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zusammenfassung

We introduce forest straight-line programs (FSLPs) as a compressed represen-
tation for unranked trees (forests). These are compared to other compression
formalisms for forests, namely top dags and TSLPs (tree straight-line pro-
grams) for fcns (first-child next-sibling) encoding. We show that FSLPs are
equally succinct to TSLPs for fcns encodings but converting them to top dags
requires a blowup of the alphabet size. All of these formalisms are treated
uniformly using an algebraic setting.

We then use FSLPs to implement various data structures and algorithms:
We can answer in polynomial time if two FSLPs produce equal forests modulo
associativity and/or modulo commutativity. Allowing linear preprocessing
time, we implement a data structure that allows navigation steps on FSLPs
(go to the first/last child, the next/previous neighbor or to the parent, or
print the symbol at the current location) to occur in constant time. Allowing
polynomial time preprocessing, we extend this to include a subtree equality
check that works in constant time.

We also study the effects of unorderedness on compression and derive
various bounds. In the best case, compression using DAGs can be improved
from n to log n when trees are allowed to be reordered, i.e. a ratio of n/ log n.
For TSLPs/FSLPs instead of DAGs, we show a ratio of n ⋅ log log n/ log2 n.

We show how to evaluate a form of visibly one-counter automata on
FSLPs in polynomial time by implementing them as an algebra.

Finally, we implement an algorithm that produces a top dag and is
worst-case optimal, i.e. it always finds a top dag that compresses to at least
n/ log n, while also retaining other beneficial properties from previous top
dag compressors.





zusammenfassung

Wir stellen Forest-Straight-Line-Programme vor, die ungerankte Bäume (Fo-
rests) komprimieren. Diese werden mit anderen komprimierten Darstel-
lungen verglichen: Top-Dags und TSLPs (Tree-Straight-Line-Programme)
für fcns (First-Child-Next-Sibling)-Kodierung. Wir zeigen, dass FSLPs und
TSLPs für fcns gleich stark komprimieren. Beim Konvertieren von FSLPs zu
Top-Dags ist allerdings ein Blowup der Alphabetgröße unvermeidbar. All
diese Formalismen werden gleichermaßen in einem algebraischen Setting
behandelt.

Wir implementieren verschiedene Algorithmen und Datenstrukturen auf
FSLPs: In Polynomialzeit können wir beantworten, ob zwei FSLPs die glei-
chen Forests modulo Assoziativität und/oder Kommutativität produzieren.
Mit linearer Preprocessing-Zeit können wir eine Datenstruktur implementie-
ren, die Navigationsschritte auf FSLPs (gehe zum ersten/letzten Kind, zum
nächsten/vorherigen Nachbarn oder zum Elternknoten, oder gib das Symbol
an der aktuellen Position aus) in konstanter Zeit durchführen. Mit polynomi-
eller Preprocessing-Zeit können wir dies um einen Subtree-Equality-Check
erweitern.

Wir untersuchen außerdem, wie sich Unorderedness auf Kompression
auswirkt, wobei wir verschiedene Schranken zeigen. Im besten Fall kann
die Kompression eines DAGs von n zu log n verbessert werden, wenn man
Bäume umordnen darf, was einem Verhältnis von n/ log n entspricht. Im
Falle von TSLPs/FSLPs zeigen wir ein Verhältnis von n ⋅ log log n/ log2 n.

Wir zeigen, wie man eine Art Visibly One-Counter-Automat auf FSLPs
auswerten kann, indem wir diese als Algebra implementieren.

Zuletzt implementieren wir einen Algorithmus, der einen Top-Dag pro-
duziert, welcher worst-case-optimal ist, d.h. er findet immer einen Top-Dag,
der mindestens zu n/ log n komprimiert. Außerdem erhält dieser andere
nützliche Eigenschaften von vorher eingeführten Top-Dag-Kompressoren.
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1
I N T R O D U C T I O N

Context-free grammars that produce a single word are called straight-line
programs, SLPs for short, and can be thought of as a succinct representation
of this word. Nonterminals can be used to identify repetitive content, so for
example a word abababab can be represented as A → ab, B → AA, C → BB,
where C is the start symbol. SLPs have been widely studied: Examples are
compression algorithms (see e.g. [16]) that take a word as an input and try to
produce a small SLP for this word, and algorithms on compressed data (see [34]
for an overview), that work on the SLP directly, instead of on the word
that it produces. The best compression that can be achieved with an SLP is
logarithmic, i.e. a word of length n can at best be represented by an SLP of
size Θ(log n). Furthermore, every word of length n using at most σ many
different symbols can be represented by an SLP of size O(n/ logσ n). Since
an SLP can compress exponentially, answering questions about the word
an SLP produces by first uncompressing the SLP is unattractive since this
implies exponential runtime. Algorithms that work on the SLP directly can
be more efficient. For example, it is easy to output a character at a certain
position using linear time in the size of the SLP.

Apart from string compression, tree compression has also been widely
studied. Instead of strings, trees are compressed. These trees are ordered (i.e.
the children of each node are linearly ordered), in contrast to the unordered
trees that we consider later. Multiple formalisms for tree compression are
in use: The simplest among them is a so-called directed acyclic graph, or
DAG for short. A DAG can identify the same subtrees by directing multiple
edges at the same node. Tree straight-line programs (TSLPs) are another
formalism which have been widely used (see [36] for a survey). They are
similar to SLPs in that they are also context-free grammars but they produce
a single tree instead of a single string. TSLPs can make use of subtree repeats.
For example, a tree a⟨a⟨. . . a . . .⟩⟩, that is basically a very tall tree where each
layer only consists of a single subtree, cannot be compressed using a DAG.
It can however be compressed using a TSLP which can introduce a context
a(x). Contexts can be concatenated, so for example a(x)a(x) yields the tree
a⟨a⟨x⟩⟩, and they can be applied to a tree, e.g. a(x)b yields the tree a⟨b⟩. A
small TSLP for the tree a⟨. . . a⟨a⟩ . . .⟩ then basically compresses a word of the
form a(x) . . . a(x)a. In this work, we only use linear TSLPs, which means that
x may not occur in multiple places, e.g. a(xx) is not allowed. A non-linear
TSLP can achieve more than exponential compression, but they are also a lot
more difficult to deal with when designing algorithms for them. TSLPs in
general have the problem of not being able to compress horizontal repetition
in a tree. For example, a tree a⟨b . . . b⟩ cannot be compressed at all. This does
not matter when ranked trees, i.e. trees where the number of b depends on
a, are used, but in a more general setting this is a limiting factor.
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A string of trees is called a forest which play a central role in this work.
Compression of forests has been studied in various forms. For example,
TSLPs can be used to compress forests (see for example the TreeRePair com-
pressor from [37]) using the so-called first-child next-sibling (fcns) encoding
(see e.g. [46] and Paragraph 2.3.2 of Knuth’s first book [30]). In this encoding,
a forest is represented as a binary tree which is basically a “head-tail” repre-
sentation. TSLPs in this setting can make use of contexts to identify repeating
trees on the same level, e.g. the tree a⟨b . . . b⟩ can be represented succinctly.
The fcns encoding however has the disadvantage of pulling a tree and its
parent far apart which makes the design of algorithms on TSLPs for fcns
encodings difficult. Another formalism that has been used are top dags ([5,
27]), which are DAGs for top trees. The simplest top tree is a pair (a, b), called
an atomic cluster, that represents the tree a⟨b⟩. Top trees can be combined
via horizontal composition and via vertical composition, making it possible
to use repeating contexts similar to TSLPs, but also horizontal repeats. For
example, two top trees (a, b), (b, c) can be combined vertically, yielding a
top tree for a⟨b⟨c⟩⟩. Here, the common node b is merged. Similarly, the top
trees (a, b) and (a, c) can be combined horizontally, yielding a top tree for
a⟨bc⟩. By choosing a pair of nodes as the most primitive data structure, it is
not possible to represent a tree with a single node or the empty forest using
top trees. Dealing with such pairs as the most primitive data structure also
makes designing algorithms on top trees inconvenient.

This work mainly deals with forests, forest compression and algorithms
on compressed forests. We start by establishing a unified view of all the
previously mentioned formalisms by discussing them in an algebraic setting,
which is done in Chapter 2. A Σ-algebra consists of multiple parts: The
syntax is given by a set Σ of operator names, where each one has a specific
type. Expressions are built by using these operators, and optionally by using
variables, which can appear anywhere a subexpression can appear. They will
allow us to define our generalized view of SLPs: An SLP basically maps
variables to expressions that may contain variables themselves. This gives
us a purely syntactic view of compression. For example, an expression
+(+(1, 1),+(1, 1)) can be compressed by introducing +(X, X) and then map-
ping X to +(1, 1). We use the term SLP to refer to this general view of a
compressed expression and rename SLPs to string straight-line programs
(SSLPs). An algebra itself gives semantics to an expression. It evaluates them
over a specific universe and interprets the operators by actual functions. We
define a forest algebra as a reference point (for a forest algebra similar to this
one, see [8]). Much like top dags, it allows for horizontal and for vertical
composition. The most primitive building blocks are ε, the empty forest,
and x, a forest context. Like with linear TSLPs, only one occurrence of x is
allowed. Syntactically, we deal with this by introducing two distinct types:
F , which stands for forest expressions that do not contain x, and Fx, which
stands for forest expressions that do contain x. Similar to TSLPs, we call
SLPs for forest expressions FSLPs.

Chapter 3 introduces normal forms of SLPs. They restrict the forms
expressions may take for the purpose of making it easier to implement
algorithms on them, especially syntactic transformations. Given an SLP, we
want to transform it into a given normal form in linear time, which implies
that the resulting SLP will not be larger (up to a constant factor). Our most
important normal form is the normal form for FSLPs, which we will use
in many places, for example when comparing FSLPs to top dags and the
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fcns encoding, and when checking for equality up to commutativity and
associativity.

Chapter 4 deals with navigating in strings given by SSLPs, ranked trees
given by TSLPs and forests given by FSLPs. The goal each time is to pre-
compute a navigation structure that requires space linear in the size of the
SLP, such that the navigation operations each take constant time. In the case
of strings, we can move from one position of the string to the next position,
to the previous position, or obtain the character at the current position. In
the case of ranked trees, we can go to the parent node or to the i’th child
node, or obtain the character at the current node. In the case of forests we
can go to the parent node, the first child node, the last child node, the left
neighbor, the right neighbor, or obtain the character at the current node. The
tree and forest structures are then expanded to allow subtree equality checks:
Given two nodes that were reached by two sequences of navigation steps,
are the trees at the current nodes equal? The problem of checking equality of
subtrees occurs in several different contexts, see for instance [15] for details.
Typical applications are common subexpression detection, unification, and
non-linear pattern matching. For instance, checking whether the pattern
f ⟨x f ⟨yy⟩⟩ is matched at a certain tree node needs a constant number of
navigation steps and a single subtree equality check. To support subtree
equality checks, we allow more preprocessing time and we allow to compare
two numbers in the size of the tree, resp. forest, which technically takes
logarithmic time in the size of the tree, resp. forest.

Chapter 5 compares FSLPs to the already mentioned top dags and to
TSLPs for fcns encodings. These comparisons are done by implementing
translations between the different formalisms: TSLPs for fcns encodings and
FSLPs can be translated into each other in linear time, which implies that
they are equally succinct. Top dags can also be translated into FSLPs in linear
time. However, when translating FSLPs to top dags, a blowup-factor of the
size of the alphabet is needed.

Chapter 6 introduces associative and commutative symbols. The basic idea
is that FSLPs might encode expressions that have associative and/or com-
mutative operators, like + on natural numbers, in them, i.e. the expression
1+ (2+ 3) should be considered equal to (2+ 1) + 3 because + is associative
and commutative. We present a way to test if two forests produced by FSLPs
are equal under these rules, which generalizes a result from [38] that only
deals with TSLPs and commutative operators. This is implemented by trans-
forming the FSLPs into the associative normal form, resp. commutative normal
form. These normal forms have the property that they produce the same
forests if and only if the forests produced by the original FSLPs are equal
under the rules of associativity, resp. commutativity. Testing if two FSLPs
produce the same forest is implemented by transforming them into SSLPs
that produce strings which are the same if and only if the forests produced
by the FSLPs are the same. Polynomial time equality checks on SSLPs can be
found for example in [44, 29], see [35] for a survey.

Chapter 7 introduces the notion of unordered forests. In an unordered
forest the children of a node are not ordered (in contrast to the ordered
forests that have been considered so far). In particular, we consider two
unordered forests to be equal if one can be transformed into the other by
reordering children. For example, a⟨bc⟩ is the same unordered forest as a⟨cb⟩.
Unordered forests play a role in “data-centric” XML (see e.g. [1, 7, 9, 47, 48]).
We look at how much we can improve compression if we allow to compress,
instead of an unordered forest f , any other unordered forest f ′ that is equal
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to f . This is first studied for DAGs, where we look at two different size
measures: First the number of edges of a DAG and second the number of
nodes. For the number of edges, there are trees of size n that basically have a
DAG with Θ(n) edges, but they can be reordered such that their DAG only
has Θ(log n) edges. For the number of nodes, this gap slightly increases
since trees again need Θ(n) nodes for the DAG, but they can be reordered
such that their DAG only needs Θ(log n/ log log n) nodes. In addition to
DAGs, we study the same question for FSLPs and TSLPs: There are forests
of size n that can be reordered such that they are compressible using FSLPs
of size Θ(log n). However, the FSLP for the original forests need at least size
Θ(n ⋅ log log n/ log n). We show a similar result for TSLPs.

Chapter 8 shows how to evaluate forest automata (see e.g. [17]) on FSLPs
by combining some results with our transformation from FSLPs to TSLPs
for their fcns encodings. We also show how to evaluate a form of visibly
one-counter automata on FSLPs (see e.g. [31, 2]).

Chapter 9 presents an algorithm that extends the results of [5]: They
implement an algorithm that given a tree t of size n produces a top dag of
height O(log n) and a size that is at most the size of the minimal DAG of t
times log n. We extend this algorithm by introducing a preprocessing step
that ensures that the resulting top dag also has size O(n/ logσ n), where σ is
the alphabet size.
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2
A L G E B R A S A N D S L P S

Algebras are an abstract way to define expressions and evaluate them.
For an introduction, see for example [41]. The first step in defining an algebra
is to specify its syntax. This is done by introducing a set (which might be
infinite) of typed operations, e.g. given types N and 2, we could have the
operations ∗∶N2 → N, cond∶2×N2 → N, true∶2, false∶2, 0∶N and 1∶N. Terms
of a given type over a set of operations are defined by induction, e.g. 1 is
a term of type N, ∗(1,1) is a term of type N, and so on. The next step in
defining an algebra is to define how it evaluates expressions. For this, we
need to specify a carrier set for every type, e.g. N for N and {t, f} for 2. We
then have to interpret every operation with an actual (n-ary) function, e.g. ∗
is interpreted with multiplication on natural numbers. To define algebras
formally, we start by introducing typed sets and function types.

Definition 1 (Typed set). Let type be a set. A typed set over type is a pair
(A, τ), where τ∶A → type. For every t ∈ type we set At = {a ∈ A ∣ τ(a) = t}.

In the above definition, type serves as a set of types, e.g. type =
{Bool, Int} and the function τ maps each element of A to its type. For
example, we could have A =N∪{t, f} with τ(t) = τ( f ) = Bool and τ(i) = Int
for i ∈N.

Definition 2 (Function types). Let type be a set. A (first-order) function type
over type is of the form t1 × ⋅ ⋅ ⋅ × tn → t, where t1, . . . , tn, t ∈ type and n ∈N. In
case n = 0 we simply write t instead of → t. We denote with type→ the set of
all function types over type.

As an example, Int, Bool and Bool × Int × Int → Int are function types.
Note that we allow there to be zero arguments to a function.

Definition 3 (Signatures). Let Σ and type be sets. A signature over Σ and
type is a function S∶Σ → type→. Instead of specifying Σ and S explicitly,
they can both be given by a list: a1∶ t1, . . . , an∶ tn (n ≥ 0) with ai ≠ aj for all
1 ≤ i, j ≤ n with i ≠ j and ti ∈ type for 1 ≤ i ≤ n. We obtain Σ = {a1, . . . , an} and
S(ai) = ti for 1 ≤ i ≤ n.

We can think of Σ as a set of operators, e.g. Σ = {∗, cond,0,1, true, false}.
The signature S maps each operator to its type, e.g. if type = {Bool, Int},
we could have S(cond) = Bool × Int × Int → Int, S(true) = S(false) = Bool,
S(∗) = Int× Int→ Int, and S(0) = S(1) = Int. Instead of defining S explicitly
as a function, it could also be given by the following list: cond∶Bool× Int×
Int→ Int, true∶Bool, false∶Bool, ∗∶ Int× Int→ Int, 0∶ Int, 1∶ Int.

Definition 4 (Variables and Typing). Let type be a set, let V be a (countably)
infinite set of variables and let V ⊆ V . A typing of V is a function Γ∶V → type.
Again, we may give Γ as a list of the form X1∶ τ1, . . . , Xn∶ τn, where n ≥ 0,
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Xi ∈ V and τi ∈ type for 1 ≤ i ≤ n. This then defines V = {V1, . . . , Vn} ⊆ V ,
Γ∶V → type and Γ(Vi) = τi for 1 ≤ i ≤ n.

We assume that all variables are elements of V and also that V does not
interfere with any signatures that we use.

Definition 5 (Expressions). Let S∶Σ → type→ and Γ∶V → type, where V ⊆ V .
For every t ∈ type, the set E(S, Γ, t) of expressions of type t is defined as
follows:

• x ∈ E(S, Γ, t) for every x ∈ V with Γ(x) = t,

• f (e1, . . . , en) ∈ E(S, Γ, t) for every e1 ∈ E(S, Γ, t1), . . . , en ∈ E(S , Γ, tn),
n ∈N, f ∈ Σ, and S( f ) = t1 × ⋅ ⋅ ⋅ × tn → t.

The set of all expressions is defined as E(S, Γ) = ⋃{E(S, Γ, t) ∣ t ∈ type}. In case
V = ∅ (so Γ∶ ∅ → type) we do not mention Γ and write E(S) for E(S, Γ), and
E(S, t) for E(S, Γ, t) where t ∈ type. For e ∈ E(S , Γ) we define τE ∶ E(S , Γ) →
type, which maps an expression to its type, as τE(e) = t where e ∈ E(S, Γ, t).
(Note that E(S , Γ) together with τE is a typed set.) If S and Γ are known
from the context, we will simply write e∶ t instead of e ∈ E(S, Γ, t).

The size ∣e∣ of an expression e ∈ E(S , Γ) is defined as: ∣v∣ = 1 for v ∈ V and
∣ f (e1, . . . , en)∣ = 1+∑{∣ei∣ ∣ 1 ≤ i ≤ n} for f (e1, . . . , en) ∈ E(S, Γ) ∖V.

Continuing our previous example, we would have

cond(false,∗(0,∗(0, 1),∗(1, 1))) ∈ E(S, Int).

Let Γ be given by x∶Bool and y∶ Int, so we have two variables. Then
cond(x, y, 1) ∈ E(S, Γ, Int).

Definition 6 (Algebra). Given a signature S∶Σ → type→, an algebra is a pair
A = ((U , τ),I), where U together with τ∶ U → type is a typed set and I
is a function such that I( f )∶ τ(t1) × ⋅ ⋅ ⋅ × τ(tn) → τ(t) for every f ∈ Σ with
S( f ) = t1 × ⋅ ⋅ ⋅ × tn → t.

The standard algebra for our example would be A = ((U , τ),I) with
U = N ∪ {t, f}, τ(n) = Int for n ∈ N and τ(t) = τ( f ) = Bool, where the
mapping I is defined as follows:

• I(0) = 0, I(1) = 1, I(true) = t, I(false) = f ,

• I(∗)(x, y) = x ∗ y, where ∗∶N2 →N is multiplication on N, and

• I(cond)(b, x, y) =
⎧⎪⎪⎨⎪⎪⎩

x if b = t,
y if b = f .

Another algebra would be A′ = ((U ′, τ′),I′) that counts the number of
occurrences of true and false. We define U ′ = {1′} ∪N with τ′(1′) = Bool
and τ′(n) = Int for all n ∈ N. Note that we have to map true and false to
an element that gets type Bool. The idea is that, since each occurrence of
true and false counts as 1, we map them to a copy of 1. Let i∶ {1′} →N be
i(1′) = 1. We define I as follows:

• I′(0) = 0, I′(1) = 0, I′(true) = 1′, I′(false) = 1′,

• I′(∗)(x, y) = x + y, where +∶N2 →N is addition on N, and

• I′(cond)(b, x, y) = i(b) + x + y.
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Definition 7 (Environment and Evaluation). Let A = ((U , τ),I) be an algebra
with signature S∶Σ → type→, τ∶ U → type, V ⊆ V and typing Γ∶V → type. An
environment is a function η∶V → U such that τ ○ η = Γ. The evaluation function
⟦⟧A,η ∶ E(S, Γ) → U is defined as follows:

• For x ∈ V we set ⟦x⟧A,η = η(x).

• For f (e1, . . . , en) ∈ E(S, Γ) ∖V we set

⟦ f (e1, . . . , en)⟧A,η = I( f )(⟦e1⟧A,η , . . . , ⟦en⟧A,η).

For expressions without variables we define ⟦⟧A∶ E(S) → U as ⟦e⟧A = ⟦e⟧A,η
with η∶ ∅ → U .

Going back to our previous examples, we have for example

• ⟦∗(1,1)⟧A = ⟦1⟧A ∗ ⟦1⟧A = 1 ∗ 1 = 1,

• ⟦∗(1,1)⟧A′ = ⟦1⟧A′ + ⟦1⟧A′ = 0+ 0 = 0,

• ⟦cond(false, cond(true,0,1),1)⟧A = 1 and

• ⟦cond(false, cond(true,0,1)1)⟧A′ = 2.

With η∶ {x} →N and η(x) = 5, we have ⟦+(x,1)⟧A,η = η(x) + ⟦1⟧A = 5+ 1 = 6.

Definition 8 (Acyclic Relation). Let R ⊆ A×A be a relation. R is called acyclic
if its transitive closure R+ = ⋃{Ri ∣ i ≥ 1} of R is a strict (partial) order. Since
R+ is transitive by definition, this means that R+ must be asymmetric, i.e.
there are no v, v′ ∈ V such that (v, v′) ∈ R+ and (v′, v) ∈ R+.

Definition 9 (SLPs). Let S∶Σ → type→. An SLP with signature S is a tuple
G = (V, Γ, ρ) with V ⊆ V , Γ∶V → type and ρ∶V → E(S, Γ). Let ≤G⊆ V ×V with
≤G= {(v′, v) ∣ v′ occurs in ρ(v)}. An SLP must fulfil the following:

• τE ○ ρ = Γ.

• ≤G is acyclic.

The size of G is defined as ∣G∣ = ∑{∣ρ(X)∣ ∣ X ∈ V}. The height h(e) of
an expression e ∈ E(S, Γ) is defined as h(A) = h(ρ(A)) for A ∈ V and
h( f (e1, . . . , en)) = 1 +max{h(e1), . . . , h(en)}. The height of G is defined as
h(G) = max{h(A) ∣ A ∈ V}.

Definition 10 (Evaluating SLPs). Let G = (V, Γ, ρ) be an SLP with signature
S∶Σ → type→ and let A((U , τ),I) with τ∶ U → type be an algebra. The
function ⟦⟧G,A∶ E(S , Γ) → U evaluates an expression and is defined as follows:
Let η∶V → U be defined as η = ⟦⟧G,A ○ ρ and define ⟦⟧G,A = ⟦⟧A,η . In case A
is clear from the context, we simply write ⟦⟧G.

Note that this recursive definition of ⟦⟧G,A is well-defined since ≤G is
acyclic. The environment η evaluates a variable to an element from U by first
using ρ to get an expression from E(S , Γ) and then using ⟦⟧G,A recursively.
The definition of ⟦⟧G,A depends on both an SLP G and an algebra A. We
chose to define it this way since we almost always have a concrete algebra in
mind. Alternatively, there is a different, equivalent view of evaluation: Since
an SLP is defined independently from algebras, it can unfold expressions by
recursively replacing variables, i.e. an SLP can turn any expression e ∈ E(S, Γ)
into an expression e′ ∈ E(S) without variables by recursively applying ρ. This
final expression e′ can then be evaluated in any algebra A = ((U , τ),I) using
η∶ ∅ → U .
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Definition 11 (Unfolding SLPs). Let G = (V, Γ, ρ) be an SLP with signature
S . We define unfoldG ∶ E(S, Γ) → E(S) as

unfoldG( f (e1, . . . , en)) = f (unfoldG(e1), . . . , unfoldG(en))

for an expression f (e1, . . . , en) ∈ E(S, Γ) and unfoldG(X) = unfoldG(ρ(X))
for a variable X ∈ V.

We are often interested in the value of a particular variable of an SLP,
which we will call the start variable.

Definition 12 (SLP with start variable). An SLP with start variable S is a tuple
G = (V, Γ, ρ, S), where (V, Γ, ρ) is an SLP and S ∈ V. Given an algebra A we
write ⟦G⟧A = ⟦S⟧G,A. In case A is clear from the context, we simply write
⟦G⟧. We also set unfold(G) = unfoldG(S).

2.1 algebras for trees and forests

We now come to the first formalism that represents terms for trees. These
trees, called ranked trees, have the property that the label of a node deter-
mines exactly how many children this node must have. For example, we
could say that a node labelled with + must have two children and a node
labelled with 1 must have none.

Definition 13 (Ranked alphabet). A ranked alphabet is a pair (Σ, r), where Σ
is a set and r∶Σ →N.

Definition 14 (Ranked Trees). Let (Σ, r) be a ranked alphabet. The set T (Σ, r)
of ranked trees over (Σ, r) is defined by induction: If t1, . . . , tr(a) ∈ T (Σ, r) and
a ∈ Σ then a⟨t1, . . . , tr(a)⟩ ∈ T (Σ, r). The set Tx(Σ, r) of ranked trees over
(Σ, r) with a parameter is also defined by induction: x ∈ Tx(Σ, r), and if
t1, . . . , tr(a)−1 ∈ T (Σ, r), 1 ≤ i ≤ r(a), t ∈ Tx(Σ, r) and a ∈ Σ then

a⟨t1, . . . , ti−1, t, ti, . . . , tr(a)−1⟩ ∈ Tx(Σ, r).

Note that in order to produce leaves, we need an a ∈ Σ with r(a) = 0. Also
note that in the last part of the definition r(a) = 0 is not allowed since that
would lead to a ranked tree without a parameter.

To substitute a ranked tree (with or without a parameter) into a ranked
tree with a parameter, we define the substitution function on ranked trees:

Definition 15 (Ranked tree substitution). Let (Σ, r) be a ranked alphabet.
We define the function

[]∶ Tx(Σ, r) × (T (Σ, r) ∪ Tx(Σ, r)) → (T (Σ, r) ∪ Tx(Σ, r)),

where x[t′] = t′ for t′ ∈ Tx(Σ, r), and

a⟨t1, . . . , ti−1, t, ti, . . . , tr(a)−1⟩[t′] = a⟨t1, . . . , ti−1, t[t′], ti, . . . , tr(a)−1⟩

for t ∈ Tx(Σ, r), a ∈ Σ and t1, . . . , tr(a)−1 ∈ T (Σ, r).

We will use the following signature to represent ranked trees as expres-
sions.

Definition 16 (Tree expressions). Let type
T

= {T ,Tx} and let (Σ, r) be a
ranked alphabet. The tree signature ST (Σ, r) over Σ and r is defined by the
following operations:

8



• a∶ T for every a ∈ Σ with r(a) = 0,

• ai∶ T r(a)−1 → Tx for every a ∈ Σ and 1 ≤ i ≤ r(a),

• �∶ T 2
x → Tx and

• 6∶ Tx × T → T .

Instead of ai(e1, . . . , er(a)−1) we may also write a(e1, . . . , ei−1, x, ei, . . . , er(a)−1)
where e1, . . . , er(a)−1 ∈ E(ST (Σ, r)) and a ∈ Σ. In addition, we may write
a(e1, . . . , er(a)) instead of a1(e2, . . . , er(a))6 e1, where e1, . . . , er(a) ∈ E(ST (Σ, r))
and a ∈ Σ. An SLP for tree expressions (over Σ) is called a TSLP (over Σ). For
a TSLP (V, Γ, ρ) we set V0 = Γ−1(T ) and V1 = Γ−1(Tx). For a TSLP (V, Γ, ρ, S)
with start variable S we require that S ∈ V0.

Definition 17 (Standard tree algebra). Let (Σ, r) be a ranked alphabet and
let τT ∶ T (Σ, r) ∪ Tx(Σ, r) → {T ,Tx} with

τT (t) =
⎧⎪⎪⎨⎪⎪⎩

T if t ∈ T (Σ),
Tx if t ∈ Tx(Σ).

The standard tree algebra over (Σ, r) is

AT ,Σ,r = ((T (Σ, r) ∪ Tx(Σ, r), τT ),IT ),

where IT is defined as follows:

• IT (a) = a, for a ∈ Σ, r(a) = 0,

• IT (ai)(t1, . . . , tr(a)−1) = a⟨t1, . . . , ti−1, x, ti, . . . , tr(a)−1⟩, for a ∈ Σ, r(a) ≥ 1,

• IT (�)(t1, t2) = t1[t2], and

• IT (6)(t1, t2) = t1[t2].

Instead of AT ,Σ,r we will often simply write AT if (Σ, r) is clear from the
context. Also, we will often write ⟦e⟧ instead of ⟦e⟧AT ,Σ,r .

When we use AT we are also allowed to omit some parentheses in
expressions. For example, since � is associative in AT , we simply write
e1 � e2 � e3 instead of (e1 � e2)� e3.

We now come to a more general notion of trees. Here, the number of
children of a node is not determined by its label. We also define forests as a
list of trees.

Definition 18 (Forests and Trees). Let Σ be an alphabet. The set F(Σ) of
forests over Σ and the set T (Σ) of trees over Σ are defined by induction:

• ε ∈ F(Σ).

• If f1, f2 ∈ F(Σ) then f1 f2 ∈ F(Σ).

• If f ∈ F(Σ) then a⟨ f ⟩ ∈ F(Σ) and a⟨ f ⟩ ∈ T (Σ) for every a ∈ Σ.

As a short-hand notation, we may write a instead of a⟨ε⟩, where a ∈ Σ.
The set Fx(Σ) of forests over Σ with a parameter and the set Tx(Σ) of

trees over Σ with a parameter are also defined by induction:

• x ∈ Fx(Σ).

• If f1 ∈ F(Σ) and f2 ∈ Fx(Σ) then f1 f2 ∈ Fx(Σ) and f2 f1 ∈ Fx(Σ).
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• If f ∈ Fx(Σ) then a⟨ f ⟩ ∈ Fx(Σ) and a⟨ f ⟩ ∈ Tx(Σ) for every a ∈ Σ.

The rank ρ∶ T (Σ) →N of a tree is defined as

ρ(a⟨t1 . . . tn⟩) = max{n, ρ(t1), . . . , ρ(tn)},

where a ∈ Σ and t1, . . . , tn ∈ T (Σ). Let r ∈N. The set of all Σ-labelled trees
t ∈ T (Σ) with ρ(t) ≤ r is denoted with Tr(Σ). The height h∶ T (Σ) → N of a
tree is defined as

h(a⟨t1 . . . tn⟩) = 1+max{h(t1), . . . , h(tn)}.

Definition 19 (Forest and tree substitution). The substitution function on
forests []∶Fx(Σ) × (F(Σ) ∪Fx(Σ)) → (F(Σ) ∪Fx(Σ)) is defined as follows:
Let f , f1 ∈ Fx(Σ) and f2 ∈ F(Σ). We set

x[ f ′] = f ′,

( f1 f2)[ f ′] = ( f1[ f ′]) f2,

( f2 f1)[ f ′] = f2( f1[ f ′]),

a⟨ f ⟩[ f ′] = a⟨ f [ f ′]⟩.

Substitution on trees, []∶ Tx(Σ)×(T (Σ)∪Tx(Σ)) → (T (Σ)∪Tx(Σ)), is defined
using substitution on forests (which is the last case of the previous definition).

We are going to use the following signature to represent forests as expres-
sions.

Definition 20 (Forest expressions). Let type
F
= {F ,Fx}. The forest signature

SF(Σ) over Σ is defined by the following operations:

• ε∶ F ,

• x∶ Fx,

• a(x)∶Fx for every a ∈ Σ,

• ⊟∶F ×F → F ,

• =∶ Fx ×F → Fx,

• <∶ F ×Fx → Fx,

• 6∶ Fx ×F → F , and

• �∶ Fx ×Fx → Fx.

An SLP for forest expressions (over Σ) is called an FSLP (over Σ). For an
FSLP (V, Γ, ρ) we set V0 = Γ−1(F) and V1 = Γ−1(Fx). For an FSLP (V, Γ, ρ, S)
with start variable S we require that S ∈ V0. Instead of E(SF(Σ)) we may
write EF(Σ).

Definition 21 (Standard forest algebra). Let τF ∶ F(Σ) ∪ Fx(Σ) → {F ,Fx}
with

τF( f ) =
⎧⎪⎪⎨⎪⎪⎩

F if f ∈ F(Σ),
Fx if f ∈ Fx(Σ).

The standard forest algebra over Σ is

AF ,Σ = ((F(Σ) ∪Fx(Σ), τF),IF),

where IF is defined as follows:
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• IF(ε) = ε,

• IF(x) = x,

• IF(a(x)) = a⟨x⟩,

• IF(⊟)( f , f ′) = f f ′,

• IF(=)( f , f ′) = f f ′,

• IF(<)( f , f ′) = f f ′,

• IF(6)( f , f ′) = f [ f ′],

• IF(�)( f , f ′) = f [ f ′].

As with AT , we may write AF instead of AF ,Σ if Σ is clear from the context.
Also, instead of ⟦e⟧AF ,Σ we will often simply write ⟦e⟧.

Similar to AT , when we use AF we are also allowed to omit some
parentheses in expressions: For example, since � and ○ are associative in AF ,
we simply write e1 � e2 � e3 instead of (e1 � e2)� e3, and e1 ⊟ e2 ⊟ e3 instead
of (e1 ⊟ e2) ⊟ e3. We also write e1 < e2 = e3 instead of (e1 < e2)= e3, and so on.

Example 1. Let n ∈N. Consider the FSLP

F = ({S, A0, . . . , An, B0, . . . , Bn}, Γ, ρ, S)

over {a, b, c} with Γ(Ai) = F and Γ(Bi) = Fx for 0 ≤ i ≤ n, and where ρ is
defined by

ρ(A0) = a,

ρ(Ai) = Ai−1 ⊟ Ai−1 for 1 ≤ i ≤ n,

ρ(B0) = b(x)� (An < x= An),

ρ(Bi) = Bi−1 � Bi−1 for 1 ≤ i ≤ n, and

ρ(S) = Bn 6 (c(x)6 ε).

The forest produced by this FSLP is

⟦F⟧ = b⟨a2n
b⟨a2n

⋯b⟨a2n
a2n

⟩⋯a2n
⟩a2n

⟩,

where b occurs 2n many times. This is a forest of exponential width and
height. See Figure 1 for n = 2.

Finally, we also define expressions for strings, which we will need for
various constructions.

Definition 22 (String expressions). Let type
S
= {S}. The string signature

S(Σ) over Σ is defined by the following operations:

• ε∶ S,

• a∶ S for every a ∈ Σ, and

• ○∶ S2 → S.

Instead of E(S(Σ)) we may write ES(Σ).
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Figure 1: Forest ⟦F⟧ for n = 2 from Example 1.

An SLP for string expressions (over Σ) is called an SSLP (over Σ). Since
the typed set typeS only uses one type, the second component of an SSLP
over Σ is of the form Γ∶Σ → {S}, which is always uniquely determined. We
are therefore allowed to leave Γ out, i.e. instead of saying that (V, Γ, ρ) is an
SSLP, we simply say that (V, ρ) is an SSLP. Similarly, for S ∈ V we say that
(V, ρ, S) is an SSLP with a start variable.

Definition 23 (Strings). For an alphabet Σ, the set of strings over Σ is Σ∗. Let
w = a1 . . . an ∈ Σn. For an index i ∈ {1, . . . , n} we write w [i] = ai. For indices
i, j ∈ {1, . . . , n} we write w [i ∶ j] = ai . . . aj, which is ε if i > j. We also write
w [∶ i] instead of w [1 ∶ i], and w [i ∶] instead of w [i ∶ n]. For 0 ≤ k ≤ j we may
write w [−k ∶ j] instead of w [j − k + 1 ∶ j], and for 0 ≤ k ≤ n we may also write
w [−k ∶] instead of w [n − k + 1 ∶ n]. In both cases, we set w [n + 1 ∶ n] = ε.

The notation w [−k ∶ j] means to take k symbols to the left starting from j
and w [−k ∶] denotes the last k symbols.

Definition 24 (Standard string algebra). Let τ∶Σ∗ → {S}. The standard string
algebra over Σ is defined as AΣ = ((Σ∗, τ),I), where I(ε) = ε, I(a) = a for
a ∈ Σ and I(○)(s, t) = st. Instead of ⟦e⟧AΣ we will often simply write ⟦e⟧.

Again, we allow to write e1 ○ e2 ○ e3 instead of (e1 ○ e2) ○ e3 when using AΣ,
since ○ is associative in it.

Example 2. Consider the SSLP G = ({S, A, B, C}, ρ, S) over the alphabet {a, b}
with ρ(S) = A ○ A ○ B, ρ(A) = C ○ B ○ B, ρ(B) = C ○ a ○C and ρ(C) = b. We have
⟦B⟧G = bab, ⟦A⟧G = bbabbab, and ⟦G⟧ = bbabbabbbabbabbab. The size of ρ(S),
ρ(A) and ρ(B) is 5 and the size of ρ(C) is 1. As an example, let us calculate
∣ρ(S)∣, which is (in prefix notation)

∣○(○(A, A), B)∣ = 1+ ∣○(A, A)∣ + ∣B∣ = 1+ 3+ 1.

DAGs are a simple form of tree compression, where identical subtrees
may be identified. They are usually defined as acyclic graphs, where nodes
represent subtrees. Each node v is assigned a label from some alphabet and
a list of child nodes u1, . . . , un, n ≥ 0, i.e. a list of edges (v, u1), . . . , (v, un).
Here, we want to view DAGs as expressions over a very simple algebra that
expresses this relationship (label of a node plus children) directly:

Definition 25 (Flat Tree expressions). Let type
D
= {T }. The DAG signature

SD(Σ) over Σ has the following operations:
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• ai∶ T i → T for all i ∈N and a ∈ Σ.

We write ED(Σ) instead of E(SD(Σ)). We will usually leave the i from ai
out since it is clear from the context how many arguments are passed to it.
Technically, however, all of these are different symbols.

Definition 26 (Standard Flat Tree algebra). Let τD ∶ T (Σ) → {T }. The standard
flat tree algebra over Σ is defined as AD,Σ = ((T (Σ), τD),ID), where

• ID(ai)(t1, . . . , ti) = a⟨t1 . . . ti⟩, for every a ∈ Σ and i ∈N.

In case Σ is clear from the context, we may write AD instead of AD,Σ.

In Chapter 3 we generalize the notion of DAGs to various algebras.

2.2 equality checks

We will need to perform equality checks on various expressions. We start
with string expressions which will serve as the basis for other equality checks.

Lemma 1. Let G = (V, ρ) be an SSLP and A, B ∈ V. We can test in polynomial
time if ⟦A⟧G = ⟦B⟧G.

There are many different algorithms that solve this problem in polynomial
time, but they are not trivial, see [35].

We can also check if two tree expressions produce the same tree.

Lemma 2. Let T = (V, Γ, ρ) be a TSLP and A, B ∈ V. We can test in polynomial
time whether ⟦A⟧T = ⟦B⟧T .

This has been proven in [13]. The idea is to translate A and B into
SSLPs GA and GB that produce string representations of ⟦A⟧T and ⟦B⟧T
and then use Lemma 1 to check if ⟦GA⟧ = ⟦GB⟧ which is true if and only if
⟦A⟧G = ⟦B⟧G.

A similar argument can be made for FSLPs:

Definition 27. Let Σ′ = Σ∪{⟨, ⟩} with ⟨, ⟩ ∉ Σ. The depth-first-left-right traversal
of a forest is defined as dflr∶ F(Σ) → (Σ′)∗ with

• dflr(a⟨ f ⟩) = a⟨ f ⟩ for a ∈ Σ and f ∈ F(Σ), and

• dflr(t1 . . . tn) = dflr(t1) . . . dflr(tn) for t1 . . . tn ∈ T (Σ) with n ≥ 0.

We extend this to FSLPs as follows:

Lemma 3. Let F = (V, Γ, ρ) be an FSLP. We can construct in linear time an
SSLP Fdflr = (V′, ρ′) such that V0 ⊆ V′ and for every A ∈ V0 we have ⟦A⟧Fdflr =
dflr(⟦A⟧F).

Proof. Define the SSLP Fdflr = (V′, ρ′) with

V′ = V0 ∪ {A`, Ar ∣ A ∈ V1}.

To define ρ′ we introduce the functions

str∶ E(SF(Σ), Γ,F) → E(S(Σ′), V′),

str`, strr ∶ E(SF(Σ), Γ,Fx) → E(S(Σ′), V′)

where str maps forest expressions to string expressions, and str` and strr
generate the string part left of x, resp. the right part of x:
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• For A ∈ V0 we set str(A) = A.

• For e = ε we set str(ε) = ε.

• For e = el ⊟ er we set str(e) = str(el) ○ str(er).

• For e = et 6 eb we set str(e) = str`(et) ○ str(eb) ○ strr(et).

• For A ∈ V1 we set str`(A) = A` and strr(A) = Ar.

• For e = x we set str`(e) = strr(e) = ε.

• For e = a(x) we set str`(e) = a ○ ⟨ and strr(e) = ⟩.

• For e = el = er we set str`(e) = str`(el) and strr(e) = strr(el) ○ str(er).

• For e = el < er we set str`(e) = str(e`) ○ str`(er). and strr(e) = strr(er).

• For e = et � eb we set str`(e) = str`(et) ○ str`(eb) and strr(e) = strr(eb) ○
strr(et).

We then set ρ′(A) = str(ρ(A)) if A ∈ V0 and ρ′(A`) = str`(ρ(A)) and ρ′(Ar) =
strr(ρ(A)) for A ∈ V1.

Lemma 4. Let F = (V, Γ, ρ) be an FSLP and A, B ∈ V0. We can test in polynomial
time if ⟦A⟧F = ⟦B⟧F.

Proof. We use Lemma 3 to construct Fdflr. Then we use Lemma 1 to check in
polynomial time if ⟦A⟧Fdflr = ⟦B⟧Fdflr . The correctness follows because

• for every A ∈ V0 we have ⟦A⟧Fdflr = dflr(⟦A⟧F) and

• for every f , f ′ ∈ F(Σ) we have f = f ′ if and only if dflr( f ) = dflr( f ′).

Proposition 1. There are polynomial time algorithms that, given an SSLP G =
(V, ρ) over Σ as input, compute the following.

• Given X ∈ V and 1 ≤ i ≤ j ≤ ∣⟦X⟧G ∣, compute an SSLP G′ such that
⟦X⟧G′ = ⟦X⟧G[i ∶ j]

• Given X, Y ∈ V, compute the length of the longest common prefix of ⟦X⟧G
and ⟦Y⟧G.

Proof. See [34] for details.

Definition 28. A TSLP T = (V, Γ, ρ) (resp. FSLP) is reduced if for every
A, B ∈ V0 we have ⟦A⟧T ≠ ⟦B⟧T .

Lemma 5. A TSLP T = (V, Γ, ρ) (resp. FSLP) can be converted in polynomial time
into a reduced TSLP (resp. FSLP) T′ = (V′, Γ′, ρ′) such that for all A ∈ V there is
an A′ ∈ V′ with ⟦A′⟧T′ = ⟦A⟧T .

Proof. For every pair A, B ∈ V we test if ⟦A⟧T = ⟦B⟧T using Lemma 2 (resp.
Lemma 4). In case this is true, we remove B and replace it by A.
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3
N O R M A L F O R M S L P S

In general, an SLP (V, Γ, ρ) is not restricted in the way it can assign expres-
sions, i.e. ρ(A) can be an expression that is arbitrarily complicated. When
transforming SLPs, designing algorithms on them, etc., it is usually desir-
able that ρ(A) is restricted in some way so that constructions have to deal
with less cases, or the cases that they have to deal with somehow make the
construction in question easier. In this section we will look at a few such
restrictions which we call normal forms. The most important one will be the
normal form for FSLPs. We start with a very simple normal form that is
defined for all SLPs, regardless of what algebra they use. Its name is derived
from the Chomsky normal form for context-free grammars.

Definition 29 (Chomsky normal form for SLPs). An SLP (V, Γ, ρ) is in Chom-
sky normal form if for every X ∈ V the form of ρ(X) is ρ(X) = f (X1, . . . , Xn)
for some X1, . . . , Xn ∈ V.

Lemma 6. Given an SLP G = (V, Γ, ρ) over some signature S , we can transform it
in linear time into an SLP G′ = (V′, Γ′, ρ′) with ∣G′∣ ∈ O(∣G∣) that is in Chomsky
normal form and for each A ∈ V we have unfoldG(A) = unfoldG′(A).

Proof. The proof of this is straight-forward: V′ ⊇ V will be a set with new
variables that we introduce as follows: Let ρ(X) = f (e1, . . . , en). Every ei
(1 ≤ i ≤ n) with ei ∉ V is replaced by a new variable Xi ∉ V that we add to V′.
We set ρ′(Xi) = ei and Γ′(Xi) = τi, where S( f ) = τ1 × ⋅ ⋅ ⋅ × τn → τ. We iterate
this procedure until all ρ′(A) for A ∈ V′ have the desired form. For all X ∈ V
we set Γ′(X) = Γ(X).

Instead of defining DAGs as graphs, we define them as SLPs that are
in Chomsky normal form, where every variable is reachable. This way, the
notion DAG can be used for any signature, which is for example needed
later when we talk about top dags.

Definition 30 (S-DAGs). An SLP G = (V, Γ, ρ, S) over the signature S is
called an S-DAG if it is in Chomsky normal form and every variable A ∈ V
is reachable from S. It is called a minimal S-DAG if there are no two distinct
variables A, B ∈ V with unfoldG(A) = unfoldG(B). A D-DAG (an SLP over
flat tree expressions) is simply called a DAG.

Lemma 7. Given an expression e ∈ E(S, τ) over some signature S of type τ we can
compute a minimal DAG mdag(e) with unfold(mdag(e)) = e in linear time.

For a proof, see [20]. An implementation that achieves amortized linear
time using hashing, see e.g. [12], works as follows: We start with an SLP
G = (V, Γ, ρ, S) with V = {S}, Γ(S) = τ and ρ(S) = e. The idea is to replace
subexpressions with variables bottom-up: Let e′ = f (A1, . . . , An) be a subex-
pression of ρ(S), but not ρ(S) itself, and assume A1, . . . An ∈ V. We test if we
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already have a variable with ρ(A) = e′, which we implement by maintaining
a hash map that maps keys from V to pairs from Σ ×V∗. If we have such
an A, we replace e′ in e with A. If not, we introduce a new variable A′, set
ρ(A′) = e′, replace e′ in e with A′ and also insert A′ → ( f , A1 . . . An) into our
hash map.

A minimal DAG for a flat tree expression is what is usually called a
minimal DAG of a tree, i.e. a graph that identifies all subtrees that are the
same. We therefore extend the notation of mdag to trees:

Definition 31 (Minimal DAG of a tree). Let flat∶ T (Σ) → ED(Σ) be defined
by

flat(a⟨t1, . . . , tn⟩) = an(flat(t1), . . . , flat(tn))

for a ∈ Σ and t1, . . . , tn ∈ T (Σ), where n ≥ 0. For t ∈ T (Σ) we define mdag(t)
as mdag(flat(t)).

For TSLPs, we simply say that a TSLP T = (V, Γ, ρ) over a ranked alphabet
(Σ, r) in Chomsky normal form is in normal form. ρ(A) for A ∈ V therefore
has one of the following forms:

• ρ(A) = a, where a ∈ Σ,

• ρ(A) = B6C, where B ∈ V1 and C ∈ V0,

• ρ(A) = B�C, where B, C ∈ V1, or

• ρ(A) = ai(A1, . . . , Ar(a)−1) where A1, . . . , Ar(a)−1 ∈ V0 and a ∈ Σ.

Corollary 1. Given a TSLP T = (V, Γ, ρ), we can transform it in linear time into
a TSLP T′ = (V′, Γ′, ρ′) with ∣T′∣ ∈ O(∣T∣) such that T′ is in normal form, V ⊆ V′

and ⟦A⟧T′ = ⟦A⟧T for all A ∈ V.

A TSLP basically starts with an expression of the form B6C, where B
is transformed into a series of expressions of the form D� E, which in turn
eventually end in expressions of the form ai(A1, . . . , Ar(a)−1). We can produce
these expressions as a string, which will be useful in later constructions. This
is done by the following SSLP:

Definition 32 (Spine SSLP for TSLPs). Let T = (V, Γ, ρ) be a TSLP over Σ in
normal form. The spine SSLP of T is the SSLP T� = (V, ρ′) over Σ� with

• Σ� = Σ ∪ {ai(A1, . . . , Ar(a)−1) ∣ a ∈ Σ, 1 ≤ i ≤ r(a), A1, . . . , Ar(a)−1 ∈ V0},

• ρ′(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a if ρ(A) = a,
B ○C if ρ(A) = B6C,
B ○C if ρ(A) = B�C,
ρ(A) if ρ(A) = ai(A1, . . . , Ar(a)).

3.1 factorization

This section is preparation work for the normal form for FSLPs that will be
introduced shortly.

Definition 33 (Sigma-Factorization). Let Σ1 ⊆ Σ and Σ2 = Σ ∖ Σ1. Given
an SSLP G = (V, ρ), a Σ1-factorization of G is an SSLP G′ = (V′, ρ′) with
V′ = U ⊎ L ⊎V, ⟦A⟧G = ⟦A⟧G′ for all A ∈ V and where ρ′ only uses the
following forms:
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• For A ∈ V we have ρ′(A) = B with B ∈ L or ρ′(A) = B ○C ○ a ○ D with
B, D ∈ L, C ∈ U and a ∈ Σ1.

• For A ∈ U we have ρ′(A) = ε, ρ′(A) = a ○ B with a ∈ Σ1 and B ∈ L or
ρ′(A) = B ○C with B, C ∈ U .

• For A ∈ L we have ρ′(A) = ε, ρ′(A) = b with b ∈ Σ2 or ρ′(A) = B ○C
with B, C ∈ L.

Lemma 8. Given Σ1 ⊆ Σ and an SSLP G we can transform it in linear time into
an SSLP G′ that is a Σ1-factorization of G and ∣G′∣ ∈ O(∣G∣).

Proof. Let w ∈ Σ∗ and w = v0a1v1 . . . anvn for n ≥ 0 with ai ∈ Σ1 and v0, vi ∈ Σ∗2
for 1 ≤ i ≤ n which we call the Σ1-factorization of w. Let

M = (Σ∗2 × (Σ1Σ∗2 )∗ ×Σ1Σ∗2 ) ∪Σ∗2 .

We define s∶Σ∗ → M as s(w) = (w`, wm, wr) with

w` = v0,

wm = a1v1 . . . an−1vn−1 and

wr = anvn.

Let us shorten (Σ∗2 × (Σ1Σ∗2 )∗ ×Σ1Σ∗2 ) to Σ∈

1.
Let G = (V, ρ). We assume that G is in Chomsky normal form using

Lemma 6. The first step is to calculate for each A ∈ V whether s(⟦A⟧G) ∈ Σ∗2
or s(⟦A⟧G) ∈ Σ∈

1, which is straightforward:

• If ρ(A) = ε then s(⟦A⟧G) ∈ Σ∗2 .

• If ρ(A) = c then s(⟦A⟧G) ∈ Σ∈

1 if c ∈ Σ1, otherwise s(⟦A⟧G) ∈ Σ∗2 .

• If ρ(A) = B ○ C then s(⟦A⟧G) ∈ Σ∈

1 if s(⟦B⟧G) ∈ Σ∈

1 or s(⟦C⟧G) ∈ Σ∈

1,
otherwise s(⟦A⟧G) ∈ Σ∗2 .

Define G′ = (V′, ρ′) with V′ = U ⊎L⊎V and

U = {Uε}
∪ {Am ∣ A ∈ V, s(⟦A⟧G) ∈ Σ∈

1}
∪ {UBC, U′

BC ∣ A ∈ V, ρ(A) = B ○C, s(⟦B⟧G) ∈ Σ∈

1, s(⟦C⟧G) ∈ Σ∈

1},

L = {A`, Ar ∣ A ∈ V, s(⟦A⟧G) ∈ Σ∈

1}
∪ {LBC ∣ A ∈ V, ρ(A) = B ○C, s(⟦B⟧G) ∈ Σ∈

1, s(⟦C⟧G) ∈ Σ∈

1}
∪ {A′ ∣ A ∈ V, s(⟦A⟧G) ∈ Σ∗2}.

We now proceed to define ρ′. In addition, we use induction to define σA ∈ Σ
for each A ∈ V with ⟦A⟧G ∈ Σ∈

1. First, we set ρ′(Uε) = ε.

• For ρ(A) = ε we set ρ′(A′) = ε.

• For ρ(A) = b ∈ Σ2 we set ρ(A′) = b.

• For ρ(A) = a ∈ Σ1 we set ρ′(A`) = ρ′(Am) = ρ′(Ar) = ε and σA = a.

• For ρ(A) = B ○C we have the following cases:

– If s(⟦B⟧G) ∈ Σ∗2 and s(⟦C⟧G) ∈ Σ∗2 we set ρ′(A′) = B′ ○C′.

– If s(⟦B⟧G) ∈ Σ∗2 and s(⟦C⟧G) ∈ Σ∈

1 we set ρ′(A`) = B′ ○C`, ρ′(Am) =
ρ′(Cm), ρ′(Ar) = ρ′(Cr), and σA = σC.
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– If s(⟦B⟧G) ∈ Σ∈

1 and ⟦C⟧G ∈ Σ∗2 we set ρ′(A`) = ρ′(B`), ρ′(Am) =
ρ′(Bm), ρ′(Ar) = Br ○C′, and σA = σB.

– If s(⟦B⟧G) ∈ Σ∈

1 and s(⟦C⟧G) ∈ Σ∈

1 we set ρ′(A`) = ρ′(B`), ρ′(Ar) =
ρ′(Cr), and σA = σC. For Am we want that

⟦ρ′(Am)⟧G′ = ⟦Bm ○ (σB ○ (Br ○C`)) ○Cm⟧G′

but in order to produce the desired rules, we have to split ρ′(Am)
as follows: ρ′(Am) = Bm ○UBC, ρ′(UBC) = U′

BC ○ Cm, ρ′(U′

BC) =
σB ○ LBC, ρ′(LBC) = Br ○C`.

Finally, we have to define the rules for each A ∈ V:

• If s(⟦A⟧G) ∈ Σ∗2 , then ρ′(A) = A′ ○Uε.

• If s(⟦A⟧G) ∈ Σ∈

1, then ρ′(A) = A` ○ Am ○ σa ○ Ar.

3.2 normal form for fslps

To obtain the desired normal form for FSLPs, we first start with the so-called
weak normal form. This normal form is easy to obtain and it is only used in
the construction for the actual normal form.

Definition 34 (Weak normal form). An FSLP (V, Γ, ρ) is in weak normal form
if ρ(X) for all X ∈ V only takes on the following forms:

• ε,

• T6 B, where T ∈ V1, B ∈ V0,

• T� B, where T, B ∈ V1,

• a(x), where a ∈ Σ,

• L< x= R, where L, R ∈ V0.

Lemma 9. Given an FSLP F = (V, Γ, ρ) we can in linear time transform it into
a new FSLP F′ = (V′, Γ′, ρ′) that is in weak normal form, ⟦F⟧ = ⟦F′⟧ and ∣F′∣ ∈
O(∣F∣).

Proof. We assume that F is in Chomsky normal form using Lemma 6. The
set of new variables are

V′ = V ∪ {Eε}
∪ {A′ ∣ ρ(A) = B⊟C, B, C ∈ V}
∪ {A′ ∣ ρ(A) = B=C, B, C ∈ V}
∪ {A′ ∣ ρ(A) = B<C, B, C ∈ V}.

We set Γ′(A) = Γ(A) for all A ∈ V, Γ′(Eε) = F and Γ′(A′) = Fx for all A ∈ V.
For ρ′, we first set ρ′(Eε) = ε. The other cases are as follows:

• In case ρ(A) = ε, ρ(A) = B6C, ρ(A) = B�C, or ρ(A) = a(x) we set
ρ′(A) = ρ(A).

• For ρ(A) = x we set ρ′(A) = Eε < x= Eε.

• For ρ(A) = B⊟C we set ρ′(A′) = B< x=C and ρ′(A) = A′6 Eε.
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• For ρ(A) = B=C we set ρ′(A′) = Eε < x=C and ρ′(A) = A′� B.

• For ρ(A) = B<C we set ρ′(A′) = B< x= Eε and ρ′(A) = A′�C.

We now finally come to the definition of our normal form.

Definition 35 (Normal form for FSLPs). An FSLP (V, Γ, ρ) is in normal form
if ρ(X) for all X ∈ V only takes on the following forms:

• ε,

• T6 (a(x)6 B), where a ∈ Σ, T ∈ V1 and B ∈ V0,

• L⊟ R, where L, R ∈ V0,

• x,

• a(x)� (L< x= R), where a ∈ Σ and L, R ∈ V0,

• T� B, where T, B ∈ V.

We basically have two kinds of expressions: Vertical expressions, which
are x, a(x)� (L< x= R) and T � B, and horizontal expressions, which are ε,
T6 (a(x)6 B) and L⊟ R.

Horizontal expressions build forests using expressions of the form L⊟ R,
which in turn yields expressions of the form

T1 6 (a1(x)6 B1) ⊟ ⋅ ⋅ ⋅ ⊟ Tn 6 (an(x)6 Bn).

Every of these sub-expressions starts with Ti, which uses expressions of the
form T� B. These in turn each yield an expression of the form

b1(x)� (L1 < x= R1)� ⋅ ⋅ ⋅� bm(x)� (Lm < x= Rm).

This structure has several advantages: Similar to the spine SSLP for TSLPs, we
define a spine SSLP for FSLPs, which is built out of the vertical expressions.
In addition, we define the rib SSLP which is built out of the horizontal
expressions. Furthermore, in a(x)� (L< x= R) we know that x is always
bound to a tree. The only place in which it can be bound to a forest is the
a(x)6 B part of horizontal expressions.

In the following, we show how to obtain the normal form for FSLPs.

Theorem 1. Given an FSLP F = (V, Γ, ρ) we can transform it in linear time into a
new FSLP F′ = (V′, Γ′, ρ′) that is in normal form with V0 ⊆ V′, ⟦X⟧F = ⟦X⟧F′ for
all X ∈ V0 and ∣F′∣ ∈ O(∣F∣).

Proof. We first assume that F is in weak normal form using Lemma 9. Let

Σh = {L< x= R ∣ X ∈ V, ρ(X) = L< x= R},

Σv = {a(x) ∣ X ∈ V, ρ(X) = a(x)}.

We define the Spine SSLP for the weak normal form as the SSLP F� = (V1, ρ′)
over Σh ∪Σv with

• ρ′(X) = A ○ B if ρ(X) = A� B and

• ρ′(X) = ρ(X) if ρ(X) = a(x) or ρ(X) = L< x= R.
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Then we apply Lemma 33 to create a Σv-factorization (V′, ρ′′) out of F�.
Here, we have that V′ = L⊎U ⊎V1 with the appropriate L and U . The new
variable set is defined as

V′′ = U ∪V0 ∪ {A`, Ar ∣ A ∈ L}
∪ {A′ ∣ A ∈ V0, ρ(A) = B6C, ρ′′(B) ∈ L}
∪ {A1, A2 ∣ A ∈ V0, ρ(A) = B6C, ρ′′(B) = D ○ E ○ a(x) ○ F}.

The new FSLP is F′ = (V′′, Γ′, ρ∗) with Γ′(B) = Fx for all B ∈ U and Γ′(X) = F
for all X ∈ V′′ ∖U . The cases for ρ∗ are as follows:

• If A ∈ V0 with ρ(A) = ε then ρ∗(A) = ε.

• If A ∈ V0 with ρ(A) = B6C, B ∈ V1, C ∈ V0 then

– if ρ′′(B) = D, so D ∈ L, then we want that ⟦A⟧F′ = ⟦D` ⊟C ⊟Dr⟧F′

which is achieved by splitting ρ∗(A) as follows: ρ∗(A) = A′ ⊟Dr
and ρ∗(A′) = D` ⊟C.

– if ρ′′(B) = D ○ E ○ a(x) ○ F, so D, F ∈ L and E ∈ U , then we want
that ⟦A⟧F′ = ⟦D` ⊟ (E6 (a(x)6 F)) ⊟ Dr⟧F′ which is achieved by
splitting ρ∗(A) as follows: ρ∗(A1) = E 6 (a(x)6 F), ρ∗(A2) =
A1 ⊟Dr and ρ∗(A) = D` ⊟ A2.

• If A ∈ L with ρ′′(A) = ε then ρ∗(A`) = ρ∗(Ar) = ε.

• If A ∈ L with ρ′′(A) = B ○ C, B, C ∈ L, then ρ∗(A`) = B` ⊟ C` and
ρ∗(Ar) = Cr ⊟ Br.

• If A ∈ L with ρ′′(A) = L< x = R then ρ∗(A`) = ρ∗(L) and ρ∗(Ar) =
ρ∗(R).

• If A ∈ U with ρ′′(A) = ε then ρ∗(A) = x.

• If A ∈ U with ρ′′(A) = a(x) ○ B, B ∈ L then ρ∗(A) = a(x)� (B`< x= Br).

• If A ∈ U with ρ′′(A) = B ○C, B, C ∈ U , then ρ∗(A) = B�C.

Definition 36 (Spine SSLP for FSLPs). Let F = (V, Γ, ρ) be an FSLP in normal
form. The spine SSLP of F is the SSLP F� = (V1, ρ′) over Σ� with

• Σ� = {a(x)� (L< x= R) ∣ a ∈ Σ, L, R ∈ V0},

• ρ′(A) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε if ρ(A) = x,
ρ(A) if ρ(A) = a(x)� (L< x= R),
B ○C if ρ(A) = B�C.

The spine of a given variable B ∈ V1 is defined as

spineF(B) = ⟦B⟧F� .

Definition 37 (Rib SSLP). Let F = (V, Γ, ρ) be an FSLP in normal form. The
rib SSLP of F is the SSLP F⊟ = (V0, ρ′) over Σ⊟ with

• Σ⊟ = {B6 (a(x)6C) ∣ B ∈ V1, C ∈ V0, a ∈ Σ},

• ρ′(A) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε if ρ(A) = ε,
ρ(A) if ρ(A) = B6 (a(x)6C),
B ○C if ρ(A) = B⊟C.
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Since we can take any FSLP and transform it in linear time into an
equivalent FSLP in normal form, we may always assume that our FSLPs
are in normal form. However, in some proofs, we need slight variations of
the normal form in which the rib and/or spine SSLPs do not use ε. These
normal forms are easy to obtain in linear time, which is summarized in the
following lemma:

Lemma 10. We can transform an FSLP F = (V, Γ, ρ, S) in linear time into a new
FSLP F′ = (V′, Γ′, ρ′, S) with ⟦F⟧ = ⟦F′⟧ and ∣F′∣ ∈ O(∣F∣) such that:

1. For every A ∈ V′ we have ⟦A⟧F′ ≠ x. The allowed expressions are

• ε,

• L⊟ R,

• B6 (a(x)6C),

• a(x)6C,

• a(x)� (L< x= R) and

• T� B.

2. If ⟦F⟧ ≠ ε then for every A ∈ V′ we have ⟦A⟧F′ ≠ ε. The allowed expressions
are

• L⊟ R,

• B6 (a(x)6C),

• B6 (a(x)6 ε),

• a(x)� (L< x= R),

• a(x)� (L< x),

• a(x)� (x= R),

• a(x) and

• T� B.

3. If ⟦F⟧ ≠ ε then for every A ∈ V′ we have ⟦A⟧F′ ≠ x and ⟦A⟧F′ ≠ ε. The
allowed expressions are

• L⊟ R,

• B6 (a(x)6C),

• B6 (a(x)6 ε),

• a(x)6C,

• a(x)6 ε,

• a(x)� (L< x= R),

• a(x)� (L< x),

• a(x)� (x= R),

• a(x) and

• T� B.

Proof. The transformations are similar to ε-elimination in context-free gram-
mars.
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1. First, we need to calculate for which variables A ∈ V1 we have ⟦A⟧F = x:
We have ⟦A⟧F = x if ρ(A) = x and ⟦A⟧F ≠ x if ρ(A) = a(x)� (B< x=C).
In case ρ(A) = B � C then ⟦A⟧F = x if and only if ⟦B⟧F = ⟦C⟧F = x.
We remove all A ∈ V from V′ with ⟦A⟧F = x, i.e. we initially set V′

to V ∖ {A ∈ V ∣ ⟦A⟧F = x}, and set ρ′(A) = ρ(A) except in two cases:
If ρ(A) = B� C, we may have removed B, C or both. In case B has
been removed but not C, we have ⟦B⟧F = x and therefore ⟦A⟧F = ⟦C⟧F.
We replace every occurrence of A by C and also remove A from V′.
Similarly, in case C has been removed but not B we have ⟦A⟧F = ⟦B⟧F,
so we replace every occurrence of A by B and also remove A from
V′. In case both variables have been removed, then A has also been
removed. Finally, if ρ(A) = B6 (a(x)6C) we might have removed B.
If this is the case, we set ρ′(A) = a(x)6C.

2. The transformation is very similar to the previous one. First, we
calculate for which variables A ∈ V0 we have ⟦A⟧F = ε: We have ⟦A⟧F = ε
if ρ(A) = ε and ⟦A⟧F ≠ ε if ρ(A) = B6 (a(x)6C). In case ρ(A) = B⊟C
then ⟦A⟧F = ε if and only if ⟦B⟧F = ⟦C⟧F = ε. We initially set V′ to
V ∖ {A ∈ V ∣ ⟦A⟧F = ε}, Again, we set ρ′(A) = ρ(A) except in two
cases: If ρ(A) = B ⊟ C, we may have removed B, C or both. In case
we only removed C we have ⟦A⟧F = ⟦B⟧F, in which case we replace
every occurrence of A by B and remove A from V′. Similarly, in case
we only removed B we have ⟦A⟧F = ⟦C⟧F, in which case we replace
every occurrence of A by C and remove A from V′. If we removed
both B and C, then A has also been removed. If ρ(A) = B6 (a(x)6C)
we may have removed C. If this is the case then we set ρ′(A) =
B 6 (a(x)6 ε). If ρ(A) = a(x)6 (B < x = C) we set ρ′(A) = a(x) if
⟦B⟧F = ⟦C⟧F = ε, ρ′(A) = a(x)6 (B< x) if ⟦C⟧F = ε and ⟦B⟧F ≠ ε, and
ρ′(A) = a(x)6 (x=C) if ⟦B⟧F = ε and ⟦C⟧F ≠ ε.

3. If we want to both disallow ⟦A⟧F = x and ⟦A⟧F = ε, then we can apply
the previous two transformations in succession. After the first step, we
may end up with a(x)6C and after the second step, we might have
removed C. If this is the case, we have to replace C with ε and obtain
a(x)6 ε.
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4
N AV I G AT I O N

The ability to navigate efficiently in a tree is a basic prerequisite for most
tree querying procedures. For instance, the DOM representation available
in web browsers through JavaScript provides tree navigation primitives (see,
e.g., [19]). Tree navigation has been intensively studied in the context of
succinct tree representations. Here, the goal is to represent a tree by a bit
string, whose length is asymptotically equal to the information-theoretic
lower bound. For instance, for trees with n nodes the information-theoretic
lower bound is 2n + o(n) and there exist succinct representations (e.g., the
balanced parentheses representation) that encode an ordered tree of size n
by a bit string of length 2n+ o(n). In addition there exist such encodings that
allow to navigate in the tree in constant time (and support many other tree
operations), see e.g. [42] for a survey.

Navigation of trees is also studied in [5]. The authors show that a single
navigation step in a tree t can be carried out in time O(log ∣t∣) in the top dag.
Nodes are represented by their preorder numbers, which need O(log ∣t∣)
bits. In [6] an analogous result has been shown for unranked trees that are
represented by SSLPs for the balanced parentheses representation of the tree.
This covers also TSLPs: from a TSLP T for t one can easily compute in linear
time an SSLP for the balanced parentheses representation of t. In some sense
our results for trees are orthogonal to the results of [6]:

• We can navigate, determine node labels, and check equality of subtrees
in time O(1), but our representation of tree nodes needs space O(∣T∣).

• Bille et al. [6] can navigate and execute several other tree queries (e.g.
lowest common ancestor computations) in time O(log ∣t∣), but their
node representation (preorder numbers) only need space O(log ∣t∣) ≤
O(∣T∣).

An implementation of navigation over TSLP-compressed trees is given in [40].
Their worst-case time per navigation step is O(h) where h is the height of
the TSLP. The authors demonstrate that on XML trees, full traversals take
about 5–7 longer than over succinct trees (based on an implementation by
Sadakane) while using 3–15 times less space; thus, their implementation
provides a competitive space/time trade-off.

Checking equality of subtrees is trivial for minimal DAGs, since every
subtree is uniquely represented. For so called SL grammar-compressed
DAGs (which can be seen as TSLPs with certain restrictions) it was shown
in [10] that equality of subtrees can be checked in time O(log ∣t∣) for given
preorder numbers.

In this section, we use the word RAM model, in which registers contain
integers of a certain bit length. This bit length depends on the input of the
algorithm. It takes constant time to compare two registers, add two registers,
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and so on. The space needed by the algorithm is the number of registers
written. Let G be an SSLP.

• For navigation on S we allow a bit length of O(log ∣G∣), since we only
have to store numbers of length at most ∣G∣.

• For equality checks we need a bit length ofO(log ∣⟦G⟧∣) ≤ O(∣G∣), which
is the same assumption as in [5, 6].

In the following sections we have to deal with many operations that can
fail. Instead of treating these as partial functions, we define M� ∶= M ⊎ {�}
for any set M, where � takes the role of an error value. This way, we have to
explicitly test for � or return � where appropriate, and hopefully make error
handling more visible.

4.1 navigating sslps

In [26] a data structure was presented that allows to produce the string of
an SSLP from left to right, where each step requires constant time. The data
structure itself requires linear space in the size of the SSLP. Here, we modify
this slightly so that we can move left or right through the string and print
the current character, where each step requires constant time.

Lemma 11. Let G = (V, ρ) be an SSLP. We precompute in time O(∣G∣) some data
structure P(G) of size O(∣G∣) that makes it possible to implement the following
operations in constant time, where by N(G) (which will be defined later) we denote
the set of possible states an SSLP traversal of G can be in:

◁∶V →N(G)�: Go to the first character.

▷∶V →N(G)�: Go to the last character.

st∶N (G) → V: Get the start variable.

z∶N (G) → Σ: Get the current character.

→∶N(G) → N(G)�: Go to the next character.

←∶N(G) → N(G)�: Go to the previous character.

The size of each element from N(G) is bounded by O(h(G)).

Most of the above operations can fail, which is indicated by the special
value �: ◁(A) and ▷(A) fail if ⟦A⟧G = ε, and ← and → fail if we leave the
word ⟦A⟧G. Semantically, an element X ∈ N(G) with st(X) = S is an index,
called idx(X), of ⟦S⟧G. The operations manipulate the index as follows:
◁(S) sets the index to 1, ▷(S) sets the index to ∣⟦S⟧G ∣, → increments the
index and ← decrements the index. The implementation will not actually
store idx(X) in X. Instead, we store a certain representation of a root-leaf
path of the syntax tree.

Consider a binary tree in which you want to move from one leaf to the
next. The standard algorithm for this operates on the sequence of nodes that
go from the root to the leaf, and is done in four steps:

1. As long as the current node is a right child, go to the parent node.

2. Now the current node is a left child. Go to its parent node.

3. Go to the right child.
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4. As long as the current node is not a leaf, go to the left child.

We want to implement this procedure in constant time on the syntax tree
of an SSLP G. For this, we first assume that G is in Chomsky normal form,
using Lemma 6. In addition, we want that for every A ∈ V with ρ(A) = B ○C
we have that ⟦B⟧G ≠ ε and ⟦C⟧G ≠ ε, which is easy to implement and works
in a way similar to the construction in Lemma 10. Each element from D ∈ V
with ⟦D⟧G ≠ ε therefore has a syntax tree, where the inner nodes are labelled
with elements from A ∈ V with ρ(A) = B ○C for some B, C ∈ V and the leaf
nodes are labelled with elements from A ∈ V where ρ(A) = a for some a ∈ Σ.
Using a sequence of nodes as our data structure makes it impossible to do
steps 1 and 4 in constant time, which is why we use a different data structure.

Instead of a sequence of nodes that goes from the root to a leaf, we could
use a data structure that records the labels of nodes we visit and if we went
into the left child or the right child. Formally, this is an element of (V ×
{`, r})∗ ×V. A crucial observation is that a sequence w(A1, d) . . . (An, d)w′

(so we have n steps into the same direction d ∈ {`, r}) can be compressed to
w(A1, d)w′ without losing any information: We can reobtain Ai+1 (where
1 ≤ i < n) by looking at ρ(Ai) = B ○C: If d = ` then Ai+1 = B and if d = r then
Ai+1 = C. Since a sequence of nodes that go only to the left or only to the right
now have succinct representations, steps 1 and 4 can now be implemented in
constant space. We still have to argue that they can also be implemented in
constant time. From now on, we only want to use the compressed versions
of traversals: A sequence (A1, d1) . . . (An, dn)An+1 ∈ (V ×{`, r})∗ ×V is called
valid if di ≠ di+1 for all 1 ≤ i < n. We choose

N(G) = {X ∈ (V × {`, r})∗ ×V ∣ X is valid}.

The difficulty with this data structure is to reobtain a parent node. Con-
sider an original sequence of left steps w(A1, `) . . . (An, `)A (the argument
is similar for right steps). Here, we can simply go from A to An. In the
compressed representation however, we only have w(A1, `)A. To reobtain
An, we cannot expand A1 . . . An−1 since this would require linear time. In
addition, what An is depends on both A1 and A.

Formally, let L∶V → V∗

�
be defined by L(A) = BL(B) if ρ(A) = B ○C for

some B, C ∈ V, L(A) = ε if ρ(A) = a for some a ∈ Σ, and L(A) = � if ρ(A) = ε.
Let reduce`∶V2 → V� be defined by

reduce`(A, A′) =
⎧⎪⎪⎨⎪⎪⎩

B if L(A) = wBA′w′ for some w, w′ ∈ V∗,
� otherwise.

We will have to argue that reduce` can be implemented in linear space
and constant time (it can obviously be implemented in quadratic space and
constant time using a lookup-table). This is however done after presenting
the traversal algorithm itself.

The function expand`∶V → V� retrieves the last element of L(A) or � if
L(A) = ε. It can easily be represented as an array of size ∣V∣. The operations
◁, ▷ and z are implemented as follows:

• ◁(A) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(A, `)expand`(A) if expand`(A) ≠ �,
A if expand`(A) = � and ρ(A) ≠ ε,
� if ρ(A) = ε.

• ▷ is similar to ◁ but uses r instead of `.
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• z(wA) = a where ρ(A) = a, w ∈ (V × {`, r})∗ and A ∈ V.

The operation→ is split into four functions r↖, r↗, r↘, r↙∶N (G) → N(G)�
which correspond to the four operations on the syntax tree we discussed
earlier. Let w ∈ (V × {`, r})∗ and A ∈ V. We set:

• r↖(wA) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

� if w = ε,
wA if w = w′(A′, `),
w′A′ if w = w′(A′, r).

• r↗(wA) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

� if w = ε or w = w′(A′, r),
w(A′, `)B if w = w′(A′, `) and reduce`(A′, A) = B ≠ �,
w′A′ if w = w′(A′, `) and reduce`(A′, A) = �.

• r↘(wA) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

� if ρ(A) = a ∈ Σ,
w(A, r)C if w = w′(A′, `) and ρ(A) = B ○C,
w′(A′, r)C if w = w′(A′, r) and ρ(A) = B ○C.

• r↙(wA) =
⎧⎪⎪⎨⎪⎪⎩

wA if ρ(A) = a ∈ Σ,
w(A, `)expand`(A) if ρ(A) = B ○C.

We set → = r↙ ○ r↘ ○ r↗ ○ r↖, where � is returned as soon as one of the
functions returns it. When we use →, some cases where the individual
functions return � cannot occur, for example we cannot actually have the
case r↘(wA) = � because ρ(A) = a ∈ Σ, since r↗ uses reduce` to replace the
last A ∈ V. Each of these functions can be implemented in constant time,
since they modify their arguments by adding or removing a single element
to resp. from the back. They also make use of ρ, reduce` and expand`, all
of which are implemented in constant time. The implementation of ← is
basically the mirrored version of →, where expandr and reducer are used:
Formally, let R∶V → V∗

�
be defined by R(A) = CR(C) if ρ(A) = B ○ C for

some B, C ∈ V, R(A) = ε if ρ(A) = a for some a ∈ Σ and R(A) = � if ρ(A) = ε.
Let reducer ∶V2 → V� be defined by

reducer(A, A′) =
⎧⎪⎪⎨⎪⎪⎩

B if R(A) = wBA′w′ for some w, w′ ∈ V∗,
� otherwise.

We also split ← into four functions `↖, `↗, `↘, `↙∶N (G) → N(G)� which are
all defined in a similar way to their r-counterparts.

All that is left to do is to argue that we can precompute reduce` (resp.
reducer) in linear time and such that it takes constant time to execute, which
we do as follows: Given two nodes u and v in a tree, where u is an ancestor
of v, the next link-query returns the child of u that is also an ancestor of v.
The following result is mentioned in [26]:

Proposition 2. A trie T can be represented in space O(∣T∣) such that any next
link-query can be answered in time O(1). Moreover, this representation can be
computed in time O(∣T∣) from T.

If we have two variables A and B, where B appears in L(A) somewhere,
then we want to know what the symbol left of B is. This basically corresponds
to the next link-query for the nodes B and A in a trie (suffix tree) for the
strings

L = {AL(A) ∣ A ∈ V, ρ(A) ≠ ε} ○ {$} ⊆ V∗ ○ {$},
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where the symbol $ ∉ Σ is used to give the trie a "dummy root node". This trie
has size O(∣V∣) since there are at most ∣V∣ + 1 nodes in it. Then we have that
reduce`(A, B) = C if and only if the next link-query for the nodes labelled
with A and B is the node labelled with C. Consider the following example:

Example 3. Let G = (V, ρ) be an SSLP over {a, b} with V = {A, B, C, D, E, F}
and

ρ(A) = B ○C,

ρ(B) = D ○D,

ρ(C) = D ○ E,

ρ(D) = a,

ρ(E) = b,

ρ(F) = ε.

Then we have L(A) = BD, L(B) = D, L(C) = D, L(D) = L(E) = ε, L(F) = �
and

L = {ABD, BD, CD, D, E} ○ {$}

such that the suffix tree is

$

D

B

A

C

E

So for example, we have reduce`(A, D) = B, since B is the child of D on
the path from A to D. On the other hand, reduce`(B, D) = �, since D is the
parent of B, i.e. there is no node between B and D on the path from B to D.

Since each X = (A1, d1) . . . (An, dn)An+1 ∈ N(G) represents a path into the
syntax tree of G, so n + 1 ∈ O(h(A1)), the size ∣X∣ is bounded by h(G), which
is in O(∣G∣). We can use the result from [23] to reduce h(G) to O(log ∣G∣).
This can also be applied in the following sections where we navigate TSLPs
and FSLPs using their spine (and rib) SSLPs.

4.2 navigating tslps

Theorem 2. Let T = (V, Γ, ρ) be a TSLP over (Σ, r) in normal form. We can
precompute in time O(∣T∣) some data structure P(T), and we define some data
structure N(T), such that the size of each element from N(T) is bounded by
O(h(T)), with the following operations that work in constant time:

△∶V0 →N(T): Go to a root node.

z∶N (T) → Σ: Get the character at the current node.

↑∶N(T) → N(T)�: Go to the parent node.

↓i∶N (T) → N(T)�: Go to the i’th child, where 1 ≤ i ≤ max{r(a) ∣ a ∈ Σ}.
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An element X ∈ N(T) can be thought of as describing a path into the tree
⟦T⟧, which is a sequence of natural numbers, where each one dictates into
which child we went. Again, this sequence is not actually stored in X.

To implement the navigation on T we reuse the navigation on SSLPs,
namely on the spine SSLP of T. Each spine starts with a (possibly empty)
sequence of symbols of the form a(A1, . . . , Aj−1, x, Aj+1, . . . , Ar(a)) and ends
on a symbol a. When we are on a symbol of the form

a(A1, . . . , Aj−1, x, Aj+1, . . . , Ar(a))

we can enter r(a) many different children. In case we enter the j’th child,
we move the spine traversal one to the right. In case we enter a different
child j′ (so j′ ≠ j), where 1 ≤ j′ ≤ r(a), then we start a new spine traversal
at Aj′ instead. As our navigation structure we use N(T) = N(T�)+ and
as our precomputed data structure we use P(T�), which is in O(∣T∣). The
individual operations are implemented as follows: For the root node, we set
△(A) = ◁(A). Let w ∈ N(T�)∗ and X ∈ N(T�). To go to the parent, we set:

↑(wX) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w←(X) if ←(X) ≠ �,
w if ←(X) = � and w ≠ ε,
� if ←(X) = � and w = ε.

For the current character we set z(wX) = a if z(X) = aj(A1, . . . , Ar(a)−1) or if
z(X) = a. Going to the i’th child is defined as follows:

↓i(wX) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w→(X) if z(X) = a(A1, . . . , Aj−1, x, Aj+1, . . . Ar(a))
and j = i,

w◁(Ai) if z(X) = a(A1, . . . , Aj−1, x, Aj+1, . . . Ar(a)),

j ≠ i and i ≤ r(a),
� if z(X) = a(A1, . . . , Aj−1, x, Aj+1, . . . Ar(a))

and i > r(A) or z(X) = a.

4.3 navigating fslps

Theorem 3. Let F = (V, Γ, ρ) be an FSLP in normal form. We precompute in time
O(∣F∣) some data structure P(F), and we define a set of states N(F), such that
the size of each element from N(F) is bounded by O(h(F)), with the following
operations that work in constant time:

△◁∶V0 →N(F)�: Go to the root node of the first tree of a forest.

△▷∶V0 →N(F)�: Go to the root node of the last tree of a forest.

z∶N (F) → Σ: Get the character at the current node.

↙∶N(F) → N(F)�: Go to the root node of the first child.

↘∶N(F) → N(F)�: Go to the root node of the last child.

↑∶N(F) → N(F)�: Go to the parent node.

→∶N(F) → N(F)�: Go to the root node of the right sibling.

←∶N(F) → N(F)�: Go to the root node of the left sibling.
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The idea to implement this is as follows: We are going to interleave
spine navigations with rib navigations. Each spine navigation starts with an
expression of the form ρ(A) = B6 (a(x)6C). The navigation of ⟦A⟧F starts
on ⟦B⟧F� (which can be empty). The symbols appearing in this navigation
are of the form a(x)� (L< x=R). If we reach the parameter x in ⟦B⟧F, we are
actually on ⟦a(x)6C⟧F. Rib navigations can start on the above variables L,
R and C. The symbols appearing in them are all of the form B6 (a(x)6C),
which again start spine navigations. The “current node” will always be
represented by a symbol of the form a(x)� (L< x= R) or a(x)6C. For this,
we need a slight addition to the spine SSLP, since it does not contain the
a(x)6C parts yet: Let F� = (V1, ρ�). We define F�

′ = (V′, ρ�
′) over Σ′ as

follows:

• Σ′ = Σ� ∪ {a(x)6C ∣ a ∈ Σ, C ∈ V0},

• V′ = V1 ∪ {B6 (a(x)6C) ∣ A ∈ V0, ρ(A) = B6 (a(x)6C)},

• ρ�
′(A) = ρ�(A) for all A ∈ V1 and

• ρ�
′(B6 (a(x)6C)) = B ○ (a(x)6C) for all B6 (a(x)6C) ∈ V′ ∖V1.

Therefore, the spine words we navigate on are of the form

(a1(x)� (L1 < x= R1)) . . . (an(x)� (Ln < x= Rn))(a(x)6C),

where n ≥ 0. As our precomputed data structure we will use the pair
(P(F′�), P(F⊟)) and N(F) = ({`, m, r} ×N(F⊟) ×N(F′�))+ as our navigation
structure. The first component of each element tells us from where we
entered the rib navigation: If we are coming from a symbol of the form
a(x)� (A< x= A) it is important to remember if we entered the left A or
the right A. The m-part is used for symbols of the form a(x)6C. When we
start a new navigation on the first tree of a forest, we always have to start a
rib navigation first and then navigate to the first element of the spine that
corresponds to the first tree of the rib navigation. To ease the notation, we
define a short-hand operator ◁∶{`, m, r} ×V0 →N(F)� with

◁(d, A) =
⎧⎪⎪⎨⎪⎪⎩

(d,◁(A),◁(z(◁(A)))) if ◁(A) ≠ �,
� if ◁(A) = �.

The individual operations are implemented as follows: Going to the root
of the first tree is defined as △◁(A) = ◁(m, A). Going to the root of the
last tree is similar. For the current character we set z(w(d, Y, X)) = a if
z(X) = a(x)� (L< x= R) or z(X) = a(x)6C.

Going to the first child works as follows: In case the current character is
of the form a(x)6 (L< x=R) we enter the first tree of ⟦L⟧F if it exists. If not
we enter the x on the spine and therefore have to move the spine navigation
one position to the right. This is always possible, since spines always end in
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symbols of the form a(x)6C. The other case is that the current character is
of the form a(x)6C. Here, we have to enter the first tree of ⟦C⟧F if it exists.

↙(w(d, Y, X)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(d, Y, X)◁(`, L) if z(X) = a(x)� (L< x= R)
and ◁(L) ≠ �,

w(d, Y,→(X)) if z(X) = a(x)� (L< x= R)
and ◁(L) = �,

w◁(m, C) if z(X) = a(x)6C

and ◁(C) ≠ �,
� if z(X) = a(x)6C

and ◁(C) = �.

Going to the last child works in a similar way. Instead of entering the first
tree of ⟦L⟧F in the first case, we enter the last tree of ⟦R⟧F. In the second case
we enter the last tree of ⟦C⟧F.

Going to the parent node is straightforward: We move the current spine
navigation one to the left if possible. If not, we remove the latest spine and
tree navigation.

↑(w(d, Y, X)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w(d, Y,←(X)) if ←(X) ≠ �,
w if ←(X) = � and w ≠ ε,
� if ←(X) = � and w = ε.

The most difficult case is going to the right neighbor. Whether we are at a
node of the form a(x)� (L< x= R) or a(x)6C does not matter, since we
have to look at the node above. If we can move the spine position one to the
left, say to a′(x)� (L′< x= R′), the right neighbor is the first tree of ⟦R′⟧F,
if it exists. If not, there is no right neighbor. In case we are already at the
first symbol of the spine we try to move the previous rib navigation one to
the right. If this is not possible we look at the previous spine navigation if it
exists, and then we are in any of the two situations: If the current symbol
of the previous spine navigation is of the form a(x)6C then we have no
right neighbor. If it is of the form a(x)� (L< x=R) then there are two more
cases. If we were navigating R then there is also no right neighbor. If we
were navigating L then we reach the x on the spine and move the current
spine navigation one to the right (which again is always defined).

→(w(d, Y, X)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(d, Y,←(X))◁(r, R) if ←(X) ≠ �,

z(←(X)) = a(x)� (L< x= R)
and ◁(R) ≠ �,

w(d,→(Y),◁(z(→(Y)))) if ←(X) = �
and →(Y) ≠ �,

w′(`, Y′,→(X′)) if ←(X) = �, →(Y) = �,

w = w′(`, Y′, X′)
and →(X′) ≠ �,

� if ←(X) = �, →(Y) = �,

w = w′(d, Y′, X′) and d ≠ `

or d = ` and →(X′) = �.

Going to the left neighbor is again similar.
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4.4 subtree equality check for trees

The goal of this section is to create a navigation structure with the same
operations we used previously (go to the parent or to the i’th child) and
to support the following operation in constant time: Given two navigation
structures, are the subtrees at their current positions equal? To make this
possible, we are going to allow polynomial time preprocessing in ∣T∣ instead
of linear time preprocessing. Also, like we mentioned earlier, we now allow
to compare two numbers which have a size of O(log(∣⟦T⟧∣)) bits.

Formally, u ∈ T (Σ) is a subtree of t ∈ T (Σ) if and only if there is a context
v ∈ Tx(Σ) such that v[u] = t.

Let T = (V, Γ, ρ) be a TSLP in normal form that is also reduced. Assuming
this already requires polynomial time preprocessing. Let

V′

0 = {A ∈ V0 ∣ ρ(A) = B6C, B, C ∈ V}.

We characterize subtrees of ⟦T⟧ using spine SSLPs: Let A ∈ V′

0 where ρ(A) =
B6C for some B, C ∈ V. The length of the spine of A is defined by `(A) =
∣⟦B⟧T� ∣ and the subtree produced at depth i, 1 ≤ i ≤ `(A) + 1, is defined by

A△(i) = ⟦A[i]� ⋅ ⋅ ⋅� A[`(A)]6C⟧T .

Especially, A△(1) = ⟦A⟧T and A△(`(A) + 1) = ⟦C⟧T . We introduce the
following short-hand notations: Let i, j ∈ {1, . . . , `(A)}. We write A[i ∶ j] =
⟦A⟧T�[i ∶ j], A[i ∶] = ⟦A⟧T�[i ∶], A[∶ i] = ⟦A⟧T�[∶ i] and A[i] = ⟦A⟧T�[i].

For each subtree t of ⟦A⟧T there is an index i with A△(i) = t or there is
a variable D ∈ V0 such that t is a subtree of ⟦D⟧T and ⟦D⟧T is a subtree of
⟦A⟧T . Both cases can actually overlap, which we call a nontrivial occurrence
of a subtree. In this case there is an index i ≥ 1 and a D ∈ V0 with A△(i) =
t = ⟦D⟧T . The positions 1 and `(A) + 1 are always nontrivial occurrences
since A△(1) = ⟦A⟧T and A△(`(A) + 1) = ⟦C⟧T . We are interested in the first
nontrivial occurrence below A itself, which may be `(A) + 1:

s(A) = min{i ∈ {2, . . . , `(A) + 1} ∣ D ∈ V0, A△(i) = ⟦D⟧T}.

We can now reformulate where subtrees occur as follows: For each subtree t
of ⟦A⟧T that is not ⟦A⟧T itself, there is either an index i with A△(i) = t and
2 ≤ i < s(A) or there is a variable D ∈ V0 such that t is a subtree of ⟦D⟧T and
⟦D⟧T is a subtree of ⟦A⟧T . By definition of s, all 2 ≤ i < s(A) are not equal to
any ⟦D⟧T with D ∈ V0. Let A be the variable such that A△(s(A)) = ⟦A⟧T and
let ρA = A[s(A) − 1].

Example 4. We give an example of a TSLP T = (V, Γ, ρ) that has two non
trivially equal subtrees in ⟦A⟧T and ⟦D⟧T , where A, D ∈ V. The variables for
the spine of A are:

ρ(A) = B6C,

ρ(B) = B1 � B2,

ρ(B1) = g(x, K),

ρ(B2) = B3 � B4,

ρ(B3) = f (I, x),

ρ(B4) = f (K, x).
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Figure 1: Trees of A, D, I and J of the TSLP T from Example 4. Thick lines represent
spine paths. The subtrees at the two nodes marked by circles derive equal trees.

Additionally, the variables for the spine of D are:

ρ(D) = E6 H,

ρ(E) = E1 � E2,

ρ(E1) = g(x, I),

ρ(E2) = E3 � E4,

ρ(E3) = f (x, J),

ρ(E4) = f (x, K).

Finally, the variables for the spines of I and J and some basic variables are
added:

ρ(I) = L6K,

ρ(L) = f (H, x),

ρ(J) = M6C,

ρ(M) = f (K, x),

ρ(C) = c,

ρ(K) = k,

ρ(H) = h.

The reader can check that this TSLP is reduced. See Figure 1 for a visualiza-
tion. For the spine SSLP, we have

⟦A⟧T� = g(x, K) f (I, x) f (K, x)c and

⟦D⟧T� = g(x, I) f (x, K) f (x, K)h.

The trees produced by A and D are

A△(1) = ⟦B1 � B3 � B4 6C⟧T = g⟨ f ⟨ f ⟨h, k⟩, f ⟨k, c⟩⟩, k⟩ and

D△(1) = ⟦E1 � E3 � E4 6 H⟧T = g⟨ f ⟨ f ⟨h, k⟩, f ⟨k, c⟩⟩, f ⟨h, k⟩⟩.

The equal subtrees, marked by circles in Figure 1, are

A△(2) = ⟦B3 � B4 6C⟧T

= f ⟨ f ⟨h, k⟩, f ⟨k, c⟩⟩
= ⟦E3 � E4 6 H⟧T

= D△(2).

Moreover, s(A) = 3, s(D) = 3, A = J, D = I, ρA = f (I, x), and ρD = f (x, J).
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Lemma 12. For every variable A ∈ V0 we can compute s(A), ρA and A in polyno-
mial time.

Proof. For 2 ≤ i ≤ `(A) let TA,i be a TSLP with ⟦TA,i⟧ = A△(i). Such a TSLP
can be constructed using Proposition 1: Compute an SSLP for A[i] ○ . . . ○
A[`(A) + 1] from T�, which can then be converted into an appropriate TSLP
for A△(i).

For every D ∈ V0, we now test if it is A and if so, what s(A) is. Once
s(A) is known, ρA can be easily computed from T� using Proposition 1. To
test whether there is a position i, where 2 ≤ i ≤ `(A), with A△(i) = ⟦D⟧T
can be done using binary search on the interval [2, . . . , `(A)]: For a given i
we can first compute TA,i and then use that to test if ∣A△(i)∣ is less, equal
or greater than ∣⟦D⟧T ∣. In case the binary search returns an index i such
that ∣A△(i)∣ = ∣⟦D⟧T ∣, we have to test if ⟦B6 D⟧T = A△(i), which can be
implemented using Lemma 4. If this is true, then A = D and s(A) = i.

Proposition 3. Let D, E ∈ V1, D ≠ E with

ρ(D) = fi(D1, . . . , Dn),

ρ(E) = gj(E1, . . . , Em),

and t, u ∈ T (Σ). If ⟦D⟧T[t] = ⟦E⟧T[u], then there exist A, B ∈ V0 such that
⟦A⟧T = t and ⟦B⟧T = u.

Proof. Since T is reduced, we have ⟦D⟧T[t] = ⟦E⟧T[u] if and only if f = g (and
thus m = n), i ≠ j, Dk = Ek for k ∈ {1, . . . , m} ∖ {i, j}, t = ⟦Ei⟧T and u = ⟦Dj⟧T .
Note that if i = j, then, since T is reduced, we would obtain D = E, which
contradicts the assumption.

Lemma 13. For all A, B ∈ V′

0 and all 1 ≤ i < s(A), 1 ≤ j < s(B), the following two
conditions are equivalent:

(a) A△(i) = B△(j)

(b) A[i ∶ s(A) − 2] = B[j ∶ s(B) − 2] and ⟦ρA 6 A⟧T = ⟦ρB 6 B⟧T .

Proof. We will make use of the following facts, which are easy to prove: Let
A, B ∈ V′

0 and 1 ≤ i < `(A), 1 ≤ j < `(B).

A△(s(A) − 1) = ⟦A[s(A) − 1]6 A⟧T = ⟦ρA 6 A⟧T . (1)

A△(i) = ⟦A[i]⟧T[A△(i + 1)]. (2)

If A△(i + 1) = B△(j + 1) and A[i] = B[j], then A△(i) = B△(j). (3)

If A△(i) = B△(j) and A[i] = B[j], then A△(i + 1) = B△(j + 1). (4)

To obtain a from b, note that by equation (1) ⟦ρA 6 A⟧T = ⟦ρB 6 B⟧T implies
A△(s(A) − 1) = B△(s(B) − 1). Repeated application of equation (3) implies
A△(i) = B△(j). Now assume that a holds, so A△(i) = B△(j). By induction
on i and j, we show that A[i ∶ s(A) − 2] = B[j ∶ s(B) − 2] and ⟦ρA 6 A⟧T =
⟦ρB 6 B⟧T .

• Let i = s(A) − 1. Then equation (1) becomes

A△(i) = ⟦ρA 6 A⟧T = ⟦A[s(A) − 1]6 A⟧T .

By equation (2) we have B△(j) = ⟦B[j]⟧T[B△(j + 1)]. Therefore, we
obtain

⟦A[s(A) − 1]6 A⟧T = ⟦B[j]⟧T[B△(j + 1)].
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Now there are two cases: either A[s(A) − 1] = B[j] in which case
⟦A⟧T = B△(j + 1), or A[s(A) − 1] ≠ B[j] in which case we obtain from
Proposition 3 that there is a variable in V0 that expands to B△(j + 1).
In both cases, there is a variable in V0 that expands to B△(j + 1). Since
j + 1 ≤ s(B), we must have j + 1 = s(B), B△(j + 1) = ⟦B⟧T , and ρB = B[j].
Therefore we have

A[i ∶ s(A) − 2] = ε = B[j ∶ s(B) − 2]

and ⟦ρA 6 A⟧T = ⟦ρB 6 B⟧T . The latter implies ⟦ρA 6 A′⟧T = ⟦ρB 6 B′⟧T
since T is reduced.

• The case j = s(B) − 1 is symmetric to the previous case.

• Let i < s(A) − 1 and j < s(B) − 1. We claim that A[i] = B[j]. Assume that
A[i] ≠ B[j]. From A△(i) = B△(j) we obtain

⟦A[i]⟧T[A△(i + 1)] = ⟦B[j]⟧T[B△(j + 1)]

by equation (2). Proposition 3 implies that there are variables in V0
that expand to A△(i + 1) and B△(j + 1), respectively. This contradicts
i + 1 < s(A) as well as j + 1 < s(B). Hence we have A[i] = B[j]. Because
A△(i) = B△(j) it follows from equation (4) that A△(i + 1) = B△(j + 1).
We can now conclude with induction.

To support subtree equality checks during navigation, we modify the old
navigation implementation so that we always stay above s(A). To achieve
this, we count the number of steps we went down into each spine. If we reach
s(A) we instead go into the spine of A, since ⟦A⟧T is equal to A△(s(A)). This
modification then allows us to use Lemma 13 for equality checks: Instead of
testing Point a from the Lemma, we test Point b. We will later argue why we
can implement this efficiently.

The data structure used to navigate our TSLP with support for subtree
equality checks is N(T) × (N+). In the second component, N+, we record a
sequence of numbers that tell us how deep into each of the spines we went.
The length of this sequence should be the same as the length of the first
component, so the navigation structure we will use is

N(T)′ = {(w, v) ∈ N(T) × (N+) ∣ ∣w∣ = ∣v∣}.

To implement the new operations, we basically reuse the old operations,
expect when we enter a spine split, in which case we start a new traversal. To
count the number of steps we went into each spine, we have to know when
the old operations enter a new one. This can easily be checked by comparing
the length ∣w∣ of w ∈ N(T) and the length of ↓i(w). Comparing these lengths
means comparing two O(∣T∣) bit numbers, which we use constant time for.
Keeping track of these lengths during the traversal is also easily done in
constant time and will be omitted here.

To query the start symbol of the latest spine traversal, let st∶N (T) → V0
be defined as st(X1 . . . Xn) = st(Xn) (where n ≥ 1). To go to the root of A ∈ V0
we define △(A) = (△(A), 1), reusing the old operation △. In the following
definitions let w ∈ N(T), v ∈ N∗ and j ∈ N. To go to the parent, we reuse
the old ↑-operation in the first component. In addition to that, we have to
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remove the latest spine counter in case it is 1. Alternatively, we could have
tested if ∣↑(w)∣ shrinks.

↑(w, vi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(↑(w), v) if ↑(w) ≠ � and i = 1,
(↑(w), v(i − 1)) if ↑(w) ≠ � and i > 1,
� if ↑(w) = �.

Going to the i’th child is defined as follows:

↓i(w, vj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(↓i(w), v(j + 1)) if ↓i(w) ≠ �, ∣↓i(w)∣ = ∣w∣
and s(st(w)) < j + 1,

(w◁(st(w)), vj1) if ↓i(w) ≠ �, ∣↓i(w)∣ = ∣w∣
and s(st(w)) = j + 1,

(↓i(w), vj1) if ↓i(w) ≠ � and ∣↓i(w)∣ > ∣w∣,
� if ↓i(w) = �.

In the first case, we stay on the spine, since ∣↓i(w)∣ = ∣w∣ and we are still above
the split position (meaning higher in the tree). In the second case, we arrive
at the split position. Here, the original operation stays on the traversal of the
current spine, but we instead start a new traversal that goes into the split. In
the third case the original operation starts a new spine traversal, so we do
this as well. Note that s(A) ≥ 2 for every A ∈ V0 because T is reduced. Also
note that we never go beyond spine splits.

Given two navigation structures (w, vj), (w′, v′ j′) ∈ N(T)′, the goal is now
to test if st(w)

△
(j) = st(w′)

△
(j′). Let st(w) = A and st(w′) = B. If A, B ∉ V′

0 ,
so ρ(A) = a and ρ(B) = b for some a, b ∈ Σ, we simply have to test if a = b
(which is true if and only if A = B since T is reduced). If A ∉ V′

0 and B ∈ V0 (or
vice versa) then the result is false. Now let A, B ∈ V′

0 . Instead of testing Point a
from Lemma 13, we test Point b. The first test is if ⟦ρA 6 A⟧T = ⟦ρB 6 B⟧T .
Let ρA = ai(A1, . . . , An) and ρB = bj(B1, . . . , Bm). By Proposition 3, since T is
reduced this is true if and only if a = b and

A1, . . . , Ai−1, A, Ai+1, . . . , An = B1, . . . , Bj−1, B, Bj+1, . . . , Bm.

This is a simple comparison of two strings from V∗

0 of constant length. The
second test, A [i ∶ s(A) − 2] = B [j ∶ s(B) − 2], can be reformulated as follows:
Is there a k ∈N such that i + k = s(A) − 2, j + k = s(B) − 2 and

A [−k ∶ s(A) − 2] = B [−k ∶ s(B) − 2]?

This is equivalent to testing if

• j − i = s(A) − s(B)

• and if so, do A [∶ s(A) − 2] and B [∶ s(B) − 2] have a common suffix of
at least length s(A) − 2− i (resp. s(B) − 2− j)?

Definition 38. Let Σ be an alphabet and w, v ∈ Σ∗. The length of the longest
common suffix of w and v, written as lcs(w, v), is the largest number s ∈ N
such that w [−s ∶] = v [−s ∶].

Lemma 14. Let u, w, v ∈ Σ∗.

1. If lcs(u, v) ≥ lcs(u, w) then lcs(u, w) = lcs(v, w).

2. If lcs(u, v) ≤ lcs(u, w) then lcs(v, w) = lcs(u, v).
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Figure 2: An example for storing lcs in a tree of linear size.

Proof. We only prove the first point, since the proof of the second one is
almost the same. Let lcs(u, v) ≥ lcs(u, w), so i and j are the largest num-
bers such that u [−i ∶] = v [−i ∶] and u [−j ∶] = w [−j ∶] with i ≥ j. It follows
that v [−j ∶] = u[−j ∶] = w[−j ∶] and we have to show that v [−(j + 1) ∶] ≠
w [−(j + 1) ∶] which implies that lcs(v, w) = j. In case i = j this is clear, since
v [−(j + 1) ∶] = w [−(j + 1) ∶] would imply u [−(j + 1) ∶] = v [−(j + 1)] as well as
u [−(j + 1) ∶] = w [−(j + 1)], which contradicts both u [−(j + 1)] ≠ v [−(j + 1)]
and u [−(j + 1)] ≠ w [−(j + 1)]. Now assume that i > j and that v [−(j + 1) ∶] =
w [−(j + 1) ∶]. We have u [−(j + 1) ∶] = v [−(j + 1)], since lcs(u, v) is at least one
longer than lcs(u, w). Therefore, we obtain that u [−(j + 1)] = w [−(j + 1)].
This is a contradiction, since u [−(j + 1)] ≠ w [−(j + 1)].

The longest common suffix of the spines of two variables is defined as
lcs∶V′

0 ×V′

0 →N with

lcs(A, B) = lcs(A [∶ s(A) − 2] , B [∶ s(B) − 2]).

We can precompute lcs(A, B) for all A, B ∈ V′

0 , using Proposition 1, which
takes polynomial time. The difficult part is to store these ∣V′

0 ∣2 pairs in space
O(∣V′

0 ∣). To achieve this, we construct a tree of size Θ(∣V′

0 ∣) with the following
properties:

• Leaf nodes are labelled with elements from V′

0 . Each A ∈ V′

0 is mapped
to a unique leaf node, which for simplicity we will also call A.

• Inner nodes are labelled with numbers from N. With lca(x, y) we
denote the lowest common ancestor of two nodes x, y, and with `(x)
the label of node x. Then for every A, B ∈ V′

0 it will hold that

`(lca(A, B)) = lcs(A, B).

See Figure 2 for an illustration. The construction of the tree works as follows:
Let V′

0 = {A1, . . . , Am}. If m = 0 then the resulting tree is empty. Let m ≠ 0.
We start with a tree that has a root node labelled with 0, which has a single
child node labelled with A1. We now iterate over V0 from i = 2 to m and do
the following:

• Assume that we have already constructed the tree for {A1, . . . , Ai−1}.

• Take an A ∈ {A1, . . . , Ai−1} such that

lcs(A, Ai) = max{lcs(Ai, Aj) ∣ 1 ≤ j < i}.

Since we have i ≥ 2, this is well-defined.
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• Let X be the leaf-node labelled with A.

• As long as the parent of X is labelled with a number that is greater
than lcs(A, Ai), set X to the parent of X. Now the parent node P of X
is labelled with a number n ≤ lcs(A, Ai). This node exists since the root
node is labelled with 0.

• In case n = lcs(A, Ai), add a new child node labelled with Ai to P.

• In case n < lcs(A, Ai), remove X as child node from P. Add a new node
Y to P labelled with lcs(A, Ai). Add X and a new node labelled with
Ai as children to Y.

For each element from V′

0 we add at most two nodes. Every internal node
is labelled with a log(∣⟦T⟧∣)-bit number. Hence, on the word RAM model we
can store the tree in space O(∣T∣). Finally, we obtain lcs(A, B) for A, B ∈ V0 by
computing the lowest common ancestor of the two leaf nodes labelled with
A and B. Using a data structure for computing lowest common ancestors in
time O(1) [3, 45] we obtain an O(1)-time implementation of subtree equality
checking.

We now prove that the constructing of the tree is correct. For nodes X
and Y we use lca(X, Y) to denote the lowest common ancestor of X and Y.
We also use `(X) to denote the label of node X. We need to show that in
the i’th step of the algorithm it holds for every A ≠ B ∈ {A1, . . . , Ai} that
`(lca(A, B)) = lcs(A, B). For i = 1 this is clear. Let i > 1. In the first case,
we found a node labelled with lcs(A, Ai) and added Ai to its children. In
the second case, we inserted a new node labelled with lcs(A, Ai) and added
Ai to its children. In both cases, we must show that the alterations made
to the tree do not change `(lca(B, C)) for all B, C ∈ {A1, . . . , Ai−1} and that
`(lca(B, Ai)) = lcs(B, Ai) for all B ∈ {A1, . . . , Ai−1}. The only alterations to
existing nodes that we make is in the last case in which we remove X as the
child of P, add a new node Y, make it the child of P and add X as the child
of Y. This does not change lca for any already existing nodes. To show that
lca for the new variable is correct, we distinguish two cases:

• Let lca(lca(A, B), Ai) = lca(A, Ai) = lca(B, Ai). Since we can assume
that `(lca(A, B)) = lcs(A, B), it must be that lcs(A, Ai) ≤ lcs(A, B),
otherwise we would have stopped below lca(A, B). From Point 1 of
Lemma 14 we obtain that lcs(A, Ai) = lcs(B, Ai). Altogether, we obtain

`(lca(B, Ai))) = `(lca(A, Ai)) = lcs(A, Ai) = lcs(B, Ai).

• Let lca(lca(A, Ai), B) = lca(A, B) = lca(Ai, B). Because A has the
longest common suffix with Ai, we know that lcs(A, Ai) ≥ lcs(Ai, B).
From Point 2 of Lemma 14 we obtain that lcs(A, B) = lcs(Ai, B) and
therefore

`(lca(Ai, B)) = `(lca(A, B)) = lcs(A, B) = lcs(Ai, B).

4.5 subtree equality check for forests

The construction for subtree equality checking in FSLPs will work similarly
to the one for TSLPs. Again, we allow polynomial time preprocessing in ∣F∣
and we allow to compare two numbers of O(log(∣⟦F⟧∣)) bits.

The first difference to the construction for TSLPs is the following: Re-
member that for TSLPs we defined spine splits for A ∈ V′

0 as the highest
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index i ≥ 2 such that A△(i) = D for some D ∈ V. Since ρ(A) = B6C for some
B, C ∈ V0, this position is always well-defined because A△(`(A) + 1) = ⟦C⟧T .
In case of FSLPs, this is slightly different: The spines start with variables
of the form B6 (a(x)6C), but we do not necessarily have a variable that
produces ⟦a(x)6C⟧F. We can however add one easily. Let F = (V, Γ, ρ) be an
FSLP in normal form that is reduced. We add a new variable E with ρ(E) = x
and for every A ∈ V with ρ(A) = B6 (a(x)6C) we add a new variable A�

with ρ(A�) = E 6 (a(x)6 C), but only if there is no variable B ∈ V with
⟦B⟧F = ⟦a(x)6C⟧F already. This preprocessing can be implemented in poly-
nomial time. The resulting FSLP, which we still call F, is in normal form and
reduced. The next part that works differently from TSLPs is Proposition 3,
which we will reformulate:

Proposition 4. Let D, D′ ∈ V1, D ≠ D′ with

ρ(D) = a(L< x= R),

ρ(D′) = a′(L′< x= R′),

and t, u ∈ T (Σ). If ⟦D⟧T[t] = ⟦D′⟧T[u], then there exist A, B ∈ V0 such that
⟦A⟧F = t and ⟦B⟧F = u.

Proof. Recall the definition of the rib SLP. Let ⟦L⊟⟧ = α1 . . . α`, ⟦R⊟⟧ = β1 . . . βr,
⟦L′

⊟
⟧ = α′1 . . . α′`′ and ⟦R′

⊟
⟧ = β′1 . . . β′r′ . Therefore, we must have variables

{L1, . . . , L`, R1, . . . , Rr, L′1, . . . , L′`′ , R′1, . . . , R′r′} ⊆ V0

with ρ(Li) = αi for every 1 ≤ i ≤ `, ρ(Ri) = βi for every 1 ≤ i ≤ r, ρ(L′i) = α′i for
every 1 ≤ i ≤ `′ and ρ(R′i) = β′i for every 1 ≤ i ≤ r′. Since ⟦D⟧T[t] = ⟦D′⟧T[u],
we have a = a′ and

⟦L1 ⊟ ⋅ ⋅ ⋅ ⊟ L`⟧Ft⟦R1 ⊟ ⋅ ⋅ ⋅ ⊟ Rr⟧F = ⟦L′1 ⊟ ⋅ ⋅ ⋅ ⊟ L′`′⟧Fu⟦R′1 ⊟ ⋅ ⋅ ⋅ ⊟ R′r′⟧F.

Since F is reduced, we must have ` ≠ `′ (and also r ≠ r′). Otherwise, Li = L′i
for all 1 ≤ i ≤ ` and Ri = R′i for all 1 ≤ i ≤ r, so L = L′, R = R′ and therefore
D = D′ which contradicts that D ≠ D′. Assume that ` < `′. Then we must
have t = ⟦L`+1⟧F and u = ⟦R′`′−(`+1)⟧F. The case in which ` > `′ is similar.

Similar to TSLPs we define V′

0 as

V′

0 = {A ∈ V0 ∣ ρ(A) = B6 (a(x)6C), a ∈ Σ, B, C ∈ V}.

Let A ∈ V′

0 and ρ(A) = B6 (a(x)6C). We define `(A) = ∣⟦A⟧F� ∣ as the length
of the spine, which is 0 in case ⟦B⟧F = x. The i’th element of the spine is
again defined as A[i] = ⟦A⟧F�[i], where 1 ≤ i ≤ `(A). The subtree produced
by the spine path of A at depth i, 1 ≤ i ≤ `(A) + 1, is defined by

A△(i) = ⟦A[i]� ⋅ ⋅ ⋅� A[`(A)]6 (a(x)6C)⟧F.

Especially, A△(1) = ⟦A⟧F and A△(`(A) + 1) = ⟦a(x)6C⟧F. The spine split is
defined in the same way like it was for TSLPs:

s(A) = min{i ∈ {2, . . . , `(A) + 1} ∣ D ∈ V0, A△(i) = ⟦D⟧F}.

Also let ρA = A[s(A) − 1] and A = D if and only if ⟦D⟧F = A△(s(A)) for
D ∈ V0. This is always well-defined since we made sure that there is a
variable that produces ⟦a(x)6C⟧F and because F is reduced. Lemma 13 can
be directly translated to FSLPs:
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Lemma 15. For all A, B ∈ V′

0 and all 1 ≤ i < s(A), 1 ≤ j < s(B), the following two
conditions are equivalent:

(a) A△(i) = B△(j)

(b) A[i ∶ s(A) − 2] = B[j ∶ s(B) − 2] and ⟦ρA 6 A⟧F = ⟦ρB 6 B⟧F.

The proof of this lemma is similar to the one for TSLPs. Again, we would
like to use this lemma for equality testing. However, testing the second
condition cannot be done in constant time directly: Let ρA = a(x)� (LA < x=
RA) and ρB = b(x)� (LB < x= RB). We have to test if a = b (which is again
easy) but also if

⟦LA⟧F⊟A⟦RA⟧F⊟ = ⟦LB⟧F⊟B⟦RB⟧F⊟ ,

which is a comparison of two strings of exponential length. These compar-
isons can be implemented using equality checking on SSLPs using Lemma 1

and we can carry all of them out in polynomial time. Let R ⊆ V′

0 ×V′

0 be
the relation such that (A, B) ∈ R if and only if the previous statement is
true. Notice that R is an equivalence relation, and therefore we can store
it in linear space as follows: For each A we compute its equivalence class,
assign each equivalence class a unique number and save an array of size ∣V′

0 ∣
that maps each variable to its equivalence class. This way, for two variables
A, B ∈ V′

0 we can quickly check if they belong to the same equivalence class.
Next, we need a new navigation structure. The idea is again to record for

every spine traversal how deep into the spine we went. We also start a new
spine traversal in case the spine split is reached. For trees, this required a
rather simple change, since the navigation structure was a sequence of spine
traversals. In case of forests, this is slightly different. Consider the following
example: Let our current traversal be w(d, Y, X)(`, Y′, X′), where the current
character of X is a(x)� (L< x= R) and the traversal Y′ is on the last tree
of ⟦L⟧F. If we now use →, we end up on the parameter x, which means we
have to remove (`, Y′, X′) and move one to the right on X. Suppose that this
is the spine split position, so there is A ∈ V0 that evaluates to the tree we
want to navigate to. Instead of moving X one to the right, we start a new
rib traversal on A using m as the direction, so we obtain w(d, Y, X)◁(m, A).
The navigation structure is N(F)′ = {(w, v) ∈ N(F) × (N+) ∣ ∣w∣ = ∣v∣}.

The operations are implemented as follows: To query the start symbol of
the latest spine traversal, let st∶N (F) → V0 be defined as

st((d1, Y1, X1) . . . (dn, Yn, Xn)) = st(Xn),

where n ≥ 1. Going to the first tree works similar to △ from the tree
navigation:

◁(A) =
⎧⎪⎪⎨⎪⎪⎩

(◁(A), 1) if ◁(A) ≠ �,
� if ◁(A) = �.

Going to the last tree is defined in an analogous way. Going to the parent
also works similarly to ↑ from the tree navigation:

↑(w, vi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(↑(w), v) if ↑(w) ≠ � and i = 1,
(↑(w), v(i − 1)) if ↑(w) ≠ � and i > 1,
� if ↑(w) = �.
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Going to the first child works similarly to ↓i from the tree navigation: In case
we reach the spine split we start a new navigation. Otherwise, we simply
follow along the original navigation.

↙(w, vj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(w◁(m, st(w)), vj1) if ↙(w) ≠ �, ∣↙(w)∣ = ∣w∣
and s(st(w)) = j + 1,

(↙(w), v(j + 1)) if ↙(w) ≠ �, ∣↙(w)∣ = ∣w∣
and s(st(w)) ≠ j + 1,

(↙(w), vj1) if ↙(w) ≠ � and ∣↙(w)∣ = ∣w∣ + 1,
� if ↙(w) = �.

Going to the last child is similar. When going to the right neighbor (going to
the left neighbor is again similar), we have three cases to consider:

• The length of the original navigation stays the same. In this case we left
a spine navigation and entered a new one, so we remove the previous
index and add a new index of 1.

• The length of original navigation increases by one, in which case we
moved the old spine navigation one to the left and added a new spine
navigation. We therefore have to decrease the previous index by one
and add a new index of 1.

• The length of the original navigation decreases by one, which means
that we increase the spine index of the previous navigation, so we may
reach its split position. If that is not the case, we simply increase the
index of the previous spine navigation by 1. If we reach the spine split,
we have to remove the last part of the current navigation and leave the
previous spine navigation as it is.

→(w, vj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(→(w), v1) if →(w) ≠ � and ∣→(w)∣ = ∣w∣,
(→(w), v(j − 1)1) if →(w) ≠ � and ∣→(w)∣ = ∣w∣ + 1,
(→(w), v′(j′ + 1)) if →(w) ≠ �, ∣→(w)∣ = ∣w∣ − 1,

w = w′(d′, Y′, X′), v = v′ j′

and s(st(w′)) ≠ (j′ + 1),
(w′◁(m, st(w′)), v′1) if →(w) ≠ �, ∣→(w)∣ = ∣w∣ − 1,

w = w′(d′, Y′, X′), v = v′ j′

and s(st(w′)) = (j′ + 1),
� if →(w) = �.
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5
R E L AT I V E S U C C I N C T N E S S

In this section we study the relative succinctness of FSLPs, top dags and fcns
encodings. It turns out that up to multiplicative factors of size ∣Σ∣ (number
of node labels) all three formalisms are equally succinct. Moreover, the
transformations between the formalisms can be computed in linear time.
This allows us to transfer algorithmic results for FSLPs to top dags and
TSLPs for fcns encodings, and vice versa. We take a look at the following
two formalisms:

• The fcns (first child - next sibling) algebra. Instead of arbitrary horizon-
tal concatenation f ⊟ g, it is only allowed to prepend a single tree in
the form of (a(x)6 f ) ⊟ g. The fcns encoding is similar to the head-tail
representation used for list expressions and has the advantage of giving
horizontal concatenation a unique representation.

• The cluster algebra. Cluster expressions are similar to forest expres-
sions, but they do start with a single edge a(x)6 b, or with a single
edge with a context at the bottom a(x)� b(x). Instead of directly con-
catenating or replacing x, the nodes next to each other are “merged”,
which is similar to saying that ⟦(a(x)6 b) ⊟ (a(x)6 c)⟧ = a⟨bc⟩.

We will introduce new signatures for fcns encodings and clusters to distin-
guish them from forest expressions.

Definition 39 (fcns expressions). Let Σ be an alphabet, let Σfcns = Σ⊎{�} and
let rfcns∶Σfcns →N with rfcns(a) = 2 for every a ∈ Σ and rfcns(�) = 0. The fcns
signature is Sfcns(Σ) = ST (Σfcns, rfcns), i.e. the tree signature over the ranked
alphabet (Σfcns, rfcns). A TSLP for fcns expressions over Σfcns is called an
fcns-SLP over Σ.

Definition 40 (fcns of trees). Let Σ be an alphabet. The function fcns∶ F(Σ) →
T (Σfcns, rfcns) is defined as follows:

• fcns(ε) = �,

• fcns(a⟨ f ⟩ f ′) = a⟨ f , f ′⟩, where f , f ′ ∈ F(Σ) and a ∈ Σ.

Its inverse, fcns−1∶ T (Σfcns, rfcns) → F(Σ), is

• fcns−1(�) = ε,

• fcns−1(a⟨t1, t2⟩) = a⟨fcns−1(t1)⟩ fcns−1(t2).

Top dags were introduced by Bille et al. [5] as a formalism for the com-
pression of trees. Roughly speaking, the top dag for such a tree t is the DAG
representation of an expression that evaluates to t, where the expression
builds t from edges using two merge operations (horizontal and vertical
merge). Since we have an algebraic setting, we introduce a new signature for
clusters.
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Definition 41 (Cluster expressions). Let Σ be an alphabet. Define

type
C,Σ = {Ca ∣ a ∈ Σ} ∪ {Ca

b ∣ a, b ∈ Σ}.

The cluster signature SC(Σ) over Σ is given by the following operations:

• (a
b) ∶ C

a for every a, b ∈ Σ,

• (a
b) ∶ C

a
b for every a, b ∈ Σ,

• �a a∶ Ca × Ca → Ca for every a ∈ Σ,

• �a a
b ∶ Ca

b × C
a → Ca

b for every a, b ∈ Σ,

• �a a
b∶ C

a × Ca
b → C

a
b for every a, b ∈ Σ,

• �a b
b ∶ Ca

b × C
b → Ca for every a, b ∈ Σ,

• �a b
b c ∶ C

a
b × C

b
c → Ca

c for every a, b, c ∈ Σ.

We write EC(Σ) = E(SC(Σ)). A DAG (V, Γ, ρ, S) for cluster expressions is
called a top dag. We require that Γ(S) = Ca for some a ∈ Σ. Expressions of
the form (a

b) and (a
b), where a, b ∈ Σ, are also called atomic clusters. Cluster

expressions are sometimes also called top trees.

Clusters themselves are special types of trees. A regular cluster is a tree
that consists of at least two nodes. The most primitive clusters are therefore
of the form a⟨b⟩ for a, b ∈ Σ. Clusters with a bottom-boundary node are trees
with a parameter that also consist of at least two nodes. In addition, the
parameter must not have any siblings. The most primitive clusters with a
bottom-boundary node are of the form a⟨b⟨x⟩⟩ with a, b ∈ Σ. We define this
as follows:

Definition 42 (Clusters). The top node of a tree △∶T (Σ) ∪ Tx(Σ) → Σ is
defined by △(a⟨ f ⟩) = a, where f ∈ F(Σ) ∪ Fx(Σ). The clusters with top-
boundary node a ∈ Σ are

Ca(Σ) = {t ∈ T (Σ) ∣ △(t) = a} ∖ {a⟨⟩ ∣ a ∈ Σ}.

Let ▽∶Tx(Σ)∖{x} → Σ return the label above x. The clusters with top-boundary
node a ∈ Σ and bottom-boundary node b ∈ Σ are

Ca
b(Σ) = {t ∈ T (Σ) ∣ △(t) = a ∧▽(t) = b ∧∃t′ ∈ Tx(Σ).t = t′[b⟨x⟩]}

∖ {c⟨x⟩} ∣ c ∈ Σ}.

The clusters of rank 0 are C(Σ) = ⋃{Ca(Σ) ∣ a ∈ Σ} and the clusters of rank 1 are
Cx(Σ) = ⋃{Ca

b(Σ) ∣ a, b ∈ Σ}.

The definition of Ca
b(Σ) is rather technical but can be explained as follows:

Since we ensure that every element of Ca
b(Σ) has a subtree of the form b⟨x⟩,

we make sure that x has no siblings. By further ensuring that a⟨x⟩ itself is
not included in Ca

a(Σ), we have that elements from Ca
a(Σ) must be at least of

the form a⟨a⟨x⟩⟩, since a⟨ f1x f2⟩ ∉ Ca
a(Σ) if f1 ≠ ε or f2 ≠ ε.

Definition 43 (Standard cluster algebra). Let τC ∶ C(Σ) ∪ Cx(Σ) → type
C,Σ be

defined by

τC(t) =
⎧⎪⎪⎨⎪⎪⎩

Ca if t ∈ Ca(Σ),
Ca

b if t ∈ Ca
b(Σ).

42



The standard cluster algebra AC,Σ = ((C(Σ) ∪ Cx(Σ), τC),IC) over Σ evaluates
cluster expressions to clusters, where the following functions (which get
the same name as the operators in the signature) are used to define IC : Let
a, b, c ∈ Σ. We define

• �a a∶ Ca(Σ) × Ca(Σ) → Ca(Σ) with �a a (a⟨ f ⟩, a⟨ f ′⟩) = a⟨ f f ′⟩,

• �a a
b ∶ Ca

b(Σ) × Ca(Σ) → Ca
b(Σ) with �a a

b (a⟨ f ⟩, a⟨ f ′⟩) = a⟨ f f ′⟩,

• �a a
b∶ C

a(Σ) × Ca
b(Σ) → Ca

b(Σ) with �a a
b (a⟨ f ⟩, a⟨ f ′⟩) = a⟨ f f ′⟩,

• �a b
b ∶ Ca

b(Σ) × Cb(Σ) → Ca(Σ) with �a b
b (a⟨ f ⟩, b⟨ f ′⟩) = a⟨ f ⟩[ f ′],

• �a b
b c ∶ C

a
b(Σ) × Cb

c (Σ) → Ca
c (Σ) with �a b

b c (a⟨ f ⟩, b⟨ f ′⟩) = a⟨ f ⟩[ f ′].

The evaluation is defined as follows:

• IC((a
b)) = a⟨b⟩,

• IC((a
b)) = a⟨b⟨x⟩⟩,

• IC( �a a)(t, t′) = �a a (t, t′),

• IC( �a a
b )(t, t′) = �a a

b (t, t′),

• IC( �a a
b)(t, t′) = �a a

b (t, t′),

• IC( �a b
b )(t, t′) = �a b

b (t, t′),

• IC( �a b
b c)(t, t′) = �a b

b c (t, t′).

5.1 comparison with top dags

Proposition 5. For a given top dag D = (V, Γ, ρ, S) one can compute in linear time
an FSLP F such that ⟦F⟧ = ⟦D⟧ and ∣F∣ ∈ O(∣D∣).

Proof. Let ⊓∶ C(Σ) → F(Σ) be the function that removes the top node of
a cluster, i.e. ⊓(a⟨ f ⟩) = f . We translate every cluster expression using
φ∶ E(SC(Σ), Γ) → E(SF(Σ), Γ) such that ⟦⟧F ○ φ = ⊓ ○ ⟦⟧D. The fact that φ has
this property can be easily verified. The individual cases for φ are as follows:

• φ(A) = A for A ∈ V,

• φ((a
b)) = b(x)6 ε,

• φ((a
b)) = b(x),

• φ(t �a a t′) = φ(t) ⊟ φ(t′),

• φ(t �a a
b t′) = φ(t)= φ(t′),

• φ(t �a a
b t′) = φ(t)< φ(t′),

• φ(t �a b
b t′) = φ(t)6 φ(t′),

• φ(t �a b
b c t′) = φ(t)� φ(t′).
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To define the typing of our FSLP, let τ∶ type
C,Σ → type

F
with τ(Ca) = F and

τ(Ca
b) = Fx, where a, b ∈ Σ. We define F = (V ⊎ {S′}, Γ′, ρ′, S′) with Γ′(A) =

τ(Γ(A)) for all A ∈ V and Γ′(S′) = F . To define ρ′ we set ρ′(A) = φ(ρ(A))
for every A ∈ V. Let D̂ = △(⟦D⟧). We set ρ′(S′) = D̂(x)6 S. This yields

⟦F⟧ = ⟦S′⟧F = ⟦D̂(x)6 S⟧F = D̂⟨⟦S⟧F⟩ = D̂⟨⊓(⟦S⟧D)⟩ = ⟦S⟧D = ⟦D⟧.

Proposition 6. For a given FSLP F with ⟦F⟧ ∈ C(Σ) one can compute in time
O(∣Σ∣ ⋅ ∣F∣) a top dag D such that ⟦D⟧ = ⟦F⟧ and ∣D∣ ∈ O(∣Σ∣ ⋅ ∣F∣).

Proof. Let F = (V, Γ, ρ, S) be an FSLP with ⟦F⟧ ∈ C(Σ). We use Lemma 10 and
assume that F is in normal form such that for all A ∈ V we have ⟦A⟧F ≠ x and
⟦A⟧F ≠ ε. Every A ∈ V that is not of the form ρ(A) = B⊟C produces a tree,
i.e. ⟦A⟧F ∈ T (Σ) ∪ Tx(Σ). Hence, for these A we can define Â = △(⟦A⟧F) ∈ Σ,
which is the label of the root node of the tree (context) ⟦A⟧F. Let

U0 = {A ∈ V ∣ ⟦A⟧F ∈ T (Σ), ρ(A) ≠ a(x)6 ε, a ∈ Σ}.

We define a top dag D = (V′, Γ′, ρ′, S) with

V′

0 = U0 ⊎ {Aa ∣ A ∈ V0, a ∈ Σ},

V′

1 = {Ab ∣ A ∈ V1, b ∈ Σ},

and where Γ′ is defined as

• Γ′(A) = C Â for all A ∈ U0,

• Γ′(Aa) = Ca for all Aa ∈ V′

0 ,

• Γ′(Ab) = C Â
b for all Ab ∈ V′

1 , b ∈ Σ.

We will define the right-hand side mapping ρ′ of D such that the following
identities hold:

1. ⟦A⟧D = ⟦A⟧F for every A ∈ U0,

2. ⟦Aa⟧D = a⟨⟦A⟧F⟩ for every A ∈ V0,

3. ⟦Ab⟧D = ⟦A⟧F[b⟨x⟩] for every A ∈ V1.

In order to obtain these identities, we define ρ′ as follows:

• If ρ(A) = b(x)6 ε for A ∈ V0 then ρ′(Aa) = (a
b).

• If ρ(A) = a(x) for A ∈ V1 then ρ′(Ab) = (a
b).

• If ρ(A) = B⊟C for A, B, C ∈ V0 then ρ′(Aa) = Ba �a a Ca.

• If A ∈ U0 then ρ′(Aa) = (a
Â
) �a Â

Â
A.

• If ρ(A) = a(x)6 B (hence A ∈ U0) then ρ′(A) = Ba.

• If ρ(A) = B6 (a(x)6C), A ∈ U0, C ∈ V0 and B ∈ V1, then

ρ′(A) = Ba �B̂ a
a Ca.

• If ρ(A) = B6 (a(x)6 ε), a ∈ Σ and C ∈ V1 (so A ∈ U0) then ρ′(A) = Ba.
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• If ρ(A) = B�C for A, B, C ∈ V1 then ρ′(Ab) = BĈ �B̂ Ĉ
Ĉ b

Cb.

• If ρ(A) = a(x)� (B< x=C) for A ∈ V1, B, C ∈ V0 then

ρ′(Ab) = Ba �a a ((a
b) �a a Ca) .

• If ρ(A) = a(x)� (B< x) for A ∈ V1, B ∈ V0 then ρ′(Ab) = Ba �a a (a
b).

• If ρ(A) = a(x)� (x=C) for A ∈ V1, C ∈ V0 then ρ′(Ab) = (a
b) �a a Ca.

The correctness of this construction follows by induction, using 1–3. To
conclude the proof, note that since ⟦F⟧ ∈ C(Σ), the start symbol S of F must
belong to U0. Hence, the above point 1 implies ⟦D⟧ = ⟦F⟧.

The following example shows that the size bound in Proposition 6 is
sharp:

Example 5. Let Σ = {a, a1, . . . , aσ} and let tn = a⟨a1⟨am⟩⋯aσ⟨am⟩⟩ where n ≥ 1
and m = 2n. For every n > σ the tree tn can be produced by an FSLP of size
O(n): using n = log2 m many variables we can produce the forest am and then
O(n) many additional variables suffice to produce tn. On the other hand,
every top dag for tn has size Ω(σ ⋅ n): consider a top tree e that evaluates
to tn. Then e must contain a subexpression ei that evaluates to the subtree
ai⟨am⟩ (1 ≤ i ≤ σ) of tn. The subexpression ei has to produce ai⟨am⟩ using the
�ai ai -operation from copies of ai⟨a⟩. Hence, the expression for ai⟨am⟩ has size

n = log2 m and different ei contain no identical subexpressions. Therefore
every top dag for tn has size at least σ ⋅ n.

5.2 comparison with fcns

In contrast to top dags, FSLPs and TSLPs for fcns encodings turn out to be
equally succinct up to constant factors. First, we show that we can convert
an FSLP for a ranked tree into a TSLP. Let (Σ, r) with r∶Σ →N be a ranked
alphabet. The partial function trr ∶ F(Σ) → T (Σ, r) converts a forest into a
ranked tree if in every node the number of children satisfies r, i.e.

trr(a⟨t1 . . . tn⟩) = a⟨trr(t1), . . . , trr(tn)⟩

if n = r(a), where t1, . . . , tn ∈ T (Σ), and trr(t1), . . . , trr(tn) are also defined.

Lemma 16. Given an FSLP F with trr(⟦F⟧) ∈ T (Σ, r) we can in linear time
produce a TSLP T with ⟦T⟧ = trr(⟦F⟧) and ∣T∣ ∈ O(∣F∣).

Proof. Let F = (V, Γ, ρ, S) be an FSLP in normal form. The TSLP is T =
(V′, Γ′, ρ′, S) with

V′ = {A ∈ V1 ∣ ⟦A⟧F ≠ x} ∪ {A ∈ V0 ∣ ⟦A⟧F ∈ T (Σ)}
∪ {A′ ∣ A ∈ V, ρ(A) = B6 (a(x)6C), a ∈ Σ, B, C ∈ V}.

Let τ∶ type
F
→ type

T
with τ(F) = T and τ(Fx) = Tx. We set Γ′(A) =

τ(Γ(A)) for all A ∈ V and Γ′(A) = T for all A ∈ V′ ∖V. We translate the
individual cases as follows:

• In case ρ(A) = ε or ρ(A) = x then A ∉ V′.

• In case ρ(A) = B ⊟ C then ρ′(A) = ρ(B) if ⟦C⟧F = ε and ⟦B⟧F ≠ ε,
ρ′(A) = ρ(C) if ⟦B⟧F = ε and ⟦C⟧F ≠ ε. If ⟦A⟧F = ε or ⟦A⟧F ∉ T (Σ) then
A ∉ V′.
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• In case ρ(A) = B � C then ρ′(A) = ρ(B) if ⟦C⟧F = x and ⟦B⟧F ≠ x,
ρ′(A) = ρ(C) if ⟦B⟧F = x and ⟦C⟧F ≠ x. If ⟦A⟧F = x then A ∉ V′.

• In case ρ(A) = a(x)� (L< x = R) let ⟦L⟧F⊟ = β1 . . . βi−1 and ⟦R⟧F⊟ =
βi . . . βr(a)−1 for some 1 ≤ i < r(a) and β j ∈ E(SF(Σ), Γ) for 1 ≤ j < r(a).
By the definition of F⊟ we must have variables B1, . . . , Br(a)−1 ∈ V with
⟦Bj⟧F = ⟦β j⟧F for all 1 ≤ j < r(a). Since for all 1 ≤ j < r(a) we have
⟦Bj⟧F ∈ T (Σ), we can set ρ(A) = ai(B1, . . . , Br(a)−1).

• In case ρ(A) = B6 (a(x)6C) let ⟦C⟧F⊟ = C1 . . . , Cr(a). In case r(a) >
0 we set ρ′(A′) = a(x, C2, . . . , Cr(a)−1)6 C1. In case r(a) = 0 we set
ρ′(A′) = a. Additionally, we set ρ(A) = B6 A′ if B ∈ V′, and ρ(A) =
ρ(A′) otherwise.

Proposition 7. Let T be an fcns-SLP over Σ. We can transform T into an FSLP F
with ∣F∣ ∈ O(∣T∣) such that ⟦T⟧ = fcns(⟦F⟧).

Proof. Let T = (V, Γ, ρ, S). By Lemma 6, we may assume that T is in normal
form. Since every a ∈ Σ has rank 2, the possible cases for ρ are

• ρ(A) = �,

• ρ(A) = a(B, x),

• ρ(A) = a(x, B),

• ρ(A) = B6C,

• ρ(A) = B�C.

Let F = (V, Γ′, ρ′, S) with Γ′(A) = F if Γ(A) = T and Γ′(A) = Fx if Γ(A) = Tx.
We can easily define ρ′ by translating right-hand sides of the above forms
into right-hand sides for fcns−1:

• ρ(A) = � becomes ρ′(A) = ε.

• ρ(A) = a(B, x) becomes ρ′(A) = (a(x)6 B)< x.

• ρ(A) = a(x, B) becomes ρ′(A) = (a(x)� x)= B.

• ρ(A) = B6C and ρ′(A) = B�C stay the same.

For the correctness of the construction, we have to show that fcns(⟦F⟧) = ⟦T⟧.
In order to do this, we show the following properties:

• fcns(⟦A⟧F) = ⟦A⟧T for all A ∈ V0,

• fcns(⟦A⟧F[ f ]) = ⟦A⟧T[fcns( f )] for all A ∈ V1, f ∈ F(Σ).

These are shown using a simple induction and case analysis:

• ρ(A) = �: fcns(⟦A⟧F) = fcns(ε) = � = ⟦A⟧T .

• ρ(A) = a(B, C): We obtain (“ind” refers to induction on B and C)

fcns(⟦A⟧F) = fcns(⟦(a(x)6 B) ⊟C⟧F)
= fcns(a⟨⟦B⟧F⟩⟦C⟧F)
= a⟨fcns(⟦B⟧F), fcns(⟦C⟧F)⟩
ind= a⟨⟦B⟧T , ⟦C⟧T⟩
= ⟦A⟧T .
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• ρ(A) = a(B, x): We obtain

fcns(⟦A⟧F[ f ]) = fcns(⟦(a(x)6 B)< x⟧F[ f ])
= fcns(a⟨⟦B⟧F⟩ f )
= a⟨fcns(⟦B⟧F), fcns( f )⟩
ind= a⟨⟦B⟧T , fcns( f )⟩
= ⟦a(B, x)⟧T[fcns( f )]
= ⟦A⟧T[fcns( f )].

• ρ(A) = a(x, B): We obtain

fcns(⟦A⟧F[ f ]) = fcns(⟦(a(x)� x)= B⟧F[ f ])
= fcns(a⟨ f ⟩⟦B⟧F)
= a⟨fcns( f ), fcns(⟦B⟧F)⟩
ind= a⟨fcns( f ), ⟦B⟧T⟩
= ⟦a(x, B)⟧T[fcns( f )]
= ⟦A⟧T[fcns( f )].

• ρ(A) = B6C: We obtain the following, where the first (resp., second)
induction step uses induction on B (resp., C):

fcns(⟦A⟧F) = fcns(⟦B6C⟧F)
= fcns(⟦B⟧F[⟦C⟧F])
ind= ⟦B⟧T[fcns(⟦C⟧F)]
ind= ⟦B⟧T[⟦C⟧T]
= ⟦B6C⟧T

= ⟦A⟧T .

• ρ(A) = B�C: We obtain

fcns(⟦A⟧F[ f ]) = fcns(⟦B�C⟧F[ f ])
= fcns((⟦B⟧F[⟦C⟧F])[ f ])
= fcns(⟦B⟧F[⟦C⟧F[ f ]])
ind= ⟦B⟧T[fcns(⟦C⟧T[ f ])]
ind= ⟦B⟧T[⟦C⟧F[fcns( f )]]
= (⟦B⟧T[⟦C⟧T])[fcns( f )]
= ⟦B�C⟧T[fcns( f )]
= ⟦A⟧T[fcns( f )].

We used the fact that ( f [g])[h] = f [g[h]] for every f , g ∈ Fx(Σ) and h ∈
F(Σ) ∪ Fx(Σ), which follows from an easy induction. This concludes the
proof of the proposition.

By combining Lemma 16 and Proposition 7, we obtain the following:

Corollary 2. Let Σ be an alphabet. Given an FSLP F with trΣfcns(⟦F⟧) = fcns( f )
for some f ∈ F(Σ), we can compute in linear time an FSLP F′ with ∣F′∣ ∈ O(∣F∣)
such that ⟦F′⟧ = f .
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Proposition 8. For every FSLP F over Σ, we can construct in linear time an
fcns-SLP T over Σ with ⟦T⟧ = fcns(⟦F⟧) and ∣T∣ ∈ O(∣F∣).

Proof. We start with the definition of two functions which are closely related
to fcns. The first function π∶ F(Σ) → Tx(Σfcns, rfcns) is defined inductively by

π(ε) = x,

π(a⟨ f ⟩g) = a⟨fcns( f ), π(g)⟩ for all a ∈ Σ, f , g ∈ F(Σ);

in particular its restriction to T (Σ) is given by

π(a⟨ f ⟩) = a⟨fcns( f ), x⟩ for all a ∈ Σ, f ∈ F(Σ). (1)

Simple induction proofs show that

fcns( f ) = π( f )[�] for all f ∈ F(Σ), (2)

π( f g) = π( f )[π(g)] for all f , g ∈ F(Σ). (3)

The second function ϕ∶ F(Σ) ∪Fx(Σ) → T (Σfcns, rfcns) ∪ Tx(Σfcns, rfcns) is de-
fined inductively by

ϕ(ε) = �,

ϕ(xg) = x for all g ∈ F(Σ),

ϕ(a⟨ f ⟩g) = a⟨ϕ( f ), ϕ(g)⟩ for all a ∈ Σ, f , g ∈ F(Σ) ∪Fx(Σ)
with a⟨ f ⟩g ∈ F(Σ) ∪Fx(Σ).

Simple induction proofs show that

fcns( f ) = ϕ( f ) for all f ∈ F(Σ), (4)

ϕ( f xg) = π( f ) for all f , g ∈ F(Σ). (5)

The most important equation for ϕ is

ϕ( f [a⟨g⟩]) = ϕ( f )[a⟨ϕ(g), fcns(sib( f ))⟩]
for all f ∈ Fx(Σ), a ∈ Σ, g ∈ F(Σ),

(6)

where sib( f ) ∈ F(Σ) denotes the sequence of all right siblings of x in f ∈
Fx(Σ), i.e.,

sib(xg) = g for all g ∈ F(Σ),

sib(a⟨ f ⟩g) =
⎧⎪⎪⎨⎪⎪⎩

sib( f ) if f ∈ Fx(Σ) and g ∈ F(Σ),
sib(g) if f ∈ F(Σ) and g ∈ Fx(Σ).

Equation (6) tells us how to obtain ϕ( f [a⟨g⟩]) from ϕ( f ) and ϕ(g). For its
proof note that a⟨ϕ(g), fcns(sib( f ))⟩ = a⟨ϕ(g), ϕ(sib( f ))⟩ = ϕ(a⟨g⟩ sib( f )).
Hence it suffices to prove

ϕ( f [t]) = ϕ( f )[ϕ(t sib( f ))] for all f ∈ Fx(Σ), t ∈ T (Σ) ∪ Tx(Σ),

which can be done by the following induction on the length of the sequence
f and case distinction on the first element of f :

• f = xg: Then g ∈ F(Σ) and we have

ϕ( f [t]) = ϕ(tg) = x[ϕ(tg)] = ϕ( f )[ϕ(tg)] = ϕ( f )[ϕ(t sib( f ))].
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• f = a⟨g⟩h with a ∈ Σ and g ∈ F(Σ): Then h ∈ Fx(Σ) and we obtain

ϕ( f [t]) = ϕ(a⟨g⟩ h[t])
= a⟨ϕ(g), ϕ(h[t])⟩ by the definition of ϕ

= a⟨ϕ(g), ϕ(h)[ϕ(t sib(h))]⟩ by induction for h

= a⟨ϕ(g), ϕ(h)[ϕ(t sib( f ))]⟩ because sib( f ) = sib(h)
= a⟨ϕ(g), ϕ(h)⟩[ϕ(t sib( f ))]
= ϕ( f )[ϕ(t sib( f ))] by the definition of ϕ.

• f = a⟨g⟩h with a ∈ Σ and g ∈ Fx(Σ): Then h ∈ F(Σ) and the proof is
the same as in the previous step except that the roles of g and h are
exchanged.

Equations (1) to (6) are a guideline for the construction of the TSLP T. Let
F = (V, Γ, ρ, S) be an FSLP over Σ. In case ⟦F⟧ = ε, we simply translate to
a TSLP that only produces �. Now assume that ⟦F⟧ ≠ ε. By Lemma 10 we
assume that F is in normal form and that for all A ∈ V we have ⟦A⟧F ≠ x and
⟦A⟧F ≠ ε. Let

V�

0 = {A ∈ V0 ∣ ρ(A) = a(x)6 B, a ∈ Σ, B ∈ V}
∪ {A ∈ V0 ∣ ρ(A) = B6 (a(x)6C), B, C ∈ V, a ∈ Σ}.

We then define T = (V′, Γ′, ρ′, S) where

V′ = V0 ⊎ {A⊓ ∣ A ∈ V�

0 } ⊎ {Aπ ∣ A ∈ V0} ⊎ {A⊓ ∣ A ∈ V1}

with Γ′(A) = T for A ∈ V0, Γ′(A⊓) = T for A ∈ V�

0 , Γ′(Aπ) = Tx for A ∈ V0
and Γ′(A⊓) = Tx for A ∈ V1. To explain the role of these variables let
∆∶ T (Σ) ∖ {x} → F(Σ) be defined by ∆(a⟨ f ⟩) = f . We want to achieve that

⟦A⟧T = fcns(⟦A⟧F) for every A ∈ V0, (7)

⟦Aπ⟧T = π(⟦A⟧F) for every A ∈ V0, (8)

⟦A⊓⟧T = ϕ(∆(⟦A⟧F)) for every A ∈ V�

0 ∪V1. (9)

From (7) we obtain ⟦T⟧ = ⟦S⟧T = fcns(⟦S⟧F) = fcns(⟦F⟧) which concludes the
proof of the proposition (assuming that T satisfies the size bound ∣T∣ ∈ O(∣F∣)).

It remains to define ρ′ in such a way that (7), (8) and (9) are satisfied. For
every A ∈ V�

0 ∪V1 let αA denote the root label of ⟦A⟧F, and for every A ∈ V1
let RA ∈ V0 be a variable with ⟦RA⟧F = sib(⟦A⟧F). Such a variable exists in
V0, namely

• RA = C if ρ(A) = a(x)� (B< x=C),

• RA = RC if ρ(A) = B�C for B, C ∈ V1.

Then we define ρ′ by

• ρ′(A) = Aπ 6 � if A ∈ V0,

• ρ′(Aπ) = Â(A⊓, x) if A ∈ V�

0 ,

• ρ′(Aπ) = Bπ �Cπ if A ∈ V⊺

0 with ρ(A) = B⊟C,

• ρ′(A⊓) = C if A ∈ V�

0 with ρ(A) = a(x)6C,

• ρ′(A⊓) = B⊓6 a(C, RB) if A ∈ V�

0 with ρ(A) = B6 (a(x)6C),
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• ρ′(A⊓) = Bπ if A ∈ V1 with ρ(A) = a(x)� (B< x=C),

• ρ′(A⊓) = B⊓� Ĉ(C⊓, RB) if A ∈ V1 with ρ(A) = B�C.

This concludes the definition of the TSLP T. It is clear that T can be con-
structed from F in linear time and that ∣T∣ ∈ O(∣F∣).

Equations (7), (8) and (9) are proved by the following induction on ≤T .
Note that A⊓ ≤T Aπ for all A ∈ V�

0 and Aπ ≤T A for all A ∈ V0.

• If A ∈ V0 then ρ′(A) = Aπ 6 � and thus

⟦A⟧T = ⟦Aπ⟧T[�]
= π(⟦A⟧F)[�] by induction for Aπ

= fcns(⟦A⟧F) by equation (2).

• If A ∈ V�

0 with ⟦A⟧F = a⟨ f ⟩ then ρ′(Aπ) = a(A⊓, x) and thus

⟦Aπ⟧T = a⟨⟦A⊓⟧T , x⟩
= a⟨ϕ(∆(⟦A⟧F)), x⟩ by induction for A⊓

= a⟨ϕ( f ), x⟩
= a⟨fcns( f ), x⟩ by equation (4)

= π(a⟨ f ⟩) by equation (1)

= π(⟦A⟧F).

• If A ∈ V⊺

0 with ρ(A) = B⊟C then ρ′(Aπ) = Bπ �Cπ and thus

⟦Aπ⟧T = ⟦Bπ⟧T[⟦Cπ⟧T]
= π(⟦B⟧F)[π(⟦C⟧F)] by induction for Bπ and Cπ

= π(⟦B⟧F⟦C⟧F) by equation (3)

= π(⟦A⟧F).

• If A ∈ V�

0 with ρ(A) = a(x)6 B then ρ′(A⊓) = B and thus

⟦A⊓⟧T = ⟦B⟧T

= fcns(⟦B⟧F) by induction for B

= ϕ(⟦B⟧F) by equation (4)

= ϕ(∆(⟦A⟧F)).

• If A ∈ V�

0 with ρ(A) = B6 (a(x)6C) then ρ′(A⊓) = B⊓6 a(C, RB), so

⟦A⊓⟧T = ⟦B⊓⟧T[a⟨fcns(⟦C⟧F), fcns(⟦RB⟧F)] by induction for C and RB

= ⟦B⊓⟧T[ϕ(a⟨⟦C⟧F⟩⟦RB⟧F)]
= ϕ(∆(⟦B⟧F))[ϕ(a⟨⟦C⟧F⟩⟦RB⟧F)] by induction for B

= ϕ(∆(⟦B⟧F))[a⟨⟦C⟧F⟩] by equation (6)

= ϕ(∆(⟦A⟧F)).

• If A ∈ V1 with ρ(A) = a(x)� (B< x=C) then ρ′(A⊓) = Bπ and thus

⟦A⊓⟧T = ⟦Bπ⟧T

= π(⟦B⟧F) by induction for B

= ϕ(⟦B⟧F x ⟦C⟧F) by equation (5)

= ϕ(∆(⟦A⟧F)).
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• If A ∈ V1 with ρ(A) = B�C, ⟦B⟧F = b⟨ f ⟩ and ⟦C⟧F = c⟨g⟩ then ρ′(A) =
B⊓� (c(x)� (C⊓= RB)) and we have ⟦RB⟧F = sib(b⟨ f ⟩) = sib( f ). Thus
we obtain

⟦A⊓⟧T = ⟦B⊓⟧T[c⟨⟦C⊓⟧T , ⟦RB⟧T⟩]
= ϕ(∆(⟦B⟧F))[c⟨ϕ(∆(⟦C⟧F)), fcns(⟦RB⟧F)⟩]

by induction for B⊓, C⊓ and RB

= ϕ( f )[c⟨ϕ(g), fcns(sib( f ))⟩]
= ϕ( f [c⟨g⟩]) by equation (6)

= ϕ(∆(b⟨ f ⟩[c⟨g⟩]))
= ϕ(∆(⟦B⟧F[⟦C⟧F]))
= ϕ(∆(⟦A⟧F)).

This concludes the proof of the proposition.

Finally, let us define the function u∶ T (Σ, r) → F(Σ), where (Σ, r) is a
ranked alphabet, by setting u(a⟨t1, . . . , tn⟩) = a⟨t1 . . . tn⟩. The following is easy
to show:

Lemma 17. Given a TSLP T, we can compute in linear time an FSLP F with
∣F∣ ∈ O(∣T∣) and ⟦F⟧ = u(⟦T⟧).

By combining Proposition 8 and Lemma 17, we obtain the following:

Corollary 3. Given an FSLP F, we can compute in linear time an FSLP F′ with
∣F′∣ ∈ O(∣F∣) and ⟦F′⟧ = u(fcns(⟦F⟧)).
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6T E S T I N G E Q UA L I T Y M O D U L O A S S O C I AT I V I T Y A N D
C O M M U TAT I V I T Y

In this section we will give an algorithmic application which proves the
usefulness of FSLPs (even if we deal with binary trees). We fix two subsets
A ⊆ Σ (the set of associative symbols) and C ⊆ Σ (the set of commutative symbols).
This means that we impose the following identities for all a ∈ A, c ∈ C, all
trees t1, . . . , tn ∈ T (Σ), all permutations σ∶ {1, . . . , n} → {1, . . . , n}, and all
1 ≤ i ≤ j ≤ n + 1:

a⟨t1⋯tn⟩ = a⟨t1⋯ti−1a⟨ti⋯tj−1⟩tj⋯tn⟩, (ASSOC)

c⟨t1⋯tn⟩ = c⟨tσ(1)⋯tσ(n)⟩. (COMM)

Note that the standard law of associativity for a binary symbol ○ (i.e., x ○
(y ○ z) = (x ○ y) ○ z) can be captured by making ○ an associative symbol in the
sense of (ASSOC).

6.1 associative symbols

Below, we define the associative normal form nfA( f ) of a forest f and
show that from an FSLP F we can compute in linear time an FSLP F′ with
⟦F′⟧ = nfA(⟦F⟧). For trees s, t ∈ T (Σ) we have that s = t modulo the identities
in (ASSOC) if and only if nfA(s) = nfA(t). The generalization to forests is
needed for the induction, where a slight technical problem arises. Whether
the forests t1⋯ti−1a⟨ti⋯tj−1⟩tj⋯tn and t1⋯tn are equal modulo the identities
in (ASSOC) actually depends on the symbol on top of these two forests. If
it is an a, and a ∈ A, then the two forests are equal modulo associativity,
otherwise not. To cope with this problem, we use for every associative
symbol a ∈ A a function φa∶ F(Σ) → F(Σ) that pulls up occurrences of a
whenever possible.

For every a ∈ Σ� ∶= Σ ⊎ {�}, where � means that no symbol is on top,
let φa∶ F(Σ) → F(Σ) be defined as follows, where f ∈ F(Σ), n ≥ 0 and
t1, . . . , tn ∈ T (Σ):

φa(b⟨ f ⟩) =
⎧⎪⎪⎨⎪⎪⎩

φa( f ) if a ∈ A and a = b,
b⟨φb( f )⟩ otherwise,

φa(t1⋯tn) = φa(t1)⋯φa(tn).

Note that φa(ε) = ε. Moreover, define nfA∶ F(Σ) → F(Σ) by nfA( f ) = φ�( f ).

Example 6. Let t = a⟨a⟨cd⟩b⟨cd⟩a⟨e⟩⟩ and A = {a}. We obtain

φa(t) = φa(a⟨cd⟩b⟨cd⟩a⟨e⟩) = φa(a⟨cd⟩)φa(b⟨cd⟩)φa(a⟨e⟩)
= φa(cd)b⟨φb(cd)⟩φa(e) = cdb⟨cd⟩e,

φb(t) = a⟨φa(a⟨cd⟩b⟨cd⟩a⟨e⟩)⟩ = a⟨cdb⟨cd⟩e⟩.
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Figure 1: t on the left, φa(t) in the middle and φb(t) on the right from Example 6

Lemma 18. From a given FSLP F over Σ one can construct in time O(∣F∣ ⋅ ∣Σ∣) an
FSLP F′ with ⟦F′⟧ = nf

A
(⟦F⟧).

Proof. By Lemma 10, we may assume that F = (V, Γ, ρ, S) is in normal form
such that there is no A ∈ V with ⟦A⟧F = x. We define ω∶V1 → Σ such that
ω(B) returns the symbol above x in ⟦B⟧F:

• ω(A) = a if ρ(A) = a(x)� (L< x= R),

• ω(A) = ω(C) if ρ(A) = B�C.

These symbols can be computed all together in linear time. We introduce
new variables Aa for all a ∈ Σ� and define the right-hand sides of F′ such that
⟦Aa⟧F′ = φa(⟦A⟧F) for all A ∈ V0 and ⟦Ba⟧F′[φω(B)( f )] = φa(⟦B⟧F[ f ]) for all
B ∈ V1, f ∈ F(Σ). Now let F′ = (V′, Γ′, S�, ρ′) where V′ = {Aa ∣ A ∈ V, a ∈ Σ�},
Γ′(Aa) = Γ(A) for Aa ∈ V′ and ρ′ is defined by

• ρ′(Aa) = ε if ρ(A) = ε,

• ρ′(Aa) = Ba ⊟Ca if ρ(A) = B⊟C,

• ρ′(Aa) = Ba 6Cb if ρ(A) = B6 (b(x)6C), b ∈ A and b = ω(B),

• ρ′(Aa) = Ba 6 (b(x)6Cb) if ρ(A) = B6 (b(x)6C) with b ≠ a or b ∉ A,

• ρ′(Aa) = Ba �Cω(B) if ρ(A) = B�C,

• ρ′(Aa) = Ba if ρ(A) = a(x)6 B and a ∈ A,

• ρ′(Aa) = b(x)6 Bb if ρ(A) = b(x)6 B with b ≠ a or b ∉ A,

• ρ′(Aa) = Ba < x=Ca if ρ(A) = a(x)� (B< x=C) with a ∈ A,

• ρ′(Aa) = b(x)� (Bb < x=Cb) if ρ(A) = b(x)6 (B< x=C) with b ≠ a or
b /∈ A.

An induction shows:

1. ⟦Aa⟧F′ = φa(⟦A⟧F) for all A ∈ V0 and a ∈ Σ�, and

2. ⟦Ba⟧F′[φω(B)( f )] = φa(⟦B⟧F[ f ]) for all B ∈ V1, a ∈ Σ� and f ∈ F(Σ).

From 1 we obtain ⟦F′⟧ = ⟦S�⟧F′ = φ�(⟦S⟧F) = nfA(⟦S⟧F) = nfA(⟦F⟧).
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6.2 commutative symbols

To test whether two trees over Σ are equivalent with respect to commu-
tativity, we define a commutative normal form nfC ∶ T (Σ) → T (Σ) such that
nfC(t1) = nfC(t2) if and only if t1 and t2 are equivalent with respect to the
identities in (COMM) for all c ∈ C. We choose to sort the trees directly below
a commutative symbol length-lexicographically, using a total order on trees.
This actually gives us a normal form since two trees equal modulo commuta-
tivity turn into actually equal trees. It is also extendable to FSLPs, i.e. we
can transform an FSLP in polynomial time into another FSLP that produces
length-lexicographically sorted forests.

Definition 44 (llex on strings). Let ∆ be an alphabet. Let < be a strict total
order on ∆. We define the length-lexicographic order <llex⊆ ∆∗ × ∆∗ in the
following way: Let w = a1 . . . an ∈ ∆n and v = b1 . . . bm ∈ ∆m, where n, m ≥ 0.
Set w <llex v if either n < m or n = m and there is an i with 1 ≤ i ≤ n such that
aj = bj for all 1 ≤ j < i and ai < bi.

Definition 45 (llex on forests). Let < be a strict total order on Σ ∪ {⟨, ⟩}. The
length-lexicographic order <llex⊆ F(Σ)2 on forests is defined as

f <llex f ′⇔ dflr( f ) <llex dflr( f ′).

Definition 46 (Sorting). Let < be a total order on a possibly infinite alphabet
∆, and let ≤ be its reflexive closure. Then we define sort<∶∆∗ → ∆∗ by
sort<(a1⋯an) = ai1⋯ain with {i1, . . . , in} = {1, . . . , n} and ai1 ≤ ⋯ ≤ ain .

Lemma 19. Let G be an SSLP over ∆ and let < be some total order on ∆. We can
construct in time O(∣∆∣ ⋅ ∣G∣) an SSLP G′ such that ⟦G′⟧ = sort<(⟦G⟧).

Proof. Let G = (V, ρ, S). We define the SSLP G′ = (V′, ρ′, S) over ∆ where
V′ = {S} ∪ {Aa ∣ A ∈ V, a ∈ ∆} with new variables Aa ∉ V, and ρ′ defined by

• ρ′(Aa) = ε if ρ(A) = ε or ρ(A) = b for some b ∈ Σ with b ≠ a,

• ρ′(Aa) = a if ρ(A) = a,

• ρ′(Aa) = Ba ○Ca if ρ(A) = B ○C,

• ρ′(S) = Sa1 ○ . . . ○ San where ∆ = {a1, . . . , an} with a1 < ⋯ < an.

A straightforward induction shows that ⟦Aa⟧G′ = ama where ma is the number
of occurrences of a in ⟦A⟧G. This implies

⟦G′⟧ = ⟦Sa1 ○ . . . ○ Sam⟧G′ = sort<(⟦G⟧).

Lemma 20. For two FSLPs F1 and F2 over Σ we can check in polynomial time
whether ⟦F1⟧ <llex ⟦F2⟧.

Proof. We use Lemma 3 to construct SSLPs G1, G2 with ⟦G1⟧ = dflr(⟦F1⟧) and
⟦G2⟧ = dflr(⟦F2⟧). Since by definition we have ⟦G1⟧ <llex ⟦G2⟧ if and only if
dflr( f ) <llex dflr( f ′), it is enough to test if ⟦G1⟧ <llex ⟦G2⟧, which we can do
in polynomial time using [38, Lemma 3].
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From <llex on trees we obtain the function sort<llex ∶ F(Σ) → F(Σ) and we
define nfC ∶ F(Σ) → F(Σ) inductively by

nfC(a⟨ f ⟩) =
⎧⎪⎪⎨⎪⎪⎩

a⟨sort<llex(nfC( f ))⟩ if a ∈ C,
a⟨nfC( f )⟩ otherwise,

nfC(t1⋯tn) = nfC(t1)⋯nfC(tn).

Obviously, f1, f2 ∈ F(Σ) are equal modulo the identities in (COMM) if and
only if nfC( f1) = nfC( f2). Furthermore, f1, f2 ∈ F(Σ) are equal modulo the
identities in (ASSOC) if and only if nfA( f1) = nfA( f2). This is because the
rewriting system consisting of the rules

a⟨t1⋯ti−1a⟨ti⋯tj−1⟩tj⋯tn⟩ → a⟨t1⋯tn⟩, (→-ASSOC)

for a ∈ A, t1, . . . , tn ∈ T (Σ) and 1 ≤ i ≤ j ≤ n + 1, is confluent and terminating.
We now show the following:

Lemma 21. For f1, f2 ∈ F(Σ) we have nf
C
(nf

A
( f1)) = nf

C
(nf

A
( f2)) if and only

if f1 and f2 are equal modulo the identities in (ASSOC) and (COMM).

Proof. Let →A be the resulting rewrite relation obtained from the rules of
(→-ASSOC). It suffices to show that nfC(nfA( f1)) = nfC(nfA( f2)) if f1 and
f2 can be transformed into each other by a single application of (ASSOC) or
(COMM); let us write f1 =A f2 or f1 =C f2, respectively, for the latter. The
case f1 =A f2 is clear, since this implies nfA( f1) = nfA( f2). Now assume that
f1 =C f2. The crucial observation is that f =C g →A h implies f →A g′ =C h
for some g′ ∈ F(Σ) (a single application of (→-ASSOC) commutes with a
permutation of the children of a node). Since f1 =C f2 →∗A nfA( f2), it follows
that f1 →∗A f ′1 =C nfA( f2) for some f ′1 ∈ F(Σ). But f ′1 =C nfA( f2) implies
that f ′1 is irreducible with respect to →A, i.e., f ′1 = nfA( f1). Thus we obtain
nfA( f1) =C nfA( f2) and hence nfC(nfA( f1)) = nfC(nfA( f2)).

From an FSLP F = (V, Γ, ρ, S) in normal form we want to obtain in
polynomial time an FSLP F′ = (V′, Γ′, ρ′, S) with ⟦F′⟧ = nfC(⟦F⟧). The new
FSLP will fulfil that V0 ⊆ V′

0 , V1 ⊆ V′

1 and ⟦A⟧F′ = nfC(⟦A⟧ f ) for every A ∈ V0.
The new right-hand sides ρ′(A) for all A ∈ V will be defined by induction on
≤F. Before we present the details we want to point out the main difficulties.

Let A ∈ V0 with ρ(A) = B6 (a(x)6C) and let spineF(B) = β1⋯βN , where
N ≥ 0. Remember that by the definition of the spine, the βi (1 ≤ i ≤ N) are
all expressions of the form a(x)� (L< x= R). Also recall the definition of
A△(i) from Section 4.4. Let N = `(A) and for 0 ≤ p ≤ N let

tp ∶= A△(p + 1) = ⟦βp+1 � ⋅ ⋅ ⋅� βN 6 (a(x)6C)⟧F

be the tree which is substituted for the parameter x in βp, in particular
t0 = ⟦A⟧F and tN = ⟦a(x)6C⟧F. Note that ∣t0∣ > ⋯ > ∣tN ∣ and that the length
N of the spine may be exponential in ∣F∣, hence we may have exponentially
many different trees tp.

Let p with 0 ≤ p ≤ N be some position, let βp = b(x)� (L< x= R) and

⟦L ○ R⟧F⊟ = B1 6 (a1(x)6C1) . . . Bn 6 (an(x)6Cn),

where n ≥ 0. By induction we may assume that

⟦Bi 6 (ai(x)6Ci)⟧F′ = nfC(⟦Bi 6 (ai(x)6Ci)⟧F)

for every 1 ≤ i ≤ n.
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In case b ∉ C, we can leave βp as is, since

nfC(tp−1) = nfC(b⟨⟦L⟧Ftp⟦R⟧F⟩)
= b⟨nfC(⟦L⟧F)nfC(tp)nfC(⟦R⟧F)⟩
= b⟨⟦L⟧F′nfC(tp)⟦R⟧F′⟩
= ⟦βp⟧F′[nfC(tp)].

In case b ∈ C we have to replace βp, since

nfC(tp−1) = nfC(b⟨⟦L⟧Ftp⟦R⟧F⟩)
= b⟨sort<llex(nfC(⟦L⊟ R⟧F)nfC(tp))⟩.

Unfortunately, what to replace βp with depends on p, since the position of
nfC(tp) in

sort<llex(nfC(⟦L⊟ R⟧F)nfC(tp))

depends on p, too. We cannot replace expressions at arbitrary positions
on the spine, since that might lead to an exponential blowup. Instead, we
require that F already is in a form such that all occurrences of the same
expression are translated in the same way, so we can translate βp regardless
of what p is. More specifically, we require that the last position is always the
correct position for nfC(tp). This will be true for FSLPs that are in strong
normal form.

Let F = (V, Γ, ρ, S) be an FSLP in normal form. For every B ∈ V1 let

big_argsF(B) = {t ∈ T (Σ) ∣ ∣t∣ ≥ ∣⟦β6 ε⟧F ∣ for every β in spineF(B)}.

We say that F is in strong normal form if ⟦a(x)6C⟧F ∈ big_argsF(B) for every
A ∈ V0 with ρ(A) = B6 (a(x)6C). If we assume that F is in strong normal
form, then for all q with βq = βp and all A′ which occur in w we have

∣nfC(tq)∣ = ∣tq∣ ≥ ∣⟦a(x)6C⟧F ∣ ≥ ∣⟦βq 6 ε⟧F ∣ > ∣⟦A′⟧F ∣ = ∣nfC(⟦A′⟧F)∣.

This means that the tree nfC(tp) goes to the last position in

sort<llex(nfC(⟦L⊟ R⟧F nfC(tp)).

Hence we can replace βp with b(x)� (Sw < x), where Sw is a new variable
with ⟦Sw⟧F′ = sort<llex(nfC(⟦L ⊟ R⟧F)). Such a variable Sw can be obtained
with Lemma 20 and Lemma 19, see the proof of Theorem 4 for details. Thus
we have

nfC(tp−1) = b⟨sort<llex(nfC(⟦w⟧F))nfC(tp)⟩
= ⟦b(x)� (Sw < x)⟧F′[nfC(tp)]
= ⟦βp⟧F′[nfC(tp)].

Finally, we set ρ′(A) = ρ(A). By induction for C we have ⟦C⟧F′ =
nfC(⟦C⟧F), so nfC(tN) = nfC(⟦a(x)6C⟧F′). Thus we obtain

nfC(⟦A⟧F) = nfC(t0)
= ⟦β1 � ⋅ ⋅ ⋅� βN⟧F′[nfC(tN)]
= ⟦β1 � ⋅ ⋅ ⋅� βN 6 (a(x)6C)⟧F′

= ⟦A⟧F′

as desired.
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If F is only in normal form we cannot expect that ∣tq∣ ≥ ∣⟦βq 6 ε⟧F ∣ holds
for all indices q with βp = βq. However, this can only fail if βq is the rightmost
occurrence of βp in the spine, i.e. q ≥ p. Otherwise, we have p < q and
therefore

∣tq∣ = ∣⟦βq+1 � ⋅ ⋅ ⋅� βN 6 (a(x)6C)⟧F ∣ ≥ ∣⟦βp 6 ε⟧F ∣ = ∣⟦βq 6 ε⟧F ∣.

The important point is that we have at most polynomially (even linearly)
many of these last positions. This gives us the idea for the proof of the
following lemma:

Lemma 22. From a given FSLP F = (V, Γ, ρ, S) in normal form we can construct in
polynomial time an FSLP F′ = (V′, Γ′, ρ′, S) in strong normal form with ⟦F⟧ = ⟦F′⟧.

Proof. We obtain F′ from F by modifying (only) ρ of variables A ∈ V0 with
ρ(A) = B6 (a(x)6C): Let spineF(B) = β1⋯βN (N ≥ 0), and let {δ1, . . . , δm} =
{β1, . . . , βN} with δi ≠ δj for all 1 ≤ i ≠ j ≤ m be the set of all these expressions.
For 1 ≤ i ≤ m let pi = max{1 ≤ p ≤ N ∣ βp = δi} be the position of the last
occurrence of δi in spineF(B). The set {δ1, . . . , δm} and the positions p1, . . . , pm
can be computed from F in polynomial time, hence we may assume w.l.o.g.
that pm < ⋯ < p1 by (re-)ordering the symbols δi in this way. This means in
particular that p1 = N. Additionally, we set pm+1 = 0.

The idea for the construction of F′ is to divide the spine β1⋯βN into
the maximal spine segments which do not contain any last occurrences of
the variables δi, i.e., the spine segments βpi+1+1⋯βpi−1. The details of the
construction are as follows: For 1 ≤ i ≤ m we construct in polynomial time
SSLPs Gi = (Ni, ρi, Ei) with ⟦Gi⟧ = βpi+1+1⋯βpi−1 (see e.g. [39, Lemma 1]). We
may assume that the variable sets Ni are pairwise disjoint and that they only
contain new variables, i.e., variables which are not in V and have not been
added to V′ by previous steps. Moreover, we assume that Gi is in Chomsky
normal form. We add each X ∈ Ni to the variable set V′

1 of F′, set Γ′(X) = Fx
and define ρ′ by

• ρ′(X) = x if ρi(X) = ε,

• ρ′(X) = Y� Z if ρi(X) = Y ○ Z,

• ρ′(X) = ρ(X) if ρi(X) ∈ {δ1, . . . , δm}.

By induction on ≤Gi we obtain spineF′(X) = ⟦X⟧Gi for every X ∈ Ni, in
particular spineF′(Ei) = ⟦Ei⟧Gi = ⟦Gi⟧ = βpi+1+1⋯βpi−1 for every 1 ≤ i ≤ m.

Now we add new variables Ai for 1 ≤ i ≤ m − 1 with Γ′(Ai) = F and
Ci, C′

i for 1 ≤ i ≤ m with Γ′(Ci) = Γ′(C′

i) = F to the variable set V′

0 of F′.
Additionally, we set A0 = C and Am = A. Let δi = bi(x)6 (Li < x= Ri). For
the new variables and for A = Am we define ρ′ by

1. ρ′(Ci) = Li ⊟C′

i and ρ′(C′

i) = Ai−1 ⊟ Ri

2. ρ′(Ai) = Ei 6 (bi(x)6Ci),

for 1 ≤ i ≤ m. Equation 1 means that

⟦bi(x)6Ci⟧F′ = ⟦bi(x)6 (Li ⊟ Ai−1 ⊟ Ri)⟧F′ = ⟦δi 6 Ai−1⟧F′ = ⟦βpi 6 Ai−1⟧F′ .

From this and 2 we obtain

⟦Ai⟧F′ = ⟦βpi+1+1 � ⋅ ⋅ ⋅� βpi 6 Ai−1⟧F′ .
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Using induction on i and ⟦A0⟧F′ = ⟦C⟧F′ yields

⟦Ai⟧F′ = ⟦βpi+1+1 � ⋅ ⋅ ⋅� βN 6C⟧F′

for 0 ≤ i ≤ m, in particular

⟦A⟧F′ = ⟦Am⟧F′ = ⟦β1 � ⋅ ⋅ ⋅� βN 6C⟧F′ .

Note that this holds for every A ∈ V0 with ρ(A) = B6 (b(x)6C) for some
B, C ∈ V and b ∈ Σ. In addition, the right-hand sides of other variables in V
are not modified. Thus we obtain ⟦A⟧F′ = ⟦A⟧F for every A ∈ V by induction
on ≤F, in particular ⟦F′⟧ = ⟦S⟧F′ = ⟦S⟧F = ⟦F⟧.

It remains to be shown that F′ is in strong normal form. The only variables
A′ ∈ V′

0 with ρ′(A′) = B6 (b(x)6C) for some B, C ∈ V′ and b ∈ Σ are the
variables Ai (1 ≤ i ≤ m) with ρ′(Ai) = Ei 6 (bi(x)6Ci). Hence it suffices to
prove ⟦bi(x)6Ci⟧F′ ∈ big_argsF′(Ei), i.e., ∣⟦bi(x)6Ci⟧F′ ∣ ≥ ∣⟦δj 6 ε⟧F′ ∣ for all
δj that occur in spineF′(Ei). If j > i, then pj ≤ pi+1 is the last position of δj in
β1⋯βN , hence Dj does not occur in spineF′(Ei) = βpi+1+1⋯βpi−1. If j ≤ i, then
pi ≤ pj ≤ N and thus

∣⟦bi(x)6Ci⟧F′ ∣ = ∣⟦βpi 6 Ai−1⟧F′ ∣
= ∣⟦βpi � ⋅ ⋅ ⋅� βN 6C⟧F′ ∣
≥ ∣⟦βpj 6 ε⟧F′ ∣
= ∣⟦δj 6 ε⟧F′ ∣,

which concludes the proof.

Example 7. For every m ≥ 1 let Fm = (V, Γ, ρ, S) be an FSLP over {a} with
a ∈ C, ∣Fm∣ ∈ O(m), V ⊇ {S, B, E, X} ∪ {Ui ∣ 0 ≤ i ≤ 2m} ∪ {Di, Li, Ri ∣ 1 ≤ i ≤ m}
and

ρ(E) = ε,

ρ(X) = x,

ρ(R1) = X6 (a(x)6 E)
ρ(Ri) = Ri−1 ⊟ Ri−1 for 2 ≤ i ≤ m,

ρ(U0) = a(x)� (E< x= E),

ρ(Ui) = Ui−1 �Ui−1, for 1 ≤ i ≤ 2m,

ρ(Li) = U2i 6 R1, for 1 ≤ i ≤ m,

ρ(Di) = δi = a(x)� (Li < x= Ri), for 1 ≤ i ≤ m,

spineFm
(B) = δ2m−1

1 δmδmδ2m−2

1 δm−1δm−1⋯δ21

1 δ2δ2δ1,

ρ(S) = B6 R1.

Note that O(m) variables whose ρ-expressions have constant size are suffi-
cient to produce the spine of B. We do not present them in detail because
they are irrelevant for the following illustration.

Let pi (1 ≤ i ≤ m) be the last position of δi in spineFm
(B), and let tpi be

the tree which is substituted for x in δi at this last position, i.e., tp1 = ⟦R1⟧Fm ,
tp2 = ⟦δ1 6 R1⟧Fm and

tpi+1 = ⟦δ1 �⋯� δ1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2i−1

� δi � δi 6 tpi⟧Fm
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for 2 ≤ i ≤ m − 1. Let

ui ∶= ⟦Ui⟧Fm = a⟨. . . a⟨
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

2i

x⟩ . . .⟩ for 0 ≤ i ≤ 2m,

`i ∶= ⟦Li⟧Fm = u2i⟨a⟩ = a⟨. . . a⟨
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

4i

a⟩ . . .⟩ for 1 ≤ i ≤ m,

ri ∶= ⟦Ri⟧Fm = a2i−1
for 1 ≤ i ≤ m.

For 1 ≤ i ≤ m we have ∣⟦Di⟧Fm[t]∣ = ∣a⟨`itri⟩∣ = ∣t∣ + 4i + 2i−1 + 2 for every t ∈
T ({a}), hence ∣tpi+1 ∣ = ∣tpi ∣ +2 ⋅ (4i +2i−1 +2)+2i−1 ⋅7 ≤ ∣tpi ∣ +3 ⋅4i for every i ≥ 3.
By induction on i this implies ∣tpi ∣ ≤ 4i < ∣`i∣ and thus nfC(tpi) <llex `i = nfC(`i)
for 1 ≤ i ≤ m, which explains the shape of the tree nfC(⟦F3⟧) in Figure 3.

By the construction of Lemma 22 we obtain the strong normal form
FSLP F′m from Fm by modifying (only) the right-hand sides of the variables
S and L1, . . . , Lm. The modification of ρ(Li) is easy since ρ(Li) = U2i 6 R1
and only the variable U0 occurs in the spine of U2i. Hence we focus on the
modification of ρ(S) = B6 R1.

The spine of B contains all the expressions δ1, . . . , δm and they are already
ordered in such a way that pm < ⋯ < p1 holds for their last positions pi.
Hence we obtain F′m = (V′, Γ′, ρ′, S) with

V′ ⊇ V ∪ {Ci, C′

i ∣ 1 ≤ i ≤ m} ∪ {Ei ∣ 2 ≤ i ≤ m} ∪ {Ai ∣ 1 ≤ i < m},

A0 = R1, Am = S and

spineF′m
(Ei) = δ2i−1

1 δi, for 2 ≤ i ≤ m,

ρ′(Ai) = Ei 6 (a(x)6Ci) for 1 ≤ i ≤ m,

ρ′(Ci) = Li ⊟C′

i for 1 ≤ i ≤ m,

ρ′(C′

i) = Ai−1 ⊟ Ri for 1 ≤ i ≤ m.

Note that spineF′m
(Ei) is the spine segment between the last positions of δi+1

and δi and that spineF′m
(E1) = ε.

The case m = 3 is illustrated in Figure 2 and Figure 3. We have

spineF3
(B) = δ4

1δ3δ3δ2
1δ2δ2δ1,

hence ∣ spineF3
(B)∣ = 11. The positions of the last occurrences of δ1, δ2, δ3

in the spine are p1 = 11, p2 = 10 and p3 = 6, respectively. These are the
occurrences that are replaced by C1, C2 and C3. We therefore obtain

⟦C1⟧F′3
= ⟦L1 ⊟ A0 ⊟ R1⟧F′3

,

spineF′3
(E1) = ε

ρ′(A1) = E1 6 (a(x)6C1),

⟦C2⟧F′3
= ⟦L2 ⊟ A1 ⊟ R2⟧F′3

,

spineF′3
(E2) = δ2

1δ2,

ρ′(A2) = E2 6 (a(x)6C2),

⟦C3⟧F′3
= ⟦L3 ⊟ A2 ⊟ R3⟧F′3

,

spineF′3
(E3) = δ4

1δ3,

ρ′(A3) = E3 6 (a(x)6C3).
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This concludes our example.
It remains to be shown how an FSLP F in strong normal form can be

turned into an FSLP F′ with ⟦F′⟧ = nfC(⟦F⟧). We have already given an
outline of this construction. Now we present the details.

Theorem 4. From a given FSLP F we can construct in polynomial time an FSLP
F′ with ⟦F′⟧ = nf

C
(⟦F⟧).

Proof. Let F = (V, Γ, ρ, S). By Theorem 1 and Lemma 22 we may assume
that F is already in strong normal form. We want to construct an FSLP
F′ = (V′, Γ′, ρ′, S) with V0 ⊆ V′

0 and V1 = V′

1 , so for all A ∈ V we have
Γ′(A) = Γ(A), such that

1. ⟦A⟧F′ = nfC(⟦A⟧F) for all A ∈ V0,

2. ⟦A⟧F′[nfC(t)] = nfC(⟦A⟧F[t]) for all A ∈ V1, t ∈ big_argsF(A).

From 1 we obtain ⟦F′⟧ = ⟦S⟧F′ = nfC(⟦S⟧F) = nfC(⟦F⟧) which will be enough
to conclude the proof. To define ρ′, let

Vc = {A ∈ V0 ∣ ρ(A) = B6 (a(x)6C), a ∈ C, B, C ∈ V}
∪ {A ∈ V1 ∣ ρ(A) = a(x)� (L< x= R), a ∈ C, L, R ∈ V0}

be the set of commutative variables of F. We set ρ′(A) = ρ(A) for every
A ∈ V ∖Vc. For A ∈ Vc we define ρ′(A) by induction on ≤F:

• If ρ(A) = B6 (a(x)6C) with a ∈ C, let w = ⟦C⟧F⊟ . This is a string of the
form

w = B1 6 (a1(x)6C1)⋯Bn 6 (an(x)6Cn) ∈ (Σ⊟)n,

where n ≥ 0. Let MA ⊆ Σ⊟ be the set of symbols that appear in w.
By induction, ρ′(D) and hence ⟦D⟧F′ are already defined for every
D ∈ {B1, . . . , Bn, C1, . . . , Cn}. Therefore, by Lemma 20, we can compute
in polynomial time a total order < on MA such that δ < δ′ implies
⟦δ⟧F′ ≤llex ⟦δ′⟧F′ for all δ, δ′ ∈ MA. By Lemma 19, we can construct in
linear time an SSLP Gw = (Vw, ρw, Sw) with ⟦Gw⟧ = sort<(w), and we
may assume that all variables D ∈ Vw are new. We add these variables
D to V′

0 , set Γ′(D) = F , and define ρ′(D) as follows:

– ρ′(D) = ε if ρw(D) = ε,

– ρ′(D) = B6 (a(x)6 C) if ρw(D) = B6 (a(x)6 C) for some vari-
ables B, C and a ∈ Σ, and

– ρ′(D) = L⊟ R if ρw(D) = L ○ R for some variables L, R.

Finally, we set ρ′(A) = B 6 (a(x)6 Sw). We obtain that ⟦Sw⟧Gw =
α1⋯αn ∈ Mn

A if and only if ⟦Sw⟧F′ = sort<llex(⟦α1⟧F′⋯⟦αn⟧F′), since αi < αj
implies ⟦αi⟧F′ <llex ⟦αj⟧F′ for every 1 ≤ i, j ≤ m.

• If ρ(A) = a(x)� (L< x= R) with a ∈ C, then define Gw = (Vw, ρw, Sw)
as before, but with w = ⟦L ○ R⟧F⊟ instead of w = ⟦C⟧F⊟ , and set ρ′(A) =
a(x)� (Sw < x).

Properties 1 and 2 are proved by induction on ≤F. We only consider the
interesting cases, i.e., those in which <llex plays a role.

1. A ∈ V0 with ρ(A) = B6 (a(x)6C) with B ∈ V0 and a ∈ C:
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Figure 2: The tree ⟦F3⟧ = ⟦F′3⟧ for the FSLP F3 from Example 7. The size of each
subtree is written in ( ) after the node label. See Figure 3 for nfC(⟦F3⟧) = nfC(⟦F′3⟧).
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Figure 3: The tree nfC(⟦F3⟧) = nfC(⟦F′3⟧) for the FSLP F3 from Example 7. The size
of each subtree is written in ( ) after the node label. The last positions of δ1, δ2, δ3
are p1 = 11, p2 = 10 and p3 = 6, respectively. The roots of the trees tpi and nfC(tpi)

are marked with Ai since ⟦Ai⟧F′

3
= tpi . They are the only argument trees which are

smaller than their siblings `i, hence nfC(tpi) goes to the left of `i in nfC(⟦F3⟧) and all
the others go to the right.
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Let w = ⟦C⟧F⊟ = α1 . . . αm with m ≥ 0. By definition of the strong normal
form we have ⟦a(x)6C⟧F ∈ big_argsF(B). We have

nfC(⟦a(x)6C⟧F) = nfC(a⟨⟦C⟧F⟩)
= a⟨sort<llex(nfC(⟦C⟧F))⟩ since a ∈ C
= a⟨sort<llex(nfC(⟦α1⟧F) . . . nfC(⟦αm⟧F))⟩
= a⟨sort<llex(⟦α1⟧F′ . . . ⟦αm⟧F′)⟩ by induction

= a⟨⟦Sw⟧F′⟩
= ⟦a(x)6 Sw⟧F′ .

From this we obtain

nfC(⟦A⟧F) = nfC(⟦B6 (a(x)6C)⟧F)
= nfC(⟦B⟧F[⟦a(x)6C⟧F])
= ⟦B⟧F′[nfC(⟦a(x)6C⟧F)] by induction for B

= ⟦B⟧F′[⟦a(x)6 Sw⟧F′]
= ⟦B6 (a(x)6 Sw)⟧F′

= ⟦A⟧F′ .

2. A ∈ V1 with ρ(A) = a(x)� (B< x=C):

Let w = ⟦B ○ C⟧F⊟ = α1⋯αm with m ≥ 0, ⟦B⟧F⊟ = α1⋯αk and ⟦C⟧F⊟ =
αk+1⋯αm with 0 ≤ k ≤ m. For every t ∈ big_argsF(A) and 1 ≤ i ≤ m we
have

∣nfC(t)∣ = ∣t∣ ≥ ∣⟦A6 ε⟧F ∣ > ∣⟦B⊟C⟧F ∣ ≥ ∣⟦αi⟧F ∣ = ∣nfC(⟦αi⟧F)∣,

which implies nfC(⟦αi⟧F) ≤llex nfC(t). Hence we obtain

nfC(⟦A⟧F[t]) = nfC(a⟨⟦B⟧Ft⟦C⟧F⟩)
= a⟨sort<llex(nfC(⟦B⟧Ft⟦C⟧F))⟩ since a ∈ C
= a⟨sort<llex(nfC(⟦α1⟧F⋯⟦αk⟧Ft⟦αk+1⟧F⋯⟦αm⟧F))⟩
= a⟨sort<llex(nfC(⟦α1⟧F)⋯nfC(⟦αk⟧F)nfC(t)

nfC(⟦αk+1⟧F)⋯nfC(⟦αm⟧F))⟩
= a⟨sort<llex(nfC(⟦α1⟧F)⋯nfC(⟦αm⟧F))nfC(t)⟩

since nfC(⟦αi⟧F) ≤llex nfC(t) for 1 ≤ i ≤ m

= a⟨⟦Sw⟧F′nfC(t)⟩
since ⟦Sw⟧F′ = sort<llex(nfC(⟦α1⟧F)⋯nfC(⟦αm⟧F)) (1)

= ⟦a(x)� (Sw < x)⟧F′[nfC(t)]
= ⟦A⟧F′[nfC(t)] by definition of ρ′(A).

3. A ∈ V1 with ρ(A) = B�C:

Then ρ′(A) = B�C. Let t ∈ big_argsF(A) ⊆ big_argsF(B)∩big_argsF(C).
Since ∣⟦C⟧F[t]∣ ≥ ∣t∣, we obtain ⟦C⟧F[t] ∈ big_argsF(B) and thus

nfC(⟦A⟧F[t]) = nfC(⟦B⟧F[⟦C⟧F[t]])
= ⟦B⟧F′[nfC(⟦C⟧F[t])] by induction for B

= ⟦B⟧F′[⟦C⟧F′[nfC(t)]] by induction for C

= ⟦A⟧F′[nfC(t)].
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This concludes the proof of the theorem.

Example 8. Let F be the strong normal form FSLP F′m = (V′, Γ′, ρ′, S) (m ≥ 1),
which we obtained in Example 7. From F we construct a new FSLP which
produces nfC(⟦F⟧). Again, we will only consider the spine of B and ignore
the spines of the U2i. We have to replace the right-hand sides of Ai and Di
for 1 ≤ i ≤ m. We have

w = ⟦Ci⟧F⊟ = ⟦Li ○ Ai−1 ○ Ri⟧F⊟ = ρ(Li)ρ(Ai−1)ρ(R1)2i−1
.

Let < be the total order on MCi ⊇ {ρ(Li), ρ(Ai−1), ρ(R1)} from Theorem 4.
Since ⟦Ai−1⟧F = tpi and ⟦R1⟧F <llex tpi <llex ⟦Li⟧F for 2 ≤ i ≤ m, we must have
that ρ(R1) < ρ(Ai−1) < ρ(Li). For i = 1 we have a special case because R1 = A0,
for which we have ⟦A0⟧F <llex ⟦L1⟧F, so ρ(R1) = ρ(A0) < ρ(L1). Altogether,
we obtain

sort<(w) = ρ(R1)2i−1
ρ(Ai−1)ρ(Li).

Using Lemma 19, we introduce an SLP Gw = (Vw, ρw, Sw) with ⟦Gw⟧ =
sort<(w). Finally, we set the new right-hand side of Ai to Ei 6 (a(x)6 Sw).

For the right-hand sides ρ′(Di) = a(x)� (Li < x = Ri) for 1 ≤ i ≤ m we
have

w = ⟦Li ○ Ri⟧F⊟ = ρ(Li)ρ(R1)2i−1
.

Let < be the total order on MDi ⊇ {ρ(R1), ρ(Li)} from Theorem 4. Since
⟦R1⟧F <llex ⟦Li⟧F for 1 ≤ i ≤ m, we must have that ρ(R1) < ρ(Li), and thus
sort<(w) = ρ(R1)2i−1

ρ(Li). Since F is in strong normal form, x always goes
to the last position. We introduce Gw = (Vw, ρw, Sw) with ⟦Gw⟧ = sort<(w)
and set the new right-hand side of Di to a(x)� (Sw < x). This concludes our
example.

As an immediate consequence of Theorem 4 we obtain our main result.

Theorem 5. For trees s, t we can test in polynomial time whether s and t are equal
modulo the identities in (ASSOC) and (COMM), if s and t are given succinctly by
one of the following formalisms: FSLPs, top dags or TSLPs for their fcns encodings.

Proof. By Proposition 5 and Proposition 7 it suffices to show Theorem 5

for the case that t1 and t2 are given by FSLPs F1 and F2, respectively. By
Lemma 21 and Lemma 20 it suffices to compute in polynomial time FSLPs
F′1 and F′2 for nfC(nfA(t1)) and nfC(nfA(t2)). This can be achieved using
Lemma 18 and Theorem 4.
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7
U N O R D E R E D F O R E S T S

Understanding the interplay between ordered and unordered structures
is an important topic of database research. For XML this interplay has
received considerable attention, see, e.g., [1, 9, 48, 7, 47]. A document is
deemed document-centric, if the order of elements matters. Examples of such
documents include web pages (e.g., in XHTML). In contrast, a document is
data-centric if the order of elements is unimportant. For instance, the order
of author-, title-, and year-elements in a bibliographic entry is unimportant.
Of course, there could be mixtures of both, unordered and ordered nodes.
For instance, an author-node could be marked “ordered” to contain subtrees
for the first author, second author, etc. JSON naturally supports ordered
nodes (arrays) and unordered nodes (objects). The absence of order bears
many opportunities such as query optimization and set-oriented parallel
processing, cf. [1]. Unordered XML has also been studied recently with
respect to schema language definitions [9], a topic already considered during
the birth years of XML [43]. Here we study the question whether forest
compression can benefit from unorderedness. In XML compression, document
trees are typically stored (and compressed) separately from the data values,
see, e.g., [33]. It was observed early on that DAGs provide high compression
ratios for common XML document trees [12] (10% on average for their
documents).

Intuitively, considering a forest to be unordered means that the order of
trees in a subforest does not matter. For example, the unordered forest a⟨bc⟩
is considered to be the same unordered forest as a⟨cb⟩. We have already
looked at this in Chapter 6 where we studied commutative symbols. Here, we
make every symbol commutative, which allows us to reorder every subforest.
We formally define an unordered forest as the set of all of its reorderings, or
equivalently, all forests that have the same commutative normal form:

Definition 47 (Unordered forests). Let C = Σ. For f ∈ F(Σ) let

f u = { f ′ ∈ F(Σ) ∣ nfC( f ) = nfC( f ′)}.

For example, (a⟨bc⟩)u = {a⟨bc⟩, a⟨cb⟩}. We use a similar definition for
trees with maximal rank Tk(Σ) and ranked trees T (Σ, r), since the number of
children does not change by reordering them, i.e. for every ranked alphabet
(Σ, r), where r∶Σ → N, and every t ∈ T (Σ, r) we have tu ⊆ T (Σ, r) and for
every k ∈N and t ∈ Tk(Σ) we have tu ⊆ Tk(Σ).

Our question is how much we can gain if we allow to compress a re-
ordered version of a forest instead of the original one. Let us first define this
using DAGs.
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Definition 48 (Unordered DAGs). We define the set dag(t) for a given tree
t ∈ T (Σ) to contain all DAGs D with ⟦D⟧ = t. We also define the set dagu(t)
that contains all DAGs for all reorderings of t, i.e.

dagu(t) = {D ∈ dag(t′) ∣ t′ ∈ tu}.

For a DAG D = (V, ρ), we look at the following two size measures:

• The number of its variables, ∣D∣V = ∣V∣. This is the same as the number
of nodes in the graph representation of a DAG.

• The number of edges in its graph representation, which is basically
the same as the number of subexpressions. For A ∈ V where ρ(A) =
f (A1, . . . , An) we define ∣A∣E = n. We also define ∣D∣E = ∑{∣A∣E ∣ A ∈ V}.

We are interested in what the smallest DAGs according to these size measures
are. Let t ∈ T (Σ). We define

min∣dag(t)∣V = min{∣D∣V ∣ D ∈ dag(t)},

min∣dag(t)∣E = min{∣D∣E ∣ D ∈ dag(t)},

min∣dagu(t)∣V = min{∣D∣V ∣ D ∈ dagu(t)},

min∣dagu(t)∣E = min{∣D∣E ∣ D ∈ dagu(t)}.

Since we are sometimes only interested in the size of an alphabet but not
its elements, we introduce the following shorthand notation: For r, k ∈N let
Tr,k = Tr({1, . . . , k}) and T∞,k = T ({1, . . . , k}). The trees in T∞,1 are also called
unlabelled. Formally, their nodes are all labelled with 1, but we will simply
write ⟨ f ⟩ instead of 1⟨ f ⟩.

With e = 2, 71828 . . . we always denote Euler’s constant and with ln n
(resp. log n) we denote the logarithm of n to base e (resp., 2).

For every t ∈ T (Σ), since t ∈ tu, we have

min∣dagu(t)∣E ≤ min∣dag(t)∣E,

min∣dagu(t)∣V ≤ min∣dag(t)∣V .

In this section we study the question of how much smaller a DAG for an
unordered version of a tree can be compared to a DAG of the original one.
Formally, we study the growth of the following two worst case ratios, where
n, r, k ∈N and r, k ≤ n:

αE(n, r, k) = max{ min∣dag(t)∣E
min∣dagu(t)∣E

∣ t ∈ Tr,k, ∣t∣ ≤ n} ,

αN(n, r, k) = max{ min∣dag(t)∣V
min∣dagu(t)∣V

∣ t ∈ Tr,k, ∣t∣ ≤ n} .

Let x ∈ {N, E}. Note that αx(n, 1, k) = 1 since each t ∈ T1,k is a linear chain,
and therefore nothing can be reordered. Hence, we only consider the ratio
αx(n, r, k) for r ≥ 2. Note that αx(n, r, k) ≤ αx(n, r′, k′) for all r, r′, k, k′ ≤ n with
r ≤ r′ and k ≤ k′, since Tr,k ⊆ Tr′,k′ . In the following we mainly concentrate
on the extreme cases αx(n, 2, 1) and αx(n, n, n), which we abbreviate by
αx(n) = αx(n, n, n).

We will show the following bounds:

αN(n, 2, 1) = Θ( n
log n

) , αN(n) = Θ(n ⋅ log log n
log n

) ,

αE(n, 2, 1) = Θ( n
log n

) , αE(n) = Θ( n
log n

) .
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Figure 1: A possible choice for the tree t16 from Lemma 23 with n = 16, r = h = 4 and
k = 2.

7.1 lower bounds for nodes/edges of dags

In this section, we prove two lower bounds. In the first part we derive a
lower bound of Ω(n/ log n) for αE(n, 2, 1). For this, we construct a family of
binary trees, where DAGs achieve almost no compression, but by reordering
the trees we achieve an exponential compression ratio. Later, we show that
this bound is tight by providing a matching upper bound for αE(n). Getting
a lower bound on unlabelled binary trees also gives us a lower bound for
all αE(n, r, k) where r, k ∈ N. Furthermore, it gives us a lower bound on
αN(n, r, k) because αE(n, 2, 1) ∈ Θ(αN(n, 2, 1)), since for binary trees it does
not matter whether we count the number of variables in a DAG or the
number of its edges. This is because by the definition of a DAG, all variables
must be reachable from the start variable. Therefore, in the following theorem
and its proof, we only consider trees from T2,1 (binary unlabelled trees). By
Bh ∈ T2,1 we denote the complete unlabelled binary tree with 2h leaves and
height h. This tree has size 2h+1 − 1 and its minimal DAG has Θ(h) variables.
For a tree t with k leaves and trees t1, . . . , tk we write t[t1, . . . , tk] to denote
the tree obtained from t by replacing the i-th leaf (in pre-order) by ti. For
k ≥ 1 let ck = ⟨k⟩k denote a chain of k nodes. We encode non-empty bit
strings by trees from T2,1 using the function β that is inductively defined as
follows: β(0) = ⟨⟨⟩⟨⟨⟩⟩⟩, β(1) = ⟨⟨⟨⟩⟩⟨⟩⟩, and β(ds) = ⟨β(d)β(s)⟩ for d ∈ {0, 1}
and s ∈ {0, 1}+. The construction in the proof of the following theorem is
similar to a construction from [22].

Lemma 23. For every n ≥ 2 there exists a tree tn ∈ T2,1 with

• ∣tn∣ ∈ Θ(n),

• h(tn) ∈ Θ(log n),
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Figure 2: A possible choice for the tree t16 from Theorem 6 with n = 16, x =

1
2 log log n = 1, and r = k = 4.

• min∣dag(tn)∣E ∈ Θ(n),

• min∣dagu(tn)∣E ∈ Θ(log n).

Hence, we have αE(n, 2, 1) ∈ Ω(n/ log n) and αN(n, 2, 1) ∈ Ω(n/ log n).

Proof. Let n ∈ N and h = ⌈log n⌉. Let r = 2k ∈ Θ(n/ log n) be the smallest
power of two that is at least n/h. Let u1, . . . , ur be r distinct bit strings of
length h (note that r ≤ n ≤ 2h). Consider the trees s1 = β(u1), . . . , sr = β(ur).
We add to si a chain of length h and obtain the tree s′i = ch[si] (1 ≤ i ≤ r).
Finally, set tn = Bk[s′1, . . . , s′r]. A possible choice for the tree t16 is shown in
Figure 1.

Let us first bound the size of tn. For Bk we have ∣Bk∣ ∈ Θ(r) = Θ(n/ log n).
The total size of all r copies of the chain ch is Θ(r ⋅ h) = Θ(n). Finally,
every si has size Θ(h), so their sizes sum up to Θ(r ⋅ h) = Θ(n). Altogether,
we get ∣tn∣ ∈ Θ(n). For the height we have h(Bk) ∈ Θ(log r) = Θ(log n),
h(ch) = h ∈ Θ(log n) and h(β(ui)) ∈ Θ(log(h)) = Θ(log log n) for 1 ≤ i ≤ r,
so altogether h(tn) ∈ Θ(log n). To bound min∣dag(tn)∣E, note that the trees
s1, . . . , sr are pairwise different. This implies that the r copies of the chains
ch cannot be identified. Therefore, every DAG has at least r ⋅ h ∈ Θ(n) many
variables, so min∣dag(tn)∣V ∈ Θ(n). Since every node of tn has rank at most
2, we also get min∣dag(tn)∣E ∈ Θ(n). However, we can reorder all s1, . . . , sr
into the same tree s, which also lets us reorder the ck[si] (1 ≤ i ≤ r) into
the same tree c′ = ck[s]. This lets us reorder tn into the tree Bk[c′, . . . , c′],
where c′ appears r times. A DAG for this tree can represent the Bk part with
Θ(log r) = Θ(log n) variables, the ck part with k ∈ Θ(log n) variables and s
with Θ(h) = Θ(log n) variables. We therefore get min∣dagu(tn)∣V ∈ Θ(log n)
and since tn is a binary tree we also get min∣dagu(tn)∣E ∈ Θ(log n).

In the next section, we will prove αE(n) ∈ O(n/ log n), which yields
the same upper bound for αE(n, 2, 1). Moreover, also the lower bound of
Ω(n/ log n) for αN(n, 2, 1) turns out be sharp (see Corollary 5 for k = 1). On
the other hand, for αN(n) = αN(n, n, n) we can improve the lower bound to
Ω(n log log n/ log n):

Theorem 6. Fix a constant δ > 1. For every n ≥ 1 large enough (depending on δ)
there exists a tree tn ∈ Tr,k with the following properties:
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• k = ⌈δ ⋅ log n/ log log n⌉ and r ∈ Θ(n ⋅ log log n/ log n),

• ∣tn∣ ∈ Θ(n),

• min∣dag(tn)∣V ∈ Θ(n),

• min∣dagu(tn)∣V ∈ Θ(log n/ log log n).

Hence, we have αN(n) ∈ Ω(n ⋅ log log n/ log n).

Proof. Fix n ≥ 1 and let x = 1
δ log log n, k = ⌈(log n)/x⌉ = ⌈δ ⋅ log n/ log log n⌉,

and r = ⌊n/k⌋ ∈ Θ(n ⋅ log log n/ log n). Let us first show that with this choice
we have k! ≥ r. With Stirling’s formula (or, more precisely, the inequality
z! ≥

√
2πz ⋅ (z/e)z) we get

k! ≥ (k/e)k ≥ (log n/ex)(log n)/x

= 2(log log n−log(ex))(log n)/x

= n(log log n−log(ex))/x.

Since moreover n ≥ n/k ≥ r, it suffices to show

n(log log(n)−log(ex))/x ≥ n,

i.e.,

log log n − log(ex) ≥ x = 1
δ

log log n,

or, equivalently

(1− 1
δ
) log log n ≥ log(ex) = log(e/δ) + log log log n,

which holds for n large enough. This shows that, indeed, k! ≥ r.
We now construct the tree tn ∈ Tr,k as follows: take r many pairwise

different trees s1, . . . , sr consisting of a root node with k many children, which
are leaves. The sequence of labels of these k leaves forms a permutation
of {1, . . . , k}. Since k! ≥ r, these r pairwise different trees exist. From si
we next construct s′i by adding the chain ck on top of si. Finally, the tree
tn is obtained by taking a new root node, whose children are the roots of
the trees s′1, . . . , s′r. A possible choice for the tree t16 is shown in Figure 2.
Note that for n large enough we have k ≤ r since k ∈ Θ(log n/ log log n) and
r ∈ Θ(n ⋅ log log n/ log n). Hence, tn ∈ Tr,k.

We get ∣tn∣ = 1 + 2rk ∈ Θ(n). For the number of variables of the DAGs
we obtain min∣dag(tn)∣V ∈ Θ(1 + rk + k) ⊆ Θ(n), since the root node, the
root nodes of si and the k leaves have to remain distinct in every DAG
for tn. Finally, note that all s1, . . . , sr can be reordered into the same tree,
and therefore the ck[si] (1 ≤ i ≤ r) can be reordered into the same tree. We
therefore obtain that

min∣dagu(tn)∣V ∈ Θ(k) = Θ(log n/ log log n),

which proves the statement.

7.2 upper bound for edges of dags

In this section we prove an upper bound for αE(n) via a lower bound of
Ω(log n) for the function

µ(n) ∶= min{min∣dagu(t)∣E ∣ t ∈ Tn,n, ∣t∣ = n} .
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Thus, if we take all trees of size n and all DAGs for all of their reorderings,
the smallest of them has size Θ(log n). Note that for binary trees this is
obvious since the height of such a tree is at least log n and the number of
edges of a DAG is at least the height of the tree. Also note that

µ(n) = min{min∣dag(t)∣E ∣ t ∈ Tn,n, ∣t∣ = n} .

since the set of all reorderings of all trees of size n is the same as the set of
all trees of size n. Moreover, it holds that

µ(n) = min{min∣dag(t)∣E ∣ t ∈ Tn,1, ∣t∣ = n} ,

i.e., it suffices to consider unlabelled trees. This is because adding labels to
a tree can make the minimal DAG only larger. Let D = (V, ρ, S) be a DAG
for such a tree. We define the existence of a path of length k, where k ∈ N,
between A, B ∈ V as follows: A path of length 1 exists from A ∈ V to B ∈ V
if B appears in ρ(A) as a subexpression (remember that DAGs have to be
in Chomsky normal form, so a path of length 1 from A to B means that
⟦B⟧D is a direct subtree of ⟦A⟧D). A path of length k + k′, where k, k′ ∈N and
k, k′ ≥ 1, exists from A to B if there is a C ∈ V such that there is a path of
length k from A to C and a path of length k′ from C to B. Furthermore,
every A ∈ V has a path of length 0 to itself. We consider the depth d(A) of a
variable A ∈ V which is defined as the length of a longest path from S to A
(remember that DAGs cannot have variables that are not reachable from S,
so this is well-defined). Thus d(S) = 0 and h(D) = max{d(A) ∣ A ∈ V}. For
1 ≤ i ≤ h(D) + 1 let Vi(D) = {A ∈ V ∣ d(A) = i − 1} be the set of variables at
depth i − 1. Finally, let ρi(D) = ∑{∣ρ(A)∣E ∣ A ∈ Vi(D)} for 1 ≤ i ≤ h(D). This
is the total number of edges that start in a node at depth i − 1. Every such
edge goes to a node at depth j ≥ i. We write Vi and ρi for Vi(D) and ρi(D),
respectively, if D is clear from the context.

Lemma 24. Let D = (V, ρ, S) be a DAG of height h = h(D). The number of leaves
of ⟦D⟧ is bounded by ∏h

i=1 ρi.

Proof. Consider the DAG D′ = ({1, . . . , h + 1}, ρ′, 1) with ⟦D′⟧ ∈ T∞,1. For-
mally, this is a tree labelled with 1, but for clarity, let us set a = 1. Let
ρ′(i) = aρi(i + 1, . . . , i + 1) (a node labelled with a that has ρi many children,
which are all i + 1) for 1 ≤ i ≤ h and ρ′(h + 1) = a0. The tree ⟦D′⟧ is a chain
of h + 1 nodes with ρi many edges from node i to node i + 1, which means
that ⟦D′⟧ has ∏h

i=1 ρi many leaves. It therefore suffices to transform D into
D′ and show that this transformation does not reduce the number of leaves
of ⟦D⟧.

First of all, we can identify in D all variables A with ρ(A) = a0. This does
not change ⟦D⟧, h(D), nor ρi for any 1 ≤ i ≤ h + 1. Hence, Vh+1 consists of
the unique sink node of D; let us call this variable s. Next, we construct
from D the DAG D1 = (V, ρ1, S), where ρ1 is defined as follows: For s we
set ρ1(s) = a0. Now, let A ∈ Vi with 1 ≤ i ≤ h and ρ(A) = ar(A1, . . . , Ar). We
set ρ1(A) = ar(A′

1, . . . , A′

r), where the variables A′

j are defined as follows: if
Aj ∈ Vi+1 then set A′

j = Aj. Otherwise, i.e., if Aj ∈ Vk with k > i + 1, then let A′

j
be a variable in Vi+1 such that there exists a path from A′

j to Aj. Note that
such a variable A′

j exists, since every variable in Vk (k > 1) has a predecessor
in Vk−1. Note that ⟦Aj⟧ is a subtree of ⟦A′

j⟧. Therefore, ⟦D1⟧ has indeed at
least as many leaves as ⟦D⟧.

The DAG D1 has still height h and ρi(D1) = ρi(D) for 1 ≤ i ≤ h. But in
contrast to D, each variable A ∈ Vi only uses variables from Vi+1 in ρ(A)
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(1 ≤ i ≤ h). Moreover, no variable A ∈ Vi (1 ≤ i ≤ h) has ρ1(A) = a0. If we now
merge all variables in Vi into a single variable, we obtain (up to naming of
variables) the DAG D′. Clearly, this merging increases the number of paths
from the root S to the sink s. But the number of such paths is exactly the
number of leaves in ⟦D⟧. This shows the lemma.

Theorem 7. We have µ(n) ≥ e
2 ⋅ ln(n/2).

Proof. Let t be an arbitrary (unlabelled tree) of size n. We first transform
t into a new tree t′ by adding exactly one additional child node to every
non-leaf of t. These new children are leaves in t′. Now t′ has the property
that every non-leaf node has at least two children. Note that ∣t∣ ≤ ∣t′∣ ≤ 2∣t∣
and therefore min∣dag(t)∣E ∈ Θ(min∣dag(t′)∣E). Let ` be the number of leaves
of t′. Since every non-leaf node of t′ has at least two children, we have
` ≥ ∣t′∣/2 ≥ n/2. Moreover, let h be the height of t′, let D ∈ dag(t′) and let
ρi = ρi(D). From Lemma 24 we obtain ` ≤ ∏h

i=1 ρi. On the other hand, we
have ∣D∣E = ∑h

i=1 ρi. The well-known inequality between the arithmetic and
geometric mean (see [24]) states that for all x1, . . . , xm ∈ R,

1
m
⋅

m
∑
i=1

xi ≥ (
m
∏
i=1

xi)
1/m

.

Applying this to the numbers ρi (1 ≤ i ≤ h), we get

∣D∣E =
h
∑
i=1

ρi ≥ h ⋅
⎛
⎝

h
∏
i=1

ρi
⎞
⎠

1/h

≥ h ⋅ `1/h.

To further bound the term h ⋅ `1/h, we consider it as a function of h: let
f (x) = x ⋅ `1/x. Its derivative is

f ′(x) = `1/x (1− ln(`)
x

) .

Therefore f (x) has a minimum at x = ln ` in the interval (0,∞), from which
it follows that

h ⋅ `1/h ≥ `1/ ln(`) ⋅ ln ` = e ⋅ ln `.

With ` ≥ n/2 we finally get

min∣dag(t)∣E ≥ 1
2
⋅ ∣d∣E ≥ e

2
⋅ ln ` ≥ e

2
⋅ ln(n/2).

For every tree t of size n we have min∣dag(t)∣E ≤ n. Moreover, by Theo-
rem 7 it holds that min∣dagu(t)∣E ≥ e

2 ⋅ ln(n/2). Hence, we obtain

min∣dag(t)∣E
min∣dagu(t)∣E

≤ 2n
e ⋅ ln(n/2) ∈ Θ(n/ log n),

which is stated in the next corollary.

Corollary 4. It holds that αE(n) ∈ O(n/ log n).
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7.3 upper bound for nodes of dags

In this section, we derive an upper bound on the node size of the minimal
DAG. We use log(k + 1) instead of log k in order to avoid log k = 0 for k = 1.

Theorem 8. For every tree t ∈ Tn,k of size n and height h, it holds that

min∣dag(t)∣V ∈ O(n ⋅ h ⋅ log(k + 1)
log n

) .

Proof. Let t ∈ Tn,k be a tree of size n and height h. Note that min∣dag(t)∣V is
the number of different subtrees of t. Let t′ be the tree that is obtained from
t by removing all maximal subtrees of size at most

m ∶= 1
2
⋅ log4k n = log n

2 ⋅ log 4k
.

Let f be the forest consisting of all these removed subtrees. Then the number
of different subtrees of t (i.e., min∣dag(t)∣V) is bounded by ∣t′∣ plus the
number of different subtrees in f . But the latter is bounded by the number of
trees s ∈ T∞,k with ∣s∣ ≤ m, which by [22, Lemma 1] is at most 4

3(4k)m = 4
3 n1/2.

Let us now bound ∣t′∣. Consider a leaf v of t′. Then, the subtree of t
rooted in v must have size larger than m; otherwise v would not belong
to t′. Therefore, t′ has at most n/m many leaves. Clearly, if every internal
node in t′ would have at least two children, then we could conclude that
t′ has at most 2n/m many nodes. But t′ may contain nodes with a single
child. Let us call such nodes unary. Moreover, let ` be the length of a longest
path in t′ in which all nodes except the last one are unary. Then, we get
∣t′∣ ≤ 2(` + 1)n/m ≤ 2(h + 1)n/m. In total, we get

min∣dag(t)∣V ≤ 2(h + 1)n
m

+ 4
3
⋅ n1/2

= 4 ⋅ (h + 1) ⋅ n ⋅ log 4k
log n

+ 4
3
⋅ n1/2 ∈ O(n ⋅ h ⋅ log(k + 1)

log n
) .

Corollary 5. It holds that αN(n, n, k) ∈ O ( n⋅log(k+1)
log n ) and αN(n) ∈ O ( n⋅log log n

log n ).

Proof. Let us first show αN(n, n, k) ∈ O ( n⋅log(k+1)
log n ). Let t ∈ T∞,k be a tree of

size n and height h. By Theorem 8 we have

min∣dag(t)∣V ∈ O(n ⋅ h ⋅ log(k + 1)
log n

) .

On the other hand, we clearly have min∣dagu(t)∣V ≥ h. Therefore, we get

min∣dag(t)∣V
min∣dagu(t)∣V

∈ O(n ⋅ log(k + 1)
log n

) .

Let us now prove αN(n) ∈ O ( n⋅log log n
log n ). Consider an arbitrary tree t ∈

T∞,n of size n. If more than log n labels occur in t, then we clearly have
min∣dagu(t)∣V > log n. Since min∣dag(t)∣V ≤ n we get (for n large enough)

min∣dag(t)∣V
min∣dagu(t)∣V

≤ n
log n

≤ n ⋅ log log n
log n

.
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On the other hand, if at most log n many different labels occur in t then the
bound αN(n, n, k) ∈ O ( n⋅log(k+1)

log n ) implies

min∣dag(t)∣V
min∣dagu(t)∣V

∈ O(n ⋅ log log n
log n

) .

This proves the bound αN(n) ∈ O ( n⋅log log n
log n ).

7.4 fslps for unordered forests

For a forest f ∈ F(Σ) we write min∣FSLP( f )∣ for the size of a smallest FSLP for
f and min∣FSLPu( f )∣ for the size of a smallest FSLP for any of the unordered
versions of f . Let k ∈N. Similar to trees, we write Fk = F({1, . . . , k}). The
forests from Fk that use exactly k many different labels are denoted with F=k.
For n ∈N we define

αFSLP(n) = max{ min∣FSLP( f )∣
min∣FSLPu( f )∣ ∣ f ∈ Fn, ∣ f ∣ = n} .

Theorem 9.

αFSLP(n) ∈ Θ
⎛
⎝

n ⋅ log log n

log2 n

⎞
⎠

.

We prove the upper bound in Lemma 25 and the lower bound in Lemma 27.

Lemma 25.

αFSLP(n) ∈ O
⎛
⎝

n ⋅ log log n

log2 n

⎞
⎠

.

Proof. For k, n ∈N with k ≤ n we define

α̂(n, k) = max{ min∣FSLP( f )∣
min∣FSLPu( f )∣ ∣ f ∈ F=k, ∣ f ∣ = n} .

Note that αFSLP(n) = max{α̂(n, i) ∣ 0 ≤ i ≤ n}. To show the lemma, we prove
that for all n, k ∈N, k ≤ n and n ≥ 2 we have

α̂(n, k) ∈ O
⎛
⎝

n ⋅ log log n

log2 n

⎞
⎠

.

Let k′ = max{k, 2}. For every f ∈ F=k with ∣ f ∣ = n we have that

min∣FSLP( f )∣ ∈ O ( n
logk′ n

) = O(n ⋅ log k′

log n
) .

On the other hand, we also have

min∣FSLPu( f )∣ ∈ Ω(max{k, log n}).

Therefore, we get

α̂(n, k) ∈ O( n ⋅ log k′

log n ⋅max{k, log n}) .

In case k ≤ log2 n, so k′ ∈ O(log n), we obtain

α̂(n, k) ∈ O
⎛
⎝

n ⋅ log log n

log2 n

⎞
⎠

.

75



In case k > log2 n we have k ≥ 2 > log2 2. Since the function f (x) = log2 x/x is
monotonically decreasing in the interval [2,∞] we have f (k) ≤ f (log2 n), so
f (k) ∈ O( f (log n)) and thus

α̂(n, k) ∈ O(n ⋅ log k
log n ⋅ k) ⊆ O(n ⋅ log log n

log n ⋅ log n
) .

Lemma 26. Let k ∈ N and A ⊆ Fk be a finite, non empty set. There is a forest
f ∈ A, where m = min∣FSLP( f )∣, such that m ⋅ log m ∈ Ω(log ∣A∣).

Proof. For f ∈ Fk let M( f ) be a minimal FSLP for f . We then define the set
B = {M( f ) ∣ f ∈ A}. Since all elements from A must have different minimal
FSLPs we have ∣A∣ = ∣B∣. Consider an injective function c∶B → {0, 1}∗ (which
is a binary encoding of these FSLPs). Let b = max{∣w∣ ∣ w ∈ Img(c)}. We have
Img(c) ⊆ {0, 1}≤b and since c is injective we also have ∣B∣ ≤ ∣{0, 1}≤b∣ and thus
b ∈ Ω(log ∣B∣). This means that there is a forest f ∈ A such that M( f ) needs
b ∈ Ω(log ∣B∣) = Ω(log ∣A∣) many bits to encode. Let m be the size of this FSLP.
Encoding an FSLP G over an arbitrary alphabet is possible withO(∣G∣ ⋅ log ∣G∣)
many bits, so m ⋅ log m ∈ Ω(b) and thus m ⋅ log m ∈ Ω(log ∣A∣).

Lemma 27.

αFSLP(n) ∈ Ω
⎛
⎝

n ⋅ log log n

log2 n

⎞
⎠

.

Proof. Let n ∈ N, n ≥ 2 and k = ⌊log2 n⌋ (so k ≥ 1). Let Γ ⊆ Fk be the set of
forests that are permutations of {1, . . . , k}, i.e. f ∈ Γ if and only if f = x1 . . . xk
with {x1, . . . , xk} = {1, . . . , k} for some x1, . . . , xk ∈ {1, . . . , k}. We have that
∣Γ∣ = k! = ⌊log2 n⌋! and every f ∈ Γ has size ∣ f ∣ = k. Let m = ⌊n/ log2 n⌋.
Consider the forests

A = {1⟨ f1⟩ . . . 1⟨ fm⟩ ∈ Fk ∣ f1, . . . , fm ∈ Γ}.

Let f ∈ A, so f = 1⟨ f1⟩ . . . 1⟨ fm⟩ for some f1, . . . , fm ∈ Γ. We have that ∣ f ∣ ∈
Θ(n). Furthermore, f can be reordered into, say, (1⟨ f1⟩)m, because the
fi (1 ≤ i ≤ m) are permutations of each other. For the reordered version
we can implement an FSLP of size Θ(k + log m) = Θ(log n), which means
that min∣FSLPu( f )∣ ∈ O(log n). We now show that there is an f ∈ A with

min∣FSLP( f )∣ ∈ Ω(n ⋅ log log n/ log n). We have ∣A∣ = (⌊log2 n⌋!)⌊
n

log2 n ⌋, so

log ∣A∣ ∈ Θ( n
log n

⋅ log((log n)!)) .

By Stirling’s formula we have for every x ∈N that log(x!) ∈ Θ(x ⋅ log x), so

log ∣A∣ ∈ Θ(n ⋅ log n ⋅ log log n
log n

) = Θ(n ⋅ log log n).

Using Lemma 26 we obtain that there is a forest f ∈ A such that

min∣FSLP( f )∣ ⋅ log min∣FSLP( f )∣ ∈ Ω(log ∣A∣) = Ω(n ⋅ log log n).

We have min∣FSLP( f )∣ ∈ O(n), so log min∣FSLP( f )∣ ∈ O(log n) and thus

min∣FSLP( f )∣ ∈ Ω( n ⋅ log log n
log min∣FSLP( f )∣) ⊆ Ω(n ⋅ log log n

log n
) ,

which together with min∣FSLPu( f )∣ ∈ O(log n) finishes the proof.
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7.5 tslps for unordered trees

For k ∈ N let T
[k] = ⋃{T ({1, . . . , k}, r) ∣ r∶ {1, . . . , k} → N}, which is the set

of all ranked trees that use at most k many different labels. The trees from
T
[k] that use exactly k many different labels are denoted with T=k. For a

tree t ∈ T
[k] let min∣TSLP(t)∣ be the size of a minimal TSLP for t and let

min∣TSLPu(t)∣ be the size of a minimal TSLP for one of the reorderings of t.
For n ∈N we define

αTSLP(n) = max{ min∣TSLP(t)∣
min∣TSLPu(t)∣ ∣ t ∈ T

[n], ∣t∣ = n} .

Theorem 10.

αTSLP(n) ∈ Θ
⎛
⎝

n ⋅ log log n

log2 n

⎞
⎠

.

Proof. For the upper bound we basically use the same argument as for FSLPs:
For k, n ∈N with k ≤ n we define

α̂T (n, k) = max{ min∣TSLP(t)∣
min∣TSLPu(t)∣ ∣ t ∈ T=k, ∣t∣ = n} .

As for FSLPs, we have for all n, k ∈N, k ≤ n and n ≥ 2 that

α̂T (n, k) ∈ O
⎛
⎝

n ⋅ log log n

log2 n

⎞
⎠

.

This again follows from the fact that every tree t ∈ T=k of size ∣t∣ = n can be
represented by a TSLP of size O(n/ logk n), while on the other hand every
TSLP for one of t’s unordered versions needs at least size max{k, log n}.

For the lower bound we basically change all the forests into their fcns form.
Let n ∈N, n ≥ 2 and k = ⌊log2 n⌋ (so k ≥ 1). Let σ = {1, . . . , k} ∪ {k, 2} where
r∶σ →N is defined by r(i) = i for i ∈ {k, 2} and r(a) = 0 for all a ∈ {1, . . . , k}.
Let Γ ⊆ T (σ, r) be the set of trees that have their root node labelled with
k and the children of the root node are a permutation of {1, . . . , k}. Let
m = ⌊n/ log2 n⌋. Consider the trees

A = {2⟨tm,⋯2⟨t2, t1⟩⋯⟩ ∈ T (σ, r) ∣ t1, . . . , tm ∈ Γ}.

Lemma 26 works the same for TSLPs, which is why we obtain that there is a
tree t ∈ A such that every TSLP for t has size at least Ω(n ⋅ log log n/ log n). On
the other hand, we can reorder every t ∈ A into, say, 2⟨t1,⋯2⟨t1, t1⟩⋯⟩, where
t1 appears m times. This tree has a TSLP of size O(k + log m) = O(log n).

7.6 experimental results

We contrast our theoretical results by experimental data for two corpora of
XML trees. In addition to minimal DAGs, we are interested in experiments
to measure the impact that unorderedness has on other tree compression
methods. The ones we test are the DAG variants introduced in [10] and the
grammar-based tree compressor “TreeRePair” [37]. These are the strongest
tree compressors that we are aware of. Instead of using these compressors
on a tree t directly, we apply them to its canonical tree canon(t). The tree
canon(a⟨t1 . . . tn⟩) is obtained by sorting the trees canon(t1), . . . , canon(tn)
according to their size, and in case of equal sizes, according to the lexico-
graphical order of their traversal strings (see for example [14]). This is the
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same as setting C = Σ and defining canon(t) = nfC(t) from Chapter 6. We
clearly have canon(t) ∈ tu for all trees t. Additionally, for all trees s, t we have
su = tu if and only if canon(s) = canon(t). It should be understood that our
experiment only gives a rough indication of the benefit of unorderedness for
compressors other than the DAG. We expect that a more careful adaptation
of those compressors to unordered trees will provide stronger compression.
We only report number of edges, so “size” in this section always refers to
number of edges.

We compare seven known tree compressors, which are considered in [10]:

1. minimal DAG,

2. minimal binary DAG,

3. minimal reverse binary DAG,

4. minimal hybrid DAG,

5. minimal reverse hybrid DAG,

6. DS, and

7. TreeRePair.

We choose these compressors, since they all produce a graph-based repre-
sentation of the input tree. This makes the output sizes of the compressors
comparable.

The minimal binary DAG (bdag) of a tree t is the minimal DAG of the fcns
encoding of t. The minimal reverse binary DAG (rbdag) is the minimal DAG
of the “first-child/previous-sibling encoding” (fcps), defined in the obvious
way. Binary DAGs and reverse binary DAGs share end- and begin-sequences,
respectively, of subtrees. This implies that both the bdag and rbdag of a
canonical tree can be larger than the corresponding minimal DAG of the
original tree. As an example consider the following tree

t = f ⟨g⟨cdbah⟩g⟨cdb⟩g⟨bdcdb⟩⟩.

This tree has 16 edges. Its minimal binary DAG has only 14 edges, because
the end-sequence of subtrees “cdb” occurs twice and can be shared. Similarly,
the minimal reverse binary DAG has size 14 (because “cdb” appears twice).
In contrast, the canonical tree of t

canon(t) = f ⟨g⟨bcd⟩g⟨abcdh⟩g⟨bbcdd⟩⟩

has a bdag and rbdag of 16 edges. Interestingly, such scenarios where bdag
and rbdag become larger for the canonical tree appear frequently in practice.

The hybrid DAG (hdag) (and reverse hybrid DAG (rhdag)) were introduced
in [10] as data structures that are guaranteed to be smaller than or equal
in size to both the DAG and the bdag (rbdag) of an unranked tree. The
hdag (resp., rhdag) is obtained from a DAG by applying the fcns encoding
(resp., fcps-encoding) to the rules of the DAG (where the DAG is viewed
as a regular tree grammar), and then computing the minimal DAG of the
resulting forest of encoded rules; see [10] for a precise definition. Similarly
as with bdag and rbdag, the hdag and rhdag can be larger for the canonical
tree than for the original one.

The acronym DS stands for “DAG and string compression”. The idea is
to compute a minimal DAG and to then apply a string compressor to the
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Corpus Docs Edges aD mD aR mR

I 21 3.1 ⋅ 106 6.6 36 5.7 3.9 ⋅ 106

II 1131 79465 7.9 65 6.0 2925

Table 1: Document characteristics, Edges = average number of edges in a tree, Docs
= number of documents, aD = average depth of a node, mD = maximum depth of a
node in any tree, aR = average rank of a node, mR = maximum rank of a tree

above mentioned rules of the DAG. As in [10], we use RePair [32] as our
string compressor. Finally, TR refers to the grammar-based tree compressor
TreeRePair of [37]. The sizes are numbers of edges of the compressed
structures, see [10] for details.

We use two different Corpora of XML documents. These corpora were
also used in [10]. For each document we consider the unranked tree of its
element nodes, i.e., we ignore attribute and text values. Corpus I consists of
XML documents from the web which are often used in XML compression
research. Many of the files of this corpus can be downloaded from the
XMLCompBench site1 (see [10] for details). Corpus II is a subset of files from
the University of Amsterdam XML Web Collection2. We have verified by hand
that, according to the tag names, all of the documents in Corpus I appear
to be order independent. By sampling Corpus II we also did not find order
dependent documents.

The characteristics of the Corpora are quite different: Corpus I consists
of few and very large files while Corpus II has many small files. Some
characteristics are shown in Table 1. As can be seen, the average size of
documents from Corpus I is about 40 times larger than that of Corpus II,
and the rank (=maximum length of sibling lists) of documents from Corpus I
is about 1300 times larger; this indicates that most of the documents from
Corpus I are indeed very long lists of (small) subtrees.

The implementations for dag, bdag, rbdag, hdag, and DS are the same
ones as used in [10]. Note that DS uses Gonzalo Navarro’s implementation
of RePair for strings3. For TreeRePair, called “TR” in what follows, we use
Roy Mennicke’s implementation4; we do not change any parameters and run
it plain from the command line (thus, the maxRank parameter of TR is at
its default value of 4). We do not report running times (they are provided
in [10]). The canonizer was implemented from scratch in java using integer
and string sorting as provided by java (this runs quite slow and can take
several hours for some of the documents).

The results of applying the different compressors to the documents of
Corpus I are shown in Table 2. The first line shows how the compression
ratio on the canonical tree changes with respect to the compression ratio for
the original tree (a percentage of more than 100% means that the compression
ratio is better on the canonical tree). The second row shows the sizes of
the compressed canonical trees (in number of edges). For instance, the
compression ratio of the hdag of the canonical tree of document “sprot39.dat”
is 67% of the ratio for the original tree. On the other hand, DS compressor
over the canonical tree of document “EnWikTionary” has a compression that
is 191-times better than the ratio for the original tree. For each document we

1 http://xmlcompbench.sourceforge.net
2 http://data.politicalmashup.nl/xmlweb
3 http://www.dcc.uchile.cl/~gnavarro/software/
4 http://code.google.com/p/treerepair
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Figure 3: Comparison of average sizes of Corpus I.

dag bdag rbdag hdag rhdag DS TR

1

2

3

4
⋅105

Original Canonical

indicate in bold the unique best increase of compression, and underline the
smallest size.

Note that the minimal DAG of the canonical tree can never be larger than
the minimal DAG of the original tree. Intuitively, every original repeating
subtree (that gets shared in the DAG) is also repeating in the canonical tree.
Thus, there cannot be percentages below 100 in the column for the DAG. In
every other column the percent number can potentially be below 100. This
is because these compressors take into account sibling sequences and hence
are effected by the change of sibling orders due to canonization. In fact,
this happens for the file “EXI-factbook”: here all compression ratios (except
that for the DAG) become worse for the canonical tree. It means the the
ordering of the canonization removes repetitions that are meaningful for the
compressor. It is interesting to see that for this outlier, the strongest overall
compressor TR (with respect to size) is affected the most: the compression
goes down to 81% of the original; this is also the only file where this ever
happens for TR. Another outlier that comes from the EXI group is EXI-
weblog, where no compression ratio changes; this document is in an order
that is isomorphic to that of the canonical tree.

The majority (almost one half) of documents have the strongest increase
for the DS compressor. In particular, all the EnWik documents belong to
this group. It is interesting to observe that for all the EnWik documents
only DS and TR give (massive) compression, while for all the DAG variants
the compression ratio does not change. This means that after canonization
there are (i) no repeating subtrees and (ii) no repeating prefixes or suffixes of
sibling lists that were different before canonization. Note also that for this
group, DS achieves the smallest size values for each document. It means
that there are no complex tree patterns that are repeating, and hence would
be compressed by TR but not by DS; all repetition seems to be purely on
the level of sibling lists. In contrast to that, observe the treebank file which
features (by far) the most complex tree structure of all the documents: here
the size of TR is almost twice smaller than that of DS. Curiously, the rhdag
has the highest increase for this document. There is another interesting
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document dag bdag rbdag hdag rhdag DS TR

1998statistics 118% 352% 373% 306% 333% 239% 211%
1164 682 632 422 373 200 238

catalog-01 146% 82% 177% 84% 182% 146% 117%
5856 8514 5830 5302 3295 2994 3390

catalog-02 114% 98% 111% 98% 113% 473% 331%
28496 53647 50858 27912 25823 5761 8072

dictionary-01 107% 102% 225% 104% 187% 130% 136%
54575 75827 33386 45214 24960 24634 16434

dictionary-02 116% 116% 254% 117% 207% 138% 145%
469915 588665 257228 353365 197197 194324 115932

EnWikiNew 100% 100% 100% 100% 100% 2712% 2282%
35075 70018 70025 35057 35054 341 422

EnWikiQuote 100% 100% 100% 100% 100% 2370% 2091%
23904 47692 47699 23888 23887 267 316

EnWikiVersity 100% 100% 100% 100% 100% 2672% 2287%
43693 87258 87263 43676 43673 264 326

EnWikTionary 100% 100% 100% 100% 100% 19108% 15839%
726221 1452273 1452279 726197 726191 428 531

EXI-Array 100% 100% 100% 100% 100% 425% 375%
95584 128009 128011 95562 95563 213 267

EXI-factbook 100% 100% 91% 96% 96% 93% 81%
4477 5090 3227 3766 2225 1937 1708

EXI-Invoice 100% 100% 100% 100% 100% 98% 102%
1073 2073 2067 1071 1066 98 106

EXI-Telecomp 100% 100% 100% 100% 100% 99% 102%
9933 19807 19808 9932 9931 111 137

EXI-weblog 100% 100% 100% 100% 100% 100% 100%
8504 16997 16997 8504 8504 44 58

JST_gene.chr1 100% 99% 100% 99% 100% 430% 396%
9176 14718 14103 7840 7206 917 1062

JST_snp.chr1 100% 98% 101% 97% 101% 382% 347%
23509 41444 37425 22805 19111 2571 2980

medline 165% 150% 240% 141% 222% 145% 141%
395754 493136 158984 326638 113932 122270 88109

NCBI_gene.chr1 100% 93% 110% 91% 116% 148% 137%
16038 15504 9839 11606 5912 4237 3764

NCBI_snp.chr1 100% 100% 100% 100% 100% 100% 100%
404704 809394 809394 404704 404704 61 83

sprot39.dat 102% 60% 269% 67% 237% 102% 102%
1724689 2394532 586523 1484814 376067 328469 257376

treebank 101% 99% 106% 99% 107% 104% 103%
1292198 1455300 1171666 1246195 1039933 1073301 510683

Table 2: Difference (in %) of canonical versus original tree compression, and size of
canonical compression output (largest in bold and smallest underlined, respectively).
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Figure 4: Comparison of average sizes of Corpus II.
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group of documents, namely those where the rbdag has the largest increase.
It means that after canonization there are a lot of repeating prefixes of sibling
sequences; thus, optional elements which typically appear at the end of
sibling lists (the reverse DAGs profit from that) have, after canonization,
remained to appear at the end. Apparently, this is less often the case for the
reverse hybrid DAG, i.e., after building the DAG there is less profit from
canonization. An interesting document that has always been challenging
with respect to compression [11] is medline: with 165% it has the largest
increase within the DAG column. This means that many permutations of
the same subtree sequences exist. This could be because these bibliography
entries have been entered manually by different persons, each having their
own preferences of ordering sibling lists. Observe also that every single
compressor has an increase of at least 140% for the medline document.
Similar to this is the 1998statistics document: here the DAG only increases
by 118%, but all others increase by 210% or more. Thus, there are not many
subtrees with precisely the same subtrees (possibly in different orders), but,
there is a large number of repetitions of subsequences of sibling lists, in
particular of prefix subsequences (viz. the highest increases of rbdag and
bdag).

In summary, Figure 3 and Figure 4 show the average sizes for the different
compressors for Corpus I and Corpus II, respectively. For Corpus I, all
compressors, except bdag (91%) and hdag (93%), show an improvement of
the compression ratio. DS (118%) and TR (124%), which already give very
high compression ratios, also have high increases. The biggest increases,
however, are seen for rbdag (134%) and rhdag (130%). For Corpus II, we
see that there is almost no difference in the case of bdag and hdag. Again,
DS (121%) and TR (123%) improve on their already high compression ratios,
while rbdag (117%) and rhdag (120%) achieve improvements as well.

Finally, we also tried a different canonizer: It assigns to every subtree t a
number i(t) such that for every pair of subtrees t1, t2 it holds that i(t1) = i(t2)
if and only if the unordered trees of t1 and t2 are equal. The children t1, . . . , tn
of a subtree t are then sorted with respect to i(t1), . . . , i(tn). While this
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algorithm runs a lot faster than sorting the whole subtrees, the compression
ratios only change very slightly.
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8E VA L UAT I N G AU T O M ATA

This section is motivated by so-called forest automata (see, for example [17]).
Like regular automata can be used to check if a word is a member of a
(regular) language, forest automata can be used to check if a forest is part
of a certain language. A naive approach to check if the forest of an FSLP is
accepted by a forest automaton would be to evaluate the FSLP first, which has
exponential runtime cost. We will present a faster implementation that uses
the fcns encoding. Later, we will show how to evaluate visibly one-counter
automata on FSLPs.

8.1 forest automata

The following definition from forest automata is from [17] where they are
called hedge automata.

Definition 49 (Forest automaton). For an alphabet Σ, the set of regular
expressions over Σ is denoted with R(Σ) and the language of a regular
expression e ∈ R(Σ) is denoted with L(e). A forest automaton is a tuple
A = (Σ, P, F,△), where P is a finite set of states, F ⊆ P and △∶P ×Σ → R(P).
Here, △ means that the automaton may label a tree a⟨ f ⟩ with q if f can
be labelled with a word from L(△(q, a)), i.e. a tree t is labelled with the
following set of states S(t):

S(a⟨t1 . . . tn⟩) = {q ∈ Q ∣ q1 ∈ S(t1), . . . , qn ∈ S(tn), q1 . . . qn ∈ L(△(q, a))}

The accepted language is L(A) = {t ∈ T (Σ) ∣ S(t) ∩ F ≠ ∅}. The size ∣A∣ is ∣Q∣
plus the sizes of the regular expressions appearing in △.

We make use of the fact that FSLPs can be converted into TSLPs for their
fcns encodings. Then we evaluate these on the corresponding tree automata:

Corollary 6. Given a forest automaton A and an FSLP F we can check in polyno-
mial time in both ∣A∣ and ∣F∣ whether A accepts ⟦F⟧.

Proof. We first use Proposition 8 to construct a TSLP T of size O(∣F∣) such
that ⟦T⟧ = fcns(⟦F⟧). Also, we use the construction from [17] (Proposition
8.3.2) to convert A into a tree automaton A′ such that for every f ∈ F(Σ)
we have A′ accepts fcns( f ) if and only if A accepts f . Whether A′ accepts
⟦T⟧ = fcns(⟦F⟧) can be tested in polynomial time using the construction
from [39].

8.2 visibly one-counter automata

In the following, we use a form of visibly one-counter automata on forests.
One-counter automata on strings basically have a natural number (a counter)
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that during transitions is incremented, decremented or left as is. In the case
of visibly one-counter automata the input symbol completely determines
which of these three cases happen (i.e. how the counter is modified does not
depend on the state the automaton is in). The input alphabet is therefore
divided into three parts: When reading call symbols the stack is incremented,
when reading internal symbols the stack is kept as is, and when reading
return symbols the stack is decremented, if possible. When return symbols are
encountered and the stack is already 0, the word is rejected. In e.g. [31, 2],
visibly one-counter automata may distinguish finitely many counter states,
e.g. if the counter is 5 it may do a different state transition than when the
counter is not 5. Here, we omit these capabilities and only focus on the
counter itself.

We start with a function c∶Σ → {−1, 0,+1} and extend this to c∗∶Σ∗ → Z
with c∗(ε) = 0, c∗(a) = c(a) for a ∈ Σ and c∗(vw) = c∗(v) + c∗(w) for v, w ∈ Σ∗.
We say that a word w ∈ Σ∗ is accepted by c starting with k ∈N if there is no
prefix v of w, i.e. w = vv′ for some v′ ∈ Σ∗, such that k + c∗(v) < 0. For
example, let Σ = {a, b}, c(a) = +1 and c(b) = −1. The word abba is accepted
starting with k ≥ 1 but not with k = 0, because c∗(abb) = −1. We say that a
word is accepted by c if it is accepted by c starting with 0. In case c is clear
from the context, we just say that a word is accepted (starting from k). The
goal now is to calculate if the string of an SLP is accepted by c. For this, we
compute a pair (m, d) ∈N×Z for each string expression s ∈ ES(Σ) with the
following properties:

• m is the smallest number such that ⟦s⟧ is accepted starting with m.

• d is c∗(⟦s⟧).

We define the algebra ((Z, τ),IS) with Z =N×Z, τ∶Z → {S} and

• IS(ε) = (0, 0),

• IS(a) = (max(0,−c(a)), c(a)),

• IS(○)((m`, d`), (mr, dr)) = (max(m`, mr − d`), d` + dr).

For example, if c(a) = −1, then IS(a) = (1,−1), meaning that 1 is the smallest
number that a is accepted with. If c(a) = 1, then IS(a) = (0, 1), so 0 is the
smallest number that a is accepted with.

Let us now extend the visibly one-counter setting to forests. A forest
a1⟨ f1⟩ . . . an⟨ fn⟩ ∈ F(Σ) is accepted by c if f1, . . . , fn ∈ F(Σ) are accepted by c
and a1 . . . an ∈ Σ∗ is accepted by c.

Like we did in Chapter 4, we use the notation M� as a short-hand for
M ⊎ {�} for any set M. To test if a forest is accepted, we implement the
following algebra A(c) = ((U , τU),I). For a forest expression e ∈ EF(Σ) with
e∶ F we basically calculate the same information as we did for strings, but
we also have to remember if every subforest is accepted. We therefore use
Z�, where � means that a subforest is rejected. For example, if f ∈ F(Σ)
is already rejected, then f`a⟨ f ⟩ fr cannot be accepted, regardless of what f`
and fr are. For forest expressions e ∈ EF(Σ) with e∶ Fx we compute two
pairs from Z, one for the forest left of x and one for the forest right of x. In
addition to that, if x is not part of the roof of the forest, then we compute
a third pair from Z for the roof. Furthermore, forests with parameters
can be rejected if a subforest is already rejected, regardless of what we
substitute for x or what we concatenate at the roof. We therefore choose
(Z × Z� × Z)� as carrier for forests with parameters. In total our carrier set
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is (U , τU) with U = (Z� ∪ (Z × Z� × Z)�), τU(x) = F if x ∈ Z� and τU(x) = Fx
if x ∈ (Z × Z� × Z)�. We evaluate forest expressions over it as follows: Let
e = (0, 0), x ○ y = IS(○)(x, y) for x, y ∈ Z and let A = {x ∈ Z ∣ x is accepted}.
The result of any operation is defined as � if one of the arguments is �, i.e.
for all s ∈ Z we have I(⊟)(�, s) = �, I(⊟)(s,�) = �, I(⊟)(�,�) = �, and so
on. The remaining cases where none of the arguments are � are defined as
follows:

• I(ε) = e,

• I(x) = (e,�, e),

• I(a(x)) = (e,IS(a), e),

• I(⊟)(`, r) = ` ○ r,

• I(6)((`, t, r), b) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

` ○ b ○ r if t = �,
t if t ≠ � and ` ○ b ○ r ∈ A,
� if t ≠ � and ` ○ b ○ r ∉ A,

• I(=)((`, t, r), s) = (`, t, r ○ s),

• I(<)(s, (`, t, r)) = (s ○ `, t, r),

• I(�)((`, t, r), (`′, t′, r′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(`′, t, r′) if t ≠ �, t′ ≠ �
and ` ○ t′ ○ r ∈ A,

� if t ≠ �, t′ ≠ �
and ` ○ t′ ○ r ∉ A,

(` ○ `′, t, r′ ○ r) if t ≠ � and t′ = �,
(`′, ` ○ t′ ○ r, r′) if t = � and t′ ≠ �,
(` ○ `′,�, r′ ○ r) if t = � and t′ = �.

Theorem 11. Given c∶Σ → {−1, 0, 1} and an FSLP F = (V, Γ, ρ, S) we can test if
⟦F⟧ is accepted by c in time O(∣F∣ ⋅ log(⟦F⟧)) and space requirements O(log(⟦F⟧)).

Proof. Since elements from U contain numbers in the size of ⟦F⟧, the space
requirements for such an element are in O(log(⟦F⟧)). Each operation from
I has to do arithmetic on these numbers, which has a runtime cost of
O(log(⟦F⟧)) per operation. We can therefore test if ⟦F⟧ is accepted by doing
the following: Let r = ⟦S⟧F,A(c). If r = � then ⟦F⟧ is rejected. Otherwise,
r = (m, d) and ⟦F⟧ is accepted if and only if m = 0.
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9
O P T I M A L W O R S T- C A S E C O M P R E S S I O N

Let Σ be an alphabet and σ = ∣Σ∣. Since we need σ as the base of logarithms,
we require that σ ≥ 2. Let min∣tdag(t)∣ denote the size of a smallest top dag
for a tree t ∈ C(Σ). A simple counting argument shows that Ω(n/ logσ n) is
the information-theoretic lower bound for

max{min∣tdag(t)∣ ∣ t ∈ C(Σ), ∣t∣ = n}.

We present a new linear-time top dag construction that achieves this bound.
In addition, our construction has two properties that are also true for the
original construction of Bille et al. [5], which are the following: Let t ∈ C(Σ)
with ∣t∣ = n.

• The size of the top dag is bounded by O(∣mdag(t)∣ ⋅ log n) and

• the height of the top dag is bounded by O(log n).

Concerning the first point it was shown in [4] that the factor log n for the
size actually occurs in the construction of [5]. The logarithmic bound on the
height is important to obtain the logarithmic time bounds for the querying
operations (e.g. computing the label, parent node, first child, right sibling,
depth, height, nearest common ancestor, etc. of nodes given by their preorder
numbers) in [5].

It was shown in [5] that their algorithm produces a top dag of size
O(n/ log0.19

σ n). In [27] this bound was improved to O(n log log n/ logσ n). Af-
ter the arXiv-version of this result had appeared, an alternative construction
of top dags of size O(n/ logσ n) was presented in [21]. In that paper, it is
also shown that the O(n log log n/ logσ n) bound for the top dag construction
from [5, 27] cannot be improved.

Theorem 12. There is a linear time algorithm that computes from a given tree
t ∈ C(Σ) with ∣t∣ = n a top dag G with ∣G∣ ∈ O(n/ logσ n), h(G) ∈ O(log n) and
∣G∣ ∈ O(∣mdag(t)∣ ⋅ log n).

An integral part of our construction is a modification of the algorithm
BU-Shrink (bottom-up shrink) from [22], which constructs in linear time
a TSLP of size O(n/ logσ n) for a given binary tree t. In addition to that,
the algorithm of Bille et al. from [5] is used. Our construction and the
algorithm of Bille et al. work on edge-labelled trees that label edges with
cluster expressions. We represent these using expressions over the following
signature:

Definition 50 (Edge-labelled cluster trees). Let

type
Z
= {△a ∣ a ∈ Σ} ∪ {∗i ∣ i ∈N, i ≥ 1}.

The signature SZ over Σ with types type
Z

has the following operations:
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∗a
1

∗b
2

(a
b)

(b
c) (b

d)

∗a
1

∗b
1

(a
b)

(b
c) �b b (b

d)

∗a
1

(a
b) �a b

b ((b
c) �b b (b

d))

Figure 1: Example of three equivalent edge-labelled cluster trees.

• c∶△a for every c ∈ EC(Σ), c∶ Ca, where a ∈ Σ,

• ∗a
n∶△n

a → ∗a for every n ∈N with n ≥ 1 and a ∈ Σ, and

• c∶ ∗b →△a for every c ∈ EC(Σ), c∶ Ca
b , where a, b ∈ Σ.

We set EZ(Σ) = E(SZ(Σ)).

Consider a tree t = a⟨b⟨cd⟩⟩. The most basic expression for t that only
uses atomic clusters is ∗a

1 ((a
b) (∗b

2 ((b
c) , (b

d)))). Here, the ∗a
i -operations take

the roles of (inner) nodes with i ≥ 1 outgoing edges, the cluster expressions
from Ca are labels of edges that lead to a leaf node (which we do not model
explicitly) and the cluster expressions from Ca

b are labels of edges that go
to an internal node. An algorithm that wants to build a cluster expression
for t can now perform simplifications on the EZ(Σ)-part of the expression,
while integrating multiple cluster expressions. We can transform the above
expression into ∗a

1 ((a
b) (∗b

1(((b
c) �b b (b

d)))), which can in turn be transformed

into ∗a
1 ((a

b) �a b
b ((b

c) �b b (b
d))). See Figure 1 for a visualization.

To start our algorithm, we are first going to convert a cluster into an
expression EZ(Σ), which is defined using the following two functions

sT ∶Σ → C(Σ) → EZ(Σ),

sF ∶Σ → C(Σ)+ → EZ(Σ),

that receive the current symbol as an extra parameter and are defined as

sT (a)(b⟨ f ⟩) =
⎧⎪⎪⎨⎪⎪⎩

(a
b) if f = ε,

(a
b) (sF(b)( f )) if f ≠ ε,

sF(a)(t1 . . . tn) = ∗a
n(sT (a)(t1), . . . , sT (a)(tn)).

We define s∶ C(Σ) → EZ(Σ) as s(a⟨ f ⟩) = sF(a)( f ). Following our previous
example, where t = a⟨b⟨cd⟩⟩, we get

s(t) = sF(a)(b⟨cd⟩)
= ∗a

1(sT (a)(b⟨cd⟩))

= ∗a
1 ((a

b) sF(b)(cd))

= ∗a
1 ((a

b) (∗b
2(sT (b)(c), sT (b)(d)))

= ∗a
1 ((a

b) (∗b
2 ((b

c) , (b
d)))) .

Any expression from EZ(Σ) can be evaluated into a cluster expression from
EC(Σ), which we do with the algebra AZ ,Σ = (UZ ,IZ), that is defined as
follows: Let EC(Σ) = {e ∣ e ∈ EC(Σ)} be a copy of EC(Σ). We set UZ =
(EC(Σ) ∪ EC(Σ), τZ) where τZ(c) = ∗a if c∶ Ca for some a ∈ Σ and τZ(c) = △a
if c∶ Ca for some a ∈ Σ. Then IZ is defined as follows:
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• IZ(c) = c if c∶ Ca for some a ∈ Σ,

• IZ(∗n)(c1, . . . , cn) = c1 �a a . . . �a a cn if c1, . . . , cn∶ Ca for some a ∈ Σ, and

• IZ(c)(d) = c �a b
b d if c∶ Ca

b for some a, b ∈ Σ.

We can then further evaluate this expression using ⟦⟧ of the cluster algebra,
so let ⟦⟧Z ∶ EZ(Σ) → T (Σ) be defined as ⟦⟧Z = ⟦⟧AC,Σ ○ ⟦⟧AZ ,Σ .

The algorithm of Bille et al. starts with a tree t ∈ T (Σ) and converts it
into a helper tree T̃ that is an edge-labelled tree, where at first every edge is
labelled with the corresponding atomic cluster expression. For our purpose,
we say that T̃ ∈ EZ(Σ) and that we can hand any such expression to the
algorithm, not just the ones that only consist of atomic clusters expressions.
The algorithm shrinks T̃ down to a single edge, i.e. an expression of the
form ∗1(T), which yields the resulting cluster expression T ∈ EC(Σ). Finally,
it returns mdag(T). The difference between our algorithm and applying the
algorithm of Bille et al. directly is that we do some preprocessing on T̃. The
guarantees the algorithm of Bille et al. gives about the size and the height
of the result only apply to the EZ -portion of T̃, not the clusters that are in
it. We therefore use the following view of Bille et al.’s algorithm. For an
expression e ∈ EZ(Σ) let Cl(e) be all cluster expressions appearing in e.

Lemma 28. Let T̃ ∈ EZ(Σ). We can construct in linear time a T ∈ EC(Σ) with

• ⟦T⟧AC,Σ = ⟦T̃⟧Z ,

• ∣mdag(T)∣ ∈ O(∣mdag(T̃)∣ ⋅ log ∣T̃∣ +∑{∣e∣ ∣ e ∈ Cl(T̃)}) and

• h(T) ∈ O(log ∣T̃∣ +max{h(e) ∣ e ∈ Cl(T̃)}).

We present two versions of our algorithm. The first one does not achieve
the mdag bound but is easier to explain, while the second one will be a slight
modification of the first one and will achieve the mdag bound. A high-level
overview of the steps performed during the first version of the algorithm is
as follows:

• Transform t ∈ C(Σ) into d ∶= s(t) ∈ EZ(Σ).

• Perform our modification of BU-Shrink which yields d′ ∈ EZ(Σ).

• Use the algorithm of Bille et al. to produce a top tree T ∈ EC(Σ).

• Construct G ∶= mdag(T).

9.1 modified bu-shrink

We fix a number k ∈N. For each e ∈ EC(Σ) we define its weight as w(e) = ∣⟦e⟧∣.
The algorithm performs the following operations on d as long as possible:

• We can change subexpressions of the form

e(∗b
1(e′))

into
e �a b

b e′

if w(e) < k and w(e′) < k, where e∶ Ca
b and e′∶ Cb.
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• We can change subexpressions of the form

e(∗b
1(e′( f )))

into
(e �a b

b c e′)( f )
if w(e) < k and w(e′) < k, where e∶ Ca

b and e′∶ Cb
c .

• We can change subexpressions of the form

∗a
n(u1, . . . , uj−1, e, e′, uj+2, . . . , un)

into
∗a

n−1(u1, . . . , uj−1, e �a a e′, uj+2, . . . , un)
if w(e) < k and w(e′) < k, where e, e′∶ Ca.

• We can change subexpressions of the form

∗a
n(u1, . . . , uj−1, e, e′( f ), uj+2, . . . , un)

into
∗a

n−1(u1, . . . , uj−1, (e �a a
b e′)( f ), uj+2, . . . , un)

if w(e) < k and w(e′) < k, where e∶ Ca and e′∶ Ca
b .

• We can change subexpressions of the form

∗a
n(u1, . . . , uj−1, e( f ), e′, uj+2, . . . , un)

into
∗a

n−1(u1, . . . , uj−1, (e �a a
b e′)( f ), uj+2, . . . , un)

if w(e) < k and w(e′) < k, where e∶ Ca
b and e′∶ Ca.

The algorithm is not deterministic since the cases can overlap. Which way
these ambiguities are resolved is not important (one could always try the
cases in order, for example). It is important however, that the algorithm
can be implemented in linear time. The arguments are more or less the
same as for the analysis of BU-Shrink in [22]: We replace at most ∣d∣ many
subexpressions, where each update step can be done in constant time. Which
updates we still have to do can be maintained as a set of positions into d,
which is initially populated by going over all subexpressions. When we
update a subexpression, it must be removed from the set, and some of the
surrounding expressions might need to be inserted into the set.

Before we continue, we need the following lemma which states that most
subexpressions represent forests of one or zero trees:

Lemma 29. Let e ∈ EZ(Σ). Then Θ(∣e∣) many subexpressions of e are either of
type Ca for some a ∈ Σ or have the form e(∗b

1(t)) for some e∶ Ca
b and t∶△b for some

a, b ∈ Σ.

Proof. Let E∶ EZ(Σ) → N be the number of subexpressions of the above
form and △∶EZ(Σ) → N the number of subexpressions that have a type
from △ ∶= ⋃{△a ∣ a ∈ Σ}. We will show that 2E(e) ≥ △(e) + 1. Since Θ(∣e∣)
many subexpressions of e have a type from △, this shows the lemma. A
subexpression with type from △ has either the form e′ with e′∶ Ca for some
a ∈ Σ, in which case we have 2E(e′) = 2 ≥ 1 + 1 = △(e′) + 1, or it has the
form e′(∗n(u1, . . . , un)) with n ≥ 1, where e′ ∈ Ca

b for some a, b ∈ Σ and
u1, . . . , un ∈ △b. We proceed using induction:
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• In case n = 1 we have

2E(e′(∗b
1(u))) = 2+ 2E(u) ≥ 2+△(u) + 1 ≥ △(e′(∗b

1(u))) + 1.

• In case n > 1 we have

2E(e′(∗b
n(u1, . . . , un))) = 2∑{E(ui) ∣ 1 ≤ i ≤ n}

≥ ∑{△(ui) ∣ 1 ≤ i ≤ n} + n

≥ △(e′(∗b
n(u1, . . . , un))) + 1.

The last step holds since △(e′(∗b
n(u1, . . . , un))) = 1+∑{△(ui) ∣ 1 ≤ i ≤ n}

and n ≥ 1.

We now show that after our preprocessing step that turns d into d′, we
have shrunk d by a factor of k:

Lemma 30. ∣d′∣ ∈ O(n/k).

Proof. The idea is as follows: We count the number of subexpressions of d′

with weight more than k and we will show that this is a constant fraction of
∣d′∣. Therefore the sum of the weights of these subexpressions must be Ω(n),
and thus ∣d′∣ ∈ O(n/k). To show that a constant fraction of subexpressions
have weight more than k we do the following: By Lemma 29 a constant
fraction of subexpressions are of the form e with e∶ Ca for some a ∈ Σ or
c(∗b

1(u)) for some c∶ Ca
b and some u∶ δb, where a, b ∈ Σ. We go through all

of these and for each one find at least one subexpression of weight more
than k in its vicinity (which might be the subexpression itself). Each time a
subexpression is found this way we assign it a marking. We will argue that
each subexpression can only be marked at most four times, i.e. we do not
overcount them. For each c(u) ∈ EZ(Σ,△) we set w(c(u)) = w(c). Let e ≠ d′

be a subexpression such that either e∶ Ca for some a ∈ Σ or e = c(∗b
1(u)) for

some c∶ Ca
b and some u∶△b, where a, b ∈ Σ. Since e is not the whole expression,

it must occur in a subexpression of the form ∗a
n(u1, . . . , uj−1, e, uj+1, . . . , un).

We assign the following markings:

• If w(e) > k we mark e.

• If e∶ Ca, j > 1 and w(uj−1) > k we mark uj−1.

• If e∶ Ca, j < i and w(uj+1) > k we mark uj+1.

• If e = c(∗b
1(u)) and w(u) > k we mark u.

At least one of the previous four cases must occur, because otherwise our
algorithm would not have stopped. In addition to that, every subexpression
can get marked at most four times. This means we found Ω(∣d′∣) subexpres-
sions of weight greater than k.

To bound the size of the resulting top dag G, we have to count the
number of different cluster expressions in T. This number can be upper-
bounded by the size of d′, which is in O(n/k), plus the number of different
cluster expressions of size at most 2k, since our algorithm cannot merge
two expressions where one has size larger than k. The latter number can be
bounded as follows: A cluster expression of size m can be seen as a binary
tree with m nodes, where every node has one of ` ∶= 2σ2 + 5 many different
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node labels, since there are σ2 many different cluster expressions of the form
(a

b), σ2 many of the form (a
b) and five internal operations. Since the number

of unlabelled binary trees of size m can be bounded by 4m, we obtain an
upper bound of 4m ⋅ `m = (4`)m for the number of cluster expressions of
size m. The number of cluster expressions of size at most m can therefore
be upper-bounded by (4`)1 + ⋅ ⋅ ⋅ + (4`)m ≤ m ⋅ (4`)m. In our case, m = 2k, so
we have at most 2k(4`)2k many different cluster expressions. We choose
k = c logr n where c = 1

4 (any 0 < c < 1
2 is fine) and r = 4`. The size of d′ is

therefore in O(n/ logr n) and the number of different cluster expressions of
size at most 2k is at most

2(1
4

logr n) r2( 1
4 logr n) ∈ O (logr(n) ⋅

√
n) ⊆ O( n

logr n
) .

Since logr x ∈ Θ(logσ x) for any x, we obtain the desired size bound of
O(n/ logσ n). Moreover, the algorithm of Bille et al. (Lemma 28) guarantees
that the height of T is in O(log n) since all cluster expressions in d′ have
height O(k) ⊆ O(log n).

9.2 dag-version of the algorithm

The second version of our algorithm, which achieves the O(∣mdag(t)∣ ⋅ log n)
bound, basically performs the merge steps on the minimal DAG instead of
on the tree. Earlier, we needed a representation of an edge-labelled cluster
tree and now we need one of an edge-labelled cluster DAG.

Definition 51 (Edge-labelled cluster DAG). An edge-labelled cluster DAG is
an SLP G = (V, Γ, ρ, S) over SZ where for each variable A ∈ V we have
ρ(A) = ∗a

n(e1, . . . , en), where n ≥ 1 and a ∈ Σ and for each 1 ≤ i ≤ n we
either have ei∶ Ca for some a ∈ Σ or ei = ci(Bi), ci∶ Ca

b for some a, b ∈ Σ and
B1, . . . Bn ∈ V.

A high-level overview of our modified algorithm is as follows:

• Instead of working on the previous d ∈ EZ(Σ), we first construct
mdag(t) which is an SLP over SD.

• Then we construct an edge-labelled cluster DAG D for t, which is an
SLP over SZ , that has roughly the same size as mdag(t).

• The modified version of our algorithm converts D into D′ which is also
an edge-labelled cluster DAG for EZ(Σ).

• We unfold D′ into d′ = unfold(D) ∈ EZ(Σ).

• We continue like we did previously.

The first step is implemented as follows: Let mdag(t) = (V′, ρ′, S). We define
D = (V, ρ, S), where

V = V′ ∖ {A ∈ V′ ∣ ρ(A) = a, a ∈ Σ}.

Let A ∈ V′ with ρ′(A) = b(A1, . . . , An) for some A1, . . . , An ∈ V′. We define
A△∶Σ → EC(Σ) as

A△(a) =
⎧⎪⎪⎨⎪⎪⎩

(a
b) if n = 0,

(a
b) otherwise.
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Let A ∈ V with ρ′(A) = a(A1, . . . , An), where A1, . . . , An ∈ V′. Since A ∈ V we
have n ≥ 1. We define

ρ(A) = ∗a
n(A△

1 (a), . . . , A△

n (a)).

For example, let mdag(t) = ({A, B, S}, ρ′, S) with ρ′(S) = a(A, A), ρ′(A) =
b(B) and ρ′(B) = c. We then have D = ({A, S}, ρ, S) with

ρ(S) = ∗a
2 ((a

b) (A), (a
b) (A)) ,

ρ(A) = ∗b
1 ((b

c)) .

The possible transformations our algorithm does on D are as follows:

• If there is a variable A ∈ V with ρ(A) = ∗a
n(α1, . . . , αn), αi = ei(Bi),

ρ(Bi) = ∗b
1(e) for some 1 ≤ i ≤ n, where w(ei), w(e) < k, ei∶ Ca

b and e∶ Cb

then we can change ρ(A) into

∗a
n(α1, . . . , αi−1, ei �a b

b e, αi+1, . . . , αn).

• If there is a variable A ∈ V with ρ(A) = ∗a
n(α1, . . . , αn), αi = ei(Bi),

ρ(Bi) = ∗b
1(e(B)) for some 1 ≤ i ≤ n, where w(ei), w(e) < k, ei∶ Ca

b and
e∶ Cb

c then we can change ρ(A) into

∗a
n(α1, . . . , αi−1, (ei �a b

b c e)(B), αi+1, . . . , αn).

• If there is a variable A ∈ V with ρ(A) = ∗a
n(α1, . . . , αn) and there is an

1 ≤ i < n such that αi = ei, αi+1 = ei+1, w(ei), w(ei+1) < k and ei, ei+1∶ Ca

then we can change ρ(A) into

∗a
n−1(α1, . . . , αi−1, ei �a a ei+1, αi+2, . . . , αn).

• If there is a variable A ∈ V with ρ(A) = ∗a
n(α1, . . . , αn) and there is an

1 ≤ i < n such that αi = ei(B), αi+1 = ei+1, w(ei), w(ei+1) < k, ei∶ Ca
b and

ei+1∶ Ca then we can change ρ(A) into

∗a
n−1(α1, . . . , αi−1, (ei �a a

b ei+1)(B), αi+2, . . . , αn).

• If there is a variable A ∈ V with ρ(A) = ∗a
n(α1, . . . , αn) and there is an

1 ≤ i < n such that αi = ei, αi+1 = ei+1(B), w(ei), w(ei+1) < k, ei∶ Ca and
ei+1∶ Ca

b then we can change ρ(A) into

∗a
n−1(α1, . . . , αi−1, (ei �a a

b ei+1)(B), αi+2, . . . , αn).

In all three steps, neither ∣D∣ nor h(D) increase. It is possible to “orphan”
a variable in one of these steps, i.e. it is not used in ⟦S⟧D anymore, in
which case we remove it. The size bound O(n/ logσ n) and the height bound
O(log n) for mdag(T) follow from our previous arguments. It remains to
show that ∣mdag(T)∣ ∈ O(∣mdag(t)∣ ⋅ log n). The algorithm of Bille et al.
(Lemma 28) guarantees that

∣mdag(T)∣ ∈ O (∣mdag(d′)∣ ⋅ log ∣d′∣ +∑{∣e∣ ∣ e ∈ Cl(d′)}) .

First, we have ∑{∣e∣ ∣ e ∈ Cl(d′)} ∈ O(∣mdag(t)∣ ⋅ log n) because ∣d′∣ ≤ ∣mdag(t)∣
and every e ∈ Cl(d′) has size ∣e∣ ∈ O(log n). It therefore remains to show that
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Figure 2

∣mdag(d′)∣ ⋅ log ∣d′∣ ∈ O(∣mdag(t)∣ ⋅ log n). We obviously have ∣d′∣ ≤ n, so
log ∣d′∣ ≤ log n. We also have ∣mdag(d′)∣ ≤ ∣mdag(t)∣ because

∣mdag(d′)∣ ∈ O(∣D′∣) ⊆ O(∣D∣) ⊆ O(∣mdag(t)∣).

In more detail, we have ∣mdag(d′)∣ ≤ ∣D′∣ since D′ is a DAG for d′ (which
might be larger than the minimal DAG), ∣D′∣ ≤ ∣D∣ because the algorithm
only reduces the size of the current DAG, and ∣D∣ ∈ O(∣mdag(t)∣) because
the minimal edge-labelled DAG and the minimal DAG have roughly the
same size.

Example 9. Consider the following edge-labelled cluster DAG D, that is
also presented in Figure 2. Let N ∈ N, N ≥ 1, and D = (V, Γ, ρ, S) with
V = {S, A, B} and

ρ(S) = ∗a
N ((a

a) (A), . . . , (a
a) (A)) ,

ρ(A) = ∗a
2 ((a

a) , (a
b) (B)) ,

ρ(B) = ∗b
1 ((b

a)) .

Our algorithm performs the following steps: In the first step, we merge
horizontally in ρ(A) and obtain

ρ(A) = ∗a
1 (((a

a) �a a
b (a

b)) (B)) .

In the second step, we merge ρ(B) into ρ(A) and obtain

ρ(A) = ∗a
1 (((a

a) �a a
b (a

b)) �a b
b (b

a)) .

Since B is not used anymore, we remove it. We choose N to be large enough
such that the previous steps are actually allowed.
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10
F U T U R E W O R K

In Chapter 4 we showed how to navigate in trees and forests and how to
do subtree equality checks in constant time. We allowed polynomial time
preprocessing, during which we need to find all equal subtrees. This in
turn needs equality checks of TSLPs/FSLPs, which we implemented using
equality checks on SSLPs. Currently, the best known algorithm for this is the
one by Jeż [29], which needs quadratic time. It would be interesting to see if
we can implement the whole preprocessing step in quadratic time as well.

In Chapter 6 we implemented equality checks of FSLPs, allowing symbols
to be associative and/or commutative. It would be interesting for which other
algebraic laws this can be tested in polynomial time. We are confident that we
can extend this to idempotent symbols, meaning that a⟨ f ttg⟩ = a⟨ f tg⟩ for all
f , g ∈ F(Σ) and t ∈ T (Σ). Another interesting open problem concerns context
unification modulo associative and commutative symbols. The decidability
of (plain) context unification was a long standing open problem finally solved
by Jeż [28], who showed the existence of a polynomial space algorithm. Jeż’s
algorithm uses his recompression technique for TSLPs. One might try to
extend this technique to FSLPs with the goal of proving decidability of
context unification for terms that also contain associative and commutative
symbols. For first-order unification and matching [25], context matching [25],
and one-context unification [18] there exist algorithms for TSLP-compressed
trees that match the complexity of their uncompressed counterparts. One
might also try to extend these results to the associative and commutative
setting.

In Chapter 7 we investigated how large the difference between the DAG
of a tree and the DAG of one of its unordered versions can be (counting edges
or nodes). Another question would be what this difference is on average.

The syntax we chose for forest algebras is the one that we found most
natural. In [8] a slightly different approach is taken. There, the authors also
introduce laws (equalities on forest expressions) that the algebras must fulfil.
It would be interesting to see for which forest algbra (including laws) the
forests and forest contexts are the initial algebra.
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