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Abstract

A transactional memory simplifies the concurrency management in multicore systems by
permitting sets of load and store instructions to be executed in an atomic way. The correct
results for concurrent transactions and the execution time strongly depend on the coherency
potentials, rollback capabilities and strategies of the transactional memory.

A transactional memory can be implemented as a Hardware Transactional Memory
(HTM), as a Software Transactional Memory (STM), or as a hybrid combination of both
called Hybrid Transactional Memory (HyTM). STM is the most common implementation
of the transactional memory models, which is slower but simpler and more flexible than
hardware transactional memories. HyTM is an approach that combines both STM and HTM
by using architectural support to accelerate particular algorithms of the STM or by allowing
hardware and software transactions to operate in the same address space.

Mixed-Criticality Systems (MCSs) combine applications and subsystems at different lev-
els of criticality on multicore systems. The development of such a safety-critical architecture
requires a transactional memory architecture that guarantees the predictability, fault isolation
and heterogeneity of concurrent safety-critical subsystems. Available transactional memory
architectures do not support mixed-criticality at the chip level. Additionally, existing memory
solutions spanning from multi-core chips to the cluster level are missing. A hierarchical
transactional memory protocol is required to provide hierarchical support at all levels of the
system architecture.

In this dissertation, two transactional memory architectures are proposed, namely a
transactional memory for chip level architectures and a hierarchical transactional memory
architecture for both multi-core chips and the cluster level.

In case of the chip-level transactional memory architecture, the predictability of the
memory operations is guaranteed based on a global time base and the interarrival times of
transactions. Different roll-back strategies with selective committing/aborting of requests are
introduced based on the criticality of the components. This requires additional functionalities
of the transactional memory such as temporal and spatial partitioning.

The hierarchical solution extends the previously mentioned properties and services to a
hierarchical transactional memory protocol that guarantees the requirements for distributed
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MCSs. This architecture includes novel transactional memory extensions at cores, network
interconnections, memory and network gateways.

The proposed transactional memory architectures introduce and exploit novel transac-
tional memory algorithms and protocols developed for MCSs. The applied scientific and
technical methods include the definition of the system and memory architecture with novel
conceptual models and algorithms. A trace-based simulation framework was implemented in
systemC to simulate the chip-level architecture. Additionally, this framework was extended
to a co-simulation framework combining systemC with AUTOSAR for the experimental
evaluation of the models and algorithms of the proposed hierarchical transactional memory
architecture. Use cases from the automotive area served for the evaluation.

Better fault isolation at all levels of the chip and cluster components is obtained due to the
proposed architectures. The presented solutions handle efficiently the temporal predictability
at transaction level, interconnection level, memory gateway level and cluster level. For the
first time, a hierarchical transactional memory–based architecture for MCS supporting chip
and cluster level is presented. The proposed protocol concurrently manages the reliable
execution of MCS transactions. Finally, the proposed protocol is technology independent
and hides the heterogeneity of the components.



Kurzfassung

Ein transaktionaler Speicher vereinfacht das Nebenläufigkeitsmanagement in Mehrkern-
systemen, indem Sätze von Lade- und Speicherbefehlen auf atomare Weise ausgeführt
werden. Die korrekten Ergebnisse für gleichzeitige Transaktionen und die Ausführungszeiten
hängen stark von den Kohärenzpotentialen, Rollback-Fähigkeiten und Strategien des transak-
tionalen Speichers ab. Ein transaktionaler Speicher kann als Hardware-Transaktionsspeicher
implementiert werden (HTM), als Software-Transaktionsspeicher (STM) oder als Hybrid-
Kombination von Hardware und Software (HyTM). STM ist die häufigste und flexibelste
Implementierung, jedoch langsamer als ein Hardware-Transaktionsspeicher. HyTM ist ein
Ansatz, der sowohl STM als auch HTM kombiniert, indem Architekturunterstützung ver-
wendet wird, um bestimmte Algorithmen des STM zu beschleunigen oder Hardware- und
Software-Transaktionen im gleichen Adressraum zu ermöglichen.

Mixed-Criticality-Systeme (MCS) kombinieren Anwendungen und Subsysteme auf ver-
schiedenen Ebenen der Kritikalität eines Multicore-Systems. Die Entwicklung einer solchen
sicherheitskritischen Architektur erfordert eine transaktionale Speicherarchitektur, die die
Vorhersagbarkeit, Fehlerisolierung und Heterogenität von gleichzeitigen sicherheitskritischen
Subsystemen gewährleistet. Verfügbare Transaktionsspeicherarchitekturen unterstützen keine
gemischte Kritikalität auf der Chipebene. Darüber hinaus fehlen vorhandene Speicherlösun-
gen, die sich von Multi-Core-Chips bis auf die Cluster-Ebene erstrecken. Ein hierarchisches
Transaktionsspeicherprotokoll ist erforderlich, um hierarchische Unterstützung auf allen
Ebenen der Systemarchitektur bereitzustellen.

In dieser Dissertation werden zwei transaktionale Speicherarchitekturen vorgeschla-
gen, nämlich ein Transaktionsspeicher für Chip-Level-Architekturen und eine hierarchische
transaktionale Speicherarchitektur für Multi-Core-Chips und die Cluster-Ebene.

Im Falle der transaktionalen Speicherarchitektur auf der Chip-Ebene wird die Vorher-
sagbarkeit der Speicheroperationen basierend auf einer globalen Zeitbasis und den Zwis-
chenankunftszeiten von Transaktionen garantiert. Auf der Grundlage der Kritikalität der
Komponenten werden unterschiedliche Roll-Back-Strategien mit selektivem Commit/Abort
von Requests eingeführt. Dies erfordert zusätzliche Funktionalitäten des Transaktionsspeich-
ers wie zeitliche und räumliche Partitionierung.
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Die hierarchische Lösung erweitert die zuvor erwähnten Eigenschaften und Dienste zur
Realisierung eines hierarchischen Transaktionsprotokolls, das die Anforderungen für verteilte
MCS gewährleistet. Diese Architektur enthält neue Transaktionsspeichererweiterungen bei
Prozessorkernen, beim Netzwerk, sowie bei Speicher- und Netzwerk-Gateways.

Die vorgeschlagenen Architekturen führen neuartige Transaktionsalgorithmen und Pro-
tokolle ein, die für MCSs entwickelt wurden. Die angewandten wissenschaftlichen und
technischen Methoden umfassen die Definition der System- und Speicherarchitektur mit
neuen konzeptuellen Modellen und Algorithmen. Eine trace-basierte Simulationsumgebung
wurde in SystemC implementiert, um die Chip-Level-Architektur zu evaluieren. Darüber hin-
aus wurde dieses Framework auf eine Co-simulations Umgebung erweitert, die SystemC mit
AUTOSAR kombiniertum die hierarchische transaktionale Speicherarchitektur zu evaluieren.

Ergebnisse umfassen einebessere Fehlerisolation auf allen Ebenen des Chips und der
Cluster-Komponenten aufgrund der vorgeschlagenen Architekturen. Die vorgestellten Lö-
sungen behandeln die zeitliche Vorhersagbarkeit auf der Transaktionsebene, der Netzw-
erkebene und der Speicher-Gateway-Ebene. Erstmals wird eine hierarchische transaktion-
sspeicherbasierte Architektur für MCS vorgestellt.
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Chapter 1

Introduction

Mixed-criticality systems combine subsystems with different criticality levels on a shared
computing platform. Mixed-criticality systems provide potential for higher reliability, energy
efficiency and adaptability while also reducing the size, cost and weight of embedded
systems [OOA+14a]. The increasing demand for these properties can be observed in many
application domains (e.g. automotive, avionics and healthcare systems). Mixed-criticality
systems are a key enabler to reduce the cabling and the number of devices in many application
domains including automotive, avionic, healthcare and industrial systems [OOA+14a]. The
resulting benefits include lower cost, weight and maintenance efforts due to the higher
integration and the more efficient use of computational resources.

Transactional memories were initially introduced for databases and later they were pro-
posed as a solution for concurrency control to ease parallel programming and parallel process-
ing in multicore systems. Three types of transactional memories can be distinguished based
on their implementation: hardware (e.g, 4th generation Intel processor [Int14]), software
(e.g., D2STM [CRCR09] and DiSTM [KAJ+08]) and hybrid combinations of both [RMN+],
[CGS+14], [BNZ08]. A transactional memory introduces atomicity of memory instructions
of a complete transaction in multicore systems. In addition, it manages concurrent executions
and ensures consistency of the transactions.

The use of transactional memories has been proposed in dependable embedded systems
with challenges of handling faults, real-time constraints and consistency of transactional
memories [FF11]. Correct execution of concurrent transactions and the WCET strongly
depend on the type (i.e. eager or lazy) of the version management, conflict detection,
conflict resolution services, and the available computational resources of the transactional
memory [MWU13].

Transactional memories are also useful for easing the development of mixed-criticality
systems, where subsystems with different safety assurance levels coexist on a shared com-
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puting platform. Mixed-criticality systems comprise subsystems with varying degrees of
assurance and timing guarantees [Ves07b]. A prerequisite for the deployment of transactional
memories in mixed-criticality systems is the prevention of unintended interference of the
transactions with different criticality.

Transactional memories offer the potential to combine an optimistic operation of non
safety-critical subsystems with strict real-time guarantees of safety-critical subsystems.
However, a fundamental requirement in mixed-criticality systems is the segregation of
subsystems with different criticality. Non safety-critical tasks should either have no effect at
all on the execution times of safety-critical tasks or the effect must be bounded and known.

In case of transactional memories we can identify the following three sources of temporal
interference between computational cores:

1. Conflict Resolution of Transactions: Transactional memories have the potential to
cause interference between tasks due to rollbacks, which must be controlled and
analyzed as a prerequisite for the deployment in mixed-criticality systems.

2. Interconnect: Segregation between applications of different criticality must be ad-
dressed at the on-chip interconnect where memory requests and data are exchanged
between the computational cores and the memory gateway.

3. Memory Gateway: The memory gateway has to schedule memory requests from
different computational cores. Typically, memory controllers optimize throughput,
while temporal interference between cores is not addressed (e.g., bank switching).

Therefore, mixed-criticality systems require a transactional memory to provide concur-
rency control and timing guarantees for the subsystems by prohibiting temporal interference
of the transactions in the transaction management, the interconnect and the memory con-
troller.

Major research gaps are architectures, system models and algorithms for transactional
memories in hierarchical mixed-criticality systems comprising networked multi-core chips.
These systems combine two integration levels. Firstly, a multi-core processor consists of a set
of computational cores that interact via an on-chip interconnect. Secondly, the cluster-level
uses off-chip networks for the interconnection of several multi-core processors. A single
multi-core chip is often insufficient to meet the resource requirements of large embedded
applications. In addition, the failure rates of a single chip are too high to meet the reliability
requirements of fail-operational systems with ultra-high dependability [SWH95] (e.g., Class
A according to DO-178C [RTC11]). Hence, fault-tolerance at system level is required by
exploiting redundancy with multiple independent chips.
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1.1 Contributions

This thesis introduces a mixed-criticality aware architecture, starting at the chip-level and then
extending a hierarchical distributed systems. The architectures offer temporal predictability
and fault isolation of the transactional memory in mixed-criticality systems. The algorithms
and protocols for transaction management and conflict resolution ensure that the execution
time of safety-critical applications does not depend on applications of lower-criticality.
This property is significant for modular certification, where separate safety arguments are
established for application subsystems with different criticality levels. In contrast, in case the
conflict resolution would not prevent low-critical applications from affecting safety-critical
ones, the criticality of all application subsystems would be elevated to the highest criticality
level in the system.

Additionally, memory operations of the hierarchical architecture are managed in a dis-
tributed manner at the cores of different multi-core chips. This is achieved by executing a
transactional-memory protocol spanning both on-chip and off-chip networks while hiding the
heterogeneity of the implementation technologies. Memory pages are relocated between the
local caches at cores and the external memories of the multi-core chips. In addition, commits
and rollbacks are performed to ensure atomicity, consistency and isolation in the presence of
memory conflicts.

The contributions of this dissertation for resolving the problem are as follow:

• A Transactional Memory System-on-a-Chip (TMSoC) architecture that is based
on a deterministic Network-on-Chip (NoC). The TMSoC utilizes a transactional
memory to provide segregation and fault containment at the different levels of the
chip-level architecture. The architecture consists of a configurable number of cores and
a memory gateway that exploits the Mixed-Criticality Transaction Controller (MTC)
extension for mixed-criticality systems support.

• The Mixed-Criticality Transaction Controller (MTC) extension introduces criticality-
aware algorithms that are responsible for executing so-called selective rollbacks of
transactions based on their criticality.

• A hierarchical distributed architecture extends the TMSoC chip-level architecture
in order to provide segregation and predictability at cluster-level. The architecture
uses a transactional-memory based protocol that is spanning both on-chip and off-chip
networks handling transactions based on their criticality.

• The Distributed Mixed-criticality Transactional Controller (DMTC) is deployed
as a transactional-memory protocol at on-chip and off-chip network levels of the
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distributed architecture. This protocol hides the diversity of the components in the
system ,and guarantees the criticality-aware execution of the application subsystems
by executing selective rollbacks when required.

• Simulation frameworks: A fully configurable and extendable simulation framework
supporting message-based and shared memory interactions has been implemented.
The framework provides a trace-based simulation environment for chip-level mixed-
criticality systems. Additionally, it has been extended to support distributed mixed-
criticality simulations.

• Evaluation and experiments. Automotive use cases have been used to evaluate the
architecture models and algorithms. The simulation framework was used to perform
the experiments, which have shown that the proposed architectures and their algorithms
meet the requirements including temporal predictability and fault isolation.

1.2 Thesis Organization

The remainder of the thesis is structured as follows.

• Chapter 2 introduces the basic concepts and provides the background knowledge
used in this work. It starts with a classification of real time embedded. Afterwords,
dependability attributes, and the notion of faults and fault tolerance are discussed. Next,
a comparison between shared memory and message-based communication paradigms
is given. The control signals for triggering interactions in these paradigms are also
analyzed. The chapter ends with a presentation of the available memory technologies
including memory controllers, and the notion and types of transactional memories.

• Chapter 3 provide an analysis of the state-of-the-art. It starts with the requirements
for mixed-criticality systems and transactional memories. The next two sections inves-
tigates existing architectural solutions at both chip and cluster levels. The presented
solutions are analyzed toward the fulfillment of the requirements. Based on this anal-
ysis, the research gaps in the state-of-the-art are highlighted to be addressed in this
dissertation.

• Chapter 4 presents an architectural solution for MPSoCs that is based on a deterministic
NoC and a transactional memory, known as the Transactional Memory System-on-a-
Chip (TMSoC). This architecture uses the newly introduced Mixed-Criticality Trans-
action Controller (MTC) algorithms to guarantee the predictability and fault isolation
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in mixed-criticality systems. In the second part of this chapter, a hierarchical transac-
tional memory architecture for distributed mixed-criticality systems is defined. The
introduced hierarchical architecture uses the so-called Distributed Mixed-criticality
Transactional Controller (DMTC) protocol that hides the heterogeneity of the dis-
tributed components and provides a reliable memory protocol for mixed-criticality
systems.

• Chapter 5 offers a trace-based simulation framework for shared memory and message-
based communication in multi-core chips. The framework is dedicated to mixed-
criticality system simulations based on the proposed TMSoC. It provides high abstrac-
tion levels using SystemC/TLM and it exploits DRAMSim2 for simulating the external
memory of the TMSoC.

• Chapter 6 extends the earlier described framework to support the simulation of the
hierarchical transactional memory architecture. This is achieved by implementing
the DMTC protocol and integrating a co-simulation mechanism between the System-
C/TLM multi-core simulation and the cluster level communication. The introduced
co-simulation of the hierarchical framework guarantees the time integrity of the differ-
ent instances with the off-chip communication simulated in VEOS/AUTOSAR.

• Chapter 7 describes three automotive use cases for the evaluation of the simulation
framework and the proposed TMSoC and hierarchical transactional memory architec-
tures. The simulation results of the use cases are presented and discussed at the end of
each evaluation scenario.

• Chapter 8 concludes the thesis through a discussion of the overall results of the
presented solutions.





Chapter 2

Background and Basic Concepts

The basic concepts and the required background understandings are presented in this Chapter.
Starting with the notion of real-time system, and its different classifications. Then, the
behavioral model of the distributed real-time system is depict. Introducing later the basic
concepts of timing properties and measurements in real-time system.

Afterword, the dependability attributes and threats are illustrated to define what is a
dependable system. In the next subsection, the difference between message-based and shared
memory communication is presented. These paradigms of communication are also analyzed
in regard to the triggering control signals in the system. Finally, we exhibit the different types
of communication messages.

In the last subsections, memory technologies and hierarchy is interpreted covering the
basics of this large theme. The concept of transactional memory, its architecture and types
are explained at the end of this Chapter to wrap-up all required knowledge for this work.

2.1 Real-time Embedded Systems

A set of dependent components with distinct timing and spatial limits that are forming
an entity is defined as a system. This includes the description of the overall system’s
functionalities, behavior and the interacting means with its environment represented in the
inputs/outputs of the system. The system user can be a human operator or another computer
system. The service delivered by a system is its behavior perceived by the user.

Several definitions for embedded systems are given in literature. An embedded system
as defined by Steve Heath [Hea02], is a microprocessor-based system which is built to
accomplish a function or a sort of functions and is not designed to be programmed by the
end-user in the same manner that a personal computer is. Fundamentally, an embedded
system comprises one or more processors, a set of memory components and a number of
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peripherals to the environment. A processor consists of an instruction control unit and an
arithmetic unit, which carry out instructions of a computer program by performing the basic
arithmetical, logical and input/output operations of a system [Sta96].

Memory is an essential part of an embedded system. Today’s systems involve different
types of memories in addition to memory management and memory protection units that
provide translation interfaces, partitioning and access permissions. In order to deal with the
increasing complexity and performance demands of embedded systems, caches are used
to provide direct and fast access to data in order to increase the performance and reduce
memory access delays. Moreover, non-volatile memories (i.e. ROM memory) are used to
store program code and configuration information, since even when power is removed this
memory retains its content. Another type of memory that is used in embedded systems is
volatile memories (i.e. RAM memory) to provide interim storage to the applications data
variables that are used or computed during the execution [LS11].

Interactions and data exchange between embedded systems and their external environment
is achieved through the peripherals. Dedicated operations at the Input/Output (I/O) ports are
executed to collect data (e.g. temperature and pressure sensors), and transmit actions and
signals to the system’s actuators and other output devices.

Bell Telephone Laboratories and the Massachusetts Institute of Technology (MIT) initially
raised the term of real-time systems during the Second World War, which was obviously
required due to the need to improve the computational and physical time correctness of
the systems. The first high speed digital computer that was able to operate in real-time
was introduced by the Whirlwind project [RS80]. IBM developed a flight simulator for the
American army in 1947 which was the largest computer project until the early 1950s.

The first use of the term real-time in non-military domains was in the context of real-time
operating systems for airline reservation systems. SABRE was one of the first reserva-
tion systems, it was introduced for American Airlines in the year 1964. This led to the
purposeful involvement of real-time software in process control for spacecraft-control and
space-telemetry by the American national space programs [LO11]. During the 60s and 70s
the progress at the integration levels and processing speed resulted in the enhancement of the
real-time process control systems.

Moreover, a definition based on the German industry standard DIN 44300 for the real-
time operations presented in Kavi [KS92] states that a real-time operation is an operation
that meets the following conditions: all data inputs arriving to the operation shall be available
any time to be processed and the operation provides its result within a given period of time.
The arrival time of the data can be randomly distributed or can be already a priori determined
depending on the type of the applications. For instance, in the control loop of an Anti-lock
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braking system (ABS), the vehicle speed is continuously monitored and the breaking systems
has to react according to the collected data. In case of skidding, the system is required to
react within bounded time to avoid an accident.

Nowadays, demands for high performance in systems such as flight control, power plant
control, autonomous driving and automatic train control have resulted in increasing reliability
requirements not only in the value domain but also in the time domain. Such real-time
systems involve more and more embedded systems with dedicated functions, control services
and strict real-time constrains. Based on that, a real-time embedded system is defined as
a system in which the correctness of its behavior depends on the computational results as
well as the physical time that these results are produced with respect to the global time
base [Kop13].

Real-time systems are mostly part of larger systems. Self-contained real-time subsystems
that change as a function of physical time, inputs and states are called real-time clusters or
Cyber-Physical Systems (CPSs).

Understanding CPS can lead us to a better realization of real-time systems. As illustrated
in Figure 2.1, such systems consist of two spaces that are interacting through a network or
a cloud, which depends on the scale of the system. The physical space can be any real-life
space such as a vehicle, a power plant, a hospital, a transportation network, etc. Furthermore,
a cyber space is an artificial space that processes the collected physical inputs using the
required computational resources. The cyber space includes processing units, I/Os, computer
networks, etc. The resulting outputs of the cyber space are activation decisions and signals
for the physical space. The resulting outputs shall lead to the correct behavior of the CPS
with respect to its time restrictions on a global time base.

In order to take the desired decisions at any CPS, the decision making process is divided
into two phases (cf. Figure 2.2). A cyber phase involves the artificial factors, and a physical
phase depends on direct involvement of the human factors. The cyber space can employ
artificial intelligence that is responsible for executing designated algorithms for maximizing
the chances getting the desired decisions. These algorithms use the data collected from both
physical and cyber (digitized) worlds for learning and self-improving their performance.
Humans are able to make heuristic judgments and take decisions, thus human intelligence is
an essential part of any CPS. These collaboration between artificial and human intelligence
is essential for the correctness of the CPS. Finally, simulating the physical world can reduce
the costs, efforts and time of developing CPSs. Assistant training from virtual reality, for
instance, is the base training of every future pilot. A recent study on CPSs, includes military,
aerospace, communication and automotive sectors has shown the increasing usage of Field-
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Programmable Gate Array (FPGA) in simulating embedded systems. Moreover, the FPGA
market value in these sectors is growing over 9% from 2014 to 2020 [Inc15].

2.1.1 Classification of Real-time Systems

Real-time systems can be classified from different perspectives. Classifications that are
relevant for this thesis are presented in this subsection.

A real-time system must execute its services based on the collected inputs and calculate
its outputs within bounded time intervals. The time instant at which an output must be
produced by the system is called deadline. Real-time systems with at least one hard deadline
that has to be met are called hard real-time systems or safety-critical systems [Kop97]. The
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design of hard real-time systems requires guaranteed temporal behavior under specified load
and fault restrictions. On the other hand, in case no hard deadlines are declared, the system
is called soft real-time system and deadlines are allowed to be missed occasionally. Firm
real-time systems are systems where deadline misses are tolerable but this may reduce the
system’s utility.

In case of hard real-time systems, the ability of reacting to a failure determines whether
the system can be called fail-safe or fail-operational. If the system can reach a safe state
quickly in case of such a failure then it is called fail-safe system. For instance, a traffic
light at a busy cross road can be set to red in case of a failure in the traffic control system.
On the other hand, systems that have to stay operational regardless of possible failures are
fail-operational systems, e.g., the flight management system of an airplane.

Another classification of real-time system is the classification with respect to the type
of the temporal control signals of the system. A trigger in a real-time system is a stimulus
that causes the start of an action. Triggers can be initiated in one of the following two ways,
using event-triggered or time-triggered control signals.

Event-triggered control signals are not necessarily bound to timing events. Significant
events can be any relevant state changes e.g., receiving a specified message. An event-
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triggered system handles these events based on interrupts to serve the event accordingly.
On the other hand, all communication and processing activities in time-triggered systems
are initiated periodically based on a priori known clock ticks. Clocks of the distributed
time-triggered system are synchronized based on a global time base, as will be explained in
section 2.3.

2.1.2 Distributed Real-time System Model

The notion of real-time can be extended to the levels of operating systems, communication
networks and scheduling. In this dissertation we are mainly focusing on the real-time
communication and its design decisions.

Distributed real-time systems are composed of a set of computational nodes that are
connected though a real-time communication network to control the functions of a controlled
object. This model structure requires the definition of two interfaces, the so-called man-
machine interface (e.g., keyboard, touch screen) between the operator and the real-time
computer system. Secondly, the instrumentation interface is located between the controlled
object and the real-time computer system. This interface converts physical signals of the
sensors and actuators to digital forms in both directions.

The sequence of the results over time is called the distributed real-time system’s behavior.
Based on that, a behavioral model defines the behavior of a real-time system. A behavioral
model can be defined using components, states and messages.

A component is a unit built on hardware and executes a software application that performs
well-defined function within a larger system. The behavior of the component is defined in
terms of interfaces from and to the component. The behavioral model contains a composition
of computational components that implement specified functions, exchange messages and
alternate between the system’s states to produce results. During a component execution,
all past information that can be accumulated at a given instance is called state, and this
information is directly relevant to upcoming operations of the component. Furthermore, the
change of the state is called an event [OK05].

A message in the behavioral model is a data structure that contains a number of data
fields with dedicated names. These fields comprise semantics of the message such as source,
destination, priority and payload. Moreover, data exchange via shared memory is also a
means of communication.

Interfaces are needed in large system in order to provide functional and temporal abstrac-
tions between the different components of the distributed system. There are many types of
interfaces depending on the purpose of the interface, i.e., Technology Independent Control
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Interfaces (TIIs), Technology Dependent Debug Interfaces (TDIs), linking interfaces and
local interfaces [Kop13].

Linking Interfaces (LIF) entail operational and meta-level specifications of the inter-
components communication. This includes the structure of the exchanged messages, and
the temporal details for the messages. This represents the operational specification of the
syntactic and temporal properties accordingly. The semantics of the message are described
based on the meta-level specification of the interface. A component can provide LIF services
and it can request linking services provided by other components. An example of such
interface is the component interface to the communication network.

Local interfaces are responsible for providing the link to the external environment.
However, the semantic content relevant for this interface is specified in the LIF.

Components that link the internal world of a cluster with the external environment are
called gateway components. These components have two interfaces, a LIF that provides the
link to the cluster’s communication networks and a local interface that provides the link to
the external environment. Network and memory gateways are good examples of gateway
components.

2.1.3 Concept of Timing in Real-time Systems

The granularity of a time base is the duration between two consecutive micro-ticks in a
digital physical clock.

Synchronization of the system activities requires the preservation of the time information
related to the occurrence of an event or system activity. This can be established by attaching
a dedicated time stamp to each of the activities. Time stamps are called absolute in case they
are synchronized to a reference clock. A reference clock is an external clock that is detecting
and observing all activities of the system as a timekeeper.

Assuming that we have a distributed system that consists of multiple nodes. Each node
has its now local physical clock and all local clocks have the same granularity, and are
synchronized with the same precision. The time precision is the maximum offset between
the micro-ticks of two different clocks. As a result, a selected set of micro-ticks for each
local clock can be considered as global ticks of the system’s global time.

Clock synchronization is done at two levels, internally and externally. Internal synchro-
nization ensures that the occurrence of all global ticks is always within the precision defined
for the system. This is done by synchronization messages between the different nodes.
Synchronization messages might be subject to a so-called malicious or Byzantine error,
where such errors can easily result in inconsistency of the subsystem clocks. To resolve this
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problem, either interactive-consistency algorithms or inconsistent algorithms with bounded
effects of malicious clocks (e.g., fault-tolerant-average algorithm [LMS85]) are used.

External clock synchronization is responsible for aligning the global time ticks of the
system to an external time standard, e.g. global positioning system. Time synchronization
in this case is done through time gateways that are also responsible for the timely correct
initialization of the system, as well as time-format mapping from one time standard to another
one. Finally, the local time gateway is responsible for communicating and synchronizing
with the other time gateways and executing time re-initialization when needed.

As discussed earlier, distributed real-time systems with time-triggered control have to
be synchronized to establish a global time base for all time-triggered subsystems. Without
clock synchronization, internal clocks of a set of subsystems may differ even if they have
initially started accurately due to clock drifts [TS01]. Therefore, clock synchronization in
distributed embedded systems is very essential. There are a number of existing solutions
for clock synchronization, e.g., precision time protocol, global positioning system, Network
Time Protocol, IEEE1588. Network Time Protocol (NTP) is a frequently used clock synchro-
nization solution between computer systems. In previous work of the author, a distributed
system based on time-triggered control was presented where NTP was used to provide clock
synchronization [OAOD14].

Timing Properties and Time Analysis

It is essential that all time constrains and synchronization requirements of real-time embedded
systems are met. Hence, timing models and analysis techniques are required to calculate and
ensure the achievement of these time requirements. In the following, a number of timing
properties that are used for embedded systems are discussed.

The execution time is the time required for a task or action within a component to finish
after it has started [Zur09]. This measure cannot easily be derived as it inherently depends
on the hardware and the execution flow of the system components and services. Execution
time estimation provides more flexibility for system analysis. The WCET for instance, is
a way to bound the execution time of a task or action. WCET approximation methods
are important to deal with the unpredictability of present-day computing platforms (e.g.,
speculative execution, caches). [WEE+08].

The response time is the time calculated from the difference between the task completion
time and its release time. The release time is the time when the task becomes ready for
execution [But11]. The task response time must be bounded especially in hard real-time
tasks. For instance, the required response time in control loops is often in the order of
milliseconds or even less. System components involved in the time analysis might change
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based on the dependencies and interference within on the examined subsystem. For instance,
the calculation of the response time in a system might include the network between the
components. This depends on whether the network itself is considered autonomous or as
part of the components.

The end-to-end delay at communication levels of an embedded system, is the time
property that relates the occurrence of an event in time to the occurrence of another event.
As an illustration, this delay in message-based systems is calculated from the time that a
message requires to be transmitted from a source component to the delivery at its destination.
This transmission could possibly include multiple networks such as on-chip and off-chip
network interconnects [OOA+14b].

2.2 Dependability

There is a precise and rigorous terminology used in the literature to describe the basic concepts
of dependable computing codified by Laprie [cLR01]. Based on that, the dependability of a
computing system is its ability to deliver services that can justifiably be trusted. Additionally,
dependability is defined by the IFIP Working Group 10.4 on Dependable Computing and
Fault Tolerance as "the trustworthiness of a computing system which allows reliance to
be justifiably placed on the service it delivers". Alternatively, it was defined in IEC IEV
191-02-03 as follows: "dependability is the collective term used to describe the availability
performance and its influencing factors: reliability performance, maintainability performance
and maintenance support performance".

2.2.1 Dependability Attributes

In the following subsection a number of key dependability attributes that have to be taken
into consideration to deliver a dependable system are presented.

Reliability

Reliability in embedded systems is defined as the continuity of the services. In other words,
reliability is the ability of the systems to provide failure-free operations for a specified period
of time in a specified environment. Based on this definition, a reliable service shall not fail
for a given period of time, or it shall be able to successfully recover to a safe-state in case of
a failure. This safe-state is a state that can be quickly identified in fail-safe real-time systems
in case of a failure. Highly reliable embedded system services in safety-critical systems are
demanded to exhibit failure rates are in the order of 10−9 failures/hour [LHSC10].
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Availability

Availability is the probability of the system to be ready when needed, i.e., it is the system
readiness to provide sufficient quality of service. Reliability and availability are directly
connected. Therefore, the following reliability parameters are used in order to calculate
availability.

Availability = MT BF/(MT BF +MT T R) (2.1)

Availability is the rate of the estimated average time between failure of system compo-
nents (known as Mean Time Between Failures (MTBF)) divided by the sum of the MTBF
added to the average time needed to repair the failed system module (known as Mean Time
To Repair (MTTR) [LS11]).

Safety

Safety is the avoidance of catastrophic consequences on the environment by avoiding critical
failure occurrence. Such failures impose significantly higher cost than the utility of the
real-time system. As a result, safety is a characteristic of the whole system and not only of
a single component [Sto96]. For instance, one traffic light at a road junction can be set to
"red" in case of a failure of the system, but this is not enough to avoid possible collisions. All
traffic lights at the junction shall stay at "red". In order to design a safe system, safety shall
be considered in the context of the system and not only at the component or the software
levels. It is important to mention that the previous example can be called a safe system, but it
is not necessarily a reliable one.

Different industry segments (e.g., automotive, avionic, medical) are demanding systems
with specific safety features. Despite the size of investments in this area, designing truly
safe systems is sill highly challenging. Modern cars contain a big number of embedded
computing systems that are connected hierarchically. For example, these embedded systems
exchange highly important inter-process messages relevant for advanced driver assistance
systems (ADAS) in parallel with higher level infotainment and navigation messages that are
of lower importance. Such a system, also known as a MCS, is required to react safely in case
of faults.

MCSs consist of a number of subsystems that are sharing their communication and
computational resources, where these subsystems have two or more different criticality levels.
These levels are defined based on certification standards. The certification process is based
on evidences that are established by activities such as documentation, reviews, audits or
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testing. This includes the identification of the possible hazards, determine the risks and then
defining the safety measures.

Safety standards have been evolving over the years, DINVVDE 0801, DINV 19250,
EUROCAE-ED-12B, EN 954 and ANSI/ISA S84.01 are examples of standardization attempts
for safety standards relating to computers in control [Col08]. Nowadays, IEC 61508 is a
cross-domain functional safety reference that is widely used in the industry. Potentially,
this standard can be extended to any other industrial domains, e.g., medical electrical
equipment, trains, wind power. For instance, it has been extended to meet the functional
safety requirement of the automotive domain (i.e., ISO 26262). The IEC 61508 standard
requires risk assessment and hazard avoidance to be carried out in the whole system. This
requires the definition of the so-called Safety Integrity Levels (SILs) of the system, which
are the criticality levels of the system based on that standard. The demanded reliability in
these four SILs in case of IEC 61508 can vary from 10−2 to 10−1 at low demand, up to 10−9

to 10−8 at high demand mode [Bel06].

Security

The last attribute of dependability that we discuss is security. It is the ability of the system
to prevent unapproved access to data or services including the reduction of vulnerabili-
ties and protection against threats, attacks, interference and espionage [Gas88] [WLSC07].
Security attacks aim to obtain access to hardware, software, information and possibly to
modify specific service functionality. Threats exist vertically at all levels of the system
from hardware/physical level up to the operating system and application level. Attacks that
results in these threats are usually categorized into the following main categories: backdoor,
denial-of-service, direct-access, eavesdropping, spoofing, tampering, privilege escalation,
phishing and click-jacking attacks. Attackers might attempt their attack on the computer
systems or even on the users as in social engineering attacks.

The security issue of computer systems has been keeping engineers and researchers
busy since the beginning of the digital system evolution. Therefore, a number of defense
strategies have been developed, e.g., access control systems and application security using
antivirus software. Despite the long list of defense options to obtain better secured systems,
security remains a prevalent challenge in present day embedded systems. An example for the
vulnerability of automotive systems was demonstrated by the automotive security researchers
Charlie Miller and Chris Valasek. They hacked a Chrysler Jeep using a “wireless attack” at
the Black Hat 2015 conference in Las Vegas. This hack has caused the recall of 1.4 million
vehicles by the car manufacturer [Yos16].
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2.2.2 Faults and Fault Tolerance

Dependability and security threats are linked as described by Avizienis and Laprie [ALRL04].
They are divided into faults, errors and failures.

The function of a system is what the system is intended to do, as described by its
functional specification. Faults occur often in systems such as a frozen memory bit, an
uninitialized variable in software, or a cosmic ray ionizing its way through an embedded
system. The ensuing failures indicate the disagreement between the defined service and
the actual behavior in the system. An error is a system state that may lead to a failure. An
error is detected if an error message or signal is produced within the system or latent if not
detected. A fault is the cause of an error, and it is active when it results in an error, otherwise
it is dormant. A system failure occurs when the delivered service does not comply with the
specification.

The cause of faults is vary diverse, hence they are classified into three major classes.
Firstly, design faults can occur at both hardware and software levels. It can be due to
software flaws or due to hardware errata. Moreover, the erroneous logic can appear upon the
integration of both hardware and software of the system. The second class of faults are the
physical faults. This type of faults is non-human made, which means that they exist due to
product defects or physical damage of the system. Finally, malicious attacks or faulty inputs
in addition to possible physical interference can result in interaction faults.

Fault-tolerance is the ability of a system to preserve its ability to deliver a correct service
in the presence of faults [ALRL04]. The ability to detect and process error states and assess
the consequences is essential for having a fault-tolerant design. This is achieved by removing
system error states, and then treating the source of the fault. Our goal as engineers is to
prevent the occurrence of system failures in our embedded systems, which requires a well
defined process. Therefore, quality control techniques at both software and hardware levels
shall be applied. Each class of faults has its own techniques to prevent failures and acquire its
means to achieve the dependability of the system. Model-based and object-oriented design
for instance are introduced to prevent software design faults and consequently failures. In
distributed systems failures caused by such faults can propagate from a system to another one
through a message failure in the time or value domain. Therefore, proper design decisions
have to avoid this propagation, using proper network interfaces as in [OKSH07]. Moreover,
radiation hardening and foolproof packages are used to mitigate physical faults and interaction
faults [cLR01].

Error containment is the ability of the system to handle errors. This can be performed
in two phases, error handling and fault handling. Identifying and saving specific safe states
(so-called checkpoints) of the system can help to rollback to points in time where the system
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was free of that error. Such an error handling technique for eliminating errors is used in
distributed shared memory systems [JF95]. What is important in fault handling is to identify
the cause of the error and isolate the faulty component of the system, which can be a software
component or a hardware component.

Software and hardware fault tolerance is achieved by using redundancy [KK07]. Hard-
ware redundancy techniques often make use of multiple identical components or subsystems,
in addition to means for arbitrating the resulting output, e.g., majority voting. ECC memory,
for example, uses a few extra bits to detect and correct errors resulting from faults in the
individual storage bits. Running the same input data through a faulty software module
multiple times yields the same erroneous result each time. Redundancy can be done by 1-to-1
redundancy or up to N redundant instances. However, Triple Modular Redundancy (TMR) is
commonly used in both software and hardware fault tolerance.

Software fault tolerance is built by applying algorithmic diversity, computing results
through independent paths, and by judging the results. This adds complexity to the system
in general. Adding software fault tolerance will improve system reliability only if the gains
made by the added redundancy are not offset by commensurate new faults introduced by the
redundant parallel code. In case of N-modular redundancy in hardware fault tolerance, the
cost of the system health monitoring for all instances is very high. Therefore, a hierarchical
structure of health monitoring units can be applied.

Based on Kopetz [Kop06], the following instructions have to be followed in order to
establish a fault-tolerant system. Initially, assumptions must be specified for the types and
numbers of faults that will be tolerated in the designed system. This is called the phase of
the fault hypothesis. The definition of specific Fault Containment Regions (FCRs) is part of
this phase. An FCR is the set of components or subsystems that shares one or more common
resources that can be affected by a single fault and is assumed to fail independently from
other FCRs of the system. Moreover, it is mandatory to identify specified failure modes
for each FCR at this phase. Each single FCR in the designed embedded system can fail
in a specific failure mode, e.g., fail-stop, crash, omission, timing, byzantine or babbling
idiot [Kop05]. The design phase is the second phase of the process, taking into account the
previous assumptions. Finally, the designed architecture can be implemented and validated
using the selected fault-tolerance mechanisms and the fault hypothesis that was assumed.
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2.3 Paradigms of Communication

2.3.1 Shared Memory and Messages-based Communication

The increasing number of cores integrated on a single chip has introduced the need for
efficient inter-core communication means. These means are used to exchange data and
provide access to the required memory resources. Cores might share specific data blocks
with other components, where this data shall be exchanged concurrently.

In multi-core embedded systems, memory data is usually shared and distributed be-
tween local caches at the cores and external memories. Each core will have its correspond-
ing memory segments (locally or remotely). Moreover, data can be exchanged between
the cores though a shared memory by employing overlapping memory segments. Shared
memory-based communication requires the support of a hierarchical memory architecture
and concurrency algorithms (i.e., cache coherency protocols, cf. Section 2.4.1). This type of
communication is more expensive from the overall execution time point of view, and has a
high hardware complexity.

In case of message-based communication, a message structure is defined to wrap all
needed information for data exchange between the cores. Message-based communication
ease of use for application developers, it involves better utilization from a bandwidth point
of view, and it typically provides better spacial isolation between the components. It can
also be easily managed to provide better timing isolation in combination with a TDMA
communication scheme, as will be explained later.

These two forms of communication can be combined to benefit from both paradigms as
described in this dissertation.

2.3.2 Event Triggered vs. Time Triggered Communication

An overview of the different types of control paradigms is discussed in this subsection. Con-
trol signals in embedded systems are initiated when an action occurs, such as, a transmission
of a message, the start of a service, or a memory request. As discussed in previous sections,
embedded systems can be classified based on their control signals into event triggered and
time triggered systems. This differentiation depends on the source of the triggers.

In case control signals are generated based on events then we are talking about event
triggered communication, where every change of the system state is considered as an
event [Kop13]. This event might be generated internally within the real-time system, or
it might be originated from one of the controlled objects of the real-time system. A good
example of event triggered communication is the CAN bus that is widely used in the chassis
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control systems and power train communication [Amo04]. An event message is a message
that contains event observations of the difference between the last observed state and the new
state. The notion of time in such messages denotes the point of time at which the state has
changed. Communication guarantees in event triggered real-time systems are provided by
using control flow protocols with some sort of acknowledgment. Positive Acknowledgment
with Re-transmission (PAR) for instance, is one of the control flow protocols using positive
acknowledgment for successful reception of the message. The usage of such protocols pro-
vides resilience against transient failures in event triggered systems. The basic idea of PAR is
very simple, each sender has a predefined time-out to receive the reception acknowledgment
from the receiver. In case, the time-out is over without the reception of the acknowledgment,
the sender attempt to re-transmit the message considering that some failure occurred in the
reception of the previous attempt. Moreover, explicit control flow can be used to solve timing
failures, where the receiver can send a control signal to inform the sender about its desire
to send another message [OK05]. Generally, PAR based communication protocols (e.g.,
TCP/IP) are not considered as suitable for safety-critical systems.

In case of time triggered communication, the communication activities are periodically
triggered and synchronized based on a global time base. If multiple components in a real-time
system are observing each other, then the observed events shall have the same temporal order
in all components. Therefore, all control signals are generated in restricted and particular
points in time in relation to the global time based on the a priori knowledge of the real-time
system. The task period, the phase, the sender component and receivers are examples of
the a priori knowledge. Time triggered communication provides deterministic behavior and
guarantees high temporal predictability and composability of the real-time system.

Event-triggered protocols such as Ethernet and CAN do not provide sufficient guarantees
with respect to timeliness and reliability in safety-critical systems. However, a communication
control strategy is needed to provide temporal control and avoid conflicts between messages.
As explained by Lee in [LLS07], safety-critical systems typically use static TDMA-based
protocols, e.g., TTP/C or FlexRay. TDMA defines the time-based communication scheme
that is used by the communication controller of each component to disseminate the messages.
The communication scheme is defined by dividing the capacity of the communication channel
is statically divided into a number of slots. Each slot is dedicated for a certain component
of the real-time system. Each component has it own sequence of sending slots in the so-
called TDMA round. The completion of the TDMA rounds of all components denotes
the cluster/system cycle that is periodically repeated. The resulting static schedule defines
the communication between all components of the system with respect to the global time.
Additionally, a priori knowledge of the system (e.g., the number of components, sending time,



22 Background and Basic Concepts

inactive active inactive

Frag. #1 Frag. #2 Frag. #3

Pulse periodPulse phase

Pulse duration

TDMA slots 

Fig. 2.3 TDMA-Pulsed Data Stream [OESHK08]

receiving time, etc) is required. Finally, message handling is done at design time without any
need for explicit control flow as in event triggered communication systems.

In Time-Triggered Ethernet (TTE) [Obe11], frames are based on Ethernet as standardized
in IEEE 802.3. To start the communication, Pulsed Data Streams (PDSs) specify the carrying
signals and their clock pulses. A PDS is a time triggered, periodic, uni-directional data
stream, which is identified by periodic pulses with defined pulse period and defined pulse
phase. As illustrated in Figure 2.3, at least one fragment of variable size construct the PDS
and the fragments of a PDS do not require to be transmitted without interruption. The time
between the start of the transmission of the first fragment and the end of the transmission of
the last fragment is known as the duration of the pulse. The phase of the pulse is the offset
until the transmission is started. Each fragment is composed of a set of fixed-size flits.

2.3.3 Types of Communication Messages

Communication activities in real-time systems are initiated at specific points of time (cf.
Section 2.1.3). Moreover, three message types can be distinguished in real-time systems:
periodic, aperiodic and sporadic messages. Determinism and real-time support in time
triggered communication requires periodic message exchanges, where messages contain
the absolute real-time value. These periodic messages are transmitted at predefined points
in time, with a specified period and phase, according to a communication schedule. The
communication of periodic messages can be planned at development time in order to minimize
latency and jitter. Finally, message queuing is not required at the communication interfaces
in time triggered communication, since real-time applications are interested only in the most
recent value of the observed object.

Messages with unspecified bit rate and delivery timing constrains are called aperiodic
messages. This type of messages is typically served based on the current traffic load of
the network. Namely, these messages use the remaining bandwidth of the network to be
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transmitted. Hence, there are no guarantees for the transmission or receiving of the message.
Additionally, possible delays or even message loss might occur.

Sporadic messages (a.k.a., rate-constrained messages) are messages with bounded
minimum interarrival times. The total allocated bandwidth is calculated from the band-
width allocation gap (BAG), and shall not exceed the maximum available bandwidth. Al-
though rate-constrained messages are suitable for real-time applications (e.g., ARINC-
664P7/AFDX [TPS15]), sporadic messages are determined for less stringent communication
constrains than the periodic messages.

2.4 Memory Technologies and Hierarchy

Memories are one of the main components comprised in all embedded systems. Nowadays,
computational components are becoming faster and more numerous. Moreover, the perfor-
mance and size of memory is growing due to the low cost. The real limitation factor in
embedded systems is memory efficiency and memory access. Existing memory handling
approaches, both in software and hardware, promise to provide higher efficiency for memory
architectures in embedded systems. Figure 2.4 shows a typical memory hierarchy in a
single processor core. It is important to mention that the cost for data fetching is increasing
dramatically as much as location of the required data away from the requesting processor.
This expansion can be noticed in larger scale memory architectures in distributed systems.
Cross-cutting system-level issues e.g., performance and reliability [JNW07] become much
more complex to manage and handle at that level.

CPU

Registers 

Cache

I/O device

Memory
Memory 

Bus
I/O Bus

I/O device

I/O device

Fig. 2.4 Typical memoy hierarchy in embedded systems

The following characteristics are used to classify memories. The capacity, i.e., the global
volume of information that the memory is able to store can be in the order of gigabytes or
even terabytes (e.g., the world’s largest hard drive is 16 TB [Mos16]). Secondly, the access
time corresponds to the time interval between the read/write request and the availability of
the data. Third, the memory cycle time represents the minimum time interval between two



24 Background and Basic Concepts

successive accesses. Fourth, the throughput defines the volume of information exchanged
per unit of time, expressed in bits per second. Finally, memories are characterized based on
their ability to retrieve the stored digital data after being switched off and on again. Magnetic
tapes, mechanical drives, solid-state drives, flash memories and different forms of Read-only
Memory (ROM) belong to the non-volatile memories. This type of memories is able to store
information over long term, and stored data is not lost after power down. The second type of
memories is called volatile memory, where stored data will be irremediably erased in case
of power down. Volatile memories such as general purpose RAM including dynamic and
static RAMs are directly accessible to the computational cores (CPUs) using the memory
bus. This bus comprises an address bus and a data bus. In case that a memory instruction is
triggered, the desired memory address is sent through the address bus, then the data for the
read (or write) request is sent through the data bus.

The previously mentioned memory types are known as physical memory [LS11]. Another
form of memory technologies that is used in embedded system is the so-called virtual memory.
It is a memory management technique that can combine the usage of both volatile and non-
volatile memories of a system. Virtual memory provides an adjustable abstraction layer
by assigning the physical memory address space of the system to virtual addresses. An
additional translation layer between the computational core (CPU) and the system’s memory
is needed to reallocate the virtual memory addresses to physical addresses again. This is done
by the Memory Management Unit (MMU). The MMU improves its capability in address
translation speed with the help of a Translation Lookaside Buffer (TLB).

2.4.1 RAM Technologies

In the dissertation, we will focus on the analysis of RAM-based storage in this sub-section,
namely dynamic RAM and cache memories. Most embedded systems contain an amount of
RAM-based memory storage to provide relatively quick access to the main memory of the
system. Such types of memories can be either Dynamic Random-access Memory (DRAM)
or static Static Random-access Memory (SRAM). Both volatile memories are useful in
embedded systems, SRAM is able to maintain its data better than DRAM. This problem
appears due to the way DRAM operates, where each memory location must be periodically
refreshed. Otherwise, data might get lost even while the power is maintained. This refresh
cycle might cause delays for the memory access. Another key factor in accessing a required
memory address is the last accessed memory address. To overcome this problem, DRAM
are used in combination with a memory controller that is responsible for handling memory
requests in case the memory is busy refreshing memory locations. Despite that SRAM
consumes more power and is expensive in comparison to DRAM, there is no embedded



2.4 Memory Technologies and Hierarchy 25

system that does not include one. However, memory requirements, especially in complex
embedded system applications, cannot be fulfilled only with SRAM. Therefore, DRAM
is used to in conjunction with SRAM. It is important to mention that embedded system
developers have to be aware of the system’s memory address map. This map defines how
addresses are mapped to the hardware (e.g., an address can be mapped to SRAM or DRAM
or even both).

DRAM technology has been evolving fast in the last decades. Several improvements
have been made in regard to capacity, performance, integrity (e.g. Error-Correcting Code
(ECC) memory [HP03]) and security. But most importantly, memory operations in typical
asynchronous DRAM were managed by an external clock signal. This restriction limited
the data transfer rates and the concurrency performance of the memory. Pipelining memory
operations was the solution by introducing synchronous DRAM (known as Synchronous
Dynamic Random-access Memory (SDRAM)) thereby increasing efficiency and throughput.
The memory is divided into independent banks allowing the memory to process multiple
memory operations at a time without waiting [Cra96].

Currently, many embedded platforms use Double Data Rate (DDR) SDRAM that trans-
fers data elements on both rising and falling edges of the clock effectively doubling the
bandwidth over its predecessors. Moreover, special propose SDRAM was firstly introduced
by ATI technologies. Graphics DDR for instance, is a special SDRAM used for graphics
processing units (GPUs) with increased throughput and more precise timings. Next genera-
tion graphics cards will be using the newly standardized GDDR5X specification for their
Synchronous Graphics Random Access Memory (SGRAM). This standard was certified at
the beginning of 2016 by JEDEC, a major semiconductor engineering trade organization for
memory standardization [Des16].

The structure of an SDRAM consists of banks, rows, and columns. Figure 2.5 illustrates
a simplified abstraction of the building blocks constructing a four bank SDRAM. Banks
are essentially independent memory blocks, but with shared data, command, and address
buses to reduce the number of off-chip pins. This can be achieved using different control
mechanisms and decoders of the SDRAM structure.

Generally, the SDRAM protocol consists of six commands: activate, read, write, precharge,
refresh and no-operation. The activate command opens a row in the memory array and stores
it in a row buffer. Once the requested row is opened, read and write commands can be issued
to access the columns in the row buffer. These bursts have a length of either 4 or 8 words.
The precharge command is the converse of the activate command, as it copies the contents of
the row buffer back into its place in the memory array.
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Fig. 2.5 DDR SDRAM memory block diagrams

It is possible to initiate read and write commands with an auto-precharge flag, resulting
in an automatic precharge at the earliest possible moment after the transfer is completed.
A memory cell stores a bit as a charge in a capacitor. Refresh commands are regularly
executed in order to protect data loss, but no data can be transferred when the memory is
being refreshed. Finally, if no more commands are buffered during the current clock cycle,
then a no-operation command is issued.

The execution of memory commands in a SDRAM is technology dependent, and it is
bounded by its timing constrains [JNW07]. These constraints aim to minimize the execution
delays between consecutive commands, and they also define which command can be executed
during a particular clock cycle. The peak of memory bandwidth can be determined by the
width of the memory interface, its clock frequency, and its data rate. The overhead caused by
the timing constraints can result in difficulties reaching this peak in SDRAM.

Cache memory is small and fast RAM-based memory that can be directly integrated in
computational units or cores. Cache memory usage increases the overall system performance
and it reduces the average time and power costs by providing direct and quick access to the
frequently used data. Information from previous readings of memory commands can be
stored locally at the core.

Data concurrency can relatively easily be managed in case of a single core level-1 (L1)
cache. On the other hand, caches have to be part of a defined hierarchy in more complex
systems. In multi-core systems for instance, all cores are executing in parallel, and most
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likely, sharing same (or all) memory resources at overlapping time periods. This parallelism
in data usage by the cores could result in wrong application outputs. In case of critical task
executions this might be fatal (e.g., advanced driver assistant systems) or might result in
high financial risk (e.g., high-frequency trading algorithms). Therefore, cache memory of
level-2 (L2) and level-3 (L3) can be used to efficiently define the data accessibility. In this
way higher levels of caches shares some data and information about lower caches.

Cache sizes are always powers of two, and they are usually in the order of a few kilobytes.
A cache memory consists of a predefined number of cache lines that contains the frequently
accessed data blocks. When a memory read or write request is initiated at a core, the required
data might be located at its cache. Otherwise, it has to be located and copied from the
system’s main memory. This two cases are called cache hit and cache miss.

The structure of a cache is organized in sets of cache lines with data blocks. Each cache
line contains three identifiers, a tag, data block and the flag bits. The tag represents the most
important bits that are used to locate a specific cache line based on the actual address. The
data block contains the cached data, and the flag bits are bits that are used to declare the
validity of the loaded data. Data can be either valid or dirty. Valid data is data that has not
been modified yet, otherwise it is called dirty. In order to locate a data block in the cache, the
exact cache set has to be found. Later the tag identifier is used to locate the desired cache
line. Finally, the block offset helps to locate the exact data block. These three parameters can
be extracted directly from the address of the desired memory block.

Fig. 2.6 4-ways set associative cache structure (8KB cache size of 64 byte cache block size)

As explained earlier, the size of a extracted is very limited, thus unused cache blocks
shall be replaced. The way that the cache is configured defines its replacement policy of the
cache blocks. There are three main ways of this configuration. First, if the fetched cache
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block can be placed at exactly one location then it is called a direct mapping [Jou90]. Second,
if the cache has the full flexibility to place the cache block at any location then it is called
fully associative. Third, the cache is grouped in sets of N cache lines in which the new cache
line and can be placed at any of the N places. N-ways set associative caches are commonly
used caches in the industry (e.g., AMD ZEN uses L2 8-ways cache of 512K1).

N-ways associativity is usually implemented in even based scale, i.e., two, four, eight,
etc [CJ06]. Increasing the ways that the cache is associated would increase the possible
latency for the searching all N locations. Furthermore, it reduces the rate of memory misses.
Handling memory misses requires the classification of the misses. A compulsory miss occurs
in case the required cache block is not located at the cache an it has to be fetched from the
main memory. A capacity miss is miss that occurs in case that the required cache blocks
cannot be adapted in the cache due to its size. Later, further attempts shall be executed to
fulfill this request. Conflict misses occur due to performing cache replacements and the
limitation of the associativity structure. Each memory miss has its miss penalty, which is the
time required to move and replace a cache line from a distant cache or the main memory to the
local cache. Cache misses cannot be totally avoided but their frequency can be reduced. This
can be done in many ways, such as having higher associativity or using pseudo-associativity
or by using a victim cache [SMM+11].

Having N options for the replacement would raise the following question. Which cache
line shall be removed? Existing algorithms (e.g., Least Recently Used (LRU), Most Recently
Used (MRU), Least-Frequently Used (LFU)) are used for making the replacement decision.
There are many other algorithms to resolve this issue, where the decision depends totally on
usage case-specific conditions and the compromises designers are willing to do.

Hierarchical shared cache setups are required to reduce the complexity and execution
costs in multi-core systems. In an N core multi-core chip, each core can have its L1 cache and
each pair of cores can share an L2 cache and one L3 cache is needed for all N cores. Possibly
multiple copies of the same memory block and deviations of timing in such cache structures
raise the issue of memory consistency in the system. Consequently, cache coherency is used
to refine the correctness of the memory references based on one of the consistency models.
Many consistency models have been defined in the literature that define a specific level of
predictability in memory operations. The most known consistency models for multi-core
chips are the release- and sequential-consistency models.

Directory-based and snooping are the most known mechanisms to achieve coherency
control. Both mechanisms keep track of all shared data in the system and maintain the
consistency by validating the shared data with the collected tracking information. This

1AMD ZEN press release, August 2016
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information is related to the cache line states, which must be valid for the main memory
copies. The Dirty state is used for locally modified copies, and the invalid state marks shared
copies of the cache line [Law98].

A number of snooping-based coherency protocols are used for cache and shared memory
coherency. The idea of these protocols is to identify the different states of a given cache
line during execution. These states can be Modified, Shared, Invalid, Owned, Exclusive and
Read only. Coherency protocols such as MSI-based protocols and MOSI-based protocols,
use a subset of the previously mentioned states to derive their decisions that guarantee the
coherency of the shared memory.

2.4.2 Memory Controller

The main objective of a memory controller is to interface between the different components
of the embedded system and their main memory (i.e., DRAM). A memory controller is
responsible for managing and translating memory operations into instructions that can be
executed by the memory. According to Akesson [AG11b], a memory controller has two ends.
The front-end is agnostic to the memory and it buffers memory requests and responses in
both directions. The back-end of a memory controller is responsible for handing incoming
memory requests, managing responses and memory commands. These two ends have four
components, an arbiter at the front-end, a command generator and a memory mapper at the
back-end. In addition, the memory controller contains a data path that is horizontally passing
data through both ends from and to the memory.

The arbiter is responsible of handling and scheduling memory requests. It defines the
bandwidth and latency based on the requirements of the components accessing the memory.
Scheduling at the arbiter can be either static or dynamic. Statically scheduled arbiters
are predictable, whereas dynamic scheduling is often preferred since it supports run-time
decisions that will result in better bandwidth utilization and lower latency. Round-robin and
static priority scheduling are dynamic arbiters. Despite that Time-Division Multiplexing
(TDM) is also a dynamic arbiter, its schedule is defined at design time [GGA+15].

The command generator is also a scheduler that is responsible for scheduling and gener-
ating memory commands according to the memory requests at the back-end. The command
generator is customized depending on the generation and type of memory connected to the
memory controller. It maintains the timing constraints of the system according to its schedule.
Therefore, in case of a static schedule it considers the timing constrains at design time for
well-known traffic. In case of a dynamic command generator these time constraints are
checked at run-time. The run-time decisions aim to improve the flexibility in prioritizing
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memory commands depending on the run-time conditions, with a trade-off towards the
command generator’s predictability.

The translation of the memory addresses into a form that can be used and understood
directly by the memory is done at the memory map. These addresses are related to the
memory requests received at the back-end of the memory controller. The outcome of the
translation would result in the information about the desired bank, row and column of the
memory. Memory maps define also the way for accessing the memory using memory patterns.
The most commonly used memory maps are the bank sequential access or the interleaving
access [GKAG12].

2.5 Transactional Memory

As Moore’s law, in its classical form, is coming to an end, single core architectures stalled
to give its place to multi-core architectures where two or more cores are integrated on a
single chip sharing resources such as memory. The number of cores per chip increases
steadily and today’s multi-core chips have up to 72 cores as in the Xeon Phi super computing
chip. This trend demands for a new way of handing shared memory resources. Transactions
provide an abstraction that supports handling concurrency of a shared memory in parallel
programming and multi-core systems. In contrast, today many programmers are asked to
solve concurrency problems with very limited abstractions of the programming languages
(e.g., locks, mutexes and semaphores). Even higher level programming languages are not
composable enough and can easily result in failures in the shared memory concurrency.
Locking-based mechanisms are used in handling a shared memory, but there are a lot of
drawbacks such as priority inversion, deadlocks, missing composability, inability to scale
easily with increasing numbers of cores and threads [FF11]. Transactional memory was
introduced initially for databases, and later it has been proposed as a concurrency control
mechanism to ease parallel programming and parallel processing in multi-core systems. It
offers atomicity, consistency, durability and isolation guarantees in the access to a shared
memory. By using a transactional memory, locks are not needed due to the fact that the
sequence of the memory operations are executed in one transaction. This is similar to
a database operation, that executes the operations and commits the changes at a certain
time. Therefore, transactional memory is a competitive way for handling and coordinating
concurrency of memory rather than using lock mechanisms.

All transactional memories have three main components, a version management: a
conflict detector and a conflict resolution component.
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Version management is a concurrency control protocol that holds different information of
the transactions (e.g., ID, time stamps, versions and values) to keep track of all versions of the
accessed memory locations. In order to understand the idea behind the version management,
one can simply recall the different version control tools based (e.g., subversion) that are used
by groups of developers to track current and historical versions of their projects.

Since a transactional memory is a lock-free mechanism, conflicts can occur. Therefore, a
dedicated component detects conflicting transactions. The conflicts detector runs algorithms
that detect transactions trying to access shared memory addresses.

Given a conflict is detected, the conflict resolution component is called to decide how
to resolve those conflicts. A variety of different algorithms (e.g., priority based decision)
has been introduced to resolve conflicts depending on the system-specific design and the
requirements.

Both version control and conflict detection can either be eager or lazy. Eager version
management means that updates and changes are directly reflected in the transaction records,
which is making committing faster. A lazy policy is usually followed for fine-grained trans-
actions. Eager conflict detection can identify conflicts early enough to avoid accumulation of
conflicts that would result in having complex conflicts to be resolved later by the conflict
resolution. This policy is commonly used in coherency protocols.

The use of transactional memories in embedded systems has also been proposed for
dependable embedded systems [FF11], where both concurrency control and failure control
must be addressed. The benefits compared to lock-based synchronization include a higher
level of abstraction, better scalability and lower programming efforts.

In particular, transactional memories are useful for mixed-criticality systems, where
subsystems with different safety assurance levels coexist on a shared computing platform.
Mixed-criticality systems comprise subsystems with varying degrees of assurance and timing
guarantees [Ves07a]. Mixed-criticality systems are a key enabler to reduce the cabling and
the number of devices in many application domains including automotive, avionic, healthcare
and industrial systems [OOA+14b]. The resulting benefits include lower cost, weight and
maintenance efforts due to the higher integration and the more efficient use of computational
resources.

2.5.1 Types of Transactional Memory

Three types of transactional memories can be distinguished based on their implementation:
hardware, software and hybrid.

A transaction is an ordered sequence of memory operations that starts with a start-
transaction instruction and contains a commit instruction at the end of the sequence.
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HTM was introduced in 1993 by Herlihy and Moss [HM93]. This type of transactional
memory directly targets the multi-core architectures, where additional transaction coordina-
tion components are integrated. Additionally, special extensions in cache forms are used to
implement different cache coherency protocols for the support of the HTM architecture. Fur-
thermore, low level modifications at core level provide capabilities for handling transaction
in an atomic way, updating or even splitting transactions (when needed) in the multi-core
system. For instance, Intel’s 4th generation processors use HTM [Int14].

The classic implementation of HTM is done by having two types of caches. One ded-
icated cache for non-transactional memory operations handles all read operations as in a
conventional direct-map cache. The second cache coordinates the transactional memory
operations (i.e. write operations). This cache applies an additional logic that holds tentatively
write operations until the transaction commits or abort. Generally, if a transaction is ready
to be transmitted to the main memory in case of no conflicts then it is called ready to be
committed. Otherwise, if conflicts cannot be resolved the transaction has to be dropped and
is called aborted.

As the name states, STM is purely implemented in software. The idea of this solution is
to store read and write logs while executing the version management component to maintain
the system logs. The updates can be directly written and an additional log is used to track the
value changes. This additional log is used later in case of conflict detection to undo or redo
changes. High level programming languages provide an abstraction level of their languages
supporting transactional memory. Programmers in this case have to handle and defined the
atomic blocks considering all details themselves.

The initial software-based implementation of the transactional memory was introduced
by Shavit and Touitou back in 1995. The idea was to bound the delays introduced in
the memory hierarchy by decreasing the number and size of the critical sections in the
multiprocessor applications using a non-blocking method [ST95]. This implementation
proved the ability of the STM to manage the concurrency problem cheaper and more flexibly
than the hardware solution. Moreover, software-based transactional distributed shared
memory solutions were also proposed for distributed embedded real-time systems. These
solutions are mainly focusing on improving the programmability of the system as in [HLRP]
and D2STM [CRCR09].

Generally, HyTM offers significant performance gains compared to STM due to the impli-
cations of using high level programming languages (Java and C++ based solutions) [DFL+06].
Therefore, HTM was proposed to utilize the STM when the resources are sufficient to per-
form the transactional memory through software, and to use HTM in order to maintain
the atomicity of the transactions executed in software. In such a way, transaction con-
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flicts can be easily detected and resolved. The combination of the two approaches does
not necessary mean that they directly depend on each others. In some cases HyTM simply
switches between the two implementations depending on the performance of the transactional
memory [CGS+14], [RMN+].





Chapter 3

Analysis of the State-of-the-Art

This chapter analyzes existing architectures for chip and cluster levels and their suitability
for MCSs. Additionally, the architectural support for a hierarchical transactional memory
is discussed. The analyzed architecture will be compared towards four major requirements.
These requirements apply for both single chip systems and distributed MCSs. Later, the
fulfillment of these requirements in the existing state-of-the-art solutions is analyzed. Thus,
the outcome of this process illustrates the research gap in the state-of-the-art.

3.1 Requirements for Mixed-Criticality Systems and Trans-
actional Memory Architectures

3.1.1 Real-time

The increase of complex and critical computational demands in the industry (e.g., automotive,
avionic, health monitoring) has created significant pressure for designing embedded systems
with real-time capabilities. As explained in Section 2.1, the correctness of the resulting
outputs in an embedded systems is not attained if they are not produced at the right time. In
this context, real-time is directly related to the ability of the system to be predictable and
temporally synchronized. This depends on the real-time support in the system architecture
at both software and hardware levels, including the cores, the interconnects between cores,
the operating system, I/O, etc. In other words, predictability is what characterizes real-time
systems [SR90]. Furthermore, regardless of the tolerance level for missing deadlines (i.e.,
hard, firm or soft), the real-time system shall guarantee a predictable behavior.

We can consider that all MCSs are real-time systems, but not necessarily the other way
around. As already explained, the subsystems of a MCS have different criticality levels. The
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predictability support in such systems shall take into account the criticality levels of the
subsystems.

Design decisions of the MCS system architecture play an important role to ensure
predictability. The architecture of the system (i.e., gateways, chip and cluster levels) shall
support the timely execution the application service for safety-critical applications. Moreover,
the architecture of a real-time system shall be able provide all required temporal properties
at all levels of the system. These properties enable the monitoring of the system and the
calculation of the delays and WCETs. Still, predictability of a service cannot be guaranteed
if the system is not deterministic at all levels (e.g., subsystem level, communication level,
memory hierarchy and memory access level).

MCSs shall guarantee the temporal order of the critical applications and services through
a deterministic execution environment. Time predictability includes bounded latency and
bounded jitter for the transferred messages and memory interactions in the real-time system.
Bounded latencies are required to guarantee upper bounds on the response times of distributed
application services and shared memory requests. Bounded jitter is required when the system
has to react at a specific point in time for a safety-critical application or its memory requests.

3.1.2 Fault Containment

In MCSs, we need to guarantee that components with various criticality are not affected from
faults in the systems. The isolation of faulty components shall be assured for the following
two cases: a faulty (low-critical) component shall not affect higher criticality components.
Additionally, faulty components of higher or equal criticality shall not affect lower criticality
components. In general, components exchange their results continuously to achieve the
required function that the system is dedicated to serve. The provision of faulty inputs can be
masked by fault-tolerance such as n-modular redundancy. However, a necessary prerequisite
is the independence of the replicated components by means of fault containment in the value
and time domains.

Spatial isolation in a conventional shared memory hierarchy is controlled by the MMU [Joh99].
In case of systems with a transactional memory, the required isolation is established by per-
forming atomic executions of the transactions. In other words, transaction-based memory
segments can be isolated in case of failures. Atomicity of the transactional memory is consid-
ered as an isolation mechanism that provides deadlock avoidance and efficient concurrency
control.

The isolation must be performed also at the communication level by defining a variety
of communication channels connecting the components. In addition to the components,
criticality, these channels shall consider different types of communication messages (e.g.,
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periodic, aperiodic and sporadic). By enforcing the a priori knowledge about the permitted
temporal behavior of components, communication channels can eliminate temporal fault
propagation in the system.

Moreover, LIFs shall be used to provide an interface between the components in the
system. A time sensitive LIF in combination with a MCS-aware TDMA scheme provides
spatial and temporal isolation in the system. In case of a faulty component, its LIF shall
isolate that component and potentially reset the component before reconnecting it to the
remaining components of the system. Components are globally synchronized and the TDMA
schedule enforces the occurrence of the events only within the active intervals of the execution
time-line [Kop92]. Hence, faults can be encapsulated in case of their occurrence.

Based on these time sensitive LIFs, FCRs as introduced in Section 2.2.2 are introduced.
Hence, the failure of one FCR will not negatively affect the remaining system. Additionally,
FCR shall be defined based on the assigned criticality of the components. Moreover, a faulty
behavior of a FCR (e.g., babbling idiot component) can be accurately detected and efficiently
isolated.

3.1.3 Heterogeneity

MCSs are complex systems that are usually comprised of multiple nodes combined and
connected through a chip level or cluster level network. These nodes can contain a variable
number and different types of cores that differ in their criticality and models of computation.
For instance, an embedded system could be composed of cores with different Instruction
Set Architectures (ISA), or it could combine graphical processors with general-purpose
computational cores. Furthermore, it is known that networks at chip level often run at
different frequencies and timing restrictions (e.g. NoC) in comparison to cluster level
networks (e.g. Ethernet). This heterogeneity of the system shall be considered in our design
decisions at all system levels (i.e., nodes, cores, interfaces, gateways, memory hierarchy,
chip and cluster level networks). The consideration of the system heterogeneity determines
hardware design decisions and software support (e.g., protocol translation, communication
management and serialization, etc).

Hardware components are provided by different IP suppliers such as processor designers.
These components can use different communication protocols and memory hierarchies. This
has resulted in the need to define common specifications to deal with the heterogeneity
at the whole system architecture. At chip level, the foundation for Heterogeneous System
Architecture1 has defined a set of specifications with the help of the main market vendors (i.e.,

1HSA Foundation - http://www.hsafoundation.com/
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ARM, Qualcomm, AMD, and others) to hide heterogeneity. These specifications are in the
form of acknowledged architecture requirements, programming guidance and formal memory
models. The foundation has specified general propose API specifications that promise to
avoid operating system calls and provides an abstraction level that can support the hardware.
However, these specifications at both hardware and software levels do not consider the high
integrity demands of MCSs at chip level.

At cluster level, the distribution of the system and the heterogeneity of technologies used
at its nodes shall be also hidden. This can be done by providing message translation services
at the network gateways. In addition, a consistent memory hierarchy and shared memory
protocol provides an abstraction layer to absorb and hide the heterogeneity of the distributed
MCSs. This level of abstraction shall be able to handle the exchange of messages and
memory requests at both chip and cluster levels correctly and concurrently while preserving
atomicity.

3.1.4 Support for Hierarchical System Structures

The increasing number of components used in a single embedded system is not the only
reason that embedded systems shall have a hierarchical architecture. The tremendous number
of dependent services and functional features provided in such systems can neither be
designed nor managed in a flat-structured system. Adding to that, many MCSs exhibit
dissimilar requirements in terms of timing. Thus, the hierarchical architecture is essential
in distributed MCSs, it supports the refinement of timing segments defined at the platform
independent level, depending on the allocation choices made at the platform specific level.
A hierarchical systems structure can support the optimization of message passing, shared
memory data exchange and fault isolation in the system.

For example, an airplane system can only be designed hierarchically. The electrically
controlled hydraulic system of the Flight Control Surfaces (FCS) in an airplane has hundreds
of control functions that are executed concurrently to pilot a plane. This system is just one of
the many systems comprising an airplane (cf. Figure 3.1) 2.

The architecture shall be defined in a hierarchical structure as described in Subsec-
tion 2.1.2. This means that each MCS shall consists of a number of interconnected nodes.
A network gateway at each node shall perform protocol translation and message buffering
between the nodes. Moreover, each node shall have a memory gateway and a configurable
number of cores that are interconnected with a deterministic communication network. The

2Source: Federal Aviation Administration (FAA)
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Fig. 3.1 DC-9-82 Flight Control Surfaces

communication infrastructure at both chip and cluster levels shall support hierarchical end-
to-end communication channels that provide a predictable message exchange [OOA+14b].

The hierarchical architecture illustrated in Figure 3.2 shall be complemented with a
hierarchical memory architecture with guaranteed atomic memory operations support. The
architecture shall include predictable memory controllers and shared memory systems. Mem-
ory isolation must be improved at the system level by providing the ability to hierarchically
manage the system’s memory controllers. This memory hierarchy can utilize a local address
space at each node and a common address space tracker at system level. This tracker is
responsible for the concurrency at the system level. Cores shall have their own local cache,
and these caches shall be maintained during data accesses by using a hierarchical real-time
memory protocol for distributed systems. This memory hierarchy and its coherency protocol
shall be aware of the criticalities of the system.
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3.2 Architectures and Solutions at Chip Level

3.2.1 Existing MPSoC Architectures

There are a numerous MPSoC architectures in the literature. In this section, two typical
architectures were chosen to discuss the satisfaction of the requirements discussed earlier.

CompSOC Architecture

CompSOC is an MPSoC developed by the Eindhoven University of Technology and NXP
semiconductors. CompSOC can easily be uploaded on a FPGA board where performance and
energy consumption analysis can be performed. Therefore, it is used by many educational
and research facilities.

The CompSOC architecture connects a configurable number of processor-tiles (or simply
cores) implemented using Silicon Hive VLIW and tile-based memory units to the Æthereal
NoC [HGB]. At NoC level, Æthereal consists of a number of communication routers linked
together. The Network Interfaces (NIs) of the NoC are associated to the MPSoC tiles.
Æthereal provides two types of communication services: guaranteed services and best effort
services. The guaranteed services use TDM arbitration to ensure bounded latency for a given
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communication link between two NIs. Best effort services utilize the remaining bandwidth
with no guarantees [GDR05].

The NIs and the preemptive arbitration of resource scheduling are used to provide
predictability in the system. Composability is addressed in CompSOC by eliminating the
interference between the applications using the TDM arbitration.

Lately an improved version of CompSOC was introduced [GAC+13]. The new solution
is a virtual execution platform with support for mixed-time criticality applications. Com-
posability and predictability are addressed in the platform by enabling an isolated execution
of the virtually partitioned applications, where each application has its virtual partitions by
means of process and memory components. Virtual partitions are isolated using preemptive
TDM in such a way that applications cannot be affected by other application partitions. The
design flow of CompSoC includes all time constrains of the system to generate the virtual
application software (i.e., virtual processor, virtual NoC and the virtual memory partitions).
As illustrated in Figure 3.3, CompOSe is a real-time operating system that is responsible for
the management of the virtual processors with the real processor tiles. The hardware arbiter
is responsible for managing the TDM-based access between the (real and virtual) NoC and
the memory components.

CompSoC is locally synchronous but globally asynchronous, where each tile operates at
its own frequency. Therefore, is has multiple asynchronous resource schedulers. Resources
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can be one of the following: a local instruction or data memory, a communication memory,
Direct Memory Access (DMA), NoC or memory elements (i.e., SRAM, DRAM).

This newly introduced CompSoC platform uses one single global address space and it
supports both non-shared and shared platforms. More specifically, in case of an application
task accessing a non-shared resources the task’s data and instructions shall be loaded to the
respective memory resources. Local data is accessible in the data memory, whereas remote
data located on another tile can be accessed using DMA and the communication memory.

In case of shared resources, DMA shall not be shared and the remaining resources are
statically assigned to their owners and cannot be reconfigured. The composability and the
predictability of the CompSoC is achieved by utilizing a strict and predictable scheduler that
allocates resource budgets based on the time criticality (i.e., F/S/NRT).

Time-Triggered System-on-a-Chip (TTSoC) Architecture

This MPSoC is a component-based System-on-a-Chip (SoC) that incorporates determinism
with encapsulation and fault containment. Time-Triggered System-on-a-Chip (TTSoC) was
designed at Vienna University of Technology based on the MPSoC presented in [KOSH07].
The architecture and concepts of the TTSoC have been extended to cover the requirements
for many application domains, especially for mixed-criticality applications [WESK10].

The generic architecture of the TTSoC is illustrated in Figure 3.4. It consists of a
Trusted Subsystem (TSS) shown in blue color, and application subsystems that encompass
a configurable number of micro components (µC). TTSoC realizes an inherent global time
base for all components of the SoC [KB03].

The trusted subsystem comprises a number of linking interfaces known as Trusted In-
terface Subsystems (TISS). These interfaces in combination with the TTNoC [PK08] are
responsible for guaranteeing predictable communication services and preventing fault propa-
gation. The trusted subsystem is responsible for providing the globally synchronized local
clocks, and supports periodic and sporadic message-based communication. Finally, the TSS
provides the execution control services to the components. Namely, the TTNoC contains a
number of interconnected communication routers, which define dedicated communication
channels between different TISSs based on the a priori knowledge of the system communica-
tion requirements. The predictable time-triggered communication scheme used in the TTSoC
defines a TDMA-based communication schedule (cf. Section 2.3). Each micro component
has a preassigned communication slot in the time-triggered communication schedule. This
temporal alignment minimizes the end-to-end latency of the encapsulated communication
channels.
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A micro-component can be one of the followings: an application host, resource manage-
ment authority (RMA), trusted network authority (TNA) or a gateway. Application hosts
implement heterogeneous application services of different domains where criticalities can be
assigned. RMA and TNA are Intellectual Property (IP) cores provides resource management
and reconfiguration services to the SoC. Additionally it is possible to use an diagnostic unit
IP core to provide diagnostic services about the SoC behavior, e.g., for fault containment.

To our knowledge, few research has been done at the gateway level. Gateways are con-
ceptually supported in TTSoC, and they are mainly presented as network gateways to provide
access to cluster level communication [AOOM15]. This provides the ability to connect
multiple TTSoCs to create a distributed time-triggered system based on SoCs. Moreover, it
enhances the interoperability of the TTSoC with other cluster level communication network
protocols (e.g., CAN, TTE, EtherCat).

3.2.2 Existing Memory Solutions

Shared-memory Solutions

Real-time requirements from a shared memory point of view are covered in the literature
from different perspectives. Several authors provide solutions for predictable memory
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controllers (e.g., [AGR07a], [GGA+15], [AG11a]), or even solutions for memory controllers
specified for MCSs [GCAG16], [GAG], [ETSE14], [JQA+14]. Other solutions tried to
emphasize the advantages of having a predictable TDM-based NoC that promises to guarantee
predictable memory arbitration for the multi-core SoC [SCPS14]. Furthermore, shared
memory abstractions can be deployed to provide guaranteed and best effort services at NI
level [RDP+05].

An approach for task scheduling and memory partitioning for a MPSoC using a scratch
pad memory is presented by [PAV14]. In [MPSV06] the focus of the work was on a
Distributed Shared Memory (DSM) architecture suitable for low-power multiprocessors. A
hybrid organization including private and shared memory space for DSM is introduced for
multi-core processors in [CLJC10a]. This organization and run-time partitioning techniques
are used in order to improve the system performance by reducing the Virtual-to-Physical
(V2P) address translation overhead. Moreover, Chen in [CLJC10b] proposed a microcoded
controller as a hardware module in each node to interconnect the cores, the local memory and
the network. None of the previously mentioned solutions proposed the use of transactional
memories.

Transactional Memory Solutions

As explained earlier in Section 2.5, transactional memories can be implemented in hardware,
software or a hybrid combination of both [HLR10]. A study on transactional memories
for dependable embedded systems is presented in [FF11], which shows the challenges in
handling software and hardware faults. In addition, real-time constraints and consistency of
transactional memories must be addressed. Therefore, further research in languages, tools,
algorithms, run-time systems and hardware architectures is required to support transactional
memories in embedded systems.

Several approaches for software transactional memories in dependable embedded systems
were presented [BP11] [BC11] [ESR12], which focus on the schedulability of a given task set
by pre-estimating the WCET. [PMM+13] presents a dynamically partitioned cache interface
that handles the memory transactions on top of the memory controller to ensures a bounded
maximum delay for hard real-time tasks. In [MWU13] conflicts and aborts with hard real-
time and best-effort transactions were analyzed by inspecting the set of possibly overlapping
transactions that may conflict. Moreover, a STM contention manager for priority-based
transactions for real-time systems has been introduced in [GC08]. While these solutions
address the conflict resolution of transactions, they do not avoid temporal interference in the
memory gateway and the interconnect. Mixed-criticality aspects of a transactional memory
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were addressed in [FRJ], which introduces a methodology to compute the upper bounds for
the response time when concurrency control is managed using STM.

The concept of prioritizing the transactions in such a way that transactions with higher
priority take precedence over lower priority transactions is well-known from the database
world [GR93], [MSAHB04] and also used in embedded systems. For instance, the Transac-
tional memory Coherence and Consistency (TCC) model [HWC+04] is widely used for au-
tomatic rollbacks to resolve conflicts in embedded systems without criticality considerations.
TCC inspired the development of RTTM, a Java-optimized processor [SBV10], [SH10]
that supports time-predictable and bounded WCET. RTTM proposed a time-predictable
synchronization solution built on the assumption that memory access is based on a TDMA
scheme. It also provides a bounded number of maximum transaction retries for real-time
systems. While real-time aspects are addressed in these software-based solutions, they are
restricted to the Java programming language. Additionally, the memory gateway offers only
a simple connector to the memory arbiter with no consideration in regard to the criticality of
the transactions.

LogTM [M+06] and its Signature Edition (LogTM-SE) extension are well-known hard-
ware transactional memory solutions. LogTM-SE provides eager conflict detection and
eager version management by summarizing transaction sets in logs and signatures. AT-
LAS [NCW+] is a prototype of a multiprocessor with hardware transactional memory
support, where cores can access coherent shared memory in a transactional manner. TMNoC
is a proposed design approach that aims at mitigating false-forwarding of unsuccessful trans-
actional memory requests [ZCCD13]. A performance analysis of a hardware transactional
memory solution in an NoC-based MPSoC environment is presented in [KGaW]. Moreover,
this solution was compared to a traditional shared memory model that uses locks to provide
consistency. Furthermore, the performance and power evaluation of lock-based synchroniza-
tion over a set of different system and application settings shows that a transactional memory
is a promising solution even for resource-constrained embedded multiprocessors [F+07].
However, these existing architectures do not focus on temporal predictability and real-time
aspects of mixed-criticality embedded systems.

Existing hardware-based transactional memory solutions for non-distributed systems
propose a small, fully-associative transactional cache at the same level as the L1 cache to re-
duce effects of capacity and conflict avoidance [FWM+10]. To our knowledge, transactional
memory solutions for mixed-criticality embedded systems address one multi-core chip only.
In [CCP+15], spatial and temporal segregation using a dynamic TDMA-based memory
arbiter based on the MultiPARTES platform is provided. Moreover, memory access control
in a multiprocessor for real-time systems with mixed criticality is proposed by [YYP+].
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This work provides a software-based memory throttling mechanism to explicitly control the
memory interference in the Linux kernel.

3.3 Cluster level Distributed Memory Solutions

The description and discussion of existing memory solutions for distributed systems at cluster
level is presented in this subsection. Initially, generic DSM solutions are discussed and later
solutions based on transactional memories are presented.

3.3.1 DSM Solutions

A DSM architecture consists of a number of nodes that share a virtual memory. The system
memory is split into several segments that are distributed between the nodes and the system’s
main memory. Data exchange in between the nodes is achieved using the nodes’ memory
managers and the system’s virtual memory mappers (cf. Figure 3.5). The major advantage of
DSM is the high portability and easy to use communication model in comparison to message
passing. Memory instructions can be executed during non-overlapping time periods, yet
exchanging data between system nodes can easily cause errors and performance penalties.
This is a major drawback in real-time and fault containment.
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DSM can be on both hardware or software levels. At hardware level, cache coherency
circuits and network interfaces can provide support for DSM solutions. At software level,
DSM solutions can be implemented with the help of high-level programming languages that
offer lock-based solutions (e.g., mutexes). Shared memory in this case can be organized in
tuples, fixed-size pages, or as abstract objects of variable size.

It can be noticed from the literature that few research has been performed on DSM
solutions dedicated to multi-core processors with a NoC in comparison to off-chip solutions.
DSMs have been investigated in the context of cluster level architecture as well as in operating
systems [CYY13]. Furthermore, partitioning of virtual memory resources and task scheduling
is proposed as a solution for managing memory accesses at operating system level. It is
common to use a monitoring unit called central manager which is responsible of tracking
and logging all shared pages between the nodes of the system. This manager is responsible
of handling the ownership and accesses of the pages in a directory-based DSM.

3.3.2 Transactional Memory Solutions

A Distributed Transactional Memory (DTM) is the realization of a transactional memory
using off-chip communication networks. The so-called Ballistic protocol [HS05] for instance,
uses a cache-coherence protocol based on a transactional memory for a network of nodes
for tracking and moving up-to-date copies of cached objects. Additionally, the Spiral
directory-based protocol presented in [SBS] is a distributed implementation of a software
transactional memory based on sparse covers, where clusters at each level are ordered to
avoid race conditions while serving concurrent requests. Transactional Distributed Shared
Memories (TDMS) were proposed for distributed embedded real-time systems (e.g. [HLRP]).
The focus is improved programmability in conjuction with temporal predictability and
composability.

The java-based transaction execution engine of DSTM2 [HLM06] is used as a baseline
for some off-chip distributed system solutions. The prototype of a distributed software
transactional memory framework is described in [KAJ+07] based on a modified version of
DSTM2, where a master node is responsible for conflict detection and a contention manager
resolves the conflicts. All client nodes have to update and synchronize their local copies of
the global data. Moreover, in [DSRSZ10] an extension of the transactional engine DSTM2
establishing a transactional memory for distributed memory architectures is introduced for
providing transactional consistency.

Most existing DTM frameworks are prototyped on top of VM-based programming lan-
guages, e.g., Scala and Java. HyFlow [SR11] is a Java framework for a distributed software
transactional memory with pluggable support for directory look-up protocols, transactional
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synchronization and recovery mechanisms, contention management policies, cache coher-
ence protocols, and network communication protocols. On the other hand, locks are realized
using Jave 5 annotations and transactions are defined as atomic sections, in which reads and
writes to shared, local and remote objects appear to take effect instantaneously. [MTPR13]
presents a distributed transactional memory framework for distributed concurrency control
in C++ based on [SR11] called HyflowCPP. The Real-Time Transaction Forwarding Al-
gorithm [HLRP] extends the distributed concurrency control scheme of the Transactional
Forwarding (TFA) [SR12]. It bounds transactional retries by resolving transactional con-
tention using time constraints. The authors used JChronOS, a user-space library which
provides the hooks to interface with the ChronOS kernel from a Java application to define
the time constraints.

3.4 Research Gaps in the State-of-the-Art

3.4.1 Analysis

As shown in the previous sections, a significant number of memory-based architectures were
presented. To clarify the research gaps, existing solutions will be analyzed from different
perspectives at different architectural levels (i.e., component level, network level, gateway
level, and cluster level).

Existing chip level architectures provide hierarchical support at chip level for both
message based and shared memory interactions. Due to the use of the deterministic TTNoC
and Æthereal networks, the TTSoC and CompSoC architectures guarantee time predictable
communication behavior.

The latest research results for supporting MCSs show the ability of TTSoC to provide
the required fault isolation and predictability for MCSs. Additionally, MCSs-aware memory
controllers compatible with CompSoC were introduced. These memory controllers can
assure the predictability and timeliness of the memory instructions at memory gateway level.

The properties and characteristics of both architectures provide the baseline for a chip
architecture that can be used for message-based and shared memory interactions in a MCS.
The resulting architecture shall also take the advantages of utilizing the transactional memory
to provide the missing segregation at the different levels of the entire chip architecture.
This segregation shall avoid conflicts due to memory rollbacks, and between applications
of different criticalities at the level of the network interconnect, and provide segregation
between memory requests of different cores. Moreover, maintaining a predictable behavior
of the message-based and shared memory instructions at the whole chip architecture.
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Chip level shared memory solutions consider partly the requirements presented in subsec-
tion 3.1. These solutions focus mainly on real-time requirements at memory controller level
by introducing predictable memory arbiter schedulers. Moreover, some memory controller
solutions prioritize memory requests based on their criticalities.

Special extensions for memory controllers supporting a hardware transactional memory
were presented to establish bounded maximum delays. It is common in chip level transac-
tional memory solutions to choose logging-based STM with support of a hierarchical memory
structure at component level. This type of solution provides the required predictability for
the memory instructions, yet it neglects fault isolation and message-based interactions of the
on-chip components.

Solutions at cluster level are mainly for distributed networked nodes with no consider-
ation for the nodes’ multi-core interconnect. Present DSM research is mainly focusing on
algorithms for virtual memory management and memory segments location services (e.g.,
cloud). To our knowledge, current solutions do not consider MCS requirements and they
have very limited considerations for the system hierarchy support and fault isolation. For
instance, hiding heterogeneity at memory and network gateways has not been investigated
for MCSs.

Distributed shared memory solutions at the level of operating systems do not satisfy the
requirements of hierarchical system structures as well as the diversity of execution time
models. Such solutions focuses mainly on schedulability of the memory accesses at the node
level.

Transactional memory is often used in cluster level DSM solutions for embedded systems.
STM-based protocols are mostly implemented with high-level programming languages. The
predictability of the system is relevant to manage the complexity of the virtual-machines.
Based on the state-of the-art analysis, fault isolation is not considered in existing solutions,
and there is no hierarchy support in these transactional memory protocols.

3.4.2 Conclusion

Current chip level architectures do not hide the heterogeneity of message-based and shared
memory interactions while satisfying the requirements of MCSs. In particular, existing
transactional memory solutions do not ensure predictability and fault containment at the
levels of the interconnect, the transactions and the memory gateway.

Existing transactional memory solutions that deal with predictability in MCSs limit
their interest to the transactional memory itself. These solutions do not deliver an overall
architectural solution for both transactional memory and NoC for the predictable resolving
of real-time concurrency in mixed-criticality embedded systems.
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The focus in conventional solutions is either the chip or cluster level memory, while
focusing mainly on the predictability and schedulability aspects of one component (e.g.,
memory controller). A major research gap are architectures, system models and algorithms
for transactional memories in hierarchical systems comprising networked multi-core chips.
These systems combine two integration levels. Firstly, multi-core processors consist of a set
of computational cores that interact via an on-chip interconnect. Secondly, the cluster-level
uses off-chip networks for the interconnection of several multi-core processors. A single
multi-core chip is often insufficient to meet the resource requirements of large embedded
applications. In addition, the failure rates of a single chip are too high to meet the reliability
requirements of fail-operational systems with ultra-high dependability [SWH95] (e.g., Class
A according to DO-178C [RTC11]). Hence, fault-tolerance at system level is required by
exploiting redundancy with multiple independent chips.

The hierarchical support for an architecture providing a transactional memory at both
levels is missing. Moreover, predictability, fault isolation and reliability requirements are not
addressed in existing solutions for distributed MCSs. The requirement for hierarchical sup-
port at both levels is limited to one of levels. Namely, a MCS-aware hierarchical architecture
that is utilizing transactional memory, and supports communication protocols and algorithms
at both chip and cluster levels does not exist.

The state-of-the-art does not offer memory and network gateway services between chip
and cluster networks with a transactional memory protocol for selective redirection of
information, fault isolation, and name space mapping. Additionally, the state-of-the-art
provides no services for access to remote virtual memory resources and seamless network
protocols for off-chip resources in satisfying the presented requirements.



Chapter 4

Transactional Memory Architectures for
Mixed-Criticality Systems

Transactional memories offer the potential to combine an optimistic operation of non safety-
critical applications with strict real-time guarantees of safety-critical applications. However,
a fundamental requirement in mixed-criticality systems is the segregation of subsystems
with different criticality. Non safety-critical task should either have no effect at all on the
execution times of safety-critical tasks or the effect must be bounded and known. The
requirements discussed in Section 3.1 are addressed in the proposed architectures. We
support predictability, partitioning in time and spatial domains as well as heterogeneity of the
architectures and their underlying algorithms and protocols. In addition , the architectures
offer fault containment and support for hierarchical system structures.

Two architectures for MCSs with a transactional memory are presented in this dissertation.
The first architecture introduces an architectural model of a multi-core chip (cf. Section 4.1).
This architectural model comprise cores and a gateway, which are interconnected through a
deterministic and reliable NoC. Moreover a memory controller with support for predictable
transactional memory services is used. The second MCS architecture (cf. Section 4.2)
presents a distributed hierarchical model for multi-core chips at the cluster level. Furthermore,
it integrates both on-chip and cluster networks with different memory technologies and
communication protocols into a coherent reliable protocol for networked multi-core chips.

4.1 TMSoC System Architecture

The proposed system architecture, denoted from now on as Transactional Memory System-
on-a-Chip (TMSoC), aims to assure the prescribed requirements by introducing a component-
based architecture. The physical separation of the components and their independent design
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are the basis for the Fault Containment Regions (FCRs). In case of a design fault or a
physical fault within a given component that might lead to a failure, this specific FCR will be
isolated. The idea behind this system architecture is to enforce segregation of applications
based on their criticality, which is also applied at the network interconnect between the
cores and gateways. Particularly, the message-based and shared memory interactions are
executed concurrently between the cores and the memory gateway in a way that guarantees
predictability and coherency in the memory hierarchy of the architecture.

Conventional memory controllers are responsible for scheduling memory request from
different cores to optimize the throughput. In contrast, the memory controller introduced in
this system architecture is able to handle requests based on their criticalities and it bounds
temporal interference between requester cores at the gateway level. The TMSoC algorithms
introduce selective conflict resolution in order to avoid timing effects of non safety-critical
applications on safety-critical ones. A commit operation is only performed in case there is
no resulting rollback of an application with a higher criticality. Therefore, the Worst-case
Execution Time (WCET) of an application only depends on transactions by applications
of the same or higher criticality. Hence, dependencies are avoided in applications with
lower assurance levels as a prerequisite for modular validation and certification. The above
mentioned issues are discussed in details while introducing the system architecture in this
subsection.

As illustrated in Figure 4.1, the TMSoC consists of the Multi-Processor System-on-a-
Chip (MPSoC) with a memory gateway providing bi-directional access from/to the external
memory. Moreover, the memory gateway is responsible for providing transactional memory
services through the Mixed-Criticality Transaction Controller (MTC). The MPSoC contains
a configurable number of cores. The cores and the memory gateway are connected to the
TTNoC using Time-Triggered Network Interfaces (TTNIs) (cf. Section 3.2). The TTNoC
is a TDMA-based NoC that supports different topologies and it provides fault isolation and
temporally predictable communication between the cores and the memory gateway. Namely,
one core cannot affect the other cores in the value or time domain. The configuration of the
TMSoC is defined based on the a priori knowledge of the communication topology and the
timing.

4.1.1 Core Architecture

The cores implement the application services using the host processor and the memory
service module, both of which are connected to the TTNoC through a TTNI. Subsystems with
different criticalities are distinguished in the proposed architecture, where each subsystem
comprises one or several cores. For instance, subsystems can be assigned a Safety Integrity
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Level (SIL) according to IEC 61508 [Bel06]. The definition of the subsystems and their
criticality levels is done at design time as part of the TMSoC configuration (cf. end of
Section 4.1).

Host Processor

The Host Processor implements custom applications of the TMSoC. An application can be
implemented either on a single core or it can be distributed between more that one core of a
subsystem. Hence, the access to the data for the application execution requires the TMSoC
external memory. This access is managed and achieved through the services of the memory
service module.
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Memory Service Module

The memory service module provides basic cache services, where memory instructions
relevant to this host processor are processed. This module is responsible for handling
memory requests and replies. In addition, it also maps these instructions to time-triggered
messages that can be exchanged via the TTNI. Additionally, it sends commit requests and
receives acknowledgments from the memory gateway in case of successful commits or
rollbacks. The criticality-aware transactional memory algorithms introduced in TMSoC are
responsible for assuring the correctness of the memory instructions. These algorithms will
be explained in details later in this section.

Time-Triggered Network Interface (TTNI)

The TTNI has a well defined temporal behavior and offers a standard interface to the
host processors with incoming and outgoing message ports. The TTNI is responsible for
transmitting the messages according to the time-triggered communication schedule. It is
considered that applications and their memory access are also TDMA-aware in such a way
that their temporal behavior is mapped to the TTNIs by utilizing the schedule. The schedule
in the TTNI controls the message path using source-based routing as well as the transmission
behavior of the core where messages are injected to the TTNoC at predefined points in
time. Based on the predefined temporal and spatial resource allocation of the NoC, the
TTNI isolates faulty applications with respect to the interconnect and prevents interference
between subsystems. Host processors can provide data, but do not influence the scheduled
transmission times of the messages.

4.1.2 Time-Triggered Network-on-a-Chip (TTNoC)

The TTNoC is configured with a communication schedule, which defines the required time-
triggered channels and their interconnection to transmit messages using source-based routing.
These time-triggered channels define the temporal and spatial allocation of resources for
messages traversing from the source core along routers to the destination cores. Spatial
and temporal partitioning are guaranteed based on the a priori knowledge of the permitted
communication behavior using the concept of time-triggered channels. It is the responsibility
of the TTNI to transmit messages using the correct time-triggered channel according to
the communication schedule with application data provided by the ports towards the host
processors.

The applications must have pre-assigned time slots based on a global time base. Addi-
tionally, sender and receivers of each time-triggered message are defined. Time-triggered
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messages have the following configuration information <period, phase, size, channel ID,
sender core ID, receiver core IDs>. These configuration parameters represent a priori knowl-
edge that can be used for fault containment, where the TTNI can isolate faulty applications
and prevents interference between subsystems. Hence, design faults or hardware faults
restricted to individual cores (e.g., local SEUs and SETs) cannot propagate to other cores in
the TMSoC.

Cores interact at TTNoC level by passing messages or by using shared memory interac-
tions via the corresponding channels. Thus, shared memory interactions are only realized
by the memory gateway and the memory service modules. They wrap the related informa-
tion into messages, i.e., request messages and reply messages that can be processed by the
TMSoC.

4.1.3 Memory Gateway

The external memory is accessible for the cores of the MPSoC using the memory gateway
via the TTNoC. The memory gateway is responsible for processing memory transaction
operations received from the TTNoC and relaying these operations from and to the external
memory. The TTNI of the memory gateway uses a time-triggered schedule with inbound
and outbound time-triggered communication channels to the different cores.

Memory transactions sent from a core’s memory service module to the external memory
system are handled in the memory gateway. First, memory transactions are processes with the
Mixed-Criticality Transaction Controller (MTC) algorithms based on their criticalities. Then
they are queued in the memory controller to be executed. Later, memory replies are mapped
to the appropriate time-triggered channel in order to send them to the correct requester cores.

TTNI at the Memory Gateway

The TTNI of the memory gateway follows the time-triggered schedule defined for the TMSoC
with inbound and outbound time-triggered communication channels to the different cores.
Incoming memory requests and transaction replies are mapped in the memory gateway to the
appropriate channel in order to send them to the correct cores. Thereby faults are contained
within the individual cores. Messages of the host processors and memory transactions of the
memory service module do not affect the scheduled messages of the TTNI.

Mixed-Criticality Transaction Controller (MTC)

The MTC is responsible of processing the received transactions, executing commits and
performing selective conflict resolution based on the criticality of the transactions. It provides
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version control, conflict detection and selective conflict resolution services based on the
criticality of the subsystems. The MTC is connected to the TTNI via ports, where each core
has its own corresponding in-port and out-port. Moreover, sending and receiving queues are
mandatory as the interface between the transactional memory controller and the memory
controller.

The MTC is responsible for processing memory transactions while providing eager
version control and eager conflict detection. The proposed eager version management and
eager conflict detection increase the performance (cf. Section 2.5). Furthermore, conflicts
are resolved using the algorithms of the MTC (cf. Section 4.1.5).

The MTC contains the following two containers that are used by the algorithms: the
transaction records and the transaction-version container (cf. Figure 4.2).

Exte
rn

a
l M

e
m

o
ry 

Memory Gateway

TTNI

Mixed-criticality Transaction Controller (MTC)

 Memory Controller
R S

Transaction
Records 

Versions 
Container

TTNoC

Core #1 Core #N

Version 
Control

Transactions 
control 

Core #2

Fig. 4.2 MTC Architecture



4.1 TMSoC System Architecture 57

Transaction records are required to ensure the correct committing of the transactions.
This building block holds tracking records of the memory transactions. In the transaction
records, each core has its own records’ queue. Moreover, the last committed transaction is
always known in each queue.

The transaction-version container handles the overall versioning of transactions. This
building block implements a hash table that is always aware of the transaction status and the
validity of its records. Transactions are labeled with one of the following tags: exclusive for
transactions with so far no access to shared memory locations and shared for transactions that
have at least one memory location, which is being accessed by another ongoing transaction.

The algorithms executed in the MTC are responsible for processing the received trans-
actions received from the TTNI. The first step is the updating of the transaction-record
container. Afterwords, if a write command is processed, it will be inspected for conflicts
and the algorithms will act based on the collected knowledge in both containers. If a read
command is processed, the reply of this command will be stored in the sending-buffers of
the MTC. Each sending-buffer is associated with one of the cores through its ports. The
separate buffers are responsible for guaranteeing the isolation and for the correct delivery of
the transaction replies to the TTNI.

The cores have to be informed about the result of their committing attempts and they
need to be informed in case of rollbacks. Therefore, the results of the algorithms’ execution
are transmitted to the memory service module of the transaction’s requester core.

Memory Controller

Typically, memory controllers optimize throughput, while temporal interference between
cores is not addressed (e.g., bank switching). Temporal predictability in the proposed
transactional memory architecture is assured also at the memory controller level. Moreover,
the memory controller schedules memory requests from computational cores with different
criticalities utilizing the assurance layer provided by the MTC.

As explained in Section 2.4.2, there are two types of arbitration in memory controllers.
Firstly, statically scheduled memory controllers use preconfigured schedules. This type
is unable to adapt to changes in timing requirements of critical applications at run-time.
Secondly, dynamically scheduled memory controllers promise bounded latencies and provide
dynamic reallocation of the memory bandwidth [RDK+00]. Therefore, the proposed memory
gateway assumes a compositional real-time memory controller such as [AGR07b] that
supports analytical design-time verification of hard real-time requirements. This memory
controller follows a two-step approach that starts by defining the memory access groups
with known efficiency and latency. Then, a predictable credit-controlled static-priority
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arbiter [AGR07a] is responsible for scheduling these groups dynamically. The dynamic
scheduling guarantees the allocated bandwidth and the maximum latency bounds of the
memory interactions.

4.1.4 External Memory

The external memory implements an interface that allows it to be connected to other cores of
the proposed memory architectures, where incoming memory instructions from the memory
gateway are redirected to the corresponding memory controller of the external memory and
vice versa. The external memory involves a configurable memory unit with a memory con-
troller. The memory system provides a single or multi-channel memory system, where each
channel is composed of a configurable number of ranks and banks. Each memory channel
has a pending transaction queue that is attached to a corresponding memory controller. The
memory controller contains several queues for storing the received transactions, operations
of the transactions, pending read transactions and returned transactions.

The following transaction queues are linked to the memory channels: The pending queues
store the received transactions and the pending read transactions, the transaction-command
queue contains operations for starting and committing transactions, the result queue contains
the returned transactions.

4.1.5 Mixed-Criticality Transaction Controller (MTC) Algorithms

The algorithms, sets and entities of the Mixed-Criticality Transaction Controller (MTC)
introduced in the proposed transactional memory architecture are discussed in this section.
The MTC is responsible for guaranteeing the isolation and predictability as well as avoiding
temporal interference at the transactions level. The following ordered list of elements, so
called tuples, are used to express the data structures used in the algorithms of the transactional
memory architecture:

• Memory Transaction: The algorithms handle memory transactions. Therefore, a
memory transaction is defined as T = {(M,c,cs)} where M is the set of memory
operations, c declares the transaction’s criticality (e.g. c ∈ [SIL1, . . . ,SIL4] [Bel06]),
and cs ∈ [True,False] is the committing status of the transaction. This committing
status is initially set to False for all transactions.

• Memory Operation: memory operations contain the read and write instructions of
a transaction. They are denoted as follows: M ={(op,a,s,v, j)} where j ∈ [1,J] is
the memory operation’s index, a ∈ [0,address_range] is the memory address, op ∈
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[Read,Write] represents the memory operation type, s∈ [Exclusive,Shared] represents
the transaction status globally in the TMSoC, and v is the memory operation value.

• Transaction Record Container: is a container for the eager version management. It
is denoted as T R={Tn,i | n ∈ [1,N] and i ∈ [1, I]}, where N is the total number of cores
in the MPSoC topology, n is the requester core ID, and i is the transaction ID.

• Version Container Records are represented as: A ={(m,Tn,i,vn,v,rv)}, where m∈M,
vn ∈ [1,V N] represents the version of the memory operation record, v is the memory
operation value in the record, and rv represents the reference value that is used in case
of a transaction rollback.

• Transaction Version Container: V ={Aa,i | a∈ [0,address_range] where a=Tn,i.M.a j,
and i ∈ [1, I]}. The first term a represents the address of the shared memory operation
based on its transaction and its requester core and i represents the transaction ID of the
memory operation record.

A conceptual snapshot of the containers used by the MTC algorithms for three cores
with three levels of criticality in a TMSoC is presented in Figure 4.3. It illustrates the direct
connections and links between the tuples and entities. For simplicity, it is assumed that the
algorithms have not performed any committing nor detected any conflict yet in this instance.
The transaction record container T R denoted as Tx Records in the figure, creates linked
lists that contain the received transactions of each core including their criticality level. The
transaction records in this instance (cf. Figure 4.3) are represented in such a way to express
the arrived transactions over time and the expected conflicts.

The transaction version container (V ) shown in the Figure as Tx version container, creates
a version container record (A) for each memory operation based on the processed address.
The first record of each address contains the reference value rv of the processed address. This
value has to be continuously updated to be used in case of a rollback as will be described in
the next subsection.

From the instance in Figure 4.3 it is noticed that some transactions i.e. #21, #31 and #11,
#22 also #34, #24 are transactions that are processing the same address (address #2, #1 and
#6 respectively). Hence, conflicts have to be tracked and processed eagerly for these cases
based on their criticalities. The relation between the latter two containers (i.e. V and T R)
provides the knowledge required to detect conflicts and execute selective rollbacks based on
the algorithms introduced later.

Memory transactions are processed by the MTC using the Algorithm 1, which defines the
transaction processing procedure in the proposed transactional memory architecture. Multiple



60 Transactional Memory Architectures for Mixed-Criticality Systems

Tx Records

Transaction ID #21
Memory Op. Set
Tran. Status
Transaction Address
Commit Status

Transaction ID #22
Memory Op. Set
Tran. Status
Transaction Address
Commit Status

Transaction ID #11
Memory Op. Set
Tran. Status
Transaction Address
Commit Status

Transaction ID #12
Memory Op. Set
Tran. Status
Transaction Address
Commit Status

Transaction ID #24
Memory Op. Set
Tran. Status
Transaction Address
Commit Status

Tx Versions Container
Tran. Address #1
Tran. ID #21
Mem. OperationID
Version Number
Reference Value

Tran. Address #1
Tran. ID #31
Mem. OperationID
Version Number
Value

Tran. Address #2
Tran. ID #11
Mem. OperationID
Version Number
Reference Value

Tran. Address #2
Tran. ID #22
Mem. OperationID
Version Number
Value

Tran. Address #6
Tran. ID #34
Mem. OperationID
Version Number
Reference Value

Transaction ID #31
Memory Op. Set
Tran. Status
Transaction Address
Commit Status

Transaction ID #33
Memory Op. Set
Tran. Status
Transaction Address
Commit Status

Transaction ID #32
Memory Op. Set
Tran. Status
Transaction Address
Commit Status

Transaction ID #34
Memory Op. Set
Tran. Status
Transaction Address
Commit Status

Tran. Address #6
Tran. ID #24
Mem. OperationID
Version Number
Value

Core #2 (High)

Core #1 (Low)

Core #3 (Low)

Tran. Address #3
Tran. ID #32
Mem. OperationID
Version Number
Reference Value

Tran. Address #4
Tran. ID #33
Mem. OperationID
Version Number
Reference Value

Tran. Address #5
Tran. ID #12
Mem. OperationID
Version Number
Reference Value

Fig. 4.3 Instance Representation of the MTC Containers

instances of this algorithm will run concurrently. Moreover, the handling of committing
attempts, conflict detection and selective conflict resolution procedures are presented in
Algorithm 2.

Transaction Processing Algorithm

As explained earlier, the MTC is responsible for processing the incoming memory transac-
tions. The procedure “TransactionProcessing()” (cf. Algorithm 1) is called for each memory
transaction (Tn,i), where n represents the requester core ID, and i is the transaction ID index.

The algorithm will repeatedly wait for incoming memory operations of the transaction
before processing them. Meanwhile, it starts updating the T R container by adding a new
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transaction record (T xn,i) to the corresponding core ID queue. The newly added transaction
record contains the memory operations derived from the incoming transaction. The T R
container stores the criticality level of the incoming transaction and it sets the committing
status of the transaction record to False.

Afterwards, all incoming memory operations (M) of the pending transactions (Tn,i) have
to be inspected for conflicts and processed accordingly. If the address a of the memory
operation M is located in V then the corresponding records at this address will be stored in A
based on the version container. A is a set that contains conflicting memory operation records.

Initially, for a newly destined address in the transaction version container V the algorithm
will return an empty set (A = /0), and will enter the alternative statements (cf. Line 28). This
case means that the specific address is accessed for the first time by a memory operation, and
there are no conflicting operations up to now. Therefore, the status of this memory operation
will be set to Exclusive, and a new V record is created (ari) at the address ai with the index
equal to the transaction ID i. The memory operation has to be processes based on its type.
If it is a READ operation, the requested value of this operation is retrieved from the DDR
memory to set the value and the initial reference value rv for memory operations of this
transaction ID. Then the result is stored in the sending-buffers to send it to the corresponding
requester core. On the other hand, if it is a WRITE memory operation, the incoming value of
the write operation is used to assign ari.v. Additionally, the initial reference value ari.rv is
retrieved from the last committed value at this address in the DDR memory. Then, the new
value (ari.v) is written into the DDR memory.

In case of a non-empty set A a number of memory operations are conflicting at this
address according to the V records. At that point, a second check whether there is an existing
V record of this specific transaction ID (i) is performed. If so, this indicates that we are
already tracing the versions of the transaction i at this address. Moreover, the located V
record contains the required data value (v) and reference value (rv) required for executing
the memory operations (cf. Line 6).

In case a READ memory operation is processed, the read value is retrieved from the
located memory operation (ari) and sent to the corresponding core through its sending-
buffer. Otherwise, if a WRITE operation is processed then the write value is stored in avi.v.
Thereafter, the stored value is used to write in the DDR memory.

In the alternative case of the if-condition at line 13, the address ai of the memory operation
has been located in V but there is no record of the transaction i at this address. Therefore, a
new record ari has to be created and added at the corresponding address of this transaction.
The initial reference value at this address of the previous transaction k is assigned to the
reference value (ari.rv) of the newly created record.
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Algorithm 1 MTC Algorithms - Transaction Processing
1: procedure TRANSACTIONPROCESSING(Tn,i)
2: AddToTransactionsRecord(T R, Tn,i, n, i)
3: for all Tn,i.M.a | Tn,i.M. j = j∧ j ∈ [1,J] do
4: A← locate records in V for a
5: if A ̸= /0 then
6: if ari ∈ A | i = transaction ID i then
7: if Tn,i.M.op == READ| Tn,i.M. j = j then
8: send ari.v to Core
9: else

10: ari.v← Tn,i.M.v | Tn,i.M. j = j
11: write ari.v to DDR
12: end if
13: else
14: create new record ari
15: ari.rv = ark.rv | ark ∈ A
16: if Tn,i.M.op == READ| Tn,i.M. j = j then
17: ari.v = ark.rv
18: send ari.v to Core
19: else
20: ari.v← Tn,i.M.v | Tn,i.M. j = j
21: write ari.v to DDR
22: end if
23: end if
24: for all ari do
25: ari.Tn,i.M.s← SHARED | Tn,i.M. j = j
26: end for
27: else
28: Tn,i.M← EXCLUSIVE | Tn,i.M. j = j
29: create new record ari | ari.a = a∧ i = transaction ID i
30: if Tn,i.M.op == READ | Tn,i.M. j = j then
31: ari.v← v from DDR
32: ari.rv← ari.v
33: send ari.v to Core
34: else
35: ari.v← Tn,i.M.v | Tn,i.M. j = j
36: ari.rv← from DDR
37: write ari.v to DDR
38: end if
39: end if
40: ari.m.op← Tn,i.M.op | Tn,i.M. j = j
41: ari.Tn,i← Tn,i
42: end for
43: TryCommit(Tn,i)
44: end procedure
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Subsequently, if a READ memory operation is processed then the read value (ari.v) will
be set based on the reference value of the transaction k to be sent later to the requester core.
Alternatively, the WRITE value is saved as the value of the new record ari and then written
into the DDR memory.

Eventually, the status of all memory operation records at the address Tn,i.M.ai has to
be set to Shared. This step is of key importance for the committing decision in the next
procedure, i.e. “TryCommit()”.

Conflict Detection and Selective Conflict Resolution Algorithms

The procedure “TryCommit()” is called in order to commit a processed memory transaction
Tn,i. A transaction can only commit if the status of all of its memory operations is set
to Exclusive. This indicates that there are no conflicts at the addresses processed by this
transaction, or conflicting memory operations were resolved and their status parameters were
set to Exclusive. Therefore, the transaction Tn,i can commit (cf. Line 14) and the committing
status parameter cs is set to True. This parameter is used for cleaning the records.

If one of the memory operations of Tn,i has a shared status, this means that it is conflicting
with other memory operations at this address. Hence, the committing status parameter cs is
set to False and the procedure “ConfDetectionTracker()” is called for this memory operation
in order to detect the conflict and resolve it (cf. Line 12).

The “ConfDetectionTracker()” procedure is responsible to locate conflicts and execute
a so-called selective conflict resolution based on the criticality levels of the conflicting
transactions. Conflicting memory operations with Tn,i.M.a are located in V and listed in the
set C (cf. Line 20).

As described earlier, the proposed architecture supports multiple criticalities. In the
resulting set C, there are transactions of different criticalities. In order to resolve the conflicts
with the listed transactions in C, these transactions of C have to be categorized into a subset
of higher criticality transactions Ch and a subset of lower/equal criticality transactions Cle.

In case Ch is an empty set (cf. Line 23), this shows that the transaction Tn,i is of a
high criticality. As a result, all conflicting transactions will be listed in the Cle subset.
Consequently, all transactions of Cle except for Tn,i have to rollback. Tn,i will be committed
and its committing status cs will be set to True.

Alternatively, if Ch is not empty then transactions of Ch are of a higher criticality and
they can try to commit later while transactions of the subset Cle including Tn,i have to roll
back (cf. Line 28).

In case the “Rollback()” procedure (cf. Line 31) is called for a transactions Tn,i, all
memory operations of this transaction have to be located in V . The reference value of each
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Algorithm 2 MTC Algorithms - Conflict Detection and Selective Conflict Resolution
procedure TRYCOMMIT(Tn,i)

2: con f ← False
p = 0

4: for all Tn,i.M.s | Tn,i.M. j = j∧ j ∈ [1,J] do
if Tn,i.M.s == Shared then

6: con f ← True
p = j

8: break loop;
end if

10: end for
if con f == True then

12: Tn,i.cs← False
ConfDetectionTracker(Tn,i.M.a, p)

14: else
commit Tn,i

16: Tn,i.cs← True
end if

18: end procedure
procedure CONFDETECTIONTRACKER(Tn,i.M.a, j)

20: C← locate conflict for Tn,i.M.a in V
Ch = {t ∈C | t.c > Tn,i.c}

22: Cle = {t ∈C | t.c≤ Tn,i.c}
if Ch = /0 then

24: Rollback(Cle−Tn,i)
commit Tn,i

26: Tn,i.cs← True
else

28: Rollback(Cle)
end if

30: end procedure
procedure ROLLBACK(Tn,i)

32: for all Tn,i.M.a | Tn,i.M. j = j∧ j ∈ [1,J] do
located ← Locate Tn,i.M.a in V

34: store Alocated,i.rv in DDR
remove all Alocated,i

36: end for
remove Tn,i from T R

38: end procedure
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located memory operation has to be stored to the DDR memory and then the located record
has to be removed from V . Eventually, transaction Tn,i, has to be removed from T R.

4.1.6 TMSoC Configuration

As discussed earlier, time-triggered messages impose resource reservations through a TDMA
scheme. The timely block mechanism is realized as a time-triggered guarding time slot which
blocks the transmission of any other conflicting messages. The timely blocking is ensured in
the proposed architecture by the TTNIs and their time-triggered channels determined by the
configuration files established at design time.

The configuration parameters of the TMSoC include the subsystem criticalities, the
communication topology, the timing information and the messages paths. The proposed
architecture supports different criticality levels, e.g. SIL according to IEC61508 [Bel06].

The proposed architecture requires two major configuration inputs. The first one is related
to the external memory system specifications, which includes the memory initiation files to
define the memory technology, block size and the transaction queue depth. Secondly, the
TTNoC configuration includes the following information:

• Definition of the number of the cores, subsystems and criticalities.

• Static time-triggered configuration that defines two sets of communication types:
a memory transaction related configuration and a message-based communication
configuration.

Time-triggered messages are scheduled to be transmitted periodically. The configuration
table defines the time-triggered message period, phase, message size, sending Buffer ID,
sender core ID, number of receiver cores, receiver core IDs and the criticality. The message
phase parameter defines the start transmission time in relation to the defined period. In
addition to that, the static configuration defines the message size in bytes, the sending buffer
IDs, the applications core IDs and the receiving cores.

In case of memory transactions, all cores have a scheduled timeslot to send transaction
requests to the memory gateway. Moreover, the memory gateway has a dedicated time slot
to send memory replies to each of the cores. Messages between cores can be defined with
multiple recipients by modifying the Number Of Receiver Core IDs parameter and by listing
the required core IDs in the Receiver Core ID field.

The scheduling and timing restrictions of the proposed memory architecture are reflected
in the static configuration of the MPSoC framework. Scheduling anomalies are avoided
when defining the system timing parameters based on the TDMA scheme. The scheduling
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problem is complementary work and it is not in the focus of this thesis. On the other hand,
the proposed architecture is compatible with exiting scheduling algorithms [PEP99].

4.1.7 WCET Analysis

The WCET analysis of the proposed chip-level transactional memory architecture is based
on the WCET analysis presented in [MWU13] and [SBV10]. We determine the WCET
recursively in an accumulated way. The WCET of a task depends on the execution time
ta of the atomic transactional memory sections and the execution time tc outside of them.
Depending on conflicts with other tasks, rollbacks can lead to the repeated execution of the
transactional memory sections. We start by considering the critical instant where all tasks
perform the memory transactions at the same time. If hp denotes the set of tasks with equal
or higher criticality, then a given task T can be required to roll back for |hp| times:

t(1)wcet(T ) = tc + ta|hp| (4.1)

Depending on the minimum interarrival time (mint(τ)) of the tasks, they can arrive again
during t(1)wcet(T ). Therefore, we need to recursively compute an accumulated time t(x+1)

wcet (T )
of the task T :

t(x+1)
wcet (T ) = tc + ta ∑

τ∈ht
(⌊t

(x)
wcet(T )
mint(τ)

⌋+1),τ ∈ hp | criticality(τ)≥ criticality(T )

The additional arrival of tasks with equal or higher priority depends on the mint of the
tasks in hp. By dividing t(x)wcet(T ) by mint(τ) we obtain these additional task arrivals. The
recursion of computing the WCET t(x+1)

wcet (T ) is performed until there are no more changes in
the iterations:

t(x+1)
wcet (T ) = t(x)wcet(T ) = twcet(T ) (4.2)

∀x≥ c,c ∈ N

4.2 Hierarchical Transactional Memory Architecture for
Distributed MCSs

As shown in the state-of-the-art analysis presented in Section 3.4, a system architecture
based on a hierarchical transactional memory for both chip and cluster level is missing. This
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section introduces the required system architecture (denoted from now on as Distributed
Transactional Memory Architecture (DTMA)) and its hierarchical protocol (a.k.a Distributed
Mixed-criticality Transactional Controller (DMTC)) which hides the heterogeneity of the
system. This system architecture guarantees the real-time requirements and provides fault
containment as will be illustrated in details later in this section.

The architecture of the DTMA shown in Figure 4.4, it consists of a number of networked
MPSoCs that are interconnected through a reliable off-chip network. Moreover, the DTMA
has a hierarchical memory architecture at all levels of the system, i.e., cores, gateways,
external memory and the DMTC protocol. Each MPSoC of the distributed system archi-
tecture includes a number of cores, which are interconnected through a NoC. From now
on, this MPSoC will be called a node. Moreover, all nodes are connected to a reliable
off-chip network through their network gateways to establish the off-chip communication.
The nodes’ memory gateways are responsible for providing the transactional memory control,
the memory controller services and the connection to the external memory.
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The system architecture supports message-based as well as shared memory interactions
between a configurable number of nodes and cores. In order to understand the system
architecture, first the nodes of the systems are analyzed, then the off-chip communication
architecture is discussed.

4.2.1 Node Architecture

Each core of a node provides an application service, a memory service module and a network
interface. Application services are realized either in hardware or in software. Subsets of
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cores can define subsystems within the node that implement a specified task. Each core
has a preassigned criticality, e.g. according to IEC61508 or ISO 26262. Each core has
its own local cache, while the memory service module is responsible for generating the
corresponding memory requests of the application and handling memory replies, especially
in case of memory rollbacks. The application service and the memory service module
support bidirectional communication via the TTNI of the on-chip network. We assume a
time-triggered NoC in the architecture such as AEthereal or TTNoC within inherent fault
isolation and temporal predictability.

Message-based and memory interactions are mapped by the TTNI to messages that
are sent to the NoC based on pre-assigned time-triggered communication slots, where the
communication is based on a global time base.

The proposed on-chip network can support different topologies (e.g., mesh, ring) and
offers temporally predictable communication between the cores and the gateways using time-
triggered channels. Those channels define virtual links between the senders and the receivers
based on the configuration parameters of the NoC, which requires a priori knowledge of the
network topology and the timing of the messages. These configuration parameters are the
period and the phase of the messages, the size of the messages, the corresponding virtual link
IDs, the sender cores and the receiver cores, and finally the criticality levels of the cores.

As noticed, the node architecture is very similar to the basic concepts of the TMSoC.
Therefore, the reader can refer to Section 4.1 for more details. The major differences between
the TMSoC architecture and the node utilized in the DTMA are the new memory and network
gateway architectures that support the hierarchical DMTC protocol.

4.2.2 Off-chip Communication Architecture

A node’s gateways are connected to TTNIs through different ports that are corresponding
to the cores (cf. Figure 4.4). The mapping unit of the network gateway (NG) provides
message redirection between the corresponding ports and message queues (cf. Figure 4.5.
Additionally it performs protocol conversion for the incoming and outgoing messages, where
messages are translated accordingly between the NoC message format and the off-chip
message format. In addition, the message queuing service is responsible for serializing and
handling messages in both directions based on their criticality, where messages with higher
criticality are prioritized.

The Memory Gateway (MG) is connected to an external memory unit that provides a
single or multi-channel memory system, where each channel has its own transaction queues.
A memory gateway consists of the memory controller which is connected to the external
memory, and the DMTC. The memory controller implements real-time memory gateway
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functionality that is responsible for providing temporal segregation and high throughput by
defining memory access groups with known latency.

The scope of the DMTC is to support the presented system architecture with a hierarchical
transactional memory while providing a criticality-aware conflict resolution. It is connected
to the TTNI via ports, where each core has its own corresponding in-port and out-port in order
to support fault isolation. Moreover, multiple sending and receiving queues are mandatory
as the interface between the DMTC and the memory controller. Read and write memory
operations are processed based on the received time-triggered messages, while memory
replies and rollback instructions are redirected to the sending buffers to be sent to their
requester source core, where a source core can also be the network gateway.

The DMTC is responsible for preserving atomicity across different levels by handling
and managing address versioning and memory page exchanges between the different nodes
and cores. It contains a version container, a global page table and a set of locally stored
memory pages. The version container tracks and handles the versions of all addresses locally
stored in this node for uncommitted transactions. The global page table is used to locate
required pages within a node or at remote nodes. It is globally shared and synchronized based
on the requests for memory pages in the hierarchical system. These modules of the DMTC
are used by the algorithm in Section 4.1.5 to execute criticality-aware conflict resolution.

A memory transaction is an ordered set that has a start instruction, a set of memory
operations, and finally a commit instruction. By committing a transaction, all changes of the
related memory operations are written to the external memory. A memory operation can be
local in case that the related memory page of the memory operation is located in the same
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node. Otherwise, the memory operation is called a remote memory operation which means
that the accomplishment of this operation requires an access to a remote memory page that is
located in a remote node.

The DMTC uses a page-based memory synchronization, which means that the distributed
system is handling and exchanging all memory data using fixed-size memory pages. The
size of the page has to be defined at design time (e.g., 1Kb). Memory pages of the proposed
distributed system have a unique ID (pageid) that is computed from the addresses. The
global page table (G) is a 1-to-1 table that contains management information about the
pages located in all nodes of the system including the external memories. This table has
to be up-to-date and synchronized in case of page movement between the cores or nodes.
The form of a record in this table is as follows {< pageid,nodeid,coreid >}, where pageid

is the ID of the memory page, and nodeid represents the ID of the node that this page is
located at currently. The core ID that is using this page currently is denoted as coreid . In
case the page is located in one of the external memories the record has the following format
{< pageid,nodeid,ex_mem >}, where ex_mem is the identifier of the external memory.

The version container (V) includes the local versions of all the addresses and their
transaction IDs that are not yet committed within a node. This information is based on the list
of pages that exist locally in the node, and the updates of the V container as will be described
later. A record of V is as follows: {x,{< version1,T xa >,< version2,T xb >,..}}, where x is
the address of a memory operation processed at this node, then a list of the different versions
of this address and their transaction IDs.

The hierarchical characterization of the proposed protocol is driven from its ability to
handle the following five different cases of executing memory operations and their required
memory pages:

• Locally at the core. If the required memory page is at the same requester core the
page can directly be accessed.

• Locally at the node. In case the required memory page is at another core of the same
node, the DMTC locates the page and the ownership of this page is obtained by the
requester core in order to preserve atomicity and consistency.

• Locally at the external memory. If either of the above cases occurs, then the G table
acts as a Translation Lookaside Buffer (TLB) allowing to search for a quick reference
to the location of the page in the external memory of the same node. In case the page
is located in G, then it will be fetched by the requester core and corresponding updates
are performed to G and V .
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• Remotely at another core. For memory pages located at cores of a remote node, the
requested page is located in G and moved to the requester core. The requester core
takes the ownership of this page, and the page’s relevant records of that remote V
container are moved to the local V container of the requester node.

• Remotely at an external memory. Pages located at the remote external memory
of another node are detected based on the address space of each external memory.
Thereafter, the requested memory page is moved to the requester core and the G table
has to be updated.

The detailed operation of these cases in the distributed system with the use of the DMTC is
described in the next section.

The proposed hierarchical transactional memory protocol builds on the system archi-
tecture, where this composition of the architecture and the transactional memory protocol
provides: temporal predictability, fault containment at all levels of the system, heterogeneity
of subsystems and support for diversity.

The configuration of the DTMA at node level is very similar to the configuration of the
TMSoC (cf. Subsection 4.1.6). Additionally the off-chip configuration details are mainly
related to the selected cluster level network and setup. As explained earlier in this section,
the only restriction at off-chip network level is to adopt a reliable and predictable network.

4.2.3 Hierarchical Transactional Memory Protocol

A memory transaction (T x) has a “start_transaction” instruction, then a set of memory
operations, and finally a “commit transaction” instruction. Memory operations have to be
handled differently based on their type (i.e. READ, WRITE). They are performed by a core
involving access to memory at the same core or node, at the node’s memory or at the memory
in other nodes.

The DMTC’s controlling mechanisms have to hierarchically guarantee the atomicity,
consistency and isolation of the memory transactions at on-chip and off-chip levels. The
DMTC executes conflict-detection algorithms and performs selective criticality-aware con-
flict resolution as described in this section.

The state machine illustrated in Figure 4.6 describes the stages of the transaction process-
ing within the DMTC at each of the nodes of the proposed distributed architecture. The state
machine waits until it receives a new memory operation (m) with address x. First it performs
a look-up search in the global page table G in order to determine whether the address (x)
of the memory operation m exists within in the requester core. If the page does not exist
at the requested core, then it either exists at another core of the same node or remotely at
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another node. Otherwise, it is not created yet by any of the nodes. In this case the page has
to be fetched from one of the external memories (DDR). It can be the local external memory
or a remote one, where the targeted external memory is determined from the records in the
G table. Thereafter, the G table has to be updated locally using the position of the newly
fetched memory page. Later this update has to be broadcast to all other nodes in order to
synchronize the G tables.

If the requested page exists at another core of the same requester node or remotely at
another node, then the nodeid and coreid are already known from the previous look-up step.
The requester node will fetch the requested page from the remote core as well as the subset
(R) of the fetched page’s relevant records from that remote V container. In this way the
requester node takes the ownership of this page, updates its ID and broadcasts this change to
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all other nodes. Finally the requester node integrates the relocated version records into its
local V container.

At this phase, there should be a local memory page (p) that contains the address x of the
memory operation m. From the version container V the set A that contains all transactions
that are accessing the address x and can result in contention are identified. In case the set A is
of size zero which means that there are no other transactions accessing this address, or A is
equal to one and this transaction ID is equal to the current transaction, there is no conflict. In
case the type of the memory operation is write, m can be executed by writing the new value
in the identified page p and V has to be updated. In case m is a read operation, then the value
can be read from the memory page p and sent to the requester core.

If the set A contains more than one transaction (right part of the control statement,
Figure 4.6), then the following situations occur. If m is a write operation then a conflict has
to be handled, hence the “ResolveConflict()” function is called to trigger state machine #2
(cf. Figure 4.7), which will be explained later. In case that m is a read operation, we have to
check whether someone else is trying to write at the same time, which can be determined
using the V container. If not, then we read via the local page p and check whether V has to be
updated. In case that m is a read operation and another transaction has written something at
this address x, the second state machine has to be triggered to resolve conflicts. There might
be the case that during the update of the V container, updates caused by read operations are
executed at the same time by updates caused by write operations. In this case updates of
write operations are always dominant.
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Whenever the conflict detection mechanism is triggered by the first state machine for
address x, the list of the conflicting transactions can be directly determined using the V
container. As illustrated in Figure 4.7, these “conflicting” transactions are clustered based on
their criticality level. Clow contains all the transactions with lower or equal criticality to the
transaction T xsel f of address x. The second set, Chigh consists of the transactions of higher
criticality than the transaction T xsel f of address x.

According to the state machine (cf. Figure 4.7), there are two cases. In case that Chigh is
empty, this means that transactions listed in Clow have to rollback except for T xsel f . Therefore,
the transaction’s subset Clow without T xsel f is located in the G table in order to clarify if
any of the non aborted transactions are using the page p. If not, then the values are restored
from the DDR. Otherwise, page p has to be removed, and then transaction T xsel f commits
as described in Figure 4.6. The commit process includes the cleaning of the V container,
updating G and communicating this change, removing no longer used pages at the node, and
finally writing T xsel f to the DDR.

In case Chigh is not empty, then transactions of Chigh have higher criticality and should
not be be affected by the lower criticality. Thus, T xsel f has to rollback. Then the page related
to T xsel f is located in the G table. If non aborted transactions are using this page then the
values of the page p have to be restored from the DDR. Otherwise, page p is removed, V and
G are updated and the rollback is communicated to the requester core.

4.3 Fault Hypothesis

The types and rates of failures that are tolerated in both TMSoC and DTMA are described in
this section. Failure rates in the presented architectures for the safety-critical subsystems are
assumed to be 10−9 for correlated failures.

Fault Containment Regions (FCRs) are distinguished in both system architectures in such
a way to handle design faults and physical faults. Each component (i.e., core, memory or
network gateway, node) is a Fault Containment Region (FCR) for design and physical faults.
In this dissertation three types of failures are distinguished at the network, chip and cluster
levels: timing failures, value failures and address failures.

Considering that TTNIs are used to interface each component in the architecture, failures
in the time domain are contained. This is achieved for a faulty component since its TTNI
is always aware of the predefined message transmission and reception times. These timing
constraints are defined based on the a priori knowledge, and the synchronization on a global
time base.
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Value failures are in the responsibility of the application level developers who have to
mask this type of faults (e.g., using active redundancy of application components).

The third type of failure is an address fault. This type of failures is contained due to
the MMU-like functionality provided by the MTC, which contains the knowledge about
the components that may access particular memory segments. Moreover, the global page
table (G) declares memory segments of the components and can contain address failures by
blocking memory pages of wrong addresses.





Chapter 5

Simulation Framework for
Mixed-Criticality Chip Level
Architectures

Numerous simulation tools are available in the literature, yet there is no support for transac-
tional memory solutions at MPSoC level. Therefore, a novel SystemC/TLM-based framework
was designed and implemented for this purpose to serve the TMSoC system architecture
presented in Section 4.1. Initially, an implementation of a simulation framework for MPSoCs
that support message-based and shared memory instructions is presented. Afterwards, the
framework is extended to support transactional memory architectures.

In the following, available MPSoC simulation frameworks are compared with respect
to their abstraction level, the ability for trace-based execution, the support for transactional
memory and shared-memory simulation and support for safety-critical real-time applications.

SystemC is a widely used system-level modeling language for event-driven model-
ing [OG09, CMM+15]. Timing accuracy in SystemC is ranging from untimed to cycle-
accurate where precise temporal specifications and SystemC modules can be simulated to
validate the behavior of the platform. Additionally, Transaction Level Models (TLM) are
used in the simulation frameworks to enhance the overall simulation speed [CG03, Ghe06].
TLM capabilities such as interface-based communication, blocking and non-blocking pro-
cess structures, bidirectional and unidirectional transactions inspired researchers to develop
simulation frameworks owing to the adaptability and accuracy that SystemC/TLM provides.

OCCN [CGLP04], Noxim [CMM+15] as well as NNSE [LTMJ05] are NoC simulators
that provide a SystemC API enabling the creation of TLMs for a higher-level of abstraction
between the SystemC-based modules. These simulators provide a customizable network
topology (e.g., torus and mesh) as well as support for different routing and traffic distribu-
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tion algorithms. Throughput, delays and power consumption measurements are supported.
Another event-based NoC simulator is GARNET [AKsPJ]. GARNET is a cycle-accurate
network interconnection model inside the GEMS [BBB+11] system simulation framework.
It simulates flit-level buffering for five-stage pipelined routing with virtual channels as well
as routing of flits with accurate memory and timing models.

Sniper [CHE11] is an x86 multi-core simulator based on interval simulation and the
Graphite simulation infrastructure. It performs the timing simulation of an individual core
without tracking the details of the instructions in the core’s pipeline. The Sniper simulator
supports flexible cache and memory configurations for multi-threaded workloads on compu-
tational cores and network-on-chip interconnections with the ability to execute benchmarks
and generate traces. MacSim [KYL+] is another trace-based simulator that models micro-
architectural behaviors including pipelining and memory subsystems. It supports multi-core
chips containing computational cores with different Instruction Set Architectures (ISAs).
Network interconnection models based on the IRIS [RCBB+12] network-on-chip simulator
are available. Both Sniper and MacSim provide a power model based on McPAT [LAS+09].

Based on the latter discussion, a TLM-based simulation framework for deterministic
time-triggered MPSoCs that supports message-based and shared-memory interactions with
the ability to run trace-based and custom applications is not available. The presented
SystemC/TLM-based simulation framework provides timing accurate simulations with high
abstraction levels, taking into consideration assurances for safety-critical real-time appli-
cations based on the TMSoC system architecture. Furthermore, by analyzing the latter
simulation tools, it can be noticed that benchmarks and traces are often used for simulating
the application behavior of a system. However, existing transactional memory benchmarks
(e.g., [MCKO08] and [GKV07]) do not support a hardware transactional memory at multi-
core chip level. Therefore, a trace generation process that computes transactional memory
trace files for MPSoCs is introduced in this chapter.

The realization of the MPSoC simulation framework was performed using SystemC/TLM.
In addition, DRAMSim2 [RCBJ11] is used to simulate the external memory module. DRAM-
Sim2 is a widely used cycle-accurate open-source DRAM simulator that models the memory
controller, memory channels, ranks, banks and timing constraints [OO15], [KYL+]. In the
following, the implementation of the simulation framework with a focus on the configuration
and timing modules is discussed.
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5.1 SystemC/TLM MPSoC

TLM is used in the framework to separate the details of the applications cores from their
behavior at the TTNIs. Message-based communication can be expressed in TLM using
channels, while transaction requests are managed using interfaces. All interfaces needed in
the SystemC simulation framework are inherited from the TLM sc_interface class. In TLM,
transactions can be defined as bidirectional or unidirectional. Examples of such transac-
tions are message-based communication transactions of the proposed simulation framework
and memory read/write transactions, correspondingly. Moreover, the TLM standard was
used to manage blocking and non-blocking process structures (i.e., SC_METHOD and
SC_THREAD).

Each core implements an host processor and a TTNI. In combination these two modules
provide the communication behavior of a node as described in the following paragraphs.

Each host processor has an identification number and it belongs to a subsystem. The
development of an host processor requires a communication interface, which abstracts
from the implementation details of the application by providing procedures to send/receive
messages to/from other cores. Likewise, this interface is responsible for mapping the outgoing
messages to the time-triggered communication for custom applications. In the presented
framework, this interface is also used to execute the trace-based simulation inputs. In this
case, the definition of the traces is required for each of the host processors.

As defined earlier in the system model, the transmission of time-triggered message uses a
priori knowledge of the period, phase, message size, sender node ID and receiver node IDs.
The formed time-triggered messages in the TTNI are transmitted based on a predefined con-
figuration, in which the time-triggered messages are scheduled to be transmitted periodically.
The phase of the message defines the start time with respect to the start of the period. The
message size is determined by the message payload, and the routing requires the source and
the destination node IDs of the message. In addition to that, each message obtains a sequence
number that can be used for delay and power calculations.

As illustrated in Figure 5.1, the user of the framework defines the number of the simulated
subsystems based on the application-specific setup and the clustering of host processors into
subsystems. Each subsystem has an identification number and can be labeled with a criticality
level based on, e.g., ISO 26262 or simply HIGH and LOW criticality.

The TTNI handles the incoming time-triggered messages according to the predefined
periodic transmission schedule. This message handling avoids message contention and
provides predictable transmission times, bounded delays and minimal jitter.
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In case of trace-based host processor the following functions are used. The “cre-
ateTTMessage()” function is executed periodically based on the schedule. This function is
responsible for sending messages at the predefined time-slots. If a shared-memory interaction
is planned, then the host processor reads and provides the corresponding memory transaction
in the “createTTMessage()” function in order to create a time-triggered memory transaction.
Thereafter, in the TTNI, a cyclic dispatcher method is called to determine if a time-triggered
message has to be sent according to the predefined schedule. The upcoming transmission of
a periodic message is calculated with the following equation:

(Period× Index)+Phase (5.1)

Received messages at the TTNI are queued into receiving queues based on the message
type. If the received message is a memory request it will be sent to the external memory
service queue in order to update the scratchpad, otherwise it will be sent to the host processor
queue. The host processor is aware from its configuration information that it will receive a
message at a predefined time so it will invoke its “receiveMessage()” method to retrieve it
from the TTNI queue.

Each host processor has a TLM port and an interface to establish the communication
with the TTNI (and vice versa) as depicted in Figure 5.1. If a message has to be transmitted
from the host processor to the TTNI, an interface method of the host processor is called
on the corresponding port at the TTNI. Consequently, this interface method invokes and
triggers the related functions at both sides to start the transmission. When all messages are
transmitted, the execution sequence will return to the caller module. The advantage of the
port-to-interface structure is that the overall simulation speed is significantly increased.

The simulation module for the TTNoC contains the time-triggered table and the com-
munication channels. The communication table is one of the most important configuration
parameters. It is based on the physical layout and topology of the TTNoC. The table is
generated based on the static configuration parameters of the TTNoC and loaded at the
beginning of the simulation. The TTNoC uses time-triggered channels that represent the
temporal and spatial allocation of physical links of the simulated TTNoC.

The constructor of the simulation class for the TTNoC is responsible for creating the
overall structure of the MPSoC. The number of nodes N connected to the TTNoC is a
configurable parameter that is given to the TTNoC as an input. The generated MPSoC has
N +1 TTNIs, namely N cores and one memory gateway. The total number of the required
time-triggered channels is set according to the static configuration parameters of the TTNoC.

Based on the time-triggered communication table, the instantiated nodes of the previously
mentioned process will periodically call the transmit message function “trmMessage()” of the
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time-triggered channel to transmit their messages. This call is done through the corresponding
port and socket.

TLM socket based connections are used to simulate the connection of the TTNIs to the
TTNoC. Principally, the socket-based connections and the port-to-interface connections have
a similar way of communication. Both use transactions for data transmission. However, the
use of sockets has the following advantages. On one hand, the communication within the
node’s modules (i.e., host processor, TTNI) uses custom TLM interfaces while the TTNoC
uses predefined TLM interfaces to the TTNIs. On the other hand, the technical layout of the
connections between TTNIs and the TTNoC is reduced by using TLM sockets, since it is
possible to bind sockets directly to each other without the need for export-calls to forward
incoming/outgoing time-triggered messages. In addition to that, the use of TLM sockets
improves the hierarchical structure of the implemented framework for further enhancements
in the future.

The implemented TLM sockets at the TTNoC level can simulate communication delays
that represent the router delays of a real MPSoC. The TTNoC simulation of a concrete
topology depends on the configuration and schedule of the use case. The topology and the
number of routers in the TTNoC and the possible accumulated delays of the routers need to
be taken into account.

To receive a message at the core, a sequence of function calls is triggered in the related
objects, starting from the TTNoC sockets and ranging to the receiving queues of the TTNIs.
The sc_interfaces is used to send the message to the host processor, which will call the
receive message function “rcvMsg()”.

5.2 DRAMSim2 External Memory

DRAMSim2 [RCBJ11] is used in this simulation framework to simulate the external memory
module of the MPSoC. It is widely used for MPSoC simulations, e.g., in the MACSim
and Sniper simulators. DRAMSim2 provides dynamically configurable memory models
and a simple connecting interface that allows it to be connected to other simulators. It
is also possible to use a trace-based execution mode (i.e., TraceBaseSim functionality) in
DRAMSim2 to perform trace-based memory simulations.

DRAMSim2 has a simple interface that allows it to be connected to other frameworks.
An extension of the DRAMSim2 interface was developed using SystemC/C++ in order to
connect it to the memory gateway of the proposed architecture. A TLM/SystemC based
interface was established, where incoming memory instructions from the memory gateway
are redirected to the corresponding memory controller of the external memory and vice versa.
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The memory gateway of the framework is inherited from the host processor class. It can
send and receive the memory transactions and it is responsible for mapping the memory
transactions from the memory transmission format to the DRAMSim2 instructions. The
main functionality of the memory gateway is to initiate the DRAMSim2 memory based on
the configuration parameters of the simulation setup and to provide the required interface
from DRAMSim2 to the TTNoC. The memory gateway is responsible for interfacing the
DRAMSim2 memory transaction API calls to establish the memory transaction functionalities
of the MPSoC. Transaction replies are handled accordingly, where the returned data of a
read transaction is sent to the corresponding core. This requires a set of reply-queues in the
memory gateway, namely one for each host processor. The TTNI is responsible for fetching
the corresponding reply message at the predefined timeslot according to the schedule to send
it.

The configurations of the external memory module are loaded in the memory gateway to
define the number of the memory channels, ranks, and banks of DRAMSim2. Each channel
has its own memory controller and its transaction queues as follows:

• The transaction queue ’TxQue’ receives and stores incoming transactions.

• The queue ’ComQue’ stores the translated commands of each transaction.

• If a read command is dispatched to the memory, then the transaction will be stored into
the queue ’PendRQue’ until the data is returned.

• The queue ’RetQue’ is used to store the returned transactions.

Finally, the presented simulation framework requires two configuration inputs derived
from the description provided in Section 4.1.6. One input is for the DRAMSim memory
specifications including the initialization files to define the memory technology, block size
and the transaction queue depth. DRAMSim2 provides memory configuration templates that
can be used or modified according to the simulation requirements. Secondly, the TTNoC
configurations includes the definition of the number of the cores indicating their criticalities,
the memory gateway and the static time-triggered schedule.

5.3 The Mixed-Criticality Transaction Controller (MTC)
Implementation

This section discusses the implementation of the system architecture presented in Section 4.1
with a focus on the transactional memory support and the implementation of the Mixed-
Criticality Transaction Controller (MTC). The implementation of the transactional memory
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extensions is based on the simulation framework presented in the previous section. Therefore,
the major implementation building blocks (i.e., host processor, memory service module, TTNI,
TTNoC) are similar to the building blocks described in Section 5.1. The memory gateway
module on the other hand, is extended to implement and support the MTC architecture and
algorithms.

The memory gateway contains the following building blocks: the TTNI of the gateway,
the MTC that provides the transactional memory services and the memory controller to the
DRAMSim2-based external memory. The MTC delivers eager version control and eager
conflict detection. This means that updates are performed in place while keeping records.
Moreover, conflicts are detected at each read/write memory operation.

The MTC module is responsible for handling incoming and outgoing memory transac-
tions. Incoming memory transaction are processed by the “transactionProcessing()” pro-
cedure based on the received time-triggered messages. Moreover, transaction replies are
mapped and queued in the corresponding destination sending-buffers in order to be trans-
mitted by the gateway’s TTNI. The MTC procedures are used in combination with the
VersionContainer and TransactionRecord modules to perform the desired mixed-criticality
transactional memory handling.

To simplify the description, it is assumed that each node represents a subsystem with its
predefined criticality level. In our N +1 node architecture, the transaction record container
would have N rows, namely one for each node. Transactions with memory operations labeled
as exclusive are conflict-free transactions, while transactions with memory operations labeled
as shared are those which can introduce conflicts. Conflicting transactions are stored based on
their memory addresses in the transaction version container. This container is used to process
conflicting transactions based on their criticalities as described in the MTC algorithms.

Generated transaction instances are logged in the transaction record along with their
criticality. Furthermore, the transaction versions of the generated transaction are checked
based on the information in the transaction container and the transaction version container in
order to track the transactions.

5.4 Trace Generation Process

In this section, the process for the generation of trace files is presented. Benchmarks are
typically used for the evaluation of MPSoCs. However, there is an interfacing gap in the use
of shared-memory benchmarks and MPSoC simulations. Therefore, a generation process
was introduced to create the required input traces for benchmarks and realistic example
applications. The generated trace files have to be compatible with the host processor of the
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MPSoC and its DRAMSim2 external memory. The developed simulation framework adopts
SPLASH-2 and PARSEC application benchmarks [BKL08, BKSL08], which are widely
used for the design and evaluation of shared-memory multi-core systems.
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X86 trace 
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Output File
trace_thread0.dump
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Parameters of the 
MPSoC Platform

Fig. 5.2 Benchmarks Trace Generation Process

The generation of the trace files starts by defining use cases and the number N of
the simulated cores of the MPSoC. N also determines the number of the threads used in
the benchmark execution. As shown in Figure 5.2, after the definition of the application
benchmarks (step 1), they are used as inputs for the tracing and the analysis tools. The x86
trace generator of MACSim in combination with the PINTool [kLCM+05] is used to create
output dumps of the chosen application benchmarks (step 2). PINTool is a dynamic program
analysis tool for run-time instrumentation. The execution of step 2 requires the definition of
the parameters of the MPSoC including the number of the simulated threads, which has to
be identical in steps 1 and 2. The outputs of step 2 are N trace-dump files that contain all
trace instructions of the selected applications, one for each thread.

Afterwards, the trace-dump files are parsed and transformed into an MPSoC/DRAMSim
compatible format by the memory-instruction parser and host processors mapper. The
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resulting output files are the MPSoC application trace files that will be used in the host
processors (step 3), one for each host processor. An instruction of a memory transaction has
the following format:

< memory_address,operation,delay > (5.2)

The memory address indicates the requested memory address. The supported operations
in the simulation framework are read and write. Finally, the instruction delay in cycles is
specified. The delay is specified relative to the previous memory instruction including the
accumulated execution times of any non memory instructions in between.



Chapter 6

Simulation Framework for the
Hierarchical DTMA

The realization of the proposed distributed system architecture with the hierarchical DMTC
protocol is presented in this section. Based on the system architecture introduced in Sec-
tion 4.2, SystemC/TLM is used for the protocol and node implementation. VEOS [V 314]
is used for simulating a FlexRay bus for the off-chip network and the cores of the MPSoC.
Finally, DRAMSim2 [RCBJ11] serves for simulating the external memories of the MPSoCs.
Combining multiple simulation tools requires the introduction of a coordination process that
is responsible for synchronizing their time and data exchange. A co-simulation technique
presented by the author and et al. in [UOO15] is used to accurately coordinate VEOS and
multiple SystemC-based nodes.

The VEOS environment is the dSpace software for the simulation of AUTOSAR software
and physical environment models on a host PC. VEOS allows the simulation of AUTOSAR
Electronic Control Units (ECUs) and their application behavior using virtual validation
scenarios. Using the VEOS player, simulated cores can be integrated into a simulation system
and its execution on the VEOS simulator can be controlled. In addition, the experimental tool
ControlDesk can access the VEOS simulator for testing the AUTOSAR software [OUOA16].

The VEOS environment can integrate other simulation tools, such as Simulink, in the
simulation system for representing the physical environment.

6.1 Implementation

The proposed distributed system architecture is mapped to a synthetic distributed automotive
system as shown in Figure 6.1. The distributed system consists of two MPSoCs that are
connected through a FlexRay bus. Each node has its own on-chip communication schedule,
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Fig. 6.1 VEOS-SystemC Implementation for a Distributed System Architecture.

while a separate schedule is defined for the off-chip communication. The coordination
between the simulation tools is performed by a TCP-based interleaving execution process that
is managed through local controllers at each node in SystemC and by a global coordinator
at VEOS level, where a number of data and control flows are defined between the simulation
tools. Each node can have a configurable number of cores that are interconnected through
a deterministic TTNoC [OESHK08]. Cores are simulated either as SystemC-based or
VEOS-based host processors. Each core runs a trace-based application that is assigned to
it. The trace files are generated based on the process presented in [OO15]. As described in
Section 4.2, the nodes’ gateways provide both off-chip gateway functionality and memory
gateway functionality including the DMTC protocol.

In this work, we extend the node implementation presented in [OO15] by integrating
VEOS-based host cores to the nodes, implementing an off-chip network gateway (NG) for the
off-chip distributed communication, and a memory gateway (MG) that serves the hierarchical
DMTC. The NG provides off-chip gateway functionality for periodic communication based
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on [AOOM15]. In addition to DMTC, the proposed memory gateway assumes a composi-
tional real-time memory controller [AGR07a] that uses a predictable arbiter responsible for
scheduling memory access groups dynamically in order to guarantee the allocated bandwidth
and the maximum latency bounds.

The cores execute their assigned application trace-file that includes message and memory
operations. Sending and receiving messages at core level is controlled by the TTNI of each
core based on the defined communication schedule. Messages might be addressing cores
within the same node (cf. arrows colored in orange, Figure 6.1) or cores at other nodes
(arrows colored in black). On-chip messages between VEOS-based cores and SystemC cores
are sent based on the on-chip schedule to the local controllers to be redirected within the node
to their destination core through the TTNoC. Additionally, off-chip messages are collected
and mapped in the node’s gateway and handled according to the off-chip schedule.

The interleaving execution of the two simulation tools allows one simulation tool to
execute for one microsecond per simulation step, then messages, memory and control
requests are delivered to the other simulation tool to starts its turn of execution for one
microsecond. The execution step of one microsecond can be changed according to the
use-case granularity.

Memory operations are sent by a node (cf. colored in blue, Figure 6.1) to the memory
gateway, while the DMTC coordination protocol requests (arrows colored in green) are
sent between the nodes in order to execute the different memory synchronization requests
and page exchanges of the hierarchical protocol as described in Section 4.1.5. It has to
be mentioned that the off-chip messages and the DMTC coordination requests are sent
though the gateways to the local controllers, and then to the global coordinator whenever the
execution control is given to VEOS in order to deliver the messages to the FlexRay bus and
then to their destination core or node and vice versa.

The AUTOSAR tool SystemDesk is used to define a set of cores that are configured based
on the AUTOSAR architecture with extended communication modules for their simulation
as host processors in an MPSoC. These host processors are integrated to a simulation system
to be run by the VEOS platform.

During a VEOS simulation, an AUTOSAR Operating System (OS) is emulated for a
PC-based simulation of the VEOS-based cores. This AUTOSAR OS invokes the OS tasks
and function calls. SystemDesk is used to define AUTOSAR Software Components (SWCs)
as the application layer of the cores in order to integrate and execute the trace files. Periodic
tasks with different phases are configured to be performed by the OS of each core, where
the period and the phases of the tasks are set according to the on-chip communication
schedule of their corresponding SystemC node. Thus, before the generation of the simulation
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model a trace-file application is manually integrated in each SWC, and each Run-Time
Environment (RTE) of a core is modified to allocate the reading function of the trace-file
application in the defined OS tasks.

In addition, the FlexRay bus simulation is performed by the mentioned global coordinator.
As for the on-chip schedule in the VEOS-based cores, a set of tasks is assigned to the global
coordinator according to the off-chip communication schedule. Based on this schedule, a
period and a different phase is assigned to each task for sending off-chip messages between
the two SystemC nodes.

6.2 Co-simulation Coordination

An integrated global coordinator and local controllers use TCP/IP for the communication be-
tween the simulation tools. The coordinator and the controllers serve for the synchronization
of the AUTOSAR simulation in VEOS with the NoC simulation in SystemC. Additionally,
they are responsible for correctly redirecting the message exchange between each VEOS-
based core and its corresponding TTNI to the TTNoC. The local controllers support the
gateway functionality of the on-chip/off-chip communication. Moreover, the global coor-
dinator is implemented in VEOS as the server of the TCP/IP communication and the local
controllers located at each of the SystemC-based nodes are TCP/IP communication clients.

A minimum interrupt detection latency is assumed for the synchronization and the
exchange of data between the different simulation systems. The granularity for the execution
steps is determined by the interrupt detection latency which is typically higher than 1µs.
Therefore using 1µs as a standard resolution for the execution control guarantees the accuracy
of the simulation.

VEOS implements and simulates a FlexRay bus as described in section 6.1. Moreover, a
global coordinator is responsible for synchronizing the AUTOSAR simulation with multiple
instances of the SystemC-based nodes. The global coordinator has send and receive buffers
for each of the nodes, where messages are stored in order to be sent later based on the
off-chip schedule. The co-simulation uses the 1µs for the execution synchronization and
the data exchange between VEOS and the systemC-based simulation nodes. Every 1µs an
accumulated message is exchanged between the two simulation tools containing on-/off-chip
messages, memory operations and DMTC coordination messages. This 1µs synchronization
means that node buffers might be empty in some cases and this requires sending empty
messages to maintain the execution synchronization.

A message exchanged between the simulation systems includes the following elements:
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• Header: This field indicates whether the message represents either an on-chip message,
an off-chip message or DMTC coordination message.

• Type: This parameter is used to distinguish between the different types of the DMTC
coordination messages.

• Status: Indicates whether the message is empty or not. In case the message is not
empty, the number of data and memory operations contained in the message is denoted.

• Sender ID: Contains the ID of the VEOS-based core sending the data or a mem-
ory operation. The destination core is known from the on-/off-chip communication
schedules.

• Payload: Contains the data of the memory operations.

In case of the DMTC, coordination messages are messages exchanged between the
different DMTCs in the distributed system. The protocol’s synchronization and control
messages are sent in the message payload, while the other fields of the memory structure are
known based on the co-simulation and the communication schedule.

The global coordinator is part of the interface between each VEOS-based core and the
corresponding TTNI at the SystemC node. Once a 1µs simulation step is performed by
VEOS, the AUTOSAR simulation is paused. Thus, in case of any existing memory operation
from the VEOS-based cores, this is forwarded as an on-chip message to the corresponding
SystemC simulation instance where the VEOS-based core is mapped, otherwise the on-chip
message is configured to be empty.

Additionally, an incoming off-chip message from each SystemC node is received by
the global coordinator. The global coordinator provides two buffers for queuing off-chip
messages from each SystemC node. In case one of the two received off-chip messages is
not empty, the data is stored in the buffer available for the specific SystemC node in order
to be sent through the FlexRay bus simulation based on the configured schedule. Moreover,
once the off-chip messages from the SystemC nodes were received and processed by the
global coordinator, this resumes the VEOS simulation and the next 1µs simulation step can
be performed in the AUTOSAR simulation.

Besides the global coordinator in VEOS, each local controller in the SystemC nodes
constitutes an important part of the coordination. The local controller is defined as a main
task controlling the execution of the SystemC-based host processors, the memory gateway
and the TTNoC based on the 1µs time steps. Once an on-/off-chip message from the global
coordinator is received by the local controller the type of the message is verified. In case of
an on-chip message, it is redirected to the corresponding TTNI of the VEOS-based core. In
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case it is an off-chip message, it is mapped and analyzed by the node’s network gateway to
be processed correspondingly. Finally, in case it is addressing the memory gateway then it is
redirected to that gateway in order to be processed by the DMTC as described in the earlier
sections.



Chapter 7

Evaluation and Results

The proposed MCS architectures with support for transactional memory and selective rollback
based on the criticalities are evaluated in this chapter. In the following, three evaluation
scenarios are introduced and discussed based on the experimental results.

7.1 Evaluation of MCS Framework for Message-based and
Shared Memory Interactions

7.1.1 Use-cases Description

A use case served for the verification and evaluation of the simulation framework. The
MPSoC includes seven cores with a TTNoC and two subsystems (cf. Figure 5.1). The first
subsystem is running a Fast Fourier Transform (FFT) application and the second subsystem
executes a body tracking application. Moreover, DRAMSim2 is configured according to
Table 7.1.

Subsystem#1 has nodes N4 and N6 (cf. Figure 7.1), which run the FFT applica-
tion [BKL08] of the SPLASH-2 benchmark. FFT is an algorithm used in signal processing

Parameter Value
Memory technology DDR3_micron_64M_8B_x4_sg15
Main memory size 8GB
Block size 64 Bytes
Transaction queue depth 512

Table 7.1 DRAMSim2 Use Case Configuration
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to compute the discrete fourier transform and its inverse. In the FFT, M identifies the total
number of transformed data points and P denotes the number of processors used in the
benchmark.

Subsystem#2 runs the body-track application on the remaining five cores (i.e., N0-N3 and
N5) as depicted in Figure 7.1. Bodytrack [BKSL08] is used in computer-vision algorithms
for video surveillance, character animation and automotive safety functions. It employs a
model of the human body to detect a person being shown in multiple video streams. It tracks
a marker-less human body using an annealed particle filter to track the pose using edges
and the foreground silhouette as image features. The tracking is based on a 10 segment
3D kinematic tree body model. Bodytrack searches high dimensional configuration spaces
without relying on any assumptions or marks. The problem size of the bodytrack benchmark
is based on four frames and 4,000 particles.
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Fig. 7.1 Shared-Memory Instruction Schedule of the Use Case

It is assumed that the TTNoC topology of the simulated MPSoC in this use case is a
mesh with eight routers (cf. Figure 7.1). The static time-triggered configuration schedule
and the simulation parameters of the MPSoC are set based on the discussion in Section 4.1.6.
The communication schedule of the use case is defined based on the previous assumptions.
Figure 7.1 illustrates the scheduling procedure of the use case. The vertical axis of the
table represents the nodes, routers and the memory gateway (MGW), the horizontal axis
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shows the required cycles. M# indicates the shared-memory requests and MG# indicates the
shared-memory responses.

The message routes are defined based on the routers that are used to reach the destination
nodes. These routes have to avoid collisions in the temporal and spatial domains. For
instance, a shared-memory request from node #0 to the memory gateway is defined as the
route {N0,R0,R2,R4,R6,R7,MWG} and it takes seven cycles. Similarly, the routes of the
remaining shared-memory instructions are defined. According to the schedule, the shared-
memory requests need ten cycles to finish the transmission to the memory gateway and the
memory gateway needs twenty cycles to send back its replies to all the nodes.

In addition, a custom message-based application is defined to be executed as part of the
use case on the top of the TTNoC. This application creates message-based traffic between
the cores N0,N1, . . . ,N6. The scheduling of this application follows the same procedure as
described earlier.

Based on the schedule, the time-triggered configuration table is defined for the message-
based application and the shared-memory application benchmarks as shown in Figure 7.2.

Fig. 7.2 Configuration Table for Message-based and Shared-Memory Access of the Use Case



96 Evaluation and Results

NodeID Trace File
Number of
Memory
Transactions

Total
Instructions
Delay (cycles)

Node
Termination
Time (ms)

0 Bodytrack Node#0 331547 670778 0.0234
1 Bodytrack Node#1 1843 2537 0.0341
2 Bodytrack Node#2 1869 2595 5.3830
3 Bodytrack Node#3 3065 872 4.1444
4 FFT Node#4 43122 125691 0.0231
5 Bodytrack Node#5 376810 658588 0.7187
6 FFT Node#6 292896 571055 5.5258

Table 7.2 Overview of the Instruction Delays and Overall Completion Time in the Use Case

7.1.2 Results and Discussion

The use case was executed on a 64-bit Linux PC with two i7 cores running at 2.1 GHz clock
speed. The simulation was executed for 1 and 10 milliseconds (simulation time) and the
corresponding real execution times were 8 minutes and 75 minutes respectively. The size of
the simulation output files were 659 MB and 6.7 GB.

The output of the simulation framework includes the DRAMSim power calculations,
the delays of the memory instruction and the overall completion time of the benchmark.
Table 7.2 summarizes these results and also shows the total number of the benchmarks’
memory instructions for each node. These numbers depend on the use case and the trace
generation process. Moreover, the accumulated delays (in cycles) of the memory transactions
in relation to the non-memory instructions of each node are illustrated, which provides insight
on the effect of the computational instructions on the memory-related delays. Finally, the
completion time of the benchmark in nanoseconds is listed in the last column of the table. It
can be noticed that all benchmark applications terminated within 5.526 milliseconds.

7.2 Evaluation of TMSoC

7.2.1 Use-cases Description

A conceptual automotive use case serves for the evaluation of the proposed MTC, and allows
the comparison of the WCET analysis from Section 4.1.7 with simulation results. The use
case is divided into two main tasks and several applications (cf. Figure 7.6). A vehicle
is equipped with a pedestrian-detection mechanism, e.g., to detect a critical condition of
children running into the street. Meanwhile, the vehicle is executing a video streaming
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service based on the x264 video encoding library [BKL08]. As described in Figure 7.6, the
camera of the pedestrian-detection mechanism captures frames that are processed by the
system, where the processing procedure includes the following algorithms: a computer vision
algorithm called bodytrack (BT), a fast fourier transform (FFT) and a simple noise removal
(NR) algorithm [BKL08]. The FFT and the NR filters are used to enhance the quality of
the frames. Later, the processed output is provided to the BT algorithm for detecting the
pedestrians. In case a pedestrian is detected, the vehicle’s braking system is notified to trigger
the automated braking, and an alarm indication is displayed to the driver.

The criticality of the applications is based on ISO 26262 [asi11]. The criticality of the
FFT and the NR filters is ASIL B, while the BT application has the highest criticality ASIL
D. On the other hand, the video streaming service x264 is not critical (ASIL QM).
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Fig. 7.3 Automotive Use case Scenario

For the evaluation purposes of this work, the transactional memory architecture and the
MTC algorithms have been developed as extensions of the simulation framework previously
developed in [OO15] to support a transactional memory and the MTC algorithms. This
framework uses cycle-accurate systemC/TLM [Ghe06] and DRAMSim2 [RCBJ11] for the
simulation of the proposed transactional memory architecture and its MPSoC setup. For
the use case trace-files have been generated and used as input for the cores. The MPSoC
consists of 8 cores connected to eight routers of a mesh-based NoC, namely 7 cores and one
memory gateway. The applications are distributed as follows: 4 cores for the BT algorithm,



98 Evaluation and Results

and one core each for the FFT, NR and the x264 algorithms. The DRAMSim2 based external
memory configuration was set to 8GB micron DDR3 with a transaction queue depth of 512.

In order to understand the overall distribution of the memory transactions and the original
memory operations in the use case, Figure 7.4 shows an external ring that represents the
percentage of the memory transactions processed in the use case by each application in
regard to the overall transactions, while the internal ring represents the percentage of the total
memory operations for each application in regard to the overall operations. It is clear that
the major load of the transactions originates from the BT application, while the remaining
applications share 49% of the transaction load in the MPSoC.

7.2.2 Results and Discussion

Although the frame processing can result in memory conflicts, the BT application is of the
highest criticality and therefore the execution and memory interactions of this application
must be guaranteed. Thus, the MTC algorithms process the memory transactions, detect
conflicts and handle them based on their criticality level. Moreover, the critical section
represents 21.8% of the memory operations of the FFT, 14.3% of the NR, and 22.5% of the
BT application.
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Operations NR
14%

Operations
x264 2%

Transactions BT
51%

Transactions FFT
32%

Transactions NR 6%

Transactions
x264 11%

Fig. 7.4 Mem. Operations vs. Transactions Per Application

Figure 7.5 presents the execution time of the use case for each of the seven cores
based on their applications. The use case was executed with and without the selective
rollback algorithms of the MTC. In case no MTC is used, the transaction execution and the
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stalling/rollback decisions are taken based on the order of the transactions’ commit operations
at the memory controller.

As shown in the use case execution results, the performance of the higher criticality BT
application has been improved by 24% with the use of the MTC algorithms. Additionally,
the performance of the FFT and NR applications has decreased by 27% and 29% accordingly
in comparison to the BT, and the execution time of the non safety-relevant x264 application
has been worsened by 44%.

Furthermore, the use case serves for the evaluation of the WCET analysis presented in
the Section 4.1.7. The automotive use case contains five cores each hosting one task (cf.
Figure 7.6). Task T0 has the lowest criticality ASIL QM, while tasks T1, . . . , T3 represent
different Automotive Safety Integrity Levels (ASIL) [asi11].

The overall estimated execution time te and the mint values of the tasks are illustrated in
Table 7.3. Using equation 4.2, the WCET is calculated for all tasks. It is noticed that T0 does
not have a bounded WCET, and tasks T1 to T3 required several iterations (in comparison to
the other tasks) in order to bound their WCET, which usually depends on the parameters of
each task in equation 4.2.
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Table 7.3 WCET of the ASIL tasks

Task ID Criticality te tc ta mint(τ) wcet
T0 ASIL QM 4500µs 4275µs 225µs 1ms ̸ ∃
T1 ASIL B 750µs 643µs 107µs 2ms 1.18ms
T2 ASIL C 1400µs 1095µs 305µs 0.6ms 7.39ms
T3 ASIL D 2570µs 1992µs 579µs 0.9ms 5.97ms

Consequently, the results in Figure 7.5 are inline with our WCET analysis, and this proves
that the proposed architecture and its MTC are prioritizing the memory transactions of the
higher criticality tasks within bounded and predictable time. This behavior is guaranteed at
the three levels of the transactional memory architecture.

7.3 Evaluation of the Hierarchical DTMA

7.3.1 Use-cases Description

A synthetic automotive use case serves for the evaluation of the proposed architecture and
its hierarchical DMTC protocol. The use case represents a pedestrian-detection mechanism
(PDM) running in parallel with an audio-video streaming system in a vehicle. The PDM uses
frames captured by a camera, where the system is required to process these frames using
computer vision algorithms to detect possible pedestrians on the way. Additionally, noise
removal and transformations are applied to the frames in order to enhance the accuracy of
the results. In case a pedestrian is detected, the vehicle’s braking system is notified to trigger
the automated braking, and an alarm indication is displayed to the driver.

The criticality of the applications is set based on the automotive ISO-26262 functional
safety standard [asi11]. The use case consists of the following four applications: The
bodytrack (BT) computer vision algorithm serves for detecting the pedestrians, to which
the highest criticality level is assigned (ASIL D). The second application is the Fast Fourier
transform (FFT) with criticality level ASIL C and the third application is a noise removal
(NR) algorithm with criticality level ASIL B. These two applications are used to enhance the
quality of the captured frames. Meanwhile, the vehicle is executing an audio/video streaming
service based on the x264 video encoding library which is not critical, denoted as ASIL QM.
The higher criticality level application should not be affected by the lower criticality ones in
order to avoid accidents that might cause loss of life.

The previously mentioned applications have been executed using Simlarge input-sets
of the PARSEC benchmarks [BKL08] in order to generate the trace-files for the distributed
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Fig. 7.6 Distributed Automotive Use-case.

system cores. The trace files of the applications are generated accordingly for 12 cores,
and the use case is distributed in such a way to run on two nodes where each node consists
of six cores. Each node has an external memory of 4GB micron DDR3 with a transaction
queue depth of 512. The configuration parameters are defined in the initiation phase of the
DRAMSim2 instances.

The distribution of the trace files and the criticality levels were assigned in the system-
C/VEOS levels as follows: three cores at each node are running the BT trace files with
criticality level ASIL D, and one core at each node runs the FFT trace file with criticality
level ASIL C. At VEOS level, node#1 has two VEOS-based cores that run the x264 trace
files with no criticality. Node#2 has one VEOS-based core that runs the NR trace file with
criticality level ASIL B and another VEOS-based core runs the third non critical x264 trace
file. Finally, the subscript at each application name given as T# (cf. Figure 7.6) represents
the trace file identifier of each core.

Both on-chip and off-chip communication schedules are configured based on the a priori
knowledge of the use case. Different periods and phases are assigned to each core that is
running the trace files at both SystemC-based and VEOS-based cores. Likewise, the schedule
for the off-chip communication is configured using a period of 1ms and a phase of 200µs
for messages sent from node#1 to node#2. The phase of messages sent from node#2 to
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node#1 is set to 300µs. Additionally, messages between VEOS-based cores and their node
are exchanged based on the co-simulation steps of 1µs.

CoreID Core1 Core2 Core3 Core4 Core5 Core6

Criticality ASIL D ASIL D ASIL D ASIL C QM QM

# Trans. 349 6 7 431 60 5

Conservative 79 1 2 94 11 5

FOW 12 2 1 7 7 3

DMTC 5 0 0 11 11 5

CoreID Core1 Core2 Core3 Core4 Core5 Core6

Criticality ASIL D ASIL D ASIL D ASIL C ASIL B QM

# Trans. 9 608 11 434 127 7

Conservative 2 137 2 95 18 6

68 FOW 1 12 0 14 4 5

68 DMTC 0 9 1 9 6 6

-0,88

-0,90487 -0,66962

FOW DMTC

sum D 28 15

sum C 21 20

sum B 4 6

sum QM 15 22

sum C

sum F

Node #1

Node #2

Fig. 7.7 Number of Rollbacks Performed per Core.

It is important to mention that the size of the trace files, the total number of the transactions
and the critical sections for each application are different. This depends on the input-sets of
the benchmark execution and their results at the trace-file generation phase. The size of the
critical sections has a direct relation to the number of conflicts in each application, as will be
shown in the results.

7.3.2 Results and Discussion

The execution time of a core is calculated from the difference between the starting time of
the application until the time at which the trace file has finished its execution, which means
that all messages and memory operations of the trace file have been successfully executed.
The use case was evaluated toward the number of rolled back transactions and the execution
time of three different conflict resolution scenarios. First, the so-called conservative conflict
resolution rolls back all conflicting transactions. These transactions can be re-executed later
with a random minimal delay. Second, the First One Wins (FOW) conflict resolution allows
the first transaction to commit while rolling back all other conflicting transactions. Finally,
the DMTC protocol executes selective criticality-aware conflict resolution as described in the
earlier sections.
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The framework requires sixteen minutes to simulate each second of the real execution
time of the use case. The results illustrated in Figure 7.7 are compared to the total number
of the transactions at each core (given in row # Transactions). The conservative conflict
resolution has the highest numbers of rolled back transactions in comparison to the other
two executions. This is due to multiple attempts of the cores to execute their rolled back
transactions. Moreover, this has resulted in longer execution times independently from the
criticality levels.

The results illustrated in Figure 7.7 have shown that the FOW execution has reduced the
number of rollbacks per application in comparison to the conservative execution as follows:
87.4% for the BT application, 88.9% for the FFT application, 78% for the NR application
and 31.8% for the x264 application. On the other hand, the DMTC execution has reduced
them by 93.3%, 89.2%, 67% accordingly, while the x264 application had the same number of
rollbacks as in the conservative execution. It can be clearly noticed how the DMTC protocol
considers the application criticalities in its rollback decisions.

CoreID Core1 Core2 Core3 Core4 Core5 Core6

Criticality ASIL D ASIL D ASIL D ASIL C QM QM

35.644 Conservative 5.024 0.078 0.078 5.507 0.321 0.037

21.148 FOW 2.554 0.071 0.049 4.042 0.317 0.021

19.950 DMTC 2.370 0.037 0.037 5.929 0.424 0.063

CoreID Core1 Core2 Core3 Core4 Core5 Core6

-1.198 Criticality ASIL D ASIL D ASIL D ASIL C ASIL B QM

Conservative 0.129 10.452 0.157 12.818 1.010 0.032

FOW 0.088 7.322 0.103 6.297 0.237 0.045

DMTC 0.052 5.430 0.174 4.840 0.540 0.054

Node #1

Node #2

Fig. 7.8 Execution Time per Core for both Nodes.

Figure 7.8 compares the execution time between the cores using the conservative, the
FOW and the DMTC protocol executions, where the results are given in seconds. The
results show that the performance of the BT application using the DMTC protocol has been
improved by 48.05% in comparison to its performance using the conservative execution and
25.84% in comparison to the FOW execution. The FFT execution time was improved by
53.74% in related to the conservative execution and 6% in comparison to the FOW execution.
In case of the ASIL B application it can be noticed that both FOW and DMTC execution
lead to an improvement. Since the DMTC execution is prioritizing the higher criticality BT
and FFT applications in comparison to the NR application it is expected that the execution
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time in this case is larger that the FOW execution. As explained earlier, the FOW execution
is agnostic towards criticality levels of the application. Consequently it handles the x264
application in a similar way as the higher criticality applications. This has resulted in the
improvement of the execution time of this non critical application in relation to the other
two executions. The performance of the non critical application was increased in case of the
DMTC execution favoring the higher criticality applications.

Generally, it can be noticed that the improvement of the execution times using the DMTC
protocol is in the same order of magnitude as the FOW execution. In contrast to the FOW,
however, the DMTC protocol ensures that the execution time of a core with high criticality
does not depend on the behavior of cores with lower criticality.



Chapter 8

Conclusion

Many embedded systems based on multi-cores combine applications and subsystems of
mixed-criticality. Transactional memory support in such systems is desirable to provide
atomicity, consistency and isolation guarantees. The prevention of any effect of low criticality
subsystems on the temporal behavior of subsystems of higher criticality is a prerequisite for
modular safety arguments in mixed-criticality systems.

Based on the analysis of the state-of-the-art presented in Chapter 3, two transactional
memory-based architectures were presented and evaluated in this thesis, i.e. a chip-level and
a distributed cluster-level architecture (cf. Chapter 4).

The proposed predictable Transactional Memory System-on-a-Chip (TMSoC) architec-
ture and its Mixed-Criticality Transaction Controller (MTC) ensure that the validation and
certification of high-criticality subsystems do not depend on subsystems with lower criticality.
The MTC algorithms provide concurrency control and conflict detection mechanisms in
addition to a selective rollback. Both safety-critical and non safety-critical transactions can
be executed, but the MTC avoids timing effects of non safety-critical tasks on safety-critical
ones. The rollback of a transaction is performed in case higher criticality subsystems would
be affected, and the WCET of a task only depends on transactions of tasks with the same or
higher criticality.

The proposed Transactional Memory System-on-a-Chip (TMSoC) architecture was eval-
uated using a SystemC/TLM-based simulation framework to execute a synthetic automotive
use case. The used trace-based simulation framework provides early validation and de-
sign space exploration of mixed-criticality systems. This simulation framework provides a
configurable and flexible MPSoC model. Also, an adjustable external memory system was in-
tegrated into the simulation framework based on DRAMSim2. Moreover, it introduces a high
abstraction level using SystemC/TLM to increase the overall simulation speed. This level
of abstraction in combination with the trace-based simulation can hide the computational
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details and the micro-architecture of the simulated cores. In addition to custom application
support, widely used application benchmarks can be used in the simulation environment. As
shown in Section 7.1 and 7.2, the presented solution provides fault isolation and handles
efficiently three levels of temporal predictability (i.e. transaction level, interconnection level
and memory gateway level).

Distributed memory solutions have previously been presented either for on-chip or off-
chip systems. Despite the benefits of the transactional memory as a lock-free solution,
existing transactional memory solutions are mainly investigating the on-chip level. Moreover,
the requirements presented in Section 3.1 are not investigated in distributed systems with
off-chip communication networks.

A hierarchical transactional memory protocol that serves a deterministic mixed-criticality
distributed architecture is presented (cf. Section 4.2). It uses a DMTC protocol that hides
heterogeneity of the system, it offers a high level of predictability and reliability assur-
ances at both on-chip and off-chip levels, and provides fault isolation for mixed-criticality
applications.

The proposed protocol has been evaluated using two time-triggered networked nodes
connected though a FlexRay bus. The simulation framework has been developed using
SystemC and VEOS. The coordination between the two simulation tools is based on TCP.
DRAMSim2 is used to simulate the external memories of the distributed system. A synthetic
automotive use case for pedestrian-detection is presented for the evaluation of the architecture
and its protocol, in which the cores of the two nodes are sharing the execution of four
applications with different criticalities.

The results (cf. Section 7.3) have shown that the proposed hierarchical solution provides
efficient, predictable and reliable support for transactional memories at different integration
levels. It also ensures a bounded execution time of safety-critical applications and guarantees
their independence from applications with lower criticality levels while coexisting and sharing
the memory resources on the same distributed system.
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