 10.4230/LIPIcs.
STACS.2018.31.

[G3] M. Ganardi, D. Hucke, and M. Lohrey. “Randomized Sliding Window
Algorithms for Regular Languages”. In: Proceedings of the 45th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP
2018). Ed. by I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. San-
nella. Vol. 107. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2018, 127:1–127:13. DOI: 10.4230/LIPIcs.ICALP.2018.127.

[G4] M. Ganardi, D. Hucke, and M. Lohrey. “Sliding Window Algorithms for
Regular Languages”. In: Proceedings of the 12th International Conference
on Language and Automata Theory and Applications (LATA 2018). Ed. by
S. T. Klein, C. Mart́ın-Vide, and D. Shapira. Vol. 10792. Lecture Notes
in Computer Science. Springer, 2018, pp. 26–35. DOI: 10.1007/978-3-
319-77313-1_2.

[G5] M. Ganardi, A. Jeż, and M. Lohrey. “Sliding Windows over Context-
Free Languages”. In: Proceedings of the 43rd International Symposium
on Mathematical Foundations of Computer Science (MFCS 2018). Ed.
by I. Potapov, P. G. Spirakis, and J. Worrell. Vol. 117. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 15:1–15:15. DOI:
10.4230/LIPIcs.MFCS.2018.15.

157

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.18
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.31
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.31
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.127
http://dx.doi.org/10.1007/978-3-319-77313-1_2
http://dx.doi.org/10.1007/978-3-319-77313-1_2
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.15

158 Chapter 11. Resulting publications

[G6] M. Ganardi. “Visibly Pushdown Languages over Sliding Windows”. In:
Proceedings of the 36th International Symposium on Theoretical Aspects
of Computer Science (STACS 2019). Ed. by R. Niedermeier and C. Paul.
Vol. 126. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2019, 29:1–29:17. DOI: 10.4230/LIPIcs.STACS.2019.29.

[G7] M. Ganardi, D. Hucke, and M. Lohrey. “Derandomization for Sliding
Window Algorithms with Strict Correctness”. In: Proceedings of the 14th
International Computer Science Symposium in Russia (CSR 2019). Ed. by
R. van Bevern and G. Kucherov. Vol. 11532. Lecture Notes in Computer
Science. Springer, 2019, pp. 237–249. DOI: 10.1007/978- 3- 030-

19955-5_21.

[G8] M. Ganardi, D. Hucke, M. Lohrey, and T. Starikovskaya. “Sliding window
property testing for regular languages”. In: To appear in Proceedings of the
30th International Symposium on Algorithms and Computation (ISAAC
2019). 2019.

Other publications

[O1] M. Ganardi. “Parity Games of Bounded Tree- and Clique-Width”. In:
Proceedings of the 18th International Conference on Foundations of Soft-
ware Science and Computation Structures (FoSSaCS 2015). Ed. by A. M.
Pitts. Vol. 9034. Lecture Notes in Computer Science. Springer, 2015,
pp. 390–404. DOI: 10.1007/978-3-662-46678-0_25.

[O2] M. Ganardi, S. Göller, and M. Lohrey. “On the Parallel Complexity
of Bisimulation on Finite Systems”. In: Proceedings of the 25th EACSL
Annual Conference on Computer Science Logic (CSL 2016). Ed. by J. Talbot
and L. Regnier. Vol. 62. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016, 12:1–12:17. DOI: 10.4230/LIPIcs.CSL.2016.12.

[O3] M. Ganardi, D. Hucke, M. Lohrey, and E. Noeth. “Tree Compression
Using String Grammars”. In: Proceedings of the 12th Latin American Sym-
posium on Theoretical Informatics (LATIN 2016). Ed. by E. Kranakis, G.
Navarro, and E. Chávez. Vol. 9644. Lecture Notes in Computer Science.
Springer, 2016, pp. 590–604. DOI: 10.1007/978-3-662-49529-2_44.

[O4] M. Ganardi, D. Hucke, A. Jeż, M. Lohrey, and E. Noeth. “Constructing
small tree grammars and small circuits for formulas”. In: J. Comput. Syst.
Sci. 86 (2017), pp. 136–158. DOI: 10.1016/j.jcss.2016.12.007.

[O5] M. Ganardi, D. Hucke, D. König, and M. Lohrey. “Circuit Evaluation
for Finite Semirings”. In: Proceedings of the 34th Symposium on The-
oretical Aspects of Computer Science (STACS 2017). Ed. by H. Vollmer
and B. Vallée. Vol. 66. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017, 35:1–35:14. DOI: 10.4230/LIPIcs.STACS.2017.35.

http://dx.doi.org/10.4230/LIPIcs.STACS.2019.29
http://dx.doi.org/10.1007/978-3-030-19955-5_21
http://dx.doi.org/10.1007/978-3-030-19955-5_21
http://dx.doi.org/10.1007/978-3-662-46678-0_25
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.12
http://dx.doi.org/10.1007/978-3-662-49529-2_44
http://dx.doi.org/10.1016/j.jcss.2016.12.007
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.35

Other publications 159

[O6] M. Ganardi, S. Göller, and M. Lohrey. “The Complexity of Bisimulation
and Simulation on Finite Systems”. In: Log. Methods Comput. Sci. 14.4
(2018). DOI: 10.23638/LMCS-14(4:5)2018.

[O7] M. Ganardi, D. Hucke, D. König, and M. Lohrey. “Circuits and Expres-
sions over Finite Semirings”. In: ACM Trans. Comput. Theory 10.4 (2018),
15:1–15:30. DOI: 10.1145/3241375.

[O8] M. Ganardi, D. Hucke, M. Lohrey, and E. Noeth. “Tree Compression
Using String Grammars”. In: Algorithmica 80.3 (2018), pp. 885–917.
DOI: 10.1007/s00453-017-0279-3.

[O9] M. Ganardi, D. König, M. Lohrey, and G. Zetzsche. “Knapsack Problems
for Wreath Products”. In: Proceedings of the 35th Symposium on Theoret-
ical Aspects of Computer Science (STACS 2018). Ed. by R. Niedermeier
and B. Vallée. Vol. 96. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018, 32:1–32:13. DOI: 10.4230/LIPIcs.STACS.2018.32.

[O10] M. Ganardi, D. Hucke, M. Lohrey, and L. Seelbach Benkner. “Universal
Tree Source Coding Using Grammar-Based Compression”. In: IEEE Trans.
Inf. Theory 65.10 (2019), pp. 6399–6413. DOI: 10.1109/TIT.2019.
2919829.

[O11] M. Ganardi, A. Jeż, and M. Lohrey. “Balancing Straight-Line Programs”.
In: To appear in Proceedings of the 60th IEEE Annual Symposium on
Foundations of Computer Science (FOCS 2019). 2019.

[O12] M. Ganardi and M. Lohrey. “A Universal Tree Balancing Theorem”. In:
ACM Trans. Comput. Theory 11.1 (2019), 1:1–1:25. DOI: 10.1145/

3278158.

[O13] M. Ganardi and B. Khoussainov. “Automatic equivalence structures of
polynomial growth”. In: To appear in Proceedings of the 28th EACSL
Annual Conference on Computer Science Logic (CSL 2020). 2020.

http://dx.doi.org/10.23638/LMCS-14(4:5)2018
http://dx.doi.org/10.1145/3241375
http://dx.doi.org/10.1007/s00453-017-0279-3
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.32
http://dx.doi.org/10.1109/TIT.2019.2919829
http://dx.doi.org/10.1109/TIT.2019.2919829
http://dx.doi.org/10.1145/3278158
http://dx.doi.org/10.1145/3278158

160 Chapter 11. Resulting publications

Bibliography

[1] S. Aaronson, D. Grier, and L. Schaeffer. “A Quantum Query Complexity
Trichotomy for Regular Languages”. In: Electronic Colloquium on Com-
putational Complexity (ECCC) 26 (2019), p. 61. URL: https://eccc.
weizmann.ac.il/report/2019/061.

[2] C. C. Aggarwal, ed. Data Streams - Models and Algorithms. Vol. 31.
Advances in Database Systems. Springer, 2007. DOI: 10.1007/978-0-
387-47534-9.

[3] A. V. Aho and M. J. Corasick. “Efficient String Matching: An Aid to
Bibliographic Search”. In: Commun. ACM 18.6 (1975), pp. 333–340.
DOI: 10.1145/360825.360855.

[4] N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. “Regular
Languages are Testable with a Constant Number of Queries”. In:
SIAM J. Comput. 30.6 (2000), pp. 1842–1862. DOI: 10 . 1137 /

S0097539700366528.

[5] N. Alon, Y. Matias, and M. Szegedy. “The Space Complexity of Approxi-
mating the Frequency Moments”. In: J. Comput. Syst. Sci. 58.1 (1999),
pp. 137–147. DOI: 10.1006/jcss.1997.1545.

[6] R. Alur, L. D’Antoni, J. V. Deshmukh, M. Raghothaman, and Y. Yuan.
“Regular Functions and Cost Register Automata”. In: Proceedings of the
28th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS
2013). IEEE Computer Society, 2013, pp. 13–22. DOI: 10.1109/LICS.
2013.65.

[7] R. Alur, D. Fisman, and M. Raghothaman. “Regular Programming for
Quantitative Properties of Data Streams”. In: Proceedings of the 25th
European Symposium on Programming (ESOP 2016). Ed. by P. Thiemann.
Vol. 9632. Lecture Notes in Computer Science. Springer, 2016, pp. 15–
40. DOI: 10.1007/978-3-662-49498-1_2.

[8] R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. “Congruences
for Visibly Pushdown Languages”. In: Proceedings of the 32nd Interna-
tional Colloquium on Automata, Languages and Programming (ICALP
2005). Ed. by L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and
M. Yung. Vol. 3580. Lecture Notes in Computer Science. Springer, 2005,
pp. 1102–1114. DOI: 10.1007/11523468_89.

161

https://eccc.weizmann.ac.il/report/2019/061
https://eccc.weizmann.ac.il/report/2019/061
http://dx.doi.org/10.1007/978-0-387-47534-9
http://dx.doi.org/10.1007/978-0-387-47534-9
http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1137/S0097539700366528
http://dx.doi.org/10.1137/S0097539700366528
http://dx.doi.org/10.1006/jcss.1997.1545
http://dx.doi.org/10.1109/LICS.2013.65
http://dx.doi.org/10.1109/LICS.2013.65
http://dx.doi.org/10.1007/978-3-662-49498-1_2
http://dx.doi.org/10.1007/11523468_89

162 Bibliography

[9] R. Alur and P. Madhusudan. “Visibly pushdown languages”. In: Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC 2004). Ed. by L. Babai. ACM, 2004, pp. 202–211. DOI: 10.1145/
1007352.1007390.

[10] A. Arasu and G. S. Manku. “Approximate Counts and Quantiles over
Sliding Windows”. In: Proceedings of the 23rd ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS 2004). Ed.
by C. Beeri and A. Deutsch. ACM, 2004, pp. 286–296. DOI: 10.1145/
1055558.1055598.

[11] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. “Models
and Issues in Data Stream Systems”. In: Proceedings of the 21st ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS 2002). Ed. by L. Popa, S. Abiteboul, and P. G. Kolaitis. ACM, 2002,
pp. 1–16. DOI: 10.1145/543613.543615.

[12] B. Babcock, M. Datar, and R. Motwani. “Sampling from a moving win-
dow over streaming data”. In: Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2002). Ed. by D. Eppstein.
ACM/SIAM, 2002, pp. 633–634. URL: http://dl.acm.org/citation.
cfm?id=545381.545465.

[13] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. “Maintaining
variance and k-medians over data stream windows”. In: Proceedings
of the 22nd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS 2003). Ed. by F. Neven, C. Beeri, and T. Milo.
ACM, 2003, pp. 234–243. DOI: 10.1145/773153.773176.

[14] A. Babu, N. Limaye, J. Radhakrishnan, and G. Varma. “Streaming algo-
rithms for language recognition problems”. In: Theor. Comput. Sci. 494
(2013), pp. 13–23. DOI: 10.1016/j.tcs.2012.12.028.

[15] V. Bárány, C. Löding, and O. Serre. “Regularity Problems for Visibly
Pushdown Languages”. In: Proceedings of the 23rd Annual Symposium on
Theoretical Aspects of Computer Science (STACS 2006). Ed. by B. Durand
and W. Thomas. Vol. 3884. Lecture Notes in Computer Science. Springer,
2006, pp. 420–431. DOI: 10.1007/11672142_34.

[16] R. Ben-Basat, G. Einziger, and R. Friedman. “Give Me Some Slack: Effi-
cient Network Measurements”. In: Proceedings of the 43rd International
Symposium on Mathematical Foundations of Computer Science (MFCS
2018). Ed. by I. Potapov, P. G. Spirakis, and J. Worrell. Vol. 117. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 34:1–34:16.
DOI: 10.4230/LIPIcs.MFCS.2018.34.

[17] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner. “Efficient Sum-
ming over Sliding Windows”. In: Proceedings of the 15th Scandinavian
Symposium and Workshops on Algorithm Theory (SWAT 2016). Ed. by R.
Pagh. Vol. 53. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016, 11:1–11:14. DOI: 10.4230/LIPIcs.SWAT.2016.11.

http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1145/1055558.1055598
http://dx.doi.org/10.1145/1055558.1055598
http://dx.doi.org/10.1145/543613.543615
http://dl.acm.org/citation.cfm?id=545381.545465
http://dl.acm.org/citation.cfm?id=545381.545465
http://dx.doi.org/10.1145/773153.773176
http://dx.doi.org/10.1016/j.tcs.2012.12.028
http://dx.doi.org/10.1007/11672142_34
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.34
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.11

Bibliography 163

[18] J. Berstel. Transductions and context-free languages. Vol. 38. Teubner Stu-
dienbücher : Informatik. Teubner, 1979. URL: http://www.worldcat.
org/oclc/06364613.

[19] A. Bouajjani, J. Esparza, and O. Maler. “Reachability Analysis of Push-
down Automata: Application to Model-Checking”. In: Proceedings of
the 8th International Conference on Concurrency Theory (CONCUR ’97).
Ed. by A. W. Mazurkiewicz and J. Winkowski. Vol. 1243. Lecture Notes
in Computer Science. Springer, 1997, pp. 135–150. DOI: 10.1007/3-
540-63141-0_10.

[20] B. von Braunmühl and R. Verbeek. “Input-Driven Languages are Rec-
ognized in log n Space”. In: Proceedings of the 1983 International FCT-
Conference (FCT 1983). Ed. by M. Karpinski. Vol. 158. Lecture Notes in
Computer Science. Springer, 1983, pp. 40–51. DOI: 10.1007/3-540-
12689-9_92.

[21] V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou.
“Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Win-
dows”. In: Proceedings of the 21st International Conference on Approx-
imation Algorithms for Combinatorial Optimization Problems, and the
22nd International Conference on Randomization and Computation (AP-
PROX/RANDOM 2018). Ed. by E. Blais, K. Jansen, J. D. P. Rolim, and D.
Steurer. Vol. 116. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2018, 7:1–7:22. DOI: 10.4230/LIPIcs.APPROX-RANDOM.2018.7.

[22] V. Braverman and R. Ostrovsky. “Smooth Histograms for Sliding Win-
dows”. In: Proceedings of the 48th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 2007). IEEE Computer Society, 2007,
pp. 283–293. DOI: 10.1109/FOCS.2007.55.

[23] V. Braverman, R. Ostrovsky, and C. Zaniolo. “Optimal sampling from
sliding windows”. In: J. Comput. Syst. Sci. 78.1 (2012), pp. 260–272.
DOI: 10.1016/j.jcss.2011.04.004.

[24] D. Breslauer and Z. Galil. “Real-Time Streaming String-Matching”.
In: ACM Trans. Algorithms 10.4 (2014), 22:1–22:12. DOI: 10.1145/
2635814.

[25] N. G. de Bruijn. “A combinatorial problem”. English. In: Nederl. Akad.
Wetensch. Proc. 49.7 (1946), pp. 758–764.

[26] J. R. Büchi. “Regular canonical systems”. In: Arch. Math. Logik Grundla-
genforschung 6.3-4 (1964), pp. 91–111. DOI: 10.1007/BF01969548.

[27] M. Cadilhac, A. Finkel, and P. McKenzie. “Unambiguous constrained
Automata”. In: Int. J. Found. Comput. Sci. 24.7 (2013), pp. 1099–1116.
DOI: 10.1142/S0129054113400339.

[28] S. Cho and D. T. Huynh. “The Parallel Complexity of Finite-State Au-
tomata Problems”. In: Inf. Comput. 97.1 (1992), pp. 1–22. DOI: 10.1016/
0890-5401(92)90002-W.

http://www.worldcat.org/oclc/06364613
http://www.worldcat.org/oclc/06364613
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/3-540-12689-9_92
http://dx.doi.org/10.1007/3-540-12689-9_92
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.7
http://dx.doi.org/10.1109/FOCS.2007.55
http://dx.doi.org/10.1016/j.jcss.2011.04.004
http://dx.doi.org/10.1145/2635814
http://dx.doi.org/10.1145/2635814
http://dx.doi.org/10.1007/BF01969548
http://dx.doi.org/10.1142/S0129054113400339
http://dx.doi.org/10.1016/0890-5401(92)90002-W
http://dx.doi.org/10.1016/0890-5401(92)90002-W

164 Bibliography

[29] C. Choffrut and M. P. Schützenberger. “Décomposition de Fonctions
Rationnelles”. In: Proceedings of the 3rd Annual Symposium on Theoretical
Aspects of Computer Science (STACS 86). Ed. by B. Monien and G. Vidal-
Naquet. Vol. 210. Lecture Notes in Computer Science. Springer, 1986,
pp. 213–226. DOI: 10.1007/3-540-16078-7_78.

[30] R. Clifford, A. Fontaine, E. Porat, B. Sach, and T. A. Starikovskaya.
“Dictionary Matching in a Stream”. In: Proceedings of the 23rd Annual
European Symposium (ESA 2015). Ed. by N. Bansal and I. Finocchi.
Vol. 9294. Lecture Notes in Computer Science. Springer, 2015, pp. 361–
372. DOI: 10.1007/978-3-662-48350-3_31.

[31] R. Clifford, A. Fontaine, E. Porat, B. Sach, and T. A. Starikovskaya.
“The k-mismatch problem revisited”. In: Proceedings of the 27th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016). Ed.
by R. Krauthgamer. SIAM, 2016, pp. 2039–2052. DOI: 10.1137/1.

9781611974331.ch142.

[32] R. Clifford, T. Kociumaka, and E. Porat. “The streaming k-mismatch
problem”. In: Proceedings of the 30th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019. Ed. by T. M. Chan. SIAM, 2019, pp. 1106–1125. DOI: 10.1137/1.
9781611975482.68.

[33] R. Clifford and T. A. Starikovskaya. “Approximate Hamming Distance
in a Stream”. In: Proceedings of the 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016). Ed. by I. Chatzi-
giannakis, M. Mitzenmacher, Y. Rabani, and D. Sangiorgi. Vol. 55. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, 20:1–20:14.
DOI: 10.4230/LIPIcs.ICALP.2016.20.

[34] E. Cohen and M. J. Strauss. “Maintaining time-decaying stream ag-
gregates”. In: J. Algorithms 59.1 (2006), pp. 19–36. DOI: 10.1016/j.
jalgor.2005.01.006.

[35] G. Cormode and S. Muthukrishnan. “An improved data stream summary:
the count-min sketch and its applications”. In: J. Algorithms 55.1 (2005),
pp. 58–75. DOI: 10.1016/j.jalgor.2003.12.001.

[36] M. Datar, A. Gionis, P. Indyk, and R. Motwani. “Maintaining Stream
Statistics over Sliding Windows”. In: SIAM J. Comput. 31.6 (2002),
pp. 1794–1813. DOI: 10.1137/S0097539701398363.

[37] M. Datar and S. Muthukrishnan. “Estimating Rarity and Similarity over
Data Stream Windows”. In: Proceedings of the 10th European Sympo-
sium on Algorithms (ESA 2002). Ed. by R. H. Möhring and R. Raman.
Vol. 2461. Lecture Notes in Computer Science. Springer, 2002, pp. 323–
334. DOI: 10.1007/3-540-45749-6_31.

[38] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata.
Springer, 2009.

http://dx.doi.org/10.1007/3-540-16078-7_78
http://dx.doi.org/10.1007/978-3-662-48350-3_31
http://dx.doi.org/10.1137/1.9781611974331.ch142
http://dx.doi.org/10.1137/1.9781611974331.ch142
http://dx.doi.org/10.1137/1.9781611975482.68
http://dx.doi.org/10.1137/1.9781611975482.68
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.20
http://dx.doi.org/10.1016/j.jalgor.2005.01.006
http://dx.doi.org/10.1016/j.jalgor.2005.01.006
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.1137/S0097539701398363
http://dx.doi.org/10.1007/3-540-45749-6_31

Bibliography 165

[39] P. W. Dymond. “Input-Driven Languages are in log n Depth”. In: Inf.
Process. Lett. 26.5 (1988), pp. 247–250. DOI: 10.1016/0020-0190(88)
90148-2.

[40] S. Eilenberg. Automata, languages, and machines. Vol. A. Pure and ap-
plied mathematics. Academic Press, 1974.

[41] S. Eilenberg. Automata, languages, and machines. Vol. B. Pure and ap-
plied mathematics. Academic Press, 1976.

[42] S. Eilenberg and M.-P. Schützenberger. “Rational sets in commutative
monoids”. In: J. Algebra 13.2 (1969), pp. 173–191.

[43] C. C. Elgot and J. E. Mezei. “On Relations Defined by Generalized
Finite Automata”. In: IBM J. Res. Dev. 9.1 (1965), pp. 47–68. DOI:
10.1147/rd.91.0047.

[44] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. “Testing and
Spot-Checking of Data Streams”. In: Algorithmica 34.1 (2002), pp. 67–
80. DOI: 10.1007/s00453-002-0959-4.

[45] J. Feigenbaum, S. Kannan, and J. Zhang. “Computing Diameter in the
Streaming and Sliding-Window Models”. In: Algorithmica 41.1 (2005),
pp. 25–41. DOI: 10.1007/s00453-004-1105-2.

[46] E. Filiot, O. Gauwin, P. Reynier, and F. Servais. “Streamability of nested
word transductions”. In: Log. Meth. Comput. Sci. 15.2 (2019). URL:
https://lmcs.episciences.org/5348.

[47] E. Filiot and P. Reynier. “Transducers, logic and algebra for functions
of finite words”. In: SIGLOG News 3.3 (2016), pp. 4–19. URL: https:
//dl.acm.org/citation.cfm?id=2984453.

[48] E. Fischer, F. Magniez, and T. A. Starikovskaya. “Improved bounds for
testing Dyck languages”. In: Proceedings of the 29th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2018). Ed. by A. Czumaj. SIAM,
2018, pp. 1529–1544. DOI: 10.1137/1.9781611975031.100.

[49] P. Flajolet. “Approximate Counting: A Detailed Analysis”. In: BIT 25.1
(1985), pp. 113–134.

[50] P. Flajolet and G. N. Martin. “Probabilistic Counting Algorithms for Data
Base Applications”. In: J. Comput. Syst. Sci. 31.2 (1985), pp. 182–209.
DOI: 10.1016/0022-0000(85)90041-8.

[51] L. Fleischer and M. Kufleitner. “Green’s Relations in Deterministic Finite
Automata”. In: Theory Comput. Syst. 63.4 (2019), pp. 666–687. DOI:
10.1007/s00224-018-9847-4.

[52] N. François, F. Magniez, M. de Rougemont, and O. Serre. “Streaming
Property Testing of Visibly Pushdown Languages”. In: Proceedings of the
24th Annual European Symposium on Algorithms (ESA 2016). Ed. by
P. Sankowski and C. D. Zaroliagis. Vol. 57. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016, 43:1–43:17. DOI: 10.4230/
LIPIcs.ESA.2016.43.

http://dx.doi.org/10.1016/0020-0190(88)90148-2
http://dx.doi.org/10.1016/0020-0190(88)90148-2
http://dx.doi.org/10.1147/rd.91.0047
http://dx.doi.org/10.1007/s00453-002-0959-4
http://dx.doi.org/10.1007/s00453-004-1105-2
https://lmcs.episciences.org/5348
https://dl.acm.org/citation.cfm?id=2984453
https://dl.acm.org/citation.cfm?id=2984453
http://dx.doi.org/10.1137/1.9781611975031.100
http://dx.doi.org/10.1016/0022-0000(85)90041-8
http://dx.doi.org/10.1007/s00224-018-9847-4
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.43
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.43

166 Bibliography

[53] P. Gawrychowski. “Chrobak Normal Form Revisited, with Applications”.
In: Proceedings of the 16th International Conference on Implementation
and Application of Automata (CIAA 2011). Ed. by B. Bouchou-Markhoff,
P. Caron, J. Champarnaud, and D. Maurel. Vol. 6807. Lecture Notes in
Computer Science. Springer, 2011, pp. 142–153. DOI: 10.1007/978-3-
642-22256-6_14.

[54] P. Gawrychowski and A. Jeż. “Hyper-minimisation Made Efficient”. In:
Proceedings of the 34th International Symposium on Mathematical Foun-
dations of Computer Science 2009 (MFCS 2009). Ed. by R. Královic and
D. Niwinski. Vol. 5734. Lecture Notes in Computer Science. Springer,
2009, pp. 356–368. DOI: 10.1007/978-3-642-03816-7_31.

[55] P. Gawrychowski, D. Krieger, N. Rampersad, and J. Shallit. “Finding
the Growth Rate of a Regular or Context-Free Language in Polynomial
Time”. In: Int. J. Found. Comput. Sci. 21.4 (2010), pp. 597–618. DOI:
10.1142/S0129054110007441.

[56] P. B. Gibbons and S. Tirthapura. “Distributed Streams Algorithms for
Sliding Windows”. In: Theory Comput. Syst. 37.3 (2004), pp. 457–478.
DOI: 10.1007/s00224-004-1156-4.

[57] R. H. Gilman. “Formal languages and infinite groups”. In: DIMACS Ser.
Discrete Math. Theoret. Comput. Sci 25 (1996), pp. 27–51.

[58] S. Ginsburg and E. Spanier. “Finite-Turn Pushdown Automata”. In: SIAM
J. Control 4.3 (1966), pp. 429–453. DOI: 10.1137/0304034.

[59] S. Ginsburg and E. H. Spanier. “Bounded ALGOL-like languages”. In:
Trans. Amer. Math. Soc. 113.2 (1964), pp. 333–368. DOI: 10.1090/
S0002-9947-1964-0181500-1.

[60] L. Golab, D. DeHaan, E. D. Demaine, A. López-Ortiz, and J. I. Munro.
“Identifying frequent items in sliding windows over on-line packet
streams”. In: Proceedings of the 3rd ACM SIGCOMM Internet Measure-
ment Conference (IMC 2003). ACM, 2003, pp. 173–178. DOI: 10.1145/
948205.948227.

[61] S. Golan, T. Kopelowitz, and E. Porat. “Streaming Pattern Matching with
d Wildcards”. In: Proceedings of the 24th Annual European Symposium on
Algorithms (ESA 2016). Ed. by P. Sankowski and C. D. Zaroliagis. Vol. 57.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, 44:1–
44:16. DOI: 10.4230/LIPIcs.ESA.2016.44.

[62] S. Golan, T. Kopelowitz, and E. Porat. “Towards Optimal Approximate
Streaming Pattern Matching by Matching Multiple Patterns in Multi-
ple Streams”. In: Proceedings of the 45th International Colloquium on
Automata, Languages, and Programming (ICALP 2018). Ed. by I. Chatzi-
giannakis, C. Kaklamanis, D. Marx, and D. Sannella. Vol. 107. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 65:1–65:16.
DOI: 10.4230/LIPIcs.ICALP.2018.65.

http://dx.doi.org/10.1007/978-3-642-22256-6_14
http://dx.doi.org/10.1007/978-3-642-22256-6_14
http://dx.doi.org/10.1007/978-3-642-03816-7_31
http://dx.doi.org/10.1142/S0129054110007441
http://dx.doi.org/10.1007/s00224-004-1156-4
http://dx.doi.org/10.1137/0304034
http://dx.doi.org/10.1090/S0002-9947-1964-0181500-1
http://dx.doi.org/10.1090/S0002-9947-1964-0181500-1
http://dx.doi.org/10.1145/948205.948227
http://dx.doi.org/10.1145/948205.948227
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.44
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.65

Bibliography 167

[63] S. Golan and E. Porat. “Real-Time Streaming Multi-Pattern Search for
Constant Alphabet”. In: Proceedings of the 25th Annual European Sympo-
sium on Algorithms (ESA 2017). Ed. by K. Pruhs and C. Sohler. Vol. 87.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, 41:1–
41:15. DOI: 10.4230/LIPIcs.ESA.2017.41.

[64] O. Goldreich, S. Goldwasser, and D. Ron. “Property Testing and its
Connection to Learning and Approximation”. In: J. ACM 45.4 (1998),
pp. 653–750. DOI: 10.1145/285055.285060.

[65] J. Hartmanis and H. Shank. “Two Memory Bounds for the Recognition
of Primes by Automata”. In: Math. Syst. Theory 3.2 (1969), pp. 125–129.
DOI: 10.1007/BF01746518.

[66] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

[67] N. Immerman. “Nondeterministic Space is Closed Under Complemen-
tation”. In: SIAM J. Comput. 17.5 (1988), pp. 935–938. DOI: 10.1137/
0217058.

[68] P. Indyk. “Stable distributions, pseudorandom generators, embeddings,
and data stream computation”. In: J. ACM 53.3 (2006), pp. 307–323.
DOI: 10.1145/1147954.1147955.

[69] F. Jahn, M. Kufleitner, and A. Lauser. “Regular Ideal Languages and
Their Boolean Combinations”. In: Proceedings of the 17th International
Conference on Implementation and Application of Automata (CIAA 2012).
Ed. by N. Moreira and R. Reis. Vol. 7381. Lecture Notes in Computer
Science. Springer, 2012, pp. 205–216. DOI: 10.1007/978- 3- 642-

31606-7_18.

[70] G. Jirásková and P. Mlynárcik. “Complement on Prefix-Free, Suffix-Free,
and Non-Returning NFA Languages”. In: Proceedings of the 16th Interna-
tional Workshop on Descriptional Complexity of Formal Systems (DCFS
2014). Ed. by H. Jürgensen, J. Karhumäki, and A. Okhotin. Vol. 8614.
Lecture Notes in Computer Science. Springer, 2014, pp. 222–233. DOI:
10.1007/978-3-319-09704-6_20.

[71] M. Kaminski and N. Francez. “Finite-Memory Automata”. In: Theor.
Comput. Sci. 134.2 (1994), pp. 329–363. DOI: 10.1016/0304-3975(94)
90242-9.

[72] R. M. Karp. “Some Bounds on the Storage Requirements of Sequential
Machines and Turing Machines”. In: J. ACM 14.3 (1967), pp. 478–489.
DOI: 10.1145/321406.321410.

[73] R. M. Karp and M. O. Rabin. “Efficient Randomized Pattern-Matching
Algorithms”. In: IBM J. Res. Dev. 31.2 (1987), pp. 249–260. DOI: 10.
1147/rd.312.0249.

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.41
http://dx.doi.org/10.1145/285055.285060
http://dx.doi.org/10.1007/BF01746518
http://dx.doi.org/10.1137/0217058
http://dx.doi.org/10.1137/0217058
http://dx.doi.org/10.1145/1147954.1147955
http://dx.doi.org/10.1007/978-3-642-31606-7_18
http://dx.doi.org/10.1007/978-3-642-31606-7_18
http://dx.doi.org/10.1007/978-3-319-09704-6_20
http://dx.doi.org/10.1016/0304-3975(94)90242-9
http://dx.doi.org/10.1016/0304-3975(94)90242-9
http://dx.doi.org/10.1145/321406.321410
http://dx.doi.org/10.1147/rd.312.0249
http://dx.doi.org/10.1147/rd.312.0249

168 Bibliography

[74] B. Khoussainov and A. Nerode. “Automatic Presentations of Structures”.
In: International Workshop on Logic and Computational Complexity (LCC
’94). Ed. by D. Leivant. Vol. 960. Lecture Notes in Computer Science.
Springer, 1994, pp. 367–392. DOI: 10.1007/3-540-60178-3_93.

[75] S. C. Kleene. “Representation of events in nerve nets and finite au-
tomata”. In: Automata Studies. Ed. by C. Shannon and J. McCarthy.
Princeton, N.J.: Princeton University Press, 1956, pp. 3–42.

[76] D. E. Knuth. “Big Omicron and Big Omega and Big Theta”. In: SIGACT
News 8.2 (Apr. 1976), pp. 18–24. DOI: 10.1145/1008328.1008329.

[77] D. E. Knuth, J. H. Morris Jr., and V. R. Pratt. “Fast Pattern Matching in
Strings”. In: SIAM J. Comput. 6.2 (1977), pp. 323–350. DOI: 10.1137/
0206024.

[78] D. Kozen. Automata and computability. Undergraduate texts in computer
science. Springer, 1997.

[79] A. Krebs, K. Lange, and M. Ludwig. “Visibly Counter Languages and
Constant Depth Circuits”. In: Proceedings of the 32nd International Sym-
posium on Theoretical Aspects of Computer Science (STACS 2015). Ed. by
E. W. Mayr and N. Ollinger. Vol. 30. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015, pp. 594–607. DOI: 10.4230/LIPIcs.
STACS.2015.594.

[80] A. Krebs, N. Limaye, and S. Srinivasan. “Streaming Algorithms for Rec-
ognizing Nearly Well-Parenthesized Expressions”. In: Proceedings of the
36th International Symposium on Mathematical Foundations of Computer
Science (MFCS 2011). Ed. by F. Murlak and P. Sankowski. Vol. 6907.
Lecture Notes in Computer Science. Springer, 2011, pp. 412–423. DOI:
10.1007/978-3-642-22993-0_38.

[81] I. Kremer, N. Nisan, and D. Ron. “On Randomized One-Round Commu-
nication Complexity”. In: Comput. Complex. 8.1 (1999), pp. 21–49. DOI:
10.1007/s000370050018.

[82] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge
University Press, 1997.

[83] O. Lachish, I. Newman, and A. Shapira. “Space Complexity Vs. Query
Complexity”. In: Comput. Complex. 17.1 (2008), pp. 70–93. DOI: 10.
1007/s00037-008-0239-z.

[84] P. M. Lewis II, R. E. Stearns, and J. Hartmanis. “Memory bounds for
recognition of context-free and context-sensitive languages”. In: Proceed-
ings of the 6th Annual Symposium on Switching Circuit Theory and Logical
Design (SWCT 1965). IEEE Computer Society, 1965, pp. 191–202. DOI:
10.1109/FOCS.1965.14.

[85] M. Lohrey and C. Mathissen. “Isomorphism of regular trees and words”.
In: Inf. Comput. 224 (2013), pp. 71–105. DOI: 10.1016/j.ic.2013.01.
002.

http://dx.doi.org/10.1007/3-540-60178-3_93
http://dx.doi.org/10.1145/1008328.1008329
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.594
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.594
http://dx.doi.org/10.1007/978-3-642-22993-0_38
http://dx.doi.org/10.1007/s000370050018
http://dx.doi.org/10.1007/s00037-008-0239-z
http://dx.doi.org/10.1007/s00037-008-0239-z
http://dx.doi.org/10.1109/FOCS.1965.14
http://dx.doi.org/10.1016/j.ic.2013.01.002
http://dx.doi.org/10.1016/j.ic.2013.01.002

Bibliography 169

[86] F. Magniez, C. Mathieu, and A. Nayak. “Recognizing Well-Parenthesized
Expressions in the Streaming Model”. In: SIAM J. Comput. 43.6 (2014),
pp. 1880–1905. DOI: 10.1137/130926122.

[87] K. Mamouras, M. Raghothaman, R. Alur, Z. G. Ives, and S. Khanna.
“StreamQRE: modular specification and efficient evaluation of quanti-
tative queries over streaming data”. In: Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI 2017). Ed. by A. Cohen and M. T. Vechev. ACM, 2017,
pp. 693–708. DOI: 10.1145/3062341.3062369.

[88] A. R. Meyer and L. J. Stockmeyer. “The Equivalence Problem for Regular
Expressions with Squaring Requires Exponential Space”. In: Proceedings
of the 13th Annual Symposium on Switching and Automata Theory (SWAT
1972). IEEE Computer Society, 1972, pp. 125–129. DOI: 10.1109/SWAT.
1972.29.

[89] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomiza-
tion and Probabilistic Techniques in Algorithms and Data Analysis. 2nd.
New York, NY, USA: Cambridge University Press, 2017.

[90] R. H. Morris Sr. “Counting Large Numbers of Events in Small Registers”.
In: Commun. ACM 21.10 (1978), pp. 840–842. DOI: 10.1145/359619.
359627.

[91] J. I. Munro and M. Paterson. “Selection and Sorting with Limited Stor-
age”. In: Theor. Comput. Sci. 12 (1980), pp. 315–323. DOI: 10.1016/
0304-3975(80)90061-4.

[92] S. Muthukrishnan. “Data Streams: Algorithms and Applications”.
In: Found. Trends Theor. Comput. Sci. 1.2 (2005). DOI: 10 . 1561 /

0400000002.

[93] F. Neven, T. Schwentick, and V. Vianu. “Finite state machines for
strings over infinite alphabets”. In: ACM Trans. Comput. Log. 5.3 (2004),
pp. 403–435. DOI: 10.1145/1013560.1013562.

[94] R. Parikh. “On Context-Free Languages”. In: J. ACM 13.4 (1966),
pp. 570–581. DOI: 10.1145/321356.321364.

[95] F. Parlamento, A. Policriti, and K. Rao. “Witnessing Differences Without
Redundancies”. In: P. Am. Math. Soc. 125.2 (1997), pp. 587–594. DOI:
10.1090/S0002-9939-97-03630-7.

[96] M. Parnas, D. Ron, and R. Rubinfeld. “Testing membership in parenthesis
languages”. In: Random Struct. Algor. 22.1 (2003), pp. 98–138. DOI:
10.1002/rsa.10067.

[97] A. Paz. Introduction to Probabilistic Automata (Computer Science and
Applied Mathematics). Orlando, FL, USA: Academic Press, Inc., 1971.

http://dx.doi.org/10.1137/130926122
http://dx.doi.org/10.1145/3062341.3062369
http://dx.doi.org/10.1109/SWAT.1972.29
http://dx.doi.org/10.1109/SWAT.1972.29
http://dx.doi.org/10.1145/359619.359627
http://dx.doi.org/10.1145/359619.359627
http://dx.doi.org/10.1016/0304-3975(80)90061-4
http://dx.doi.org/10.1016/0304-3975(80)90061-4
http://dx.doi.org/10.1561/0400000002
http://dx.doi.org/10.1561/0400000002
http://dx.doi.org/10.1145/1013560.1013562
http://dx.doi.org/10.1145/321356.321364
http://dx.doi.org/10.1090/S0002-9939-97-03630-7
http://dx.doi.org/10.1002/rsa.10067

170 Bibliography

[98] B. Porat and E. Porat. “Exact and Approximate Pattern Matching in the
Streaming Model”. In: Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2009). IEEE Computer Society,
2009, pp. 315–323. DOI: 10.1109/FOCS.2009.11.

[99] M. O. Rabin. “Probabilistic Automata”. In: Inform. Control 6.3 (1963),
pp. 230–245. DOI: 10.1016/S0019-9958(63)90290-0.

[100] C. Reutenauer and M. P. Schützenberger. “Minimization of Rational
Word Functions”. In: SIAM J. Comput. 20.4 (1991), pp. 669–685. DOI:
10.1137/0220042.

[101] J. B. Rosser and L. Schoenfeld. “Approximate formulas for some func-
tions of prime numbers”. In: Illinois J. Math. 6.1 (1962), pp. 64–94.

[102] J. Shallit and Y. Breitbart. “Automaticity I: Properties of a Measure of
Descriptional Complexity”. In: J. Comput. Syst. Sci. 53.1 (1996), pp. 10–
25. DOI: 10.1006/jcss.1996.0046.

[103] R. Shaltiel. “Weak Derandomization of Weak Algorithms: Explicit Ver-
sions of Yao’s Lemma”. In: Comput. Complex. 20.1 (2011), pp. 87–143.
DOI: 10.1007/s00037-011-0006-4.

[104] T. A. Starikovskaya. “Communication and Streaming Complexity of
Approximate Pattern Matching”. In: Proceedings of the 28th Annual
Symposium on Combinatorial Pattern Matching (CPM 2017). Ed. by J.
Kärkkäinen, J. Radoszewski, and W. Rytter. Vol. 78. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, 13:1–13:11. DOI:
10.4230/LIPIcs.CPM.2017.13.

[105] R. E. Stearns, J. Hartmanis, and P. M. Lewis II. “Hierarchies of memory
limited computations”. In: Proceedings of the 6th Annual Symposium
on Switching Circuit Theory and Logical Design (SWCT 1965). IEEE
Computer Society, 1965, pp. 179–190. DOI: 10.1109/FOCS.1965.11.

[106] H. Straubing. “Finite semigroup varieties of the form V ∗D”. In: J. Pure
Appl. Algebra 36 (1985), pp. 53–94. DOI: 10.1016/0022-4049(85)
90062-3.

[107] A. Szilard, S. Yu, K. Zhang, and J. Shallit. “Characterizing Regular
Languages with Polynomial Densities”. In: Proceedings of the 17th Inter-
national Symposium on Mathematical Foundations of Computer Science
1992 (MFCS ’92). Ed. by I. M. Havel and V. Koubek. Vol. 629. Lec-
ture Notes in Computer Science. Springer, 1992, pp. 494–503. DOI:
10.1007/3-540-55808-X_48.

[108] K. Tangwongsan, M. Hirzel, and S. Schneider. “Low-Latency Sliding-
Window Aggregation in Worst-Case Constant Time”. In: Proceedings of
the 11th ACM International Conference on Distributed and Event-based
Systems (DEBS 2017). ACM, 2017, pp. 66–77. DOI: 10.1145/3093742.
3093925.

http://dx.doi.org/10.1109/FOCS.2009.11
http://dx.doi.org/10.1016/S0019-9958(63)90290-0
http://dx.doi.org/10.1137/0220042
http://dx.doi.org/10.1006/jcss.1996.0046
http://dx.doi.org/10.1007/s00037-011-0006-4
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.13
http://dx.doi.org/10.1109/FOCS.1965.11
http://dx.doi.org/10.1016/0022-4049(85)90062-3
http://dx.doi.org/10.1016/0022-4049(85)90062-3
http://dx.doi.org/10.1007/3-540-55808-X_48
http://dx.doi.org/10.1145/3093742.3093925
http://dx.doi.org/10.1145/3093742.3093925

Bibliography 171

[109] D. Thérien. “Classification of Finite Monoids: The Language Approach”.
In: Theor. Comput. Sci. 14 (1981), pp. 195–208. DOI: 10.1016/0304-
3975(81)90057-8.

[110] V. I. Trofimov. “Growth functions of some classes of languages”. In:
Cybernetics 17.6 (1981), pp. 727–731.

[111] J. S. Vitter. “Random Sampling with a Reservoir”. In: ACM Trans. Math.
Softw. 11.1 (1985), pp. 37–57. DOI: 10.1145/3147.3165.

[112] A. Weber and R. Klemm. “Economy of Description for Single-Valued
Transducers”. In: Inf. Comput. 118.2 (1995), pp. 327–340. DOI: 10.

1006/inco.1995.1071.

[113] A. C. Yao. “Probabilistic Computations: Toward a Unified Measure of
Complexity (Extended Abstract)”. In: Proceedings of the 18th Annual Sym-
posium on Foundations of Computer Science (SFCS 1977). IEEE Computer
Society, 1977, pp. 222–227. DOI: 10.1109/SFCS.1977.24.

http://dx.doi.org/10.1016/0304-3975(81)90057-8
http://dx.doi.org/10.1016/0304-3975(81)90057-8
http://dx.doi.org/10.1145/3147.3165
http://dx.doi.org/10.1006/inco.1995.1071
http://dx.doi.org/10.1006/inco.1995.1071
http://dx.doi.org/10.1109/SFCS.1977.24

	Title page
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 The streaming model
	1.2 The sliding window model
	1.3 Outline

	2 Preliminaries
	2.1 Basic notation
	2.2 Words, languages, monoids
	2.3 Automata and regular languages
	2.4 Context-free languages
	2.5 Rational transductions

	3 The sliding window model
	3.1 Streaming algorithms
	3.2 Fixed-size sliding window model
	3.3 Variable-size sliding window model
	3.4 Alternative characterizations
	3.5 Related complexity measures
	3.6 Connection to language growth
	3.7 Closure properties
	3.8 Remarks

	4 Regular languages
	4.1 Space trichotomy
	4.2 Characterization of the space classes
	4.3 The uniform problem
	4.4 Deciding the space complexity
	4.5 Conclusion

	5 Rational functions
	5.1 Suffix expansions
	5.2 Finite index right congruences
	5.3 Regular look-ahead
	5.4 Critical tuples in Rt
	5.5 Well-behaved transducers
	5.6 Space trichotomy
	5.7 Conclusion

	6 Randomized sliding window algorithms
	6.1 Randomized streaming algorithms
	6.2 Space quatrochotomy
	6.3 The Bernoulli counter
	6.4 Suffix-free languages
	6.5 Lower bounds with two-sided error
	6.6 Lower bounds in the variable-size model
	6.7 Lower bounds with one-sided error
	6.8 Conclusion

	7 Sliding window property testing
	7.1 Introduction
	7.2 Sliding window testers for regular languages
	7.3 Trivial languages
	7.4 Upper bounds
	7.5 Lower bounds
	7.6 Conclusion

	8 Strict correctness
	8.1 Introduction
	8.2 Derandomization
	8.3 Polynomially long streams
	8.4 Conclusion

	9 Context-free languages
	9.1 Introduction
	9.2 Below logarithmic space
	9.3 Above logarithmic space
	9.4 Deterministic one-counter languages
	9.5 Conclusion

	10 Visibly pushdown languages
	10.1 Visibly pushdown automata
	10.2 Description of the Myhill-Nerode classes
	10.3 Proof strategy
	10.4 Reduction to transducers
	10.5 Bounded overapproximation
	10.6 Conclusion

	11 Conclusion
	Resulting publications
	Relevant for this thesis
	Other publications

	Bibliography

