Gutsche, Sebastian: Constructive category theory and applications to algebraic geometry. 2017
Inhalt
- Preface
- Summary
- Zusammenfassung
- Contents
- Chapter I. Introduction
- Chapter II. Computability of categories
- 1. Computable functions and decidable sets
- 2. Categories with Hom-setoids
- 3. Categories with Hom-setoids vs. classical categories
- 4. Computable categories
- 5. Decidable properties
- 6. Preadditive categories
- 7. Additive categories
- 8. Preabelian categories
- 9. Abelian categories
- 10. Categorical notions
- Chapter III. Implementation of graded modules
- Chapter IV. Generalized morphisms and Serre quotients
- 1. The category of generalized morphisms
- 2. Structure of the category of generalized morphisms
- 3. Generalized and pseudo-inverse
- 4. Serre quotients
- 5. Computability of Serre quotients
- Chapter V. The category of coherent sheaves over a toric variety
- 1. Preliminaries from toric geometry
- 2. Equivalence of Serre quotient and coherent sheaves
- 3. Deciding membership of the kernel of the sheafification functor
- Chapter VI. Application
- 1. Preliminaries
- 2. Bicomplexes
- 3. Internal Hom and Ext
- 4. Grade filtration
- 5. Spectral sequences
- 6. Filtered presentation
- 7. Coherent sheaves
- Chapter VII. Implementation of computable categories
- 1. The concept of categorical programming
- 2. Main design goal and feature
- 3. Error messages for categorical operations
- 4. Undecidable realizations
- 5. Ensuring compatibility: WithGiven operations
- 6. Caching
- 7. Primitive and derived categorical operations
- 8. Logic Propagation: ToDoLists
- Bibliography
- Appendix A. Programming in Cap
- 1. An overview of installing categories
- 2. The category object
- 3. Functors and natural transformations: The category of categories
- 4. Special categories implemented in Cap
- Appendix B. Logical theorems in Cap
- 1. Logic for all categories
- 2. Logic for preadditive categories
- 3. Logic for additive categories
- 4. Logic for abelian categories
- Appendix C. All method names
- Appendix D. Derivations
- Appendix E. Final Derivations
- Appendix F. Installed basic operations
- 1. Primitive operation index
- 2. Primitive operations for left module presentations
- 3. Primitive operations for right module presentations
- 4. Primitive operations for graded left module presentations
- 5. Primitive operations for graded right module presentations
- 6. Primitive operations for generalized morphisms by cospans
- 7. Primitive operations for generalized morphisms by spans
- 8. Primitive operations for generalized morphisms by three arrows
- 9. Primitive operations for Serre quotient by cospans
- 10. Primitive operations for Serre quotient by spans
- 11. Primitive operations for Serre quotient by three arrows
- Appendix G. Application code
- 1. Function ResolutionFunctor
- 2. Function ResolutionFunctorToComplex
- 3. Function ResolutionFunctorToCocomplex
- 4. Function FreeResolutionComplex
- 5. Function FreeResolutionCocomplex
- 6. Function ResolutionTo
- 7. Function CAP INTERNAL HORSE SHOE HELPER
- 8. Function HorseShoeLemma
- 9. Function CartanEilenbergResolution
- 10. Function DualOnComplex
- 11. Function DualOnCocomplex
- 12. Function DualOnCochainMap
- 13. Function DualOnCocomplexCocomplex
- 14. Function TransposeComplexOfComplex
- 15. Function ResolutionLength
- 16. Function TotalComplexOfBicomplex
- 17. Function EmbeddingInObjectOfTotalComplex
- 18. Function ConnectingMorphismFromCocomplexToCartanEilenbergResolution
- 19. Function GeneralizedEmbeddingOfHomology
- 20. Function GeneralizedMorphismBetweenHomologies
- 21. Function GeneralizedEmbeddingOfSpectralSequenceEntry
- 22. Function PurityFiltrationBySpectralSequence
- Index
