Masilamani, Kannan: Framework for coupled simulation of electrodialysis processes. 2021
Inhalt
- Title Page
- Acknowledgements
- Zusammenfassung
- Abstract
- Contents
- Nomenclature
- Notation
- 1 Introduction
- 2 Mathematical models
- 2.1 Concentration measures, velocities and diffusive fluxes
- 2.2 Multicomponent transport equations
- 2.2.1 Maxwell-Stefan equations
- 2.2.2 Nernst-Planck equations
- 2.2.3 Electrical current and Ion transport number
- 2.3 Mixture flow - Incompressible Navier-Stokes equations
- 2.4 Electrodynamics - Maxwell's equations
- 2.5 Conclusion
- 3 Numerical approaches
- 3.1 Lattice Boltzmann method for fluid flows
- 3.2 Multicomponent lattice Boltzmann method
- 3.3 Membrane black-box model
- 3.4 Lattice Boltzmann method for the electric potential
- 3.5 Parameterization
- 3.6 Conclusion
- 4 Coupling of Multi-Physics Equations
- 4.1 General set-up for a model of an ED process and its modules
- 4.2 Coupling of multicomponent LBM and membrane model
- 4.3 Coupling of multicomponent LBM and LBM for electric potential
- 4.4 Conclusion
- 5 Simulation framework
- 5.1 Apes overview
- 5.2 Octree data structure
- 5.3 Seeder - Mesh generator
- 5.4 Musubi - lattice Boltzmann solver
- 5.4.1 Domain decomposition
- 5.4.2 Topology unaware solver data structure
- 5.4.3 Stream-collide algorithm
- 5.4.4 Main program
- 5.4.5 Performance
- 5.5 APESmate - Integrated coupling tool
- 5.6 Conclusion
- 6 Numerical validation and verification
- 6.1 Poiseuille flow
- 6.2 Stefan tube
- 6.3 Concentric cylinders
- 6.4 Taylor dispersion
- 6.5 Electrical double layer
- 6.6 Conclusion
- 7 Results
- 8 Summary and Future work
- A Appendix
- A.1 Asymptotic analysis
- A.1.1 Lattice Boltzmann Method for Fluid Flow
- A.1.2 Multicomponent Lattice Boltzmann Method for Nonideal Liquid Mixtures
- A.1.3 Lattice Boltzmann Method for Electric Potential
- A.1.4 Time Discretization
- A.2 Multiple Relaxation Time
- A.3 Configurations
- Bibliography
- List of Figures
- List of Tables
- List of Algorithms
