Yao, Wei: Semantic annotation and object extraction for very high resolution satellite images. 2017
Inhalt
- Acknowledgements
- Zusammenfassung
- Abstract
- Contents
- List of Figures
- 1 Introduction
- 1.1 Motivation
- 1.2 Main Goals of This Work
- 1.3 Contributions of the Dissertation
- 1.4 Outline of the Dissertation
- 2 Data Characteristics and Basic Mathematics
- 2.1 Data Characteristics
- 2.1.1 Introduction to Remote Sensing
- 2.1.2 Synthetic Aperture Radar
- 2.1.3 SAR Statistical Properties
- 2.1.4 Speckle Reduction
- 2.2 Basic Mathematics
- 2.2.1 Probability Distributions
- 2.2.1.1 Copula-based Joint Probability Modeling
- 2.2.1.2 Gaussian Mixture Models (GMM)
- 2.2.1.3 Bayes' Rule
- 2.2.2 Parameter Estimation Methods
- 2.2.2.1 Method of Moments (MoM)
- 2.2.2.2 Method of Maximum Likelihood Estimation (MLE)
- 2.2.2.3 Method of Maximum A Posterior Estimation (MAP)
- 2.2.2.4 Method of Log-Cumulants (MoLC)
- 2.2.2.5 Expectation Maximization (EM)
- 2.2.3 Numerical Optimization Methods
- 2.2.4 Sampling Methods
- 3 State of the Art
- 3.1 Earth Observation Meets Computer Vision
- 3.2 Hierarchical Representation
- 3.3 Description of Images
- 3.3.1 Feature Extraction
- 3.3.2 Feature Encoding
- 3.3.3 The Curse of Dimensionality
- 3.3.4 Distance Metrics
- 3.4 Machine Learning
- 3.4.1 Classic Machine Learning Methods
- 3.4.2 New Trends in Semi-supervised Learning
- 3.4.3 Object Extraction-based Semantic Exploration
- 3.5 Conclusions and Proposed Concepts
- 4 Application and Evaluation of a Hierarchical Patch Clustering Method for Image Patches
- 4.1 Approach
- 4.2 Methodology
- 4.2.1 Feature Extraction
- 4.2.2 Hierarchical Clustering
- 4.2.3 Modified G-means Algorithm
- 4.2.4 Comparative Similarity Measures
- 4.2.5 Evaluation
- 4.2.6 Comparative Clustering Methods
- 4.3 Results
- 4.3.1 Datasets
- 4.3.2 Experimental Settings
- 4.3.3 Parameter Settings
- 4.3.4 Visual Evaluation
- 4.3.5 Internal Evaluation
- 4.3.6 External Evaluation
- 4.3.6.1 Analysis of Absolute Homogeneity
- 4.3.6.2 Analysis of Relative Homogeneity
- 4.3.6.3 Analysis of Cluster Numbers
- 4.3.7 Comparative Experiments
- 4.4 Conclusions
- 5 Semi-supervised Semantic Image Patch Annotation
- 5.1 Methodology
- 5.1.1 Creation of a Reference Dataset
- 5.1.2 Semi-supervised Learning
- 5.1.3 K-Medoids Algorithm Implementation
- 5.1.4 Evaluation
- 5.2 Results
- 5.2.1 Image Data Selection and Subsampling
- 5.2.2 Parameter Settings
- 5.2.3 Quantitative Evaluations
- 5.2.4 Visual Evaluations
- 5.3 Conclusions
- 6 Pixel-Level Bayesian Classification and Active Learning Based Object Extraction
- 6.1 Pixel-Level Bayesian Classification
- 6.1.1 Modeling of Speckle Statistics Feature
- 6.1.2 Image Intensity Modeling
- 6.1.3 Combined Intensity - Speckle Statistics Feature Model
- 6.1.4 Bayesian Classification
- 6.1.5 Experiments
- 6.2 Active Learning Based Object Extraction
- 6.3 Summary
- 7 Conclusions
- Appendix A
- Appendix B
- References
