
GRAPHICAL MODELS AND SIMULATION
FOR THZ-IMAGING

GRAPHISCHE MODELLE UND SIMULATION
FÜR THZ-BILDGEBUNG

DISSERTATION
zur Erlangung des Grades eines

Doktors der Ingenieurwissenschaften

von
Martin Pätzold

eingereicht bei der
Naturwissenschaftlich-Technischen Fakultät

der Universität Siegen

Juni 2017

1. Gutachter: Prof. Dr. Andreas Kolb
2. Gutachter: Prof. Dr. Peter Haring Bolívar

Tag der mündlichen Prüfung: 24.01.2018

Gedruckt auf alterungsbeständigem holz- und säurefreiem Papier

A B S T R A C T

The utilization of terahertz (THz) radiation is an active research field.
Approaches for non-intrusive material monitoring or reliable surveil-
lance of hidden treats promise considerable improvements of current
technologies in these research fields. Due to the prototypical nature
of current methods, easily accessible or unoptimized techniques are
commonly used for processing THz data or simulating THz radiation.
Methods of computer graphics (CG) allow an efficient prototyping to
evaluate the potential of these new THz technologies and algorithms.

In this thesis, CG methods are developed and applied to the prob-
lems of THz research. It is shown that these methods are beneficial in
terms of efficiency and performance. A sparse voxel tree (SVT) is pro-
posed to store highly detailed objects with inner structures for sim-
ulating the imaging capabilities of THz setups. Mainly, an efficient
creation and rendering of this voxel structure are introduced. The
SVT is applied to the simulation of a prototypical THz setup which
scans a scene by focused radiation.

Another THz setup, which is based on unfocused radiation and
synthetic aperture techniques, is used to show the benefits of GPU
algorithms for the reconstruction of large THz data. Furthermore, a
volume based simulation of this system is shown. In addition, a geo-
metrical configuration of the THz system and the rendering of multi-
modal data from the THz setup are introduced.

iii

Z U S A M M E N FA S S U N G

Die Nutzbarmachung von Terahertz (THz) Strahlung ist ein aktives
Forschungsfeld. Ansätze für berührungsfreie Materialüberwachung
oder zuverlässliche Kontrolle von versteckten Bedrohungen verspre-
chen erhebliche Verbesserungen von derzeitigen Technologien in die-
sen Forschungsfeldern. Durch den prototypischen Charakter aktuel-
ler Methoden werden leicht zugängliche oder unoptimierte Techni-
ken bevorzugt um THz Daten zu verarbeiten oder THz-Strahlung zu
simulieren. Methoden der Computergraphik (CG) erlauben ein effi-
zientes Prototyping um das Potential von neuen THz-Technologien
and Algorithmen zu evaluieren.

In dieser Arbeit werden CG-Methoden entwickelt und auf die Pro-
blemstellungen in der THz Forschung angewendet. Es wird gezeigt,
dass diese Methoden in Bezug auf Effizienz und Performanz vorteil-
haft sind. Ein Sparse Voxel Tree (SVT) wird vorgeschlagen um hoch-
detaillierte Objekte mit inneren Strukturen zu repräsentieren und die
bildgebenden Möglichkeiten eines THz-Setups zu simulieren. Haupt-
sächlich wird die effiziente Erstellung und das Rendering dieser Vo-
xelstruktur vorgestellt. Der SVT wird für die Simulation eine proto-
typischen THz-Setups eingesetzt, welches die Szene mit fokussierter
Strahlung abtastet.

Ein anderes THz-Setup, welches mit unfokussierter Strahlung und
synthetischer Apertur arbeitet, wird verwendet um die Vorteile von
GPU-Algorithmen zur Rekonstruktion von großen THz Datensätzen
zu zeigen. Weiterhin wird eine volumenbasierte Simulation für dieses
System präsentiert. Zusätzlich wird eine geometrische Konfiguration
und das Rendering von multimodalen Daten des THz Setups vorge-
stellt.

iv

C O N T E N T S

1 introduction 1

1.1 Motivation 1

1.2 Challenges 1

1.3 Contribution 2

1.4 Outline 2

2 fundamentals 5

2.1 Computer Graphics 5

2.1.1 3D Representations 5

2.1.2 Rendering 9

2.1.3 Illumination 13

2.1.4 GPGPU 17

2.2 Terahertz Radiation 19

2.2.1 Electromagnetic Spectrum 19

2.2.2 Imaging Systems 20

2.2.3 Applications 22

2.3 Requirements 22

2.3.1 Simulating THz Radiation 22

2.3.2 Processing THz Data 24

3 sparse voxel trees 25

3.1 Motivation 25

3.2 Concept for THz Simulations 26

3.3 Data Structure 30

3.3.1 Related Work 30

3.3.2 Generalization of SVOs to SVTs 33

3.3.3 Attribute Compression 36

3.3.4 Memory Consumption 37

3.4 Voxelization 40

3.4.1 Overview 40

3.4.2 Related Work 40

3.4.3 Algorithm Overview 42

3.4.4 Triangle Stream Processing 43

3.4.5 Voxel Stream Processing 49

3.4.6 Results 53

3.5 Rendering 65

3.5.1 Overview 65

3.5.2 Related Work 65

3.5.3 Algorithm Overview 67

3.5.4 Ray Traversal 69

3.5.5 Optimizations 77

3.5.6 Results 86

v

vi contents

3.6 Summary 95

4 simulation of wave effects 97

4.1 Motivation 97

4.2 Overview of Simulation Methods 98

4.3 Related Work 98

4.4 Main Influences on a THz Simulation 99

4.4.1 Wave Properties 99

4.4.2 Object Interaction 101

4.4.3 Acquisition System 103

4.5 THz Simulations 104

4.5.1 Hybrid Setup Simulation 105

4.5.2 THz Simulation with SVTs 115

4.6 Summary 133

5 description of thz imaging systems 135

5.1 Motivation 135

5.2 Hybrid 3D Scanning System 136

5.2.1 System 136

5.2.2 Configuration 137

5.2.3 Geometrical Calibration 139

5.2.4 Reconstruction on GPU 145

5.2.5 3D Image Generation 148

5.3 Pixelwise Scanning System 152

5.3.1 System 152

5.3.2 Configuration 154

5.4 Summary 155

6 conclusion 157

6.1 Summary 157

6.2 Future Work 158

6.2.1 Adaptive and Palette-Based SVTs 158

6.2.2 Ray Queue for Multi-Bounce Simulations 159

6.2.3 SVTs without Triangles and Rays 159

bibliography 161

L I S T O F F I G U R E S

Figure 2.1 Texture mappings for more surface details 6

Figure 2.2 A common example for octree usage 8

Figure 2.3 Octree variants 9

Figure 2.4 Coordinate transformations of a rasterization
pipeline 10

Figure 2.5 Rasterization and fragment shading 11

Figure 2.6 Maximum intensity projection and isosurface
rendering 12

Figure 2.7 Parameters of illumination models 14

Figure 2.8 Microfacets, shadowing and masking 15

Figure 2.9 The spectral band of THz radiation 19

Figure 3.1 Voxel rendering variants 28

Figure 3.2 Sampling estimation for varying N 29

Figure 3.3 SVO structure of [LK10] 31

Figure 3.4 Hierarchical voxel slabs of [LK10] 32

Figure 3.5 N3-tree of [LHN05] 32

Figure 3.6 Node representation of [CNLE09] 33

Figure 3.7 Generalizing SVOs of [LK10] to SVTs 34

Figure 3.8 Generalizing the Morton order 35

Figure 3.9 Color compression 36

Figure 3.10 Normal compression of [CDE∗14] 36

Figure 3.11 Memory structure of the SVT 38

Figure 3.12 N influences the memory consumption 39

Figure 3.13 Overview of the voxelization approach 44

Figure 3.14 Triangle subdivision cases 45

Figure 3.15 Functionality of the stitch queue buffer 52

Figure 3.16 Scenes for evaluation of the SVT creation 54

Figure 3.17 Comparing attributes of SVT creation with SVO
approaches 59

Figure 3.18 Parameter influence on memory usage 60

Figure 3.19 Parameter influence on triangles per batch 60

Figure 3.20 Parameter influence on number of voxel-attribute
pairs per batch 61

Figure 3.21 Parameter influence on timings 61

Figure 3.22 Tree traversal of [CNLE09] with kd-restart of
[HSHH07] 67

Figure 3.23 Intersection of ray and brick with bitmasks 72

Figure 3.24 Voxel ray traversal of [AW87] 74

Figure 3.25 Push() and Pop() for stack-based traversal 76

Figure 3.26 Idea of beam optimization from [LK10] 78

vii

viii List of Figures

Figure 3.27 Using dilation to compensate error of beam
optimization 79

Figure 3.28 Stopping criteria of beam optimization and early
exit 81

Figure 3.29 Influence of N to parent attributes 82

Figure 3.30 Level-of-detail popping of early exit 83

Figure 3.31 Example for the use of bitstacks 84

Figure 3.32 Used views of evaluation 86

Figure 3.33 Views of volume rendering evaluation 90

Figure 3.34 Influence of ray length on performance 93

Figure 4.1 Constructive and destructive interference 100

Figure 4.2 Polarization variants 100

Figure 4.3 Diffraction and Huygen-Fresnel Principle 101

Figure 4.4 Radiation pattern of an antenna 103

Figure 4.5 Beam parameter product, Rayleigh length 104

Figure 4.6 Parameters for the reflection mechanisms 107

Figure 4.7 Influence of σh and Lc 108

Figure 4.8 Parameters for focusing and spotlight 109

Figure 4.9 Influence of θTx/Rx 110

Figure 4.10 Roughness influences reconstruction 112

Figure 4.11 Geometrical properties of a THz setup influ-
ence the imaging 112

Figure 4.12 Adjustable antenna properties 113

Figure 4.13 Comparing simulation and measurement 114

Figure 4.14 Thickness voxelization with triangles 116

Figure 4.15 Layer creation and error of postponed evalua-
tion of physical behavior 117

Figure 4.16 Gaussian beam with ray bending 120

Figure 4.17 Iterating material layers 122

Figure 4.18 Phase maps for a varying number of rays 126

Figure 4.19 Rendered SVT scenes for evaluation 127

Figure 4.20 Influence of roughness in the Rough scene 130

Figure 4.21 The Usaf scene shows influences of the focus-
ing and the radiation pattern 131

Figure 4.22 Frequency-dependent reflection behavior in the
Crystal scene 132

Figure 4.23 Frequency-dependent transmittance behavior in
the Crystal scene 132

Figure 4.24 Influence of rlens in the Crystal scene 133

Figure 5.1 Prototype for hybrid 3D THz imaging 136

Figure 5.2 Configuring hybrid imaging setups 138

Figure 5.3 Measurement by laser distance meter 140

Figure 5.4 Pillar scene for geometrical calibration 141

Figure 5.5 Determination of angular slice with maximum
intensity 142

Figure 5.6 Parameters for findingUv by optimization 143

Figure 5.7 Calibration of THz and optical camera 144

Figure 5.8 Efficiency of precalculated distances 147

Figure 5.9 Alternative renderings of pure slices 149

Figure 5.10 Interpolation for fusing intensity values 150

Figure 5.11 Rendering of fused volume grids 151

Figure 5.12 Volume rendering with multimodal overlay 152

Figure 5.13 Pixelwise Scanning System 153

L I S T O F TA B L E S

Table 3.1 Memory consumption for varying N 39

Table 3.2 Comparing performance of SVT creation with
SVO approaches 55

Table 3.3 Memory consumption and performance break-
down for performance comparison 56

Table 3.4 Triangle counts for varying Kmax
vox/tri 62

Table 3.5 Influence of N on memory consumption 63

Table 3.6 Influence of implementation details on mem-
ory consumption 64

Table 3.7 Evaluating the influence of N on performance
for SVT creation 65

Table 3.8 Variables for ray traversal of SVTs 71

Table 3.9 Comparing rendering performance of [LK10]
and SVT 88

Table 3.10 Evaluating the influence of early exit and beam
optimization 89

Table 3.11 Performance of SVTs for volume rendering 92

Table 3.12 Influence of ray iterations on performance 94

Table 4.1 Statistical surface roughness parameters 102

Table 4.2 Differences between [Kli12] and THz simula-
tion with SVTs 124

Table 4.3 Setup properties for simulating THz radiation
with SVT rendering 125

Table 4.4 Statistics of THz scenes 128

Table 4.5 Influence of material and thickness on the THz
simulation with SVTs 129

Table 4.6 Signals of different roughness values 129

Table 5.1 Parameters of the system configuration 137

ix

1
I N T R O D U C T I O N

1.1 motivation

Simulating light propagation and processing massive data in a per-
formant manner are two main research areas in computer graphics
(CG). Well established approaches for both disciplines and different
applications exist (e.g. [Vit01, RDGK12]). Terahertz (THz) imaging
as a very promising modality is an interesting application, because it
provides new challenges for these research fields.

The simulation of THz radiation allows a prototyping and evalu-
ation of imaging quality of systems which are not built physically.
Therefore, production costs can be reduced and the imaging quality
can be improved before an expensive system is produced. The effi-
cient processing of massive THz data leads to performant imaging
systems, which are needed for applications like security screenings
or material testing in mass production.

1.2 challenges

Regarding performant illumination methods, valid approximations
for visible light become incorrect for THz radiation. These approx-
imations solely depend on ray optics, but they are only valid if the
wavelengths of the radiation are much smaller than the radiated sur-
face irregularities [ST07]. Wavelengths of THz radiation reach the
dimensions of real-world surfaces and effects that are explained by
wave optics can not be neglected because they influence the imag-
ing. Therefore, physical effects like scattering from rough surfaces
or interference need to be included for a more correct simulation of
THz radiation. Additionally, a finer ray sampling and highly detailed
surface representations are required to incorporate these effects cor-
rectly. The processing of massive data becomes important here. A
performant creation and processing of scene representations with a
high level-of-detail are necessary. Furthermore, THz imaging setups
are not standardized yet (cf. [FvSB∗11]). Individual system descrip-
tions are used to reconstruct and fuse the measured sensor data. To
allow a performant processing of massive data in these cases, an effi-
cient geometrical configuration of the THz system is necessary.

1

2 introduction

1.3 contribution

The following contributions to the aforementioned challenges are pre-
sented in this thesis:

• Based on sparse voxel octrees (SVOs), a generalized sparse
voxel tree (SVT) structure has been developed. The reduction
of memory requirements for a surface representation allows a
higher level-of-detail by increasing the resolution of the repre-
sented surface. The implemented rendering of these SVTs al-
lows a faster processing and improves the performance of a
simulation accordingly. For the special case of octrees, an out-
of-core construction on a graphics processing unit (GPU) has
been published in [PK15].

• By utilizing the processing speed of GPUs, fast simulation meth-
ods of several physical properties that influence THz imaging
systems have been developed. Mainly, the roughness of irra-
diated surfaces and the properties of THz antennas have been
considered. Parts of these simulation methods are published in
[PKK∗13].

• The performance of a two-dimensional synthetic reconstruction
of massive THz data has been improved. It allows a near real-
time processing by the reduction of computational overhead
and the use of the GPU. The approach is published in [KKP∗12]
and [PKK∗13].

• A geometrical configuration and calibration for THz scanning
systems has been developed. For the use case of a prototypical
scanner, it allows to fuse reconstructed surface profiles to a con-
sistent 3D representation of the scanned object. Furthermore,
a geometrical calibration for multimodal processing is used to
render the reconstructed 3D volume with an overlay of a video
image. Partially, the results have been published in [PKK∗13].

1.4 outline

After this introduction, chapter 2 provides the fundamentals for the
dissertation. Furthermore, requirements for the usage of graphical
models and simulation for THz imaging are evaluated.

Chapter 3 introduces a representation of generalized high resolution
sparse voxel trees. First, the data structure of these sparse voxel trees
is discussed. Afterwards, a performant out-of-core creation on GPU
and the rendering of these voxel trees is presented.

1.4 outline 3

The topic of chapter 4 is the application of computer graphics
methods to the simulation of electromagnetic radiation in respect to
properties of THz radiation and the imaging system.

The system description of two individual THz imaging systems is
given in chapter 5. Specially, the geometrical configuration of differ-
ent systems is discussed. Additionally, a performant reconstruction
of massive data on GPU is presented. The fusion of reconstructed
datasets to a consistent 3D representation and a rendering of multi-
modal data is shown as well.

Chapter 6 summarizes the thesis and discusses possible ideas for
future work.

2
F U N D A M E N TA L S

The following chapter provides necessary fundamentals for this the-
sis. An overview of relevant CG principles is given in Sec. 2.1. They
include overviews of surface representations, rendering techniques,
illumination models and GPU-processing. These topics serve as a
foundation for the proposed approaches. It follows an introduction
to THz radiation and THz imaging to present the field of application
(see Sec. 2.2). An analysis of requirements for applying CG methods
to THz applications is given in Sec. 2.3. While this chapter discusses
basics for the specific aspects of this thesis, [SM09] and [Lee09] are
recommended as introductory references to get more detailed infor-
mation on general CG and THz methods, respectively.

2.1 computer graphics

2.1.1 3D Representations

3D objects are
represented by
triangles or volumes

The 3D representation of an object is a basic element of CG, because
it is required as input, intermediate result or output for all CG ap-
proaches depending on the application. The two most common pos-
sibilities to describe 3D objects are triangle meshes and volume grids.
While triangle meshes are used to represent the surface of objects, vol-
umes are used to represent density information with a spatial extent.
Brief overviews of triangle meshes and volume grids are provided
in Sec. 2.1.1.1 and Sec. 2.1.1.2, respectively. Due to the proposed ap-
proach of this thesis, Sec. 2.1.1.3 discusses voxel tree structures which
are a special form of volume grids.

2.1.1.1 Triangle Meshes
Triangle mesh
approximates the
surface

Triangle meshes are the most common data representation of 3D ob-
jects in CG, because most applications do not need information about
the inner parts of objects. This representation saves memory and
bandwidth by creating only hulls of the objects. Such a hull is cre-
ated by a mesh which consists of a set of triangles. These triangles
approximate the original surfaces piecewise. If more triangles are
available, a more precise surface approximation can be achieved. Each triangle has

three vertices with
additional attributes

Each triangle in Cartesian space is defined by three points or ver-
tices which form a unique plane from three connected line segments
if the vertices are not lying on the same line. While a triangle soup
only holds this information of triangle positions, a triangle mesh
stores additional information for the adjacency of triangles and al-

5

6 fundamentals

(a)

(b) (c)

(e)

bump normal

vector displacement

texture mapping

(d)

displacement

Figure 2.1: Vertex attributes which map to texture coordinates of an image
improve the visual appearance of the triangle (a). Surface details
can be increased, if the referred texture colors serve as a surface
description. Bump mapping is using a grayscale image which is
interpreted as heightmap. Inner points of the triangle are treated
as if the are shifted along the triangle normal by the given height
(b). Normal mapping uses RGB channels to simulate a moving
of the points along an arbitrary direction (c). For common dis-
placement mapping, vertices inside the triangle are really moved
along the normal direction by heights to change the surface ge-
ometry (d). Vector displacement mapping extends displacement
mapping and moves vertices along arbitrary directions (e).

lows to change surfaces by operations on the resulting set of con-
nected triangles. For visualization and rendering purposes, the ver-
tices of a triangle have further attributes in form of coordinates which
map to other representations. The detail of the approximated surface
is increased or the visual appearance is enhanced by keeping the tri-
angle count constant.Bump, normal and

displacement
mapping add surface

details

Texture coordinates which map a color to each point on the trian-
gle by an attached texture (see Fig. 2.1 (a)) or normals which allow an
illumination calculation are the most common vertex attributes. In re-
spect of a THz simulation, bump, normal and displacement mapping
are mentionable (see Fig. 2.1 (b) - 2.1 (d) for a comparison), because
these techniques allow to add random detail on surfaces which can
be used for a more realistic scattering simulation. All three mappings
have in common that a texture value represents surface properties.
While a bump map interprets the values as heights in the illumina-
tion calculation, a normal map interprets these values as directions.
In both cases, the appearance of the triangle looks more detailed in
the rendering, but if the triangle is oriented parallel to the camera
direction, the flat geometry becomes obvious. The most realistic be-
havior is provided by displacement maps, because the geometry is
modified accordingly. Here, additional vertices in the triangle plane

2.1 computer graphics 7

are moved along the values in the texture. While common displace-
ment maps are used to move the vertices along the surface normal
of the triangle by a height map, vector displacement maps allow to
move the vertices along an arbitrary vector direction. A true enhance-
ment of surface details is the result when rendering the mesh with
these displacement techniques. Literature on

geometry processingA large number of further methods, techniques and algorithms re-
lated to triangle and mesh processing are available, but they are out
of scope of this thesis. More detailed and comprehensive information
on triangle meshes can be found in [Ede06] or [Pre93].

2.1.1.2 Volume Grid
Volumes contain
scalars, vectors or
tensors

Imaging modalities like x-ray or ultrasound allow to determine inner
structures of 3D objects. Since triangle meshes cannot be used to
represent such a dataset, because they only represent object hulls,
a volume grid is used. It allows to store information of the inner
part of the object. Usually, a Cartesian grid is used to represent a
value in each of its cells. This value can represent different properties.
For rendering of inner objects structures, this value is usually a one-
dimensional density or intensity and the volume grid represents a 3D
scalar field. For other applications, a volume grid can also be used to
store vectors and tensors. Therefore, many rendering techniques for
visualizing volumetric datasets exist (see Sec. 2.1.2.2). Voxel definition and

advantage of voxel
trees

The smallest subspace inside the Cartesian volume grid is called a
voxel. The possibility to represent inner structures or spatially vary-
ing properties requires a value at each voxel. Therefore, the mem-
ory requirement of regular volume grids is very high, so that object
representations at high resolutions become impractical. Since a large
number of voxels is empty and the grid has only a sparse distribution
of relevant values in most real-world cases, the memory consumption
can be decreased by a more efficient representation of sparsity. Voxel
tree structures remove the need for storing large empty spaces, be-
cause they store only single tree nodes which represent larger blocks
of empty space. This description of empty space reduces the memory
consumption drastically.

2.1.1.3 Voxel Tree Structures
Octree definition

The most common representation of voxels in a tree structure is done
by octrees. In general, an octree is a hierarchical data structure to
allow a more efficient solving of problems by a divide and conquer
strategy. Spatial datasets are divided into eight equally sized subsets,
which represent new child nodes of the root node. Those nodes are
recursively divided to eight or zero child nodes until the parts of the
main problem are faster to process than the original problem.

8 fundamentals

(a) (b) (c)

0

1

2 3

4 5

Figure 2.2: The acceleration of raytracing is a common application of octrees:
With a naive approach all triangles need to be tested for intersec-
tion with one ray (a). By the use of an octree, only orange tri-
angles need to be tested for intersection (b). The numbers show
the order of visited octree nodes in the hierarchy and the corre-
sponding triangles (c).

A common example is the use of an octree as data structure for im-
proving the performance of rendering systems based on raytracing.Octree usage for

acceleration of
raytracing

With an naive approach, the intersections between rays and triangles
need to be found by testing all rays against all triangles. With an
octree, the full set of triangles is spatially sorted into subsets, but in-
stead of testing all triangles for one ray, the ray traverses the octree
structure and checks only those triangles that are related to the inter-
sected octree nodes. As a result, the performance increases because
the traversal of the octree nodes is more efficient than testing all tri-
angles. Fig. 2.2 shows an example of an 2D octree, i.e. a quadtree.
In comparison to all triangles in Fig. 2.2 (a), the green triangles in
Fig. 2.2 (b) and (c) do not need to be tested for intersection.Definition of voxel

octree and sparse
voxel octree (SVO)

Although the octree is usually used as an acceleration structure
and its nodes link to subsets of the original data, it can be used to
store the data directly as well. If each node stores only information
about one element, the node can be interpreted as a voxel and the
octree becomes a voxel octree (see Fig. 2.3 (a) and (b)). By removing
the limitation of maintaining either all eight subnodes or no subnode,
the sparsity of the scene can be exploited more efficiently, because
only those subnodes which contain additional scene information are
stored. Therefore, the voxel octree becomes a sparse voxel octree
(SVO) and does not maintain empty child nodes of a parent anymore
(see hierarchy in Fig. 2.3 (b) without dashed nodes).Definition of an

N3-tree A generalized form of the octree is an N3-tree (see Fig. 2.3 (c) and
(d)). The main difference between both structures lies in the number
of children per node. While the number of child nodes is fixed to
eight for the octree, it varies for the N3-tree. Here, each node can
have N subdivisions along one dimension, which results in N3 child
nodes for a 3D scene description. Those child nodes of one parent

2.1 computer graphics 9

(a) (b)

(c) (d)

... ...

Figure 2.3: Different variants of octrees are shown: Interpreting nodes of an
octree as single elements leads to a voxel octree (a). The corre-
sponding hierarchy can be improved by removing the dashed
nodes. Without these nodes, a sparse voxel octree is obtained (b).
Increasing the number of child nodes in each dimension leads to
a sparse N3-tree. As an example, a 4

2-tree and its hierarchy are
depicted (c,d).

are usually called bricks and are stored in a 3D-texture block, if ap-
pearance attributes are stored per child node.

2.1.2 Rendering

Rasterization or
raycasting are most
common

A visual representation of 3D objects and surface structures is ob-
tained by rendering. The two most common techniques are the use
of a rasterization pipeline and raycasting which are discussed in the
following. The approaches of this thesis are based on raycasting, but
a short discussion on the rasterization pipeline is provided as well,
because the proposed voxel processing of Chap. 3 can be interpreted
as a general pipeline for rasterization. Triangle meshes serve as in-
put for a 3D rasterization to the voxel tree structure. Afterwards a
ray-based rendering creates the visual representation on the screen.

10 fundamentals

z

y

4,5) clip & device

z

y

z

y

z

y
1) model

2) world

3) camera

6) screen space

x
y

Figure 2.4: The coordinate transformations of the rasterization pipeline are
depicted. The model or local coordinates of the geometries are
transformed to world coordinates which lead to camera coordi-
nates afterwards. A perspective transformation leads to clipping
coordinates which are transformed to normalized device coordi-
nates. A viewport transformation provides the final coordinates
in screen space.

2.1.2.1 Rasterization Pipeline
Pipeline has a fixed

sequence of
operations

One possibility to render triangle meshes is the highly optimized ras-
terization pipeline approach of GPUs. Usually, the pipeline consists
of fixed sequential steps which are required when creating a 2D vi-
sualization of a 3D representation. Although current GPUs and APIs
allow a flexible usage of the pipeline by skipping or extending some
of these steps, the basic operations of the pipeline concept do not
change.Coordinate

transformations are
applied to the 3D

representation

First, model transformations are done which are depicted in
Fig. 2.4. Each 3D object is defined in local coordinates and needs
to be transformed to world coordinates, so that all objects have the
same reference system. Next, a camera transformation is required
to represent the 3D object in relation to the camera which shows the
scene. After this transformation, the origin of the coordinate system
lies in the center of the camera and the 3D scene is represented in
camera coordinates. In the next step the projection transformation
is applied. According to the desired camera properties a perspective
view or an orthogonal view of the scene are usually used. The scene
is represented in clip coordinates afterwards. The outer parts of the
triangles are clipped at this stage so that only relevant triangle parts
are left for rendering. With a following perspective division, the clip
coordinates are transformed into normalized device coordinates in
the range [−1, 1] for x-, y- an z-axis. Afterwards the viewport trans-
formation finalizes the transformation to screen space coordinates so
that x- and y-axis represent width and height of the view in pixels,
respectively. The z-axis is in the range of [0,1] which allows a depth
sorting to calculate hidden surfaces.Rasterization

determines
fragments for a pixel

In the rasterization stage after the coordinate transformations, it is
determined which pixels on the screen will be covered by the indi-
vidual triangles (see Fig. 2.5 (a,b)). Furthermore, the vertex attributes

2.1 computer graphics 11

(b) (c)(a)

Figure 2.5: After the final transformation to screen space (a), the rasteriza-
tion is determining fragments and interpolating vertex attributes
of the triangles (b). In the final step, the final pixel color is deter-
mined from the generated fragments per pixel (c).

of the triangle are interpolated to determine the contribution of a tri-
angle attribute to the pixel. This contribution per pixel is called a
fragment, because triangles can overlap which leads to a set of contri-
butions per pixel. Fragment shading

calculates the final
pixel color

The final determination of pixel colors is done by fragment shading
or fragment processing (see Fig. 2.5 (c)). Here, fragments of a pixel
are combined by specific operations. The most common operation is
the depth test to show the fragment value of the triangle which is
nearest to the camera. By rasterizing triangles, a depth value for each
resulting pixel is calculated. If the generated depth value is behind
the stored depth value in the depth buffer, the fragment is discarded.
If the depth value is in front, the depth buffer and the pixel color are
updated with the values of the current triangle. Other common ap-
plications are anti-aliasing, illumination, deferred shading, blending
or stencil tests, but since the fragment shader is fully programmable
many other algorithms exist.

2.1.2.2 Raycasting
Volumes and
triangles can be
rendered by
traversing rays

In comparison to the rasterization pipeline, raycasting or raytracing
is more flexible because the computation of the ray traversal can be
adapted to specific needs of an image generation. The main idea of
raycasting is the calculation of intersections with the given scene rep-
resentation by a ray traversal, i.e. a virtual camera is sampling a scene
by a discrete number of rays which reconstruct the appearance of the
3D object (cf. Fig. 2.2 (a)). In the case of triangles as input, raycast-
ing is less common, because current GPUs are designed and highly
optimized for an optimal triangle rendering based on the pipeline
approach. Raycasting is the

main technique for
volume rendering

In case of volume rendering, raycasting provides a very generic
functionality for visualization. Here, a ray samples the volume uni-
formly to obtain a number of discrete values which are calculated by
trilinear interpolation. Usually, each interpolated sample is mapped
to a color value and an opacity value by a transfer function. During

12 fundamentals

(c)

max

min

iso

(a)

(a)

maximum intensity isosurface

(b)

Figure 2.6: The principles of maximum intensity projection and isosurface
rendering are depicted. The final pixel color is set to the maxi-
mum value along the ray which is determined by comparing cur-
rent sample and current maximum value of all previous samples.
If the current sample is larger, it becomes the new maximum of
the ray (a). To obtain an isosurface rendering, samples along the
ray are compared with the isovalue. If the isovalue lies between
two neighboring samples, the ray segment is recursively sam-
pled in the center of the ray segment which holds the isovalue.
If a defined precision is achieved, the interval bisection is termi-
nated (b). A exemplary mapping of values is used to illustrate
both raycasting approaches (c).

the ray traversal, the sampled values are integrated from back to front
and composited to a final output color. In addition, physical models
for the simulation of light distribution are used during this integra-
tion for more realistic or meaningful representations. This general
volume processing is adjusted and extended by many volume visual-
ization techniques and principles. An in-depth introduction to these
methods of volume rendering can be found in [EHK∗06].Maximum intensity

projection Maximum intensity projection and isosurface rendering are two
volume rendering techniques which are discussed in the following,
because they are applied in this thesis. Fig. 2.6 shows both rendering
approaches. For maximum intensity projection, each sample on the
ray is compared with the maximum value of all samples that have
been encountered by the ray already. If the current sample is larger,
it gets the new maximum. After the ray traversed the volume, it
holds the maximum value of all samples which is mapped to a color.
If the sampled volume grid contains intensities, the color represen-
tation allows to identify regions which are relevant in the respective
application. In the context of THz security screenings, it allows to
visualize hidden metallic objects like weapons, because they have a
high reflectivity in the THz range (see Sec. 5.2.5.3).Isosurface rendering

For isosurface rendering, the samples along a ray are compared to
an isovalue. This isothreshold serves as the definition of the surface
which should be identified in the volume. To obtain this representa-
tion, the current and the previous sample of the ray are interpreted as
a range. If the isovalue lies in this range, the surface is found. To get

2.1 computer graphics 13

a more precise determination of the surface and to reduce visual arti-
facts an interval bisection is applied. Here, the range is split into two
new ranges by sampling the ray in the middle between the original
samples. Both new ranges are checked again whether they contain
the isovalue. The range that holds the isothreshold is checked further
by splitting the range again. This process is repeated until the desired
precision for visualizing the surface is achieved.

2.1.3 Illumination

Physically plausible
results are obtained
by raytracing

The visualization of a CG scene is mainly influenced by the used
simulation of visible light. Usually, an illumination model in the ren-
dering process is used to calculate pixel colors. Many illumination
techniques evolved during the last centuries to improve the physical
plausibility and the performance of the simulation. Raytracing is one
of the fundamental methods for most of these techniques, because it
allows to approximate visible light by infinitesimal rays. Due to the
small wavelengths of visible light in comparison to surface properties
of real-world scenes, the rays serve as the basic element for calculat-
ing the illumination by geometrical optics. Difference between

local and global
illumination

CG simulations of visible light can be categorized into local and
global illumination models. Local illumination models focus on the
fast calculation of the most important influences on the visual ap-
pearance, i.e. the simulation of primary reflections with the most im-
portant light contribution and shadows are the main subject of these
models. Global illumination models focus on the physical plausibil-
ity but perform slower in comparison to local illumination methods.
In addition to primary reflections and shadows, secondary reflections
are calculated. Therefore, physical effects like caustics, diffuse reflec-
tions or sub-surface scattering can be simulated. Current research in
this field even extends these methods by taking effects of wave optics
into account (e.g. [CHB∗12, SML∗12]). Further readings

For a basic understanding of CG illumination models and the pro-
posed adaptions in Chap. 4, a subset of the most relevant principles
is discussed in the following. Further introductions can be found in
[SM09] and [AMHH08]. More comprehensive information on the
topic of physically based rendering can be found in [PHJ16] and
[DBB06].

2.1.3.1 Local Illumination
Phong model

The Phong model ([Pho75]) is one of the standard models for calcu-
lating local illumination. The intensity of the light at each point on a

14 fundamentals

~l

~r

~n ~h~v

p

β

θα

~l

~r

~n
~h

~v

β

θ

α

p

: light
: reflection

: surface normal
: halfway
: view

: arccos(~n · ~h)

: arccos(~n ·~l)
: arccos(~v ·~r)

: point on surface

Figure 2.7: The geometrical parameters of the discussed illumination mod-
els are shown. All vectors are normalized.

surface Ip is empirically defined by a sum of an ambient term Ia, a
diffuse term Id and a specular term Is (see Eq. 2.1).

Ip = Ia +

#lights∑
m=1

(Id(m) + Is(m)) (2.1)

The final intensity
has an ambient, a

diffuse and a
specular part

Ia serves as a constant factor for simulating a global light compo-
nent for the whole scene. Id and Is are influenced by the spatial po-
sitioning of scene elements, surface orientations, light properties and
a simplified material description to calculate an individual light con-
tribution for each point in the scene. Id represents the diffuse part
of the light intensity which is independent of the viewing position,
while Is represents the specular part which depends on the viewing
position. The calculation of Id and Is are shown in Eq. 2.2 and Eq. 2.3,
respectively. Fig. 2.7 illustrates the geometrical parameters.

Id(m) = kd · id(m) · cos(θ(m)) (2.2)

Is(m) = ks · is(m) · cosn(α(m)) (2.3)
Diffuse reflection

The intensity of the diffuse reflection Id is calculated by Lamber-
tian reflection. Therefore, the diffuse part of the intensity of the light
source id(m) is multiplied by the ratio of reflected diffuse radiation
from the material kd. This result is scaled by the dot product of nor-
malized light direction~l(m) and surface normal ~nwhich corresponds
to cos(θ(m)) where θ(m) is the angle between both directions.Specular reflection

In comparison to Id, the intensity of the specular reflection Is is ob-
tained by the specular part of the intensity of the light source is(m)

and the reflected specular radiation from the material ks. This ratio
of the specular radiation is multiplied by cosn(α(m)) which is tak-
ing the viewing position and the behavior of glossy materials into
account. α(m) is the angle between the normalized viewing direction
~v and the normalized direction of a perfect specular reflection ~r. The
exponent n allows to simulate the contribution of glossy reflections

2.1 computer graphics 15

~n
~r

~l

~r ~l
~r ~l

(a) (b)

Figure 2.8: With the facet slope distribution D, a rough surface is approxi-
mated by microfacets which have individual normals (marked in
blue), while the surface is flat in the macroscopic view (dashed
line). An increasing s in Eq. 2.6 simulates steeper slopes with
more varying normals of the microfacets so that a rougher ap-
pearance of the surface is achieved (a). The geometrical attenu-
ation G is used to simulate self-shadowing effects of rough sur-
faces. Either the surface point does not receive the incoming light
(shadowing: orange point) or the outgoing light is not reflected
(masking: blue point). The green point receives and reflects light
(b).

by varying the light distribution which is centered around the perfect
specular reflection. An increasing n leads to a decreasing size of the
specular highlight on the surface. Cook-Torrance

improves physical
plausibility of
specularity

The Cook-Torrance model is another important approach in the
context of this thesis, because it incorporates necessary effects which
influence a CG simulation of THz radiation as well. The physical
plausibility of the specular component Is is improved by considering
Fresnel reflection F, a facet slope distribution D and a geometrical
attenuation factor G. Eq. 2.4 shows the calculation of Is.

Is =
F ·D ·G

π · (~n ·~l) · (~n ·~v)
(2.4)

Fresnel term F
The Fresnel term F describes the refraction and reflection of elec-

tromagnetic radiation between different media at a perfectly smooth
surface. Next to the angle of incident radiation, refractive indices η
and extinction coefficients κ of the involved media are used to deter-
mine the behavior at the boundary. While it is possible to consider
polarization and differ between intensity and field equations, simpli-
fied variants or approximations ([Sch94]) are used for CG simulations
of visible light. For unpolarized light and κ = 0, [CT82] uses the cal-
culation of Eq. 2.5.

F =
1

2

(g− c)2

(g+ c)2

(
1+

(c(g+ c) − 1)2

(c(g− c) + 1)2

)
(2.5)

with g =
√
η2 + c2 − 1 and c = ~v · ~h

The Cook-Torrance model is based on the assumption that a rough Facet slope
distribution Dsurface consists of several flat facets which are individually oriented

(see Fig. 2.8 (a)). D represents a statistical facet slope distribution

16 fundamentals

to simulate the orientation of those individual facets. Therefore, the
scattering behavior of rough surfaces is incorporated by D. The Beck-
mann distribution is used for D, because it covers many materials
and even very rough surfaces. Depending on the root mean square
slope of the surface s and the angle β between surface normal ~n and
half angle vector ~h (see Fig. 2.7), D is given by Eq. 2.6. In [CT82] it is
stated that the influence of the wavelength on the roughness scatter-
ing is omitted in D due to simplicity.

D =
e−(tan(β)/s)2

s2 · cos4(β)
with β = arccos(~n · ~h) (2.6)

Geometrical
attenuation G Under the assumption that the surface consists of many individual

facets, self-shadowing effects may occur, i.e. only a fraction of the
incoming and a fraction of the outgoing radiation can be used (see
Fig. 2.8 (b)). To compensate these effects of shadowing and masking,
G uses ~n,~l,~v and ~h to attenuate the reflected radiation by the purely
geometrical calculation in Eq. 2.7.

G = min

(
1,
2(~n · ~h)(~n ·~v)

(~v · ~h)
,
2(~n · ~h)(~n ·~l)

(~v · ~h)

)
(2.7)

Normalization factor
and reflectance

correction

π is used to correct bidirectional reflectance values for rough sur-
faces, because smooth material samples serve as a basis for measured
reflectance values usually (cf. [CT82]). The dot products in the de-
nominator are used for normalizing the reflectance by the orientation
of the surface to the viewer and to the light. More detailed infor-
mation on the described parameters of the Cook-Torrance model is
provided in [CT82].

2.1.3.2 Global Illumination
Rendering equation

of [Kaj86] is the
basis for global

illumination

The standard rendering equation for calculating global illumination
was presented by [Kaj86]. It is commonly formulated as in Eq. 2.8 and
Eq. 2.9. The influences of time, wavelength or polarization are omit-
ted, but they can be integrated depending on the desired correctness
of the simulation. In the equation is stated that the outgoing radiance
Lo from a point p on the surface in the direction ωo is consisting of
the emitted radiance Le and the reflected radiance Lr (see Eq. 2.8).

Lo(p, ~ωo) = Le(p, ~ωo) + Lr(p, ~ωo) (2.8)

Lr(p, ~ωo) =
∫
Ω

fr(~ωi, ~ωo) · Li(p, ~ωi) · cos(θi)d~ωi (2.9)

Lr is calculated by
the incident light

and a BRDF

The calculation of Lr is created by the irradiance at p and consists
of the bidirectional reflectance distribution function (BRDF) fr, the
incoming radiation Li and a geometrical term cos(θi) (see Eq. 2.9).
All incoming light contributions are considered by integrating over

2.1 computer graphics 17

the hemisphere Ω of the surface. Li is multiplied by cos(θi) to com-
pute the irradiance to the surface. While Li and cos(θi) represent the
incoming light contribution before the interaction with the surface,
the BRDF describes the scattering behavior of the material, i.e. the
relation of the outgoing radiance to the incoming irradiance. Requirements for a

physically plausible
BRDF

Although the BRDF can be an arbitrary function, it needs to fulfill
the following three requirements for a physically plausible descrip-
tion of the material reflectance:

• positivity:

fr(~ωi, ~ωo) > 0

• symmetry (Helmholtz reciprocity):

fr(~ωi, ~ωo) = fr(~ωo, ~ωi)

• conservation of energy:

∀ωi :
∫
Ω fr(~ωi, ~ωo)cos(θo)dωo 6 1

More complex
BRDFs allow to
simulate more
physical effects

In addition to these requirements, the physical plausibility of a
BRDF can be increased by considering further parameters. In the sim-
plest form, it requires only ~ωi and ~ωo. More complex BRDFs include
a dependence of p for spatially varying reflectance properties on the
surface or an additional point p ′ to incorporate a subsurface scatter-
ing. Furthermore, a wavelength λ can be considered for diffraction
effects. [Kaj86] proposes

path tracing to solve
the rendering
equation

To solve the rendering equation, [Kaj86] proposes path tracing
which combines a Monte Carlo integration with a ray-based approach.
Each ray represents a sample for a numerical integration of the ren-
dering equation. Depending on the desired quality of the render-
ing, a varying number of rays is sent through each pixel. Each ray
forms a path by reflecting at intersected surfaces. A stochastic scatter-
ing approach is used to determine the new direction of the ray and
which type of reflection is happening. By tracing the individual path
through the scene, the calculated light distributions are accumulated.
Furthermore, the visibility to all light sources is evaluated at each
intersection. After a stopping criteria, e.g. a specific number of ray
segments per path, is fulfilled, the contributions of the rays per pixel
are averaged and lead to the final pixel color.

2.1.4 GPGPU

THz applications
can be accelerated by
GPGPU

The acceleration of algorithms by a GPU is frequently applied in CG
especially in the cases of processing of massive data and heavy com-
putations. Similarly, this applies to the most THz applications with
independent acquisitions and massive measurement data, so that the
GPU can be exploited to accelerate these applications. While this
use of general-purpose computing on GPUs (GPGPU) has still some

18 fundamentals

drawbacks or limitations in comparison to CPU programming, a large
performance gain can be expected if an algorithm provides the pos-
sibility to parallelize subtasks with individual threads, because the
hardware design of a GPU is optimized for the main task of parallel
vertex and pixel processing.CUDA is used for

all proposed methods
of this thesis

All proposed methods of this thesis are implemented by CUDA
which is an API for GPUs of Nvidia. It allows to use subsets of the
programming languages C, C++ and Fortran which are extended by
additional functionalities for parallel code execution on GPU. The
code of the proposed methods is implemented by the C/C++ inter-
face. An extensive introduction to CUDA programming is provided
in [SK10].Main influences on

a performant
GPGPU

implementation

In the following, a rough idea on the complexity of implementing
a performant GPGPU algorithm should be given. More in-depth in-
formation can be found in [KH12]. Three main factors for exploiting
the high performance of GPUs are:

• Memory accesses

• Thread divergence

• Occupancy
Memory accesses

The CUDA API provides several memory regions on the GPU for
processing data with varying latencies, scopes and sizes. The fastest
data access is possible by registers, but the number of available regis-
ters is most limited. Shared memory is slightly slower but has a larger
size and can be shared between threads in a subgroup (thread blocks)
to exploit additional caching effects. Constant memory is available to
all threads with a fast access through caching, but is read-only. Global
memory provides the largest size and is available to all threads as
well, but it has the worst latency. Local memory is accessible by only
one thread and maps internally to global memory if the registers of a
thread are not enough. It follows that an optimal use of the available
memory regions is required for the best performance. While all data
could be stored in global memory for simplicity, a separation of the
data to the specific regions can lead to a better performance.Thread divergence

A principle of GPU parallelism is the lockstep execution of threads
in the smallest hardware unit which is called a warp in CUDA terms.
In current GPUs, each warp can process up to 32 threads. If each
thread has the same sequence of operations, all 32 threads can be
processed in one run, but if those 32 threads have diverging tasks,
a branching requires additional execution of operations. Therefore,
threads in one warp wait for other threads and the performance
drops.Occupancy

Depending on the memory requirements of the thread operations
and the memory restrictions of the hardware, the number of paral-
lelly executable threads can be determined. The ratio between these

2.2 terahertz radiation 19

microwaves infrared

visible

ultraviolet

1hTHz 10hTHz100hGHz1hGHz 100hTHz 1hPHz 10hPHz10hGHz100hMHz

0.3hmm3hmm 30hµm 3hµm 0.3hµm 30hnm30hmm0.3hm3hm

(wavelength)

(frequency)

radiowaves

terahertz

X-ray

Figure 2.9: Parts of the electromagnetic spectrum and its bands are shown.
The spectral band of terahertz radiation lies between microwaves
and infrared.

threads and the maximum number of processable threads defined by
hardware limitations can be interpreted as the occupancy of the GPU.
It is a measure for the efficient exploitation of the GPU hardware.
Due to other influences like memory latencies or the actual workload
per thread, the performance is not necessarily increasing if the occu-
pancy is increasing. A low occupancy only indicates a possible need
to increase the number of parallelly executable threads by improving
the operations inside a thread.

2.2 terahertz radiation

2.2.1 Electromagnetic Spectrum

Definition of THz
radiationTerahertz radiation is usually defined as the frequency range of the

electromagnetic spectrum between 0.1 THz and 10 THz [AZ07, Lee09].
These frequencies are at the lower bound of infrared radiation and at
the upper bound of microwave radiation (see Fig. 2.9). More precisely,
they cover the bands of millimeter waves (0.03 - 0.3 THz, 1 - 10 mm),
sub-millimeter waves (0.3 - 3 THz, 0.1 - 1 mm) and parts of the far
infrared radiation (≈ 0.86 - 12 THz, ≈ 25 - 350 µm) [Lee09]. The imag-
ing with higher frequencies is based on optical technology, while the
imaging with lower frequencies is done with electronic technology.
Just a few decades ago, both technological fields lacked of efficient de-
tectors and sources for imaging in the spectral band of THz radiation.
There are two main reasons for this so-called "THz gap" between the
transition of electronics and optics. On the electronic side, suitable cir-
cuits that handle signals at high frequencies could not be built, while
on the optical side, systems with a size close to the used wavelength
could not be designed [Cha04]. In the last decades, more efficient
technologies from both sides tried to close this THz gap. [Sie02] and
[Ton07] provide overviews of these THz technologies.

20 fundamentals

The generation of THz radiation can be done with optical or elec-Generation and
detection of THz

radiation
tronic technology. In comparison to systems on the electronic side,
optical based measurement setups provide a more sophisticated ma-
terial detection in the THz range due to higher bandwidths, but the
size, complexity, and performance of these setups avoid the broad
use in real-world applications currently. Electronic based systems
are more flexible, because they are cheaper and smaller. They allow
to acquire larger scenes and obtain additional spatial information of
the scene in a more efficient way. Therefore, the proposed simula-
tion methods of this thesis are more beneficial for prototyping of
real-world systems that are based on electronic generation and de-
tection of THz radiation. To process THz radiation with electronic
technology, frequency multiplication of microwaves and heterodyne
detection are usually used [Lee09]. By using diodes, different fre-
quencies are mixed to generate or detect THz radiation with up- or
down-conversion, respectively.

2.2.2 Imaging Systems

Active vs passive
A large variety of THz imaging systems were created in the last
decades, because the design and setup of the system strongly depend
on the application and the available THz technology. In general, THz
imaging systems can be categorized into active and passive systems.
While active systems use THz sources to irradiate the scene, passive
systems detect natural atmospheric radiation only.Coherency

Another property of the imaging system refers to the output. If the
used radiation is incoherent, phase differences and frequencies vary
and only intensity values can be obtained as output. If the radiation is
coherent, phase differences and frequencies are constant. Here, phase
and amplitude of the scattered electric field can be reconstructed.Advantages of

coherent radiation The use of coherent radiation is beneficial because it allows to gain
additional or better information by more sophisticated reconstruction
methods. For example, depth information of the objects can be calcu-
lated in the signal processing or spectral material properties can be
determined. Since atmospheric radiation in passive systems allows
incoherent output only, the simulation concepts in this thesis focus
on active imaging systems with coherent THz sources.Radiation modes

Additionally, the imaging system can be characterized by the ra-
diation mode, i.e. if pulsed or continuous wave (CW) technologies
are used [Lee09]. While pulsed technologies transmit single pulses,
CW technologies constantly radiate the scene. For the intended
simulation of THz imaging systems with electronic technology (see
Sec. 2.2.1), CW is advantageous because pulsed based technology
reaches its limits in the frequencies of the upper spectral band of
microwaves due to power requirements for very short pulses, which
are necessary for obtaining scene information in a higher depth reso-

2.2 terahertz radiation 21

lution. Furthermore, the physical sampling of smaller pulses reaches
current hardware limitations. Advantages of

FMCWSpecially, frequency modulated CW (FMCW) technology as part of
CW technologies is beneficial for the proposed methods of this the-
sis, because it allows to reconstruct depth information which can be
used for reconstructions of three-dimensional scene representations.
Commonly, a frequency chirp is applied, i.e. several acquisitions for
a sequence of frequencies in a frequency band are performed. An
example for an FMCW setup which is combined with synthetic aper-
ture imaging is discussed in [DKLB13]. Spatial positioning

of THz sources and
detectors

The positioning of sources and detectors strongly influences the
imaging. If the screened object is between sources and detectors, the
imaging is done by analyzing the transmitted radiation. If sources
and detectors are on the same side of the object, the reflected radia-
tion is analyzed. Furthermore, the number and relative arrangement
of sources and detectors lead to different imaging possibilities. The
simplest system in this context is the one with only one transceiver, i.e.
one source and one detector are combined in one component. Here,
a one-dimensional information is obtained. It contains the spectral
response of the radiated area in the direction of the source radiation.
If one transmitter and one receiver are used separately, the detection
of reflected radiation is not limited to the source direction and the
detection of transmitted radiation becomes possible. To obtain spec-
tral information in spatially varying dimensions, two methods can be
applied. The first method is scanning, i.e. a mechanical movement
of the THz components, and the second method is the use of several
transmitters and receivers, which is mostly done in synthetic imaging
approaches. Influences of

positioningThe mechanical movement allows to place source and detector at
varying positions. Each combination of the positions gives one mea-
surement. Depending on the complexity of the mechanical scanning,
these measurements can be fused to create one-, two- or even three-
dimensional scene representations. An advantage of this method is
the cost-efficiency, because current THz technology is more expensive
than the equipment for a mechanical movement of components. The
drawback is the performance, because the measurements are done
sequentially. If the number of sources and detectors is increased
for a system with focused acquisition and if the resulting signals do
not influence each other, the spatially varying measurements can be
done in parallel. Therefore, the performance of the system would
increase, but the cost of the THz technology would be much higher.
Although the performance increases, the data throughput would be-
come a limiting factor for too many sources and detectors [KLD∗10].
Therefore, recent hybrid scanning system designs try to combine a
reduction of THz components with a high performance. The vari-
ous spatial dimensions of the scene representation are reconstructed

22 fundamentals

differently. For example, one dimension is obtained by mechanical
scanning, while another one is obtained by synthetic aperture imag-
ing. Overviews of these systems can be found in [KLD∗10]. A more
focused overview of systems that allow real-time processing is pre-
sented in [FvSB∗11].

2.2.3 Applications

Possibilities of THz
detection Although research of THz technology is still confronted with many

challenges like atmospheric attenuation or more performant gener-
ation of terahertz radiation [Arm12], several applications for THz
imaging exist and further promising applications are under devel-
opment. One of the main goals is the detection of materials in sev-
eral application areas. For example, in medicine it is used to detect
illnesses like skin cancer by analyzing the absorption coefficient of
the tissue (see [YFSPM12]). Another example is the detection of con-
cealed objects for security applications. Metallic weapons can easily
be seen, because metal has a high reflectivity in the THz range. THz
spectroscopy is used for detecting other kinds of weapons, drugs or
explosives. It allows to determine the spectral features of the im-
aged materials. These features need to be analyzed for a detection of
specific materials then (see [FSH∗05]). An overview of further appli-
cations like earth sensing or material inspection and quality control
can be found in [DMBM05].

2.3 requirements

Motivation of using
CG methods for THz

imaging
Applying CG methods for THz imaging leads to benefits in both re-
search disciplines. On the THz side, prototyping with a THz simula-
tion framework is cheaper than an evaluation with a physically built
system and computationally intensive parts of a processing frame-
work benefit from improvements in performance by using GPU meth-
ods. On the CG side, a more general simulation of electromagnetic
radiation broadens the scope of current illumination techniques and
general CG methods for processing massive data can be improved
in terms of performance and precision. Furthermore, the resulting
methods can be used for other applications where similar problems
need to be solved.

CG methods can be applied to a simulation of THz radiation or to
a processing of measured THz data. These two applications have dif-
ferent requirements which are discussed in the following subsections.

2.3.1 Simulating THz Radiation

CG techniques gain
performance due to

approximations
CG techniques for physical simulations allow to generate correct or
approximately correct results in a very performant manner. Fast il-

2.3 requirements 23

lumination approaches like final gathering or photon mapping are
common approximations to simulate incoherent imaging with a prop-
agation of electromagnetic radiation, but mainly physical effects that
can be explained by ray optics are considered. For visible light, these
approximations are sufficient to achieve a visually correct result, but
THz imaging is additionally influenced by other physical effects that
can only be described by wave optics. Ray-based methods

are partly invalid for
THz

Therefore, common raytracing approaches provide less correct re-
sults if they are applied to a THz simulation. The reason for the
strong influence of wave properties lies in the different regimes of the
interaction between radiation and real-world surfaces. Wavelengths
of visible light lie in the range of nanometers and are orders of mag-
nitude smaller if they are compared to real-world surfaces in the mil-
limeter range, while wavelengths of THz radiation are in the sub-
millimeter range with similar sizes.

To simulate THz imaging with CG methods, it is required to incor-
porate wave properties of the electromagnetic radiation. Although
ray-based approaches do not allow to cover all effects by default, they
can be adapted to address the main features of wave optics. This
adaption consists of two parts: Efficient data

structure for storing
fine details and
sparse volumes

• A new representation of scene objects is needed, because cur-
rent surface representations (cf. Sec. 2.1.1) are not designed
to cover the specific requirements of a THz imaging simula-
tion. Roughness scattering requires highly detailed surfaces
for a more correct calculation of the reflection, if wavelengths
and surface details have similar dimensions. These surfaces can
only be represented by a more memory efficient data structure.
Mesh representations are memory efficient and can be used for
highly detailed scenes, but they do not allow to store volumes of
objects which would be necessary, because THz radiation pen-
etrates different real-world materials. In this regard, meshes
can only be extended by texture information that influence the
raytracing because no information of the inner structures of the
objects are stored. Volume representations can be used for sim-
ulating thickness by defining materials for each voxel, but they
can not be used at a high resolution due to storage requirements
of full grids. Furthermore, an efficient construction and render-
ing of such a scene representation is needed to guarantee a per-
formant processing. To fulfill these requirements, a generalized
sparse voxel representation is proposed in Sec. 3. Simulating wave

effects by adapting
ray-based
approaches

• To improve the correctness of THz simulations, existing raytrac-
ing approaches need to be extended by simulations of wave
effects. The information per ray gets larger and more complex
calculations need to be done. The additional effort leads to a
performance decrease. Additionally, the implementation of a

24 fundamentals

coherent imaging simulation (see Sec. 2.2.2) decreases the per-
formance as well, because the calculation of a scattered electric
field with phase and amplitude information is necessary, while
a calculation of intensities is sufficient for the simulation of in-
coherent imaging. To compensate the performance loss, the
interaction of waves needs to be approximated. The physical
wave properties and the correspondingly implemented approx-
imations are discussed in Sec. 4.

2.3.2 Processing THz Data

Exploiting the GPU
to allow a

performant THz
processing

A common CG method to improve the performance of an existing
approach is the use of a GPU. Usually, a sequential processing is
changed so that the processing can be executed in parallel. Depend-
ing on the possibility to parallelize the processing, the performance
gain varies. Therefore, it is necessary to identify parallelizable pro-
cessing steps and redundant calculations.Geometrical

configuration and
calibration

For applying this principle to the processing of THz imaging data,
it is necessary to geometrically describe and calibrate the imaging
system. Due to the prototypical character of the setups, individual
configurations need to be found. The configurations allow to define
the dimensions that can be imaged in parallel. Depending on the
properties and complexity of the measurement setup, this configura-
tion further allows to create a more sophisticated scene representation
in a more performant manner. The system description of exemplary
THz imaging systems and the application of CG methods to individ-
ual processing steps are described in Sec. 5.

3
S PA R S E V O X E L T R E E S

In this chapter, properties and processing of sparse voxel trees (SVTs)
are discussed. First, a motivation for the use of voxels is given in
Sec. 3.1. The concept of the SVT and its application for a THz sim-
ulation is discussed in Sec. 3.2. Sec. 3.3 addresses the data structure
of SVTs and compares it with similar tree structures. A fast and effi-
cient method for generating SVTs from massive triangle meshes by an
out-of-core approach on GPU is presented in Sec. 3.4. While general
rendering and processing of the resulting SVT structure are topics of
Sec. 3.5, concrete adjustments for using SVTs in a THz simulation are
discussed in Sec. 4.5.2.1 and Sec. 4.5.2.2. The chapter is summarized
in Sec. 3.6.

3.1 motivation

Surface and volume
rendering need to be
combined

Requirements for simulating THz radiation with CG rendering tech-
niques differ from usual requirements of surface rendering and vol-
ume rendering. If the interaction between THz radiation and real-
world materials like fabric or tissue needs to be simulated, the ra-
diation will penetrate surfaces and a common surface rendering ap-
proach would not be sufficient, because no information of the inner
object structure is given. Hence, a more complex description of sur-
face structures is required. Such a structure could be represented
with usual volume data, but the rendering performance would de-
crease and the memory consumption would increase without benefit,
because the scene information is still sparse for a scene with thick
material layers. Potential of voxel

representationsThe general representation of complex and highly detailed scenes
is one of the main goals in CG as well. Currently, voxel representa-
tions of a scene are one promising possibility to increase the level-
of-detail for massive scenes by keeping the memory consumption
moderate and the rendering performance high. Recent works like
[LK10, CNLE09, KSA13, DKB∗16] prove the benefit of using voxels
as rendering primitives. They all have in common that the sparsity
of a scene is exploited. Empty and filled spaces can be efficiently
encoded in a hierarchical manner to store more detailed informa-
tion of the scene geometry. Individual attributes per voxel allow a
highly detailed scene appearance. Furthermore, sparse voxel repre-
sentations have the advantage that geometry and appearance data
are efficiently represented in a single structure. Hence, the use of

25

26 sparse voxel trees

voxels is a very promising approach for an accurate THz simulation
of highly detailed surfaces with thickness properties.

3.2 concept for thz simulations

Requirements for a
data structure of a

THz simulation
A THz simulation differs from common CG simulations of visible
light due to different scattering behavior of the underlying radiation
with respect to the radiated surfaces. While visible light has shorter
wavelengths than the details of a real-world surface by orders of mag-
nitude, THz radiation has similar wavelengths in comparison to the
radiated surface structures. Therefore, the roughness of a surface be-
comes important, because wave effects contribute to the THz signal.
Furthermore, active THz emission is commonly coherent, where vi-
sual light is mostly assumed as incoherent. Additionally, materials
are penetrated by THz radiation so that inner structures need to be
represented. If a simulation must consider these properties, the used
representation for the scene must fulfill following requirements:

• representing highly detailed surfaces by increasing the scene
resolution

• modeling geometrical surface properties like thickness or
roughness explicitly

• efficient storage of material attributes

• allowing an efficient conversion of other scene representations,
e.g. triangle meshes

[CNLE09] and
[LK10] serve as

basis for the SVT
concept

Voxel structures are reasonable for representing scenes for a THz
simulation in order to fulfill these requirements. The approaches of
[LK10] and [CNLE09] propose efficient voxel structures and voxel
rendering, so that an application of these approaches to a THz sim-
ulation is promising. Conceptually, both approaches can be applied
to a THz simulation independently, but it is expected that a combi-
nation of both methods leads to a more suitable technique for the
above mentioned THz requirements. In respect to memory efficiency,
data creation, rendering properties and rendering efficiency, a discus-
sion is provided in the following paragraphs to argue the resulting
concept decisions for the SVT.

memory efficiency The approaches of [LK10] and [CNLE09]
provide voxel tree structures with very efficient memory consump-
tions. [LK10] optimizes the memory of an SVO by representing
empty subtrees and empty voxels with single bits. [CNLE09] main-
tains subvolumes in a sparse N3-tree structure. It allows to exploit the
sparsity of the scene by removing empty subvolumes. The tree has
the flexibility to adjust N, i.e. the children per node, which leads to a

3.2 concept for thz simulations 27

reduced memory footprint due to a flattened hierarchy. In Sec. 3.3.1
both data structures are discussed in detail. Decision for

extending SVOs of
[LK10]

For the representation of thick or rough layers in THz scenes, it
is assumable that a combination of both techniques uses even less
memory and a higher scene resolution can be obtained. Thick lay-
ers cover small subvolumes which would create a deeper hierarchy if
only represented with an octree, but the overall sparsity of the scene
is still high and large subvolumes would waste memory. Hence, the
proposed SVT combines the octree encoding of [LK10] with the possi-
bility to increase the number of children per node like [CNLE09] (see
Sec. 3.3.2 and Sec. 3.3.4 for further details). Constraints of

volumesUnder the additional assumption that each voxel needs to hold a
complex material description or a reference to an index of a material
library, the attribute storage per voxel needs to be more flexible to
allow an optimized memory footprint. General volume representa-
tions or the subvolumes of [CNLE09] store empty attributes less effi-
cient, because a spatial sorting for interpolating the dataset is needed.
Hence, the possibilities to use more complex attributes or to increase
the scene resolution are constrained.

data creation As stated in [LK11], the input data of [LK10] is
created by a voxelization of triangle meshes. Hence, no inner struc-
ture of the object is created. [CNLE09] uses meshes and volumes
to create the scene representation. For volumes, existing datasets are
copied or instantiated to obtain a higher resolution, but this approach
does not allow to create a meaningful real-world scene at a high reso-
lution. For meshes, noise functions are used to simulate more details.
If explicit or locally varying surface characteristics need to be created,
the application of noise functions becomes less practical because re-
sulting patterns are repeated so that individual noise functions are
required for different surface characteristics. Decision for using

unordered triangles
sets

Although volume representations or direct voxel editing frame-
works can be used for an explicit modeling of surfaces, it is more
flexible and more convenient to create the voxel representation of a
scene from surface meshes, because common 3D modeling tools al-
low an intuitive and comprehensible creation of surface structures.
While it is possible to adjust geometrical features on the surfaces eas-
ily, the thickness property can only be obtained by creating several
mesh layers or by using solid voxelization. If a solid voxelization
is used, neighboring information between triangles or full access to
the resulting voxel tree is required. Therefore, the possibilities for
creating high resolution scenes from massive triangle data would be
limited. Hence, an unordered set of triangles allows the maximum
freedom to create high resolution representations with explicitly mod-
eled surfaces. It follows that a voxelization in the spirit of [LK11]

28 sparse voxel trees

(a) (b) (c)

thick surfacevolumesurface

length

Figure 3.1: Different voxel rendering variants are depicted: A surface ren-
dering like it is used by [LK10] is shown. The ray traversal stops
at the first intersected voxel or a contour inside a voxel (a). If
the voxel tree contains subvolumes like in [CNLE09], a volume
traversal can be done by uniform sampling and trilinear interpo-
lation (b). Continuing the ray traversal of the surface rendering
after the first intersection leads to an adaptive sampling where
the ray length inside a surface can be determined analytically (c).

with out-of-core properties is preferable. The proposed voxelization
approach is discussed in Sec. 3.4.

rendering properties Rendering properties are compared in
Fig. 3.1. All methods use raycasting for traversing a voxel tree struc-
ture. The raycasting of [LK10] allows to render voxels or improved
contours of the approximated mesh inside a voxel, but in both cases
the traversal stops after the first intersection (see Fig. 3.1 (a)). No
additional information of thickness or other surfaces behind is ob-
tained. The surfaces which are penetrated by THz radiation cannot
be determined. The volume rendering of [CNLE09] is done by trilin-
ear interpolation and a common uniform sampling (see Fig. 3.1 (b)).
Here, surface thickness could be obtained by determining isosurfaces.Trilinear

interpolation is
impractical for

attributes in lookup
tables

The memory footprint of the data structure of [LK10] is more bene-
ficial for storing thick surfaces, because it does not store empty voxel
attributes. As a consequence, the spatial information is separated
from the attribute information. This separation has the drawback
that uniform sampling and trilinear interpolation get very inefficient
and expensive, because each neighboring sample needs to be deter-
mined by traversing the voxel tree. An advantage of this separation
is a more flexible memory requirement for attributes. Assuming that
indices to a material library or compression is used, the overall mem-
ory consumption can be reduced, but trilinear interpolation would
not be feasible, because lookup tables or compression schemes can
only be resolved with a high computational effort. It follows that a
common volume rendering of [CNLE09] is not applicable.[LK10] allows

adaptive and flexible
sampling

To allow the determination of thick surfaces and a traversal of com-
plex material descriptions still, the ray traversal of [LK10] just needs
to continue after the first intersection (see Fig. 3.1 (c)). The advan-

3.2 concept for thz simulations 29

(a)

(b)
(c)

(d)

N = 2 (3 levels) N = 8 (1 level)

Figure 3.2: An example for estimating the sampling effort of an N2-tree
with varying N is shown. In terms of memory access and cal-
culation, every switch between hierarchy levels with push- (red
dots) and pop-operations (purple dots) is more expensive than
step-operations (white dots) in the same hierarchy level. In the
example of N=2, 3 levels from coarse to fine need to be traversed
with 10 push-, 10 pop- and 10 step-operations (a-c). For N=8,
1 level needs to be traversed with 1 push-, 1 pop- and 10-step-
operations (d). It is expected that the traversal of N=8 is faster
than N=2 due to less switches between hierarchy levels.

tage is an adaptive sampling which allows material determination
by lookup tables and an exact determination of ray lengths or surface
thicknesses. A drawback for low scene resolutions becomes the result-
ing rendering quality, because the missing interpolation of sampled
values leads to a less smooth appearance. The resulting lack of ren-
dering quality can be compensated by creating the scene in a larger
resolution which is obtained by optimizing the memory requirement
and performance.

rendering efficiency Since [LK10] is optimized for surface
rendering and [CNLE09] is optimized for volume rendering, a com-
parison of rendering efficiency is not meaningful and drawbacks can
only be argued. [LK10] would be inefficient for volume rendering,
because the octree has a deep hierarchy and each ray would tra-
verse many hierarchy levels, which leads to a poor performance. If
[CNLE09] would be used for surface rendering, it could be slower
than [LK10], because many ray samples need to be taken to find the
surfaces depending on the size of the subvolumes and the scene com-
plexity. Better performance

is expectedThe intended usage of the proposed SVT is neither surface ren-
dering nor volume rendering. Therefore, it is difficult to estimate
whether [LK10] or [CNLE09] is preferable. Theoretically, the influ-
ence of N needs to be considered, because the number of expensive
switches between hierarchy levels and the number of necessary ray
samples is reduced if N is increased. Both properties depend on the

30 sparse voxel trees

scene material, because the THz radiation is not necessarily travers-
ing the full scene. Hence, the choice of the optimal N is influenced
by the scene content as well. If this scene dependency is neglected,
it can be generalized that a shallow hierarchy and a reduced number
of samples per ray lead to a higher performance, because less compu-
tation needs to be done (see Fig. 3.2). It follows that a performance
gain is expected if an N3-tree and an adaptive voxel sampling are
used. Therefore, the proposed SVT allows to increase N and uses the
adaptive traversal of [LK10]. The rendering of the proposed SVT is
discussed in Sec. 3.5.

3.3 data structure

3.3.1 Related Work

Octrees and its
derivatives are well

researched
First publications about the use of octrees in computer graphics
appeared around 1980, e.g. [Mea82, Hun78] or [JT80]. Since
then, many publications about octrees and its derivatives like 3D
mipmaps ([LW90, LH91, BD02, DGPR02]) or N3-trees ([CB04, LHN05,
CNLE09]) appeared.Current focus is on

memory reduction
and dynamic voxel

data

Recent publications still improve on these voxel tree structures.
[Mus13] focuses on level sets and dynamic volume representations
which are stored in a hierarchical tree structure with similarities to
B+Trees and very efficient bit encoding techniques to allow fast ran-
dom access. While allowing a very efficient and performant process-
ing of dynamic volume data, the memory requirement can not be as
optimized as an SVO for surface rendering. [KSA13] propose a sparse
voxel directed acyclic graph (SVDAG) to further improve the memory
requirements of the SVO of [LK10] by collapsing subtrees with the
same topology and transforming the tree to a graph. This graph does
not allow to store material attributes. The most recent data structure
of [DKB∗16] removes this limitation and allows to store material at-
tributes. The nodes of the SVDAG are extended by relative pointer
offsets which allow a lookup of the corresponding material attribute.
These pointer offsets are determined by a depth-first traversal of the
SVO topology which is transformed to the SVDAG.[CNLE09] and

[LK10] are the two
main influences

In respect to the proposed SVT, the two main influences are the
SVO of [LK10] and the N3-tree of [CNLE09] (see Sec. 3.2). Therefore,
the data structures of those two approaches are discussed more in
detail.Efficient SVO data

structure of [LK10] An SVO structure with a very efficient memory footprint is pro-
posed by [LK10]. The structure holds information about tree topol-
ogy, shading attributes and voxel geometry. One main contribution
is an efficient encoding of the topology. Fig. 3.3 shows an example.
Instead of providing pointers to all child nodes of one parent, only
one pointer to a memory region is used. In this memory region, all

3.3 data structure 31

(a)

leaf maskvalid mask

1 0 1 0 1 0 1 0

10 10 10 10

0 1 1 0 0 000

1 0 1 01 01 1
1 10 10 101

(b)

Figure 3.3: The SVO structure of [LK10] is shown as a 2D example. Only one
pointer is used to address all child nodes of a parent (a). Storing
the child nodes linearly in memory allows to jump to the correct
child by the valid mask and obtain the information if the child is
a leaf by the leaf mask (b).

non-empty child nodes are consecutively stored in memory. The cor-
rect child is found by calculating a pointer offset from a bitmask (see
valid mask in Fig. 3.3 (b)). In the 3D case, this bitmask consists of 8

bits representing all possible children. If the respective bit is set, the
child has an entry in the referenced memory region and can be deter-
mined by counting the set bits of the preceding child nodes. Another
bitmask is used to define leaf-nodes, where each bit represents the
state of one child again (see leaf mask in Fig. 3.3 (b)). This bitmask is
used to stop branching of subtrees in homogeneous regions that do
not need to be refined further. The memory consumption is reduced
and the performance is improved due to a shortened tree traversal.
Therefore, child nodes of one parent can have varying levels of detail.
Another contribution is the approximative description of geometry
inside the voxel with bounding slabs over the hierarchy levels. Two
parallel planes enclosing the original mesh inside a voxel are stored
in each node. These slabs are combined over the hierarchy levels to
approximate the original mesh (see Fig. 3.4). If the resulting error
between the original mesh and the approximative bounding planes is
negligible, the nodes of the SVO do not need to be refined anymore
at this position. Therefore, the memory consumption is reduced and
the performance is improved by a reduced hierarchy depth. This
technique is limited to a representation of surface models and is not
applicable to volume representations. N3-trees of

[LHN05] and
[CNLE09]

While the SVO of [LK10] is intended for surface rendering, the
proposed structure of [CNLE09] is used to represent volume datasets.
Thus, the design of the tree structure has other requirements, because
the memory consumption becomes higher and the rendering needs
to be done in a more performant manner to achieve similar framer-

32 sparse voxel trees

(a) (b)

Figure 3.4: The surface approximation with hierarchical slabs of [LK10]
stores parallel planes by a normal and two distances in each hier-
archy level to approximate the surface and to stop the refinement
of the voxel tree early. The information of the coarser levels (a)
is used to calculate a tighter voxel slab in the finer level (b).

ates. To address these requirements, [CNLE09] uses an N3-tree and
extends it with the property that each node can have a pointer to a
3D-texture. This texture represents the corresponding subvolume of
the dataset. The N3-tree implementation is similar to the structure
of [LHN05] (see Fig. 3.5) and allows a shallow hierarchy representa-
tion which is more suitable for volume information. The GPU texture
memory is used to store the nodes next to each other. [LHN05] uses
RGBA8 channels as one pointer to all child nodes or as color values
for texturing. [CNLE09] stores nodes with 64 bits (see Fig. 3.6). One
bit defines if the original volume data set still contains data and can
be refined further. 30 bits represent a pointer to child nodes. One
RGBA8 color value with 32 bits is used for the representation of the

(a) (c)

unused

1.0

X

C

E

P

A

0

0.5

R G

Y

B

Z}

32 bit

P

P E

E

E

E C

C

E

E

C

C

P E

C C

(b)

Figure 3.5: The N3-tree structure of [LHN05] is depicted. For simplification
a quadtree (22-tree) is shown. The original tree (a) is represented
by pixels in texture memory (b). All child nodes of one parent
represent a contiguous block in texture memory and can be ad-
dressed by one texture index. The RGB channels of a 32 bit-pixel
(c) are either empty nodes E, interpreted as a pointer P to all
child nodes or used as a color C. The 8 bits of the alpha channel
are used to interpret the pixel as one of these three possibilities.

3.3 data structure 33

}
32 bit

2

T X Y Z

101010

a�ribute

topology}

32 bit

1 101010

ZC|Trefine YX

1

C AR G B

8 888

node (P):P

topology

a�ribute

C

texture (T)

(a) (b)

Figure 3.6: The node representation of [CNLE09] is shown. A node P refer-
ences topology and attributes (a). While the topology is always
an index to a all child nodes in texture memory, a color C or a
link to another texture T represent the attribute (b). C represents
an empty or homogeneous subvolume. T is a texture that repre-
sents a heterogeneous subvolume. T can have another resolution
M3 than the resolution N3 of the voxel tree.

subvolume. One bit is used to decide if this color value either is inter-
preted as a homogeneous region or as a pointer to another region of
texture memory. The referenced texture holds information about the
subvolume and can have another resolution, i.e. the tree has nodes
with N3 elements and the nodes redirect to other texture blocks with
a resolution of M3. With this flexibility it is possible to represent
adaptive volume datasets efficiently.

3.3.2 Generalization of SVOs to SVTs

The proposed SVT
generalizes the SVO
of [LK10] to an
N3-tree.

The proposed SVT of this thesis generalizes the SVO structure of
[LK10], which is used for memory-efficient and highly performant
surface rendering, to a N3-tree in the spirit of [CNLE09], which is
more suitable for volume-rendering but wastes more memory for
empty space in sparse scenes (see Sec. 3.3.1). Fig. 3.7 gives an
overview of the generalization concept. Like the SVO of [LK10], the
SVT stores one pointer to all child nodes of one parent. All child
nodes of a parent are stored linearly and a bitmask is used to address
the correct node. The main difference between SVTs and SVOs lies
in the number of these addressable child nodes which are linearly
stored in consecutive memory. The SVO can only store up to 8 child
nodes. In theory, the SVT can store all child nodes of the whole voxel
grid with only one pointer and one bitmask (see Fig. 3.7 (b)), but
the implemented SVT limits the number of child nodes to 125 due
to memory restrictions and performance losses in the rendering for
more child nodes (see Sec. 3.3.4). Furthermore, Fig. 3.7 (a) shows the

34 sparse voxel trees

(a) (b)

N = 9

81 bits

no hierarchy

N = 3

0

00

0

coarse level fine level

0

0

0

0

1

1

1

1

1

110011010 000000001

000100100

001111011

000110000

010000000

valid mask valid mask

Figure 3.7: The SVO of [LK10] can be generalized to SVTs if the number of
child nodes can vary. While the SVO has a fixed number of 8

children per node. The SVT has N3 children per node. Exam-
ples for N = 3 (a) and N = 9 (b) are given. The tree and the corre-
sponding data structure are compared. For N = 3, two hierarchy
levels are needed. The corresponding data structure efficiently
encodes subspaces by single bits and stores single pointers to all
child nodes which are consecutively stored in memory (a). In
the theoretical case when N has the same length as the full voxel
grid (b), no pointers are needed but empty voxels need one bit
on the finest level.

efficient encoding of empty voxels in a hierarchical representation. In
comparison to the SVO, larger groups of empty child nodes can be
encoded by single bits in the coarser levels of the hierarchy, if the
subspace is empty.Key technique for

generalization is the
generalized Morton

order

In general, the needed sorting of child nodes is obtained by the
Morton order [Mor66] which maps multidimensional data to a linear
index. This order preserves locality, because contiguous Morton in-
dices correspond to a group of child nodes which belong to the same
parent node in the next coarser hierarchy level. The Morton order
is calculated by an interleaving of bit representations of the coordi-
nates which need to be transformed. Since bit representations use
base 2, the ordering exactly represents the structure of an octree, be-

3.3 data structure 35

x = 4 = 100
y = 7 = 111

1y1x1y0x1y0x = 58
x = 4 = 004
y = 7 = 012

0y0x1y0x2y4x = 139

N = 2 N = 5

(a) (b)

[4,7]
135 139

45

152

40

47
129 140125

150

142

2725

20 24

[4,7]

21

31

32 37

4742 58

48 53

63

15

16

26

0 5

10

Figure 3.8: The exemplary calculation of the Morton code is shown. It is
the basis for a linear sorting of child nodes of an SVT, because
groups of consecutive Morton numbers represent child nodes
that belong to the same parent node. While the common Morton
calculation on base 2 is used for SVOs (a), the SVT requires a
generalized calculation on the desired base N of the N3-tree (b).

cause only one subdivision in each dimension is used. For SVTs, this
principle of Morton indexing needs to be extended to a larger base,
i.e. the coordinates are transformed to its representations on base N,
interleaved and transformed back to decimal base (see Eq. 3.1 and
3.2). Fig. 3.8 (a) shows the common calculation of Morton indices. As
an example for the generalized method, Fig. 3.8 (b) shows the Morton
calculation on base N = 5.

x = xk ·Nk + ... + x1 ·N+ x0

y = xk ·Nk + ... + x1 ·N+ x0

}
ykxk..y1x1y0x0 (3.1)

index = yk ·Nk·2+1 + ...+ y1 ·N3 + x1 ·N2 + y0 ·N+ x0 · 1 (3.2)
Difference between
SVT and N3-tree[CNLE09] and [LHN05] create generalized N3-trees and store sin-

gle pointers for referencing all child nodes of one parent as well. In
comparison to these approaches, the SVT does not use texture blocks
to maintain all child nodes that a parent can have. Attributes are
only stored for valid voxels, while empty voxels are only represented
by single bits in the bitmask. This method reduces the memory con-
sumption of scenes with many empty regions, i.e. sparse datasets are
stored more efficiently.

36 sparse voxel trees

(c)(b)(a)

GG G GG GG G

B B BB BB B B

R RR R RRRR
[37, 127, 231]

[32, 124, 224]

[233, 125, 9]

[232, 124, 8]

Figure 3.9: The RGB565 compression is used to store color values in the
SVT. If an RGB8 color is given as input, the least significant bits
of the R, G and B channel are removed (a). Two examples of the
resulting quantization are shown (b,c).

3.3.3 Attribute Compression

RGB565 and
octahedron

compression of
[CDE∗14] are used

In addition to topology information, all voxel tree approaches need
to store attributes. The implemented SVT stores color and normals
for each node. The color is compressed by the RGB565 format, which
needs 16 bit for the color representation (see Fig. 3.9). This compres-
sion scheme uses 5, 6 and 5 bits for the red, green and blue color
channel, respectively. It is obtained by removing the least significant
bits of usual 8 bit RGB representations. The normal information is
encoded into 16 bit as well. The octahedron encoding of [CDE∗14] is
used. Here, the normal direction on a sphere is projected to an octa-
hedron. By calculating an unfolding of this octahedron to a quad, the
normals ~n can be represented by texture-coordinates [u, v] ∈ [−1, 1]2

with a precision of 8 bit per coordinate. Fig. 3.10 illustrates the ap-
proach. Eq. 3.3 is used for normal-encoding, while Eq. 3.4, 3.5 and
3.6 are used for normal-decoding.

Figure 3.10: The octahedron encoding of [CDE∗14] allows to store com-
pressed normals in 16 bits. After a projection of the normal ~n
(a) to an octahedron (b), the octahedron is unfolded to an image
and the coordinates of ~n are transformed to [u,v]-coordinates
(c).

3.3 data structure 37

[u, v] =

[nx,ny]

|nx|+|ny|+|nz|
if nz > 0

1− |
[ny,nx]

|nx|+|ny|+|nz|
| · sign([nx,ny]) if nz 6 0

(3.3)

n′z = 1− |u|− |v| with [u, v] ∈ [−1, 1]2 (3.4)

[n′x,n′y] =

[u, v] if n′z > 0

1− |[v,u]| · sign([u, v]) if n′z 6 0
(3.5)

~n =
~n′

‖~n′‖
(3.6)

with sign(x) = 1 for x > 0 and sign(x) = −1 for x < 0
Comparison with
compression
methods of related
approaches

Compared to [LK10], the SVT does not store contours for represent-
ing voxel geometry. Furthermore, the SVO encodes color and normal
information in a different manner. The color is encoded with a sim-
plified variant of DXT1 compression (see [vW06] and [INH99]), while
a new normal compression is proposed (see [LK10] and Sec. 3.5.4.3).
[CNLE09] and [LHN05] do not use compression for storing attributes.

3.3.4 Memory Consumption

Memory layout of
the SVT and
limitation to N = 5

The implemented SVT structure consists of 3 memory regions (see Fig.
3.11). The first region stores the bitmasks for encoding the topology,
the second region represents the pointers to the child nodes and the
third region stores corresponding attributes of the node. The memory
regions are stored in separate textures for an efficient lookup in the
rendering. Currently, a maximum of 128 bits can be obtained with
one texture-lookup by hardware. Therefore, the SVT implementation
supports N3-trees with N = {2, 3, 4, 5} because the bitmask for repre-
senting the topology with N = 5 needs 125 bits. An SVT with N = 6

would exceed the accessible 128 bits and an additional texture lookup
for every node would be necessary. Other bit operations, which are
needed for a traversal of the SVT, like counting or shifting are limited
to 64 bit on current GPUs. Therefore, the processing of the proposed
SVTs with N > 5 would become impractical and inefficient. Inde-
pendent of N, the other two memory regions, i.e. child pointers and
attributes, both use 32 bit to store one element. Memory footprint of

single nodesBitmasks and child pointers are used to reference the child nodes
of a node. Therefore, the finest level of the hierarchy does not need
them. Only the attributes are stored on all levels. It follows, that
the leaf nodes have a memory footprint of 32 bits. The theoretical
footprint of an inner node consists of 32 bits for an attribute, 32 bits
for a child pointer and N3 bits for the bitmask. Since the bitmask are

38 sparse voxel trees

indices
32 bits

bitmasks
N³ bits

a�ributes
32 bits

}
}

averaged
a�ributes

original
a�ributes

n
o

n
-l

ea
f

n
o

d
es

in
 t

h
e

h
ie

ra
rc

h
y

le
af

 l
ev

elhigher N:
larger bitmasks, but
less non-leaf nodes

in the hierarchy

aligned to
word size
of 32 bit

Figure 3.11: The structure of the SVT is stored in three textures: 1) Each
node in the hierarchy has an attribute. The leaf attributes are
determined from the original data set. The parent nodes of
the coarser levels combine the attributes of its child nodes, e.g.
the attributes are averaged. 2) Each node has an index, which
points to its first child node. 3) A bitmask is stored for each
node to address the correct child by bit counting after jumping
to the first child node. The bitmasks are aligned to a word
size of 32 bit, because RGBA32 channels of a texture are used
- Changing N leads to a reduced hierarchy depth, but a larger
number of bits per bitmask.

aligned to 32 bits for color channels of a texture, the footprints are as
follows: N = {2, 3} : 96 bits, N = 4 : 128 bits, N = 5 : 192 bits.Memory

requirement of the
scene

The total memory consumption of a scene is influenced by the num-
ber of nodes in the hierarchy and the complexity of the scene. A
higher hierarchy with N = 2 has more nodes with smaller footprints,
while a reduced hierarchy depth with N = 5 has less nodes with
larger footprints.Example for the

choice of N Depending on the scene composition and the relation of bits for
representing empty space and attributes which need to be stored, a
larger N optimizes the memory requirement of the topology. If the
bits in the bitmask exceed the bits used for attributes, a larger N
needs more memory again. Fig. 3.12 shows a simplified example of
an SVT in 2D. On the one hand, more attributes need to be stored
for N = 2, because a hierarchy is necessary. On the other hand, more
bits in the bitmask need to be stored for N = 8. It follows, that N =
4 has the lowest memory consumption in this case. Table 3.1 gives
a detailed information about memory consumption for that example.
An evaluation of the influence of N on the memory consumption for
example scenes in Sec. 3.4.6.2 shows that the optimal N is dependent
on scene sparsity and implementation details. Therefore, the optimal

3.3 data structure 39

(a)

N = 2
(304/400 bits)

N = 4
(208 bits)

N = 8
(256 bits)

(b) (c)

Figure 3.12: The memory consumption of the hierarchy is influenced by the
choice of N for the SVT. The same scene is represented with N
= 2 (a), N = 4 (b) and N = 9 (c). While N = 4 has the optimal
memory consumption, the SVT with N = 8 needs to store more
empty bits in the topology and the SVT with N = 2 needs to
store more topology information.

value of N is not constant and needs to be adjusted to achieve the
optimal memory consumption of the SVT for a specific scene. Memory

consumption of leaf
nodes is not
influenced by N

The main part of the memory is used by the attributes in the leaf
nodes. Here, the needed memory is independent of N. Therefore, a
larger N improves the memory which is needed for topology but the
memory consumption of the attributes can only be improved by more
efficient compression methods.

N Bitmask Indices Attributes Total

2 4 · 4 4 · 32 (5|8) · 32 304|400

4 16 32 5 · 32 208

8 64 32 5 · 32 256

Table 3.1: Memory consumption in bits for the example given in Fig. 3.12.
To provide a fairer comparison, a variant with attributes in the
coarse hierarchy level and a variant without attributes in the
coarser hierarchy level is provided for N = 2. If the used word
alignment of 32 bits (see Fig. 3.11) is considered, the two variants
of N = 2 would have 416 or 512 total bits and the SVT with N = 4

would have 224 total bits. It would not change for N = 8.

40 sparse voxel trees

3.4 voxelization

3.4.1 Overview

Short description of
approach,

contributions and
difference to [PK15]

The following section is based on [PK15]. It presents an out-of-core
construction of SVOs on GPUs to allow a very performant process-
ing of massive triangle meshes which do not fit into GPU memory,
while allowing a sophisticated voxel attribute creation without con-
straints on the order of contributing attribute values per voxel. A
streaming approach for triangles and voxels allows to process only
subsets of the whole dataset. Triangle subsets can be voxelized indi-
vidually. Afterwards, the resulting intermediate subset of voxels can
be used to create subparts of the SVO and built the SVO sequentially.
With a generalized calculation of the Morton index (see Sec. 3.3.2), a
construction of SVTs is achieved with the same method. The main
contributions of the proposed approach are:

• A grid-free voxel handling which allows an out-of-core voxeliza-
tion on GPU and removes the need of processing empty voxels,

• Parallel voxelization of triangles on GPU which is optimized for
a balanced workload, avoiding any atomic operations as usually
used in grid-based parallel triangle voxelization approaches

• Maintenance of all triangle properties on a per-voxel level to
allow an attribute determination in post-order for the voxel and
the resulting nodes of the SVT, and

• The possibility to create a generalized N3-tree structure with
an improved memory efficiency in comparison to current SVO
implementations.

3.4.2 Related Work

Focus on SVO
creation The voxelization of SVTs or SVOs differs in many aspects from usual

voxelization methods due to the fact that empty voxels are usually
omitted and not stored in the data structure which will be created,
i.e. sparse tree structures will be generated. Therefore, the focus of
related work lies on methods which create SVOs as well. A recent
in-depth discussion about voxelization in general is given in [Lai13].In-Core GPU

A surface and a solid voxelization on the full grid is presented by
[SS10]. Furthermore, [SS10] present a solid voxelization method to
an SVO representation. In all cases, the GPU rasterizer is not utilized.
The sparsity in the voxelization is exploited by determining and pro-
cessing lists of active nodes in the octree construction. The octree
structure is created in a bottom-up fashion starting from the parent
nodes of the finest level to fill the leaf nodes with the voxel data af-
terwards. Therefore, the octree structure and triangle data need to

3.4 voxelization 41

be stored in memory completely. The attributes of the generated vox-
els only hold binary information or a scalar representing the coverage
factor, while the proposed voxelization stores voxel color and normal.

[CG12] proposes a sparse voxelization on GPU that uses the hard-
ware rasterizer. A conservative rasterization is used to generate the
voxels. The tree generation is done top-down. All octree-nodes,
which contain the generated voxels of the finest level, are determined.
The resulting nodes on leaf-level are filled with the attributes from a
voxel fragment list and coarser levels get averaged attributes from the
child nodes bottom-up. The available GPU memory for storing the
complete voxel fragment list and the resulting octree-structure limits
the size of the scene representation. In-Core CPU

A detailed introduction to SVOs is given in [LK11]. A top-down
approach on CPU determines independent slices containing parent-
child relations and the needed triangles for the subtree to generate
the SVO. This method would allow an out-of-core SVO creation, but
especially the root node would need to contain all triangles for pro-
cessing. Therefore, the SVO generation is limited to the number of
triangles and the size of the created SVO that can fit into memory.
A unique characteristic to other voxelization techniques is the trian-
gle processing on every level of the tree. Here, the original input is
used on all levels for attribute creation. By using the triangle data on
each level, [LK11] proposes a contour creation and an early termina-
tion of subtrees in the voxelization, if these contours approximate the
triangle geometries well enough. (see Sec. 3.3.1)

[KSA13] improves the memory usage of SVOs by storing them as
a directed acyclic graph (DAG). Therefore, larger SVOs can be rep-
resented. To avoid a construction of the complete SVO at once, sub-
trees of the SVO are transformed into sub-DAGs. Afterwards, the
final DAG is obtained by assembling the sub-DAGs. The tree con-
struction has the same limitations in respect to out-of-core processing
as [LK11], because all triangles, the intermediate SVO, and the final
DAG need to fit into memory. Out-of-Core CPU

The out-of-core CPU method of [BLD13] uses an efficient stream-
ing for SVO creation and voxelization. First, the final grid is parti-
tioned into smaller subgrids that fit into memory. Then, all subgrids
are sequentially processed by voxelizing the stream of triangles and
creating the corresponding subtree of the SVO. To remove the need
for processing a large number of empty subtrees, an optimized SVO
creation is proposed.

In a subsequent work, [BLD14] suggests the direct use of a voxel
list, which improves the performance, but does not remove the need
of maintaining the full grid, because there is no estimation for the pos-
sible size of the created voxel list in a subgrid. The voxel attributes are
created independently from the triangle position, i.e. from the voxel’s
barycentric coordinates with respect to the triangle. Furthermore, the

42 sparse voxel trees

first triangle intersecting the voxel generates the attribute. Extending
this approach to allow arbitrary attribute computation would require
the maintenance of all triangle contributions per voxel and function-
alities like texture lookups need to be re-implemented on CPU. A
significant performance loss would be the result.Differences to

[SS10], [BLD13]
and [BLD14]

The proposed approach of this section is similar to [BLD13, BLD14],
because triangle and voxel streaming is used as well. However, all
triangle attributes per voxel are accessible for computing the voxel
attributes in the proposed approach. Furthermore, triangle sorting
replaces the subgrid-partitioning in order to be more flexible and grid-
free. In contrast to [BLD13, BLD14], which uses the surface voxeliza-
tion of [SS10], the conservative voxelization of [SS10] is used in the
proposed approach. Additionally, the voxelization is done on GPU
rather than CPU. In comparison to [SS10], the proposed approach
creates leaf voxels directly and creates SVT parts bottom-up in a sin-
gle pass to enable out-of-core processing.

3.4.3 Algorithm Overview

Approach consists of
triangle and voxel
stream processing

The proposed construction of SVTs comprises the stream processing
of triangles and voxels. The main goal of the triangle stream pro-
cessing is to prepare a given triangle set {Ti} in such a way, that par-
allelized processing can efficiently be performed on GPU, while the
voxel stream processing is intended to maintain voxels and construct
the SVT in a sequential order. Figure 3.13 gives a schematic overview
of both processing stages, while a brief description is given in the
following.Short description of

triangle stream
processing • Triangle stream processing:

First, a subdivision scheme is applied on the input triangles.
It improves spatial locality of the triangles, voxel handling effi-
ciency and processing performance on GPU (see Sec. 3.4.4.1).

Next, the triangles are sorted to achieve a voxel prediction,
which determines the position of the triangle in a sorted set
for the SVT creation and estimates how many triangles per iter-
ation can be processed in parallel (see Sec. 3.4.4.2). For describ-
ing these triangle sets per iteration, the term (triangle) batch is
used in the following.

When the triangle batches are defined, a sequential process-
ing of batches starts the voxelization and attribute creation (see
Sec. 3.4.4.3). From the voxelization of one batch, a voxel attribute
set is created. This set is a list of voxel-attribute pairs, which
contains non-unique Morton indices and attribute values of tri-
angles at specific voxel positions. Morton indices [Mor66] are
used to represent the voxel indices, because they allow to map
multidimensional data to a linear index that preserves locality.

3.4 voxelization 43

This property is needed for the creation of N3-tree structures
like the SVT (see Sec. 3.3.2), because all children of one parent
can be accessed by a contiguous range of indices. Short description of

voxel stream
processing• Voxel stream processing:

To avoid the creation of SVT nodes that can be intersected by
subsequent triangles, voxels with potentially incomplete infor-
mation for attribute determination need to be maintained. For
this purpose, a Morton queue is used (see Sec. 3.4.5.1). It stores
all unprocessed voxel-attribute pairs of previous batches and
all pairs of voxel-attributes of the current batch to extract vox-
els that can be used for SVT creation in the current iteration.
The resulting voxel-attribute pairs represent the current voxel
attribute set until the next triangle batch is voxelized.

The SVT Creation is the second step (see Sec. 3.4.5.2). New
parts of the SVT are built hierarchically in a bottom-up manner
by starting with the leaf nodes. Attributes of the leaf nodes are
calculated with the current voxel attribute set. On coarser hi-
erarchy levels, nodes are only created if the complete attribute
information of their descendants is available. Therefore, an ad-
ditional stitch queue buffer is used to maintain the advancing
front of incomplete nodes in the hierarchy. These nodes are
finalized by subsequent batches. On CPU, the creation of the
SVT is finished. The remaining nodes in the stitch queue buffer
are iterated after all batches have been processed.

3.4.4 Triangle Stream Processing

3.4.4.1 Subdivision of Triangles
A triangle
subdivision is
needed for balancing
GPU workload

The first step of the proposed algorithm consists of pre-processing.
It consumes triangles sequentially and applies a subdivision scheme.
The main goal is to create triangles which are as homogeneous as
possible with respect to the following criteria:

• Among all triangles, the number of voxels generated per trian-
gle Nvox/tri(Ti) should be as equal as possible

• The range of Morton indices m, which are generated for each
voxel of a triangle, determines how long a triangle stays active
in the out-of-core scheme. Therefore, the Morton indices should
be as compact as possible, i.e.

(mmax(Ti) −m
min(Ti))/Nvox/tri(Ti)→ min!,

where mmin(Ti) and mmax(Ti) denote the minimum and maxi-
mal Morton index generated by triangle Ti, respectively.

44 sparse voxel trees

voxelfattributefsetfjf+f1voxelfattributefsetfj

Subdivision

SortingfqfPrediction
batchfj batchfjf+f1

Voxelization
batchfj

MortonfQueueing
voxelfattributefsetfj

voxelfattributefsetfj stopfindexf(1stfMortonfindexfjf+f1)
sortingfandf
extractionfof
usablefvoxels

SVTfCreation

attributefcreationffrom
voxelfattributefpairs

root

post-orderfnode
creationfwith
stitchfqueue

VoxelfStreamfProcessing

TrianglefStreamfProcessing

finalizedfSVTfnodes

stitchfqueuefjf-f1

nodesfoffvoxelfattrib.fsetfj

stitchfqueuefj

futurefSVTfnodes

processedfSVTfnodesfj

generatingfvoxel
attributefsetf
fromftrianglefbatch

Figure 3.13: Overview of the proposed approach, which shows the steps of
triangle stream processing and voxel stream processing. Image
source: [PK15]

3.4 voxelization 45

Of course, the simple solution of one voxel per triangle has to be
avoided, i.e. Nvox/tri(Ti) should not be too small, because the I/O
time for transferring a higher triangle count would increase while
the computation time for processing less voxels per thread would
decrease. Thus, the GPU processing would not improve the perfor-
mance of the voxelization. Purely geometric

subdivision rules are
applied

Both criteria are influenced by the shape and size of the triangles.
In addition, the specific spatial location of the triangle influences the
Morton-range criterion strongly, but a determination of compacted
Morton ranges would basically require voxelization already. There-
fore, both criteria are approximated by using purely geometric sub-
division rules. While a large Morton range for a single triangle can
not be avoided by these rules, the subdivision limits the number of
resulting voxels that need to be maintained during batch processing.

case 3:case 1:

case 2:

a

c

b

c

b

a1 a2

Figure 3.14: Triangle subdivision: The two cases of elongated triangles (case
1 and 2) and the regular case 3. Image source: [PK15]

The criterion of compact Morton-ranges is solely addressed by pre-
venting long and thin triangles (see Fig. 3.14 case 1 and case 2). In or- Estimation of voxels

per triangleder to estimate the number of created voxels for triangle Ti, a canoni-
cal approach would be a projection of the triangle along the dominant
coordinate axis of its normal. This projection relates the projected
triangle size Aproj(Ti) to the area of a voxel face Avox. However, ex-
periments have shown, that it is advantageous to use the area of the
projected bounding box of the triangle Abbox(Ti), because long thin
triangles are penalized additionally. Therefore, the final subdivision
rule is given by Eq. 3.7, where Kmax

vox/tri is a user-defined parameter.
The triangle is subdivided, if Abbox(Ti) does not fulfill Eq. 3.7.

Abbox(Ti) 6 K
max
vox/tri ·Avox, (3.7)

The subdivision
rules are
distinguished
between 3 cases

All triangles are checked for three different cases in a sequen-
tial process on CPU. These cases are depicted in Fig. 3.14 (see also
Alg. 3.1). Under the condition that the three edges of triangle T are
sorted according to their lengths T .a 6 T .b 6 T .c, case 1, i.e. two
short and one long edge, and case 2, i.e. two long and one short edge,
are determined by T .a 6 T .b� T .c and T .a� T .b 6 T .c, respectively.

46 sparse voxel trees

Algorithm 3.1 : Triangle subdivision. Source: [PK15]
// Input

{Ti} // triangle soup

Kmax
vox/tri // max. voxels per triangle

L // length of a voxel

Avox ← L2 // area of a voxelface

Q← {Ti} // Initialize input queue

R← ∅ // Initialize result queue

// Process the triangle soup
while Q 6= ∅ do

T ← Q.dequeue()
// Apply subdivision scheme if area of bbox too large
if Abbox(T) 6 K

max
vox/tri ·Avox then

// Case 1: T .a 6 T .b� T .c, angles larger ∼ 90◦(
√
2)

if (T .a+ T .b) <
√
2 · T .c then

Q.append(T .split())
// Case 2: T .a� T .b 6 T .c, angles smaller ∼ 20◦(3)
else if 3 · T .a < T .b then

Q.enqueue(T .subdivide())
// Case 3: regular split
else

R.enqueue(T .regSubdiv())

{Ti}← R // Resulting set of triangles satisfies Eq. 1.

First, all triangles are stored in a queue Q. Case 1 is handled by sim-
ply splitting the triangle in two parts, resulting in cases 2 or 3. In case
2, approximately equilateral triangles are created. Here, the short
edge length T .a is cut off the long edges and the resulting quadrilat-
eral is split into two triangles. Until the remaining part of the triangle
fulfills Eq. 3.7, this process is repeated. In case 3, the triangle is di-
rectly subdivided by simply computing

⌈√
Abbox(T)/(K

max
vox/tri ·Avox)

⌉
as subdivision factor. The created and the remaining triangles fulfill
Eq. 3.7 after handling the subdivision cases.

3.4.4.2 Triangle Sorting and Voxel Count Prediction
Batch processing is

needed for
out-of-core

voxelization

It is assumed, that SVO and triangle data do not completely fit into
memory for global processing. Hence, the triangles need to be struc-
tured to allow the processing of triangle subsets, i.e. batches of trian-
gles, and respective subtrees of the SVO. Since batches are processed
sequentially, it is required to have all relevant SVO data on GPU for
a subtree creation.

The triangles need to be prepared for two main challenges in the
Voxel Stream Processing (see Sec. 3.4.5):

3.4 voxelization 47

• Since the triangles in each batch Bj = {Tjmin , . . . , Tjmax} are
processed without atomic operations and in parallel, an upper
bound Nmax

vox/tri(Ti) of voxels generated by triangle Ti is needed.
This bound allows to pre-allocate the memory for batch Bj and
to determine write-offsets in a global memory for each triangle
Ti.

• It is necessary to know, which voxels can be completed in the
current triangle batch, because the finalized subtree of the SVO
needs to be streamed out in order to avoid a memory overflow.

Triangle sorting
with Morton indicesThe properties of the Morton order [Mor66] are used for the sort-

ing of triangles. It provides a linear order as if an SVT is traversed in
depth-first post-order (see Sec. 3.3.2). [LGS∗09] uses the same method
of sorting primitives in the context of Bounding Volume Hierarchy
(BVH) construction. While [LGS∗09] takes the barycenter of the tri-
angle bounding box as representative position of the triangle, the
proposed approach requires the minimal Morton index mmin(Ti) of
triangle Ti, because this indicates that the voxel with Morton index
mmin(Ti) − 1 is finalized after processing all triangles T1, . . . , Ti−1. As
stated already, computingmmin(Ti) would hardly be possible without
voxelizing the triangle at this stage. Therefore, the bounding boxes of
the triangles are used to calculate the smallest Morton index m̃min(Ti)

as lower bound of mmin(Ti). Here, m̃min(Ti) is calculated from the
point of each bounding box that has the minimum Euclidean dis-
tance to the origin of the voxel grid which encloses all triangles of the
scene. Furthermore, this index determines the earliest possible point
in time when the triangle must be available for voxelization. Hence,
the triangles are sorted to m̃min(Ti) and m̃min(Tjmin) is stored as a stop
index. This index of the first triangle of each batch can be interpreted
as a stopping criterion for the extraction of a voxel attribute set from
the Morton queue (cf. Sec. 3.4.5.1), because it provides the first voxel
of the prior batch that cannot be used for node creation of the SVT. Maximum number

of voxels per triangle
is estimated

In order to determine the upper bound Nmax
vox/tri(Ti) for the gen-

erated voxels of triangle Ti, the conservative voxelization of [SS10],
which is applied further, needs to be considered. Each triangle is
projected along the dominant axis direction of the triangle normal
in [SS10]. In the proposed approach, the projected bounding box of
the triangle is discretized to the voxel resolution and the count of en-
closed projected voxels is determined. A maximum of three voxels
along the projection direction will be created, because the triangle is
planar [SS10], i.e. Nmax

vox/tri(Ti) is given by the “planar” voxel count per
triangle multiplied by the factor of three. Influence of number

of voxels per batchNaively, one would try to process the largest batches possible, but
the “optimal” batch-size is very hard to determine and strongly de-
pends on the specific dataset. A poor utilization of the GPU process-
ing power is the result, if very small batches are processed. Large
batches may lead to a “fragmentation” of the Morton queue (see

48 sparse voxel trees

Algorithm 3.2 : Predict voxel counts, sort triangles & create
batches. Source: [PK15]
// Input

{Ti} // triangle soup

Vbox // isotropic bounding box

L // length of a voxel

Kmax
vox/batch // max. voxels per batch

// Approx. voxel count and calc. min. Morton index (GPU)
{#Vi}, {Mi}← calcCountAndMorton({Ti},Vbox,L)

// Sort triangles acc. to their min. Morton index (CPU/GPU)
if memory usage of sorting < free GPU memory then

{Mi}← sortOnGPU({Mi})

else
{Mi}← sortOnCPU({Mi})

// Determine triangle batches (CPU)

j← 0 // count of batches

sum← 0 // voxel sum of current batch

t← 0 // triangle count of current batch

{voi}← {0} // voxel offsets per triangle
foreach Ti do

if sum+ #Vi < Kmax
vox/batch then

voi ← sum

sum← sum+ #Vi
t← t+ 1

else
// Save Morton stop index, triangle count and voxel count
batchj ← createBatch(Mi+1, t, sum)
j← j+ 1

sum← #Vi
t← 1

voi ← 0

batchj ← createBatch(263, t, sum) //last batch

Sec. 3.4.5.1), which has to maintain all voxel-attribute pairs for non
finalized voxels, so that a memory overflow becomes more proba-
ble. Thus, a second user-defined value Kmax

vox/batch is introduced as
bound for the maximum number of voxels which can by generated
in a batch. Since the maximum voxels Nmax

vox/tri(Ti) per triangle Ti in
the batch are known, Eq. 3.8 allows to determine an upper bound for
the voxel count per batch. The current batch Bj = {Tjmin , . . . , Tjmax−1}

3.4 voxelization 49

is finished and a new batch Bj+1 is created, if Eq. 3.8 is not fulfilled
by Ti. The batch determination is done on CPU by sequentially pro-
cessing the sorted list of triangles. Respective implementation details
are provided in Alg. 3.2.

jmax∑
i=jmin

Nmax
vox/tri(Ti) 6 K

max
vox/batch (3.8)

3.4.4.3 Voxelization and Attribute Creation
Conservative
voxelization of
[SS10] is used

The triangles are voxelized after the determination of triangle batches.
For voxelization, the conservative approach of [SS10] is applied. The
summation in Eq. 3.8 allows to define separate memory ranges in
a per-triangle voxel memory, so that voxels of each triangle can be
created independently. After the voxelization of the triangle batch, a
parallel stream compaction removes empty slots of the per-triangle
voxel memory. Additionally, the list of valid voxel-attribute pairs, i.e.
the voxel attribute set, is copied into the Morton queue. This procedure
prevents the usage of atomic operations which is usually needed for
grid-based parallel voxelization. Attribute creation is

done by texture
lookups

The attribute creation is taking place at the same time as the
voxelization. While the creation of attributes can be done by ar-
bitrary properties which can be attached to triangles, triangle nor-
mals and optionally color information are processed and stored in
the proposed implementation. Textures hold the color information.
The (u, v)-coordinates for the texture lookup are determined by the
barycentric coordinates of the projected voxel center. The (u, v)-
coordinates are clamped to the nearest edge of the triangle, if the
projection of the voxel center does not lie in the triangle. The texture
lookup is performed afterwards. Even dependent texture lookups can
be performed at this stage. More visual attributes can be retrieved
and used for the current voxel. Thus, the creation of individual voxel
attributes can be much more sophisticated than an attribute creation
on a per-triangle-basis, as proposed by [BLD14].

3.4.5 Voxel Stream Processing

3.4.5.1 Morton Queueing
Purpose of the
Morton queueThe order for creating the SVT nodes is determined by the Morton

indices of the voxel grid. It can not be ensured that all generated
voxels of a triangle are usable for SVT creation, because the range of
Morton indices covered by a triangle may be large. Thus, the SVT
creation of these voxel-attribute pairs is done in a later iteration. As
voxel-attribute pairs can not be skipped, the Morton queue is used
for maintaining all voxel-attribute pairs from previous batches which

50 sparse voxel trees

could not be processed yet. Therefore, the Morton queue has a vary-
ing size according to the number of remaining voxel-attribute pairs
in each iteration.Processable voxels

are extracted After adding the voxel-attribute set of the current batch to the Mor-
ton queue, the resulting set of voxel-attribute pairs is sorted. By split-
ting the Morton queue at the stop index (see Sec. 3.4.4.2 and Fig. 3.13)
and an extraction of all voxels with a smaller Morton index, the new
voxel-attribute set for SVT creation is determined. This method en-
sures that no further triangle will intersect any voxel of the extracted
voxel-attribute set, i.e. newly created Morton indices will be greater
than or equal to the stop index.Risk of a memory

overflow in extreme
cases

The number of elements in the Morton queue should be kept small,
because remaining voxel-attribute pairs block memory. The triangle
subdivision of Sec. 3.4.4.1 tries to limit the range of Morton indices
of a triangle to minimize the number of remaining voxels in the Mor-
ton queue, which need to be stored during the processing of many
batches. However, the prevention of an overflow is not guaranteed in
extreme cases, e.g. if a huge number of triangles intersects a single
voxel or many triangles span very large Morton ranges.

3.4.5.2 SVT Creation
Subtrees are created
in parallel over the

hierarchy levels
After extracting the voxel-attribute set, the nodes of the SVT can
be created bottom-up, because individual Morton indices of upper
nodes can be determined by Morton indices of the leaf voxels. To ob-
tain the Morton index of a parent node, the Morton index of its child
is divided by the child count of a node, i.e. N3. The parent indices
are determined on each hierarchy level for all nodes to compact them
to unique identifiers. Afterwards, these identifiers are used for a par-
allel node creation. All child nodes of one unique parent index are
processed by one GPU thread. Here, voxel attributes and bitmasks
are calculated (cf. with "valid masks" in [LK10] and Fig. 3.3). In the
bitmask, a non-empty child node is represented by 1, while an empty
child node is represented by 0. Each thread executes a modulo divi-
sion by N3 for all Morton indices of its child nodes. To obtain the
correct position of a node in the bitmask, the result of this division is
used for the shift of a single bit which is combined with the final bit-
mask by a logical OR. Since the sorting order needs to be preserved
over the hierarchy levels, the threads are scheduled by the sorted
Morton indices of the processable nodes. [ZGHG11] and [SS10] use
this method of a breadth-first bottom-up creation of the tree as well.
Alg. 3.3 provides further details on the implementation.Stitch queue buffer

for correct attribute
determination of

parents

To provide arbitrary, even order-dependent or multi-pass opera-
tions in the attribute computation, an SVT node can only be finalized,
if all of its child nodes have been finalized as well. Therefore, a stitch
queue buffer is used to store SVT nodes which are required for pro-
cessing the last immediate parent node on the current hierarchy level.

3.4 voxelization 51

Algorithm 3.3 : Bottom-up creation of SVTs. Source: [PK15]
// Input

VS // voxel attribute set

{MVS} // Morton indices of voxel attribute set

SQ // stitch queue buffer

bits // final bitmasks

atts // final attributes

// Process the active voxel attribute set
if VS 6= ∅ then

// Create unique attributes for all leaf voxels (GPU), i.e.
// 1) Calc. offsets to access all attributes of one voxel
// 2) Create unique voxel attributes
// 3) Save encoded attributes to CPU
ov ← getUniqueVoxels(VS) // reduction & exclusive scan
VS← createAttributes(VS.size,ov,VS)
atts[leaflevel].appendOnCPU(encodeAttributes(VS))

// Create SVT subtree levels bottom-up
foreach l do

// Allow post-order attribute creation (GPU), i.e.
// 1) Add stitch queue of level to voxel attribute set
// 2) Calc. max. parent node index of voxel attribute set
// 3) Move voxels with max. parent index to stitch queue

VS.addToFront(SQ[l]) // VS remains sorted

{MP}← {MVS}/N
3 // Morton indices of parents

SQ[l]← VS.extractFromBack(max({MP}))

if VS = ∅ then
// Terminate SVT creation of current batch
break

// Create SVT structure (GPU), i.e.
// 1) Calc. offsets to access all attributes of one node
// 2) Create unique node attributes and SVT-bitmasks
// 3) Prepare voxel attribute set for next level
// 4) Save bitmasks and encoded attributes to CPU
on ← getUniqueParents({MP}) // reduct. & excl. scan
an,bn ← createAttribsAndBitmasks(VS.size,on,VS)
VS← toUpperLevel({MP},an)
bits[l].appendOnCPU(bn)

atts[l].appendOnCPU(encodeAttributes(an))

52 sparse voxel trees

25 26 29 32 333 17

0 7 84 6

32 33

74 6

0 1

0

0

nodesqofqaqvoxelqattributeqsetq(Mortonqindices)

root

stitchqqueueqbuffer

zqnodes

h
ie

ra
rc

h
y

ql
ev

el
s

finalizedqnodes

stitchqnodes

lastqparent

Figure 3.15: The stitch queue buffer maintains intermediate SVT nodes in a
queue on each hierarchy level between the processing of trian-
gle batches to allow a post-order attribute creation. An example
for processing nodes of a quadtree for a given voxel attribute set
is shown. Image source: [PK15]

Those nodes may need to be "stitched" with nodes of the next batches
to generate the parent node. An example for the processing of a
voxel-attribute set is shown in Fig. 3.15. Here, a quadtree is used for
simplicity. An integer division of 4 (quadtree nodes) gives the parent
indices of the bottom level. The last parent node 8 contains the child
nodes 32 and 33. These two nodes need to be stored in the stitch
queue buffer, because future triangle batches may create further child
nodes for parent node 8, e.g node 34. The other child nodes 3, 17,
25, 26 and 29 are processed and pushed to the next higher level. The
parent indices are calculated again. Since nodes 4, 6 and 7 belong to
the largest parent index 1, they are moved to the stitch queue buffer.Child nodes are

maintained between
the batches

In the next iteration, the sorted stitch queue of the respective hi-
erarchy level is copied to the front of the current voxel-attribute set,
removed from the stitch queue buffer, and processed like all other
nodes (see "post-order attribute creation" of Alg. 3.3). The stitch
queue buffer has a fixed size and contains a maximum of N3 nodes
per level, because only intermediate SVT nodes are stored. The voxel-
attribute pairs, which belong to the last leaf node (stop index, see
Fig. 3.13), remain in the Morton queue, while the attributes of the
preceding leaf nodes can be generated by the complete list of associ-
ated voxel-attribute pairs.Difference between

"SVO Builder
queues" and stitch

queue buffer

Although the "SVO Builder queues" of [BLD13] and the stitch
queue buffer have the same size for N = 2, the functionality is dif-
ferent. The SVO Builder queues are used to create the whole SVO
and represent a consistent tree over the levels, while the stitch queues
are only used for maintaining unprocessable nodes between the iter-
ations. Furthermore, the contained nodes of the stitch queues do not
have a logical connection over the hierarchy levels.A final step on CPU

creates remaining
attributes

The stitch queue buffer holds the information of all remaining
nodes on each hierarchy level after the last batch is processed. Since

3.4 voxelization 53

a parallel processing of a few nodes per level does not make much
sense at this stage, the SVT creation is finished on CPU (see Alg. 3.4).
Therefore, all nodes per hierarchy level are processed sequentially
and the information of new nodes is copied to the next coarser level
of the stitch queue buffer.

Algorithm 3.4 : Finishing SVT creation & output. Source: [PK15]
// Input

SQ // stitch queue buffer

bits, inds,atts // final bitmasks, final indices, final attributes

// Finish SVT creation (CPU, see "Create SVT structure"
(Alg. 3.3) bits.append(createNodes(SQ))
atts.append(createNodes(SQ))

// Create indices which point to first child of node (CPU/GPU)
inds← countBits(bits)
if memory usage of bitmask data < free GPU memory then

inds← exclusiveScanOnGPU(inds)
else

inds← exclusiveScanOnCPU(inds)

// Save voxel attribute, bitmask and index arrays to disk (CPU)
saveToDisk(atts,bits, inds)

3.4.6 Results

Overview
The following section presents results of the proposed voxelization
method. To compare the approach with other techniques, Sec. 3.4.6.1
evaluates the SVT with N = 2, because it corresponds to an SVO struc-
ture, which can be created with other methods as well. Sec. 3.4.6.2
focuses on the influence of N to evaluate the generalization concept
itself (see Sec. 3.3.2).

3.4.6.1 Comparison with related methods
Comparison with
other approaches
and evaluation of
batch parameters

The performance and the quality of the created attributes are com-
pared with the work of [BLD14]1 and [LK11]2, who thankfully made
the source code publicly available for evaluation. Furthermore, the
influence of the user-defined parameters for restricting voxels per tri-
angle (Kmax

vox/tri) and per batch (Kmax
vox/batch) are discussed. An Intel Xeon

1 https://github.com/Forceflow/ooc_svo_builder
2 https://code.google.com/p/efficient-sparse-voxel-octrees/

54 sparse voxel trees

Figure 3.16: The test scenes are shown. Top row from left to right: Hairball,
Lucy, Atlas, Buddha; Bottom row from left to right: Sponza, San
Miguel. Image source: [PK15]

E5-2623 (3.0GHz) with 64 GB of RAM and an NVIDIA GeForce GTX
TITAN Black with 6 GB of memory have been used for evaluation.

Description of test
scenes performance The performance is compared for six test scenes

at resolutions of 2048
3, 4096

3 and 8192
3 isotropic voxels. The test

scenes Hairball, Lucy and Atlas vary in scene complexities and tri-
angle counts, while Buddha, Sponza and San Miguel, allow a direct
comparison between the creation of voxel scenes with and without
color attributes (see Fig. 3.16).Adjustments and

requirements for a
fair comparison

A few of the default parameters of the compared frameworks are
adjusted to provide a fair comparison. For [LK11] the maximum num-
ber of available CPU threads is used and voxel scenes without con-
tour information are created. For [BLD14], the maximum memory is
increased to the available memory, but the approach does not benefit
from more memory, if the next larger subgrid cannot be fully repre-
sented, e.g. a memory limit of 8 GB leads to the same partitioning as
a memory limit of 63 GB because 64 GB would be needed for repre-
senting the grid of the next octree level.Batch parameters

are constant in this
comparison

The user parameter “voxels per triangle” Kmax
vox/tri is set to 100 and

“voxels per batch” Kmax
vox/batch is set to 10 M (see Sec. 3.4.4) for the

performance evaluation. After the comparison with other approaches,
the influences of these two parameters are discussed.Performance results

are shown in
Tab. 3.2

Tab. 3.2 shows the result of the performance comparison. The
whole process with hard disk I/O is included in the timings for
[BLD14] and the proposed approach. The time of loading a triangle
mesh from hard disk to RAM is omitted for [LK11] due to restrictions
of the available file-import. It would have been more unfair to add
the import timings instead of omitting the timings because the load-

3.4 voxelization 55

Sc
en

e
H

ai
rb

al
l(

2
.8

M
tr

ia
ng

le
s)

Lu
cy

(2
8
.0

M
tr

ia
ng

le
s)

A
tl

as
(5

0
6
.5

M
tr

ia
ng

le
s)

R
es

ol
ut

io
n

2
0
4
8

4
0
9
6

8
1
9
2

2
0
4
8

4
0
9
6

8
1
9
2

2
0
4
8

4
0
9
6

8
1
9
2

[L
K

1
1
]

2
7
4
.4

s
7
6
3
.7

s
2
6
5
7
.8

s
9
6
4
.3

s
1
0
0
1
.9

s
1
0
9
7
.4

s
-

-
-

[B
LD

1
4
]

1
3
4
.4

s
7
5
9
.2

s
4
4
5
9
.9

s
1
7
.5

s
4
0
.7

s
9
7
.9

s
2
2
3
.3

s
3
5
1
.4

s
6
7
6
.3

s

Pr
op

os
ed

al
go

ri
th

m
8
3
.0

s
2
8
1
.9

s
1
1
9
5
.5

s
1
1
.7

s
1
6
.9

s
3
0
.3

s
2
7
0
.0

s*
2
3
9
.8

s*
3
4
5
.7

s*

Sc
en

e
Bu

dd
ha

(3
0
.3

K
tr

ia
ng

le
s)

Sp
on

za
(2

6
2
.3

K
tr

ia
ng

le
s)

Sa
n

M
ig

ue
l(

1
0
.1

M
tr

ia
ng

le
s)

R
es

ol
ut

io
n

2
0
4
8

4
0
9
6

8
1
9
2

2
0
4
8

4
0
9
6

8
1
9
2

2
0
4
8

4
0
9
6

8
1
9
2

w/ocol.

[L
K

1
1
]

1
4
.3

s
5
9
.9

s
2
4
3
.2

s
2
4
.8

s
9
2
.1

s
3
6
4
.2

s
(1

4
0
.6

s)
(1

5
3
.3

9
s)

(1
6
5
.9

s)

[B
LD

1
4
]

1
5
.4

s
6
6
.6

s
3
7
2
.1

s
2
3
.1

s
8
3
.6

s
4
3
7
.1

s
9
.5

s
2
6
.5

s
1
0
7
.4

s

Pr
op

os
ed

al
go

ri
th

m
4
.4

s
1
4
.0

s
4
9
.4

s
6
.8

s
2
4
.1

s
9
7
.9

s
6
.2

s
1
2
.0

s
3
2
.6

s

wcol.

[L
K

1
1
]

1
6
.5

s
6
5
.3

s
2
6
2
.6

s
3
1
.3

s
1
1
2
.4

s
4
2
8
.7

s
(1

7
1
.7

s)
(1

8
7
.5

s)
(2

0
3
.9

s)

[B
LD

1
4
]

5
5
.4

s
1
6
6
.3

s
6
1
1
.6

s
5
2
.1

s
3
6
3
.7

s
1
4
1
6
.9

s
1
3
.0

s
3
7
.6

s
2
2
8
.3

s

Pr
op

os
ed

al
go

ri
th

m
5
.1

s
1
7
.9

s
5
0
.4

s
1
1
.0

s
3
0
.8

s
1
1
1
.6

s
1
3
.2

s
2
0
.4

s
4
4
.3

s

Ta
bl

e
3
.2

:T
im

in
g

co
m

pa
ri

so
n

fo
r

di
ff

er
en

t
sc

en
es

(d
ep

ic
te

d
in

Fi
g.

3
.1

6
)

at
di

ff
er

en
t

re
so

lu
ti

on
s:

Th
e

th
re

e
sc

en
es

in
th

e
up

pe
r

ro
w

ha
ve

st
ro

ng
ly

va
ry

in
g

tr
ia

ng
le

co
un

ts
,

m
es

h
at

tr
ib

ut
es

an
d

sc
en

e
co

m
pl

ex
it

y.
Th

e
th

re
e

sc
en

es
in

th
e

bo
tt

om
ro

w
al

lo
w

a
di

re
ct

co
m

pa
ri

so
n

be
tw

ee
n

a
vo

xe
liz

at
io

n
w

it
h

an
d

w
it

ho
ut

co
lo

r
cr

ea
ti

on
.∗

:A
ve

ra
ge

ov
er

th
re

e
ru

ns
;(
..
.)

:S
ce

ne
co

ul
d

be
vo

xe
liz

ed
,b

ut
no

t
re

nd
er

ed
.S

ou
rc

e:
[P

K
1
5
]

56 sparse voxel trees

R
es

ol
ut

io
n

2
0
4
8

4
0
9
6

8
1
9
2

2
0
4
8

4
0
9
6

8
1
9
2

2
0
4
8

4
0
9
6

8
1
9
2

Sc
en

e
H

ai
rb

al
l(

2
.8

M
tr

ia
ng

le
s)

Lu
cy

(2
8
.0

M
tr

ia
ng

le
s)

A
tl

as
(5

0
6
.5

M
tr

ia
ng

le
s)

Pr
e-

pr
oc

es
si

ng
4
.6

s
1
2
.8

s
4
3
.5

s
5
.4

s
6
.0

s
6
.6

s
1
9
8
.4

s*
1
5
3
.2

s*
2
1
3
.0

s*

Vo
xe

liz
at

io
n

5
4
.2

s
1
7
9
.4

s
6
7
4
.0

s
3
.8

s
6
.7

s
1
3
.4

s
4
4
.4

s*
5
7
.6

s*
8
6
.9

s*

SV
T

C
re

at
io

n
1
2
.6

s
5
3
.4

s
2
5
7
.5

s
0
.5

s
1
.5

s
4
.5

s
4
.9

s*
5
.8

s*
1
4
.1

s*

T r
i.M

em
.b

ef
.S

ub
di

v.
9
7
.9

M
B

9
6
2
.3

M
B

1
7
.0

G
B

T r
i.M

em
.a

ft
.S

ub
di

v.
6
3
9
.4

M
B

1
.5

G
B

4
.3

G
B

9
6
2
.5

M
B

9
6
3
.1

M
B

9
6
5
.8

M
B

1
7
.0

G
B

SV
T

M
em

.C
on

su
m

pt
io

n
1
.1

G
B

4
.7

G
B

1
9
.2

G
B

4
1
.1

M
B

1
6
4
.6

M
B

6
5
8
.8

M
B

5
5
.1

7
M

B
2
2
2
.0

M
B

8
9
1
.0

M
B

S c
en

e
Bu

dd
ha

(3
0
.3

K
tr

ia
ng

le
s)

Sp
on

za
(2

6
2
.3

K
tr

ia
ng

le
s)

Sa
n

M
ig

ue
l(

1
0
.1

M
tr

ia
ng

le
s)

w/ocol.

Pr
e-

pr
oc

es
si

ng
0
.8

s
0
.9

s
1
.6

s
0
.9

s
1
.4

s
3
.2

s
2
.4

s
2
.5

s
3
.1

s

V o
xe

liz
at

io
n

1
.7

s
6
.0

s
2
2
.8

s
3
.2

s
1
0
.8

s
4
2
.1

s
2
.5

s
5
.5

s
1
6
.9

s

SV
T

C
re

at
io

n
0
.7

s
2
.9

s
1
1
.8

s
1
.1

s
4
.5

s
2
0
.3

s
0
.4

s
1
.6

s
5
.9

s

T r
i.M

em
.b

.S
ub

di
v.

1
.0

M
B

9
.0

M
B

3
4
7
.5

M
B

T r
i.M

em
.a

.S
ub

di
v.

1
6
.3

M
B

5
5
.6

M
B

2
0
3
.9

M
B

4
9
.4

M
B

1
4
5
.5

M
B

5
1
0
.1

M
B

3
5
5
.3

M
B

3
8
0
.6

M
B

4
9
4
.1

M
B

wcol.

Pr
e-

pr
oc

es
si

ng
0
.9

s
1
.5

s
2
.0

s
1
.4

s
2
.0

s
4
.8

s
4
.0

s
4
.4

s
4
.7

s

Vo
xe

liz
at

io
n

1
.9

s
6
.3

s
2
4
.5

s
3
.6

s
1
2
.0

s
4
7
.0

s
2
.8

s
6
.8

s
1
9
.3

s

SV
T

C
re

at
io

n
0
.9

s
3
.2

s
1
1
.8

s
1
.4

s
4
.5

s
2
2
.6

s
0
.6

s
2
.3

s
7
.9

s

T r
i.M

em
.b

.S
ub

di
v.

1
.8

M
B

1
5
.5

M
B

5
9
8
.4

M
B

T r
i.M

em
.a

.S
ub

di
v.

2
8
.0

M
B

9
5
.7

M
B

3
5
1
.1

M
B

8
5
.1

M
B

2
5
0
.6

M
B

8
7
8
.4

M
B

6
1
1
.8

M
B

6
5
5
.5

M
B

8
5
1
.0

M
B

SV
T

M
em

.C
on

su
m

pt
io

n
1
3
7
.2

M
B

5
4
9
.1

M
B

2
.1

5
G

B
2
5
9
.9

M
B

1
.0

G
B

4
.1

G
B

6
8
.4

M
B

2
7
2
.7

M
B

1
.1

G
B

T a
bl

e
3
.3

:M
em

or
y

co
ns

um
pt

io
n

(t
ri

an
gl

es
be

fo
re

su
bd

iv
is

io
n,

tr
ia

ng
le

s
af

te
r

su
bd

iv
is

io
n

an
d

fin
al

SV
T)

an
d

pe
rf

or
m

an
ce

br
ea

kd
ow

n
fo

r
th

e
te

st
sc

en
es

ar
e

sh
ow

n.
;∗

:
A

ve
ra

ge
ov

er
th

re
e

ru
ns

;P
le

as
e

no
te

th
at

th
e

m
em

or
y

co
ns

um
pt

io
n

of
a

bi
tm

as
k

is
no

t
al

ig
ne

d
to

3
2

bi
ts

lik
e

in
Ta

b.
3
.5

,b
ec

au
se

N
is

fix
ed

to
2

in
th

is
ev

al
ua

ti
on

.S
ou

rc
e:

[P
K

1
5
]

3.4 voxelization 57

ing of all scenes (except the Atlas scene) in a binary format needed
less than 2 seconds. Additional

information is
provided in Tab. 3.3

Additional information regarding memory requirements and a per-
formance breakdown of the proposed approach can be found in
Tab. 3.3. The memory usage of the input triangle soup before and
after subdivision as well as memory usage of the resulting SVT with
compressed attributes is provided. The triangle footprint without
color creation is 36 byte, while it is 62 byte with color creation. To
store the test scenes in a full grid representing the used compression
with 16-bit normal and 16-bit color data per voxel, 32 GB, 256 GB and
2 TB of memory would be needed for the resolutions 2048, 4096 and
8192, respectively. Therefore, the SVT topology drastically reduces
the memory requirement already, while the used compression of the
attributes reduces the memory usage further. In the given implemen-
tation, the SVT memory usage between scenes with and without color
creation does not differ, because 16 bit for color are always allocated
even if color creation is turned off. Furthermore, the performance is
given for individual parts of the proposed method. The three main
parts are pre-processing, voxelization and SVT creation. Sparsity has a much

larger influence on
performance than
the triangle count

Despite the comparably low triangle count, the Hairball scene at
a resolution of 8192 leads to the longest processing time. It follows
that the sparsity or scene complexity has a much larger influence
on performance than the number of triangles, because more voxels
contribute to the final tree. In comparison with [LK11], the Hairball
at resolution 8192 is processed in roughly half the time while the
proposed approach is nearly four times faster than [BLD14]. High regularity of

the input mesh leads
to a good GPU
load-balancing

For [LK11], the triangle availability on all levels gets disadvanta-
geous in the Lucy scene. The scene is voxelized between one and two
orders of magnitude faster with [BLD14] and the proposed method,
because only leaf nodes use the triangles directly. Furthermore, the
SVT approach voxelizes the scene faster than all other scenes at a res-
olution of 8192, because the high regularity of the input mesh leads
to a good load-balancing for GPU processing. Sorting a massive

number of triangles
is slower than
triangle partitioning

The Atlas dataset has the largest triangle count of the test scenes.
The scene could not be processed with the framework of [LK11]. This
dataset is the only one for which the proposed triangle sorting cannot
be done on GPU, i.e. CPU sorting was applied here. A large variation
in the timings was encountered, thus average timings over three runs
for each resolution are given. The minimum timings for the resolu-
tions 2048, 4096 and 8192 are 254.8 s, 231.7 s and 300.5 s, respectively.
Furthermore, the triangle sorting for a resolution of 2048 was around
40 seconds slower than for a resolution of 4096. It is assumed that the
used radix sort needs larger buckets due to less Morton indices for
the same triangle count in the limited available memory which leads
to memory fragmentation. The only case where [BLD14] performs
faster is the voxelization of Atlas at a resolution of 2048. Here, the

58 sparse voxel trees

triangle partitioning to a voxel grid with low resolution is beneficial
in comparison to a sorting of a large number of triangles.GPU is more

beneficial if
hardware-supported

functions are used

The comparison between a voxelization with color and a voxeliza-
tion without color of the scenes Buddha, Sponza and San Miguel
shows a performance decrease by a factor of two to three for [BLD14].
The SVT voxelization and the method from [LK11] show a smaller
performance drop between colored and uncolored scene, but the pro-
posed technique is three to fives times faster than [LK11]. It seems
that the SVT method has a performance drop by a factor of two for
Sponza and San Miguel at a resolution of 2048, but here only the time
for texture loading as a constant value adds to the voxelization time
which is roughly the same in this case. It can be seen that this effect
is alleviated for higher voxel resolutions of the scenes.Scene sparsity has

the largest influence
on performance

It follows again, that the sparsity of the scene has a larger influ-
ence on the timing than the triangle count, if the timings for Sponza
and San Miguel are compared. Although San Miguel has roughly 40

times more triangles, it creates a sparser scene due to large triangles
surrounding the building. On the finest level at a resolution of 8192,
around 164 M voxels were created for San Miguel and 636 M voxels
were created for the Sponza. Furthermore, the largest performance
gain in comparison to [BLD14] is shown for Sponza with color at-
tributes at 8192. Here, the color creation and the sparsity of the scene
lead to the performance drop of [BLD14]. The voxelization of San
Miguel failed with the approach of [LK11]. Although no errors have
been thrown during the processing, the rendering did not show any
output, i.e. the result is corrupted.

Similar quality to
rasterization or

SVO creation of
[LK11]

attribute creation The voxelization of an extracted plant
model from the San Miguel scene with an alpha channel in its texture
is used to show the different visual results regarding attribute cre-
ation (see Fig. 3.17). The approach of [BLD14] (Fig. 3.17 (d)) clearly
lacks visual quality, because all voxels of a triangle are set to the same
average triangle color. Fig. 3.17 (c) and (f) show the best and the worst
result achieved by [LK11], respectively. The voxelization with contour
and postfiltering is shown in Fig. 3.17 (c), while the voxelization with-
out contour information and without image-based post-processing is
shown in Fig. 3.17 (f). It can be seen, that the texture attributes are
considered and a sophisticated attribute creation is possible. For com-
parison, a simple (texture) color averaging (see Fig. 3.17 (e)) is used in
the SVT creation. While both methods have the same properties for
attribute creation on the leaf level, the main difference is the access to
all triangles on coarser hierarchy levels of [LK11]. This accessibility
is not useful for out-of-core methods, because the root node would
need to access all triangles.

3.4 voxelization 59

(a) (b) (c)

(d) (e) (f)

Figure 3.17: Comparison between the attribute creation methods that shows
wireframe (a), rasterization (b), contour information per voxel,
illumination and image filtering of [LK11] (c), attribute creation
of [BLD14] (d), attribute creation of SVT (e) and unfiltered voxel
structure of [LK11] (f). Image source: [PK15]

batch parameters The influence of the two user-defined param-
eters “voxels per triangle” Kmax

vox/tri and “voxels per batch” Kmax
vox/batch Influence of “voxels

per triangle” and
“voxels per batch”

(see Sec. 3.4.4.1 and Sec. 3.4.4.2, respectively) is examined in the fol-
lowing. The Hairball at resolution of 2048 and the Sponza with color
creation at a resolution of 4096 serve as test scenes for evaluating the
parameter influence with respect to memory usage, triangle statistics
and timing. For evaluation purposes, the values are set to worst cases.
Since the out-of-core property gets unreliable for these extremes, they
should not be used in practical usage. Only an empirically deter-
mined range of Kmax

vox/tri and Kmax
vox/batch provides the out-of-core prop-

erty. Influence on
memory usage per
batch

The influence of Kmax
vox/tri and Kmax

vox/batch to memory usage per batch
is shown in Fig. 3.18. Minimum, median and maximum memory
size of the batches are shown for each test. Since Kmax

vox/batch acts as a
global voxel counter, it can be seen that Kmax

vox/tri has less influence
than Kmax

vox/batch. If Kmax
vox/tri gets smaller, more triangles need to be

created and stored in memory for voxelization. It follows, that the
memory usage gets higher for all configurations with a limit to 10

for Kmax
vox/tri. A nearly constant behavior can be deduced, if Kmax

vox/tri is
increased. A memory overflow occurs for Kmax

vox/batch = 50 M voxel
and Kmax

vox/tri = 10 in the Sponza scene. This parameter combination
leads to many small triangles that need to be maintained per batch so

60 sparse voxel trees

memory usage in [GB]

0

1

2

3

4

5

6

7

max

min
median

10 20010 1005020010 1005020010 1005020010 1005020010 1005020010050

Hairball (2048)

5M 50M10M5M 50M10M

Sponza (Color, 4096)
max
vox/batchK =

K = vox/tri
max

Figure 3.18: Influence of the parameters Kmax
vox/tri with [10, 50, 100, 200] and

Kmax
vox/batch with [5M, 10M, 50M] to the GPU memory usage in

GB. Image source: [PK15]

that the memory requirements are increased. The 4 Sponza measure-
ments for Kmax

vox/batch = 50 M voxel do not seem to follow a pattern like
the other configurations. The strong variation of the memory usage
between the batches can be explained by large Morton index ranges
which result from a large batch size with many triangles. Here, the
locality of created voxels in terms of Morton indices is harder to en-
sure, so that more voxels remain in the Morton queue until they are
processable for SVT creation.

triangles per batch in [Million]

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

max

min
median

10 20010 1005020010 1005020010 1005020010 1005020010 1005020010050

Hairball (2048) Sponza (Color, 4096)

5M 50M10M5M 50M10M
max
vox/batchK =

K = vox/tri
max

Figure 3.19: Influence of the parameters Kmax
vox/tri with [10, 50, 100, 200] and

Kmax
vox/batch with [5M, 10M, 50M] to the triangles per batch in

Million. Image source: [PK15]

3.4 voxelization 61

voxel-a�ribute pairs per batch in [Million]

10

0

5

10

15

20

25

30

max

min
median

20010 1005020010 1005020010 1005020010 1005020010 1005020010050

Hairball (2048) Sponza (Color, 4096)

5M 50M10M5M 50M10M
max
vox/batchK =

K = vox/tri
max

Figure 3.20: Influence of the parameters Kmax
vox/tri with [10, 50, 100, 200] and

Kmax
vox/batch with [5M, 10M, 50M] to the number of created voxel-

attribute pairs per batch in Million. Image source: [PK15]

Fig. 3.19 shows triangles per batch and Fig. 3.20 shows the number Influence on
triangles and
voxel-attribute pairs
per batch

of created voxel-attribute pairs. If Kmax
vox/batch is increased or Kmax

vox/tri is
decreased, more triangles are consumed in a batch. Therefore, more
voxel-attribute pairs are created. The differing triangle shapes explain
the smaller variation of median and maximum voxel-attribute pairs
for the Hairball in comparison to the Sponza. While the Hairball con-
sists of similar triangle shapes, the Sponza has more differing triangle
shapes which lead to more varying voxel counts per triangle.

timings in [Seconds]

0

20

40

60

80

100

120

140

160

SVO Creation

Pre-processing

Voxelization

10 20010 1005020010 1005020010 1005020010 1005020010 1005020010050

Hairball (2048) Sponza (Color, 4096)

5M 50M10M5M 50M10M
max
vox/batchK =

K = vox/tri
max

Figure 3.21: Influence of the parameters Kmax
vox/tri and Kmax

vox/batch to the timings
in seconds for the steps pre-processing, voxelization and SVO
creation. “x”: memory overflow. Image source: [PK15]

62 sparse voxel trees

10 50 100 200

Hairball (2.8 M) 90.4 M 28.9 M 18.6 M 12.1 M

Sponza (262.3 K) 35.2 M 7.9 M 4.2 M 2.4 M

Table 3.4: Resulting triangle counts after subdivision for different values of
Kmax

vox/tri. Source: [PK15]

Fig. 3.21 shows the behavior of the performance if Kmax
vox/tri andInfluence on the

performance Kmax
vox/batch are varied. Additionally, Tab. 3.4 provides the generated

number of triangles of Kmax
vox/tri after the subdivision has been per-

formed. It allows to evaluate the correlation between the correct
number of processed triangles and the timings. The performance
of the triangle pre-processing solely depends on Kmax

vox/tri. Here, the
performance drops if Kmax

vox/tri decreases, because the triangles need
a stronger subdivision and more triangles need to be processed. If
Kmax

vox/batch gets higher, the performance of the voxelization improves,
because more triangles can be processed in parallel and the num-
ber of batches is reduced. Kmax

vox/tri does not seem to influence the
voxelization performance much. An exception is the value of 10

which leads to a much higher triangle count (cf. Tab. 3.4) and a
performance drop. The performance of SVO creation is mainly in-
fluenced by Kmax

vox/batch, because the tree construction consumes voxels
instead of triangles. The scene processing slows down for the Hair-
ball with Kmax

vox/batch = 5M and Kmax
vox/tri = 10. In this worst case, 3 times

more triangles are created in comparison to a scene processing with
Kmax

vox/tri = 50 (cf. Table 3.4). Therefore, the triangle count per voxel
gets more heterogeneous for the post-order attribute creation, which
leads to idle threads that process less triangles per voxel.

3.4.6.2 Influence of N
Influence of N is

evaluated and
further explanations

are given

The influence of N on the creation of the SVT is evaluated in respect
to memory consumption and performance. This evaluation has been
performed on an Intel Core i7-930 (2.80GHz) with 24 GB of RAM and
an NVIDIA GeForce GTX 680 with 2 GB of memory. To allow an
equal scene resolution for a fair comparison between varying values
of N, the bounding cube which contains the scene geometry is scaled
appropriately. Therefore, the largest extent of one dimension in the
scene is independent from the maximum possible resolution of the re-
spective N and is represented by the desired resolution instead. Five
scenes have been used for evaluation. The Hairball is voxelized at the
resolutions 250, 500 and 2000, while Sponza with color attributes and
Lucy are voxelized at a resolution of 4000 and 8000, respectively.

Memory
consumption for

voxelized surfaces is
optimized with

N = 5

memory consumption The influence of N on the memory con-
sumption is shown in Tab. 3.5. The behavior between the columns

3.4 voxelization 63

Hairball Sponza Lucy

250 500 2000 4000 8000

2 14.61 56.8 1225.5 1147.7 718.0

3 10.15 45.1 851.7 783.4 493.7

4 9.32 41.6 785.3 727.4 454.8

5 9.07 40.9 771.9 711.5 448.8

6 8.98 40.52 772.8 716.0 451.3

7 8.91 40.54 777.9 722.5 456.2

8 8.8706 40.6 784.1 733.3 461.5

9 8.8708 40.8 796.5 740.1 471.0

10 8.89 41.0 810.6 755.6 482.0

Att. 7.83 34.0 641.0 577.1 359.1

A% 88.3% 84.0% 83.0% 81.1% 80.0%

S% 86.86% 92.86% 97.9% 99.764% 99.982%

Table 3.5: Influence of N (left column) on memory consumption of the SVT
in MB. 5 scenes with increasing sparsity (S%) are given from left
to right: Hairball (250, 500, 2000), Sponza (4000 with Color) and
Lucy (8000). The memory consumption of the leaf voxel attributes
(Att.) and the percentage of total memory consumption (A%) for
the most efficient N (blue cells) are shown.

is similar. All scenes have the highest memory consumption for the
choice of N = 2. With an increasing N, the consumption decreases.
Starting from the optimal N, the consumption increases again. The
blue cells show the best choice of N for N = {2, .., 10}. N = 5 is the
best choice for three scenes (Hairball@2K, Sponza@4K and Lucy@8K)
which vary in resolution and complexity. The only similarity between
these scenes is the representation of thin surfaces, because of the high
resolutions. Scene sparsity

influences the choice
of the optimal N

For the Hairball at resolutions of 250 and 500 voxels, the surfaces
are not resolved and merged in the voxels. They can be interpreted
as thick surfaces or a volume representation. This leads to a lower
sparsity of the scenes and the choice of the optimal N varies. The
bitmasks have a higher number of set voxels and the topology is flat-
tened due to a larger N. For the other scenes with a higher sparsity,
large empty bitmasks waste more memory than smaller bricks with
more hierarchy levels. Influence of topology

to memory
consumption

The attribute row (Att.) in Tab. 3.5 shows the memory consump-
tion of the leaf attributes, while their percentage of the total memory
consumption with the optimal N is provided in the row A%. It can
be seen that the relative memory consumption of the attributes is
decreasing for an increasing sparsity. Therefore, the topology has a

64 sparse voxel trees

N 64 ptrs., 32 al. 32 ptrs., 32 al. 32 ptrs., 8 al.

2 1420.4 1225.5 1079.4

3 921.9 851.7 851.7

4 821.4 785.3 785.3

5 793.7 771.9 771.9

6 787.4 772.8 769.1

7 788.4 777.9 775.3

8 792.1 784.1 784.1

9 802.7 796.5 796.5

10 815.6 810.6 806.9

Table 3.6: Influence of N on memory consumption of the SVT in MB with
different implementation details. The blue cells mark the optimal
memory consumption of each adjustment. The Hairball@2K is
created with different adjustments in the SVT creation. From left
to right: 64-bit child pointers and 32-bit aligned bitmasks, 32-bit
child pointers and 32-bit aligned bitmasks, 32-bit child pointers
and 8-bit aligned bitmasks

larger percentage of the memory consumption. The reasons are a de-
creasing fill rate of the bitmasks and a reduced number of leaf voxels.The optimal choice

of N can vary due to
implementation

details

Furthermore, it can be seen that the differences between the opti-
mal N and the neighboring values of N lead to very similar memory
consumptions. Different adjustments like changing the alignment of
bitmasks from 32 bits to 8 bits or switching child pointer sizes be-
tween 32 bit and 64 bit directly change the optimal N (see blue cells
in Tab. 3.6). It follows that the right choice of N can vary depending
on implementation details for extending or adjusting the proposed
SVT.

Performance of
creation is slightly

improved by
increasing N

performance The influence of N on the performance is shown
in Tab. 3.7. N is limited to 5 in this evaluation, because the maximum
allowed bitmask size is 128 bit in the current implementation. While
the correct memory consumption can be calculated for larger values
of N, the bitmasks are not consistent and can not be rendered. It can
be seen that the creation of SVTs gets just slightly faster for larger
values of N. Two reasons are the reduced number of bricks which are
processed in parallel and the reduced data which needs to be stored
on disk, but the performance gain does not seem to be significant.
The Sponza scene shows that an increased workload for attribute cre-
ation might lead to a larger performance gain when more complex
operations are performed on GPU.

3.5 rendering 65

Hairball Sponza Lucy

250 500 2000 4000 8000

2 3.36 6.94 85.45 29.37 31.95

3 3.21 6.59 80.9 25.78 29.68

4 3.23 6.54 80.03 25.25 28.9

5 3.21 6.44 78.23 24.07 28.5

R% 95.5% 92.8% 91.6% 82.0% 89.2%

Table 3.7: Influence of N (left column) on performance for creating an SVT in
seconds. The blue cells mark the most performant SVT creation
for each scene. The ratio (R%) between slowest and fastest SVT
creation is given in the last row. 5 scenes are shown from left
to right: Hairball (250, 500, 2000), Sponza (4000 with Color) and
Lucy (8000).

3.5 rendering

3.5.1 Overview

Surface rendering of
SVOs is extendedUnlike the rasterization of polygonal meshes, voxel rendering is no

standardized technique on current GPUs. Instead, an efficient render-
ing of voxels has to be implemented explicitly. Commonly, raycasting
is used as the fundamental method to allow a fast traversal of the
voxel structure. Depending on individual properties of a voxel rep-
resentation, the traversal needs to be adjusted and optimized. The
proposed ray traversal generalizes an efficient surface rendering of
SVOs to a hybrid rendering of surfaces and sparse volumes of N3-
trees in the form of SVTs with N ∈ {2, . . . , 5}. The focus lies on thick
surfaces, which can not be represented with surface approaches and
which would lead to large memory overheads if represented by true
volumetric representations, because they are still sparse. Structure of the

following sectionThis section discusses the implemented ray traversal which allows
to process the proposed SVT. First, an overview of related work for
rendering sparse voxel data and an algorithm overview is provided.
Afterwards, a description of the proposed ray traversal and a com-
parison with the adapted approach of [LK10] is given. Next, further
optimizations in the implementation are shown. A discussion on re-
sults and limitations closes the section.

3.5.2 Related Work

Voxels are used for
volume and surface
rendering

Raycasting of voxel structures for volume and surface rendering is
a fundamental and large research topic in CG. The main purpose of
the proposed SVT is a surface rendering with thickness properties
in sparse scenes. Hence, a discussion on methods for direct volume

66 sparse voxel trees

rendering of full volumes is not part of the following section. Re-
cent overviews of volume rendering can be found in [BRGIG∗14] and
[BHP15].Traversal of voxel

structures is based
on rasterization

The rendering of surfaces with voxels is based on fundamental ras-
terization techniques like the digital differential analyzer (DDA) or
the Bresenham algorithm [Bre65]. In general, a line or a ray is tra-
versed along its dominant axis direction to determine the intersected
voxels of a uniform grid. Depending on the slope, it is calculated
if a step to a voxel in the other axis directions is necessary before
continuing the traversal in the main axis direction.[AW87] provides

fundamental
approach for voxel

grid traversal

In respect of a voxel grid traversal, those rasterization techniques
do not allow to determine all voxels which are really traversed by
the ray. Therefore, [FTI86] and [AW87] adjusted the DDA to remove
this limitation. While [FTI86] still needs steps in the grid without
calculating the correct succeeding voxel beforehand, [AW87] removed
this necessity and created a fast and reliable approach which serves
as fundamental technique for obtaining a surface rendering from a
ray traversal of a voxel grid. The approach of [AW87] is incorporated
in the proposed SVT rendering. Hence, a more detailed discussion is
provided in Sec. 3.5.4.[LK10] uses a

combination of
[AW87] and a

hierarchical
traversal

[LK10] presents a very performant rendering of SVOs by combin-
ing the approach of [AW87] with a stack-based hierarchical traversal.
Every time the ray switches between hierarchy levels, a stack stores
the current state. Furthermore, the voxels of [LK10] do not contain
references to triangles anymore. Instead, a rendering of contours or
common voxels is implemented (see Sec. 3.3.1 for further details of
the provided data structure). The proposed SVT of this thesis uses
the data structure and voxel rendering of [LK10] and extends it to a
rendering of N3-trees by using [AW87] as well. Therefore, the hier-
archical traversal and differences to the rendering of [LK10] are dis-
cussed in Sec. 3.5.4. Such a stack-based hierarchical traversal is used
in succeeding voxel rendering approaches as well. Specially, [KSA13]
and [DKB∗16] use it to traverse improved voxel structures with lower
memory requirements (see Sec. 3.3.1).[CNLE09] uses

stackless tree
traversal and

volume rendering

Another important voxel rendering is presented by [CNLE09]. In
comparison to [LK10], the hierarchical voxel tree traversal is imple-
mented without a stack. Instead, the traversal is based on the kd-
restart algorithm of [HSHH07]. The traversal always starts from the
root and continues to finer levels of the voxel tree until the appro-
priate level-of-detail is found. Depending on a constant or a varying
subvolume in the intersected voxel, an analytical integration or an
uniform ray sampling are used, respectively. The exit position of the
ray is used for the next descent from the root level. Fig. 3.22 shows
this principle.Other voxel

approaches improve
on rendering quality

and surface details

Other trends in voxel rendering are improved rendering quality
and higher surface details without increasing the number of voxels.

3.5 rendering 67

(a) (c)

(b)

Figure 3.22: The tree traversal of [CNLE09] with the kd-restart of [HSHH07]
is shown. In the example, a one-dimensional tree hierarchy is
traversed by descending at different ray positions (a). If the
ray intersects a voxel that corresponds to the necessary level-of-
detail, the subvolume is either traversed by an usual uniform
ray casting (b) or an analytical integration between start and
end position of the ray (c) depending on the referenced infor-
mation. The end position (red dots in (a)) of the ray serves as
the new position (green dots in (a)) for the next descent from
the root node.

Here distance fields ([DW15]) or noise functions ([CNLE09]) are used.
In respect to a THz simulation, the approach of [HN12] is interesting,
because it uses statistical roughness parameters, which are the basis
for electromagnetic wave simulations as well. Those statistical de-
scriptions inside the voxels have the goal to add details to a larger
macroscopic volumetric representation. The approach focuses on vis-
ible light and cone tracing ([CNS∗11]) through hierarchy levels for
a mipmapping approach. One drawback of the method is the high
memory consumption per voxel.

3.5.3 Algorithm Overview

SVT rendering
consists of 6
functionalities

The rendering of the proposed SVT is achieved by extending the stack-
based traversal of [LK10]. Instead of rendering surfaces of SVOs, the
adjusted method allows to render thick surfaces of SVTs with N =

{2, 3, 4, 5}. The general rendering of SVTs consists of 6 basic operations
which are used in [LK10] as well:

• Initialize: Required variables for processing are initialized

• Push: A descent to a finer hierarchy level of the SVT is per-
formed

• Step: The next voxel on the current hierarchy level is deter-
mined

68 sparse voxel trees

• Pop: An ascent to a coarser hierarchy level of the SVT is per-
formed

• IntersectionTest: It is tested if the ray intersects the current voxel

• AttributeCalculation: Ray properties are calculated from voxel
attributes

Overview of the
basic traversal Alg. 3.5 shows how those basic functionalities are used in the ray

traversal. First, the initialization is done (Sec. 3.5.4.1) and the ray
is tested for intersection with the bounding box which contains the
voxel representation. If the ray missed the voxel grid, the background
color is drawn. If the ray is inside, the main loop is entered. It is
executed until the ray leaves the voxel grid or terminates due to a
stopping criterion. While sampling the ray, traversed voxels are de-
termined and an intersection test between currently traversed voxel
and scene representation is performed in every iteration of the main
loop (Sec. 3.5.4.2). If an intersected voxel is found, either the attribute
of the voxel is processed for adjusting the final pixel color (Sec. 3.5.4.3)
or a descent (push) to finer hierarchy levels is performed (Sec. 3.5.4.4).
In the case of enabled volume rendering or a ray miss, a step to the
next voxel on the current hierarchy level is performed (Sec. 3.5.4.4)
and the next iteration starts if the current level is not traversed com-
pletely. An ascent (pop) to coarser hierarchy levels is done, if the
determined voxel is outside the current brick (Sec. 3.5.4.4).

Algorithm 3.5 : Overview of the traversal algorithm

Initialize()
if ray intersects bounding box of voxel grid then

while ray is inside bounding box do
IntersectionTest()

if ray hits a non-empty voxel then
if stopping criterion fullfilled or finest level reached then

AttributeCalculation()
if surface rendering is enabled then

break

else
Push()

Step()

if next voxel is outside of brick then
Pop()

writeColor()
else

writeBackgroundColor()

3.5 rendering 69

The ray traversal can be optimized in several ways, which are based Overview of
optimizationson proposed techniques of [LK10] as well. To achieve a performance

gain, the initial start positions for the rays which are used in the ren-
dering at the final resolution can be optimized by a rendering at a
coarser resolution (Sec. 3.5.5.1). If the level-of-detail for the SVT is
larger than a pixel of the final rendering can show, the ray traversal
can be determined earlier at coarser hierarchy levels to save perfor-
mance as well (Sec. 3.5.5.2). Another possibility to increase the perfor-
mance is the use of data types which are used as so-called bitstacks
to reduce the accessing time to memory locations which can only be
accessed with larger delays (Sec. 3.5.5.3).

3.5.4 Ray Traversal

Basic functionalities
are discussed in the
following
subsections

The following subsections describe the basic functionalities of the ray
traversal and compare them with the approach of [LK10], which is the
basis of the implemented traversal. The basic functionalities consist
of initialization, intersection of ray and voxels, attribute determina-
tion and hierarchical traversal. The hierarchical traversal consists of
functionalities for descending and ascending in the hierarchy levels
of the SVT. Furthermore, the stepping inside one hierarchy level is
explained. Tab. 3.8 gives an overview on all variables which are used
in this section.

3.5.4.1 Initialization
The intersection of
ray and voxel grid
needs to be
computed

At the beginning of the traversal, it is necessary to determine if the
ray ~r intersects the bounding box bbox which contains the cubical
voxel grid. A ray ~r is defined by Eq. 3.9:

~r(t) = ~o+ t · ~d with t > 0 (3.9)

The t-span of the ray that intersects bbox is defined by tmin and
tmax, which define the entry and exit point, respectively. bbox is a
cube which is defined by 6 axis-aligned planes. Therefore, on each
coordinate axis a minimum (~cmin) and a maximum value (~cmax) are
given. To determine all possible intersections of ~r with bbox, the 6

t-values are computed by Eq. 3.10 which is solved for ~t in Eq. 3.11:

~c{min,max} = ~o+~t{min,max} · ~d (3.10)

~t{min,max} =
1

~d
·~c{min,max} +

−~o

~d
(3.11)

Ray needs a t-span
with a valid entry
and exit point

The fractions 1~d and −~o
~d

are obtained by element-wise division. As
stated in [LK10], these fractions can be precomputed in the initializa-
tion to check further intersections by one multiplication- and one add-
operation. After all 6 intersections are found, Eq. 3.12 and 3.13 are

70 sparse voxel trees

applied, because only the last entry point and the first exit point de-
fine the valid t-span of the intersection. If tmax > 0 and tmin < tmax,
all other parameters are initialized as well, because the ray traversal
needs to be executed.

tmin = max(~tmin) (3.12)

tmax = min(~tmax) (3.13)
Parameters for

traversal of [AW87]
are initialized

Mainly, those parameters consist of stack variables for the voxel
traversal of [AW87]. The basic idea of [AW87] is an incremental cal-
culation of all intersections of a ray and subdivision planes of a uni-
form grid. Fig. 3.24 depicts the approach. A voxel v in the 3D grid
is identified by integer values x, y and z. The first intersected voxel
vx,y,z is determined by testing if the origin ~o is inside the voxel grid.
If ~o is outside, vx,y,z is determined by calculating the smallest t for
entering the grid. The sign of the direction sign(~d) determines if x,
y and z need to be incremented or decremented for the plane inter-
sections. Hence, constant steps s{x,y,z} are initialized with -1 or +1.
Furthermore, ∆t{x,y,z} serve as directed stepping distances on the ray
between two succeeding subdivision planes in x-, y-, z-direction and
m{x,y,z} store t for the next intersections with a subdivision plane
along x-, y-, z-direction.Overview on

variables provided in
Tab. 3.8

Additionally, variables for accessing the content of the SVT are nec-
essary, e.g. attributes and child nodes need to be accessed correctly.
Tab. 3.8 shows which variables are stored once, which are stored on
every hierarchy level and which are calculated from stack informa-
tion every time.Initialization

concept In comparison to [LK10], the concept of the initialization is the
same but the implementation is more complex due to the generaliza-
tion of SVOs to SVTs. While [LK10] exploits specialized optimizations
for SVOs which leads to a reduced number of variables and a de-
creased memory consumption of the stack, the generalized SVT needs
to maintain additional information to cover all cases for N = 2, 3, 4, 5.
A simple example is the storage of steps ∆p{x,y,z} between planes in
the brick. While the step is fixed to the half of the brick in the SVO
and is used implicitly, the SVT requires an additional calculation of
the step because it depends on N.

3.5.4.2 Intersection
Intersection is done

by comparing
bitmasks

The first function after entering the main loop is IntersectionTest().
It is necessary to compare the current t of the ray with the voxels
of a brick, to decide which operations need to be executed in the
current iteration. To allow the comparison between ray and brick, it
is required to unify their representations. Since the compactness of
the brick in a bitmask representation gbit should be preserved, the
ray representation is transformed into a corresponding bitmask rbit

3.5 rendering 71

Variable once stack calc. Meaning

~o x origin of the ray

t x current t on the ray

tmin x entry point of ray in bounding
box

tmax x exit point of ray in bounding box
~d x direction of the ray (always nor-

malized to use t as ray length)

l x current hierarchy level

gbit x bitmask for representing the
brick geometry

id x pointer index to first child node

spop x stack for popping to correct par-
ent node

~c{min} x minimum corner of bbox with
respect to ~o

~c{max} x maximum corner of bbox (im-
plicitly given by ~c{min} and
∆p{x,y,z})

∆p{x,y,z} (x) x steps between succeeding planes
in x, y and z (isotropic vox-
els need only one value, corre-
sponds to voxel edges)

v{x,y,z} x indices of the current voxel

∆t{x,y,z} (x) x t-steps between succeeding
planes

m{x,y,z} x next t for intersecting x-, y- or z-
plane

tbefore x t of entry point of current voxel

tnext x t of exit point of current voxel

s{x,y,z} x steps in index space: either -1 or
+1

rbit x bitmask for representing current
t on ray

Table 3.8: The initialized variables and their descriptions are provided. It is
marked if they need to be processed only once for initialization, if
they need to be maintained for every hierarchy level in a stack or
if they are calculated from stack variables. The marks in brackets
show how the variables could be handled alternatively.

72 sparse voxel trees

No Hit: 0 & 1 = 0 Hit: 1 & 1 = 1

0 3

5

1512

0000010000000000 0000001000000000

0010001001100100 00100010011001000

0 0

0

0

0

0

0

0

0

0

0

1

1

11

1

0 3

6

1512

0 3 12 155 6

00 000000001 1 111

..4

Figure 3.23: The calculation of intersections with bitmasks is shown. The
brick in the middle is traversed by the ray and represented with
the bitmask gbit at the bottom. Empty voxels are represented
with 0 and non-empty voxels are represented with 1. The ac-
cording bits are sorted by the Morton order (dashed red lines).
Left and right, the determination of rbit and the intersection
test is shown. The sample on the ray corresponds to a bit in the
bitmask. A bitwise AND between gbit and rbit shows, that no
hit has been found left, while a hit was found on the right.

by using the indices of the voxel v{x,y,z} that is entered by the current t
of the ray. v{x,y,z} is transformed to a Morton index, which is used for
a bitshift in rbit. Afterwards, a bitwise AND operation between gbit
and rbit allows to determine an intersection of ray and non-empty
voxels in the brick. Fig. 3.23 illustrates the determination of rbit and
the intersection.Differences to

[LK10] The discussed intersection is similar to the intersection test of
[LK10], because the geometry and the active voxel are encoded with
bitmasks as well. One main difference is the hierarchical treatment of
contour intersections in [LK10] (see Sec. 3.3.1), which is only applica-
ble if the traversal is terminating at the first surface. While contours
can be turned off in [LK10], this functionality is omitted in the render-
ing of the proposed SVT, because the main purpose of SVT rendering
is the traversal of thick surfaces. Another minor difference is the com-
parison of varying bitmask sizes for varying number of children in
the SVT. While [LK10] always compares 8 bits, the SVT intersection
needs to compare up to 125 children, which are aligned to a maxi-
mum of 128 bits.

3.5.4.3 Attribute Determination
Application of the
SVT is defined by

attribute
determination

The attribute determination is the most important step in respect to
the application. While the other functionalities, i.e. initialization, in-
tersection and hierarchical traversal, are fixed, the final output of the
SVT rendering depends solely on the criteria for using a voxel at-
tribute and the attribute determination. The two main applications

3.5 rendering 73

for the SVT are a surface rendering and a THz simulation. While
the application for surface rendering is discussed in this section, the
changes in the attribute creation for a THz simulation are discussed
in chapter 4. Colors and normals

are extracted for
rendering

In case of surface rendering, two stopping criteria are used. While
an optional stopping criterion based on the ratio of voxel size and
pixel size is discussed in Sec. 3.5.5.2, a necessary stopping criterion
is based on the deepest hierarchy level. If the ray intersects a
non-empty voxel on the finest level, a further descent is not possible.
Therefore, the traversal needs to be terminated and the attribute
needs to be determined. In this case, the compressed 32-bit value
of the voxel is used for calculating the final output. This value
consists of a normal and a color (see Sec. 3.3.3). Bitmasks and bitwise
operations (see Lst. 1) are used to extract the R, G, B channels of
the color and the compressed normal values [u, v]. The compressed
normal values need to be processed further by normal-decoding (cf.
Eq. 3.4 - 3.6 in Sec. 3.3.3). After the single components are obtained,
they are used for a direct rendering with or without a simple local
illumination of diffuse material.

r = ((attribute >> 27) & 31)/31.f

g = ((attribute >> 21) & 63)/63.f

b = ((attribute >> 16) & 31)/31.f

u = (((attribute >> 8) & 255) - 127.5f)/127.5f

v = ((attribute & 255) - 127.5f)/127.5f

Listing 1: Bitoperations for extracting the color channels r,g,b and
compressed normal coordinates u,v from the 32-bit attribute
value are shown. The attribute value is shifted to represent the
individual value in the least significant bits. After extracting the
value with a bitwise AND of a bitmask with 1 in all bits that
belong to the value and zero in the other bits, a cast to float
(omitted in the listing) and a division by the maximum value is
done. r,g,b are in the range [0, 1], while u,v are in the range [−1, 1].

Attribute handling
of [LK10][LK10] proposes a novel compression of normals and a color com-

pression in the spirit of DXT1. Hence, a decompression is needed. For
color compression, blocks with 64 bits are used to store 16 voxel col-
ors of two consecutive bricks with 8 possible voxels each. 32 bits store
two 16-bit reference colors col1, col2 which are encoded with RGB565

as well. The other 32 bits store two bits for each voxel to represent one
of the four fixed interpolation variants between these two main colors
(100% col1, 100% col2, 33% col1 + 66% col2, 66% col1 + 33% col2).
For the normal compression, a similar approach is used. Here, blocks
with 128 bits in total are used to store 16 voxel normals. All 16 nor-
mals are composed of three vectors which are used to represent a
parametric plane equation without the restriction of linearly indepen-
dent vectors. The directional vectors of the equation are scaled inde-

74 sparse voxel trees

entry point

t

my

mx

∆ty

∆tx

Figure 3.24: The voxel ray traversal of [AW87], which is used by the pro-
posed SVT as well. The ray enters the voxel grid at the green
dot. The orange dot shows an exemplary t on the ray. The next
t is set to my (red dot), because my is less than mx. my is set to
my +∆ty for the next iteration. The orange triangles are tested
for intersection. Multiple intersection tests of the same triangle
are avoided and correct order of intersections is ensured.

pendently per voxel. 32 bits are used for the support vector and 16

bits are used for one directional vector, which leads to 64 bits. Each
voxel stores two scaling values which are multiplied by the two direc-
tional vectors. One scaling value has a size of 2 bits and represents
4 fixed values (−1,−13 , 13 , 1). In comparison to the implemented de-
compression for SVTs, the decompression of [LK10] is more complex.
Therefore, it is assumed that the attribute determination of [LK10] is
less performant, but it is negligible for surface rendering, because the
traversal stops after the first intersection and the decompression is
done only once. For a frequent decompression of traversed voxel at-
tributes in a rendering of thick surfaces, the performance would drop
faster for [LK10], but a traversal of several colors values would not be
meaningful.

3.5.4.4 Hierarchical Traversal
Traversal is done by

Push(), Step() and
Pop()

To traverse SVOs or SVTs with a stack, it is necessary to provide
the three basic functionalities for descending to finer hierarchy lev-
els (Push), ascending to coarser hierarchy levels (Pop) and stepping
through voxels on the same hierarchy level (Step).Traversal of [AW87]

is applied in Step() Step() is performed by a loop for the ray traversal which is pro-
posed by [AW87] (see Fig. 3.24). The main loop is executed until the
ray exits the grid or finds an intersection with referenced geometry.
In each iteration the minimum of m{x,y,z} is used to determine if the
ray succeeds to the next voxel by intersecting the subdivision plane
in x-, y- or z- direction. After this determination of min(m{x,y,z}), the
new voxel index v{x,y,z} is set and the corresponding m{x,y,z} is up-
dated. Alg. 3.6 shows this behavior inside the loop. Afterwards, the
referenced geometry of the new voxel is tested for intersection. Here,

3.5 rendering 75

Algorithm 3.6 : Loop of [AW87] for voxel grid traversal
// Input

t // current t on the ray

v{x,y,z} // indices of the voxel

s{x,y,z} // steps in index space: either -1 or +1

m{x,y,z} // next t for intersecting x-,y- or z-plane

∆t{x,y,z} // t-steps between succeeding planes in x, y and z

// Traversing the subdivision planes of the voxel grid
while ray is inside grid and no geometry is intersected do

if mx < my then
if mx < mz then

vx ← vx + sx
if vx outside of voxel grid then

break
mx ← mx +∆tx

else
vz ← vz + sz
if vz outside of voxel grid then

break
mz ← mz +∆tz

else
if my < mz then

vy ← vy + sy
if vy outside of voxel grid then

break
my ← my +∆ty

else
vz ← vz + sz
if vz outside of voxel grid then

break
mz ← mz +∆tz

checkIntersectionWithObjects(vx, vy, vz)

it is guaranteed that each triangle is only once tested for intersection
by maintaining triangle and ray identifiers. Furthermore, it is ensured
that the earliest intersection is found by tracking the smallest t of all
intersections. The difference between the rendering of the proposed
SVT and the approach of [AW87] is the type of intersection. Instead
of intersection tests with triangles inside the voxels of [AW87], only
voxels are tested for the SVT. Push() stores the

state of the current
brick

If the ray intersects a non-empty voxel and no stopping criterion
is fulfilled, the traversal needs to be continued at a finer hierarchy
level. Therefore, Push() is executed once per child brick. First, it is
ensured that Step() can be executed on the current level if the ray

76 sparse voxel trees

Push() Push()

Pop()

Figure 3.25: The stack-based traversal of a 42-tree with 3 hierarchy levels is
shown. Push() and Pop() are used to switch between the hi-
erarchy levels. After the first intersection in the coarsest level
(green dot, left brick), Push() is storing the state for continuing
the traversal on that level (orange dot, left brick). The traver-
sal in the finer level is done by Step() (white dots) until the
next intersection is encountered (blue dot, middle brick). Here,
the Push() tries to save the state by determining the next voxel
(dashed cube), but the level is traversed completely (red dot).
On the finest level, no intersection is found and the Pop() needs
to be executed for ascending the hierarchy. In the descent, the
middle brick was traversed completely, so that Pop() switches
directly to the coarsest level again (orange dot).

does not terminate in finer hierarchy levels. By determining the next
voxel of the current brick it is decided if the ray will need to traverse
this brick further. If the next voxel in the traversal is outside of the
current brick, spop of the current level is marked as "traversed" and
no stack variables need to be stored, because the ray will not traverse
the brick again. Only if the next voxel is inside the brick, spop of the
current level is marked as "not traversed" and all stack variables are
stored (see "stack" column of Tab. 3.8). An example for this behavior
of Push() and Pop() is given in Fig. 3.25.Push() initializes the

ray traversal for the
next child brick

After storing the state of the parent, the traversal is initialized for
the child node. The initialization for the root node (cf. Sec. 3.5.4.1) is
applied here in the same manner. Only the first intersection test with
bbox is omitted, because the ray is inside bbox. After this initializa-
tion, the next iteration of the main loop is started without executing
further operations on the current level.Pop() determines a

coarser hierarchy
level for continuing

traversal

If the ray traversed a brick without being terminated, it is necessary
to use Pop() for determining the hierarchy level where the traver-
sal needs to be continued. While Push() is executed, the traversed
bricks of the hierarchical descent are marked as "traversed" or "not
traversed" in spop. Accordingly, Pop() determines the level for con-
tinuation by iterating over spop until the first incompletely traversed
brick is found. The stack variables of that level are loaded and the

3.5 rendering 77

traversal continues. If Pop() reaches spop for the root brick and its
status is "traversed", the traversal is terminated. Comparison with

stack traversal of
[LK10]

The concept of [LK10] for traversing SVOs is used to render the
proposed SVT, but the implementation between the proposed render-
ing and the rendering of [LK10] differs. Since SVOs have only one
subdivision per dimension in the brick, the ray can only be in one of
two states. Therefore, [LK10] can use efficient binary operations for
tree traversal. Instead of maintaining the next t-values for intersect-
ing x-, y- or z-plane (m{x,y,z}), [LK10] calculates t-values for planes
in the center of the brick, compares them against the current t on the
ray and flips according bits. With this simplification, it is possible to
decide more efficiently whether Push(), Step() or Pop() is needed in
the next iteration, because no additional calculation for locating the
succeeding voxel is necessary. While the operations of [LK10] can be
executed more efficiently, the proposed SVT traversal decreases the
total number of operations due to a decreased hierarchy depth.

3.5.5 Optimizations

Following
subsections address
performance
optimizations

Performance improvements of the ray traversal are discussed and
compared with optimizations of [LK10], which serve as foundation.
Mainly, the length of the ray can be optimized to reduce the num-
ber of traversed voxels of the SVT. For skipping empty space before
the first possible intersection, the rays are shortened by beam opti-
mization (Sec. 3.5.5.1). To terminate the ray traversal by an early exit
(Sec. 3.5.5.2), distance-dependent stopping criteria are used. Another
optimization is the reduced memory latency for accessing stack vari-
ables with the use of local variables which are used as a bitstack
(Sec. 3.5.5.3).

3.5.5.1 Beam optimization
Beam optimization
improves
performance by
skipping empty
space

To ensure that all intersections of ray and voxel geometry are found,
the ray traversal starts with the first intersection point on the bound-
ing box which is given by tmin or it starts with t = 0 if origin ~o of
the ray is inside the bounding box. The idea of beam optimization is
the estimation of a better start position of the ray to reduce the itera-
tions of the traversal loop, which results in a performance gain. The
traversal of empty space between the first non-empty voxel and the
ray start position is optimized by shortening the ray. Beam rays allow

shorter ray lengthsThe first possible intersection with the voxel geometry needs to be
estimated to calculate the improved start position of the ray. If ev-
ery ray determines this intersection individually, it would represent
the normal ray traversal. Therefore, neighboring rays are grouped to
beams. Each beam is represented by 4 surrounding rays which tra-
verse the scene in a preceding render pass. They stop after finding
an intersection and provide the smallest t of the 4 t-values as starting

78 sparse voxel trees

(a)

(b)

dbeampix

d
ray
pix

dbeampix

t ′start

t ′′start

dvoxt = 1

Figure 3.26: The idea of beam optimization from [LK10] and the used pa-
rameters of the SVT rendering are depicted. 8x8 pixels (black
square) of the final resolution are represented by 4 beam rays
(green dots) and the diagonals dbeampix and draypix between neigh-
boring rays are shown (a). Please note, that they are calculated
in world space (cf. green dots in b). The scene is sampled by
beam rays to gain performance in the rendering at higher reso-
lution by improving starting positions of the finer rays (orange
dots). The traversal needs to be terminated as soon as some fea-
tures would be missed when rendering at higher resolution (red
dot). dbeampix is projected and compared with dvox to terminate
the traversal. Both beam rays find an intersection with the gray
voxel at a coarser level and terminate the traversal, because the
child voxel with dvox is missed. The minimum of neighboring
starting points t ′start and t ′′start (blue dots) is used (b).

point to all rays inside the beam. Due to this coarser ray sampling
of the scene, it would be possible to miss small details and the esti-
mation of the first intersection inside the beam would not be usable.
Therefore, the stopping criterion needs to take into account a compar-
ison of voxel and pixel.Stopping criterion

for ray termination A comparable representation of voxel and pixel needs to be found
for the termination of the ray. Therefore, the size of the projected
voxel on the screen needs to be compared with the pixel size. In case
of a common perspective projection, all rays have the same origin and
the distance between the rays in relation to the length of the ray t al-
lows to calculate the length of a pixel diagonal dbeampix at the point of
voxel intersection. Since the precise calculation of the voxel coverage
on the screen would not be performant, because the orientation of
the voxel needs to be considered, the voxel diagonal dvox is used to
represent the largest possible extent and approximates the voxel size
efficiently. The comparison of dbeampix and dvox allows to determine
the ratio of pixel size to voxel size. While the traversal is performed,
dbeampix increases due to an increasing t and dvox varies due to differ-
ent hierarchy levels. Therefore, it is necessary to do the comparison
in each iteration.

3.5 rendering 79

Figure 3.27: The special case for a failing beam optimization is shown. If the
beam rays do not intersect voxels in the coarse hierarchy, the
stopping criterion cannot be tested (a). A wrong tstart is cal-
culated and possible features are missed. The gray values show
the calculated tstart-value per beam (8x8 pixels). In the case of
the orange pixels, an intersection was found in front of tstart
and features are missed (b). In the proposed dilation, every
tstart-value is compared with the direct horizontal and vertical
neighbors and replaced, if a smaller tstart-value is found (c).

To terminate the ray before small voxels could be missed, the
largest possible pixel size needs to be compared with the smallest Comparison between

pixel and voxel sizepossible voxel size of the next step, i.e. the edge length of the child
voxels ∆pchild. The largest possible pixel size is determined by the
sum of ray length at the voxel exit point tnext and dvox

2 which com-
pensates a voxel orientation in the worst case (cf. dashed lines in
Fig. 3.28). The comparison is shown in Eq. 3.14. If Eq. 3.14 is fulfilled,
the ray is terminated and the optimized start value tstart for all rays
of the beam is calculated by Eq. 3.15. Since the voxel is arbitrarily
oriented to the ray direction and a corner of the detected voxel can be
nearer than the intersection point, dvox2 is subtracted from the voxel
entry point tbefore.

dbeampix · (tnext +
dvox

2
) > ∆pchild (3.14)

tstart ← tbefore −
dvox

2
(3.15)

Special case of
missed voxel corners
needs to be
considered

This processing is possible due to the hierarchical tree structure of
SVOs and SVTs. Since every non-empty child node has a non-empty
parent node, no small voxel is missed, because the ray first passes
the coarser parent node and the stopping criterion ensures an early
termination on the coarser level. One special case is encountered, if
a corner of the parent voxel lies between two coarse rays and a non-
empty voxel in a finer hierarchy level lies in this corner as well (see
Fig. 3.27 (a)). Here, the stopping condition can not be tested, because

80 sparse voxel trees

the coarser level is missed, which leads to an error in the estimation.
Fig. 3.27 (b) shows a screenshot of the resulting error. While gray
pixels show that the intersection is behind the estimated tstart, the
colored pixels show intersections in front of tstart.Dilation is proposed

to correct the
resulting error

To avoid this behavior, the resulting array of t-values is modified
before being passed to the traversal. In the special case of missed
corners, neighboring rays hit the missed parent voxel and estimate a
correct tstart due to the special voxel orientation and the stopping
criterion. Therefore, an additional dilation step is proposed. Each
t-value is compared with its direct neighbors in the left, right, top
and bottom direction of the image plane. The minimum of these 5

tstart-values is written to the final array of optimized t-values for the
ray traversal (see Fig. 3.27 (c)). While this method provides a correct
estimation, the more conservative tstart-values lead to a less efficient
beam optimization due to more potential steps through the hierarchy.Difference to [LK10]

In comparison to the proposed beam optimization, [LK10] does
not use the mentioned dilation step and encounters the shown error
for missed voxel corners. Another difference is the efficiency of the
beam optimization. The stopping criterion is less efficient for SVTs,
because the hierarchy depth is already reduced and a comparison
of voxel diagonals between two consecutive levels has a ratio of 1

N

instead of 12 which leads to an earlier termination of the ray and a
more conservative tstart. Although the beam optimization improves
the performance, the proposed ray traversal does not benefit from the
beam optimization as [LK10] does due to less precise approximations
between levels and the additional dilation.

3.5.5.2 Early exit
Advantages of early

exit The standard traversal of SVTs is terminated if the ray intersects a
non-empty voxel on the finest hierarchy level or if it reaches tmax
and leaves the bounding box of the voxel grid. To save computation
time and to improve the visual quality, the traversal can be termi-
nated earlier. While computation time is reduced by less iterations
of the main traversal loop, the visual quality is improved if an un-
dersampling of fine details is avoided. This undersampling occurs if
the distance between voxels is smaller than the distance between rays
so that the sampling theorem is harmed. In this case, the high spa-
tial frequency represented in the voxel grid cannot be restored by the
sparser sampling of the rays as determined by the image resolution.
Therefore, random colors and noise patterns appear in the rendering.Smallest possible

pixel size is
compared to largest

possible voxel size

In principle, pixels and voxels are compared with the same diago-
nals as discussed in Sec. 3.5.5.1 and shown in Fig. 3.26, because the
ray needs to be terminated earlier as well. The main difference be-
tween beam optimization and early exit is the purpose. While the
coarse render pass of the beam optimization needs to be terminated
before a smaller voxel will be missed, the early exit can only be done,

3.5 rendering 81

dpix

tnext

t = 1

dvox
2

dvox
2

tbefore

∆pchild

dvox

Figure 3.28: The stopping criteria for beam optimization and early exit are
depicted. Pixel distance dpix is scaled by tbefore −

dvox
2 to

compare it with the voxel diagonal dvox for the early exit (blue
lines). For the beam optimization, dpix is scaled by tnext+ dvox

2

to compare it with edge length of the child voxel ∆pchild (red
lines). In both cases, dvox2 is used to compensate the varying
voxel orientation, which influences the calculation of the ex-
treme pixel distances (gray dashed lines).

if the intersected voxel is smaller than a pixel. To incorporate these
requirements, Eq. 3.16 is used to terminate the traversal. Please note,
that draypix has the same meaning as dbeampix , but is smaller due to a
higher resolution, i.e. a denser ray sampling of the scene. The small-
est possible pixel size is calculated with a shift of tbefore by dvox

2 in
the direction of the ray origin. Furthermore, the diagonal of the inter-
sected voxel dvox on the current hierarchy level is used to obtain the
largest possible voxel size. Fig. 3.28 depicts the differences between
the stopping criteria of beam optimization and early exit.

d
ray
pix · (tbefore −

dvox

2
) > dvox (3.16)

Early exit requires
attributes in coarser
hierarchy levels

The early exit of the ray requires attributes on all hierarchy levels of
the SVT, because a termination on finest hierarchy level can not be en-
sured with a stopping criterion that is based on distances. Therefore,
the attributes of the fine levels need to be distributed to the coarser hi-
erarchy levels. In the SVT creation (see Sec. 3.4.5.2), attributes of the
child nodes can be used to calculate sophisticated parent attributes
order-dependently, but for the application of surface rendering, an
order-independent averaging of normals and colors is used. N influences visual

appearanceWhile a parent node in an SVO is averaged by a maximum number
of 8 child nodes, the contributing child values for a parent in an SVT
depend on the choice of N. An increasing N leads to a larger number
of color and normal values which contribute to the attribute of the
direct parent. Hence, the individual child attributes have a smaller
influence on the parent value and the resulting attribute values are
more reliable for larger N from a statistical point of view. In respect
of visual quality, a smaller N is more beneficial, because additional hi-
erarchy levels with smaller changes in the attributes lead to smoother

82 sparse voxel trees

Figure 3.29: The influence of N to the attributes of the coarser hierarchy
levels is depicted. While all voxels are averaged directly to the
parent attributes for N = 4, an additional hierarchy level for N
= 2 is leading to another parent attribute in the coarsest level. If
the ray is terminated earlier, the transition between parent and
child is smoother with a low N due to more hierarchy levels.

transitions between parent and child. It follows that a rendering of a
scene with early exit and varying N is not consistent, because of sta-
tistical properties and ray terminations on different hierarchy levels.
An example is given in Fig. 3.29.Visual artifacts

Another influence on the visual appearance is the adaptive ray
traversal which skips empty voxels. The stopping criterion can only
be evaluated at intersections with full voxels, because empty voxels
do not store attributes for calculating an output color. Since the sam-
ples on the ray are defined by the scene description, it can not be
ensured at which ray positions the stopping criterion is evaluated. It
follows, that the correct position of the stopping criterion will rarely
be hit and each ray stops individually depending on the intersected
voxels in different hierarchy levels. An increasing N amplifies this
effect, because of the larger scene complexity inside one brick due
to more child voxels and the ratio of voxel diagonals between two
hierarchy levels. While the scene complexity inside a brick influences
whether the ray terminates generally, the ratio of 1

N between voxel
diagonals leads to larger distances on the ray when the next hierar-
chy level might fulfill the stopping criterion. Therefore, a kind of
level-of-detail popping is perceivable. Fig. 3.30 shows an example.Difference to [LK10]

By comparing the voxel size and the pixel size, [LK10] is perform-
ing an early exit as well. The ray is terminated if a leaf voxel is
found or if the intersected voxel becomes smaller than a pixel. Due
to the used contour slabs (see Sec. 3.3.1), the SVO has a locally vary-
ing tree depth as well. To compensate the resulting artifacts between
different hierarchy levels, the use of a blurring filter is proposed as
a post-processing step on the image. A varying radius for sampling
and weighting neighboring colors on the image is determined by the
size of the voxel. If the voxel is smaller than a pixel, no neighboring

3.5 rendering 83

(a) (b) (c)

1
N

(d) (e)

Figure 3.30: The early exit leads to a kind of level-of-detail popping, which
is influenced by the skipping of empty voxels and N. A magni-
fied rendering of fine features at increasing distances between
scene and eye position is shown from left to right (a - c). While
finer details can be seen, if the child voxels are rendered (a),
the parent voxels become smaller than a pixel and provide the
averaged color of the whole brick (c). Rays, which skip empty
child voxels (d), may be terminated if the parent voxel fulfills
the stopping criterion by moving it away from the eye position
(e). The distances on the ray for a fulfillment of the stopping
criterion are influenced by the ratio 1

N between voxel diagonals
of succeeding hierarchy levels.

pixels are sampled. Although a level-of-detail popping should be vis-
ible here as well, it is less obvious due to a small N (cf. Fig. 3.30 (d, e))
and the blurring in image space at the pixel of the coarser hierarchy
level, which smooths its color value by sampling adjacent pixels of
the finer hierarchy level.

3.5.5.3 Bitstack
Reduced memory
requirement leads to
performance gain

The stack variables of the traversal require a frequent access for read-
ing and writing memory. It leads to memory access latencies, if those
accesses can not be hidden by more independent arithmetic opera-
tions, which can be executed during the delay time, or an increased
workload due to a larger number of concurrent threads. The num-
ber of concurrent threads can not be increased further, because the
available memory is limited by the large memory consumption of the
stack variables per thread. Only a large reduction of needed memory
per thread would allow to increase the number of concurrent threads.
Since the number of necessary arithmetic operations is optimized al-

84 sparse voxel trees

Figure 3.31: An example for the use of bitstacks is provided. The bitstack
stores necessary information for continuing the traversal after
returning from finer hierarchy levels. It consists of an index
stack and a pop stack. The stack state for descending is shown
at the top, while it is shown for ascending at the bottom. If
the brick is not traversed completely (blue and orange brick),
the binary representation of the cube indices v{x,y} (2D in this
example) is pushed to the index stack and a zero bit is pushed to
the popstack. If the brick is traversed completely (green brick),
only the popstack is used to store a one bit. In the ascent, the
zero bits in the popstack determine the next hierarchy level,
where the traversal needs to be continued and v{x,y} are popped
from index stack.

ready, the arithmetic complexity is low, so that no operations can be
executed during the waiting time and the latency can not be hidden
as well.Single bits of one

variable represent a
stack

Therefore, a bitstack in the spirit of [ÁSK14] is used to reduce the
memory requirements and memory accesses of each thread. Further-
more, the values are obtained faster. The bit representation of a vari-
able is used to represent the whole stack. The stack is maintained
by bitshifts which push and pop the values into the variable. In the
proposed SVT rendering, the cube indices v{x,y,z} and the popstack
spop are represented with bitstacks. Fig. 3.31 depicts the principle of
both bitstacks.Popstack avoids

unnecessary
memory accesses

As stated in Sec. 3.5.4.4, spop stores whether a hierarchy level is
"traversed" or "not traversed" before descending to a finer hierarchy
level. This operation is done by performing a bitshift of one bit in the
direction to the most significant bit and setting the least significant bit
of spop to 0 or 1. 0 represents the state "not traversed", while 1 means
"traversed". Only in case of "not traversed", the other stack variables
are stored. For the ascending to a coarser hierarchy level, an iteration
over the least significant bits of spop is performed. The least signifi-
cant bit is checked and removed by a bitshift to the least significant

3.5 rendering 85

bit. This checking is stopped as soon as a hierarchy level is found,
which is "not traversed". All other stack variables are loaded and the
traversal continues. This procedure allows to gain performance and
reduce memory accesses by omitting the processing of stack variables
which will not be needed in further iterations. Voxel indices are

stored in one
variable

The tracking of the current position of the ray inside the SVT is
done by cube indices v{x,y,z}. For each hierarchy level this index
allows to address the voxel of the brick which is intersected by the
current t on the ray. To represent those indices with a bitstack in
one variable, the number of required bits for a single index are
determined by ishift = dlog2(N)e. If the hierarchy level needs
to be traversed again, vx, vy and vz are stored as usual binary
representation into one variable. Each element is written by a bitshift
of ishift and a summation to store all three indices in consecutive
bits. In the ascending they are extracted by a bitmask imask, which
is calculated by 2ishift − 1, and bitshifts in the reverted order. Lst. 2

shows an example.

N = 5

v_x = 4 // 100

v_y = 3 // 011

v_z = 1 // 001

indexShift = ceil(log(N)/log(2)) // 3

stackVar = 0

indexMask = pow(2,indexShift) - 1 // 7 (0000000111)

// push()

stackVar = (stackVar << indexShift) + v_x // 0000000100

stackVar = (stackVar << indexShift) + v_y // 0000100011

stackVar = (stackVar << indexShift) + v_z // 0100011001

// pop()

v_z = stackVar & indexMask // 0000000001

stackVar = stackVar >> indexShift // 0000100011

v_y = stackVar & indexMask // 0000000011

stackVar = stackVar >> indexShift // 0000000100

v_x = stackVar & indexMask // 0000000100

stackVar = stackVar >> indexShift // 0000000000

Listing 2: Bitoperations for pushing and popping the cube indices to a
bitstack are shown in an example. The resulting bitmasks after
the operation are shown in the comment

Difference to [LK10]
[LK10] uses a bit-representation for storing v{x,y,z} in a stack as

well, but every dimension is stored in a separate variable. Since, the
SVO has only two children per dimension, ishift is not needed and
one bit is sufficient to represent the hierarchy level of one dimension.
Therefore, the stack is more efficient, because 3 bits are always suf-

86 sparse voxel trees

Hairball 1

Hairball 2

Hairball 3

Sponza 1

Sponza 2

Sponza 3

Figure 3.32: The shown views are used to evaluate the rendering of SVTs
depending on different parameters and applications. To clearly
show the Hairball frames, grey contours surround the Hairball
images.

ficient for storing v{x,y,z} of one hierarchy level. Furthermore, the
constant size of one bit allows to interpret the binary representation
as integer, e.g. 1x0y1z represents 5. This interpretation serves as a
referencing to child attributes by relative offsets. In addition, this bit
representation allows to calculate the right hierarchy level for contin-
uing the traversal when Pop() is executed. Hence, a separate spop is
not used.

3.5.6 Results

Rendering of SVTs
is evaluated in

several scenarios
To evaluate the rendering, the SVT is applied to common surface
rendering and volume rendering. Afterwards, the potential of thick
surface rendering for a THz simulation is analyzed. A comparison
with specialized techniques for surface and volume rendering is less
meaningful, because those techniques are superior due to the exclu-

3.5 rendering 87

sive focus on only one of the mentioned applications. Nonetheless,
a comparison with the surface rendering of [LK10] provides an in-
dication for the applicability of SVTs in a surface rendering. The
following sections focus on a detailed evaluation of parameters and
the influence of N. Description of

evaluation
environment

All tests have been performed on an Intel Core i7-930 (2.80GHz)
with 24 GB of RAM and an NVIDIA GeForce GTX 680 with 2 GB of
memory. The scenes Hairball at a resolution of 2048

3 and Sponza at
a resolution of 4096

3 are used. 3 views for each scene with different
complexities and properties have been taken. Fig. 3.32 shows these
views. While Sponza is showing voxel colors from diffuses textures
of the original mesh, Hairball is rendered with a local illumination of
diffuse light.

3.5.6.1 Surface Rendering
[LK10] and SVT are
compared by
omitting contours

comparison with [LK10] The use of SVTs in a surface render-
ing is obvious due to similarity to the SVO of [LK10] which provides
a very performant surface rendering of voxels. Since [LK10] focuses
on surface rendering, performance optimizations are used which are
not suitable for thick surface rendering or volume rendering. Here,
the main optimization is the use of contours which allows to improve
the performance by an earlier ray termination if the original surface
mesh is approximated good enough (see Sec. 3.3.1). To provide a
fairer comparison with SVT rendering, contours are omitted. There-
fore, the performance numbers do not reach the highest possible val-
ues but they provide a better relative comparison to SVT rendering. Influence of ray

incoherenceTab. 3.9 shows the measurement. All measured values are given
in Million rays per second. The 6 views in Fig. 3.32 are rendered
at three resolutions (768x432, 1024x576, 1280x720) with early exit
enabled. Measurements with and without beam optimization are
shown. For the SVT only the most performant choice of N is pro-
vided. It can be seen that the rendering of [LK10] is more performant
than the SVT rendering. It reaches a factor of up to 1.8 in comparison
to the performance of the SVT. In two measurements, the SVT reaches
the same performance as the SVO. These are the most performant
measurements of the chosen views. It follows that the scene complex-
ity has a larger influence on SVT rendering than on SVO rendering.
The scene complexity is directly influencing the possibility of ray co-
herence, i.e. more rays are executing the same operations per clock
cycle. Although both approaches benefit from this ray coherence, the
performance of SVT rendering drops stronger for an increasing ray
incoherence. This effect can be seen by varying resolutions as well.
If the scene is shown at a larger resolution, the frame rate gets lower
but the number of processed rays increases due to more coherent rays
which render the same area on the rendered surfaces.

88 sparse voxel trees

[LK10] SVT

w/o beam beam w/o beam beam N

Hairb. 1

1280x720 38.7 42.2 24.8 25.9 4

1024x576 41.9 45.5 24.3 25.0 4

768x432 41.1 44.0 25.4 26.0 3

Hairb. 2

1280x720 42.2 58.0 32.9 37.0 3

1024x576 39.4 51.4 30.5 32.5 3

768x432 36.3 44.8 27.3 29.5 3

Hairb. 3

1280x720 42.1 68.0 36.4 46.1 4

1024x576 39.6 60.1 33.5 39.6 4

768x432 36.5 51.3 29.6 33.4 4

Spon. 1

1280x720 53.9 71.7 47.0 55.8 4

1024x576 52.3 67.0 45.6 52.6 4

768x432 50.9 63.8 41.7 46.6 4

Spon. 2

1280x720 69.7 90.1 70.2 90.6 3

1024x576 67.5 85.2 66.7 80.6 3

768x432 64.9 80.2 57.7 68.1 3

Spon. 3

1280x720 101.1 130.1 102.9 130.6 4

1024x576 97.1 124.5 98.7 121.6 4

768x432 91.5 114.4 93.3 112.2 4

Table 3.9: The rendering performance of [LK10] and the SVT is compared
by 6 different views at 3 different resolutions. Performance with
and without beam optimization is shown. Depending on N, the
most performant SVT rendering is provided. The corresponding
N is given in the right column. The best performance per row is
shown in bold. All values are given in Million rays per second
(Mray/s).

An additional reason for a lower performance of the SVT is the
possibility to choose N and generalize the number of children perGeneralization of

SVTs is slower than
specialized SVOs

node of the voxel tree. For this reason, calculations inside the ray
processing need to be more general, while the SVO with N = 2 of
[LK10] can use more efficient bitwise operations (see Sec. 3.5.5.3).

Influence of N and
optimizations is

evaluated on
different views

optimizations To evaluate the influence of N and the optimiza-
tions on the rendering (see Sec. 3.5.5.1 and 3.5.5.2), N varies between 2

and 5 for rendering the 6 views. Tab. 3.10 shows the measured results.
For each measurement, beam optimization and early exit are enabled.
The performance for using only beam optimization or only early exit
is given as well. The best performance values using early exit have
already been shown in the comparison with [LK10] (see Tab. 3.9).

3.5 rendering 89

Ha. 1 Ha. 2 Ha. 3 Sp. 1 Sp. 2 Sp. 3

N
=

2 both 21.3 30.0 39.1 40.5 55.2 97.1

early 20.6 27.4 29.3 33.3 45.9 75.0

beam 20.2 30.3 39.8 39.1 55.8 99.7
N

=
3 both 25.5 37.0 44.9 54.8 90.6 108.8

early 24.0 32.9 33.6 47.9 70.2 92.6

beam 26.1 38.0 46.1 55.3 93.1 114.3

N
=

4 both 25.9 36.1 46.1 55.9 75.6 130.6

early 24.9 32.9 36.4 47.0 64.9 102.9

beam 26.6 37.2 47.4 55.8 76.5 134.1

N
=

5 both 23.6 33.1 40.2 52.8 59.8 99.0

early 21.7 29.2 32.2 48.0 50.2 87.0

beam 25.9 36.3 43.5 58.0 65.2 109.0

slowest/fastest 0.76 0.72 0.62 0.57 0.49 0.56

Table 3.10: The performance of early exit and beam optimization is evalu-
ated by rendering the views with different settings. The three
settings are: both optimizations are switched on, only early exit
is used, only beam optimization is used. The resolution is set to
1280x720. N varies between 2 and 5. The most performant ren-
dering per view is marked in blue. For all views except Hairball
1, the worst performance is obtained by N = 2 without beam op-
timization. For Hairball 1, the worst performance is obtained by
N = 2 without early exit. The last row shows a factor between
best and worst performance. A factor of 1 would mean that both
values are equal.

The direct comparison of the optimizations shows, that the single
use of early exit leads to the lowest performance independently of Memory access

latency is the
bottleneck

N or the rendered view. Intuitively, this is not reasonable because
less calculations are required if the rays terminate earlier. Here, the
main drawback of generalized SVTs becomes apparent. Due to uni-
versal calculations and more effort for processing intermediate results
depending on N, the memory footprint of a single thread increases.
This memory footprint is linked to the number of registers per thread
which is limited to GPU-specific properties. If all frequently accessed
variables are stored in registers, the memory access latency is low.
All variables which do not fit into registers need to be stored in lo-
cal memory, where the latency is higher and a register spilling is
occurring. In case of early exit, additional variables are necessary to
maintain distance criteria for an early termination of the rays. Since
the threads have a high memory consumption already, the additional
distance values can not be stored in registers and the higher access
latency can not be compensated by a reduced computation effort.

90 sparse voxel trees

Hairball 1

Hairball 3

Sponza 2

Sponza 3

Figure 3.33: The 4 shown views are used to evaluate the performance of
volume rendering with SVTs. The view properties vary in co-
herence of surface structures and number of iterations. Black
pixels represent no intensity, i.e. no voxels were hit. White
pixels represent the maximum intensity of each view.

Furthermore, the measurement shows that the single use of beam
optimization is the most performant method for rendering all testRendering with

beam optimization is
most performant

scenes except Hairball 1 and Sponza 1 with N = 2. The scene com-
plexity influences the efficiency of the beam optimization because flat
surfaces can be approximated much better by a coarser distance grid
than strongly varying surfaces. For these surfaces, the final rays still
need to traverse a strongly differing number of voxels, which results
in less efficient ray coherence.Most often the

choice of N = 4 is
optimal

In addition, it can be seen that the best performance (blue cells
in Tab. 3.10) is obtained by different values of N. Therefore, the scene
complexity influences the optimal N and the deviation between worst
and best performance. While N = 2 never leads to the optimal per-
formance, the other values of N lead to the best performance at least
once. Interestingly, N = 4 results in the best performance for the most
complex scene (Hairball 1) and the simplest scene (Sponza 3), so that
the choice of N for achieving the best performance is not obvious.
Since N = 4 is optimal in half of the test cases and near the optimal
performance with other values of N, it seems to be the optimal choice.

3.5.6.2 Volume Rendering
SVTs allow a precise
and adaptive volume

sampling
SVTs can be used for a volume rendering if the voxels are interpreted
as volumes. The contribution of a voxel to the ray can be determined

3.5 rendering 91

exactly by considering the length of the ray between the entry and
exit point of the voxel. It follows that the SVT offers a precise and
adaptive volume sampling if the ray traversal is not terminated earlier.
Therefore, the potential of SVTs for a common volume rendering is
evaluated by interpreting Hairball 1, Hairball 3, Sponza 2 and Sponza
3 of Fig. 3.32 as volumes. To achieve a simple volume representation
of these surface models, only the lengths of the ray that traverse full
voxels are accumulated and interpreted as intensity. For each view
the maximum traversed ray length of all rays serves as a normaliza-
tion factor to represent the complete intensity range. Fig. 3.34 shows
the visualization result. Using SVTs for

volume rendering
can be meaningful

The performance of these renderings is given in Tab. 3.11. All
scenes were rendered with varying N between 2 and 5. Indepen-
dent of N, it can be seen that the performance dropped by more than
an order of magnitude in comparison to the performance for surface
rendering (cf. Tab. 3.9 and 3.10). It is obvious that the rendering of
SVTs does not reach the performance of interactive volume rendering
techniques. Even if the performance is low, it is possible to obtain
unbiased volume representations which are not smoothed by interpo-
lation and show the exact thickness of voxels. This precision is only
limited by the volume resolution and the density of the ray sampling.
Therefore, volume rendering with SVTs can be meaningful if applied
to simulation scenarios which require a high precision. Main influences are

iteration count and
ray coherence

Further statistics in Tab. 3.11 show that the high iteration count is
the main influence on the performance drop. One iteration consists of
different basic functions like Push(), Step() or Pop() (cf. while-loop in
Alg. 3.5) and does not show the number of individual basis function
calls. Therefore, the iteration count serves as a general indication for
the workload. The lowest number of iterations is achieved with N =
3, but N = 4 has the higher performance. One reason is that the iter-
ation counts are not necessarily of equal workload, e.g. an iteration
with a single Step() just needs a small fraction of instructions which
would be needed by a Push() or an AttributeCalculation(). Another
reason is the scene complexity which leads to an even larger ray inco-
herence because the rays traverse the complete volume and threads
are executed with less parallelism the further the ray travels. N leads to differing

expenses for
iterations

The Hairball 3 with N = 2 has the lowest performance and Sponza
3 with N = 4 has the highest performance. Under the assumption
that the iteration counts have equal workloads, a tripling of the itera-
tion count leads to a drop in performance by an order of magnitude.
While the averaged number of iterations is quadrupled, the maxi-
mum number of iterations is scaled by an order of magnitude as well.
It follows, that a clear indication for the performance behavior is not
easy to obtain, because several parameters have strongly differing in-
fluences on each other. It seems that N = 4 is the best choice, but
the values of N = 5 are very similar. One reason might be that N =

92 sparse voxel trees

Hb. 1 Hb. 3 Spon. 2 Spon. 3

N
=

2

max 2073 51.0% 3011 29.0% 998 275

mean 243.4 496.4 441.6 622.0 277.6 141.9

std 384.6 419.7 601.3 630.2 134.5 29.8

total 224.3 M 407.0 M 255.9 M 130.8 M

perf 1.82 1.27 2.25 6.12

N
=

3
max 1745 49.4% 2476 27.6% 860 258

mean 218.9 432.8 393.7 543.8 259.1 145.5

std 340.4 369.2 520.7 541.1 123.0 31.7

total 201.8 M 362.8 M 238.8 M 134.1 M

perf 2.56 1.82 3.01 7.91

N
=

4

max 1712 46.5 % 2396 27.1% 844 255

mean 226.0 422.6 396.2 543.7 259.9 134.4

std 341.9 368.1 516.3 534.3 120.2 28.0

total 208.3 M 365.1 M 239.5 M 123.9 M

perf 3.12 2.26 3.83 12.17

N
=

5

max 1691 43.7% 2349 27.49% 861 250

mean 234.7 417.0 411.7 567.7 264.2 136.5

std 352.4 380.2 521.6 535.4 124.1 27.9

total 216.3 M 379.4 243.5 M 125.8 M

perf 3.04 2.11 3.63 10.39

Table 3.11: To evaluate the performance of volume rendering with SVTs, 4

views with varying complexity are measured. For varying N,
statistics of the iterations are shown. The maximum, mean and
standard deviation for all pixels of a frame are provided. Since
the Hairball views have a lot of pixels with zero iterations (see
percentages), statistics for pixels with and without zero itera-
tions are given. Furthermore, the total number of iterations and
the performance in Mray/s are provided. The blue cells mark
the lowest number of iterations and the highest performance per
scene.

5 executes less Push()- and Pop()-operations so that the iterations are
cheaper and can be processed faster (cf. Fig. 3.2 in Sec. 3.2).

3.5.6.3 THz Simulation
Thick surface
rendering is

evaluated
Since the main purpose of SVTs is the improvement of THz simula-
tions, a thick surface rendering is required. This rendering allows to
incorporate properties of THz radiation regarding penetration depth
and attenuation inside real-world materials. The behavior of the ray
traversal needs to be evaluated, if it proceeds until a specific ray dis-

3.5 rendering 93

tance inside of full voxels is reached. Therefore, the views Hairball
3 and Sponza 2 are rendered by varying ray lengths as stopping cri-
teria. First, the maximum ray length of the traversal through the
complete volume is determined per view. Afterwards, this maximum
ray length serves as a normalization factor so that each ray can be
terminated if it reaches a fraction of this factor, i.e. each ray termi-
nates after traversing a fixed distance through full voxels. The factor

1st hit 1e-5 1e-4 1e-3 1e-2 vol.5.5e-5 5.5e-4 5.5e-3

60

50

40

30

20

10

0

N = 2

N = 3

N = 4

N = 5

Hairball (2048, view 3)

1st hit 1e-5 1e-4 1e-3 1e-2 vol.5.5e-5 5.5e-4 5.5e-3

120

100

80

60

40

20

0

Sponza (4096, view 2)

N = 2

N = 3

N = 4

N = 5

Figure 3.34: To evaluate the feasibility of a thick surface rendering for THz
simulations, the performance [in MRays/sec] of the ray termina-
tion with different penetration depths is evaluated for Hairball
view 3 and Sponza view 2 with varying N. From left to right,
the ray needs to traverse more full voxels until it is terminated.
For comparison, surface and volume rendering are provided
again. While surface rendering terminates the ray after the first
hit, volume rendering is traversing the complete scene without
terminating earlier.

94 sparse voxel trees

Hairball view 3 Sponza view 2

1e-3 5.5e-3 1e-2 1e-3 5.5e-3 1e-2

N
=

2 max 451 749 933 263 408 525

mean 56.1 165.9 239.9 29.7 135.2 195.1

total [in M] 36.7 108.5 157.0 27.4 124.6 179.8

N
=

3 max 451 647 784 231 392 529

mean 53.3 151.6 216.5 20.1 120.3 177.8

total [in M] 35.6 101.1 144.4 18.5 110.9 163.9
N

=
4 max 467 745 918 267 396 514

mean 54.4 153.8 219.5 24.4 126.0 182.1

total [in M] 36.5 103.3 147.4 22.5 116.1 167.8

N
=

5 max 525 710 851 290 431 549

mean 61.6 168.3 236.9 31.7 124.3 183.6

total [in M] 41.2 112.5 158.3 29.2 114.6 169.2

Table 3.12: The influence of the traversed voxel length per ray on the perfor-
mance is shown for the parameters next to the performance drop
in Fig. 3.34. The highest iteration count per column is marked in
orange while the lowest iteration count per column is marked in
blue.

1e-5 is used for the shortest distance while 1e-2 is used for the longest
distance. Fig. 3.34 shows the measured results for varying N.Choice of optimal N

is independent of ray
length

If both scenes are compared, it can be seen that a constant N is not
optimal. While N = 4 performs best for all ray lengths of Hairball 3,
N = 3 has the best performance for all ray lengths of Sponza 2. The di-
agram shows that a varying ray length is not influencing the optimal
choice of N. Except for N = 5 between first hit and smallest factor,
the ranking of the N values is constant for all ray lengths. For the
drop of N = 5 below the performance of N = 2, the negative influence
of high register pressure and memory access latency becomes visible
again (cf. Sec. 3.5.6.1). Since the memory consumption per thread is
already at maximum for N = 5, maintaining additional information
of the ray length leads to a register spilling which results in a perfor-
mance drop. Since this behavior is independent of scene complexity,
this effect is perceived in both scenes.Iteration count is

increased when
exceeding the ray
length factor 1e-3

A performance drop is encountered if the ray length factor gets
5.5e-3. Therefore, Tab. 3.12 provides a more detailed overview. Be-
tween the factors 1e-3 and 5.5e-3, the iterations triple for Hairball
while they increase by an order of magnitude for Sponza. The perfor-
mance drops in similar ratios. It is assumed that the iteration count in-
creases due to the scene complexity. Both scenes are based on surface
meshes with the minimum surface thickness defined by one voxel.

3.6 summary 95

Therefore, the distance between surfaces leads to a higher iteration
count as well. In the case of the spatially sparser Sponza scene, rays
pass the first surface and need to traverse the scene with a large num-
ber of iterations until the next surface is encountered. Therefore, the
drop seems to be more abrupt than in the Hairball scene which has
more surfaces next to each other and less empty space needs to be
skipped during the traversal.

3.6 summary

Main goal of the
proposed SVT is an
improvement of THz
simulations

With the goal of improving THz simulations, the concept of SVTs has
been proposed in this chapter. Based on the ideas for very efficient
rendering of SVOs of [LK10] and the memory-efficient processing of
sparse volumes of [CNLE09], SVTs have been developed to achieve
a processing of thick surfaces which allows to incorporate physical
properties of THz radiation. The main idea of SVTs is the generaliza-
tion of SVOs of [LK10] to increase the number of children per node
which allows scene representations at a higher resolution. A voxeliza-
tion and a rendering have been developed for processing SVTs. Proposed GPU

voxelization works
out-of-core and
grid-free

The voxelization uses triangle meshes as input and creates SVTs
for a varying N as output, i.e. the maximum number of children per
node can be chosen. The processing is accelerated by the GPU to al-
low a very performant SVT creation. A streaming concept has been
proposed. It allows to process only subsets of triangles and nodes
of the SVT. Therefore, the implemented method is out-of-core. Ad-
ditionally, the processing is grid-free which results in a performance
gain and a reduced memory consumption in the process of creating
SVTs. The stack-based SVT

rendering allows
different
applications

A raycasting approach is used for rendering the created SVTs with
a varying brick size depending on N. The rendering approach is stack-
based, i.e. the state of the traversal is stored on every hierarchy level
if the level needs to be switched. Efficient accessing of child nodes
by single pointers and bitmasks leads to a performant ray processing.
Depending on the application, the traversal is terminated after the
first surface hit or continues until the ray leaves the scene representa-
tion completely. Furthermore, the ray can be terminated if it fulfills
different criteria like the passed distance inside voxels, which can be
interpreted as penetration depth in a THz simulation. Beam optimization

of [LK10] is
corrected

While [LK10] focuses on the optimizations for surface rendering,
the SVT rendering is kept more general and can not use specific sur-
face optimizations like the contour slabs. Another optimization of
[LK10] is beam optimization which saves performance by starting the
ray traversal nearer to the final ray termination. This optimization
can be used for SVTs as well. Here, an improved dilation step is in-
troduced to remove visual artifacts that occur in the original variant
of [LK10].

96 sparse voxel trees

The choice of N has the largest influence on the behavior of SVTs. ItChoice of optimal N
depends on

complexity and
sparsity of the scene

influences the memory consumption and the rendering performance.
For the memory consumption it is shown that N = 5 and N = 6 are
optimal for voxelized surface models. If the sparsity of the scene
decreases, a larger N gets optimal. For the rendering performance,
N = 4 and N = 3 turned out to be the best choice in most cases.
Therefore, the optimal N is not constant and changes depending on
the scene properties.SVTs serve as a solid

foundation for a
THz simulation

While the proposed voxelization even outperforms current out-of-
core approaches for creating sparse voxel representations, it turned
out that the rendering concept of the voxel structures cannot compete
with specialized CG methods for common surface or volume render-
ing. It becomes apparent that a single thread requires more mem-
ory resources with an increasing N, because more data inside a brick
needs to be maintained in the stack and more general computations
are required due to the varying number of children. Furthermore,
the memory consumption is reduced and a scene representation at a
higher resolution can be achieved, but the desired memory savings
are lower than expected, because the most memory is spent on at-
tributes which are constant under a varying N and only the hierarchi-
cal information can be reduced. A recent work of [DKB∗16] shows
that a palette-based approach for representing material attributes
leads to a more substantial reduction of memory requirements if the
scene consists of many homogeneous color attributes. Nonetheless,
SVTs provide a solid foundation for the application in a THz simula-
tion which requires high resolution datasets that are not obtainable
with usual volume approaches and a performant rendering which
can consider further effects related to surface thickness or roughness.

4
S I M U L AT I O N O F WAV E E F F E C T S

The topic of this chapter is the simulation of wave effects and the ap-
plication of the proposed SVT (see Chap. 3) to such a simulation. The
focus lies on those physical effects, which influence the THz propaga-
tion and extend simulation models of ray optics. After a motivation
(see Sec. 4.1), a general overview of methods for simulating electro-
magnetic waves is given in Sec. 4.2. Related work on THz simula-
tions is discussed in Sec. 4.3. Sec. 4.4 provides an introduction to
physical wave effects which have the largest influence on the imag-
ing. To consider these effects, two simulations with different focuses
have been implemented. They are discussed in Sec. 4.5. While the
goal of the first simulation is the simulation of a hybrid THz scanner
which applies a synthetic aperture image reconstruction (see Sec. 5.2),
the second simulation uses the SVT to allow a THz simulation with
multi-layered materials in a simpler THz scanner setup (see Sec. 5.3).
These simulations are discussed in Sec. 4.5.1 and Sec. 4.5.2, respec-
tively. A summary with a discussion of limitations and future work
is given in Sec. 4.6.

4.1 motivation

Advantages of THz
simulationThe simulation of electromagnetic radiation is an essential technique

for applications in the fields of wireless communication, remote sens-
ing or radar. Simulation methods allow to evaluate the quality of
imaging systems even if they are not built yet. These approaches get
more important if the equipment has very high production costs or
long development phases which is usually the case for prototypical
setups. Specially, THz hardware is very expensive currently. There-
fore, the development process for THz imaging systems gets cheaper
if a reliable and efficient simulation is available. SVT provides

precise and
performant results

While the efficiency of the THz simulation can greatly be improved
by exploiting the GPU, the use of a data structure like the SVT (see
Sec. 3.3) is beneficial for a THz simulation in terms of precision and
reliability. This structure allows to store object representations in a
high resolution while keeping the memory consumption low. Fur-
thermore, a fast ray traversal of this structure (see Sec. 3.5.4) ensures
either a performant processing or an even more precise evaluation of
scattering behavior.

97

98 simulation of wave effects

4.2 overview of simulation methods

Numerical
approaches are used

for real-world
scenarios

The complexity of electromagnetic radiation in real-world scenes does
usually not allow a simulation with analytic methods for larger sce-
narios. Therefore, electromagnetic fields are modeled by numerical
approaches. Those approaches can be categorized into exact and
asymptotic methods.Overview of exact

methods The basic idea of exact methods is the spatial discretization of the
scene to a uniform grid. For each grid cell, Maxwell’s equations need
to be solved. In the case of local methods, differential equations are
used to calculate values at the grid cells throughout the scene directly.
Examples for this local approach are finite element-, finite difference-,
or finite volume methods. In global methods, boundary conditions
and integral equations are used to calculate the solution for each cell
in the grid. Methods of moments and methods of lines are two
examples for these global methods. Further information on those
methods of computational electromagnetics (CEM) can be found in
[RBI12, CJMS00, Dav10].Overview of

asymptotic methods As opposed to exact methods, asymptotic methods do not need a
uniform discretization of the scene. Therefore, they do not represent
empty space. Instead, surface representations of outer geometry and
a concept like rays or beams are used to calculate the propagation of
the electromagnetic field by high frequency approximations, which
neglect or simplify the influence of wave effects. This leads to less ac-
curate results, because these approximations lose validity in the case
of rougher surfaces or lower frequencies. However, these simplifica-
tions lead to a strongly reduced computation time.Asymptotic methods

are used in this
thesis

Depending on the application, it is beneficial to use exact methods,
asymptotic methods or a mix of both. For simulating large scenes
with a lot of empty space like it is the case for stand-off THz scan-
ners, it is not feasible to use exact methods because available com-
puter memory limits the possible grid resolution of the simulated
scene. Even if enough memory would be available, the calculation
time would be very high. Therefore, this thesis focuses on using
asymptotic methods to simulate THz radiation, because less memory
is needed and a higher performance is achieved.

4.3 related work

Raytracing builds
the foundation for

asymptotic methods
Asymptotic methods base on the fundamental principle of raytracing
(see Sec. 2.1.2.2) for simulating the field propagation. In the CEM
community, this principle is known as Shooting and Bouncing Rays
(SBR) [LCL89]. Depending on radiation- and scene-properties, tech-
niques of geometrical optics and physical optics can be used to calcu-
late the field contribution.

4.4 main influences on a thz simulation 99

Geometrical optics are useful, if the simulated frequency is high
in comparison to surface structures in the scene, because they rely The methods of this

thesis use SBR with
physical optics

on high frequency simplifications. If wave effects like diffraction or
interference influence the result, geometrical optics gets less accurate.
Those wave effects can only be simulated by physical optics, because
here the interaction between rays is considered by integrating con-
tributions over a surface. For the application of a THz simulation,
wave effects play an important role for the image formation process,
because the frequencies and surface structures of real-world scenes
have similar dimensions. Hence, the developed methods in this the-
sis can be classified as an SBR method using physical optics. First methods

simulate passive
THz systems only

First simulations of millimeter waves or terahertz radiation for the
use in security systems ([GGLH06a]) or wireless communications
([PJJK11]) appeared. Those approaches use only passive radiation for
the simulated imaging. They are not applicable to systems which use
active radiation with coherent computation (cf. Sec. 2.2.2), because
they do not incorporate a phase consistent surface reflectance model. Current methods

incorporate the
simulation of
incoherent radiation

The Helmholtz-Kirchhoff integral is the basis for the simulation of
active radiation. This integral is used in the Beckmann-Spizzichino
model to describe the scattering of the electromagnetic field for spec-
ular reflections. [NIK91] provides a good explanation of this model.
For example, [PJJK11] assigns this model to the scattering of non-
specular surfaces. This Kirchhoff approximation allows only inco-
herent computation, but the simulated systems in this thesis rely on
coherent computations for imaging. [CV07] simulates

coherent radiation
and active systems

Therefore, a simulation of phase information is required. [CV07]
extends the Kirchhoff approximation to the simulation of coherent
radiation by calculating complex electric amplitudes. The proposed
extensions in this thesis base on the method of [CV07].

4.4 main influences on a thz simulation

Short overview of
additional influences
on THz simulation

The following section gives a rough overview of the physical proper-
ties which need to be considered for simulating THz radiation in addi-
tion to the basic CG techniques of local illumination (see Sec. 2.1.3.1).
While this overview focuses on short explanations and definitions on
the most significant influences, [Hec02] and [ST07] are recommended
for more in-depth information on these physical properties.

4.4.1 Wave Properties

Principles of wave
optics need to be
considered

The scattering of electromagnetic radiation can only be simulated by
geometrical optics if the wavelength of the radiation is much smaller
than the irradiated surface structures, because principles of wave op-
tics have a negligible influence on the image formation process in
this case. Since wavelengths of THz radiation and real-world surface

100 simulation of wave effects

(b)

constructive interference

+

=

destructive interference

+

=

(a)

Figure 4.1: The principle of interference is shown for two waves with the
same frequencies. If the waves are in phase, the summed signal
is amplified and constructive interference is the result (a). If the
waves have a phase difference of π, the signals are canceled out
and the result is a destructive interference (b).

structures both lie in the sub-millimeter range (10−4m - 10−3m), the
ray approximation of geometrical optics gets incomplete, so that wave
properties need to be considered in a simulation of THz imaging.Superposition of

waves These wave properties base on the principle of superposition. It
states that waves superimpose if they share the same geometrical po-
sition at the same time without influencing the original properties of
the waves. If the waves passed each other, the waves get back to their
unaltered state before the interaction.Interference is a

result of
superposition

Interference is the direct result of this superposition of waves. De-
pending on phases, amplitudes and wavelengths of the interacting
waves, a constructive or a destructive interference is the result. While

(c)(a)

wave direction (side view) linear

(b)

circular elliptical

(d)

Figure 4.2: In a plane which is perpendicular to the wave direction, the
movement of a vector can be used to describe the polarization of
the electric field over time (a). A scaling of the vector represents
a linear polarization (b). If the vector rotates without scaling, the
polarization is circular (c). The most general case is the ellip-
tical polarization, where the strength of the electric field varies
over time (d). The movement of the vector can be clockwise or
counterclockwise.

4.4 main influences on a thz simulation 101

(a)

diffraction at an obstacle

(b)

Huygens-Fresnel Principle

Figure 4.3: Depending on obstacle size and wavelength, diffraction is occur-
ring. Here, the wave bends around the obstacle and propagates
into shadow regions (a, marked in red). The Huygens-Fresnel
Principle states that the wavefront of a primary wave (red dots)
can be created by the superposition of spherical waves which
were placed on the wavefront (orange dots) at an earlier point in
time (b).

a constructive interference leads to an amplification of the signal, a
destructive interference leads to a reduction or even a complete van-
ishing of the signal. Depending on the phase difference, this interfer-
ence varies between these two cases. If the superposed waves have
different frequencies, the interference varies along the wave propaga-
tion. Fig. 4.1 shows an example of both types of interference for a
simplified case with equal frequencies and amplitudes. Polarization

describes the
oscillation behavior

The oscillation behavior of the electric field of a wave is described
by polarization. If the wave encounters an object, the polarization
may change. It follows that the polarization is not fixed during the
propagation. To describe such a behavior, the oscillation of the wave
is represented by a transformation of a vector which lies in a perpen-
dicular plane to the propagation direction. The general case is the
elliptical movement of this vector inside the plane. If the strength of
the electric field is constant while the wave propagates, the polariza-
tion is circular and the vector rotates around a circle. If the movement
of the electric field is limited to a scaling of the vector, the polarization
is linear. Fig. 4.2 depicts the variants.

4.4.2 Object Interaction

Diffraction
Diffraction is another property of wave optics. In comparison to inter-
ference and polarization, an interaction of the wave with an obstacle
is required. It states that the wave propagates around corners or
along the boundary of this obstacle, so that the wave reaches shadow
regions (see Fig. 4.3 (a)). The interference patterns of a diffraction can
be approximated by the Huygens-Fresnel Principle.

102 simulation of wave effects

Formula Description

Ra = 1
n

∑n
i=1 |yi| Arithmetic mean

Rq =
√
1
n

∑n
i=1 y

2
i Root mean square

Rv = minyi Maximum valley depth

Rp = maxyi Maximum peak height

Rt = Rp + Rv Maximum height of profile

Rsk = 1
nR3q

∑n
i=1 y

3
i Skewness (symmetry)

Rku = 1
nR4q

∑n
i=1 y

4
i Kurtosis (sharpness)

Table 4.1: Common parameters for describing the surface roughness are pro-
vided (see [ISO10] for further details). yi is the ith difference of
y between the mean line of a one-dimensional surface profile and
the measured surface point. The mean line of the profile is set to
the height which minimizes the height deviations.

The Huygens-Fresnel Principle states that a wavefront can be re-
placed by a finite number of spherical waves with the same frequency,Huygens-Fresnel

Principle so that the superposition of these waves leads to the same envelope
which would be created by the original wavefront at a later point in
time. Fig. 4.3 (b) visualizes this behavior.

In case of a THz simulation, diffraction influences the current ap-Scattering at rough
surfaces is an active

research area
proximations of geometrical optics for calculation of reflection and
transmittance. Since surface irregularities have a comparable size to
the wavelength, a wave can not be approximated by a ray. The diffrac-
tion behavior under these conditions is still an active field of research
since common scattering approximations assume a wave interaction
with smooth surfaces.Roughness is

described by
statistical models

usually

A roughness representation for surfaces is required as well. There-
fore, either highly detailed object representations or statistical models
are needed to describe the roughness. Commonly, statistical models
are used to define the roughness implicitly and calculated properties
like surface normal or traveled distance of a ray are adjusted by the
generated roughness values. Tab. 4.1 gives an overview of common
parameters for describing surface roughness statistically.Signal attenuation

by transmittance
needs to be
considered

Another important aspect of the object interaction in the THz range
is the simulation of signal attenuation inside the radiated material, be-
cause many real-world materials are partly invisible in the THz range
and the wave propagation continues after traversing the material.
This leads to the need that object representations have inner struc-
tures. The extinction coefficient of a complex index of refraction can
be used to compute the absorption of the material, but the traveled
distance of the radiation inside the material must be known. Illumi-
nation techniques for volume rendering consider distance-dependent

4.4 main influences on a thz simulation 103

0-3-6-9-12

main lobe
side lobes

HPBW

0°

-15°

-30°-45°-60°

30°45°60°

15°

90°

-90°

180°

-135°

135°

dB

Figure 4.4: An exemplary radiation pattern shows the directivity curve of
the antenna. The main lobe with the strongest power density is
centered around the main direction at 0

◦, while the side lobes
have a much weaker power density next to the main lobe. The
half power beamwidth (HPBW) is an angle to describe the region
where the power density drops to -3 dB (dashed line between the
blue dots).

attenuation effects already. These effects are based on calculations
with intensity. Since a simulation of coherent radiation is required,
a calculation with phases needs to be considered. In the case of an
illumination of surface meshes, physical effects which depend on the
penetration depth are only approximated by statistical methods.

4.4.3 Acquisition System

Simulation of
antennas and a lens
system are needed

Other large factors for a THz simulation are the creation of the ra-
diation and the properties of the beam. In this thesis, it is assumed
that antennas are used for receiving and transmitting THz signals
(see Sec. 2.2.2). Additionally, it is common that a lens system focuses
the beam before the interaction with the scene object to optimize the
imaging quality. Directivity provides

the distribution of
power density

While the complete electromagnetic simulation of inner antenna
structures is out of scope for a THz scattering simulation, the prop-
erty of the outgoing antenna radiation is required. Therefore, the
directivity of the antenna needs to be simulated. A radiation pat-
tern shows the distribution of the radiation into individual angle-
dependent directions. Usually it consists of a main lobe in the main
direction of the antenna which holds the highest power density. Next
to the main lobe, additional side lobes with lower power density are
present. An important property is the half power beamwidth, which
defines the opening angle of the antenna, where the signal reduces
to -3 dB in comparison to the signal of the main direction. Fig. 4.4

104 simulation of wave effects

lens

focused beam
√
2 ·w0 w0 θ

zr

Figure 4.5: The beam parameter product wo · θ and the Rayleigh length zr
of a focused beam are illustrated. zr defines the depth of focus,
which represents the region around the focus point where the
object can be acquired with an acceptable image quality. wo
provides information about the spatial resolution of the system,
i.e. the minimal size of detectable features.

illustrates the mentioned terms. To simulate the propagation of the
radiation, this curve of the antenna must be sampled.Influences on

imaging quality If a lens system for focusing is used, additional principles of optics
become important. In the case of THz radiation, the beam parameter
product and the Rayleigh length are important for simulating a more
correct imaging. The beam parameter product provides the informa-
tion of the beam quality, which is linked to the image quality directly,
because it determines the spatial resolution of the system. It is given
by w0 · θ, where w0 is the beam waist or radius of the focus point
and θ is the opening angle in the far field (see Fig. 4.5). The Rayleigh
length zr describes a similar behavior along the radiation direction,
because it defines the depth of focus, which is the region before and
behind the focus point which can be resolved with an acceptable im-
age quality (see blue region in Fig. 4.5). At the end of both sides, the
focus point size increased to its double. zr is calculated by π·w2o

λ .

4.5 thz simulations

[Kli12] focuses on
the scanner of

Sec. 5.2
In the following section, two approaches for simulating THz radia-
tion are presented. In the first approach of [Kli12] (see Sec. 4.5.1), a
specific simulation for the hybrid scanner of Sec. 5.2 has been devel-
oped. In terms of CG expressions, this simulation represents a local
illumination which is extended by physical effects of wave optics.SVT simulation

In the second approach (see Sec. 4.5.2), the SVT of Chap. 3 is used
to extend a THz simulation by inherent features of the proposed voxel
data structure. It features highly detailed surface representations and
the calculation of precise ray distances for simulating material absorp-
tion. The simulation can be seen as a global illumination approach
in the THz range, because the scattering is not restricted to a single

4.5 thz simulations 105

bounce at the first object. Nonetheless, it is limited to a subset of
possible radiation paths and physical effects which can be simulated. Main differences

between [Kli12] and
SVT simulation

The main differences between both approaches lie in the scene rep-
resentation and the ray traversal. While a statistical ray sampling
with densities below λ/10 for the simulated wavelength is used in
[Kli12], the SVT rendering samples explicit geometry defined by vox-
els. Furthermore, the simulated systems differ. While the purpose of
[Kli12] is a simulation of unfocused radiation for synthetic aperture
imaging, the SVT rendering is used to simulate focused radiation of
transmitters and receivers for THz scanning approaches. Tab. 4.2 pro-
vides more detailed information on the comparison between the two
approaches with respect to material interaction, scattering behavior
and radiation properties. Combining both

approaches is not
trivial

From the comparison can be seen that the complexity of different
physical effects varies for the two implementations, e.g. the correct
handling of the polarization states after reflection get more compli-
cated in a multi-bounce approach. Therefore, a combination to one
unified solution is not trivial due to the distinct feature set. Structure of this

sectionFirst, the implemented effects of [Kli12] and results are shown. Af-
terwards, the SVT simulation is presented. Here, the adjustments to
the SVT methods are presented. The differences to the implemented
physical effects of [Kli12] and the added features to the SVT simu-
lation follow. This section ends with results of the simulation with
SVTs.

4.5.1 Hybrid Setup Simulation

Overview
The following section is based on [PKK∗13], which describes the sim-
ulation of [Kli12]. The developed approach is implemented by a vol-
ume rendering which uses raycasting to simulate the wave propaga-
tion of THz radiation. The irradiated simulation objects inside the
volume are obtained from a common voxelization of surface meshes,
so that each voxel holds an isovalue. The determination of surfaces
is done by isosurface rendering (see Sec. 2.1.2.2). After describing
the basic approach of the THz simulation in Sec. 4.5.1.1, Sec. 4.5.1.2
describes the additional physical effects which are considered in the
simulation. Results of the simulation are shown in Sec. 4.5.1.3.

4.5.1.1 Basic Approach
Properties of the ray
traversalWhile the simulated effects have a general applicability, the hybrid

scanner of Sec. 5.2 serves as application example and the ray traversal
is adapted to the corresponding configuration (see Sec. 5.2.2). Here, a
particular measurement consists of several antennas which transmit
THz radiation and several antennas which receive THz radiation, i.e.
a multiple-input multiple-output approach (MIMO) is used. For one
simulated measurement of this configuration, all rays between trans-

106 simulation of wave effects

mitters and receivers are distributed in a 2D plane, i.e. a slice, which
intersects the scene representation in a volume grid. The rays are tra-
versed along the depth of the plane. Since the imaging is based on
a reconstruction by synthetic aperture methods in the vertical dimen-
sion, unfocused radiation of each antenna is simulated by a shooting
of equally distributed rays along the whole height of the 2D plane. A
wavelength-dependent spacing of λ/10 between the individual rays
is taken from the SBR technique of [LCL89].Phase is calculated

by frequency and
ray distance

For a simplified visibility check, the rays start at the receiver and
stop after the first isosurface is found at a surface position v. A ray
from v to the transmitter is sent without traversing the volume again
and the traversal is terminated. Therefore, additional reflections or
physical effects which occur behind v have no influence on the simu-
lation. With a frequency sample fk and the length dm of the complete
ray between transmitter t, v and receiver r, a phase ϕk,m can be calcu-
lated by Eq. 4.1. Additionally, the simulated strength of the received
signal is represented by amplitude Ak,m. In the basic approach, an
attenuation of the signal is not simulated so that Ak,m = 1 is applied.

ϕk,m = 2πfk
dm

c
(4.1)

Atr,k · e−iϕtr,k =

M∑
m=1

Ak,m · e−iϕk,m (4.2)

Superposition of
waves is

incorporated

To calculate an overall phase ϕtr,k and an overall amplitude Atr,k

which represent the contributions of all rays M for a combination of
a transmitter and a receiver tr, the individual values of each ray m
are accumulated. This accumulation corresponds to the simulation of
the superposition of waves and is shown in Eq. 4.2. It follows that an
output for the reconstruction (see Sec. 5.2.4) consists of a matrix that
holds amplitudes Atr,k and phases ϕtr,k for each frequency sample
and for each combination of a transmitter and a receiver.

4.5.1.2 Simulated Influences
[CV07] extends the

basic simulation Interference is the only effect of wave optics, which is considered
in the basic approach. The approach needs to be extended by the
additional effects of wave optics which influence the scattering of
THz radiation as well (see Sec. 4.4). For the THz case that wave-
length λ and standard deviation of the surface heights σh are similar,
the Beckmann-Kirchhoff theory ([BS87]) can be used to calculate the
roughness scattering. However, this theory does not provide a coher-
ent calculation with complex electric amplitudes. Since the work of
[CV07] allows such a coherent computation, it serves as basis for the
implemented simulation. The approach of [CV07] holds the follow-
ing three important properties:

4.5 thz simulations 107

(a) (b)

θh

~w
~n

αh h

Figure 4.6: Parameters for the reflection mechanisms are depicted. αh and
θh are angles used for attenuation by Fresnel reflection and sur-
face roughness (a). A random height h is used for calculating
roughness by random phase offsets. These offsets are obtained
by adjusting the ray distance between Rx and Tx (b, red lines).
Image source: [PKK∗13]

• A normal distribution function (NDF), which depends on the
standard deviation of the surface heights σh and the correlation
length Lc, is used for the ray-based scattering.

• Traveled ray distance, Fresnel reflection and surface roughness
are used to calculate the phase characteristics. The surface
roughness introduces random phase shifts ϕrough due to a
phase variance function that involves σh.

• The coherent sum is calculated from individual ray contribu-
tions.

Diffraction of rough
surface scatteringTo simulate diffraction in the THz range, the influence of rough

surface scattering needs to be considered. Therefore, the signal at-
tenuation and phase offsets are simulated. While [CV07] calculates
random phase shifts by micro-facets, [Kli12] uses precomputed height
profiles to simulate phase offsets ϕrough from a rough surface scat-
tering. After an intersection point v of ray and surface is found, the
lookup in this profile gives a random height h, which is added to the
traveled ray distance. Therefore, the phase of the corresponding ray
is changed (see Fig. 4.6 (b)) Generation of height

profiles for phase
offsets

To create these height profiles, a standard deviation of heights
σh and a correlation length Lc for describing the surface roughness
need to be provided. These two parameters are used to create one-
dimensional height profiles by the algorithm of [BPK07, BPK08]1. It
consists of the following steps:

1. Based on the Gaussian distribution, random heights hu are gen-
erated with a standard deviation σh:

1 http://www.mysimlabs.com/surface_generation.html

108 simulation of wave effects

ρhu(x) =
1√
2πσh

e
− x2

2σ2
h

2. Based on the Gaussian correlation function, a filter kernel F(x) is
used to achieve distance related dependencies of similar surface
features:

F(x) = e
− x2

L2c
2

3. A correlated distribution of heights is generated by the convo-
lution of hu(x) and F(x):

h(x) = (hu ∗ F)(x)
Signal attenuation

by roughness The signal attenuation of the rough surface scattering is computed
by the normal distribution function ρNDF for Gaussian rough sur-
faces from [CV07] in Eq. 4.3. Fig. 4.7 shows the angle-dependent
attenuation of exemplary roughness parameters σh and Lc.

ρNDF(θh) =
Lc

2
√
πσh cos2(θh)

e
−(

tan(θh)Lc
2σh

)2 (4.3)

angle

at
te

nu
at

io
n

fa
ct

or

0 10 20 30 40 50 60 70 80 90

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

θh

σh = 1.0 mm, Lc = 0.5 mm
σh = 0.3 mm, Lc = 0.5 mm
σh = 0.2 mm, Lc = 1.0 mm
σh = 0.1 mm, Lc = 2.0 mm

Figure 4.7: Influence of standard deviation of surface heights σh and cor-
relation length Lc to the attenuation by surface roughness: In-
creasing σh and decreasing Lc lead to a rougher surface and the
contribution is spread to wider angles. Image source: [PKK∗13]

4.5 thz simulations 109

(a) (b)

θTx/Rx

~n2~d

top view

~n1

δ

Figure 4.8: Angle threshold δ is used for taking into account normals (~n2)
that slightly shift from the slice direction ~d, while normals out-
side this angle (~n1) are neglected for further computation (a).
θTx/Rx defines the angle between main direction of the antenna
and direction between antenna and intersection point on the
surface for calculating an attenuation that depends on the half
power beamwidth θHPBW (b). Image source: [PKK∗13]

This method of rough surface scattering is combined with the com-
putation of the Fresnel term for a complete description of the reflec-
tion. In the implemented simulation, all determined intersections Fresnel reflection

have the same material because the used volume representation does
not store material attributes. A mapping of isovalue ranges could be
used to incorporate such a simulation of multiple materials in one
simulation. The Fresnel reflection is calculated with complex indices
of refraction and is always done from air into a material because the
rays are sent back to receiver after the first surface intersection. Fresnel reflection

and rough surface
scattering are
combined

The combined reflection mechanism is shown in Eq. 4.4 and Eq. 4.5.
It incorporates the phase shifts and signal attenuation from rough sur-
face scattering and the Fresnel reflection F. F‖ represents the parallel
polarization state and F⊥ represents the perpendicular polarization,
so that a final reflection vector ~f = (f‖, f⊥)T is created. The additional
parameters in Eq. 4.4 and Eq. 4.5 are the incidence angle αh, the posi-
tion on the surface ~x and the deviation angle θh between macroscopic
surface normal ~n and the microfacet normal ~w. ~w is the halfway vec-
tor between transmitter and receiver (see Fig. 4.6 (a)).

f‖(~x, θh,αh) = ρNDF(θh) · F‖(αh) · e−iϕrough(~x) (4.4)

f⊥(~x, θh,αh) = ρNDF(θh) · F⊥(αh) · e−iϕrough(~x) (4.5)
More realistic
focusingA ray traversal in a 2D plane leads to the simulation of a perfectly

focused beam, i.e. only those surface normals which lie in that plane
contribute to the received signal. Since a real beam has an extent
and encounters varying normal directions, a user-defined threshold
δ is used to simulate a more realistic focusing without shooting addi-
tional rays. If the angular deviation between the slice direction ~d and
the surface normal ~n is smaller than δ, the surface is considered for
further reflection calculation as well (see Fig. 4.8 (a)).

110 simulation of wave effects

angle

at
te

nu
at

io
n

fa
ct

or

0 10 20 30 40 50 60 70 80 90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θTx/Rx

σHPBW = 3◦

σHPBW = 6◦

σHPBW = 12◦

σHPBW = 24◦

Figure 4.9: Depending on the half power beamwidth θHPBW , the attenua-
tion factor is enlarged to wider angles θTx/Rx. Image source:
[PKK∗13]

Horn antennas serve as transmitters and receivers. They are mod-
eled as isotropic point sources with a main direction, i.e. side lobsAntenna properties

of the antenna are neglected. An angular deviation θTx/Rx between
main direction and outgoing ray direction is compared with the angle
of the half power beamwidth of the antenna θHPBW and determines
the drop in magnitude of the transmitted or received radiation (see
Fig. 4.8 (b)). Fig. 4.9 shows the influence of exemplary values for
θHPBW . The used distribution function (see Eq. 4.6) is based on the
antenna model of [TSI∗06]. Here, the part for calculating the attenua-
tion of the main lobe is used.

ρTx/Rx(θTx/Rx, θHPBW) = e
−

4 ln(2)
θ2
HPBW

θ2Tx/Rx (4.6)
Polarization

Frenet frames are used to rotate between antenna and surface coor-
dinate systems to calculate polarization states. This principle of geo-
metrical depolarization is applied in [PJK11] and [MMS∗11] as well.
Each ray determines its polarization state of the plane wave in its
individual coordinate system. Therefore, rotation matrices RϑTx and
RϑRx are applied before and after reflection ~f (see Eq. 4.4 and 4.5). To
simulate linearly polarized antennas, a coefficient vector ~c, removes
the parallel or the perpendicular component of the polarization state.Calculation per ray

The complete contribution of a ray is shown in Eq. 4.7. It is cal-
culated by combining the reflection mechanism with polarization cal-

4.5 thz simulations 111

culation and antenna attenuation. While ~Ei represents the emitted
plane wave, ~Eo represents the received plane wave.

~Eo = ~c · ρRx · RϑRx · ~f · RϑTx · ρTx · ~Ei (4.7)
Total contribution
between Tx and RxThe total contribution of a transmitter-receiver-combination is cal-

culated by Eq. 4.8. Depending on frequency samples f, individual
contributions per ray are accumulated, if the intersected surface is vis-
ible from receiver and transmitter. Here, the visibility terms V ~Tx→~S

and V~S→ ~Rx are used to represent the ability if a ray is able to travel to
and from a surface element ~S. Mrays is the total number of generated
rays from each transmitter and is used as a normalization parameter.

~E ~Tx→ ~Rx(f) =
1

Mrays
·
∑
S

~Eo(f) · V ~Tx→~S · V~S→ ~Rx (4.8)

4.5.1.3 Results
Overview

The simulation is evaluated by an analysis of parameters for the gen-
eral physical effects and of specific parameters for the application
in the hybrid setup of Sec. 5.2. Furthermore, a comparison with a
measured dataset is discussed. To obtain the visual interpretation of
the simulated values, the reconstruction of Sec. 5.2.4, the fusion of
Sec. 5.2.5.2 and the visualization of Sec. 5.2.5.3 are applied. Scene description

The simulated scene consists of a 3D model of a human, which
is voxelized into a grid of 200x400x200 voxels. The measurements
of [Ala04] for dry human skin at 30

◦ are used. Here, the complex
refractive indices are calculated from the relative permittivity. The
provided frequency range between 76 and 100 GHz is smaller than
the frequency range of the hybrid body scanner, so that the refrac-
tion indices are extrapolated as constant values. These values are
taken for the whole model and all examples. The only exception
is the comparison with a measurement in the last paragraph of this
Sec. 4.5.1.3. Here, a plastic material with an estimated index of refrac-
tion of 1.54− i0.001 and metal as perfect reflector are used for a better
comparability.

Roughness
influences the
angle-dependent
intensity
distribution

influence of scattering parameters The image quality is
largely influenced by the simulated scattering in the THz-range. To
achieve the expected surface roughness of the scene object, the rough-
ness parameters need to be adjusted. Smooth surfaces are obtained by
a high correlation length Lc and a low standard deviation of heights
σh. A decreasing Lc and an increasing σh lead to rougher surfaces.
The influence of the two parameters is shown in Fig. 4.10. It can be
seen that a uniform intensity is achieved in Fig. 4.10 (b) while the
intensity differs in Fig. 4.10 (a) and (c). In comparison to the attenua-
tion factors of Fig. 4.7, it can be seen that Lc = 0.5 mm and σh = 0.3
mm lead to an almost uniform spread of intensity over the angles of

112 simulation of wave effects

(c)(b)(a)

σh = 1.0 mm σh = 0.3 mm σh = 0.1 mm
Lc = 0.5 mm Lc = 0.5 mm Lc = 2.0 mm

Figure 4.10: The visibility of the object in the reconstructed image is influ-
enced by the roughness parameters. The roughness decreases
from a to c: σh = 1.0 mm, Lc = 0.5 mm (a), σh = 0.3 mm, Lc
= 0.5 mm (b), σh = 0.1 mm, Lc = 2.0 mm (c). Image source:
[PKK∗13]

(c)(b)(a)

-30 dB

0 dB

Figure 4.11: The image quality is influenced by the geometrical positioning
of the setup components. All images are simulated with HPBW
= 12

◦, σh = 0.2 mm and Lc = 1.0 mm. The distance between ob-
ject and tr-array is 9 m (a, b), but outer mirrors are moved out-
wards to increase the acquisition angles (b). A sharper image
and more reconstructed surfaces are obtained by a decreased
distance of 5 m between tr-array and scene object (c). Image
source: [PKK∗13]

reflection. The roughest surface of this evaluation (σh = 1.0 mm, Lc
= 0.5 mm, cf. Fig. 4.10 (a)) has a peak at high angles of reflections
while the smoothest surface (σh = 0.1 mm, Lc = 2.0 mm, cf. Fig. 4.10

(c)) has a peak at low angles of reflection. It follows that the intensity

4.5 thz simulations 113

(c)(b)(a)

-30 dB

0 dB 0 dB

-50 dB

Figure 4.12: The behavior of the setup can be tested by different parameters.
All images are simulated with σh = 0.2 mm and Lc = 1.0 mm
(cf. Fig. 4.11 (a)). Transmitters and receivers are equally spaced
on the linear array, so that some surfaces are not reconstructed
(a). Decreasing the HPBW to 3

◦ leads to a blurring in the ver-
tical direction (b). A difference image between δ = 1

◦ and δ =
10
◦ shows the additionally acquired intensity of surfaces that

deviate from the slice direction for δ = 10
◦ (c). Image source:

[PKK∗13]

range of the reconstructed image depends on the range of attenuation
factors over the different angles of reflection.

Geometrical system
properties can be
evaluated

influence of setup parameters The simulation allows to
evaluate different configurations of the hybrid synthetic aperture THz
system which is discussed in Sec. 5.2 and shown in Fig. 5.1. The posi-
tions of the scanner parts can be varied to test the geometrical influ-
ence on the image generation. Fig. 4.11 (a) and (b) are generated with
the same simulation properties but the outer viewing mirrors of the
setup are moved outwards in Fig. 4.11 (b). It can be seen that more
surfaces are detected because the acquisition directions to the object
differ more. If the mirror positions are not changed but the object
gets nearer to the tr-array, the image gets sharper and more surfaces
are detected as well (cf. Fig. 4.11 (a) and (c)). An unfocusing in the
near distance is neglected because the actual beam width is always
assumed to be minimal along the complete ray. Simplified antenna

properties can be
adjusted

To evaluate the reconstruction model, the positions of transmitters
and receivers on the linear array can be varied arbitrarily. Fig. 4.12

(a) shows the simulated radiation of equally spaced transmitters and
receivers over the whole linear array. All other images of this section
are generated with densely spaced receivers on the top and bottom
of the linear array, while the transmitters are equally spaced in the
middle of the array. The implemented spotlight model of the antenna

114 simulation of wave effects

(c)(b)(a)

-30 dB

0 dB 0 dB

-15 dB

Figure 4.13: The reconstructions of a simulation and a measurement are
compared. A human model with a constant complex refrac-
tive index of 1.54 − i0.001 for a plastic material is simulated,
while the right side of the stomach is simulated as metal. The
used HPBW is 12

◦ and the roughness values are σh = 0.1 mm
and Lc = 2.0 mm. The normalization of all intensities with the
maximum (metal) lowers image contrast (a). A measurement of
a mannequin (c) with noise, multi-reflection and background-
scattering can be seen. A weapon in the left part of the jacket
and some metal in the right pocket of the pants show the high-
est intensity (b). In comparison to the simulated image, more
scattering due to multipath effects is visible while the specular
reflection looks similar. Image source: [PKK∗13]

allows the evaluation of a varying HPBW. In comparison to Fig. 4.12

(a) with a HPBW of 12
◦, Fig. 4.12 (b) shows that a smaller HPBW

with 3
◦ leads to a more blurred image in the vertical direction. De-

pending on the user-defined threshold δ for a more realistic focusing
(cf. Fig. 4.8 and Sec. 4.5.1.2), the blurring in the mechanical scanning
direction can be approximated. The reconstructed images of δ = 1

◦

and δ = 10
◦ are compared in Fig. 4.12 (c). The resulting difference

image shows a gain of intensity for δ = 10
◦ because the contributing

surfaces can be oriented further away from the slice direction.

Specular reflection
appears similarly comparison of simulated and measured data Results of

the simulation and a measurement are not directly comparable, be-
cause physical properties can only be simulated up to a certain point.
Therefore, a discussion on similarities is following. Regarding specu-
lar reflections, the used simulation behaves like the real measurement
(cf. Fig. 4.13 (a) and (b)). Specular directions that point directly in
the slice direction have a high intensity while neighboring directions
with a small deviation to the slice direction are not reconstructed.

4.5 thz simulations 115

Besides the effect, that the amount of diffuse reflection is much
lower in the THz regime compared to the visual light, the acquisition Diffuse reflection is

not shownmethod of the scanner prototype leads to further signal imperfections
due to, e.g., cross-talk. While the simulation can model diffuse reflec-
tion, the simulation of radiation paths is restricted to single bounces
at the scene object. Therefore, the diffuse scattering due to multi-
reflection between clothes (see Fig. 4.13 (b)) can not be simulated.
Furthermore, noise and background-scattering are neglected as well.

4.5.2 THz Simulation with SVTs

Overview
To show the applicability of the SVT representation to a THz simu-
lation, the proposed methods of Chap. 3 need to be adapted. Here,
the voxelization can be used directly, but the mesh representation
needs to allow the creation of thick surfaces. The ray traversal of
the SVT rendering needs larger changes for the use as a THz simula-
tion, because a bending of rays and a storage of traversed materials
are required. First, the generation of scenes is addressed. Next, the
calculation of physical effects are discussed. A comparison with the
methods of [Kli12] and results follow.

4.5.2.1 Generation of Scenes
Voxelization of
Sec. 3.4 is usedA scene representation for a THz simulation needs to provide infor-

mation of the inner structure of the objects, because THz radiation
penetrates most of the materials and the resulting signal is influenced
by the traveled distance through these materials. Since the voxeliza-
tion method of Sec. 3.4 is focusing on surfaces, the thickness property
needs to be provided by individual triangles. Thick surfaces are

created by
consecutive triangles

While one option would be the voxelization of triangles with an
additional thickness parameter, the neighboring triangles need to be
considered for a closed surface representation (see Fig. 4.14 (a)). The
proposed voxelization would not work out-of-core, if the triangles
need to have information of neighboring triangles. Therefore, addi-
tional triangles are required to create thick surfaces from consecutive
voxels. To determine the position of the triangles, it is necessary to
compute the edge length e of a single voxel from the scene dimension
dim and the voxel resolution res of the scene by e = dim

res . It follows
that the maximum distance between triangles needs to be below e to
create closed voxel regions without gaps (see Fig. 4.14 (b)). Quantization error

of the voxelizationAdditionally, the edge length e of a voxel is linked to the quantiza-
tion error of the scene representation. Resulting material layers with
a thickness t between triangles will have a thickness in the range
of [e, t + 2 · e[after voxelization, because a voxel is the smallest el-
ement and both neighboring voxels can slightly be touched by the
triangle. Depending on the choice of N and the desired resolution,
the surrounding bounding box of the scene might shift so that a con-

116 simulation of wave effects

(c)(a) (b)

e

d

d

e

e

t

t

Figure 4.14: If thickness attributes at triangles are used, information of
neighboring triangles is required to get a closed surface. In
the given example, the red voxels would not be created without
this knowledge and gaps between the extruded triangles would
be the result (a). If the distance d between subsequent triangles,
which represent a thick surface, is higher than the edge length e
of a voxel, gaps in the material layer can occur (orange voxel, b).
The position of the triangles influence a quantization error, so
that a constant thickness t leads to a varying number of filled
voxels (c).

stant number of triangles intersects a varying number of voxels (see
Fig. 4.14 (c)). If thinner surface layers or a higher precision of the sur-
face structure are required, res needs to be increased or dim needs to
be decreased.Voxel colors

reference material
descriptions

The voxel attributes of the proposed SVT implementation hold
color and normal values. To allow the storage of other material pa-
rameters, which are required for a THz simulation, a lookup table
is used in the rendering. Here, the created voxel colors of the un-
derlying triangle attributes serve as identifier for a mapping to a ma-
terial description, so that individual color values represent different
materials. In a first approach, the complex indices of refraction are
stored. Obviously, this referencing allows to extend the material de-
scription by additional parameters. The combination of several trian-
gle attributes in one voxel is done by averaging, so that color ranges
define a specific material. Since the attribute creation of the proposed
voxelization is independent from the order of incoming material val-
ues per voxel, a more sophisticated technique for identifying voxel
attributes could be developed.

4.5.2.2 Adaptations to the SVT Rendering
Overview

To adapt the proposed SVT rendering of Sec. 3.5 for the application
to a THz simulation, a two-step process is introduced. In the first
step, the traversed material layers between transmitter and receiver
are determined. The proposed SVT rendering loop (see Alg. 3.5) is
adapted to combine traversed voxels with the same material to one
layer and stores an array of traversed material properties for each

4.5 thz simulations 117

Figure 4.15: During the ray traversal, neighboring voxels with the same ma-
terial are combined to one layer. The layer thicknesses are given
by the red dots along the ray (a). Normal and dashed arrows are
compared to show the potential error of the ray traversal with-
out adapting the ray direction due to refraction (b). While ray
1 is not introducing an error due to a perpendicular incidence,
ray 2 and ray 3 show the obtained errors from a postponed eval-
uation of the physical behavior for multi-bounces. While ray 2

has minor shifts in the reflection angle and the calculated layer
thicknesses, the layer thicknesses of ray 3 have a large difference
in the first layer and the second layer is not considered due to
a shifted intersection point (red dot). Furthermore, a received
reflection will be considered for ray 3 but the true reflection di-
rection would not reach the transceiver again (red sector). The
errors increase with an increasing number of material layers.

ray. In the second step, these layers are iterated to calculate the THz
contribution of the respective ray for transmittance and reflection.

Creation of material
layers needed for
performance

adapting the ray traversal If the scene representation re-
quires high voxel grid resolution and thick material layers, a large
number of voxels is traversed by each ray. Since THz radiation pen-
etrates these materials, the physical behavior needs to be evaluated
at each voxel. Therefore, the performance of the ray traversal would
drop significantly (cf. Fig. 3.34). To avoid this decrease of perfor-
mance, a creation of material layers is proposed. Instead of evaluat-
ing the physical behavior at each voxel, neighboring voxels with the
same material along the ray are identified and combined to one layer,
so that the needed computations are postponed and reduced to an
iteration of material layers (see Fig. 4.15 (a)). Materials influence

efficiency of layer
creation

While this combination of voxels leads to a reduced computation in
case of transparent THz materials, strongly reflecting materials could
stop the ray traversal earlier, because no additional voxels behind this
material are radiated. Hence, the materials of a scene influence the
efficiency of the layer creation in comparison to an evaluation of each
voxel.

118 simulation of wave effects

Material layers are determined during the attribute calculation of
the ray traversal (see Alg. 3.5). Each material layer stores the follow-Properties of a

material layer ing properties:

• traveled ray distance / material thickness

• complex index of refraction

• viewing direction / incident ray direction

• surface normal
Determination of

material layers A new material layer is created, if the material index of the current
voxel is different from the material index of the previous voxel. If
the material is the same, the traveled ray distance tnext − tbefore
through the voxel is added to the total ray distance in the material. If
a new layer is created, the normal of the first voxel and the current
ray direction are stored. In addition, the material thickness is set to
the first ray distance through the voxel. The color of the voxel serves
as index for a lookup of a complex index of refraction which is stored
as well.Empty space must

be interpreted as
material

A special case appears, if the ray traverses empty space between full
voxels. While the normal SVT rendering is skipping this space, empty
space needs to be interpreted as a new material layer in the THz
simulation. Therefore, the last exit point of a voxel tnext is stored
and compared with the entry point tbefore of the next intersected
voxel. If they are not equal up to an epsilon threshold, a new layer
of empty space is added before a new layer is created from the new
voxel. A comparison with the previous voxel material is not needed
in this case.Unchanged ray

directions constrain
the applicability

Due to the complete creation of material layers before the physical
behavior is evaluated, the ray direction is not adjusted by refraction
mechanisms. Therefore, the layer thicknesses hold an error of shifted
ray distances and intersection points after each interface (see Fig. 4.15

(b)). To correct these shift errors, every transition between two materi-
als could be evaluated in the rendering loop, but it is not guaranteed
that the resulting ray with a new direction reaches the receiver. Here,
techniques like Monte Carlo path tracing can be applied to solve this
problem, but the performance would decrease. Furthermore, a multi-
bounce approach which tracks reflection and transmittance by addi-
tional rays at an interface would decrease the performance addition-
ally. By contrast, the iteration of material layers allows the prediction
of multiple bounces for the price of inaccuracies in the determination
of layer depths. Depending on the angles of incidence of a ray, the
error changes. While a perpendicular surface orientation does not in-
troduce any error, large increasing angles of incidence lead to wrong
simulation results. Therefore, the layer creation is not applicable to
real-world scenarios with multi-bounce effects, but it allows to eval-

4.5 thz simulations 119

uate single bounce effects and multi-bounce reflection effects in case
of perpendicular surfaces. Beam focusing can

be simulatedThe performance of the SVT rendering allows to simulate further
effects which influence the imaging. Since usual THz imaging sys-
tems use lens systems for focusing the radiation, the ray traversal is
adapted to simulate this beam focusing and obtain more realistic re-
sults. Therefore, a sub-pixel processing is implemented. Instead of
sending one ray per pixel, a varying number of rays is shot to simu-
late a radiation pattern and a spatial extent of the beam. Furthermore,
a prototypical ray bending is implemented to simulate a more realis-
tic focusing which is influenced by the beam parameter product and
the Rayleigh length (see Sec. 4.4.3). Each pixel

represents a
Gaussian beam

Each pixel holds a regular grid of rays to represent the beam. The
number of rays #rays along one axis is set by a user-defined value
depending on the desired precision. To simulate the radiation pattern
of the beam, each ray ~ru,v has an electric field amplitude Eu,v. This
amplitude is calculated by sampling the Gaussian function to obtain
the characteristics of a Gaussian beam (see Fig. 4.16 (a)). A window
length w = 5 for a Gaussian function with σ = 1 and µ = 0 is used to
determine the sample distance d and sample positions x,y (see Eq. 4.9
- 4.11). Eu,v is calculated by Eq. 4.12 and normalized by Eq. 4.13 to
achieve energy conservation.

d =
w

#rays− 1
(4.9)

x = u · d− w
2

(4.10)

y = v · d− w
2

(4.11)

Eu,v =
1

2π
· e−

x2+y2

2 (4.12)

Eu,v =
Eu,v∑#rays−1

u=0

∑#rays−1
v=0 Eu,v

(4.13)

Ray bending
Since the size of a measured focus point is dependent on the wave-

length and the optical lens system, linear rays can not simulate such
a beam focusing (cf. Fig. 4.5). Therefore, a ray bending is used in the
SVT rendering. According to the curved shape of a focused beam,
each ray is separated into 4 linear segments (see Fig. 4.16 (b)). These
segments are defined by lens radius rlens, focal length f, Rayleigh
length zr and beam waist ω0. For each of these segments s, a start
position ~os and a normalized direction ~ds of a ray are calculated (see
Eq. 4.14 - 4.21). Furthermore, each ray segment stores its length ls.
During the traversal, the voxel entry point tbefore of the current ray
segment is compared to this valid ray length. If tbefore > ls, the pro-
cessing of the current segment is finished, because the position on the
ray is not valid. The traversal continues with the next ray segment.

120 simulation of wave effects

(a) (b)

ω0 √
2ω0

zr

rlens

f

Figure 4.16: The Gaussian function is sampled by #rays in u- and v-
direction to obtain the electric field amplitudes Eu,v of the
rays in one pixel. The v-direction with #rays = 7 is depicted
(a). Each ray consists of 4 segments to simulate a ray bending.
Beam waistω0, Rayleigh length zr, Lens radius rlens and focus
length f are used to calculate the origins and directions of the
ray segments by Eq. 4.14 - 4.21 (b).

i =
u

#rays− 1
−
1

2
with {u ∈N | 0 6 u < #rays} (4.14)

j =
v

#rays− 1
−
1

2
with {v ∈N | 0 6 v < #rays} (4.15)

~o0 = (i · rlens, j · rlens, 0) (4.16)

~o1 = (i ·
√
2 ·ω0, j ·

√
2 ·ω0, f− zr) (4.17)

~o2 = (i ·ω0, j ·ω0, f) (4.18)

~o3 = (i ·
√
2 ·ω0, j ·

√
2 ·ω0, f+ zr) (4.19)

~o4 = (i · rlens, j · rlens, 2 · f) (4.20)

~ds =
~os+1 − ~os

|| ~os+1 − ~os||
for s = {0, 1, 2, 3} (4.21)

Calculation of layer
thicknesses is

changed

Due to the termination of a ray depending on its length, the cal-
culation of layer thicknesses needs to be adapted, because a ray seg-
ment can become invalid inside a voxel. Therefore, the thickness
dvoxthick inside a voxel is calculated by Eq. 4.22. Since the starting po-
sition of the next ray segment ~os+1 is at ~os + ls · ~ds, it will hit the
same voxel and continue the thickness accumulation correctly. For
the special case of layer creation from empty space, the thickness cal-
culation needs to be adapted as well, because a ray bending is not
detected during the empty space skipping. Therefore, the number
of processed ray segments #seg is counted and the exit point tlastnext

of the last intersected voxel is stored to reconstruct the traveled ray
distance d#seg

thick by Eq. 4.23 - 4.25 when encountering the next voxel
entry point tbefore.

4.5 thz simulations 121

dvoxthick = min(tnext, ls) − tbefore (4.22)

d0thick = tbefore − t
last
next (4.23)

d1thick = l0 − t
last
next + tbefore (4.24)

d
#seg>1
thick = l0 − t

last
next +

#seg−1∑
s=1

ls + tbefore (4.25)

iterating material layers After the determination of mate-
rial layers, the individual ray contributions are calculated by iterating
these layers. The theoretical foundation for this calculation is based
on the assumption that an inhomogeneous material volume is tra-
versed by a ray. At each position x on the ray ~r, an index of refraction
n(x) of the current material and an absorption coefficient α(x) are
known. From α(x), κ(x) can be calculated as κ = α · c4πf , so that a
complex index of refraction n + i · κ is available. The emitted field
strength ~Ei(= ~E(0)) of a ray is used as input to calculate the outgoing
electric field strength ~Eo(= ~E(x)). The material attenuation is given
by Eq. 4.26.

~E(x) = ~E(0) · e
∫x
0 −

α(s)
2 ds (4.26)

To allow a complex calculation, optical path length OPL and a re- Phase information is
consideredsulting phase ϕ need to be considered as well (see Eq. 4.27 and 4.28).

Here, the frequency f is provided by a user-defined input value. An
individual offset toff per ray is used as a constant distance offset to
shift ϕ for compensating a lens system which would provide a ray
coherence in the focus point pf, i.e. ϕr(pf) = const, ∀ r ∈ rays. If the
lens system would be modeled and traversed by rays explicitly, this
offset toff is not required, but a less performant simulation would be
the result. Extending Eq. 4.26 by phase calculations, leads to Eq. 4.29.

OPL(x) = toff +

∫x
0

n(s) ds (4.27)

ϕ(x) =
2πf

c
·OPL(x) (4.28)

~E(x) = ~E(0) · e
∫x
0 −

α(s)
2 +i 2πfc OPL(s) ds (4.29)

To incorporate the influence of complex Fresnel terms ~F at the tran- Adding complex
Fresnel calculationsition between material interfaces, the complex field strength is mul-

tiplied with the respective Fresnel term for transmittance ~Ft or re-
flection ~Fr. Considering a material interface at a specific position x0,
Eq. 4.30 and 4.31 show the calculation for transmittance and reflec-
tion, respectively.

~Et(x0) = ~E(x0) ·~Ft(x0) (4.30)
~Er(x0) = ~E(x0) ·~Fr(x0) (4.31)

122 simulation of wave effects

Since refraction occurs at discrete locations x1, ..., xN−1 along theHomogeneous ray
segments for

transmittance
whole ray, the ray is separated into N segments with lengths ∆k =

xk − xk−1 for k = 1, ...,N, where x0 = 0 is the start point and xN is
the end point of the ray. Furthermore, each segment has a refraction
index nk. Refraction takes place only at the boundaries of the mate-
rial layers, so that Fresnel terms ~Fk→k+1 with k = 1, ...,N− 1 are used.
Eq. 4.32 shows the resulting calculation for transmittance. N(x) is the
segment in which x resides.

~Et(x) = ~E(0) · e
∫x
0 −

α(s)
2 +i 2πfc OPL(s) ds ·

N(xk)−1∏
k=1

~Ftk→k+1 (4.32)

The reflected signal at the transceiver is the superposition of theSuperposition of
reflected rays individual reflections for which an additional damping is considered

on the way back to the transceiver. Therefore, the full reflective signal
at the transceiver considering all reflections up to xN is shown in
Eq. 4.33:

~Er(x) =

N(xk)−1∑
k=1

~Et(xk) ·~Frk→k+1 · ...

e
∫0
xk

−
α(s)
2 +i 2πfc OPL(s) ds ·

2∏
m=N(xk)−1

~Ftm→m−1 (4.33)

For the calculation with material layers, the discrete variants ofDiscrete variants of
Eq. 4.32 and 4.33

are used
Eq. 4.33 and 4.32 are used in Alg. 4.1. The algorithm shows the in-
terplay between the rays of a pixel which contribute to the outgoing
field strength ~Eo. Please note that the variables are reused and results

~Ei

~Eto

k = 1 k = 2 k = 3 k = 4

x1
x2

x3
x4

x0

= ~Ero

+ ~Er(x2)

+ ~Er(x3)

~Er(x1)

Figure 4.17: The exemplary iteration of two material layers is depicted. Start-
ing from x0, the interfaces x1 - x3 are traversed for calculating
the transmitted contribution ~Eto at x4. Furthermore, a reflected
contribution ~Ero is calculated from the sum of field strengths
~Er(x1) - ~Er(x3) which are reflected back to x0 from the respec-
tive material interfaces x1 - x3. The rays in the illustration are
shifted away from the interface points for a better comprehensi-
bility.

4.5 thz simulations 123

Algorithm 4.1 : Iterating the material layers from transceiver to
receiver. For each material interface, the already passed layers are
iterated backwards to the transceiver for calculating the reflected
field strength.
// Final field strength of all rays in transmittance and reflection
~Ero ← 0
~Eto ← 0

for all rays of a pixel do
// Temporary field strength per ray in transm. and refl.
~Er ← 0
~Et ← normedGauss() //

∑#rays
ray=1 Eray = 1

DetermineMaterialLayersByRayTraversal()
// Iterate layers k from transceiver to receiver
for k = 1, ...,N do

// First layer of air is passed
if k > 1 then

// ~Er is reflected ~Et at interface k− 1→ k
~Er ← ~Et ·~Frk−1→k
// Iterate layers backwards to receiver after reflection
for m = k− 1, ..., 1 do

// Phase change and mat. attenuation in layer m
~Er ← ~Er · e− 1

2 ·αm·∆m · ei 2πfc ·nm·∆m
//Transm. on backward iter. without first layer
if m > 1 then

//Transm. at interface m→ m− 1
~Er ← ~Er ·~Ftm→m−1

// Temp. ~Er is added to final ~E in reflection
~Ero ← ~Ero + ~Er

// Transmittance by Fresnel at interface k− 1→ k
~Et ← ~Et ·~Ftk−1→k

// Phase change and material attenuation in layer k
~Et ← ~Et · e− 1

2 ·αk·∆k · ei 2πfc ·nk·∆k
// Temp. ~Et is added to final ~E in transmittance
~Eto ← ~Eto + ~Et

are accumulated in accordance with the implementation. Fig. 4.17 il-
lustrates an exemplary traversal of two material layers with the used
terminology.

4.5.2.3 Comparison to [Kli12]

As stated in Sec. 4.5, the simulation of [Kli12] and the THz simulation Tab. 4.2 shows
differenceswith SVTs differ strongly in the included physical effects. Tab. 4.2

provides an overview on these differences between both approaches.
Similarities are restricted to the calculation of phases by a given ray

124 simulation of wave effects

[Kli12] SVT THz Simulation

Simulated
system

Unfocused radiation
with synthetic aperture
reconstruction, reflection

Coherent and focused
lens system, reflection
and transmission

Phase
calculation

Given by ray distances

Interference Calculated by complex addition of ray contributions

Coherency ϕ = const. at antenna ϕ = const. at focus point

Roughness Statistical and constant
roughness for whole
scene by fixed random
height profiles per 2D
slice

Explicitly given by vox-
els

Polarization Done by Frenet frame
and Jones vector, linear
polarization

Limited to perpendicu-
lar or parallel part of
Fresnel equations

Occlusion
between Tx
and Rx

Determination of iso-
surfaces by rays from
receiver, no occlusion
check between transmit-
ter and surface, visibility
term by surface normal
and antenna direction

Given by voxel materi-
als, reflected ray direc-
tions are not altered (no
occlusion possible)

Material in-
teraction

Fresnel equations for a
constant material in the
scene

Fresnel equations for dif-
ferent material layers

Material at-
tenuation

No material penetration Calculated by ray dis-
tances inside voxels

Radiation
pattern

Spotlight with main lobe
calculation of [TSI∗06]

Blurring kernel

Considered
radiation
paths

Single bounce at first ma-
terial surface

Penetration of materials
in transmittance, a re-
flected ray is sent to
transceiver at each mate-
rial interface on the in-
coming ray direction

Table 4.2: The differences between [Kli12] and a THz simulation with SVTs
are summarized.

distance, the treatment of interference by accumulating ray contribu-
tions and the Fresnel equations.

4.5 thz simulations 125

4.5.2.4 Results

To evaluate the discussed adaptations to the SVT processing, the pix- Properties of a
mechanical scanner
serve as input

elwise scanning system of Sec. 5.3 is simulated. Here, a transceiver
and a receiver are used to scan the scene sequentially. In the ren-
dered SVT images, each pixel represents a discrete position of this
transceiver-receiver-combination. The parameters of the system serve
as input parameters for the simulation. Tab. 4.3 provides an overview
of these parameters.

Description Symbol Value

Frequency f 578.32 GHz

Wavelength λ 0.52 mm

Lens radius rlens 20.32 mm

Num. aperture NA 0.508

Beam waist ω0 0.31 mm

Rayleigh length zr 0.59 mm

Table 4.3: Setup properties for simulating THz radiation with SVT rendering

Gaussian kernel and
100x100 rays per
pixel are used

Further input properties are the radiation pattern and the number
of rays per pixel. The radiation pattern is given by a Gaussian kernel
as described in Sec. 4.5.2.2. For the determination of a plausible ray
sampling per pixel, the approximation of λ/10 (see [LCL89]) leads
to a recommended sampling of 12x12 rays per pixel in the focus (see
Eq. 4.34) and 782x782 rays per pixel at the lens (see Eq. 4.35). Since the
performance heavily relies on the number of rays, simulated phase
maps with a varying number of rays have been compared to reduce
the computation time and keep the correctness of the results. Hence,
a reflection from a plate has been analyzed. Fig. 4.18 shows the result.
It can be seen that the reconstruction of the phases improves with an
increasing number of rays. Between 90x90 and 100x100, the phase
maps do not change noteworthy, so that 100x100 samples are used
for further evaluation.

2 ·ω0/(λ/10) = d11.92e (4.34)

2 · rlens/(λ/10) = d781.54e (4.35)
Information on the
four test scenesThe four different test scenes Material, Rough, Usaf and Crystal are

used as input to show different influences on the THz simulation.
Fig. 4.19 provides renderings and information on spatial properties
for these scenes. Those SVTs are created from surface meshes by the
technique of Sec. 4.5.2.1. All scenes have a resolution of 4000 voxels
in each dimension. This leads to a scene resolution of 50 µm for the
scenes Material, Rough and Usaf. The Crystal scene requires a smaller
scale, so that the resolution becomes 5 µm. This scene resolution is

126 simulation of wave effects

10x10 20x20 30x30

60x6050x5040x40

70x70 80x80 90x90 100x100

Figure 4.18: A series of color-coded phase maps is shown. The focusing
simulation of Sec. 4.5.2.2 is used (cf. Fig. 4.16). Reflected phases
from an obstacle are calculated per ray. The rays per pixel in-
crease from 10x10 in the upper left corner to 100x100 in the
bottom right corner. It can be seen, that the ray sampling con-
solidates between 90x90 and 100x100 pixels, so that following
measurements are done by 100x100 rays per pixel.

the quantization error of the SVT creation (cf. Sec. 4.5.2.1). Statistics
of the SVT creation and the performance of the simulation are given
in Tab. 4.4. Since all SVTs are processed at a resolution of 1280x720
pixels, the lateral spatial resolution varies as well. For Material, Rough
and Usaf, a distance of 240 µm is used. The Crystal scene is sampled
with transceiver distances of 12 µm.Material properties

and thickness are
evaluated in

Material scene

The Material scene contains 9 plates with an extent of 4x4 cm per
plate. The thicknesses of these plates vary between 1 mm, 2 mm and
3 mm. Furthermore, the plates consist of varying materials. The used

4.5 thz simulations 127

(a) (b)

(c) (d)

5 cm

15 cm

4 cm

1
m

m
1

m
m

2
m

m
3

m
m

8 mm
1.

2
m

m
0.

05
 m

m
15 cm

Figure 4.19: SVT renderings of the used test scenes are shown. While (a)
and (c) show color values, (b) and (d) show a colored normal
representation. The upper sizes show the scale of the scene. The
left sizes provide thicknesses of the scene. The Material scene
contains 9 plates with varying materials and thicknesses. From
left to right, pure cellulose paper, polystyrene and polycarbon-
ate are used. From top to bottom, the thicknesses of the plates
are 1 mm, 2 mm and 3 mm (a). The Rough scene contains a
plate with 9 regions which hold different roughness properties.
From left to right, the correlation length Lc is set to 1 mm, 2.5
mm and 5 mm. From top to bottom, the standard deviation of
surface heights σh is set to 1 mm, 2.5 mm and 5 mm. The plate
is treated as a perfect reflector (b). The Usaf scene contains a
variant of the USAF resolution test chart, which is commonly
used for the evaluation of optical imaging systems. It is imple-
mented as a perfect reflector (c). The Crystal scene simulates
the photonic crystal structure of [GMM∗02]. The material of
the scene is silicon. The single bars of the grid have a thickness
of 78 µm and are approximated by thicknesses of 80 µm or 85

µm due to the voxel resolution of 5 µm in this scene (d).

128 simulation of wave effects

Scene #Tri. [M] #Vox. [M] Size [MB] SVT [s] Sim. [m]

Material 18.4 236.9 952.7 98.2 13.5

Rough 112.5 38.7 177.1 112.5 12.5

Usaf 35.7 165.3 667.8 182.8 11.8

Crystal 64.8 321.3 1307.3 129.0 75.0

Table 4.4: From left to right column, scene name, number of processed trian-
gles, number of generated leaf voxels, total memory consumption,
performance for creating the SVT and simulation performance
(10000 rays per pixel at a resolution of 1280x720 pixels) of the four
test scenes are provided. While the other timings are very similar,
the performance of the simulation for the Crystal scene drops sig-
nificantly due to the complex geometrical structure. Here, the grid
layers lead to the creation of much more rays during the traversal.

materials and the respective indices of refraction at f = 578.32 GHz
are:

• pure celullose paper: 1.4− i0.047

• polystyrene: 2.11− i0.002

• polycarbonate: 1.64− i0.012

Tab. 4.5 provides the results for transmittance and reflection. Further-
more, the simulations with one ray per pixel and with 100x100 rays
per pixel are compared. It can be seen that the transmitted signals be-
come weaker with an increasing material thickness. Additionally, the
difference between one ray and 100x100 rays per pixel is negligible
for transmittance. For reflection, the values differ more strongly and
a linear dependence on the thickness is not recognizable because two
reflected signals interfere and further reflection paths are omitted in
the simulation. The difference in the reflection between one ray and
100x100 rays per pixel is stronger and leads to more varying values.
Here, the accumulation of primary and reflected rays changes the sig-
nal strength due to the superposition of ray radiations with different
path lengths.Rough scene shows

the influence of
explicit roughness

representations

The influence of an explicit roughness representation by voxels is
evaluated in the Rough scene. A perfectly reflecting plate with nine re-
gions of different roughnesses has been created. Similar to [Kli12] (cf.
Sec. 4.5.1.2), the 2D-generation of surface heights of [BPK07, BPK08]
has been used to create height values. Afterwards, the resulting sur-
face points were triangulated. After a voxelization of this mesh, the
SVT has been used in the THz simulation. Fig. 4.20 shows the ren-
dered simulation result. All combinations for Lc = 1.0 mm, 2.5 mm,
5.0 mm and σh = 1.0 mm, 2.5 mm, 5.0 mm have been examined. To
obtain a more informative interpretation of the result, the values of a

4.5 thz simulations 129

Reflection Transmittance

PCP PS PC PCP PS PC

1 ray per pixel

1 mm −14.14 −3.78 −8.63 −5.49 −1.41 −1.89

2 mm −16.2 −5.53 −18.21 −10.48 −1.63 −3.2

3 mm −15.22 −9.9 −10.84 −15.48 −1.85 −4.5

10000 rays per pixel

1 mm −15.44 −6.43 −11.35 −5.64 −1.69 −2.03

2 mm −15.39 −10.61 −13 −11.02 −3.49 −3.92

3 mm −15.37 −10.1 −11.48 −16.57 −6.19 −6.26

Table 4.5: The resulting signals of the Material scene are shown. Pure cel-
lulose paper (PCP), polystyrene (PS) and polycarbonate (PC) are
simulated with thicknesses of 1 mm, 2 mm and 3 mm. Values for
transmittance and reflection are given for a simulation with 1 and
10000 rays per pixel. The values are provided in dB.

window of 100x100 pixels of each region have been averaged. Tab. 4.6
shows the result of these values. It can be seen that the smoothest
roughness region with Lc = 1.0 mm and σh = 1.0 mm reflects with -6
dB the most radiation in the direction of the transceiver. While the re-
flected signal drops to -15.87 dB for Lc = 1 mm and an increasing σh,
it remains constant at -23 dB for Lc = 5 mm, although σh increases
in the same manner. Here, it can be seen, that the ratio between both
values influences the signal as well. Furthermore, it is shown that the
roughest surfaces lead to the weakest signals. Focusing and

radiation patterns
are analyzed in the
Usaf scene

The behavior of beam focusing is evaluated in the Usaf scene,
which contains a USAF resolution test chart. The material of the
chart acts as a perfect reflector. Fig. 4.21 (a) shows the simulated re-
sult for a chart which is slightly tilted from the beam direction. While
the diagonal axis with 0 dB holds the surface normals which coincide
with the beam direction, the signal decreases to roughly -15 dB in the

Lc in mm

1 2.5 5

σh in mm
1 −5.99 −16.40 −23.04

2.5 −10.43 −19.52 −23.25

5 −15.87 −21.08 −23.61

Table 4.6: The signals of a window with 100x100 pixels have been averaged
for each roughness combination of the Rough scene. The resulting
values are provided in dB.

130 simulation of wave effects

Lc = 1.0 mm 2.5 mm 5.0 mm

1
.0
m
m

2
.5
m
m

σ
h
=
5
.0
m
m

Figure 4.20: A plate with varying roughnesses is shown in the Rough scene.
While the smoothest part in the top left corner reflects most
strongly, the reflected signal of the roughest part in the bottom
right corner is the weakest.

top left and the bottom right corner due to surface normals which de-
viate from the beam direction. Furthermore, a blurring of the signal
can be perceived at these corners, because the rays of a beam inter-
sect the plate at different depths. Fig. 4.21 (b) and (c) compare the
simulation with two different radiation patterns. While a Gaussian
kernel is used in Fig. 4.21 (b), a box filter is used in Fig. 4.21 (c). It is
observable that Fig. 4.21 (b) is sharper, because the inner rays of the
beam have a larger contribution to the final signal than the outer rays.
In Fig. 4.21 (c), signals of outer rays have a higher influence, because
all rays contribute equally to the final result.Modification of

frequency and lens
radius is evaluated

in the Crystal scene

The Crystal scene is used to evaluate the frequency-dependency
and the influence of lens radius rlens. It contains the photonic crys-
tal of [GMM∗02]. The grid structure consists of silicon which is simu-
lated by an index of refraction of 3.42− i0. Fig. 4.22 and 4.23 show the
signal behavior for a varying frequency between 350 and 850 GHz in
reflection and transmittance, respectively. While the reflected signal
of Fig. 4.22 drops to approximately -30 dB between 450 GHz and 650

GHz, it remains around -10 dB for the other frequencies. Fig. 4.23

shows the transmitted signal, which decreases for an increasing fre-
quency. The measurement of [GMM∗02] shows a frequency gap be-
tween 400 and 550 GHz for transmittance. It follows that the SVT
simulation allows frequency-dependent processing, but it does not
coincide with the expected behavior exactly.

4.5 thz simulations 131

(a)

-30 dB

0 dB

(b)

Gaussian

(c)

Average

Figure 4.21: The slightly tilted USAF plate of the Usaf scene shows the influ-
ences of the focusing. The top left and the bottom right corner
becomes blurry and the signal weakens. The top right and bot-
tom left corners lie on the axis, which is perpendicular to the
scanner direction. The signal is focused and maximized on this
axis. To illustrate the blurring, two image regions on the left
show a digit in the blurred part and a digit on the sharp axis
(a). The kernel for simulating the radiation pattern influences
the imaging as well. Two magnifications of the perpendicular
USAF plate show the difference between a Gaussian kernel (b)
and an average kernel (c). It can be seen that the Gaussian leads
to a more focused image.

One reason for this difference is the quantization of the voxeliza- Reasons for differing
resulttion. Here, the thickness of the real grid bars may not be reached and

the thicknesses of different bars vary slightly as well. This behavior
leads to a blurring of the signal. Other reasons are the missing ray
bending and the incompleteness of the simulated radiation paths (cf.
Fig. 4.15 and 4.17). Although, the effect of multiple bounces is ob-
servable for the reflection, the ray directions are not changed and the
traversal stops so that possible ray contributions are not considered
completely. This influence of missing bounces is even more obvious
for transmittance, because no additional rays lead to the fact that the
measured gap is missing completely. Furthermore, the ratio between
geometrical features and used wavelengths leads to a large influence
of wave effects in the measurement. Since these effects can not be
simulated with a purely ray-based approach, the simulation differs
from the measurement as well. Increasing lens

radius reduces the
steepness of the
frequency gap

To show the influence of rlens, simulations for rlens = 17.5 mm,
20 mm, 22.5 mm and 25 mm are compared. For each simulation, the
same four pixels are averaged. The result is depicted in Fig. 4.24.

132 simulation of wave effects

400 450 500350 550 650 750 850600 700 800

-35

-30

-25

-20

-15

-10

-5

si
gn

al
st

re
ng

th
in

dB

frequency in GHz

Figure 4.22: The reflected signals of the Crystal scene are shown. Four differ-
ent pixels of the simulated grid are taken. Although the results
differ from the measured values of [GMM∗02], a frequency gap
is created due to geometrical features and the interference of
multiple reflection rays.

400 450 500350 550 650 750 850600 700 800

-16

-12

-8

-4

0

si
gn

al
st

re
ng

th
in

dB

frequency in GHz

Figure 4.23: The transmitted signals of the Crystal scene are shown. Four
different pixels of the simulated grid are taken (Colors represent
the same pixels as in Fig. 4.22). The results differ from the
measured values of [GMM∗02] and the frequency gap is not
reproducible.

4.6 summary 133

400 450 500350 550 650 750 850600 700 800

-35

-30

-25

-20

-15

-10

-5

si
gn

al
st

re
ng

th
in

dB

frequency in GHz

rlens = 17.5 mm
rlens = 20 mm
rlens = 22.5 mm
rlens = 25 mm

Figure 4.24: The reflection behavior of different lens radii rlens in the Crys-
tal scene is depicted. It can be seen that the steepness of the
frequency gap is reduced with an increasing rlens. Each chart
line holds an average of the same 4 pixel positions. The green
line with rlens = 20 mm corresponds to the averaged signal of
all lines in Fig. 4.22.

With an increasing rlens, the window of the lowest signals in the
frequency gap gets smaller and the steepness between the changes
from -10 dB to -30 dB is reduced. It is assumed that the increasing
variation of incoming ray orientations and ray lengths for a larger
rlens reduce the effect of the grid and smooth the immediate change
between maximum and minimum of the measured frequency gap.

4.6 summary

CG methods need to
be adapted for THz
simulation

In this chapter, it has been covered how the simulation of THz imag-
ing can be realized by CG methods. Common CG techniques and
simplifications for performant and accurate simulation of visible light
have a restricted applicability in the THz range, so that these meth-
ods need to be adapted. After a discussion on the main aspects that
need to be considered for a THz simulation, two simulations are in-
troduced and discussed. While the basic mechanisms are similar in
both approaches, the underlying THz setups vary strongly, so that
different THz properties are simulated. Properties of [Kli12]

The first simulation of [Kli12] focuses on the imaging simulation
for a hybrid THz scanner, which combines a synthetic aperture recon-
struction and a mechanical scanning to obtain a 3D representation
of the scanned object. To simulate this setup behavior, a common

134 simulation of wave effects

volume rendering is employed. The traveled ray distances are consid-
ered for a calculation of coherent radiation and a local Cook-Torrance
model is employed for calculating the reflection mechanisms at the
surface of the screened object. Here, the polarization is considered
by using Frenet frames and Jones vectors. Furthermore, the influence
of surface scattering is incorporated by a statistical model for describ-
ing roughness and a spotlight model is used to simulate a simplified
radiation pattern of an antenna.Properties of SVT

simulation In the second simulation, the proposed SVT of Chap. 3 is applied to
the simulation of a THz system which operates in transmittance and
reflection mode. The implicit properties of the SVT for representing
inner structures and fine surface details allow a multi-material sim-
ulation and the consideration of attenuation inside materials. Since
the scanner uses focused radiation, a lens system is considered in the
SVT rendering as well. Here, the tracing of individual rays is per-
formed to simulate the contribution of a focused beam. Additionally,
a blurring kernel is used for representing the radiation pattern of the
antenna and a first approach for computing multi-bounce effects is
proposed.Physical plausibility

is restricted, but
performance is

increased

Combining both approaches to a more generalized simulation is
not trivial, because the complexity increases if the simulated effects
influence each other in one model. Therefore, comparisons with true
measurements are restricted as well. While the correctness of the sim-
ulations is also limited by the ray approximation of geometrical op-
tics, the performance for calculating scenes with negligible influences
of wave optics is greatly improved. This performance gain allows a
fast and efficient simulation of imaging capabilities of respective THz
prototypes.

5
D E S C R I P T I O N O F T H Z I M A G I N G S Y S T E M S

While Chap. 3 and 4 focus on general aspects of simulating THz radi-
ation, the subject of this chapter refers to more specific CG solutions
for individual THz scanner setups. A motivation for applying those
solutions to THz setups is given in Sec. 5.1. It follows a case study
for two prototypical scanners. First, the used CG methods for a hy-
brid 3D scanning system are presented in Sec. 5.2. After a general
description of the system, the used CG techniques for a performant
multimodal 3D THZ imaging are discussed. This section is based
on [PKK∗13]. Afterwards, Sec. 5.3 provides the CG principles for a
pixelwise scanning system.

5.1 motivation

THz prototypes
require individual
solutions

THz imaging systems are still under heavy development and many
different scanning prototypes have been built in the last years. Each
system requires an individual adaption of used techniques, because
different scanning and acquisition procedures need to be exploited
for the imaging. Therefore, a general solution which incorporates all
possible scanning properties is not reasonable. CG methods allow

an efficient
processing

Usually, the built systems acquire a massive amount of data which
need to be processed for imaging. Due to the independence of mea-
sured points, rows or slices for individual elements in the final scene
representation, it is very promising to apply CG methods for data
processing because the parallelism of GPUs can be exploited. In com-
parison to sequential processing of the measured data, a drastically
improved performance is possible. Furthermore, usual CG methods
are required for an efficient and performant visualization of the re-
constructed scene representation. CG visualization

requires a
geometrical
description

An individual geometrical configuration and calibration for the re-
spective scanning system are required for parallel processing and ren-
dering by CG methods, because the expense of THz scanning hard-
ware leads to varying setups for the scanner operation. For active
imaging systems, the geometrical positioning of transmitters and re-
ceivers needs to be described by a meaningful representation without
redundancies.

135

136 description of thz imaging systems

rotating mirror

array of sources
and detectors

viewing mirrors

optical camera

Figure 5.1: The prototypical scanning system for hybrid 3D THZ imaging
is shown. The linear array of sources and detectors can be seen
in the middle of the image. The rotating mirror and the optical
camera are placed on the right side of the image. The left mirrors
are used to obtain different viewing angles of the scene.

5.2 hybrid 3d scanning system

5.2.1 System

Used scanner is
presented in

[KKP∗12]
With a focus on the signal processing, the used prototypical scanner
for a hybrid 3D THz imaging is described in [KKP∗12]. It delivers
the input data for the processing steps, which are discussed in the
following sections. While Fig. 5.2 shows a conceptual setup which is
used for explaining a generalized geometrical description of such a
system in Sec. 5.2.2, Fig. 5.1 shows the built scanner.Imaging parts and

functionalities of the
THz scanner

A linear array with 20 sources and 24 detectors is built up as a
sparse array. The used frequency range lies between 80 and 110 GHz.
The array is vertically mounted in order to allow a 2D reconstruction
by synthetic aperture imaging along the depth and height direction
(see Sec. 5.2.4). First, the horizontal beam patterns of the antenna el-
ements are spread by a small convex cylindrical mirror. Afterwards,
they are focused by a wider concave cylindrical mirror. A planar ro-
tating mirror is used to steer the resulting optical focal slice across
the screened object (cf. Fig. 5.2). Therefore, the imaging in the lateral
direction is done by a mechanical rotation. Additionally, the rotating
mirror reflects the radiation to different static mirrors. These mirrors
allow different viewing angles of the object to enhance the visibility
of the object in the imaging. In comparison to a full 3D reconstruction,
such a hybrid approach reduces the computational load significantly
by removing one dimension in the synthetic reconstruction. Further-

5.2 hybrid 3d scanning system 137

more, the hardware costs are reduced and the flexibility of the scan-
ner is increased, because no additional THz components are required
for the reconstruction in the mechanical dimension. A fusion of the
sequentially reconstructed 2D slices leads to the creation of the final
3D scene representation (see Sec. 5.2.5.2). An additional

optical camera
enables multimodal
imaging

In addition to the THz acquisition of the scene, an optical camera
creates a visual 2D representation of the scene as well. The goal of
this multimodal acquisition is an overlay of the THz data by the vi-
sual representation (see Sec. 5.2.5.3) to protect the privacy of scanned
persons if the system is used as a body scanner. To match the cre-
ated representations, the calibration for obtaining the fused 3D repre-
sentation is extended by a method for transforming reference points
between both modalities (see Sec. 5.2.3).

5.2.2 Configuration

Description of
workflowHeterogeneous measurement data need to be processed to allow a

full 3D image generation for this hybrid scanning system. Each posi-
tion or orientation of the mechanically rotating mirror gives one dis-
crete dataset, which needs to be reconstructed independently. This
reconstruction is based on backprojection, a standard technique in
synthetic aperture imaging. Afterwards, the reconstructed datasets
are fused to one consistent 3D representation of the scanned object
by using geometrical information of the system. A raycaster visual-
izes the resulting volume grid.

general type of setup (angular or parallel slices)

#views, #slices, #transmitters and #receivers

angle offset between consecutive slices (angular)

positions of the transmitters and receivers

frequency range and number of samples

each view position of the center of projection

direction of the first slice

distance offset between center of projection and

unfolded position of tr-array

bounding box position of center of bounding box

width, height and depth of the bounding box

resolution of the bounding box

Table 5.1: Parameters for the system configuration are shown. They can be
categorized into general and view-dependent parameters. Fur-
thermore, the bounding box of the screened volume is parameter-
ized. Source: [PKK∗13]

138 description of thz imaging systems

slice

view

tr-array rotating reflector

bounding box
(target volume)

center of projection

Figure 5.2: The concept for the spatial definition of an exemplary THz setup
is shown. The position of the rotating reflector is unfolded at
the static reflectors. It defines a view with a center of projec-
tion for each static reflector. An infinitesimal slice approximates
the beam of the antennas. The position of the tr-array is virtu-
ally placed by the opposite direction of each slice starting at the
center of projection and a fixed distance between tr-array and
rotating reflector. The slices inside the bounding box hold the in-
formation of the reconstructed shape of the target. Image source:
[PKK∗13]

To describe the system properties unambiguously, a single config-Configuration for
2D reconstruction

and 3D fusion
uration file is used for all steps of the processing workflow. Tab. 5.1
shows the parameters of this configuration file. The general parame-
ters are mainly used for reconstructing the individual synthetic aper-
ture images with spatial intensities in two dimensions. The descrip-
tion of the geometrical system properties is an essential part for a
geometrically correct positioning and the fusion of the reconstructed
data. Therefore, a concept for efficiently describing the spatial system
properties is introduced. Fig. 5.2 illustrates the used terminology of
the concept, which is described in the following.Definition of

tr-array, slice and
bounding box

A scanner contains transmitters and receivers to create signal data.
These antenna elements are positioned on a linear array (tr-array).
The path of the THz radiation which is emitted and received at the
tr-array is approximated as a discrete plane (slice) by the assumption
of a perfectly focused beam in the dimension of the mechanical scan-
ning. The radiation is sent to a volume (bounding box) containing
the observable object and reflected back along the slice direction to
the receivers of the tr-array. The bounding box holds the final volume
representation of the fused 3D representation and defines the size of
the slices, because reconstructed values are only considered if they
are inside the bounding box.Concept of

unfolding and views Mechanical scanning as a column by column, or line by line image
generation, leads to the interpretation that slices which hit the same
static reflector along the whole radiation path define a view of the
target. If the mechanical scanning is based on a rotating element, it is

5.2 hybrid 3d scanning system 139

possible to unfold the slices at each reflector and determine a center
of projection, which allows to calculate virtual positions of the tr-
array for every slice. For a mechanical scanning that creates parallel
slices, only a linear offset between the virtual positions of the tr-array
is needed. Used parameters

allow an efficient
calculation

These virtual positions of the tr-array are calculated because the
global position of every slice needs to be determined in a common
coordinate system to achieve the spatial matching to the 3D object
and an accurate fusion of the different viewing directions. A slice
is represented by a direction, the bounding box position and the un-
folded position of the tr-array. While the direction and the unfolded
position of the tr-array vary for each slice, the bounding box is the
same for all slices. Depending on the mechanical movement of the
THz components, the direction and the unfolded tr-array position
change differently. In setups with a movement that creates parallel
slices, the direction remains the same, but the unfolded tr-array posi-
tion is translated. With a mechanical rotation of a reflector, a center
of projection remains static while the direction and the unfolded tr-
array position change for every slice. To describe all slices of a view
for spatial positioning in the case of a rotating reflector, it is sufficient
to store a center of projection with a linear offset to the tr-array, a
direction for the first slice and an angular offset between slices.

5.2.3 Geometrical Calibration

5.2.3.1 Overview
Configuration is
obtained from
calibration

While the geometrical configuration is a conceptual description of the
scanner, the geometrical calibration determines the correct parame-
ters for this description. Since the bounding box is a virtual concept
and no part of the scanner, the properties for the geometrical config-
uration can not be obtained from the scanner specification. Geometrical

calibration depends
on signal calibration

In the startup procedure of the scanner, a manual calibration of the
signal processing is executed. After this step, it is possible to recon-
struct the correct depth values between tr-array and reflecting object.
The object needs to be in a defined bounding box to avoid ambiguities
(cf. [KLD∗10]) which originate from the reconstruction method (see
Sec. 5.2.4). This calibration procedure of the signal processing serves
as a basic precondition of the proposed geometrical calibration which
is described in the following. If this calibration is not done correctly,
the succeeding geometrical calibration can get erroneous. Steps of the

geometrical
calibration

Under the assumption of correct depth values, reference points in-
side the bounding box can be determined. They need to be described
in scanner coordinates and reconstructed by the scanner to obtain the
correct configuration parameters. To allow this transformation, a mea-
surement of reference points by a laser distance meter (see Sec. 5.2.3.2)
is performed. It allows to transform points inside the bounding box

140 description of thz imaging systems

(0, 0)

+

R1R2

T2

T1

P3

P2

P1

dT1R2

dT1R1

dT1P1

dT1P3

dT1P2

dP2P3

dP1P2

Figure 5.3: The setup for the measurement and the corresponding param-
eters are shown. For clarity, the parameters for T2 and dP1P3
(= dP1P2 + dP2P3) are omitted.

to scanner coordinates. After a scanning of the same scene, configu-
ration parameters are derived from the information of the reconstruc-
tion (see Sec. 5.2.3.3). In an additional step, the obtained coordinates
need to be transformed to the coordinate system of the optical camera
for a multimodal fusion of optical and THz data (see Sec. 5.2.3.4).

5.2.3.2 Measurements with a Laser Distance Meter
Scanner coordinates

are calculated by
optimization

To obtain points in the bounding box which are transformed to scan-
ner coordinates, three points in the bounding box Pi with i = 1, 2, 3,
two reference points Rk with k = 1, 2 at the scanner and two posi-
tions of a laser distance meter Tj with j = 1, 2 are used to formulate
an optimization problem. The distances d between the positions of
the laser distance meter and the other points lead to Eq. 5.1, Eq. 5.2
and Eq. 5.3. Solving this system of equations by optimization leads
to the scanner coordinates of Pi. Fig. 5.3 gives an overview of the
measurement setup.

||Tj||
2 − 2(Tj · Pi) + ||Pi||

2 − d2
TjPi

= 0 (5.1)

||Tj||
2 − 2(Tj · Rk) + ||Rk||

2 − d2
TjRk

= 0 (5.2)

||Ph − Pi||− dPhPi = 0 with h 6= i (5.3)

The points in the bounding box are represented by 3 vertically ori-Requirements for
reference pillars ented pillars. Fig. 5.4 shows a photo of these pillars. Since they are

needed for the determination of further scanner settings as well, the
following additional requirements need to be fulfilled. For a unique
and less error-prone identification in the reconstruction, they need
to be placed on a straight line with varying distances between each

5.2 hybrid 3d scanning system 141

P1P2P3

dP2P3 dP1P2

Figure 5.4: A photo of the scanned pillar scene is shown. The metallic pillars
are on a straight line and have varying distances between each
other. The pillar parameters can be seen again (cf. Fig. 5.3).

other. Furthermore, they need to be placed inside the desired bound-
ing box so that all views can detect all pillars. To guarantee a reliable
reconstruction, the pillars should consist of a material which is highly
reflective in the THz range. In the realized calibrations, metallic pil-
lars are used. Another important factor is the orientation of the pillars
to the scanner. For a more precise matching between measurements
of laser distance meter and reconstructed values, the pillars need to
be parallel to tr-array, rotational mirror and viewing mirror, because
the distance between reflected object and tr-array must be unambigu-
ous.

5.2.3.3 Determination of Configuration Parameters
Required
configuration
parameters

View parameters (v) and the position of the bounding box need to
the obtained from the geometrical calibration. All other configuration
parameters of Tab. 5.1 are independent of the scanner positioning and
can not be calculated in this step. Therefore, the following properties
are determined:

• position of the center of the bounding box Pbbox

• unfolded center of projection Uv

• direction of first slice ~fv

• distance offset ∆dv,off between Uv and unfolded position of
tr-array Av

Obtained parameters
from pillar
reconstruction

The value of Pbbox is set to P2, because it is the middle pillar of
the already calculated reference points and other points would need
an additional transformation to scanner coordinates. The other pa-
rameters require the reconstruction of the same pillar scene which is
used for the measurement by the laser distance meter already (see
Fig. 5.4 and Fig. 5.3). After the pillar scene has been acquired and
reconstructed for all views, the individual slices sv,m are analyzed to

142 description of thz imaging systems

sv,Pi = 3.3

sv,1

sv,4

sv,3

sv,2

sv,5

sv,6

ω
ω

ω
ω

Figure 5.5: An example for discrete slices with varying intensities from the
pillar is shown (size of orange dots). The theoretical slice which
has the maximum intensity is determined by a curve-fitting from
the slices sv,m. It allows to calculate angular offsets ϕVn,Ph→Pi
between the pillars.

receive distances dv,Pi and angles ϕv,Ph→Pi (see Fig. 5.6). While dv,Pi
represents the distances on the slices between start of the slice and
pillar positions, ϕv,Ph→Pi represents the angles between the pillar po-
sitions.Curve-fitting gives

theoretical angle of
pillar centers

The reconstructed intensities of one pillar are found in several slices
and vary depending on the reflection direction of the pillar. To find
the highest intensity which represents the center with the perpendic-
ular reflection direction of the pillar, the intensities of the discrete
slices (sv,m with m ∈N+, 1 6 m 6M) are estimated by curve-fitting
to get the theoretical slice sv,Pi ∈ R<M>1 with the highest reflection.
(see Fig. 5.5).Determination of

angles between
pillars

With the constant angle offset ω between consecutive slices, which
is obtained from the motor movement of the rotating mirror, it is
possible to calculate ϕVn,Ph→Pi as |sv,Ph − sv,Pi | ·ω. Additionally, the
nearest slice to the maximum intensity gives dv,Pi . Further interpola-
tions are not necessary for the distance in the practical test, because
the resolution of the reconstruction grid is lower than the curvature
of the pillars, so that dv,Pi is constant in the slices. If the resolution
would increase, an additional curve-fitting should be applied.Calculation of Uv

Like the determination of P1, P2 and P3, Uv is calculated by a for-
mulation of an optimization problem. A distance requirement (see
Eq. 5.4) and an angle requirement (see Eq. 5.5) are defined. Fig. 5.6
gives an overview of the parameters. ∆dv is an unknown distance
value which describes the distance between Uv and the start of a
slice. This value is constant for all slices of one view. It is obtained
from the optimization as well.

||Uv||
2 − 2(Uv · Pi) + ||Pi||

2 − (∆dv + dv,Pi)
2 = 0 (5.4)

^(~UvPh, ~UvPi) −ϕv,Ph→Pi = 0 (5.5)

5.2 hybrid 3d scanning system 143

∆dv

dv,Pi

ϕv,Ph→Pi

dv,Ph

Uv

∆dv,off

Figure 5.6: The used parameters for determining the unfolded center of pro-
jection Uv are depicted. The optimization problem is formulated
by Eq. 5.4 and Eq. 5.5. dv,Pi is the distance offset in the slice
between start depth and pillar depth in the slice. ϕv,Ph→Pi rep-
resent the angle between two pillars Ph and Pi. The distance
between Uv and the virtual position of the tr-array is given by
∆dv,off. ∆dv is the distance between Uv and the start of the
slices. It is unknown and needs to be determined by the opti-
mization as well.

The direction of the first slice ~fv is calculated by rotating ~UvPi with Calculation of ~fv
and ∆dv,off−((sv,Pi − 1) ·ω). ∆dv,off should be constant, because the path be-

tween tr-array and rotating mirror is the same for all views, but prac-
tical tests showed that the signal calibration for the correct depth dv
between tr-array and center of the reconstruction slice does not co-
incide with the measurement of the laser distance meter followed by
the optimization. To compensate this error and obtain the right depth
values for a correct fusion of the data, Eq. 5.6 is applied.

∆dv,off = dv −∆dv − dv,Pbbox (5.6)

5.2.3.4 Determination of Optical Coordinate Transformations
Multimodal fusion
requires optical
camera coordinates

After the determination of the calibration parameters, every recon-
structed point inside the bounding box can be addressed in a global
THz coordinate system, i.e. the spatial transformation between tr-
array and bounding box is given. For a correct projection of a visual
2D representation onto the THz data in the visualization, an addi-
tional transformation between bounding box and optical camera is
required. One calibration

object for optical and
THz range

To calculate this transformation, a calibration object is created. It
needs to be detectable in visual and THz range to allow the detec-
tion of point correspondences between both modalities. Therefore,
a white metallic board has been created which has holes to form a
checker board pattern (see Fig. 5.7 (a)). While a high contrast for THz
imaging is achieved by strongly reflecting metal and air which is not
reflecting, common computer vision frameworks are optimized for a

144 description of thz imaging systems

(b)(a)

O-30 dB

0 dB

~OC

C

O

C

Figure 5.7: A white metallic checker board is used for calibrating the opti-
cal camera. A screenshot of the OpenCV calibration is shown
(a). The THz representation of the board allows to find point
correspondences C between optical and THz coordinate systems.
A translation from the origin O is used to transform the THz
coordinates to camera coordinates (b).

calibration by black and white checker board patterns in the visual
range.Transformation

between coordinate
systems required

The transformation between THz coordinates and optical camera
coordinates corresponds to the first two transformations in the ren-
dering pipeline between local and camera coordinates (see Sec. 2.1.2.1
and Fig. 2.4). First, the local coordinates of the checker board need to
be transformed to global coordinates of the THz scanner. Second, the
global coordinates need to be described by coordinates of the optical
camera.OpenCV is used

Both transformations are calculated by using the computer vision
framework OpenCV1 which contains standard algorithms for optical
calibration. It is used to calculate the extrinsic and intrinsic parame-
ters of the optical camera, which are represented by matrices. While
the extrinsic parameters Camext give the coordinate transformation
between a reference point C (see Fig. 5.7 (a)) on the checker board
and the origin of the camera, the intrinsic parameters Camint pro-
vide a transformation which relates to the camera properties like focal
length or sensor format.Manual translation

between checker
board and bounding

box

Since OpenCV defines C for calibration, this point is used for the
transformation between local and global coordinates as well. Here,
the vector ~OC transforms the local origin of the checker board to
global scanner coordinates by a translation of the center of the bound-
ing box Pbbox which is used as origin O in the visualization. ~OC is

1 http://www.opencv.org

5.2 hybrid 3d scanning system 145

obtained by a visual matching, because C needs to be identified man-
ually in the THz representation of the checker board (see Fig. 5.7
(b)). In summary, a point p in scanner coordinates is transformed by
Eq. 5.7 to point p ′ in coordinates of the optical camera. p ′ is processed
further in the visualization for a correct overlay (see Sec. 5.2.5.3).

p ′ = Camint ·Camext · (~p+ ~OC) (5.7)

5.2.4 Reconstruction on GPU

5.2.4.1 Overview
A filtered
backprojection is
used for the 2D
synthetic imaging

Methods of synthetic aperture radar and interferometry are used for
imaging of the scanning system. [KLD∗10] provides a survey on dif-
ferent methods for terahertz imaging. In the implemented frame-
work, the 2D synthetic imaging dimension is obtained by a filtered
backprojection. This backprojection can be improved or replaced eas-
ily by other reconstruction techniques which use phase information
as well. Reconstruction

properties of the
system

In comparison to current reconstruction methods for THz imaging
with sparse arrays (see [ASS11, ZB11]), no synthetic reconstruction is
used in the lateral direction. Instead, a mechanically rotating mirror
reflects the THz radiation and scans the scene in discrete steps, so
that a geometrical configuration (cf. Fig. 5.2 and Sec. 5.2.2) and data
fusion techniques (cf. Sec. 5.2.5.2) are applied to obtain the final 3D
shape from the individually reconstructed 2D slices. The reconstruc-
tion has the highest computational effort in the processing workflow
because one reconstructed intensity value requires the information of
all frequency samples from all transmitter-receiver-combinations. An
approach for processing on GPU is proposed to reduce the computa-
tion time and to allow a near real-time reconstruction.

5.2.4.2 Theory
Theoretical signals
are correlated with
measured signals to
obtain an intensity

The measured frequency samples of each combination of a transmit-
ter and a receiver are needed as input for each 2D slice. The data of
each slice are independent from the data of the other slices and can be
processed individually. A regular grid represents each 2D slice. Since
the contributions for each point on that grid are independent from
each other, they are processed individually as well. First, a theoretical
phase for each frequency sample fk,tr is calculated from distances d
between every point p(x,y) on the slice and each transmitter-receiver-
combination tr. Second, phases ϕk,tr and amplitudes Ak,tr are given

146 description of thz imaging systems

by the measurement to correlate the given values in the signal model.
Eq. 5.8 shows the corresponding formula.

C(x,y) =
t·r∑
tr=1

K∑
k=1

Ak,tr · e−iϕk,tr · ei2πfk,tr
dtr→p(x,y)

c (5.8)

The correlation C is the probability that an object is found. Therefore,Correlation has a
high computational

effort
it can be interpreted as an intensity. A real-time processing is not
possible with a straightforward implementation of this calculation,
e.g. 32 · 1010 correlations are needed to reconstruct four views with
100 slices at a resolution of 200x100 points, if the system has 400

transmitter-receiver-combinations and acquires 100 frequency sam-
ples. For this example, the implementation requires approximately
130 minutes with a MATLAB implementation on CPU (Intel Core
i7 2.8 GHz) and 30 minutes with a CUDA implementation on GPU
(Nvidia GTX 480).Reformulation by a

Fourier
representation

If the inner sum of Eq. 5.8 is expressed by an inverse Fourier trans-
formation, it can be used to accelerate the backprojection reconstruc-
tion method of [Sou99]. Here, the computational costs are reduced by
transforming the frequency samples into this Fourier representation
to reuse these values for each point on the grid. A Hamming window
is used to filter the frequency samples of one transmitter-receiver-
pair. Afterwards, the inverse Fourier transformation followed by a
frequency compensation and a baseband conversion are used to ob-
tain a simpler reconstruction formula which is shown in Eq. 5.9.

C(x,y) =
t·r∑
tr=1

Aw,tr · e−iϕw,tr · ei2πfcent,tr
dtr→p(x,y)

c (5.9)

The intensity for each transmitter-receiver-combination is calculatedPerformance gain by
GPU

implementation of
reformulation

by a single multiplication of the theoretical phase of the center fre-
quency fcent,tr and the frequency sample fw,tr. fw,tr is determined
by interpolating the transformed frequency samples. While a straight-
forward GPU implementation needs only 2 seconds, a MATLAB
implementation still needs about 6 minutes for the given example.
The proposed GPU acceleration of Sec. 5.2.4.3, which improves the
straightforward GPU implementation, leads to a processing time of
0.9 seconds for the same example.

5.2.4.3 GPU Acceleration
Precalculation of

distances The first GPU implementation calculates the distances between a
transmitter, the reconstructed point of the slice and a receiver for
each slice and each frame. First benchmarks revealed that this dis-
tance calculation is the main bottleneck because many square root
operations are needed, e.g. an exemplary slice with 20 transmitters,
24 receivers and a resolution grid of 100 x 200 points requires 880000

square root operations. These operations can be reduced by reusing

5.2 hybrid 3d scanning system 147

(b)(a)

Figure 5.8: The geometrical positioning between view and bounding box in-
fluences the efficiency of precalculated distances. If the center of
projection is far and aligned to the face of the bounding box, al-
most all points (green) can be used for reconstruction (a). Many
points (orange) are not usable for reconstruction, if the center of
projection is near and aligned to the edge of the bounding box
(b). Image source: [PKK∗13]

the calculated distances between consecutive slices of one view. The
efficiency of that calculation is increased if lesser views and more
slices per view are used. If the setup behavior does not change over
time, a calculation of distances would only be required once for each
view. Geometrical

unfolding allows to
reuse the distances

The unfolding of the setup in the configuration step (see Sec. 5.2.2
and Sec. 5.2.3.3) allows a more efficient calculation of distances be-
cause the slice directions are interpreted as a rotation around a center
of projection (cf. Fig. 5.2). Therefore, the same distances on each slice
can be used for reconstructing points that lie in the bounding box.
With the assumption that reconstructed points on consecutive slices
keep similar distances to the bounding box, setups with parallel slices
can benefit from precalculated distances as well. Efficiency of

precalculated
distances

The position of the center of projection in relation to the position
and rotation of the bounding box influences the spatial efficiency of
precalculated distances. More points on the slices have to be calcu-
lated to cover the bounding box if the center of projection has a short
distance to the bounding box and points to an edge of the bounding
box. In comparison, almost all calculated points are usable if the cen-
ter of projection is directing to a face of the bounding box and has
a large distance to the bounding box. Examples for both cases with
invalid and valid reconstruction points are shown in Fig. 5.8. Distances are stored

in GPU texturesA 3D texture with a resolution of the slice and individual layers
for each transmitter and each receiver is used to store the precalcu-
lated distances. The distance values are accessed by cached texture-
lookups. Since textures allow a faster read-/write-access in compari-

148 description of thz imaging systems

son to global memory access usually, they are used to store and load
other intermediate results as well.

5.2.5 3D Image Generation

5.2.5.1 Related Work
Current THz

visualizations base
on raytracing of

triangles

The reconstructed data is used to create a visual representation of
the observed scene. Usually, commercial software is utilized for
the rendering. However, solutions based on these commercial tool-
boxes show little performance ([GGLH06b, CV07, FDK07, YGZ09]).
For generating the image, most solutions use raytracing techniques
([FDK07, MRBL02]). Therefore, the scene is represented by triangle
meshes which are textured by images that hold additional material
parameters like refraction indices etc. ([YGZ09, MRBL02]). If the
traced rays found intersections with the scene geometry, the corre-
sponding texture coordinates are used to obtain the correct material
parameters by texture lookups. Those material values serve as basis
for the image generation. The proposed visualization uses a raycast-
ing to render a volume grid with interpolated reconstruction values
of the discrete 2D slices.[PG10] processes 2D

slices for 3D
visualization as well

[PG10] uses a similar approach regarding the acquisition and pro-
cessing of the data on GPU. Here, discrete 2D slices of a mechanical
movement are reconstructed and used as input for further processing
in the visualization step as well. Furthermore, the slices are repre-
sented by textures too.Multimodal Fusion

In addition to the volumetric THz representation, a visual 2D scene
representation is obtained by an optical camera which is used as a
second modality. While it is a common technique to fuse modalities
in the context of depth cameras ([KTD∗09, IKH∗11, HKH∗12]), the
fusion of THz and visual representations is limited to 2D overlays of
stylized scene representations or camera images (cf. [Tug13]). The
proposed method creates a fused 3D representation by projecting the
2D camera image onto the volume grid.

5.2.5.2 Fusion of Multiple Views and Visualization
Overview

The proposed CUDA implementation fuses multiple views to one
consistent 3D object, because several acquisition directions, i.e. views,
allow to detect more surface details in comparison to an acquisition
from only one direction. The implementation allows to interact with
the reconstructed object in 3D. Specific visual properties like the ref-
erence value for db-scaling or the isothreshold of the isosurface ren-
dering can be adjusted.2D slices are fused

Two different approaches, which are discussed in the following,
can be used to fuse multiple views. In this context, fusion refers to
a combination of sets of reconstructed 2D slices. This fusion allows

5.2 hybrid 3d scanning system 149

(b)(a) (c)
-30 dB

0 dB

Figure 5.9: Alternative renderings for the single slices are shown. Stacked
slices of one view can only be used for one acquisition direc-
tion (a). Correctly positioned slices of all views are placed in a
3D bounding box from two different viewing directions (b, c).
In comparison to a viewing direction which differs from the ac-
quisition direction (b), the visualization quality decreases if the
direction of the rendering camera coincides with the acquisition
direction of the scanner (c). Image source: [PKK∗13]

the creation of a consistent 3D representation of the acquired object.
A simple stacking of the slices (see Fig. 5.9 (a)) is not appropriate
for a fusion of different acquisition views because the geometrically
correct positioning of the slices is neglected. Simple rendering of

slices as planesThe first approach uses the 3D coordinates of all reconstructed
slices to place them in the same bounding box. All slices of all views
are positioned correctly so that the fused shape of a 3D object can be
recognized. Examples for the correctly positioned slices can be seen
in Fig. 5.9 (b, c). Every slice is represented by a rectangle, which is
generated on the GPU. The rectangles are textured by images which
contain the reconstructed intensity values of the respective slice. The
more the viewing direction of the render camera coincides with the
acquisition directions the less surfaces can be seen, i.e. a direct visu-
alization of the slices leads to a view-dependent image quality. Second approach

adds slice intensities
to a volume grid

Instead of creating geometrical representations of the slices, the
second approach transforms the reconstructed intensity values of the
slices into a common, view-independent Cartesian volume grid. This
grid is defined by the bounding box and a resolution. The final inten-
sity at each voxel of the grid is obtained by adding the separate in-
tensities of all contributing views for that voxel. The intensity contri-
bution of one view is interpolated from the neighboring slices of the
respective voxel. By projecting the voxel center onto the surrounding

150 description of thz imaging systems

(b)

top view

he
ig

ht

side view

depth

2D-slice

(a)

depth

Is+1

Is

βs+1

βs

βc
c

Figure 5.10: The used methods for interpolating the intensity values are de-
picted. For depth and height of the voxel center in the 2D slice,
discrete values are bilinearly interpolated from texture lookups
(a). A theoretical angle that intersects the voxel center is used to
interpolate between these bilinearly interpolated intensity val-
ues of neighboring slices (b). Image source: [PKK∗13]

slices, bilinear interpolation within the slices and angular interpola-
tion between the slices are used for compositing the intensity result.Texture lookup

provides linear
interpolation in the

slice

The distance from the voxel center to the center of projection and
the height of the voxel center determine the bilinear interpolation in
the slice. These two values are used to create [u,v]-coordinates which
allow to perform an interpolated texture lookup (see Fig. 5.10 (a)).
The result is the reconstructed slice intensity Is.Angular

interpolation
between slices for

lateral direction

The slice intensities Is and Is+1, which surround a voxel center c,
are interpolated by an angular factor α. To calculate α by Eq. 5.10,
a theoretical orientation angle βc for a slice that intersects the voxel
center is determined while each discrete slice is described by an ori-
entation angle βs. α serves as an interpolation factor between the
neighboring slices to determine the intensity Ic at the voxel center
(see Fig. 5.10 (b) and Eq. 5.11).

α =
βc −βs
βs+1 −βs

(5.10)

Ic = (1−α) · Is +α · Is+1 (5.11)
Interpolation in case

of parallel slices This interpolation with an angular factor can not be used for se-
tups with parallel slices. Here, the interpolation factor α needs to be
calculated by shortest distances ds and ds+1 between the theoretical

5.2 hybrid 3d scanning system 151

(b) (c)(a) (d)
-30 dB

0 dB

Figure 5.11: The implemented raycaster shows maximum intensity projec-
tion (b, d) and locally illuminated isosurfaces (a, c). Datasets
from the simulation of [Kli12] with physically based attenua-
tion factors (a, b) and without scattering (c, d) are rendered.
The reference values of c and d are adjusted for visualization
because ideal reflections result in much higher values. Image
source: [PKK∗13]

slice, which intersects the voxel center, and the neighboring slices (see
Eq. 5.12).

α =
ds

ds+1 + ds
(5.12)

5.2.5.3 Volume Raycasting with Multimodal Overlay
Isosurfaces and
maximum
intensities are used

A raycaster based on methods of [EHK∗06] is implemented to visual-
ize the interpolated intensity values of the volume grid. Depending
on an isothreshold, it is possible to render isosurface with local illumi-
nation. Furthermore, a maximum intensity projection can be shown
as well. Fig. 5.11 shows examples for both types of visualization. Correct texture

coordinates for
overlay rendering
required

Additionally, it is possible to project a visual 2D scene representa-
tion onto the fused volume grid. This representation is obtained by an
optical camera and is provided as a texture in the volume raycaster.
Depending on the rendering technique, the maximum intensity or
an isothreshold determine the point p which needs to be colored by
the correct pixel value from the texture. To obtain this value, the
correct texture lookup needs to be calculated by transforming p to
texture coordinates. It requires a geometrical transformation from p

to p ′ between bounding box and optical camera which is described
in Sec. 5.2.3.4.

152 description of thz imaging systems

(b) (c)(a)

Figure 5.12: A test scene (a) is rendered with an overlay. Locally illuminated
isosurfaces (b) and a combined rendering with maximum inten-
sity projection of high intensities (c) are shown.

Afterwards, a transformation of p ′ to 2D texture coordinates [u, v]Perspective
projection and

coordinate
normalization

needs to be done. It consists of a projection and a normalization of
2D coordinates. To take into account the perspective projection of the
optical camera, Eq. 5.13 is applied to obtain [u ′, v ′] from p ′ which
serves as input. The obtained range of the values is defined by the
image widthw and image height h. Therefore, a normalization by the
texture size is needed to obtain [u, v]-coordinates in the usual range
[0, 1] (see Eq. 5.14). After a texture lookup with [u, v], the obtained
color is applied to the corresponding pixel in the final image.

[u ′, v ′] = [p ′x/p
′
z,p
′
y/p

′
z] (5.13)

[u, v] = [u ′/w, v ′/h] (5.14)

For the application of a body scanner, the rendering of the raw vol-Multimodal overlay
and rendering of
high intensities

ume grid is combined with the overlay rendering. While the raw
rendering shows suspicious regions, the overlay protects the privacy
of the screened person. This rendering behavior is implemented by a
user-defined threshold. If the intensity is higher than the threshold,
the THz data is rendered by maximum intensity projection. If the in-
tensity is below the threshold, the overlay rendering is used. Fig. 5.12

shows examples for a pure overlay rendering and a combined overlay
rendering.

5.3 pixelwise scanning system

5.3.1 System

Description of
scanning system In comparison to the hybrid scanner of Sec. 5.2, the complexity of

the pixelwise scanning system is strongly reduced. It consists of a
metallic frame with a THz transceiver and a THz receiver. These

5.3 pixelwise scanning system 153

x

scanning area
+ bounding box

transceiver plane y

transceiver

receiver plane

Figure 5.13: A photo of the pixelwise scanning system is shown. The metal-
lic frame is used for mounting tracks which are used for mov-
ing receiver and transceiver in opposite planes along x- and
y-direction. In between, the scanned objects are placed in the
scanning area. The left receiver and a stage were not mounted
while taking the photo.

two elements are mounted on opposite planes of the frame and can
be moved mechanically in this plane, so that each position of the
transceiver can be interpreted as a pixel of a 2D THz image of the
object inside the frame. Therefore, the imaging is done by a sequen-
tial positioning of the THz transceiver and THz receiver. It allows
to reconstruct the scattering behavior of the object in reflection and
transmission mode. A photo of the scanning system is shown in
Fig. 5.13. Most of discussed

methods of Sec. 5.2
are not applicable

The proposed methods of a geometrical calibration, an efficient
GPU reconstruction or a multimodal overlay of the hybrid scanner
are not necessary or can not be applied to the pixelwise scanner, be-
cause the imaging is done by only one transceiver and one receiver.
Since both elements are moved mechanically, a parallel processing of
measurements is not meaningful. Furthermore, an optical camera is
not used and a visual scene representation is not created. A geometri-
cal calibration is not needed as well, because the frame of the system
defines the bounding box already and all required spatial positions
are known.

154 description of thz imaging systems

If a rotation stage would be mounted in the center of the boundingRestrictions for
applying the fusion

of Sec. 5.2.5.2
box, several views of an object can be created and a fusion would be
necessary. Unfortunately, the performance of the system is limited by
this mechanical movement of the transceiver and a creation of several
views would be time-consuming. Additionally, the object is limited
in size and should be static during the measurement of one view.
Therefore, a fusion of views would be possible, but not meaningful
due to these restrictions of the data acquisition.Configuration for an

efficient simulation
is possible

Although the discussed methods of Sec. 5.2 are not applicable for
this scanner and processing of THz data is without GPU-acceleration,
CG methods can be used to configure the system for the efficient
simulation of the system. Sec. 5.3.2 discusses this configuration.

5.3.2 Configuration

Each measurement
requires the antenna

position
The simplicity of the geometrical properties of the setup and the re-
duced number of THz antennas exhibit the basic geometrical require-
ments for reconstructing 3D objects with THz imaging systems. Since
each pixel is created by an individual position of the transceiver, it be-
comes clear that the spatial information of transmitter and receiver is
required for each measurement in the general case.Efficient

configuration by
describing the

antenna movement

In a naive approach, every measurement is described explicitly
by the geometrical position of a transmitter and a receiver. For a
complex imaging with sophisticated scattering reconstruction, which
combines several positions or more antennas per reconstructed point,
this approach is very inefficient. Therefore, the degree of freedom for
each THz antenna and the scanned object needs to be analyzed for an
efficient geometrical formulation of the setup. While the most flexi-
ble approach would be a spatial path description of each antenna,
the movements of the antennas are usually constrained and easier
descriptions are obtainable.Linear movement of

the scanner can be
described efficiently

In case of the scanning system, the THz antennas are moving lin-
early in a plane. Furthermore, the movement is aligned to the di-
rections of Cartesian coordinate axes and offsets between pixels are
constant. Therefore, a start position of the antenna Sxy for creating a
pixel in the corner of the final image a constant offset oc are sufficient
to provide all antenna positions a(i, j) by Eq. 5.15. The pixel indices
i and j are used for addressing the x- and y-positions of the antenna,
respectively.

a(i, j) = (Sx + oc · i,Sy + oc · j) (5.15)

This efficiency can not be exploited in the processing of the acquiredGPU can be used to
simulate all pixels in

parallel
data, because the transceiver is moving sequentially to all pixel po-
sitions, but the parallelism of the GPU can drastically speed up a
simulation of the scanning system. Since the combination of all an-
tenna positions leads to a reconstruction of a 2D image and parallel

5.4 summary 155

pixel processing is one of the main tasks of GPGPU, the GPU can be
exploited to calculate all contributions at all antenna positions in the
same time by the simplified geometrical description.

5.4 summary

Differences between
prototypes lead to
individual solutions

Large differences in the setup complexity between the two prototypi-
cal scanner setups show that a generalized application of CG methods
to all possible scanner setups is difficult to obtain. While only a con-
figuration of the pixelwise system is used for an efficient parallelized
simulation on GPU, several proposed CG methods have been applied
to the hybrid scanning system. Efficient system

description is
proposed by the
configuration

Here, an efficient configuration is proposed to describe the complex
geometrical behavior in the imaging by introducing an unfolding of
geometrical THz radiation paths which led to an efficient interpre-
tation of views on the scanned objects. Additionally, general recon-
struction parameters and geometrical information of the bounding
box are maintained. Geometrical

calibration allows a
sophisticated
visualization

To use this configuration for further processing and to allow a mul-
timodal imaging, a geometrical calibration is done. First, a transfor-
mation between known reference points of the scanner and points of
a freely placeable bounding box is calculated. This transformation is
required for a fusion of the generated THz datasets. Second, an addi-
tional visual calibration allows an overlay of the THz reconstruction
with an visual representation of the scene. This overlay is enabled
by determining the transformation of bounding box coordinates to
coordinates of the optical camera. GPU accelerates

reconstruction and
fusion of 2D profiles

The GPU is applied to accelerate the reconstruction of discrete mea-
surements of the scanner, which is done by synthetic aperture imag-
ing techniques. The GPU allows a real-time reconstruction of 2D
profiles from the screened object. To obtain a 3D representation, an
additional step on GPU fuses those profiles to a consistent volume
representation of the scene. Volume raycaster

with multimodal
fusion is provided

To render the fused object, a volume raycaster is implemented. The
two common techniques of isosurface rendering and maximum in-
tensity projection are used. Additionally, the information from the
visual calibration and the image of the optical camera allow a mul-
timodal overlay. After obtaining the correct position in the volume
grid, it is possible to render the raw information of the THz data at
this position or the correct color value from the projected camera im-
age depending on a user-defined threshold. This rendering leads to
a performant and flexible visualization of the screened object and it
secures the privacy in the case of body scanners. Potential

improvements by
CG methods depend
on the scanner setup

The creation of a configuration is the only common method for
the two differing scanner setups, but it is obvious that the properties
are difficult to generalize if an efficient system description is needed.

156 description of thz imaging systems

While the hybrid scanner greatly benefits from the introduced CG
methods in the whole processing workflow, only a simulation of the
pixelwise scanning system benefits from applicable CG techniques. It
leads to the conclusion that CG methods are more meaningful and
more beneficial if the scanner has a high geometrical complexity or if
heavy computations are required for the imaging.

6
C O N C L U S I O N

6.1 summary

Improving methods
for THz imaging is
the goal

In the present thesis, CG methods are applied to the domain of THz
imaging. While the simulation of THz radiation is one aspect, the
processing of measured data from prototypical scanning systems is
another aspect. With the goal of improving efficiency and perfor-
mance of current techniques in these two fields, several CG methods
have been developed and have been used. Voxels are the

optimal choice for
THz scene
requirements

For the simulation of specific THz properties, an efficient voxel
data structure is proposed. In comparison to triangle meshes which
store surfaces only and volume models which store the complete in-
ner structure, a voxel tree is a good compromise. It stores thin mate-
rial layers with inner structures and keeps memory consumption low
by efficient empty space representations. Additionally, voxels can
have arbitrary material properties for simulating scattering behavior
of highly detailed object representations. Efficient

voxelization and
rendering of SVTs
has been proposed

Therefore, the idea of efficient sparse voxel octrees (SVO) of [LK10]
has been generalized to sparse voxel trees (SVT) in this thesis. The
SVT needs less memory for storing the hierarchical information of the
tree, because a parent node stores up to 125 child nodes. Although,
the rendering of SVOs is faster than the rendering of SVTs due to
the generalization aspect, a fast and efficient rendering of SVTs has
been developed. Since a triangle mesh needs to be used as input
for the creation of a highly detailed scene representation, a fast and
sophisticated voxelization method has been developed. It allows a
fast out-of-core SVT creation from massive triangle data on GPU. Two THz

simulations with a
varying feature set
are proposed

For the simulation of THz radiation, two approaches with a differ-
ing feature set have been proposed. The first simulation of [Kli12]
concentrates on single-bounce reflections at isosurfaces, which are
determined in a common volume rendering. Here, polarization with
Frenet frames and Jones vectors, an antenna distribution based on
the model of [TSI∗06] and a statistical roughness scattering are con-
sidered. The second simulation exploits the implicit properties of
the SVT which allows the calculation of penetration depths of materi-
als and the roughness scattering at explicitly modeled surface details.
An antenna distribution based on arbitrary blurring kernels and a
focusing lens system are implemented. Furthermore, it is shown
that a multi-bounce simulation might be feasible. Both simulation
approaches show an improvement in performance for the calculation
of specific THz effects. In addition, it can be concluded that the com-

157

158 conclusion

bination of both methods is very complex. Partially, the combination
of both simulations is not even meaningful because the performance
would drop again while additional effects would not significantly in-
fluence the imaging properties of the respective THz scanner.CG methods

improve the
processing of real

THz data

For processing measured THz data of a prototypical scanner, gen-
eral purpose approaches on GPU (GPGPU) have been developed. An
existing backprojection algorithm has been transformed to allow a
parallel and near real-time reconstruction of massive input data. Fur-
thermore, a geometrical configuration is proposed. It enables an effi-
cient creation of a 3D representation from discrete 2D datasets. Ad-
ditionally, a geometrical calibration has been used to combine the
outputs of visual and THz camera to a consistent 3D volume with an
overlay.THz processes are

improved by
exploitation of GPU

and SVTs

All approaches of this thesis show that the application of CG meth-
ods can support and improve current THz processes which are re-
lated to prototypical imaging. Mainly, the use and transformation of
methods on GPU lead to a performance gain or a more efficient task
handling. Furthermore, the SVT is a promising data structure, which
enables an efficient simulation even if the physical effects become
more complex for the THz range.

6.2 future work

Further ideas are
provided Although the proposed approaches and methods show an improve-

ment of current THz workflows already, the basic CG concepts of
this thesis are still very promising for future work. The following
subsections contain a discussion on rough ideas that may improve
THz simulation in the future.

6.2.1 Adaptive and Palette-Based SVTs

Palette-based SVTs
need less memory Highly detailed SVTs have a high memory consumption due to high

voxel counts with individual properties. The use of a dynamic stor-
age of material attributes would reduce the required memory drasti-
cally. While the presented SVT implementation reduces the needed
memory by compressing the attributes already, a palette-based ap-
proach like [DKB∗16], would improve the memory footprint even fur-
ther. Here, only the indices to a predefined color library are stored as
material attributes, so that less bits are required for representing the
color per voxel.Adaptivity of SVT

can be exploited by a
reduced palette

If a palette is used to store materials, the adaptivity of the SVT
becomes important for further memory reductions, because the prob-
ability of equal materials in all child nodes of one parent node in-
creases. Therefore, an additional step for processing the created SVT
needs to be introduced. In a bottom-up approach, all child nodes
need to be compared. If all voxels of a parent node have the same

6.2 future work 159

attributes, the child attributes can be removed and the parent just
stores the material and the information that no additional attributes
are given in finer hierarchy levels. Spectral information

could be storedIn the context of a THz simulation or spectral material representa-
tions in general, the index to a color can be replaced by an index to a
detailed spectral footprint. In the context of linear spectral unmixing,
it might even be meaningful to store scalar values, which are linked
implicitly to available base spectra by the position in an indexed array.
Here, the scalar values are multiplied by the respective spectra to get
the influence of all available base spectra to a voxel. Proposed ideas need

a post-processing of
the SVT

All these changes require a sophisticated attribute handling for the
voxels to benefit from the reduced memory consumption. Since the
indexing to a varying number of materials or colors influences the
memory allocation for the attributes, the proposed out-of-core vox-
elization needs to be extended by a post-processing step if the out-of-
core property should be kept. In the voxelization the necessary mate-
rials are determined and stored. With this information, the structure
of material nodes can be adjusted and memory consumption can be
reduced.

6.2.2 Ray Queue for Multi-Bounce Simulations

Ray segments
should be queued for
a multi-bounce
simulation

The modified rendering of SVTs is applied to a THz simulation (see
Sec. 4.5.2.2). Due to the radiation properties, a ray bending is im-
plemented for a more realistic focusing behavior. Here, the focusing
beam is approximated by linear ray segments, which are processed se-
quentially. This technique should be used for a correct multi-bounce
simulation as well, because rays change the direction and may split
to two or more rays, if they encounter a new material layer. Since
only one ray can be used during the traversal, the other ray segments
need to be stored in a ray queue to process all segments before new
segments are added to the queue. Maintaining

individual ray
contributions is not
trivial

If such a queue is used for a multi-bounce simulation and the rays
are altered after an intersection, the validity of arbitrary incidence an-
gles is given (cf. Fig. 4.15). Since the rays depend on each other, the
intersections and individual ray contributions need to be maintained
during the traversal. While this behavior leads to a complex han-
dling of intermediate results already, it will get even more complex
if additional physical effects like polarization need to be simulated.
Therefore, a handling of these intermediate ray contributions is left
for future work.

6.2.3 SVTs without Triangles and Rays

Incomplete
simulation due to
rays and triangles

The most challenging and most complex task for future work
is an even more correct simulation of THz radiation with high-

160 conclusion

performance. Since the SVT creation is still based on triangle meshes
and SVT rendering is based on rays, physical effects like diffraction
or roughness scattering are still simulated incompletely.Creation of inner

structures by
triangles can lead to

errors

The problem of creating SVTs from triangles lies in the represen-
tation of inner structures. Since triangles represent outer hulls only,
the information of inner structures needs to be created artificially by
additional triangle layers as it is described in Sec. 4.5.2.1. Here, the
normal and material attributes of a voxel rely on the number of inter-
sected triangle attributes, so that mixed materials or wrong normals
may influence the correctness. Some ideas for solving this problem
are:

• a flood filling if closed surfaces are still represented by triangles

• an interactive creation of voxels without triangles

• reconstruction from sensor data which are stored in a point
cloud or a grid representation already

Direct voxel creation
with a guided flood
filling is promising

The interactive creation of voxel representations at a high resolution
may become a tedious task and the reconstruction from sensor data
may lead to further problems with consistent surfaces. Therefore, a
mix of an interactive voxel creation and a flood filling approach for
creating inner structures seems to be the most promising approach.
While material surfaces can be defined by the user, a guided flood
filling can set the correct voxel properties inside the material.Rendering may be

replaced by a
voxelization of wave

geometries

Since physical wave effects are not covered by a ray-based render-
ing which is based on approximations of geometrical optics, the SVT
rendering should be improved to achieve a more realistic simulation
in the THz domain. An idea for a more correct approach is an in-
teractive voxelization of geometries which explicitly model a wave,
so that radiation and scene are in the same voxel representation. If
the wave is propagated, the voxelization is executed iteratively until
intersections with the scene geometry are encountered. Starting from
these intersection points, additional wave geometries are generated
and parts of the original wave geometry do not need to be tracked
further. Many open problems arise from this idea, but interesting
research approaches may be the result if these are solved.

B I B L I O G R A P H Y

[Ala04] Alabaster C. M.: The microwave properties of tissue and
other lossy dielectrics. PhD thesis, Cranfield university,
2004. (Cited on page 111.)

[AMHH08] Akenine-Möller T., Haines E., Hoffman N.: Real-
time Rendering. Taylor & Francis Ltd., 2008. (Cited on
page 13.)

[Arm12] Armstrong C. M.: The truth about terahertz - no other
region of the electromagnetic spectrum has generated so
much interest in recent years, but breathless hype still
can’t overcome the fundamental limits of physics. IEEE
Spectrum 49, 9 (2012), 28. (Cited on page 22.)

[ÁSK14] Áfra A. T., Szirmay-Kalos L.: Stackless multi-bvh
traversal for cpu, mic and gpu ray tracing. Computer
Graphics Forum 33, 1 (2014), 129–140. (Cited on page 84.)

[ASS11] Ahmed S. S., Schiessl A., Schmidt L.-P.: A novel
fully electronic active real-time imager based on a pla-
nar multistatic sparse array. IEEE Transactions on Mi-
crowave Theory Techniques 59, 12 (2011), 3567–3576. (Cited
on page 145.)

[AW87] Amanatides J., Woo A.: A fast voxel traversal algorithm
for ray tracing. In Proceedings of Eurographics (August
1987), EG ’87, pp. 3–10. (Cited on pages vii, 66, 70, 74,
and 75.)

[AZ07] Abbott D., Zhang X.-C.: Special issue on t-ray imaging,
sensing, and retection. Proceedings of the IEEE 95, 8 (2007),
1509–1513. (Cited on page 19.)

[BD02] Benson D., Davis J.: Octree textures. ACM Transactions
on Graphics 21, 3 (2002), 785–790. (Cited on page 30.)

[BHP15] Beyer J., Hadwiger M., Pfister H.: State-of-the-art in
gpu-based large-scale volume visualization. Computer
Graphics Forum 34, 8 (2015), 13–37. (Cited on page 66.)

[BLD13] Baert J., Lagae A., Dutré P.: Out-of-core construction
of sparse voxel octrees. In Proceedings of the 5th Confer-
ence on High-Performance Graphics (July 2013), HPG ’13,
pp. 27–32. (Cited on pages 41, 42, and 52.)

161

162 bibliography

[BLD14] Baert J., Lagae A., Dutré P.: Out-of-core construction
of sparse voxel octrees. Computer Graphics Forum 33, 6

(2014), 220–227. (Cited on pages 41, 42, 49, 53, 54, 55, 57,
58, and 59.)

[BPK07] Bergström D., Powell J., Kaplan A. F. H.: A ray-
tracing analysis of the absorption of light by smooth and
rough metal surfaces. Journal of Applied Physics 101, 11

(2007), 113504. (Cited on pages 107 and 128.)

[BPK08] Bergström D., Powell J., Kaplan A. F. H.: The ab-
sorption of light by rough metal surfaces - a three-
dimensional ray-tracing analysis. Journal of Applied
Physics 103, 10 (2008), 103515. (Cited on pages 107

and 128.)

[Bre65] Bresenham J. E.: Algorithm for computer control of
a digital plotter. IBM Systems Journal 4, 1 (1965), 25–30.
(Cited on page 66.)

[BRGIG∗14] Balsa Rodríguez M., Gobbetti E., Iglesias Guitián J.,
Makhinya M., Marton F., Pajarola R., Suter S. K.:
State-of-the-art in compressed gpu-based direct volume
rendering. Computer Graphics Forum 33, 6 (2014), 77–100.
(Cited on page 66.)

[BS87] Beckmann P., Spizzichino A.: The scattering of electro-
magnetic waves from rough surfaces. Artech House, 1987.
(Cited on page 106.)

[CB04] Christensen P. H., Batali D.: An irradiance atlas for
global illumination in complex production scenes. In
Proceedings of the Eurographics Symposium on Rendering
(June 2004), EGSR ’04, pp. 133–141. (Cited on page 30.)

[CDE∗14] Cigolle Z. H., Donow S., Evangelakos D., Mara M.,
McGuire M., Meyer Q.: A survey of efficient represen-
tations for independent unit vectors. Journal of Computer
Graphics Techniques 3, 2 (2014), 1–30. (Cited on pages vii
and 36.)

[CG12] Crassin C., Green S.: Octree-based sparse voxelization
using the GPU hardware rasterizer. In OpenGL Insights,
Cozzi P., Riccio C., (Eds.). Taylor & Francis Inc., 2012,
pp. 303–319. (Cited on page 41.)

[Cha04] Chamberlain J. M.: Where optics meets electronics: Re-
cent progress in decreasing the terahertz gap. Philosoph-
ical Transactions: Mathematical, Physical and Engineering
Sciences 362, 1815 (2004), 199–213. (Cited on page 19.)

bibliography 163

[CHB∗12] Cuypers T., Haber T., Bekaert P., Oh S. B., Raskar R.:
Reflectance model for diffraction. ACM Transactions on
Graphics 31, 5 (2012), 122:1–122:11. (Cited on page 13.)

[CJMS00] Chew W. C., Jin J.-M., Michielssen E., Song J.: Fast
and Efficient Algorithms in Computational Electromagnetics.
Artech House Publishers, 2000. (Cited on page 98.)

[CNLE09] Crassin C., Neyret F., Lefebvre S., Eisemann E.: Gi-
gavoxels: Ray-guided streaming for efficient and de-
tailed voxel rendering. In Proceedings of the Symposium
on Interactive 3D Graphics and Games (February 2009), I3D
’09, pp. 15–22. (Cited on pages vii, 25, 26, 27, 28, 29, 30,
31, 32, 33, 35, 37, 66, 67, and 95.)

[CNS∗11] Crassin C., Neyret F., Sainz M., Green S., Eisemann

E.: Interactive indirect illumination using voxel cone
tracing. Computer Graphics Forum 30, 7 (2011), 1921–1930.
(Cited on page 67.)

[CT82] Cook R. L., Torrance K. E.: A reflectance model for
computer graphics. ACM Transactions on Graphics 1, 1

(1982), 7–24. (Cited on pages 15 and 16.)

[CV07] Cocheril Y., Vauzelle R.: A new ray-tracing based
wave propagation model including rough surfaces scat-
tering. Progress in Electromagnetics Research 75 (2007),
357–381. (Cited on pages 99, 106, 107, 108, and 148.)

[Dav10] Davidson D. B.: Computational Electromagnetics for RF
and Microwave Engineering. Cambridge University Press,
2010. (Cited on page 98.)

[DBB06] Dutré P., Bala K., Bekaert P.: Advanced Global Illumina-
tion. Taylor & Francis Inc., 2006. (Cited on page 13.)

[DGPR02] DeBry D. g., Gibbs J., Petty D. D., Robins N.: Paint-
ing and rendering textures on unparameterized mod-
els. ACM Transactions on Graphics 21, 3 (2002), 763–768.
(Cited on page 30.)

[DKB∗16] Dado B., Kol T. R., Bauszat P., Thiery J.-M., Eisemann

E.: Geometry and attribute compression for voxel scenes.
Computer Graphics Forum 35, 2 (2016), 397–407. (Cited on
pages 25, 30, 66, 96, and 158.)

[DKLB13] Ding J., Kahl M., Loffeld O., Bolívar P. H.: Thz
3-d image formation using sar techniques: simulation,
processing and experimental results. IEEE Transactions
on Terahertz Science and Technology 3, 5 (2013), 606–616.
(Cited on page 21.)

164 bibliography

[DMBM05] De Maagt P., Bolívar P. H., Mann C.: Terahertz Science,
Engineering and Systems - from Space to Earth Applications.
John Wiley & Sons, Inc., 2005, pp. 5175–5194. (Cited on
page 22.)

[DW15] Demir I., Westermann R.: Vector-to-closest-point oc-
tree for surface ray-casting. In Vision, Modeling and Visu-
alization (October 2015), pp. 65–72. (Cited on page 67.)

[Ede06] Edelsbrunner H.: Geometry and Topology for Mesh Gen-
eration. Cambridge University Press, 2006. (Cited on
page 7.)

[EHK∗06] Engel K., Hadwiger M., Kniss J. M., Rezk-Salama C.,
Weiskopf D.: Real-Time Volume Graphics. Taylor & Fran-
cis Ltd., 2006. (Cited on pages 12 and 151.)

[FDK07] Fetterman M. R., Dougherty J., Kiser W. L.: Scene
simulation of millimeter-wave images. In IEEE Anten-
nas and Propagation Society International Symposium (June
2007), pp. 1493–1496. (Cited on page 148.)

[FSH∗05] Federici J. F., Schulkin B., Huang F., Gary D., Barat

R., Oliveira F., Zimdars D.: Thz imaging and sens-
ing for security applications - explosives, weapons and
drugs. Semiconductor Science and Technology 20, 7 (2005),
266. (Cited on page 22.)

[FTI86] Fujimoto A., Tanaka T., Iwata K.: Arts: Accelerated
ray-tracing system. IEEE Computer Graphics and Applica-
tions 6, 4 (1986), 16–26. (Cited on page 66.)

[FvSB∗11] Friederich F., von Spiegel W., Bauer M., Meng F.,
Thomson M., Boppel S., Lisauskas A., Hils B., Krozer

V., Keil A., Löffler T., Henneberger R., Huhn A. K.,
Spickermann G., Bolívar P. H., Roskos H. G.: Thz ac-
tive imaging systems with real-time capabilities. IEEE
Transactions on Terahertz Science and Technology 1, 1 (2011),
183–200. (Cited on pages 1 and 22.)

[GGLH06a] Grafulla-González B., Lebart K., Harvey A. R.:
Physical optics modelling of millimetre-wave personnel
scanners. Pattern Recognition Letters 27, 15 (2006), 1852–
1862. (Cited on page 99.)

[GGLH06b] Grafulla-González B., Lebart K., Harvey A. R.:
Physical optics modelling of millimetre-wave personnel
scanners. Pattern Recognition Letters 27, 15 (2006), 1852 –
1862. (Cited on page 148.)

bibliography 165

[GMM∗02] Gonzalo R., Martinez B., Mann C. M., Pellemans H.,
Bolívar P. H., De Maagt P.: A low-cost fabrication
technique for symmetrical and asymmetrical layer-by-
layer photonic crystals at submillimeter-wave frequen-
cies. IEEE Transactions on Microwave Theory and Tech-
niques 50, 10 (2002), 2384–2392. (Cited on pages 127, 130,
and 132.)

[Hec02] Hecht E.: Optics. Addison Wesley, 2002. (Cited on
page 99.)

[HKH∗12] Henry P., Krainin M., Herbst E., Ren X., Fox D.: Rgb-
d mapping: Using kinect-style depth cameras for dense
3d modeling of indoor environments. The International
Journal of Robotics Research 31, 5 (2012), 647–663. (Cited
on page 148.)

[HN12] Heitz E., Neyret F.: Representing appearance and pre-
filtering subpixel data in sparse voxel octrees. In Pro-
ceedings of the 4th Conference on High-Performance Graphics
(June 2012), HPG ’12, pp. 125–134. (Cited on page 67.)

[HSHH07] Horn D. R., Sugerman J., Houston M., Hanrahan

P.: Interactive kd tree gpu raytracing. In Proceedings
of the Symposium on Interactive 3D Graphics and Games
(May 2007), I3D ’07, pp. 167–174. (Cited on pages vii,
66, and 67.)

[Hun78] Hunter G. M.: Efficient Computation and Data Struc-
tures for Graphics. PhD thesis, Princeton University, 1978.
(Cited on page 30.)

[IKH∗11] Izadi S., Kim D., Hilliges O., Molyneaux D., New-
combe R., Kohli P., Shotton J., Hodges S., Freeman

D., Davison A., Fitzgibbon A.: Kinectfusion: Real-time
3d reconstruction and interaction using a moving depth
camera. In 24th Annual ACM Symposium on User Interface
Software and Technology (October 2011), UIST ’11, pp. 559–
568. (Cited on page 148.)

[INH99] Iourcha K., Nayak K., Hong Z.: System and method
for fixed-rate block-based image compression with in-
ferred pixel values, September 1999. US Patent 5956431.
(Cited on page 37.)

[ISO10] ISO 4287:2010-07: Geometrical Product Specifications (GPS)
- Surface texture: Profile method - Terms, definitions and sur-
face texture parameters. Standard, International Organiza-
tion for Standardization, Geneva, October 2010. (Cited
on page 102.)

166 bibliography

[JT80] Jackins C. L., Tanimoto S. L.: Oct-trees and their use in
representing three-dimensional objects. Computer Graph-
ics and Image Processing 14, 3 (1980), 249 – 270. (Cited on
page 30.)

[Kaj86] Kajiya J. T.: The rendering equation. ACM SIGGRAPH
Computer Graphics 20, 4 (1986), 143–150. (Cited on
pages 16 and 17.)

[KH12] Kirk D. B., Hwu W.-m. W.: Programming Massively Paral-
lel Processors: A Hands-on Approach. Morgan Kaufmann,
2012. (Cited on page 18.)

[KKP∗12] Kahl M., Keil A., Peuser J., Löffler T., Pätzold M.,
Kolb A., Sprenger T., Hils B., Bolívar P. H.: Stand-
off real-time synthetic imaging at mm-wave frequen-
cies. In Proceedings of SPIE (April 2012), Passive and
Active Millimeter-Wave Imaging XV, p. 836208. (Cited
on pages 2 and 136.)

[KLD∗10] Krozer V., Löffler T., Dall J., Kusk A., Eichhorn F.,
Olsson R., Buron J., Jepsen P., Zhurbenko V., Jensen

T.: Terahertz imaging systems with aperture synthesis
techniques. IEEE Transactions on Microwave Theory and
Techniques 58, 7 (2010), 2027–2039. (Cited on pages 21,
22, 139, and 145.)

[Kli12] Klinkert T.: Simulation of a 3D THz imaging system based
on first order surface elements. Diploma thesis, University
of Siegen, 2012. (Cited on pages ix, 104, 105, 107, 115,
123, 124, 128, 133, 151, and 157.)

[KSA13] Kämpe V., Sintorn E., Assarsson U.: High resolution
sparse voxel DAGs. ACM Transactions on Graphics 32, 4

(2013), 101. (Cited on pages 25, 30, 41, and 66.)

[KTD∗09] Kim Y. M., Theobalt C., Diebel J., Kosecka J., Miscusik

B., Thrun S.: Multi-view image and tof sensor fusion for
dense 3d reconstruction. In IEEE 12th International Con-
ference on Computer Vision Workshops (ICCV Workshops)
(September 2009), pp. 1542–1549. (Cited on page 148.)

[Lai13] Laine S.: A topological approach to voxelization. In Pro-
ceedings of the Eurographics Symposium on Rendering (June
2013), EGSR ’13, pp. 77–86. (Cited on page 40.)

[LCL89] Ling H., Chou R.-C., Lee S.-W.: Shooting and bouncing
rays: Calculating the rcs of an arbitrarily shaped cav-
ity. IEEE Transactions on Antennas and Propagation 37, 2

(1989), 194–205. (Cited on pages 98, 106, and 125.)

bibliography 167

[Lee09] Lee Y.-S.: Principles of Terahertz Science and Technology.
Springer, 2009. (Cited on pages 5, 19, and 20.)

[LGS∗09] Lauterbach C., Garland M., Sengupta S., Luebke D.,
Manocha D.: Fast BVH construction on GPUs. Com-
puter Graphics Forum 28, 2 (2009), 375–384. (Cited on
page 47.)

[LH91] Laur D., Hanrahan P.: Hierarchical splatting: A
progressive refinement algorithm for volume render-
ing. In Proceedings of the 18th Annual Conference on Com-
puter Graphics and Interactive Techniques (June 1991), SIG-
GRAPH ’91, pp. 285–288. (Cited on page 30.)

[LHN05] Lefebvre S., Hornus S., Neyret F.: Octree textures on
the gpu. In GPU Gems 2. Addison-Wesley Longman,
2005, pp. 595–613. (Cited on pages vii, 30, 31, 32, 35,
and 37.)

[LK10] Laine S., Karras T.: Efficient sparse voxel octrees. In
Proceedings of the ACM SIGGRAPH Symposium on Inter-
active 3D Graphics and Games (February 2010), I3D ’10,
pp. 55–63. (Cited on pages vii, ix, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 37, 50, 65, 66, 67, 69, 70, 72, 73, 74, 77, 78,
80, 82, 85, 87, 88, 95, and 157.)

[LK11] Laine S., Karras T.: Efficient sparse voxel octrees. IEEE
Transactions on Visualization and Computer Graphics 17, 8

(2011), 1048–1059. (Cited on pages 27, 41, 53, 54, 55, 57,
58, and 59.)

[LW90] Levoy M., Whitaker R.: Gaze-directed volume render-
ing. In Proceedings of the Symposium on Interactive 3D
Graphics (January 1990), I3D ’90, pp. 217–223. (Cited on
page 30.)

[Mea82] Meagher D.: Geometric modeling using octree encod-
ing. Computer graphics and image processing 19, 2 (1982),
129–147. (Cited on page 30.)

[MMS∗11] Maltsev A., Maslennikov R., Sevastyanov A., Lo-
mayev A., Khoryaev A.: Statistical channel model for 60

ghz wlan systems in conference room environment. Ra-
dioengineering 20, 2 (2011), 409 – 422. (Cited on page 110.)

[Mor66] Morton G. M.: A Computer Oriented Geodetic Data Base
and a New Technique in File Sequencing. IBM, 1966. (Cited
on pages 34, 42, and 47.)

[MRBL02] Mametsa H.-J., Rouas F., Berges A., Latger J.: Imaging
radar simulation in realistic environment using shooting

168 bibliography

and bouncing rays technique. In International Symposium
on Remote Sensing (February 2002), pp. 34–40. (Cited on
page 148.)

[Mus13] Museth K.: Vdb: High-resolution sparse volumes with
dynamic topology. ACM Transactions on Graphics 32, 3

(2013), 27. (Cited on page 30.)

[NIK91] Nayar S. K., Ikeuchi K., Kanade T.: Surface reflection:
physical and geometrical perspectives. IEEE Transactions
on Pattern Analysis and Machine Intelligence 13, 7 (1991),
611–634. (Cited on page 99.)

[PG10] Peinecke N., Groll E.: Integration of a 2.5d radar sim-
ulation in a sensor simulation suite. In Proceedings of the
29th Digital Avionics Systems Conference (DASC) (October
2010), pp. 3.A.6–1 – 3.A.6–9. (Cited on page 148.)

[PHJ16] Pharr M., Humphreys G., Jakob W.: Physically Based
Rendering. Elsevier Ltd., 2016. (Cited on page 13.)

[Pho75] Phong B. T.: Illumination for computer generated pic-
tures. Communications of the ACM 18, 6 (1975), 311–317.
(Cited on page 13.)

[PJJK11] Priebe S., Jacob M., Jansen C., Kürner T.: Non-
specular scattering modeling for thz propagation sim-
ulations. In Proceedings of the 5th European Conference on
Antennas and Propagation (EUCAP) (April 2011), pp. 1–5.
(Cited on page 99.)

[PJK11] Priebe S., Jacob M., Kürner T.: Polarization investi-
gation of rough surface scattering for thz propagation
modeling. In Proceedings of the 5th European Conference on
Antennas and Propagation (EUCAP) (April 2011), pp. 24 –
28. (Cited on page 110.)

[PK15] Pätzold M., Kolb A.: Grid-free out-of-core voxeliza-
tion to sparse voxel octrees on gpu. In Proceedings of
the 7th Conference on High-Performance Graphics (August
2015), HPG ’15, pp. 95–103. (Cited on pages 2, 40, 44, 45,
46, 48, 51, 52, 53, 54, 55, 56, 59, 60, 61, and 62.)

[PKK∗13] Pätzold M., Kahl M., Klinkert T., Keil A., Löffler T.,
Bolívar P. H., Kolb A.: Simulation and data-processing
framework for hybrid synthetic aperture thz systems
including thz-scattering. IEEE Transactions on Terahertz
Science and Technology 3, 5 (2013), 625–634. (Cited on
pages 2, 105, 107, 108, 109, 110, 112, 113, 114, 135, 137,
138, 147, 149, 150, and 151.)

bibliography 169

[Pre93] Preparata F. P.: Computational Geometry: An Introduction.
Springer, 1993. (Cited on page 7.)

[RBI12] Rylander T., Bondeson A., Ingelström P.: Com-
putational Electromagnetics. Springer, 2012. (Cited on
page 98.)

[RDGK12] Ritschel T., Dachsbacher C., Grosch T., Kautz J.: The
state of the art in interactive global illumination. Com-
puter Graphics Forum 31, 1 (2012), 160–188. (Cited on
page 1.)

[Sch94] Schlick C.: An inexpensive brdf model for physically-
based rendering. Computer Graphics Forum 13, 3 (1994),
233–246. (Cited on page 15.)

[Sie02] Siegel P. H.: Terahertz technology. IEEE Transactions
on microwave theory and techniques 50, 3 (2002), 910–928.
(Cited on page 19.)

[SK10] Sanders J., Kandrot E.: CUDA by Example: An Intro-
duction to General-Purpose GPU Programming. Addison
Wesley, 2010. (Cited on page 18.)

[SM09] Shirley P., Marschner S.: Fundamentals of Computer
Graphics. A. K. Peters, Ltd., 2009. (Cited on pages 5

and 13.)

[SML∗12] Sadeghi I., Munoz A., Laven P., Jarosz W., Seron F.,
Gutierrez D., Jensen H. W.: Physically-based simu-
lation of rainbows. ACM Transactions on Graphics 31, 1

(2012), 3:1–3:12. (Cited on page 13.)

[Sou99] Soumekh M.: Synthetic Aperture Radar Signal Processing
with MATLAB Algorithms. John Wiley and Sons, Inc.,
1999. (Cited on page 146.)

[SS10] Schwarz M., Seidel H.-P.: Fast parallel surface and
solid voxelization on GPUs. ACM Transactions on Graph-
ics 29, 6 (2010), 179:1–179:10. (Cited on pages 40, 42, 47,
49, and 50.)

[ST07] Saleh B., Teich M.: Fundamentals of Photonics. Wiley
Series in Pure and Applied Optics. Wiley, 2007. (Cited
on pages 1 and 99.)

[Ton07] Tonouchi M.: Cutting-edge terahertz technology. Na-
ture photonics 1, 2 (2007), 97–105. (Cited on page 19.)

[TSI∗06] Toyoda I., Seki T., Iigusa K., Sawada H., Fujita Y.,
Orihashi N.: Reference antenna model with side lobe

170 bibliography

for TG3c evaluation, IEEE doc. 802.15-06/474r0, November
2006. (Cited on pages 110, 124, and 157.)

[Tug13] Tugas J. F.: Privacy and body scanners at eu airports.
Novática Privacy and New Technologies, S2013 (2013), 49–
54. (Cited on page 148.)

[Vit01] Vitter J. S.: External memory algorithms and data struc-
tures: Dealing with massive data. ACM Computing sur-
veys 33, 2 (2001), 209–271. (Cited on page 1.)

[vW06] van Waveren J.: Real-time dxt compression. 1–42.
(Cited on page 37.)

[YFSPM12] Yu C., Fan S., Sun Y., Pickwell-MacPherson E.: The
potential of terahertz imaging for cancer diagnosis: A
review of investigations to date. Quantitative imaging in
medicine and surgery 2, 1 (2012), 33. (Cited on page 22.)

[YGZ09] Yan L., Ge R., Zhong S.: A framework of passive
millimeter-wave imaging simulation for typical ground
scenes. In Sixth International Symposium on Multispectral
Image Processing and Pattern Recognition (MIPPR) (Octo-
ber 2009), p. 749409. (Cited on page 148.)

[ZB11] Zhang Z., Buma T.: Terahertz impulse imaging with
sparse arrays and adaptive reconstruction. IEEE Journal
of Selected Topics in Quantum Electronics 17, 1 (2011), 169–
176. (Cited on page 145.)

[ZGHG11] Zhou K., Gong M., Huang X., Guo B.: Data-parallel
octrees for surface reconstruction. IEEE Transactions on
Visualization and Computer Graphics 17, 5 (2011), 669–681.
(Cited on page 50.)

	Title page
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 contribution
	1.4 Outline

	2 Fundamentals
	2.1 Computer Graphics
	2.1.1 3D Representations
	2.1.2 Rendering
	2.1.3 Illumination
	2.1.4 GPGPU

	2.2 Terahertz Radiation
	2.2.1 Electromagnetic Spectrum
	2.2.2 Imaging Systems
	2.2.3 Applications

	2.3 Requirements
	2.3.1 Simulating THz Radiation
	2.3.2 Processing THz Data

	3 Sparse Voxel Trees
	3.1 Motivation
	3.2 Concept for THz Simulations
	3.3 Data Structure
	3.3.1 Related Work
	3.3.2 Generalization of SVOs to SVTs
	3.3.3 Attribute Compression
	3.3.4 Memory Consumption

	3.4 Voxelization
	3.4.1 Overview
	3.4.2 Related Work
	3.4.3 Algorithm Overview
	3.4.4 Triangle Stream Processing
	3.4.5 Voxel Stream Processing
	3.4.6 Results

	3.5 Rendering
	3.5.1 Overview
	3.5.2 Related Work
	3.5.3 Algorithm Overview
	3.5.4 Ray Traversal
	3.5.5 Optimizations
	3.5.6 Results

	3.6 Summary

	4 Simulation of Wave Effects
	4.1 Motivation
	4.2 Overview of Simulation Methods
	4.3 Related Work
	4.4 Main Influences on a THz Simulation
	4.4.1 Wave Properties
	4.4.2 Object Interaction
	4.4.3 Acquisition System

	4.5 THz Simulations
	4.5.1 Hybrid Setup Simulation
	4.5.2 THz Simulation with SVTs

	4.6 Summary

	5 Description of THz Imaging Systems
	5.1 Motivation
	5.2 Hybrid 3D Scanning System
	5.2.1 System
	5.2.2 Configuration
	5.2.3 Geometrical Calibration
	5.2.4 Reconstruction on GPU
	5.2.5 3D Image Generation

	5.3 Pixelwise Scanning System
	5.3.1 System
	5.3.2 Configuration

	5.4 Summary

	6 Conclusion
	6.1 Summary
	6.2 Future Work
	6.2.1 Adaptive and Palette-Based SVTs
	6.2.2 Ray Queue for Multi-Bounce Simulations
	6.2.3 SVTs without Triangles and Rays

	Bibliography

