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Abstract

The dream of robotics researchers to one day be able to build intelligent multi-purpose household
robots that can aid humans in their everyday lives, with the inherent necessity that they are able to
interact in general environments, demands that such robots have dramatically improved abilities
for real-time perception, dynamic navigation, and closed-loop manipulation. While feed-forward
robotic manipulation of rigid objects, ubiquitous in manufacturing plants, is well understood, a
particularly interesting challenge for household robots is the ability to manipulate deformable ob-
jects such as laundry, packaging, food-items or paper. Given the fact that most objects in our
homes are explicitly tuned to be grasped, used and manipulated by human hands, transitioning
from traditional robot grippers to anthropomorphic robot hands seems like a necessity. Once we
had narrowed our focus to anthropomorphic robot hands, a suitable domain of exploration within
the possible set of deformable objects was sought. We chose paper manipulation, which poses
many unsolved challenges along the conceptional axes of perception, modeling and robot control.
On reflection, it was an excellent choice as it forced us to consider the peculiar nature of this every-
day material at a very deep level, taking into consideration properties such as material memory and
elasticity. We followed a bottom-up approach, employing an extensible set of primitive and atomic
interaction skills (basic action primitives) that could be hierarchically combined to realize ever in-
creasingly sophisticated higher level actions. Along this path, we conceptualized, implemented
and thoroughly evaluated three iterations of complex robotic systems for the shifting, picking up
and folding of a sheet of paper. Which each iteration it was necessary to significantly increase
the abilities of our system. While our developed systems employed an existing bi-manual anthro-
pomorphic robot setup and low level robot control interface, all visual-perception and modeling
related tools were implemented from the ground up using our own C++ computer-vision library,
ICL. Pushing a piece of paper across a table to a friend is an ability we acquire from a very early
age. While seemingly trivial, even this task, which was the first we tackled, throws up interesting
hurdles in terms of end-state comfort considerations and the need for closed loop controllers to
robustly execute the movement. In our next scenario the paper could no longer be treated as a
rigid object, in fact its deformable nature was exploited to facilitate a complex picking-up proce-
dure. Fiducial markers were added to the paper to aid visual tracking and two distinct models were
employed and evaluated: a mathematical one and a physics-based one. For our final, fully imple-
mented, system, the robot succeeded in folding a sheet of paper in half using a complex sequence
of alternating and in parallel hand movements. Achieving this remarkably difficult feat required us
to make further significant improvements to our visual detection setup and a mechanism to model
folds in the physics engine had to be implemented. Removing the prerequisite that the paper is
covered with fiducial markers was an important hurdle that we overcame using a combination of
3D point cloud and 2D SURF feature registration. Finally, our bottom-up approach to robotic pa-
per manipulation was conceptually extended by the generation of a set of hierarchically organized
basic action primitives. The generalization of our approach was verified by applying it to other
kinds of deformable, but non-paper, objects.
We believe that a thorough understanding of strategies for dexterous robotic manipulation of paper-
like objects and their replication in an anthropomorphic bi-manual robot setup provides a sig-
nificant step towards a synthesis of the manual intelligence that we see at work when handling
non-rigid objects with our own, human hands.
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1 Introduction

Robots that can aid humans in their homes to carry out various general tasks have been a long
desired goal of the robotics community. However, in contrast to well established and successful
production robots used in construction facilities, a large set of additional difficulties has to be
solved on the way of porting such robots from their highly controlled industrial environments into
household situations. While assembly robots are usually employed in perfectly controlled and
coordinated production lanes, households are highly dynamic and non standardized environments
that require robots to automatically orient themselves and to autonomously react to unforeseen
changes in their surroundings. In addition, production robots are typically extremely specialized
in terms of their end-effector-tools and their operation programs. Due to the limited space in our
apartments and houses, it is not an option to have multiple units specialized for different tasks.
There are some special cases in which smaller robots seem acceptable, such as lawn-mowing
robots or vacuum-cleaning robots, however for larger, human sized, robots, it is desirable to only
require a single instance that can carry out most different tasks. But what would such a generic
robot have to look like? The answer is rather obvious: since such a household robot’s main task
would be to interact with things that were originally designed and optimized to be used by hu-
mans, it will most likely be necessary to endow them with anthropomorphic hardware. Just like
in industrial settings, in which each tool-change comes up with significant additional time, space,
maintenance and resource costs [Henrich and Wörn, 2012], generic end-effectors are a highly de-
sirable thing to have and the most generic end-effectors that we know of are our own hands.
Basically every handle or grip or thing that is supposed to be grasped or moved is dimensioned
and tweaked for human hands. Furthermore, considering the number of household tasks that re-
quire two hands, a bi-manual robot design seems to be mandatory.
While a large set of possible tasks for an eventual household robot, such as tidying up rooms,
emptying the dishwasher or grocery bags, can be formalized by a repetition of the program grasp
object A and put it to place B, many other tasks require the robot to not only move, but also to
manipulate objects. This becomes particularly difficult if the objects that are to be handled have
internal degrees of freedom as the robot here not only has to solve its own internal kinematics in-
cluding joint-limit-aware planning and collision avoidance, but also needs to be able to anticipate
the object’s kinematics. In addition, many objects that humans commonly deal with can not be
described in terms of rigid parts that are connected by joints. Instead, objects such as laundry,
cloth, many food items, fluids, plants, packaging, threads or paper have continuously deformable
characteristics and therefore need to be handled in a special way.
To achieve this requires a highly complex closed-loop coordination of visuo-haptic perception,
planning and motor action schemes employing robotic actuator systems that have typically more
than 50 degrees of freedom. This is why most current work is focused on rigid object manipula-
tion, often simplified by assuming rather regular and convex shapes, such as cuboids or spheres,
which allow classical planning approaches to be employed.
In contrast, in order to cope with deformable objects whose shapes are likely to change during
or even due to the manipulation, these approaches must be significantly extended along the three
major axes: perception, modeling and robot control (see Section 2.2.1) In order to create a sys-
tematic and yet manageable route towards the robotic handling of deformable objects, this thesis
is focused on the manipulation of paper, i.e. deformable 2D surfaces with high stiffness and sig-
nificant ductile properties. The handling of such objects is relevant to several application domains



2 CHAPTER 1. INTRODUCTION

and poses a rich subset of challenges, such as manipulation under high shape variability, the need
for continuous tactile and 3D visual feedback, the involvement of elasticity, material memory as
a result of bending and folding, and the possibility of complex construction sequences exploiting
these properties.
One possible approach for creating highly complex robot control systems is to start with minimal
primitive interaction units (basic action primitives) that are then hierarchically combined to create
increasingly sophisticated building blocks for interactive robot control and object manipulation.
Following this bottom-up idea, we develop iterations of dexterous robot control systems for shift-
ing, picking-up and folding of paper to give an impression of the inherent complexity of creating
primitive control systems for seemingly simple paper manipulation actions. Later, this idea is
taken up and extended by the conceptualization of a generic system for dexterous anthropomor-
phic manipulation of paper and paper-like objects.
We believe that a thorough understanding of strategies for dexterous robotic manipulation of paper-
like objects and their replication in an anthropomorphic bi-manual robot setup provides a signifi-
cant step towards a synthesis of the manual intelligence [Maycock et al., 2010] that we see at work
when handling non-rigid objects with our own, human hands.

1.1 Related Work

The large amount of related disciplines, such as computer-vision and tactile feedback based per-
ception, sensor-fusion, (physical) modeling and simulation, robot planning and feedback-based
control, leads to a many possibly interesting papers, articles and theses. Commonly, these con-
tributions have dealt with more restricted types of deformable objects, which can be broadly cat-
egorized into i) 1D linear deformable objects, such as ropes, cables and wires ii) 2D planar de-
formable objects, such as cloth, paper or sheet-metal and iii) 3D generic deformable objects, such
as pillows or foamed material.
A typical robotic object manipulation system can be subdivided into the three conceptual com-
ponents Perception, Modeling and Robot Control. While Perception summarizes the acquisition
and the processing of all kinds of sensor input, such as cameras, touch sensors and joint-angle
encoders, the Modeling component defines how the to-be-manipulated object is modeled and how
the model’s parameters are updated with respect to the processed sensor input. The planning and
the actual execution of robot movements is summarized by the Robot Control component. In the
remainder of this section, general related work for the robotic manipulation of deformable ob-
jects is presented and organized with regard to these components. More specific related work is
presented in the relevant chapters 3, 4 and 5.

1.1.1 Perception

A robotic system must be able to perceive its world to register where relevant objects are, how
its actions affect these objects and to be able to interactively react to external changes. A purely
feed-forward system design, where the positions, the orientations and the states of all relevant
objects are assumed to be given is not appropriate for the targeted household environment as the
robot shares its world with humans, who act as independent and not fully predictable entities. Fur-
thermore, even very small inaccuracies of the actions carried out by the robot accumulate, so that
the estimate of the configuration after consecutive manipulation actions becomes inaccurate over
time.
The main sense that a system must rely on is vision as it offers a cheap and fast source of infor-
mation that does not require to touch the manipulated objects and thereby create the risk unin-
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tentionally alter its configuration. However, not only visual, but also tactile input is commonly
used. The latter is of particular importance in situations in which contact-related occlusions do
not allow parts of the objects to be visually detected. Tactile sensor feedback can be obtained by
attaching contact pressure sensitive (touch) sensors to the robot’s end-effector or by calculating
object-to-robot contact forces on the basis of torque-sensors added to the robot’s joints. In addi-
tion, deformability characteristics such as material stiffness or rigidity can often not be detected
without interaction. Instead, physical parameters must be estimated on the basis of the reaction
of the object to external forces or to the manipulation itself, which is commonly referenced in
literature as force-based interaction [Natale, 2003]. In some situations, the estimation of object
parameters can require additional probing interactions to be conducted prior to the actually in-
tended manipulation.
There are several systems that explicitly acquire and track a geometrically and physically plausible
object model, which defines the connection between perception and robot control [Bersch et al.,
2011; Elbrechter et al., 2012a; Miller et al., 2011; Schulman et al., 2013a,b].
Even though the availability of such a model greatly facilitates robot planning, most systems
employ less specific models that use a topological object representation [Koganti et al., 2013;
Twardon and Ritter, 2015b; Wang et al., 2011; Yamakawa et al., 2007] or even make do with the
estimation of interest points that can for example be used for grasping [Cusumano-Towner et al.,
2011; Maitin-Shepard et al., 2010]. The main reason for this is the inherent difficulty of generic
model-based tracking of deformable objects, which is usually achieved by employing fiducial
markers [Bersch et al., 2011; Elbrechter et al., 2012a] or specially colored object patches com-
bined with trivially colored backgrounds [Miller et al., 2011; Schulman et al., 2013a,b].
It becomes evident that the complexity of the actual desired interaction is directly linked to
both the complexity of the model and in turn also the perception mechanism that is needed.
While pinch-grasping towel corners to fold towels can be achieved by estimating grasp points
[Maitin-Shepard et al., 2010], dexterous interactions with anthropomorphic robot hands requires
more detailed model information. This effect is also reflected by the work that is presented in this
thesis. An early system for shifting paper (see Section 2.2) was implemented using a very simple
rigid paper model that is easier tracked in 2D only. In contrast bi-manual paper folding (see Chap-
ter 5) requires a much more sophisticated model and tracking framework. Specific related work
dealing with the detection of paper for robotic paper manipulation is presented in Section 5.1.

1.1.2 Modeling

If we expect robots to move and interact in general environments, a necessary prerequisite is that
they are endowed with an internal representation, or model, of the world and objects therein. The
model not only formalizes the world mathematically, but also defines model parameters, which re-
flect physical properties and quantities. In addition, the model describes how these parameters are
updated continually as new perceptual input is received. Most robotic systems have hard real-time
constraints, necessitating a trade-off between modeling accuracy and computational complexity.
Thus, to avoid both conceptual and computational overheads, a system must employ a model that
is appropriately tailored to the targeted application. In the case of deformable object models, the
intrinsic object dimensionality (1D, 2D or 3D) is often explicitly reflected by the chosen model.
That is, when dealing with linear objects, such as ropes, a 1D deformable object model suffices.
However, when dealing with paper or cloth a more complex 2D deformable object model is re-
quired. 3D models must be employed only for objects that have real intrinsic 3D properties such
as sponges or pillows.
Linear deformable models are used in cases in which one of the object’s dimensions is much
larger than the other two. Most commonly, variants and extensions of classical mass-spring mod-
els, internally representing the 1D-object as volumetric tubes of nodes connected by springs are
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employed [Jeong and Lee, 2004; Lamiraux and Kavraki, 2001; Pai, 2002]. In contrast, real linear
models require additional spring types to be added to account for more realistic bending, stretch-
ing and torsion behavior (if needed) [LeDuc et al., 2003; Phillips et al., 2002; Wang et al., 2005] or
internally represent the 1D structure as a series of rigid links [Brown et al., 2004; Schulman et al.,
2013b; Zheng et al., 2014].
Planar deformable objects, distinguished by a single negligible dimension, can coarsely be split
into two classes. Models that allow continuous deformations of the 2D surface in 3D space to be
represented, and more abstract models that represent binary deformations such as a 180 degree
fold. Due to the specific relevance for the work carried out in the course of this thesis, planar
deformable objects are reviewed in more detail later with a focus on bending in Section 4.1.2 and
on folding in Section 5.1.2.
For the modeling of general volumetric 3D deformable objects, purely geometrical models such as
splines can be used [Terzopoulos et al., 1987]. However, in order to achieve real-time applicabil-
ity, more recent approaches commonly model such objects physically using mass-spring systems
[Duan et al., 2016; Kot, 2014] or, in cases in which accuracy is more important then computational
efficiency, finite element methods are used [Paulus et al., 2015].

1.1.3 Robot Control

The third of the three conceptual components is Robot Control. This encapsulates all robot-related
aspects, such as planning, action sequencing and the actual high and low level control needed to
actuate the robot. Robot control to manipulate deformable objects is not only highly relevant for
future household robots, but also for industrial and medical applications. Most body parts, such as
soft tissue, muscles, internal organs, skin and blood vessels, and also many medical instruments
such as elastic needles for suturing, threads, or endoscopes are deformable in nature. In general,
once again the dimensionality of the handled objects provides a good structure. Similar to the re-
duction of computing power necessary to model an object with a lower dimensionality, limitations
to the handled objects also allows more specialized and thus more powerful planning algorithms
to be created. Without restricting the to-be-handled object type, extended Probabilistic Roadmap
Methods (PRMs) are often employed for planning. These generate randomly spread configuration
samples with altering deformations and poses [Anshelevich et al., 2000; Moll and Kavraki, 2004,
2006]. In contrast to the planning of rigid object manipulation, the binary collision estimation
that is typical for classical PRM-based approaches can be replaced with soft-limits that penal-
ize object collisions according to the depth of the mutual object penetration [Bayazit et al., 2002;
Gayle et al., 2005].
When restricting the to-be-handled object to be planar, most applications deal with folding as-
pects. These include not only folding of cloth/laundry or paper in household situations, but also
carton-folding and sheet-metal bending. The planning of folding sequences can be split into three
layers:

1. Planning of where to fold the object.

2. Planning of the folding order.

3. Planning of robot movements to achieve this.

Admitting that this suggested structure possibly demands bi-directional interconnections between
these layers, the problems are commonly tackled in a separate fashion. Classical mathemati-
cal formalisms about origami design [Demaine and O’Rourke, 2007; Lang, 1996] serve well as
a basis for point 1 and also partially for point 2. However, for the actual sequencing of fold-
ing operations to achieve a desired folding configuration, constraint, collision and manipulability-
driven optimizations must be incorporated. The planning of actual robot movements (point 3) very
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much depends on the desired goal. Gravity-based folding approaches of cloth [Lakshmanan et al.,
2013] often neglect internal material stiffness and thus allow folding operations to be carried out
more easily. In contrast, paper folding [Balkcom and Mason, 2008] or in sheet-metal-bending
[Gupta et al., 1998] applications, the material stiffness and its plastic behavior has to be explicitly
taken into account. Usually, this is achieved by using specialized folding hardware.
It is important to mention that real dexterous robotic paper manipulation using anthropomorphic
robotic hands was not properly approached before this thesis’ authors work [Elbrechter et al.,
2011a] and [Elbrechter et al., 2012a]. An extensive survey on Model-based Manipulation plan-
ning of Deformable objects concluded the following:

“The dexterous two-handed manipulation required for folding paper as humans do is still an open
issue as for a robotic implementation” [Jiménez, 2012].

Additional sources that present systems for the planning of robotic folding sequences are provided
along with the actual work chapters for picking-up paper (see Section 4.1.3) and folding paper
(see Section 5.1.3).
If the handled object’s dimensionality is reduced to 1D, knotting and unknotting tasks [Kudoh et al.,
2015; Marzinotto and Stork, 2016; Wakamatsu et al., 2005; Yamakawa et al., 2013] are often in-
vestigated. Similar to the handling of planar deformable objects, the restricted object type allows
a layered structure to be introduced that decouples the (usually topological) knotting theory from
the robot planning steps. A special feature of the knotting/unknotting scenario is the weak plastic
behavior of ropes. This leads to the fact that, in theory, unknotting can be achieved by reversely
performing knotting steps and vice versa. However, while this assumption is true for topological
knot theory, the actual actions that are needed for knotting and unknotting are often completely
different. The difference of the actions needed is also reflected by the perceived difficulty. While
for example a tightened knot is relatively easy to create, its untying can be a real challenge. In
contrast, tying a bow requires a very complex bi-manual interaction but it can be untied by sim-
ply pulling one of the rope’s loose ends. Robot planning for knotting operations is commonly
addressed by including topological consistency checks into the configuration rating of random-
motion-based planners [Ladd and Kavraki, 2004; Saha and Isto, 2007].

1.1.4 Two Exemplary Projects

Most of the above related work deals with one or more specific sub-problems addressed in this the-
sis, but the overall overlap with this work is still rather small. However, there are two projects that
were particularly important for this work: Devin J. Balkcom’s work on Robotic Origami Folding
and Pieter Abbeel’s Group’s work focused on robotic manipulation of deformable objects. Even
though Balkcom’s idea of a specialized origami folding robot is basically the complete opposite
of anthropomorphic robot hands, his work [Balkcom, 2004; Balkcom and Mason, 2008] was very
important as its core idea of robotic paper manipulation is very similar to ours. Furthermore, it
yielded important insights about the feasibility of robotic paper folding using a specialized robot
and his formalisms about the representation of folds and fold difficultly classes are very valuable.
Another important project for this thesis was the work done by Pieter Abbeel’s Group, which
started with gravity-based folding of cloth[Van Den Berg et al., 2011]. Also inspired by Balk-
com’s ideas and by Bell [2010]; Bell and Balkcom [2009], their system is much closer to our
work. In contrast to Balkcom, they incorporate visual feedback and they employ a general pur-
pose bi-manual PR-2 robot. However, they moved from paper manipulation to cloth, in par-
ticular towels and laundry, which allows them to perform gravity-based folding motions by as-
suming no material stiffness. After presenting their Parametrized shape models for clothing
[Miller et al., 2011] and introducing a detection and modeling framework for rope-like objects
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[Javdani et al., 2011], they eventually came up with a generalized point-cloud-based tracking
framework that, similar to our work, uses a physics-based model [Schulman et al., 2013b]. Their
specialization on cloth and rope-like objects has had a strong impact on suturing in medical
robotics [Schulman et al., 2013a]. They also provided valuable research towards motion-planning
for cloth manipulation and laundry folding [Lakshmanan et al., 2013], learning from demonstra-
tion [Lee et al., 2014, 2015a; Schulman et al., 2016] and even force-based manipulation of de-
formable objects [Lee et al., 2015b].
For the interested reader, there are several extensive reviews and surveys about robotic manipu-
lation of deformable objects [Henrich and Wörn, 2012; Jiménez, 2012; Khalil and Payeur, 2007,
2010].

1.2 Contribution of this Thesis

The intention of this thesis is to provide a thorough understanding of the challenges and the op-
portunities of dexterous manipulation of paper and other deformable objects using a bi-manual
anthropomorphic robot system.
To this end, shifting paper (see Section 2.2), picking-up paper (see Chapter 4) and folding paper
(see Chapter 5) were selected, implemented, evaluated and comprehensively discussed. With each
more complicated manipulation example, the requirements for Perception, Modeling and Robot
control grew, resulting in the development of more and more sophisticated systems for visual
paper detection, (deformable) paper models and robotic manipulation frameworks and (feedback-
based) controllers.
In addition, the novel Computer-Vision library, ICL, which was developed along with the pre-
sented robot systems, is introduced (see Chapter 3). It combines an unmatched combination of
Computer-Vision-related functions with general purpose tools for the development of efficient
interactive real-time applications including image and point-cloud processing, a fully-fledged
GUI-creation and high performance 2D/3D visualization framework as well as in-built physics-
simulation support. All applications presented in this thesis were implemented from the ground
up in ICL.
We present the first system to ever perform real anthropomorphic picking-up (see Chapter 4) and
folding (see Chapter 5) of paper. To achieve this, new detection frameworks were introduced and
successively enhanced. Initially based on fiducial-markers, the final detection system is capable of
real-time tracking the deformation of a sheet of printed A4 paper as it is iteratively folded in half
several times (see Section 6.2). Along with the detection, also the paper model was successively
improved. Starting with a most trivial rigid model (see Section 2.2), aspects of bending (see Chap-
ter 4) and even folding (see Chapter 5) were added and the link to update the model on the basis of
the perceptual input was continuously refined. The final model (see Section 6.1) can represent and
memorize precise folds and creases and suitable methods for automatic fold detection (see Section
6.4) were also developed and evaluated.
With regards to robotic manipulation, the requirements needed to endow an anthropomorphic robot
with the ability to shift (see Section 2.2), to pick-up (see Chapter 4) and to fold paper (see Chapter
5) were investigated and analyzed. To this end, we introduced common manipulation primitives
and a set of closed-loop feedback-based controllers and we discuss their seamless integration into
the existing robot control framework. Finally, a concept of a generic anthropomorphic robotic
system based on an extendable set of parametrized basic action primitives for the manipulation of
paper (see Section 6.5), other kinds of planar deformable objects (see Section 6.5.4) and even 1D
and 3D deformable objects (see Section 6.5.6) was developed and discussed.
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1.3 Outline

This thesis is organized as follows. Chapter 3 introduces the Computer-Vision library, ICL, which
was as a prerequisite for the work carried out here. The following two chapters show the develop-
ment and the results of the dexterous robotic manipulation systems that were created for picking
up paper (see Chapter 4) and for folding paper (see Chapter 5). In Chapter 6 we describe further
extensions that were developed in order to show the possibilities and the limitations for a selected
set of obvious next steps. Finally, a summary and discussion followed by a future outlook is pre-
sented in Chapter 7.
The following paragraphs give a concise overview of the contents of the main work chapters 3 - 6.

Chapter 3: A new Image Processing Library

The work presented in this thesis heavily relies on perception and to this end the Computer-Vision
library, ICL, was developed (see Chapter 3). After defining general requirements for the design of
software libraries (see Section 3.1), alternative Computer-Vision libraries are presented and sys-
tematically compared to each other (see Section 3.2). The comparison even includes benchmarks
of common functionalities. Subsequently, design principles (see Section 3.3.1) and a modular
overview of ICL’s functions (see Section 3.3.2) are given. After positioning ICL in the landscape
of the existing libraries (see Section 3.3.4), the components that had a major impact for the work
of this thesis are listed and discussed in more depth (see Section 3.4).

Chapter 4: Picking up Paper

Chapter 4 describes the development of a fully-fledged robotics system designed to allow bi-
manual picking up of a sheet of paper placed on a flat surface. It starts with presenting related
work relevant to the picking-up system (see Section 4.1). In addition to work that deals with the
modeling of deformable paper and paper-like objects (see Section 4.1.2) and robot systems able
to pick-up paper (see Section 4.1.3), fiducial markers and existing detection libraries are focused
upon here (see Section 4.1.1). Fiducial markers are included as our paper detection framework
(see Section 4.2) is based on a newly introduced marker type (see Section 4.2.1) that facilitates 3D
key-point estimation (see Section 4.2.2) In the subsequent modeling section (see Section 4.3), two
possible paper models, a purely mathematical one (see Section 4.3.2) and a physics-based paper
model (see Section 4.3.3), are presented. The corresponding evaluation section (see Section 4.4)
begins with a detailed analysis of the new marker type’s detection accuracy (see Section 4.4.1),
then the two models are systematically compared qualitatively (see Section 4.4.2) and quantita-
tively (see Section 4.4.3). After concluding that the physics-based model has more advantages
than its mathematical counterpart (see Section 4.4.5), the final system for picking up paper with
the robot is presented (see Section 4.5). This is split into a description of the hardware and soft-
ware setups (see Section 4.5.1), and is followed by a detailed description and discussion of the
conducted picking-up experiment. The chapter closes with a structured discussion of visuo-haptic
perception (see Section 4.6.1), modeling (see Section 4.6.2) and particular aspects relevant for
robot control (see Section 4.6.3).

Chapter 5: Bending and Folding

In this chapter the robotic system is extended to allow a more complex fold to be executed. Section
5.1 provides a thorough literature review of work relevant to paper folding, once again structured
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along the three axes: visual detection (see Section 5.1.1), modeling (see Section 5.1.2) and robot
control (see Sections 5.1.3 and 5.1.4). The following section introduces a new detection plugin
for BCH-code fiducial markers to replace the former custom-designed marker type (see Section
5.2). Section 5.3 describes how the original physics-based model is extended to allow folds to
be represented (see Section 5.3.1) and how the model control-law that updates the model with
regard to the visual detection must be extended (see Section 5.3.2) accordingly. The following
evaluation section (see Section 5.4) first compares the performance of the new BCH-code markers
to the custom marker type that was introduced with the picking-up system in Section 4.2.1. Once
the superior performance of the new markers is shown, the resulting enhanced paper detection
system is extensively evaluated on the basis of a large set of complex paper folding examples car-
ried out by a human (see Section 5.4.2). Subsequently, Section 5.5 describes the development of
the robotics system to fold paper. After highlighting the improvements of the software architec-
ture with respect to previous picking up system in general (see Section 5.5.1), new closed-loop
feedback-based controllers are introduced (see Section 5.5.3). The final robot control system for
bi-manual anthropomorphic paper folding is then described and its results are presented (see Sec-
tion 5.5.4). The section ends with a discussion (see Section 5.6).

Chapter 6: Advanced Aspects

The last work chapter is dedicated to further extensions that were developed in order to show the
possibilities and the limitations of possible next steps. Firstly, an improvement of the paper-model
that was developed for the folding experiment is presented (see Section 6.1). While non-axis-
aligned folds previously had to be approximated by a regular grid of nodes, the new model can
represent arbitrary folds in a precise manner. The following three sections describe the devel-
opment of a whole new marker-less visual detection system that is based on a Microsoft Kinect
Camera. Section 6.2 introduces the new paper tracking system and discusses its strengths and
weaknesses by tracking a paper folding sequence. In the following Section (6.3), its major draw-
backs are nullified by combining the point-cloud-based tracking approach with a parallel 2D-
SURF-feature-based update mechanism. A comprehensive evaluation reveals that this extension
elevates the system’s tracking accuracy to results that are comparable with the original marker-
based tracking system. In Section 6.3.3, the system is employed to track the folding of a sheet
of paper with an even more difficult to detect paper texture that shows mostly printed text. A re-
maining disadvantage of the presented system, the necessity to add fold lines manually, is tackled
in Section 6.4. After comparing different metrics for the local fold likelihood along the surface
of paper, a particle-based mechanism for detecting if a fold was added and where it was added
is presented, qualitatively evaluated and discussed. Finally, in Section 6.5 a concept of a generic
system for dexterous robotic manipulation of paper and other deformable objects, based on a set
of basic action primitives (BAPs) is developed. To this end, an initial set of BAPs is created from
an exemplary paper aeroplane folding experiment and then iteratively refined and extended by
discussing how other common interactions could be realized on the basis of sequences and hier-
archical cascades of the existing BAPs. Here, not only paper, but also other planar deformable
objects are discussed and a possible generalization to 1D and 3D deformable objects is provided.



2 Rich Research Challenge of Paper
Manipulation

The landscape of robotic manipulation is mainly characterized by two orthogonal axes that repre-
sent the complexity of the used robot/robot hand and that of the object being handled or manipu-
lated. The term complexity here strongly correlates to the number of DOFs the robot or the object
has, but it also encompasses other more abstract ideas of difficulty. Figure 2.1 shows a coarse
sketch of this landscape and it highlights major blocks of robotics research along the two chosen
axes. Of course there are many research projects that address aspects that span several of these
blocks and often approaches are generalized by moving up a particular block or deeper to the right.
The underlying link to DOFs suggests a weak but significant positive correlation between the two
axes. That is, the more complex the handled object is, the higher are the requirements for the
employed robot hardware.
The robotic handling of rigid objects is already well understood and thus recent research is largely

focused on advanced aspects, such as autonomous planning, collision avoidance, end-stage com-
fort or learning. However, dexterous handling of rigid objects using anthropomorphic robot hands
and closed-loop tactile feedback to allow for example a key to be blindly picked out of a pocket,
is still a mostly unsolved topic.
When traversing the landscape further to the right, we approach a research block that deals with
objects that in addition to their six external DOFs also have a number, I , of internal DOFs. Such
objects can be accurately represented by articulated models that consist of rigid object parts con-
nected by well defined links. Thus the state-space of an articulated object can usually be trivially
represented by R6+I . In contrast, the missing rigidity of an object commonly leads to a tremen-
dous increase of the requirements for a perception system.
Interestingly, given the similarity of robots and articulated objects – both are commonly repre-
sented by kinematic chains/trees – allows us to bi-directionally exchange formalisms regarding
robot planning and the planning of movement sequences for articulated objects. Manipulation of
more complex objects and/or using more complex robots is less well-understood.
An even larger challenge arises from the handling of continuously deformable objects. Here,
kinematic chains or graphs can only represent the object deformation to a certain level, commonly
leading to a trade-off between accuracy and real-time applicability. Therefore, employed models,
perception techniques and manipulation frameworks are often customly tailored here to the intrin-
sic dimension of the manipulated object. Actually, the particular affordances of the handled object
classes (1D, 2D or 3D) implicitly links the applications to their intrinsic dimensionality, which
makes the exchange of formalisms between these much more demanding. The high complexity of
deformable objects necessitates a large set of additional requirements for all parts of the robotic
manipulation system.
In particular, the perception components must be extended so that they can handle the continuously
changing appearance of the object. Statistical outlier detection methods (such as RANSAC), no
longer suffice because of the varying relative transform between object features, and visual feature
detection becomes arbitrarily complex as features may be altered, created or even removed during
the manipulation. The same is true for tactile perception, as the deformable object is likely to
create perception artifacts that arise from the object contact itself. Soft objects not only require
highly sensitive tactile sensors, but object specific deformation properties, such as bendability,
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Figure 2.1: Coarse scheme of the landscape of robotic manipulation research. The area is spanned by
two complexity axes: the robot and the manipulated object. The background saturation of
the sketched areas indicates an idea of the density of research papers for the corresponding
combination of robot and hand complexity, which in turn reflects how well understood the
particular areas of research are. As landmarks, the areas tackled by the aforementioned projects
by Balkcom and Pieter Abbeel are also marked in the landscape.

foldability, elasticity, tearability or even plastic behavior require highly sophisticated and physi-
cally plausible modeling techniques combined with a robust update mechanism that adapts the
state of the model on the basis of visual and haptic perception input. Here, aspects regarding the
real-time applicability of a system are very likely to become an important factor. The number of
DOFs that are needed to satisfactorily model object deformation drastically reduces the prediction
horizon so that systems must counteract the increasing uncertainty by continuously updating and
refining their object-beliefs during the interaction.
The bad predictability of the results of actions also tremendously increases the difficulty of possi-
ble planning and action sequencing modules. Due to the fact small inaccuracies at the current time
can lead to large future errors, action sequencing must be carried out on several abstract levels.
Available theories such as knotting (1D) or origami folding (2D) can be employed to arrive at a
sequence of desired object movements. On top of that, another layer is needed that sequences
robot actions to actually realize the desired movements of object regions. Internally, even rather
primitive actions, such as establish contact at a given object position, are likely to require their
own built-in real-time closed-loop visuo-haptic feedback channel. The task gets conceptionally
even harder when dealing with clay-like objects that allow material parts to be taken off.
While in the literature, there is already a solid basis of research papers dealing with robotic ma-
nipulation of deformable objects, there is only a very small amount of publications that employ
anthropomorphic robot hands for this purpose.
This thesis aims to provide concepts and solutions to tackle this thus far only barely touched area in
our research landscape, and in particular focuses on deformable object manipulation using anthro-
pomorphic robot hardware. Within this field, we chose the manipulation of paper, i.e. 2D objects
that combine continuous deformability with plastic behavior. In the context of future household



11

Step 1: Fold the paper in half along the short edge and harden the crease.

(1a) (1b) (1c) (1d) (1e)

Step 2: Undo the previous fold.

(2a) (2b) (2c) (2d) (2e)

Step 3: Diagonally fold one corner towards the center fold and harden the crease.

(3a) (3b) (3c) (3d) (3e)

Figure 2.2: First instruction steps to build a simple A4 paper aeroplane.

robots, the ability to be able to manipulate paper and paper-like objects will be very important if
we want them to help us with many everyday tasks. Through origami theory, there exits a large
theoretical background of human paper folding which is likely to become applicable to robotics
once a set of primitive interaction building blocks such as fold along that line or turn the paper up
is available.
One of the first interesting interactions a child learns with paper is to build an aeroplane. Figure
2.2 shows the first few steps of this task and it herewith reveals a surprisingly rich set of highly
coordinated hand movements that require a vast range of manipulation skills that extend from the
low level hand-eye coordination using sensitive tactile feedback to rather high-level action plan-
ning and sequencing. A possible first step towards replicating parts of these manipulation skills on
an anthropomorphic robot could be to identify and extract re-occuring interaction patterns, which
could serve as a basis for the definition and implementation of basic action primitives (BAPs).
Such primitives could be generalized, re-used and cascaded to realize more complex interaction
units and even whole manipulation sequences. In order to arrive at the first step (1a), a unit is
needed to position the paper appropriately on the table top. To this end the ability to shift and
rotate the paper in-plane is required. The next two steps (1b,c) assume that we are able to grasp a
corner of the paper, to fixate another part, to relatively move the grasped part and to align corners
or edges of the paper. In addition, the hands must switch fixation points during the interaction
and perform several highly dexterous movements while coordinating several fingers simultane-
ously. Closed-loop visual feedback is not only needed to perform the actions in a feed-forward
manner, but also to continuously ensure that the hand actions actually lead to the desired object
movements, which is of particular importance for the alignment of the paper edges. Furthermore,
many actions, such as grasping and fixating parts of the paper, explicitly require tactile feedback
to adjust contact forces that either avoid slippage or, as for creating the crease in (1d,e) explicitly
allow slippage. While the next steps, (2a-e) introduce a set of new interactions such as displacing
the aligned layers of the paper to separate them (2b) or the two handed straightening (2d), they
also show, that a set of already introduced units (such as fixating) can be re-used.
This description, even in condensed form, illustrates the richness and complexity of the chosen
domain of dexterous robotic paper manipulation.
Before embarking on our journey to endow anthropomorphic robot hands with paper manipulation
abilities it was necessary to first list a set of requirements, written here written as a list of questions,
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that drove the conducted research. They emphasize the enormity of the undertaken challenge and
indeed illuminate the scope of the work carried out in this thesis.

• What software framework can serve as an overarching basis to optimally combine the dif-
ferent domains of computer-vision, tactile perception, (physical) modeling and robot con-
trol/planning?

• Can existing tracking mechanisms be extended to provide reliable visual features on de-
formable 2D objects or do we need whole new methods?

• What requirements has a model and what physical properties must be explicitly handled to
achieve a sufficient tracking performance?

• How can we update the model state with respect to perceptual input?

• How can we handle the large amount of occlusions that must be expected (occlusions from
the robot hand/ folded parts of the paper that occlude other parts)?

• How explicitly must folds be modeled, and what does that mean for the modeling and per-
ception module?

• How can we model shape memory and plastic behaviour?

• How can we include tactile feedback in the context of action primitives and under given
real-time constraints?

• What difficulties arise from using anthropomorphic robot hands and what advantages are
offered by their dexterity?

• Can we develop a minimal set of basic action primitives, such as fixate at position, grasp at
position or move to position, which can serve as a basis to create complex action sequences?

• Can basic actions be (hierarchically) combined to create a versatile interaction toolkit for
robotic paper manipulation?

• What extensions are needed to generalize such a toolkit to manipulate other kinds of de-
formable 2D objects?

• Can we generalize this further to handle 1D/3D deformable or even simpler rigid objects?

The first of these questions is addressed in the following by presenting our chosen hard and soft-
ware setup (see Section 2.1). After that, a system for paper shifting is presented, which could be
used to prepare a to-be-manipulated paper to arrive at a situation such as in Figure 2.2(1a).

2.1 Hard and Software Prerequisites

For all the work carried out for this thesis, we restricted ourselves to a fixed hardware setup con-
sisting of two robot arms and hands. On the software side, the existing in-house developed robot
control framework was also utilized. However, whenever the existing interfaces did not allow a
certain behavior to be realized, the required functionality was added to the framework in a generic
and re-usable fashion1. The computer-vision-related solutions that were created are based on
the in-house developed C++ computer-vision library ICL2. Similar to the employed robot control

1 The Author thanks Dr. Robert Haschke for his valuable support in this regard.
2 This thesis’ author implemented more than 80% of its source code.
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(a) Robot setup (b) Robot server simulation

Figure 2.3: The Bielefeld Curious Robot Setup (a) The robot setup consists of two Mitsubishi PA-10 robot
arms, each equipped with a pneumatically controlled Shadow Dexterous Robot Hand. (b)
Screenshot of the robot server simulation tool. The simulation is used for collision avoidance
and for debugging.

framework, re-usable functionalities that were developed for specific applications were extracted
and thus became native constituents of ICL.

2.1.1 The Bielefeld Curious Robot Setup

All robotic systems that were implemented for this thesis are based on the robotics hard and soft-
ware framework of the Bielefeld Curious Robot setup [Lütkebohle et al., 2009] (see Figure 2.3a).
The hardware setup consists of two 7-DOF Mitsubishi PA-10 robot arms that are mounted from the
top downwards. Together with an antagonistic pair of 20-DOF Shadow Dexterous Robot Hands,
the whole setup is designed to resemble a human’s arm-kinematics including movable shoulder
joints. The arms are attached to the upper center of an aluminum frame. A wooden plate, clad
with black cloth is used as worktop.
The software framework is a robot-server architecture that offers command-line and network in-
terfaces for intuitive robot control and trajectory planning in both task and joint space. The server
internally extrapolates the robot motion in simulation (see Figure 2.3b) in order to avoid collisions
with the setup’s security cage and the worktop plate as well as robot self collisions to avoid both
self-damage and injuring nearby people. The server also allows joint-angles to be read out and it
features some basic transform calculations, such as querying the transform of a given robot limb
or defining a logical tool transformation. An important drawback of the system is the fact that
both arms and both hands are controlled separately, i.e. it does not provide kinematic solving for
a kinematic tree that reaches from the mount of the shoulder joint to the fingertips. Instead, the
arms are commonly controlled in task-space mode by one instance of the server, while in parallel,
a second hand-server instance is used to control the finger-joints. This is a severe disadvantage,
in particular, when performing bi-manual actions, which is why recent work has been focused
on extensions that allow a more general kinematic model to be used. During the work for this
thesis, however, this feature was not available. Therefore, the used bi-manual setup employs two
logical3 hand and arm severs, that are connected via XCF-middleware [Fritsch and Wrede, 2007]
using one or several Active Memory [Bauckhage et al., 2008] instances (AMIs). The underlying

3 Internally a single server application can handle two hands or two arms at once, logically separated.
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concept of AMI support is, as the name suggests, a memory layer that can be used to store, up-
date and remove global application data at run-time, similar to classical black-board approaches.
However, in the context of the robot control system, the AMIs are basically used as event-routers
that allow participating processes to send and to subscribe to XML-based events. A more general
use-case of AMIs is given in Lütkebohle et al. [2009]. A very practical feature is the fact that
event subscriptions can be endowed with an XPath-expression that allows incoming events to be
filtered not only based on their type, but also on their content. However, this feature also comes up
with a fundamental disadvantage for the AMI-approach. Since there is no native support of event
scopes, such as provided by the Robotics Service Bus middle-ware [Wienke and Wrede, 2011],
all occurring events are delivered (via spread-multicast), unpacked (string to XML) and matched
(against all XPath subscriptions) in all participating clients (PCs and processes), which leads to a
high network and processor usage. To overcome resulting CPU-load issues, event scopes must be
emulated by using several dedicated AMIs for specialized purposes.
For state-based robot control, the software-framework provides a dynamic and XML-based hier-
archical state machine (HSM) implementation [Ritter et al., 2007] that is deeply integrated with
the robot-servers as well as with the XML-based event-driven robot server communication and
inter-process data exchange. The XML-based HSM description syntax not only allows a state/-
transition hierarchy to be defined, but it can also be supplemented with built-in imperative robot
control statements that allow very self-contained HSMs to be defined. In situations where the
built-in code does not provide enough flexibility, Python-code can be natively embedded. A later
version, as it was used for the robot folding experiments (see Chapter 5), additionally allows HSM
description files to be nested, i.e. sub-HSMs that implement certain robot behaviors can be re-used
by employing simple include-statements. By allowing text-based variable substitutions during the
inclusion of an external HSM, this mechanism becomes as powerful as calling parametrized func-
tions.
During the course of this thesis, several requirements that arose from the development of paper-
manipulation systems were directly implemented as extensions of this software setup.

2.1.2 The Image Component Library (ICL) for Visual Perception

All visual-perception and modeling tasks that were implemented for the systems presented in this
thesis were done using the C++ computer-vision library ICL (Image Component Library). ICL’s
development started in 2006 in the Neuroinformatics Group of Bielefeld University as a replace-
ment of a formerly used in-house library called Basic Vision Layer. During the development of the
applications for robotic paper manipulation, ICL was continuously improved and extended along
several axes. A core idea of ICL is, that it allows applications to be implemented in ICL so that
most of the time no extra software libraries are needed. We will show that ICL, mainly devel-
oped and implemented by the author of this thesis, is powerful enough for the development of
highly complex interactive computer-vision applications, including point-cloud-processing, 3D-
rendering and even physics simulations. ICL is open-source and it has been used in many projects
within and outside of our institute. ICL mainly provides features that are in general also provided
by other, more commonly known libraries, such as OpenCV for computer-vision, the Point-Cloud-
Library (PCL) for point cloud processing, Eigen for Mathematics, the Visualization Toolkit (VTK)
for real-time 3D visualization, the Qt-Frameworks for GUI-creation or the Boost-Libraries for
general purpose programming tools. However, instead of requiring a programmer to get to know
many of these libraries, each having its own special types, naming conventions or even mandatory-
to-use implementation paradigms, ICL provides most of the commonly used functionalities of all
of these libraries and does so without the need to re-invent the wheel. Instead, ICL wraps around
or adapts to existing libraries when necessary in order to present the programmer with a uniform
and consistent interface that allows applications to be implemented with a minimal amount of



2.2. SHIFTING PAPER AS AN ENTRY POINT 15

boiler-plate code. However, it still maintains the speed and the flexibility of the wrapped libraries
and it provides seamless native access to the underlying wrapped software back-ends if needed.
The ICL-based demonstrator systems that are presented in this theses do not only justify ICL’s
existence, but also strongly underline its widespread capabilities, its performance and its unique
versatility for the development of complex and interactive real-time computer-vision applications.
ICL was continuously improved and extended to match the requirements that arose from the sys-
tems developed for this thesis. Due to its fundamental impact on these systems, Chapter 3 is
dedicated to it and its background, design principles, placement within the landscape of other
computer-vision libraries as well as a comprehensive listing of its features and benchmarking re-
sults are presented. In particular, features that were crucial to this thesis are highlighted.

2.2 Shifting Paper as an Entry Point

In order to sensitize for the inherent complexity of robotic paper manipulation, an initial early
experiment, conducted in 2009, will operate as a basis for a discussion about the requirements, the
predictable difficulties and the possible limitations of such systems.
As a first entry point for the robotic manipulation of paper-like objects, shifting paper was chosen
as one of the most simple interactions possible. While the actual interaction logic for shifting paper
was developed and implemented in a straight-forward and naive manner, familiarization with dif-
ferent scientific fields, such as computer-vision, robotics, sensor-fusion and software-engineering
as well as the examination of available software frameworks and toolkits took center stage dur-
ing the development. To slightly increase the difficulty of the system, it was decided to not only
translate the paper to a target position, but to also align the paper’s in-plane rotation with a desired
orientation. It is important to mention that the chosen shifting scenario explicitly allows the paper
to be modeled as a rigid object. That paper is inherently deformable comes into stark focus in the
rest of this thesis.
In order to endow the robot with this rather simple ability, a non-negligible set of challenges has to
be solved. Firstly, the system must be enabled to detect the position and orientation of the paper.
Once the system knows where the paper is and how it is rotated, the robot hand must establish
contact with the paper. To this end, an appropriate hand and forearm pose as well as a method to
perform the contact with the correct force must be found. It is likely that a too weak contact force
leads to slippage resulting in the paper being not shifted correctly. Conversely, pressing the paper
too strongly against the table top could damage the robot hand. However, manually controlled
tests that were initially conducted, showed that the compliant nature of the used Shadow Robot
Hand [Shadow Robot Company, a] yields an inherent hardware-based compensation mechanism
for a good range of contact forces. For the rotation of the paper, an extra difficulty is to distribute
the contact force equally enough to be able to use two or more touching finger to increase the
leverage effect during the rotation movement.
Another required system component is the planning of the robot movement. While the constraint-
solving for the control of the robot’s joint angles is accomplished by the robot control interface,
the high-level movement trajectories must be planned, computed and serialized explicitly. An im-
portant factor for this are the kinematic limitations of the robot that do not allow us to perform
every rotation task in a single step. In cases in which this is not possible, the paper rotation must
be split into several smaller rotation movements, each consisting of a contact-less reaching-back
movement, followed by an actual forward-rotation movement while maintaining contact. Due to
the fact that the actual achieved rotation and translation is likely to differ from the intended one,
the paper pose must be tracked during the movement, which gives the system a pose-based visual
servoing [Hutchinson et al., 1996] character.
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Figure 2.4: Generic three-fold scheme of a robot manipulation system. The Modeling component serves
as a basis for information exchange between Perception and Robot control.

2.2.1 Perception, Modeling and Robot Control

As initially motivated, robot manipulation systems can be generally subdivided into the three
conceptual main components Perception, Modeling and Robot Control (see Figure 2.4). The per-
ception unit includes the acquisition and the processing of sensor input received from cameras,
touch sensors, joint-angle encoders and other possible sensors. The input data is then used to up-
date the state of a scene or object model. While in this thesis, the scene is usually represented by
a single static support plane only, the development of a model of (foldable) paper that can be up-
dated by visual input is one of its major contributions. The term model is employed as a two-fold
expression, which is used for both, a model class describing how the paper is parametrized and a
particular model instance defined by its underlying class and a current parameter set. Whether in
the course of this thesis one or the other is referenced, is either said explicitly or it is made clear
from the context. The Modeling component includes the used model class as well as one or several
instances of it and it describes how the model is to be updated on the basis of the perceived input.
The Robot Control component defines how the robot is actuated depending on the current percep-
tual sensor input and the current model state. This includes a task-oriented state-logic, planning
and the actual actuation of the robot in joint, task or object space. The low-level joint-limit-aware
robot control that solves inverse kinematics for task or object space control, resolves singularities
and avoids robot self-collisions using an internal representation of the robot’s geometry is given
by the used robot server framework (see Section 2.1.1)
Figure 2.4 shows how the three components are interconnected. The information gained from the
Perception component is passed to the Modeling component in order to update the current model.
In turn, a feedback-link propagates the model state back to the Perception component facilitating
a narrowing of the local feature search-space in the next processing step. In addition, the current
model is also used as input for the Robot Control component. Here, not only can the robot-state
logic compute robot-movements depending on the current model state, but also a possible planning
unit could use the model for simulation if needed. As not all sensor data is necessarily fused into
the model, the Robot Control component has direct access to the sensor data. This link could e.g.
be used for the integration of image-based visual servoing controllers [Hutchinson et al., 1996].
The structuring of a robotic manipulation system into these three fundamental building blocks not
only works for the rather simple paper shifting system presented here, but also intuitively scales
towards the much more complex applications that are presented later in this thesis (See Chapters
4, 5 and 6).

As for the paper-shifting system, a major part of the implementation of the system has become
obsolete by now, because for most of the components, more general and yet more accurate and
faster methods have become available in ICL or in the robot control framework. Therefore the
actual implementations of the sub-systems are considered to be implementation details and are
thus only coarsely presented. However, it is important to underline that this initial rather simple
approach sufficed to successfully endow an anthropomorphic robotic system to shift paper on a
tabletop.
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Perception

The perception building-block of the paper shifting system internally consists of two parts: the
visual RGB camera-based paper detection module and the processing of the tactile finger-tip data
on the robot hand, which is used to determine whether proper contact with the paper has been
established. The latter was trivially implemented by a simple global maximum fingertip pressure
threshold that implicitly indicated an appropriate contact had been established between the robot
hand and the support-plane.
For the visual detection of the paper, an edge and corner-based 2D image-space tracking system
was implemented that provides fast tracking rates at an acceptable robustness in the presence
of occlusions. By assuming that the sheet of paper is the only bright blue object in the scene, a
trivial RGB-distance based segmentation, followed by morphological filtering allows a paper-edge
image to be efficiently computed. The edge and corner features were tracked locally in the spatio-
temporal domain, i.e. edges and corners are searched for in the vicinity in which they were located
in the previous processing frame. At startup and in cases in which the local search is detected to
have failed, a global re-initialization module is activated. In order to map image pixel positions
and paper orientation in the image space to the robot’s task space, camera calibration is needed.
To circumvent the necessity for proper camera calibration, which was, at that time, not natively
available in ICL, a hand-tuned homography H that maps image pixel coordinates to 2D task space
points (x, y, 0) on the support plane (z = 0) was used.

Modeling

In this 2D-scenario, a rigid paper model that is represented by the paper-edges is sufficient. The
actual edge positions are formalized by a static 2D-paper dimension and a 3D-paper pose (x, y, θ),
describing position and orientation of the paper. Due to the omitted real camera calibration, the
actual task space position as well as the orientation of the paper in task-space are computed using
the homography H . In order to define a target pose for the shifting of the paper, a mouse-based
GUI application was developed that allows a virtual target paper to be moved and rotated in a drag
& drop manner.

Robot Control

Even for the simple task of shifting paper, a variety of issues had to be handled. Given, the
current paper pose (xc, yc, θc) and the target paper pose (xt, yt, θt), the translational shifting and
the rotational shifting had to be separated. While the translation of the paper was assumed to be
possible using a single shifting motion, the rotation of the paper required an extra logical layer
be introduced. First, the system had to be enabled to decide whether to optimally turn the paper
in clock-wise or in counter-clock-wise direction, which was solved in the naive straight forward
way of selecting the direction that results in a smaller rotation delta. However, it turned out that
due to the mounting of the robot arm and the low hand elevation angle that is needed to distribute
the finger contact force appropriately, the robot could only kinematically perform rather small
paper rotation movements of ∆θ ≈ 30◦. Experiments revealed that due to the hand’s rigid palm
construction, a proper finger force distribution can only be achieved by aligning the palm with the
worktop. Two main reasons are responsible for this. First, the – in comparison to a human hand
– low dexterity of the thumb and second, the kinematically unfortunate placing of the thumb’s
touch sensors when the hand is open. To avoid damaging the hand by using too much contact
force, the touch-sensors of all fingers including the thumb have to be monitored, which in turn
makes it mandatory to align with the worktop. The palm elevation angle is the direct result of
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Figure 2.5: Results of a reachability study that shows a schematic of the robot setup’s table top plane
(z = 0). Each of the sampled positions (pie centers) was attempted to be reached by the right
index finger tip using different forearm elevation angles (pie colors) and different approaching
angles (orientation in the xy-plane). For each position and elevation angle, the robot was
moved to that position with orientation 0 (parallel to the negative y-axis). From here, the robot
was then rotated around the finger tip along the world z-axis in both clock-wise and counter-
clock-wise direction as far as kinematically possible. The maximally accomplishable rotations
are indicated by the visible parts of the pie discs.

the forearm elevation (angle between the forearm and the xy-plane) and the vertical wrist flexion.
In order to optimize the combination of these two angles, an extensive reachability study was
conducted using a simulated arm server (see Figure 2.5). The most obvious result is the fact, that
the arm maneuverability directly scales with the elevation angle. Quantitatively, it reveals that the
rotation capabilities with zero elevation (purple pie-pieces) are extremely weak even in the sweet
spot around (−0.2 m, 0.2 m) and literally non-existent at many other positions. The wrist joint
limits of the Shadow hand are specified with [−45◦, 30◦] [Shadow Robot Company, a], but due
to a persistent defect in the used hand’s wrist muscles or tendons, the actual maximum negative
upwards wrist flexion that was maintainable turned out to be in the order of −15◦ only. Therefore
for the final shifting prototype a forearm elevation of 15◦ was used, so the resulting reachability
was similar to the one indicated by the blue pie-pieces in Figure 2.5.
After aligning the orientation of the paper in a set of iterative steps, the final translational shifting
could be implemented in a straight forward manner.

2.2.2 Results

The results of the shifting experiment are presented in Figure 2.6. In the initial state (see Figure
2.6a), the target paper pose was already defined so that a relative rotation around about 40◦ and a
translational shift of about 10cm is required. After approaching the paper (see Figure 2.6b), the
first rotation sequence consisting of reaching back (see Figure 2.6c), contact establishment (see
Figure 2.6d) and forward rotation (see Figure 2.6e) is performed. This is iterated until the target
rotation is reached (see Figure 2.6f-j). Once the orientation is aligned, the paper is not directly
released. Instead, it is shifted towards the desired target position (see Figure 2.6k) to fulfill the
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(a) Initial configuration (b) Hand placed over paper (c) Reaching back

(d) Contact established (e) First rotation done (f) Reaching back again

(g) Contact establish again (h) Second rotation done (i) Third rotation done

(j) Last small rotation done (k) After position alignment (l) Final configuration

Figure 2.6: Results of the robot shifting experiment. For of the selected sub-steps, a top-view of the robot
setup (top image) is shown. As an overlay, augmentations are added that show the current
robot end-effector position (red cross), the desired paper pose (red rectangle) and the current
paper detection result (blue rectangle) including the pose estimation certainty Q (white text).
Below each of the images, the local responses of the five finger tip touch sensors are visualized
(from left to right, thumb to little finger). Green pixels correlate to increasing or stable force
values, as the force magnitude is mapped to the intensity of the color green. In contrast, pixels
that correspond to tactile pixels with a temporally decreasing contact force value are tinted red.
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desired paper pose in both orientation and position. At the end (see Figure 2.6l), the paper is
released and the robot hand is moved to its resting position.
The visual perception of the blue paper works well throughout the experiment. Only very rarely
occlusions by the hands lead to a loss in tracking of the paper, which, however, never causes any
severe issues as the system accurately recognized the fact that the paper is lost by returning a
zero certainty value (see Figure 2.6d). The closed-loop nature of the system, introduced by re-
estimating the paper pose after each rotation/shifting movement, would allow a possible extension
of the system to temporarily decrease the amount of occlusions by partly withdrawing the robot
hand in such cases. The hand-tuned pixel-based rigid model reflects the real observation perfectly
well.
The robot control mechanism allows the paper pose to be aligned with an acceptable accuracy.

2.2.3 Discussion

A major difficulty of the system is the contact establishment procedure, which is implemented as
an explicit perceive-action loop in the robot state HSM. In each iteration step, the hand is moved
down by 1 cm until a certain maximum touch-sensor value is registered. This has several disad-
vantages for the achievable operation speed4, which is caused by the internal signal latency and
by the enforced limitations put on the robot acceleration and deacceleration. The low sensitivity
of the right robot hand’s touch sensors led to a poorly predictable force read-out, which had to
be compensated by moving the hand slowly and by waiting some tenths of a second after each
movement. The unfortunate placing of the thumb-tip’s touch sensor5 made this even more dif-
ficult, requiring us to decrease the force sensor threshold. This in turn increased the likelihood
of exiting the contact establishment loop too early, so that the resulting friction did not allow the
paper to be shifted at all. Even with the chosen low threshold the thumb broke once during the
experiment. To avoid these issues we later decided to extend the robot server framework by a set
of closed-loop feedback controllers (see Section 5.5.3). These allowed faster feedback cycles to be
achieved by avoiding explicit perceive/act loops or by porting a part of the feedback cycle natively
into the server architecture. In addition, one of the new controllers employs the displacement of
joint angles to a reference posture to estimate the contact force.
A second difficulty arose when the paper was finally released. While after the final shift (see Fig-
ure 2.6k) both the orientation and the position alignment was very accurate, releasing the paper
produced an unwanted movement which led to, in particular, an error in its final position (see Fig-
ure 2.6l). This effect was caused by the poorly controllable inherent flexibility of the pneumatic-
muscle-controlled Shadow robot hand. Even though all pneumatic muscles were emptied before
performing the releasing upwards motion with the hand, the remaining tension between paper and
hand results in an unintended movement of the paper during this step. As the robot hand’s com-
pliant nature is responsible for this issue, it cannot be avoided that easily in software. A possible
solution would be to learn an optimal trajectory for the releasing motion, based on active explo-
ration. However, while the high hardware failure probability and maintenance costs make such an
approach expensive, it seems not feasible to achieve an appropriate modeling accuracy to solve
this task on the basis of a physical simulation. A combination of both approaches that employs a
well-tuned physics engine to bootstrap the exploration performed with the real robot would possi-
bly provide a good trade-off here. Alternatively, the use of motor-controlled robot hands, such as
the Shadow Motor hands6 [Shadow Robot Company, b], would make a software-based compen-

4 The whole shifting sequence took about two minutes.
5 The limited flexibility of the inner hand makes the thumb touch the ground with the side of its tip if the palm is

not parallel with the surface touched.
6 These were recently integrated into our robot setup to replace the formerly used Shadow Dexterous Hands but

they were not used for the work done in this thesis.
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sation of this effect much easier.
Even though the planning was shown to provide good results for the presented shifting scenario,
there are possible improvements that could be made. The conducted reachability study (see Figure
2.5), which provided valuable insights about possible rotation angles, was only taken into account
qualitatively. That is, the results were used to figure out that an elevation angle of 15◦ would allow
the single rotation steps to be at least 30◦ if carried out around the center of the workspace. A more
sophisticated planning module would incorporate the resulting reachability manifold to optimally
exploit the robot arm’s mobility. Given an energy metric, such as the anticipated time or trajectory
length of an action, a proper minimization could result in shifting the paper to a most comfortable
position for rotating, followed by a final positioning of the paper. In this context, the end-state-
comfort effect [Short and Cauraugh, 1997] could be considered. Humans often perform actions
in such a way that the final postures of the actions are comfortable. The effect can be linked to
the bio-mechanical properties of the human locomotor system that is more accurate, more energy-
efficient and can produce higher forces and velocities in the mid-range between its joint-limits
(See also middle-is-faster-effect in [Rosenbaum et al., 1996]). While servo motor driven robots
usually perform equally well across their whole joint-range, an action planning module that tries
to maximize the robots mobility at the end-state of an action would allow proceeding actions to be
more quickly started.
An even more complex shifting approach would require a kinematics solver that can deal with
the whole kinematics tree from the robot’s shoulder mount to its finger-tips7. By these means, in
contrast to the implemented decoupled control of arm and hand, smooth and much more natural
hand and arm movements could be produced.

7 This feature is not natively available in the used robot control framework (see Section 2.1.1).





3 A New Image Processing Library

Professional craftsmen know that a toolbox filled with a well chosen set of high quality tools is
a major prerequisite if they are to finish handcraft jobs quickly and professionally. The tool-box
metaphor fits astonishingly well for software libraries. In addition to the most direct interpretation
that a software library contains a set of functions and classes that are used as tools by the program-
mer, the metaphor can be extended to aid the understanding and the definition of requirements for
software libraries.
The most useful toolbox is not necessarily the one that contains all possible tools. Indeed certain
tools can be found much more easily and quickly if only those tools that are really necessary re-
side in the toolbox. Furthermore, it speeds up the search process for a specific tool considerably,
if related tools are grouped together into smaller sub-units. For software libraries, this means that
adding another function or class or adding another parameter to a function does not necessarily in-
crease the library’s quality. If a functionality is, however, mandatory for the library, the developer
should try to group it appropriately with other related functions.
In general, and borrowing again from the tool-box metaphor, a good software library should en-
dow the programmer with the right tools for fast and professional software development.
In order to facilitate the research carried out for this thesis, a new software framework was devel-
oped. The Image Component Library (ICL) is a versatile computer-vision framework that allows
for the easy creation of complex and interactive computer-vision applications written in C++. ICL
not only includes a large and hierarchically structured set of computer-vision-related functions and
classes, but also a well chosen collection of tools that facilitate application development. The most
important design principle used in the development of ICL was that it should allow programmers
to implement applications in ICL. This means that in particular beginner programmers can con-
centrate on learning C++ in combination with ICL, rather than having to get insights into several
other libraries, each providing separate aspects of their applications. Furthermore this helps to
reduce the programming overhead arising from the data type conversion necessary to exchange
data between different library-interfaces.
This chapter is organized as follows: first requirements for computer-vision libraries are given
and explained (Section 3.1). Subsequently, alternative computer-vision libraries, particularly the
well known OpenCV library1, are presented, discussed and coarsely compared with respect to
the requirements that were introduced (Section 3.2). The full set of design principles that took
center stage during the conception process of ICL as well as the library’s main features are then
presented in Section 3.3. The chapter ends with a more detailed introduction to the tools that were
most useful for the work carried out in this thesis (see Section 3.4).

3.1 Requirements

A generic definition of the requirements for software libraries in general is provided by Gibbs et al.
[1990] and Atkinson et al. [1997], who discuss, among other topics, class layout, correct usage of
inheritance and variable visibility. Although correctness, defined here as a function doing exactly
what it specifies it does, is a very important aspect of a software library, detailed investigations

1 http://opencv.org

http://opencv.org
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into the correctness of all libraries presented in this chapter is outside the scope of this thesis. It is
assumed that all libraries are correct. Rather than breaking down all library components in detail,
we try to combine the large set of requirements in order to obtain three, partly contradictory, sub
goals: ease of use, speed and function volume. In order to explain this, once again the tool-box
metaphor can be employed: tool-boxes are used to perform tasks more easily, professionally and
quickly without the need for other tools not contained in the tool-box.

3.1.1 Ease of Use

Along with speed (see Section 3.1.2), ease of use is an extremely important requirement for
computer-vision libraries. This not only includes an intuitive API. Instead, it starts with the avail-
ability of the software, and how easy it is to actually become able to use the library. Therefore,
ease of use starts with a website that provides necessary information to download, build and install
the software library. Furthermore less obvious features, such as platform independence, price or
the availability of the software under the terms of an open-source license can contribute signifi-
cantly to its ease of use. Libraries that are only available for special platforms might be difficult
to use or to integrate into existing setups. The requirements of a desired software license type can
even make it impossible to use libraries that are only available under the terms of more restrictive
license types – in particular proprietary closed-source libraries. Some libraries are even avail-
able for different programming languages while providing similar function signatures. A common
combination is to wrap parts of an efficiently programmed C++ library into Python. This can
speed up the software development cycle significantly due to the omitted compilation cycles.
Coming back to the more obvious features that facilitate the usage of a software library, an in-
tuitive and user-friendly API including documentation is essential. The quality is influenced by
many different aspects such as a consistent naming convention, the complexity of function and
class interfaces and the correct use of inheritance and other advanced programming techniques.
Yet it seems impossible to define a metric that measures the quality in general. However, the
readability of the produced code is usually a good indicator of the quality of an API, because
source-code is usually written once but read many times during the development process.

Library vs. Framework

A software library in general provides a set of re-usable types, functions and classes. A software
framework usually wraps around a set of corresponding software libraries, but also provides tools
that facilitate the creation of applications based on these libraries. These additional support utili-
ties allow for connecting, controlling and maintaining software components on different levels. On
the implementation level, additional support classes can be provided to manage an application’s
control flow. On the platform level, special compiler and linker systems can help users obtain an
executable application. In an optimal case, software libraries should be usable even without using
all other tools provided by the overarching software framework. In particular if software compo-
nents are only usable with an associated control flow strategy, they might be difficult to integrate
with other frameworks that have similar restrictions to other control strategies.
The availability of a software framework can significantly reduce the amount of overhead on both
the implementation side and the compilation side of applications, in particular for beginner pro-
grammers.
Even though its name suggests that ICL is a library, the definition above leads to the conclusion
that ICL is in fact a framework. However, as ICL’s name was already well established in its
community, it was decided to not adapt it. Therefore, in this thesis it will be referenced the ICL
framework whenever its framework aspect is to be emphasized.
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Self Containment

Learning how to implement computer-vision applications typically consists of two parts, learning
how to program in C/C++ and familiarizing oneself with computer-vision. For beginner program-
mers, familiarizing themselves with a new software library or framework can be a difficult and
time consuming task. At some stage, it is always helpful to implement one’s own applications in
order to learn how units are supposed to be connected and how changing parameters affect the
direct output of a unit and the output of its successors. This part can be significantly more difficult
if other external libraries must be learned in parallel. While using test image files as input might
suffice at first place, the possibility to implement interactive applications with real-time camera
image input and real-time visualization can significantly speed up the learning rate.
For an optimal learning curve, a library should be as self-contained as possible, allowing pro-
grammers to write applications in that library, rather than implementing them in a programming
language using that library. Taking this into account, external libraries should only be needed
for very special tasks, resulting in not only data-type conversions between library interfaces being
avoided, but also the associated computational overhead. By mainly using the naming conventions
of a single library, the readability of the produced source-code is also enhanced.

3.1.2 Speed

In many computer-vision applications, processing speed is one of the major benchmarking criteria,
where often the constant factor in the complexity analysis of an algorithm distinguishes whether
a system has real-time-capabilities or not. In particular, in real-time applications that perform
tasks such as object-tracking, fast processing rates can also significantly improve the processing
results, because short temporal intervals between successive frames lead to less frame-to-frame
motion. The speed requirement is usually the reason why computer-vision-libraries are written
in machine-close programming languages such as C or C++. Sometimes there is a conflict when
deciding to write efficient code that is not very user friendly or more intuitive code that can result
in a trade-off for the designer of the library.
In particular basic commonly used operations such as image-acquisition, linear filters, data type
and color conversions or connected-component-based segmentation should be tuned to consume
as little resources as possible. Among manually written efficient source-code, there are several
general ways to speed up code. When not using C or C++, wrapping natively compiled C/C++
functions can already lead to a significant speedup. In the C/C++ domain, algorithms can often
be accelerated using SIMD-instructions. This is, however, not always possible, not completely
platform independent and usually difficult to implement. Also multi-threading (e.g., using the
OpenMP-framework) can be used to speed up tools on multi-core machines. However, not each
algorithm can easily be implemented in a multi-threaded manner, and often caching issues lead to
a decrease of the processing speed rather than the desired increase. A newer option for speeding
up algorithms is called GPGPU2, where algorithms are implemented in a highly multi-threaded
manner. However, this leads to even more complex code and additional time latencies arising from
the necessity to transfer data between the system’s RAM and the graphics card’s memory.
The speed requirement covers two aspects: First, the library functions should be implemented as
efficiently as possible while optimally hiding the complexity of the underlying implementation.
Second, the library should provide interfaces to easily extract data in such a way that custom
algorithms can be optimized manually if necessary.

2 General-Purpose computing on Graphics Processing Units
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3.1.3 Function Volume

In addition to speed and ease of use, a library is of course supposed to contain a large set of task
related functions. Function volume refers not only to the number of functions in a library, but also
to the scope of the functions in a library. To speed up the finding of a specific function, a library
should optimally only have functions that are required. Which functions are actually needed obvi-
ously depends on the targeted application, however, a hierarchical or indexed library structure that
makes it easy to find commonly needed functions can significantly reduce the overhead arising
from searching the library for specific functionality. In the worst case a programmer would re-
implement a function that already exists because they could not find it in the library. An intelligent
use of function parametrization and templating, object oriented programming and inheritance can
contribute significantly to a slimmer library interface.

Function Levels

In the following the distinction between low-, intermediate- and high-level functions will be drawn
as is commonly done in the literature [Sobrevilla and Montseny, 2003]. Even though there is no
generic or clear definition of these levels, they are used to express on which level corresponding
sets of functions are to be found in a vision application’s scheme.

Low-level functions are assumed to work directly on the raw image pixel data. Examples are com-
monly used basic operations, such as copying or converting image pixel data, and image filters,
such as linear filters and morphological operators. Usually the output of a low-level function is an
image.

Intermediate-level functions will in general work on images as well. In contrast to low-level
functions, here the output is usually an intermediate representation of the image content, such as
regions, key-points or features.

High-Level functions make use of low- and intermediate-level functions to extract some high-level
information from an image. Examples are face-detectors and object or person trackers.

Common Functions

Dependent on the targeted sub-domain of computer-vision, the function set of a particular library
can have a justified imbalance towards very specific tools. While some libraries are completely
focused on providing classical 2D image processing tools, other libraries might mainly focus on
3D vision and point cloud processing. Most of the libraries presented in the next section focus
on only one or two particular function levels (see Section 3.1.3). In the comparison section (see
Section 3.2.7) , for each level a set of commonly used functions is defined.

3.2 Alternative Computer Vision Libraries

Before ICL is presented, some common alternative computer-vision libraries are discussed. It is
worth mentioning that the development of ICL started in 2006 and the availability and quality of
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alternative computer-vision libraries has changed significantly since that time. The most compa-
rable computer-vision library is definitely the well known OpenCV3 library, which has become a
quasi-standard in the research community with almost 50 thousand active users. Not completely
independent from OpenCV are the Intel R©Integrated Performance Primitives (Intel R©IPP)4. The
Intel R©IPP libraries are proprietary libraries with a huge set of highly optimized functions for dif-
ferent domains, including computer vision. OpenCV can optionally be linked against Intel R©IPP in
order to speed up a set of functions internally. Another commonly used, but proprietary, computer-
vision library is Halcon5. Also proprietary, but usually not used in real-time applications is the
image processing toolbox in MathWorks’ Matlab. An interpreted and easy-to-learn syntax, plus a
large set of functions makes it a good choice for image processing beginners. Examples of other
less well known, but free and open-source computer-vision libraries are the CImg library6, the
VxL library7, the RAVL library 8 and the CCV library9. Over the past few years 3D cameras,
such as the Microsoft Kinect, have become affordable, making 3D point cloud processing a com-
mon domain in computer-vision research. Therefore, although not completely comparable to the
other libraries, the Point Cloud Library (PCL) [Rusu and Cousins, 2011] will also be looked at.

3.2.1 OpenCV

OpenCV is the most well known library for computer-vision. It has been developed with a focus
on real-time computer-vision applications. Its origins can be traced back to 1999, when it was
originally developed under the name Image Processing Library (IPL) at Intel R©by Gary Bradski
[Bradski and Kaehler, 2008]. Later, the development was split into OpenCV and IPL. The latter
is now part of the Intel IPP libraries (see Section 3.2.2). OpenCV’s IPL origin is readily seen in
the name of its main image data type IplImage. Almost a decade later in 2008, OpenCV’s original
developers came back together at Willow Garage, where its development was accelerated leading
to a new major version (2.0) in 2009.
The library contains over 500 optimized computer-vision algorithms, plus an even larger set of
support functions. It contains low-level algorithms such as linear image filtering and linear alge-
bra, but also ready-to-use high level tools for camera calibration or face detection. OpenCV pro-
vides both standard and state-of-the-art algorithms mostly from the domains of computer-vision
and machine learning.
OpenCV is split into several libraries, each containing specific tools for image-processing (img-
proc), user-interfaces (highgui), camera calibration (calib3d), 2D feature detection (features2d),
object detection (objdetect), machine learning (ml) and GPGPU-based computer-vision (gpu and
ocl).
Originally OpenCV was implemented in C. Later, parts were implemented in C++ while it still
provided a C-interface. Since version 2.0, a new C++ interface is available that also provides a
new main image data type implemented in an object-oriented fashion. Even though the C++ inter-
face makes it much easier to write shorter and more self-explanatory code, its has not only brought
advantages. Even now, not all parts of the C-based library are available in C++, which means the
developer sometimes has to go back to the C interface. This is of course possible, due to the fact
that C++ is almost a complete super-set of C, but it leads to confusing code. Furthermore, porting
existing systems from the C interface to the C++ interface can also lead to an extensive implemen-

3 http://opencv.org
4 http://software.intel.com/en-us/intel-ipp
5 http://www.mvtec.com/halcon
6 http://cimg.sourceforge.net
7 http://vxl.sourceforge.net
8 http://ravl.sourceforge.net
9 https://github.com/liuliu/ccv

http://opencv.org
http://software.intel.com/en-us/intel-ipp
http://www.mvtec.com/halcon
http://cimg.sourceforge.net
http://vxl.sourceforge.net
http://ravl.sourceforge.net
https://github.com/liuliu/ccv
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tation overhead. In addition, OpenCV has wrapper libraries for Java and Python. In June 2015,
the new major version 3.0 was officially released. Here, along with some general internal adap-
tions in the whole library structure, many new functions were introduced, and the OpenCL-based
acceleration was significantly extended.
OpenCV is available for all main platforms10 and even the mobile Android platform. It is well
documented and many free online tutorials and examples for most different types of applications
exist. Furthermore there are a number of good books, such as [Bradski and Kaehler, 2008] devoted
to it.

3.2.2 Intel IPP

Intel R©IPP is a proprietary set of highly optimized libraries for signal processing, image processing,
small matrix algebra and cryptography. It is available for the main platforms, and it is free for
private use11. It provides a C-interface which leads, due to the lack of function overloading in
C, to a set or many thousands of systematically named functions. All functions that are provided
are highly optimized with different types of SIMD instruction sets, such as MMX, SSE and AVX.
A dynamic run-time linking process automatically detects the instruction sets supported by the
current machine and selects the fastest supported implementation. In this way older and non-
Intel R©platforms are supported.
Intel R©IPP is well documented and includes code snippets that can usually be tested in a cut-
and-paste manner. Furthermore, paying customers can make use of professional online support.
A well structured hierarchy of functions eases the learning curve for beginners. Except for a
few support types such as point, size and rectangle structures, it usually works on standard data
pointers directly, which enables programmers to use most Intel R©IPP functions without expensive
data-type conversions.

3.2.3 Halcon

Halcon is a proprietary computer-vision library, provided by MVTec Software GmbH. It provides
bindings for C, C++, C#, Visual Basic and Delphi and it is available for the main platforms. It is
packaged with the integrated development environment HDevelop, which provides its own script
language. Programs, prototyped in HDevelop can access existing native code modules and also
be exported to one of the supported programming languages. Halcon is optimized for profes-
sional users and use cases such as production surveillance. It is advertised to contain more than
1800 operators for different sub domains, such as blob analysis, morphology, matching, measur-
ing, identification, calibration, bar-code reading and OCR-tracing 12. Internally, the library is
optimized with both SIMD- and GPGPU-based implementations.

3.2.4 Matlab Image Processing Toolbox

Matlab is a well known and very powerful tool for all different kinds of data processing. It provides
its own simple-to-learn interpreted programming language yielding both functional and imperative
programming features. While the code interpretation is comparably slow, most built-in functions
are highly optimized. A native function interface that allows for implementing function back-ends
in C makes it possible to make applications real-time-capable. Matlab can be extended with more

10 Windows, Linux and Mac OSX
11 The license terms explicitly mention that research is not private use
12 http://www.mvtec.com/halcon

http://www.mvtec.com/halcon
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than 30 different toolboxes for many different domains of data analysis, such as signal process-
ing, statistics and different sub-domains of image processing and computer-vision. Matlab also
provides functionality to create GUI-based interactive applications. Most toolboxes also provide
module-definitions for the graphical programming environment Simulink. The current version
also contains GPGPU-optimized implementations. Due to the simplicity and readability of Mat-
lab’s script language it often replaces pseudo-code in research papers and scientific books. Matlab
is available for the main platforms.

3.2.5 Less Common Libraries

A collection of less common vision libraries that are still in use and under development are now
presented.

CImg

The CImg Library is a free computer-vision library developed by David Tschumperlé under the
terms of the CeCILL or the CeCILL-C license, which is comparable to the well known (L)GPL
license. It is mainly written in C, however its central image structure is a C++ class. Even
though it was mainly developed by a single author, it contains a large set of functions that range
from standard low-level image operations such as linear filters to complex 3D rendering tools.
It also directly contains methods for image visualization and methods to create interactive GUI-
applications. The core CImg library is shipped in a single header file, where all functions are
implemented in an inline fashion. Unfortunately the header file makes extensive use of very long
preprocessor macros. Only functions from a few very special domains are provided as modules,
again in shape of header files. Optionally, CImg can be augmented by set of 3rd-party libraries. In
order to provide a simple-to-use image library optimally suited for programming beginners, one of
its design principles was to explicitly avoid the use of extremely generic template-based interfaces.
Another design principle was to enable programmers to write complex programs with only a few
lines of code, which, however, lead to the fact that many functions have cryptic acronym names.
The development of CImg started in 1999 as a part of the main author’s PhD thesis and it is still
under development. Since 2003, CImg is hosted at sourceforge and it is compatible with all the
main OS platforms.

CCV

The CCV image library is the newest example discussed in this section. It has been developed in
C by Liu Liu since 2010 and it is available as a GitHub project and it is written in C. In contrast
to the other libraries, CCV does not concentrate on providing low-level image processing tools.
Instead it contains a set of classical and state-of-the art intermediate- and high-level tools such as
image-feature generators, face-detectors and 2D object and person trackers. Its main idea is an
overarching cache architecture that stores intermediate result images in order to avoid a duplicated
execution of pre-processing operations. Its public interface is packed into a single C-header file
that provides the signatures of all types, functions and definitions. Given the – in comparison
to the other libraries – much smaller amount of provided functions, this seems comprehensible.
By providing a set of examples and unit tests, beginners can quickly develop their own applica-
tions. CCV is available under the terms of the BSD 3-clause license. The documentation does not
explicitly mention the supported platforms, but it was successfully tested under Linux.
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RAVL

The development of the Recognition and Vision Library RAVL started at the University of Surrey,
UK. RAVL is written in C++ and it is provided under the terms of the LGPL license. It can be run
on Windows and Linux. Its advertised main features are thread-safety, powerful I/O, and Java-Like
easy-to-use class interfaces that focus on enabling programmers to write readable source code. It
also comes with its own makefile system allowing for the maintenance of both small and large
scale projects.
RAVL provides a vast set of low-level utility classes to facilitate rapid application development.
Furthermore, it contains a large set of low and intermediate level image processing functions as
well as a framework for image visualization and interactive user interfaces.

VxL

The Vision-something-Libraries VxL aims to be a light and fast computer-vision library. It is
written in C++ and contains functions for many computer-vision disciplines, such as numerical al-
gorithms, 3D-vision, structure-from-motion, classification and feature tracking. VxL is hierarchi-
cally subdivided into smaller libraries. Along with a built-in testing framework, the core-library,
which itself is split into two levels, is the basis for a large set of contributions from other institutes.
VxL provides its own, not publicly available license and it supports Windows and Linux. An easy
installation on Ubuntu-Linux via apt-get install is possible.

3.2.6 Point Cloud Library (PCL)

In addition to traditional 2D cameras, cameras that provide 3D images – point clouds – have be-
come affordable over the last few years. While only a limited number of research institutes could
previously afford an expensive SwissRanger camera provided by the Mesa Imaging company13,
the availability of Microsoft’s Kinect camera in 2010 introduced an affordable device for capturing
real-time 3D point cloud data. Since then, the Point Cloud Library (PCL) has become the standard
library for 3D point cloud processing in the research domain.
PCL has been maintained by Willow Garage since 2010. It contains a large set of low- and in-
termediate level functions and utility classes, which are distributed over several modules, such
as filters, I/O, registration and segmentation. PCL is completely developed in C++ and provides
GPGPU-based optimizations for some components. It is developed very actively by a large com-
munity including many known institutes and it supports all main platforms.

3.2.7 Comparison

Before the implemented image processing framework ICL is introduced, the existing alternatives,
along with ICL, are compared with respect to the requirements formulated in Section 3.1. Table
3.1 mirrors the three fold structure of Section 3.1 by providing comparisons with respect to ease of
use, functionality and speed14. The most distinguishing features of the presented libraries are per-
haps given by their license types. While Intel R©IPP, Matlab and Halcon are proprietary libraries
including guaranteed professional support, the others15 have open source licenses that also allow

13 http://www.mesa-imaging.ch
14 Note that the benchmarks were conducted in early 2013. The particular versions of the libraries that were used

are shown in the table
15 Except for VxL, whose License is not publicly available

http://www.mesa-imaging.ch
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OpenCV IPP Halcon Matlab PCL CImg CCV RAVL VxL ICL
aspects regarding ease of use

Languages C, C++, Java, C C, C++, C#, matlab- C++ C++ C C++ C++ C++
Python VB,Delphi script

Distribution src/bin. bin. bin. bin src/bin. header src src src src/bin14.
Platforms all1,17 all all all all all Linux2 Win./Lin. Win./Lin. all
License BSD comm. comm. comm. BSD CeCill BSD-3-Cl. LGPL VxL-Lic. LGPL
Documentation A/M/T/B3 A4 M/T/A4 A/M/T/B A/T M/T M A/M A/O/T A/M/T
Version 2.315 7.07 11 R2013a 1.6 1.5.4 04/2013 1.1.2 1.14 8.1

(demo) (unstable)
Build System CMake – – – CMake – make automake CMake CMake
Hosted at source Intel R© MVTec MathWorks point- source source source source CITEC8

forge website website website clouds6 forge forge forge forge servers

framework functionality
Supp. Functions yes no yes yes yes yes no yes yes yes
Control Strategy yes no yes yes no no no n/a yes yes
Build Tools no no yes (IDE) yes13 no no no yes yes yes

speed
Optimizations all5 all all all all none MT,SIMD SIMD SIMD all
Sobel-X filter10 4.0ms 0.1ms 1.0 ms7 1.8ms – 2.0ms 1.5ms 6.4ms 0.7ms 0.1ms
FFT 4.7ms 2.3ms 5.5ms 3.6ms – 9.0ms – 25ms 14ms 2.3ms
Threshold 0.03ms 0.03ms 0.3ms 17ms – 0.2ms – 5ms12 0.15ms 0.03ms
Local thresh.11 1.7ms – 3.0 ms – – – – – – 1.0ms
Connect. Comp. 2.1ms 1.0ms9 n/a 4.6ms – 5.4ms – 15ms 2.6ms16 1.4ms

1) Windows Linux and MacOS 2) perhaps others 3) API, Manual, Tutorial, Book (printed), Online book 4) professional support
provided 5) SIMD, GPGPU, MT(multi-threading) 6) www.pointclouds.org 7) all Halcon benchmarks were measured in the
HDevelop IDE 8) https://opensource.cit-ec.de 9) result is not a list of regions, but a region-image that needs further processing
10) mask size 3, output depth 8 bit (if possible) 11) mask size 30 × 30 12) manually implemented using pixel access operator
13) Matlab provides a full-featured IDE for its own script language 14) Binary deployment is planned 15) The most recent version
3.x, which was released officially in June 2015 has identical features 16) Some regions were missing 17) Also an Android version is
available

Table 3.1: General comparison of different computer-vision libraries. The vertical sections refer to the
library requirements defined in section 3.1. The speed section also provides a minimal set
of selected benchmarks, obtained on an Intel R©Xeon R©E5530 CPU, running at 2.4GHz, with
64bit Linux. For all tests, a gray scale 512× 512 lena test image was used. These benchmarks
are not intended to systematically compare the libraries, but to give a coarse insight of the
overall performance reflected by the speed of common low- and intermediate-level procedures.
All libraries were compiled with speed-optimization and linked in order to use all accelerating
dependencies available, in particular ICL and OpenCV were linked against Intel R©IPP

for the implementation of proprietary software. Another important aspect that usually affects a
programmer’s decision about which library they will use, is the design of the interfaces and the
quality of the documentation. These are explicitly excluded from the comparison because they are
highly subjective. Even though the speed of the libraries cannot be evaluated in detail, a small set
of exemplary functions were benchmarked. This gives, in addition to the set of used optimization
paradigms, a coarse qualitative idea of the overall optimization status of the libraries.
Table 3.2 contains information about the function volume aspect of the libraries. The table lists a
set of commonly used image processing functions, that are split into several sub-topics that reach
from common classical low, intermediate, and high-level functions to 3D point cloud processing.
It also lists support functions for graphical user interfaces, image I/O and mathematical tools, such
as linear algebra and machine learning functions.
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OpenCV IPP Halcon Matlab PCL CImg CCV RAVL VxL ICL
low-level operations

Convolution ++ ++ ++ ++ 3D ++ ++ ++ ++ ++
Morphological Op. ++ ++ ++ ++ 3D ++ ++ ++ ++
Color conversion ++ ++ ++ ++ + ++ +◦7 ++ + ++
Affine Operations ++ ++ ++ ++ + ++ ++
Adaptive Threshold ++ ++ + ++
FFT ++ ++ ++ ++ ++ ++ ++ ++ ++

intermediate-level operations
Region analysis ++ + ++ ++ ++ + + ++ ++
Image features ++ n/a ++ 2D/3D ++ + + ++
Segmentation ++ + ++ ++ 2D/3D + ++ ++

high level operations
Face tracker ++ + ++ ++ ◦4
Person tracker ++ ◦2
6DOF Object tracker ++ ◦1
SLAM ++ ◦1

3D data and point cloud processing operations
Point cloud proces. ++ + ++ + ++
Camera calibration ++ ++ ++ ++ ++
3D Segmentation ++ ++ ++
3D Shape Fitting ++ ++ ◦2,3
3D Features n/a ++ ◦3
Kinect Support ◦2 ++ ++ ++

graphical user interface and visualization support
Image Visualization ++ ++ ++ ++ ++ ++ ++ ++
Image Annotation ++ ++ ++ ++ ++ ++ ++ ++
3D Visualization ++ + ++ ++ ++ ++ ++
GUI creation ++ ++ ++ ++ ◦6 ++

image I/O support
File I/O ++ ++ ++ + ++ + + ++ ++
Camera I/O ++ ++ ++ + ++ + ++ ++
Network I/O ++ ++ ++ ++

built-in mathematical tools
Linear Algebra ++ ++ ++ ++ ++5 ++ ++ ++ ++
Machine Learning ++ + ++ ++ + ++ ++ ++

+): minimally supported ++): well supported ◦): indirectly supported 1) planned 2) as external projects 3) via PCL compati-
bility 4) via OpenCV compatibility 5) using the Eigen library 6) provides interfaces to MFC, Qt and GTK 7) only RGB to YUV is
provided

Table 3.2: Comparison of image libraries by means of a selection of functionalities commonly used in
the development of computer-vision applications. Empty cells mean that the corresponding
functionality is not provided by the library, or that it could neither be found in the library
documentation nor in the libraries source files. Externally available projects that use a library
to provide a certain functionality are not taken into account if they are not part of the standard
library distribution.
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3.3 The Image Component Library (ICL)

The development of the Image Component Library (ICL) began in early 2006. At this point,
the Neuroinformatics Group in Bielefeld University was trying to establish a new standard for
computer-vision applications internally, in particular in order to facilitate robotics research. Since
none of the existing libraries, not even OpenCV, were completely satisfactory, it was decided to
implement a wrapper around an already established library. At this time, the current OpenCV
version was 0.8, and it mainly provided fallback implementations for the non-free Intel R©IPP. So
rather than wrapping a wrapper of Intel R©IPP, ICL was directly developed on top of Intel R©IPP,
however, in contrast to OpenCV at that time, which was written in C, ICL was written in C++.
In 2011, ICL was officially released as an open-source library and its license was adapted form
GPL to LGPL. Since that time, ICL has been officially accessible as an open-source library via
CITEC’s open-source server16. Its name was originally chosen to reflect the internal structure of
the fundamental image class, which supports the construction of images from different shared-
channels – image components.

3.3.1 Design Principles

ICL was intended to be well suited for both programming beginners, but also advanced program-
mers. ICL’s main design principles reflect the general requirements for computer-vision libraries
defined in section 3.1.

ICL is a Framework

ICL was designed to provide everything necessary to implement complex and even interactive
computer-vision applications. This includes not only computer-vision related functions, but also
a large set of utility functions and classes, such as program argument evaluation, matrix classes
and an easy-to-use GUI creation framework. In addition, ICL provides a control strategy that
elegantly allows the creation of multi-threaded GUI-applications. A dedicated thread processes
user-interface events while simultaneously performing image processing in one or more working
threads. Moreover, ICL provides ready-to-use build tools, that can be used to compile simple pro-
grams linking against ICL directly and to create a source-, documentation- and makefile-structure
for smaller projects.

Optimal Performance

ICL provides highly optimized computer-vision related functions. The exemplary benchmarks
given in table 3.1 show that ICL can even rival OpenCV and Halcon. This is partly achieved by
wrapping Intel R©IPP functions, professionally tuned using SIMD instructions and multi-threading.
If compiled without Intel R©IPP support, C++-fallback implementations are provided.
The more common a specific function is, the more time was spent manually tuning it. Some of
these implementations are even faster than the corresponding IPP functions. For both SIMD- and
GPGPU-based optimization, support classes are provided that also allow ICL-users to speed up
their implementations more easily. Furthermore, all classes are set up to provide and use internal
image buffers to avoid time consuming memory allocations at run-time.
In addition to the programmatic optimizations that are carried out, the class interfaces were tuned

16 http://opensource.cit-ec.de/projects/icl
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in order to provide fast interfaces for custom implementations. The image class provides direct
access to internal image data, where each channel is always packed in a single data segment.
Furthermore, images can be shallowly wrapped around existing data segments, to avoid expensive
element-wise data copies. That is, while the small memory-footprinted image meta-data, such as
size, timestamp or pixel format are copied deeply, the actual pixel-data, whose memory-footprint
is commonly in the order of megabytes is imported into the image by simple pointer-copies.

Extensible and Convenient Interfaces

Another design principle was to provide powerful and extensible generic interfaces that are not
only used within the library, but also provided as tools that can be used for external applications.
For example, the image acquisition framework provides a plugin interface class that is not only
implemented for a large set of image sources, such as image files, many camera interfaces, video
files and network streams, but which can easily be augmented with custom image sources. An
overarching manager class allows for a very simple and intuitive selection of an application’s
image source using command line parameters. For optimal generality, often string-based interfaces
are used in non-time-critical functions.

Simple and easy-to-use C++ interface

ICL’s API is designed to allow for writing short, but readable and intuitive code. In particular,
ICL tries to reduce the amount of boiler plate code necessary to implement even interactive ap-
plications. Implementation details are often explicitly hidden using C++’s private implementation
(pimpl) pattern, which helps not only to reduce the complexity of the class interfaces, but also
to reduce the overall compilation time when linking against ICL. Almost all external dependen-
cies are wrapped completely, allowing ICL to provide more consistent interfaces. In contrast to
many other libraries, no external utility libraries such as Eigen for matrix algebra or boost for
general purpose tools must be learned. Only if access to the underlying implementation details is
necessary, is it explicitly provided. Together with shallow inheritance trees, as well as consistent
naming, coding and documentation conventions, ICL is optimally suited for both programming
beginners and experts. Finally, ICL has no compulsory library dependencies, which significantly
simplifies the install process.

3.3.2 ICL Modules

ICL is subdivided into ten libraries, arranged in a linear dependency graph (see the first column of
Table 3.3 for its structure). Each library contains a module that provides a specific function set. On
the lowest layer, the utils module defines general support classes, types and functions. These are
not directly related to computer-vision. Also, not exclusive to computer-vision tasks are the con-
tents of the math module, which provides mathematics related classes for linear algebra, machine
learning, optimization and neural networks. The core module contains ICL’s main image classes
and provides a set of fundamental image processing features, such as type and color conversions.
Low-Level filters are located in the filter module, which distinguishes between unary and binary
operators, depending on the number of input images. The io module contains the image input
and output framework. Intermediate-level image processing functions are located in the cv mod-
ule. On top of this, the qt module introduces ICL’s GUI creation framework including hardware-
accelerated 2D/3D data and image visualization and annotation. The geom module provides tools
and functions for 3D computer-vision, such as camera geometry and calibration and point cloud
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Module Description Main contribution (classes/functions)
utils general purpose Basic types, program argument evaluation, Configurable interface, time-related classes

utilities exception-types, configuration files, multi-threading tools, string manipulation tools,
generic Function class, random number generators, support macros

math mathematics and Dynamic- and fixed size matrix and vector classes, levenberg-marquard optimization,
machine learning FFT-framework, RANSAC-optimization, simplex optimization, stochastic optimization,
tools vector quantisation, SOM and LLM networks, quad-tree and octree classes, least-

square-based model fitting, generic polynomial regression network
core basic image Main image classes ImgBase and Img: data handling, shallow copies, pixel

processing types access, ROI-handling, channel management, copying, converting, scaling, minimal
and functions statistics, color format conversion

filter image filtering Unary operators: affine operations and warping operations, convolution, morphology
framework operators, wiener filter, gabor filter, median lookup operations, color-

segmentation, canny edge detector, champfering operator, FFT-operators, integral-
image, (local/global) threshold, arithmetical operations, logical operations,
channel mangling, gradient image, rectification. Binary operators: arithmetical
operations, logical operations, pixel-wise comparison, proximity measurement

io image input/ Grabber-framework for image input with back-ends for: FireWire, Video for Linux,
output framework image files, video-files, Microsoft Kinect, Gig-E cameras, shared-memory-based

streaming, network-streams using RSB[Wienke and Wrede, 2011], adaptors for
OpenNI and OpenCV. Image output framework with back-ends for: image-/
video-files shared-memory and RSB-based network streams. I/O support classes for
image compression

cv intermediate level Connected-Component framework, SURF-feature detection framework, blob-searching
computer-vision and tracking, flood-filling, Hough-line detector, generic tracking framework,
utilities mean-shift tracking, template matching and tracking

qt GUI-creation-tools GUI-creation framework (including all common UI-components), image visualization
image/data 2D/3D image annotation framework, function/data-plotting, mouse-/keyboard handlers
visualization

geom 3D geometry tools Camera class, camera calibration, single/multi-view geometry, 3D scene graph for
and algorithms OpenGL-based 3D visualization on top of common 2D images, point-cloud-processing

framework, including PCL compatibility layer, RGBD-image grabber framework, RGBD-
mapping, automatic 3D point cloud segmentation

markers fiducial marker Generic plug-in-based framework for common fiducial marker types: ARToolKit,
tracking framework BCH-code, Amoeba and others (see Sec. 4.1.1),

single/multi-view 2D and 6D marker pose-estimation
physics shallow bullet Simple and easy to use wrapper classes around most commonly used Bullet classes.

physics engine Rigid objects, soft-body objects, constraints, motors, physics-world, seamless
wrapper library integration with ICL’s 3D visualization framework, modeling of paper

Table 3.3: Compact overview of the contents of ICL’s modules. Each module uses functionality from the
preceding modules, leading to a linear dependency graph. The only exception to this is the
physics-module, which depends on the geom-module, but not the markers-module.

processing. It also extends the visualization engine from the qt module by a scene-graph-based
3D visualization toolbox. Using functions from all other modules, the markers module provides
a generic fiducial marker detection framework. The lastly added physics module that basically
emerged from the work presented in the thesis, provides a shallow wrapper and integration of the
Bullet physics engine[bul]. A concise overview of the contents of the different ICL’s modules is
given in Table 3.3.

3.3.3 Documentation

As discussed in Section 3.1, a very important feature of software libraries is how well they are
documented. ICL provides different levels of documentation, each optimized for a special purpose.
The starting point is ICL’s website17. From here, users can get information about downloading and
installing ICL instructions, as well as tutorials, the ICL manual and ICL’s API documentation. In
contrast to many other libraries, ICL’s API is completely documented and includes code samples,
benchmarks and formulas. However, it turned out that the API documentation is usually more

17 www.iclcv.org

www.iclcv.org
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Figure 3.1: Screenshot of ICL’s manual which can be found at www.iclcv.org. Each module has its own
subpage on which all relevant concepts and classes are presented. In addition, information
is given about how to download and install ICL. The manual is directly linked to ICL’s API
documentation.

helpful for users who search for some specific functionality. In order to provide a better overview
of the contents of ICL’s modules, the manual is provided, which is written using the sphinx docu-
mentation generator18. It reflects ICL’s modular structure by providing a separate section for each
module. By using a sphinx-extension that allows for linking documentation written in sphinx with
the API documentation, the user can directly jump from a class mentioned in the manual to its
more detailed description in the API. Furthermore, a custom-written java-script-based extension
creates tool-tips for classes, functions and types, providing direct information without having to
follow a link. www.iclcv.org directly shows the manual’s front page (see Figure 3.1).

3.3.4 Positioning ICL in the Landscape of Vision-Libraries

ICL can best be compared with OpenCV, RAVL and VxL. Proprietary libraries, such as Intel R©IPP
and Halcon cost money for each license, and are therefore less likely to be used in research fa-
cilities and particularly not by students. While a license for Intel R©IPP is still affordable (non-
commercial use: ≈100 EUR, commercial use: ≈200 EUR), a single Halcon license costs about
3000 EUR for research purposes (more than 6500 EUR for profit-oriented use). While its speed is
outstanding, Intel R©IPP only provides low and a few intermediate-level functions and it does not
provide any support functions to acquire or to visualize images, which implies that other libraries
need to be used to achieve this.
The price for the Matlab image processing toolbox is slightly more expensive than Intel R©IPP (sin-
gle academic license for Matlab: 300 EUR and an additional 200 EUR for each toolbox), however
many research institutes have concurrent licenses that can be used by many developers at once.
Due to its lack of speed, Matlab is not very well suited for real-time applications. In particu-
lar, custom-written algorithms are only real-time-capable if they are implemented in C and linked
using Matlab’s native interface. However, in this case the advantages of using an intuitive scripting
language diminish and the distribution of the code (made up of both, Matlab script and C source
code) complicates development and also prolongs development cycles.

18 http://sphinx-doc.org

www.iclcv.org
www.iclcv.org
http://sphinx-doc.org
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The CImg library is well suited for first steps into the computer-vision domain. Its interfaces are
simple and do not even require explicit buffer management since functions usually return newly
instantiated result images. While this can be very helpful for beginners, it also leads to major
performance issues due to extensive memory allocation and deallocation at run-time, which can
be seen in the benchmark results in Table 3.1. Even though the motivation of shipping the CImg
library as a single header file is somewhat comprehensible, it is not optimal. It does not only defy
all coding practice standards, but also leads to extremely long compilation times.
The cache architecture of the CCV library is an interesting feature, but whose advantages are
however not completely obvious. Furthermore, CCV is not very well suited for application devel-
opment, because the provided set of low and intermediate functions is very small. Even though
it is written in C, its interfaces are very clear and consistent, but in the opinion of the author, the
documentation needs to be improved.
In contrast to the previously mentioned libraries, the PCL library is highly optimized for 3D point
cloud processing, where it has already advanced to a quasi standard in the open source domain.
PCL is intrinsically linked with Willow Garage’s OpenNI framework, which provides a large set
of high-level tools based on 3D-sensing. PCL is well documented and its interfaces are written in
modern template-based C++. The exhaustive use of C++-templates however makes some of the
class interfaces very complex, which can lead to a steep learning curve for programming begin-
ners.
The RAVL library is a full featured computer-vision framework, including support functions for
creating interactive GUI-based applications. However, it mainly concentrates on providing low-
level functions. It also provides a very large set of low-level support data types. RAVL is well
documented using its own code-based documentation generator, however the documentation lacks
examples, which would make an entry significantly easier to understand. Its template-based inter-
faces are very consistent, but also complex and often use cryptic class names.
VxL is spread over a set of different libraries with partly unintuitive names, such as vil and vil1.
It provides a large set of support functions, including an optional reimplementation of C++’s
standard-template-library (STL), which is intended to be more portable to the different supported
platforms. It’s STL-style interfaces are very readable and consistent. A free online-book, with
many examples is a great help for both beginners and advanced programmers. However, the ex-
tensive use of hierarchically nested C++-templates, which is even necessary for simple examples,
makes its use difficult for non C++ experts.
OpenCV, the standard library for open-source computer-vision has been significantly improved
since its development was taken over by Willow Garage. New and more intuitive library naming
conventions, a C++ interface and Python wrappers facilitate its use. The documentation is out-
standing with many examples and even printed books are available. The major change in how
OpenCV should be used is driven by the new C++-interface. It solves memory management,
significantly helps to reduce the amount of boilerplate code and also brings new features such
as command line parsing and versatile GUI creation. However, the existence of two common
interfaces (C and C++) has its drawbacks. While Willow Garage has tried to establish the C++-
interface as a new standard, it does still not cover the whole range of functions that are available
in the C-interface. Furthermore, many examples or tutorials that can be found in Internet forums
still use the C-interface.
ICL justifies its existence by trying to avoid the pitfalls some of the other libraries have. It was
directly developed in C++, so there is no legacy interface that needs to be supported. Its interfaces
are kept as simple as possible and C++-templates are only used when completely necessary. ICL’s
abstract image base class ensures that templates can be avoided as long no manual pixel access is
necessary. ICL provides full API documentation including many examples, a step-by-step tutorial
and also a system manual. A lot of effort was put into light-weight interfaces that allow for reduc-
ing the amount of boilerplate code, necessary, even for interactive applications, and ICL provides
a large set of support functions and classes that significantly facilitate application development. It
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Figure 3.2: Inheritance diagram for ICL’s image classes. The ImgBase-class provides all image informa-
tion except for the actual image pixel data. The actual data type (e.g. 8bit unsigned integer
icl8u) is defined by the template parameter of the derived Img〈T〉 class.

is self-contained and even provides functions for 3D point cloud processing, which has recently
become a standard field in computer-vision.
However, the existence of OpenCV and the PCL library can not be ignored. Therefore ICL pro-
vides fast conversion functions from and to OpenCV’s image types, which allows for a seamless
integration with OpenCV-based code. For point cloud processing, a generalized point-cloud class
interface was developed, which is implemented not only by ICL’s point-cloud type, but also by a
PCL-point cloud wrapper, allowing for the direct use of PCL algorithms.

3.4 Important Tools for this Work

In this section, some selected aspects of ICL are presented more detailed. The selection is driven
by the relevance of each aspect to research done for this thesis. The development of ICL was
mainly driven by the idea of providing a versatile computer-vision library that enables researchers
to easily develop even complex applications. In the beginning of the development process, most
of the effort went into the development of a fast and yet easy-to-handle image class and a large set
of low-level image processing functions. Most of these were accelerated using optional Intel R©IPP
back-ends. Once this was completed, other modules were successively added.
Most of the functionality necessary for the desired robotic paper manipulation system was first
separately developed and integrated into a working prototype. These tools were then usually re-
implemented in a more generic manner, no longer specialized for the specific task. If possible,
the more generic framework was then included into ICL in order to extend its function volume.
This approach does not only allow for re-using the functions in other projects directly, but it also
significantly helped to optimally structure the source code.

3.4.1 Easy to Use Core Functionality

The core functionality of an image processing library has consequences for everything else that
is implemented in the library. Important basic concepts, such as image classes and filters, are
frequently used and therefore have a high impact not only on the simplicity to implement custom
functions and applications, but also on the readability of the produced source code. A couple of
representative ICL fundamentals, namely the image class hierarchy and the filter concept, are now
presented.

The Image Classes

The most commonly used type in a computer-vision library is most likely the one that represents
an image. Often contrary requirements lead to either fast, but hard to use, interfaces, or slow, but
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Figure 3.3: Inheritance structure of ICL’s main image filter class UnaryOp. All subclasses obey the same
interface, allowing for easy replacing and stacking.

easy to use ones. In C++, many libraries (e.g., VxL, RAVL, CImg, PCL) use a class template
(e.g., Image〈T〉) to represent images with different pixel types. While this helps to significantly
reduce the size of the implementation and helps to avoid issues when accidentally misinterpreting
int pixels as float pixels, it also has some drawbacks for other library interfaces, as well as for
the programmer, who uses instances of that class. In C++, a template instance of type Image〈int〉
and Image〈float〉 have little in common, except for their identical structure. Therefore generic
functions, able to work on different versions of the image class must also be implemented as tem-
plates. This not only increases compilation times, but it also complicates all interfaces in general,
which can be especially problematic for beginner programmers. In C, different pixel types can be
represented by void-pointers or using a union structure (e.g., in OpenCV’s C-interface). In both
cases, the actual type of the data must be encoded explicitly, i.e., not by the language’s built-in
type mechanism, leaving the work of type checking and switching to the programmer. This is
particularly important, since type-misinterpretation can not be detected by the compiler. The Mat-
class in OpenCV’s C++-interface is not implemented as a template. Instead a run-time parameter
is used to determine an image’s pixel type, which basically complies with the C-interface.
ICL uses a combination of a normal and a template class to circumvent these issues. The abstract
ImgBase class manages all image parameters that do not depend on actual image pixel data, such
as size, channel count or region of interest. In addition, it holds a run-time depth parameter that
defines its actual type, which is a specific version of the Img〈T〉-template (see Figure 3.2). This
structure allows for providing general, but template-less interfaces using the ImgBase-class. It is
only when pixel-access is needed that the ImgBase-interface is safely down-cast into its actual
type.

Filters

Even though filters are a very common concept in image processing, there is no unique general
definition available. Sonka et al. [2007] even avoid using the term filter. Instead, the term image
pre-processing is used, to generally describe operations, that have intensity images for both input
and output. Furthermore, they subdivide the set of pre-processing operations into four classes,
according to the amount of neighboring pixels used to compute a single output pixel.
ICL adopts this definition, but also distinguishes between unary- and binary operations, according
to the number of input images used. The set of binary operations, represented by the BinaryOp
interface, is again subdivided into pixel-wise comparison, arithmetical and logical combination
and proximity measurement of two images. The set of unary operations extending the UnaryOp
interface is much larger and hierarchically structured (see Figure 3.3). The UnaryOp-interface
defines generic apply-methods that compute an output image given an input image. This allows
for using all unary operators in exactly the same way, enabling the programmer to generically
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#include <ICLQt/Common.h>

GUI gui; // global GUI instance
GenericGrabber grabber; // image source

void init(){
grabber.init(pa("−i")); // init from prog. arg.

gui << Image().handle("img") // add image display component
<< CamCfg() // add camera configuration comp.
<< Show(); // create and visualize gui

}

void run(){
gui["img"] = grabber.grab(); // grab image and visualize it

}

int main(int n, char ∗∗args){ // tie everything together
return ICLApp(n,args,"−input |−i(2)",init,run).exec();

}

Listing 3.1: C++ source code of an example for generic image acquisition and visualization.

exchange or to stack unary operators if necessary. The explicit inheritance structure also implicitly
helps beginners in the image processing domain to classify or to search for unknown operations.

3.4.2 Grabber Framework for Dynamic Image Source Selection

Driven by the goal of providing a built-in system that allows for an easy implementation of appli-
cations that can deal with arbitrary supported image sources, a grabber-framework was developed.
It uses string-based interfaces for both device selection and configuration. In many applications,
an image source is initially selected, which is then used at run-time to acquire new images. Here,
usually the programmer either has to decide on a specific input type or an input device selection
mechanism (e.g., via program arguments) must be implemented manually. Such a mechanism,
however, enables not only the user, but also the developer to easily switch between processing
real-time camera images, a list of image files or even offscreen-rendered images of dynamic arti-
ficial scenes received via network or shared memory.
In ICL, a powerful grabber-framework is provided that defines an easy-to-use interface to select
a supported input device. The selection mechanism is usually bound to program arguments, to
manually select an application’s image source. To this end, a plugin-system was developed, which
maintains all available backends in order to provide a slim and simple-to-use interface called
GenericGrabber. An instance of this class can easily be initialized with any of the supported
backends. It can be configured using automatically created configuration files as well as by op-
tional program options and it supports the automatic creation of a GUI-component that allows the
user to interactively adapt device properties at run-time. Listing 3.1 shows a minimal skeleton for
a simple grab and show application. A screen-shot of the resulting application is given in Figure
3.4.
The resulting application uses a single program argument -input (alternatively -i), which expects

two sub arguments that are used to pick an image source backend and to select a backend-specific
device. As shown in the example screenshot (see Figure 3.4a), -i create lena selects the create
plugin, which simply creates a common test image, specified by the second sub-argument. -i dc
0 would select the dc plugin, used to grab from the first fire-wire camera device found and -i file
’images/*.jpeg’ would grab all jpeg files in the images directory successively. The created appli-
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(a) (b)

Figure 3.4: (a) Screenshot of resulting application (see Listing 3.1), when started with input selection
-i create lena (b) External widget menu providing extra image information and visualization
options.

cation also provides a facility to get a list of supported devices, using -i list all. Furthermore, the
same interface can also be used to set device properties, e.g. -i dc 0@gain=500 would initially set
the selected dc camera’s gain property to 500. Supported properties and allowed property values
can also directly be queried from command line, e.g. with -i dc 0@info. The created CamCfg
GUI component (see Listing 3.1), displayed when pressing the camcfg-button (see Figure 3.4a)
automatically creates control interfaces for all initialized GenericGrabber instances.
ICL provides a similar but slightly less complex framework for image outputs, with many sup-
ported backends such as writing image files, video files and streaming images via network or
shared memory. Furthermore, each image display component provides a menu (see Figure 3.4b),
allowing – amongst other things – images that are displayed to be captured automatically. This
can be used to capture a video of a display, or to use the output images of one application as input
for other applications.

3.4.3 2D and 3D Visualization

Another important feature, missing in most other libraries, was fast and intuitive image visualiza-
tion and annotation. Other libraries often perform image annotation directly in the image space,
which means that primitives, such as text-labels, are directly rendered into the image pixel ma-
trix. This is not only suboptimal due to the fact that it can usually not be accelerated by hardware
rendering, but also by the fact that the resolution of the annotation directly depends on the image
resolution. In particular when working with small images, more complex annotations, such as
symbols or text, can become very pixelated. This can only be avoided by explicitly scaling up the
image, which entails having to also transform all annotations to the new size.

Visualization Framework

For ICL, a new visualization framework based on OpenGL was developed, which exploits hard-
ware acceleration for image-rendering and 2D/3D annotation. The framework is basically split
into three layers. The bottom layer is defined by the ICLWidget component, which provides func-
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tionality for hardware accelerated image visualization. It displays images as OpenGL textures,
allowing for hardware accelerated scaling and zooming and for fast brightness and contrast adjust-
ment. It also automatically scales the visualized image to use the widget’s space, while preserving
its aspect ratio and it seamlessly solves threading issues caused by image updates posted from out-
side the application’s GUI thread. Furthermore, it provides an easy-to-use interface for installing
mouse-event handlers. In contrast to Qt’s mouse-event mechanism, ICL’s mouse events provide
information (e.g. color or position) about the clicked image pixel, automatically taking into ac-
count current image scaling and zooming. The ICLWidget component is also endowed with two
kinds of menus, an on-screen-menu and an external one. The on-screen-menu, is defined by a set
of blue buttons at the top edge, visible only when the mouse is over the display component (see
Figure 3.4). It provides direct access to the most common functions, such as zooming in, enter-
ing full-screen mode or displaying the external menu. The on-screen-menu can also be customly
extended in a programmatical manner. The external menu (see Figure 3.4b) is arranged in several
tabs providing visualization-related as well as more general controls and information.
Extending the ICLWidget, the intermediate layer is defined by the ICLDrawWidget, which addi-
tionally provides a state-machine-like image 2D-annotation interface. It accepts drawing com-
mands that are, similar to the handing of mouse events, parametrized in units of image pixel
coordinates. All visualized primitives, such as lines, polygons and text are automatically aligned
with the background image and then efficiently rendered using OpenGL.
The top-most layer, given by the ICLDrawWidget3D class, extends the visualization mechanism
by an extra interface to also render 3D primitives on top of the image. However, unlike the state-
machine-like interface of the 2D drawing component, a more sophisticated toolbox for 3D visu-
alization is provided. Basically, the ICLDrawWidget3D can be used to link native OpenGL code
into the rendering loop of the component, that is executed after rendering the background image.
However, it turns out that this usually leaves too much work to the programmer. In particular ad-
justing OpenGL’s camera parameters in such a way that real object and virtually rendered object
actually align in the final image, even when zooming in, or adapting the widget size is a non trivial
task.

Slim Scene Graph For 3D Overlays

At this point the integration with the Scene-class, provided by the geom-module, can easily help
to save many hours of work. Scene instances are simply filled with objects that can be structured
in an object tree, providing a relative transformation at each node. Once objects are added, one or
several Camera instances are needed that define how or from where the scene is to be rendered.
Cameras can either be defined manually or their extrinsic and intrinsic parameters can be easily
estimated using ICL’s built-in camera calibration tool in combination with a calibration object (see
Figure 3.5). For each registered camera, the scene provides an OpenGL callback, that can directly
be linked to an ICLDrawWidget3D’s rendering loop.
The 2D and 3D visualization framework was one of the most helpful support tools for the devel-
opment of robotics applications because it allows for quickly adding debug visualization, which
is often of great help when working with physics engines. The 3D visualization engine is highly
flexible, ranging from being able to add simple geometric primitives such as boxes or spheres with
a single command to registering complex native OpenGL callbacks and even defining vertex and
fragment shader programs.



3.4. IMPORTANT TOOLS FOR THIS WORK 43

Figure 3.5: Screenshot of ICL’s camera calibration toolkit. The calibration is performed using a 3D cal-
ibration object, whose geometry is described in an XML-file. The object is endowed with
fiducial markers. The marker’s detected centers and corners are used in the calibration pro-
cess, which is performed in real-time.

3.4.4 Marker Detection Toolbox

In order to perform paper detection, different fiducial marker tracking libraries (see Section 4.1.1)
were examined. However, it turned out that these were either not freely available, their license
was not compatible with ICL’s LGPL-license or they were simply not fast or accurate enough.
Furthermore, most available libraries were difficult to use or to integrate. Therefore it was decided
to endow ICL with its own marker detection framework.
As a first step, a new marker layout was designed in order to combine fast detection with 6D pose
detection capabilities. Even though these markers were successfully used in a deformable paper
tracking system (see Section 4.2), it turned out that in the desired configuration, defined by image
resolution, physical marker size and average distance of markers to the camera, many markers
were either not detected, or worse, their ID was extracted wrongly. Therefore, once again, alterna-
tive marker types were reviewed, leading to the idea of implementing a built-in framework from
scratch, able to track all common marker types. This would not only allow for finding the best
suited maker-type for the next version of the desired paper-detection system, but also be a valuable
feature building block for ICL.
The public interface of the plugin-based framework basically consists of two classes. The Fidu-
cialDetector can be set up to use one of the existing marker-type-related backends. After marker
detection, it returns a list of Fiducial instances, each providing all available information for a
detected marker. The Fiducial interface is generic and works for all implemented backends. Inter-
nally, marker features, such as the marker boundary or the 6D pose of a marker, are estimated in a
deferred manner, meaning that features are only computed when the corresponding getter method
is actually called. Features once computed are automatically cached to speed up successive calls.
A comparison of the different fiducial marker types and possible tracking libraries including ICL’s
marker tracking framework is given in Section 4.1.1. The marker detection framework is also used
for ICL’s camera calibration toolbox (see Figure 3.5).
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Figure 3.6: Screenshot of the interactive physical paper model editor. In the editor, the can be manipulated
in a mouse-based drag and drop manner, the possible interactions include dragging parts of
the model in 3D space, adding fold lines and memorizing the deformation along fold lines.
Internally, the model is moved using the model control law presented in Section 6.1

3.4.5 Soft and Rigid-Body Physics Module

Due to the physical paper models that were needed by the robotic systems to pick up (see Chapter
4) and to fold (see Chapter 5) paper, a connection to the Bullet physics engine was required19.
The engine had to be integrated with ICL’s geom module to exchange information about geometry
and other physical quantities between the different domains that were covered by the final demon-
strator systems. In particular a seamless unification of the different coordinate frames for vision,
physics, (debug-)visualization and for the robotics system was necessary to achieve well-defined
interfaces that allowed data to be exchanged intuitively and efficiently. A particular difficulty here
were the different size units that were employed in the different domains. While ICL’s geom-
package assumes millimeters by default, the robotics framework uses centimeters. The integration
with the Bullet physics engine was even more complex in this regard, as its internal solving mech-
anism is optimized to work optimally with object sizes in the order of a unit-less length of 1. Thus
an internal scaling-factor was introduced, which had to be applied in a linear fashion to lengths
but non-linearly to some other physical quantities.
A seamless integration was achieved by providing shallow wrapper classes for most of the com-
mon physics types provided by Bullet. All object classes are explicitly derived from the geom-
module’s SceneObject class, which allows for a real-time visualization of a dynamic physics scene
to augment real camera images. A special PhysicsScene-class that uses multiple inheritance to ex-
tend both the geom-module’s Scene as well as the physics-module’s PhysicsWorld can be used to
set up powerful physical simulations and a corresponding visualization with just a few lines of
code. The most important feature for this thesis was the SoftObject class that, by wrapping around
Bullets soft-body physics module, defines the basis for the different physical paper models that
were developed. For the model that was used for robotic folding (see Section 5.3) and also for the
final model presented in Section 6.1, an editor was created that allows the user to move a paper
model and to dynamically add folds in a drag and drop manner (see Figure 3.6).

19 The author thanks Matthias Esau for his help with physics module.
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3.5 Discussion and Next Steps

ICL has become a powerful library and it has proven its versatility in a large number of projects.
Its main competitor is certainly OpenCV, which has about 50 thousands users and is actively
developed by more than 100 people. By providing an easy-to-use compatibility layer that allows
image data-types to be exchanged with OpenCV in a very seamless manner, OpenCV algorithms
and features can be directly included into ICL programs with only a few lines of additional code.
A very important next step will be to further work on ICL’s community. Transitioning ICL to an
open community project hosted on GitHub 20 was carried out in early 201821. This will allow
other people to contribute to ICL, to speed up the addition of new features and the fixing of bugs.
Another important task for the near future will be to provide for integration with the robot control
toolkit/platform ROS22, in order to make it easier to use ICL when implementing ROS-nodes and
to connect ICL-programs through ROS-data streams.

20 www.github.com
21 The author thanks Alexander Neumann for taking the leadership for this endeavor
22 www.ros.org

www.github.com
www.ros.org




4 Picking up Paper

After investigating paper shifting and rotation in the 2D plane, the next logical step was manipu-
lation in 3D. The first task was to pick up a sheet of paper that was lying on a flat surface. This
allowed for the introduction and testing of a whole new processing pipeline, consisting of 3D
detection, modeling of the deformation of the sheet of paper and new building blocks for robot
control. The ability to pick up a sheet of paper is also a common prerequisite for many other more
complex interaction sequences, such as moving paper in 3D or putting it into a drawer or a binder.

(a) picking up by shifting the paper over the edge of the table or other support plane

(b) picking up by slicing the thumb under a corner of the sheet of paper

(c) bi-manually picking up by bulging up the sheet of paper to allow for pinch grasping

Figure 4.1: Different common strategies used by humans to pick up a sheet of paper lying on a flat surface.
(a) This technique allows the paper to be picked up without damaging it, but it assumes a table
edge to be within reach. (b) The method shown here is usually the simplest way, but it can
only be attempted if one edge of the paper is either already bent upwards or a slight fold at the
corner of the paper can be risked. (c) This technique is only rarely used because bi-manual
picking-up is energy-wise less efficient. If no table edge is within reach, it might be preferred
over (b) to avoid damaging a paper’s corner.

Even though picking up a sheet of paper is a very easy task for humans that is usually learned
within a child’s first year of life, it had not been solved for anthropomorphic robot hands. While
in production facilities, picking up objects that do not allow for positive fitting grasps is usually
performed using – depending on the material – either magnets or vacuum grippers, the use of an-
thropomorphic robot hands requires more human-like grasping strategies. Humans would usually
either try to shift the sheet of paper towards an edge of the supporting surface to easily grasp it
(see Figure 4.1a) or bring one finger under a corner of the paper sheet (see Figure 4.1b). The
chosen technique depends not only on the paper-to-table configuration, but also on several exter-
nal variables, such as obstacles on the table, the human-to-table position and orientation, whether
a slight crease at the corner of the paper can be risked and on personal preferences. Seeing the
human planning procedure as an energy minimization process, an edge that lies not perfectly flat
on the support plane provides a good grasping affordance, which usually allows for an energy-
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wise cheaper pinch-grasping of the corner. In contrast to this, if one has to pick-up an important
document that must not be folded or even bent too much, shifting the paper to an edge becomes
much more likely even if potential obstacles need to be avoided or displaced before. These two
examples demonstrate that even supposedly simple tasks like this can not be planned properly
without taking into account world knowledge.

Picking up Paper with the Robot

In order to be able to concentrate more on the low-level processing necessary to endow a bi-manual
anthropomorphic robot system with the ability to pick up a sheet of paper lying on a flat surface, a
grasping strategy was pre-defined. Initial experiments showed that pinch-grasping a single corner
of the paper was not possible without the risk of damaging the robot hand. The main reason for
this was the weak quality of tactile feedback provided by the fingertip sensors, in particular the
missing feedback on the sides and the tops of the fingertips. In addition, the sheet of paper itself
produces very little force resistance, and the forces produced cannot be measured with the current
fingertip sensors. The shifting-technique, frequently used by humans, would basically be identical
to the 2D paper shifting from the previous experiment (see Section 2.2) followed by a simple grasp.
Therefore, the picking up sequence depicted in Figure 4.1c, which needs bi-manual interaction,
was developed. The new sequence basically consists of two steps. First, the right hand bulges up
the sheet of paper in the middle. Then, the left hand can be used to simply pinch-grasp the center
of the bulge. Bulging the paper introduced the necessity to model the deformation of a sheet of
paper. For this, two different approaches were developed, implemented and evaluated. First, a
less complex, purely mathematical, model was used, which represented the sheet of paper as set
of localized paper-patches each modeled by a 2D polynomial embedded in 3D space. In order
to obtain a smooth surface the manifold is smoothed using soft-max interpolation. The second,
more sophisticated, approach taken was a physics-based model implemented using the soft-body
module of the open source Bullet physics engine1. For the perception of the paper and the tracking
of its deformation, a multi-view camera setup was employed. In order to simplify the detection
module, the paper was densely covered with fiducial markers on both sides. At this point, it turned
out that existing, freely available, fiducial marker tracking libraries were not fast- or accurate
enough. Therefore, a new fiducial marker layout was designed and a very fast detection module
was implemented, which allowed the processing of mega-pixel image streams at up to 100 Hz.
This chapter is organized as follows. Related work is presented in Section 4.1 and then in Section
4.2 the developed fiducial marker tracking system based on fast connected component analysis in
binary images is presented. The two modeling approaches are then introduced (see Section 4.3)
and their accuracy is compared on the basis of real-world and artificial ground-truth data in Section
4.4. Section 4.5 will then present the robot control system that was implemented to pick-up a sheet
of paper before the results are summarized and discussed in Section 4.6.

The work presented in this chapter is mainly based on the author’s conference paper:

Bi-manual robotic paper manipulation based on real-time
marker tracking and physical modeling [Elbrechter et al., 2011a]

The paper was presented at the IEEE/ISJ International Conference on Intelligent Robots and Sys-
tems (IROS 2011) in San Francisco, California. An associated video can be found on the CITEC
YouTube-channel [Elbrechter et al., 2011b].

1 http://bulletphysics.org

http://bulletphysics.org
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4.1 Related Work

Work that is related to the particular aspects of picking up paper is presented here. Since the pa-
per detection was performed using fiducial markers printed directly on the sheet of paper, different
fiducial marker types and detection libraries were investigated. Another requirement was the mod-
eling of paper deformation, and therefore common approaches for the modeling of deformable flat
objects, often referred to as thin shells are presented. Once detection and modeling are discussed
and anchored in their corresponding fields of research, an overview of alternative robot systems
that are able to pick-up paper or deformable objects is given.

4.1.1 Perception using Fiducial Markers

In many computer-vision applications, invariably it arises that a processing step involves the de-
tection and identification of key points in the visible scene so that they can be used as landmarks
in further processing steps. This can prove to be very difficult for a number of reasons, such as
having to deal with varying lighting conditions, partial object occlusions, unstructured and untex-
tured image regions or even just due to poor image quality. To avoid these issues, the scene can
be augmented using visual markers that can be detected more easily and more robustly. Fiducial
marker detection is carried out in many varied image processing applications. A very general
definition is:

Definition 1 (Fiducial Markers) A fiducial marker (or short a “fiducial”) is an object or an
artificial cue that is added to a scene or to the used visual system so that it becomes visible in the
produced images. Fiducial markers are usually used as reference points that are either manually
or automatically well detectable.

In times of analog photography so called Reseau plates [Brown, 1979] were commonly used for
later image correction or image based measurements. Prominent examples of the usually cross-
shaped fiducials on these are also visible on the photographs taken on the moon, that were some-
times misinterpreted as a potential proof that the image were faked [Windley]. Another very
general example is the use in typography, where fiducial markers are used to align successively
printed layers. In optical motion tracking systems, such as Vicon2, reflective fiducial markers are
used to achieve very high 3D position estimation accuracy [Windolf et al., 2008]. Fiducial mark-
ers are also commonly used in augmented reality (AR) [Zhou et al., 2008] and camera calibration
scenarios [Atcheson et al., 2010]. Also in the field of medical imaging, in addition to vessels and
bones that serve as natural fiducial markers, artificial fiducial markers are either attached to the
human body externally or can be implanted. The markers provide reliable key points for different
kinds of image-based treatments and diagnostics. In imageing-guided radiation therapy, fiducial
markers, implanted into a tumor allow for more accurate results [Kothary et al., 2009]. Whenever
the images of different imaging systems such as 3D ultra sound and magnetic resonance imaging
(MRI) are to be aligned, natural and artificial fiducials are used as key-points for the alignment
process [Porter et al., 2001].
Another common field is that of robotics. In bio-medics, surgery robots use fiducial marker to
track certain parts of the human body during an operation [Howe and Matsuoka, 1999]. In many
robotics research applications, fiducial markers are commonly used to bypass object detection,
tracking and pose estimation issues [Bersch et al., 2011; Mutka et al., 2008; Steffen et al., 2010].

2 Website: http://www.vicon.com

http://www.vicon.com
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(a) (b) (c)

Figure 4.2: Different common fiducial marker designs. (a) An ARToolKit fiducial marker. IDs are en-
coded by the image inside the black rectangle (b) An ARTag/ARToolKitPlus fiducial marker.
IDs are encoded by a BCH code represented by the central binary pattern. (c) An Amoeba
fiducial marker. IDs are encoded by a characteristic image region containment structure.

The Principle of Fiducial Markers

The appearance of fiducials is preferably different to the rest of the scene, which facilitates the
use of simple and computationally inexpensive heuristics for the detection. A simple example
involves the use or a red circular dot. If other parts of the image do not share this appearance,
simple pattern matching can be used to find the position of the red dot in the image. The higher
the requirements become, the more complex the design of the fiducial markers must be. In order
to avoid a situation in witch homogeneously colored regions are misinterpreted as a huge set of
markers, a distinct border color can be defined [Cho and Neumann, 1998]. When using template
matching for the detection, the border can simply be added to the template.
If more than one key point must be detected, the use of several red dots can lead to identification
issues. This can be avoided by using several colors or several calibrated cameras. This, however,
narrows the number of allowed colors in the actual scene and makes the detection more complex.
Furthermore, using several colors does not scale very well because in common lighting conditions,
only a small set of colors can be differentiated robustly[Schroder et al., 2012]. Cho and Neumann
[1998] partly compensated these drawbacks by using concentric circles of different colors to in-
crease the number of distinguishable IDs. However, this is only robust when lighting conditions
are constant. These problems led us to define two main requirements that must be considered for
the design of fiducial markers:

1. Detectability Fiducial markers must be robustly detectable in a computationally inexpen-
sive manner. This can be split into two sub-disciplines: detection speed and robustness.

2. Distinguishability The fiducial marker design must provide a marker ID that allows several
markers to be robustly distinguished.

Considering these requirements, the use of color information for image markers leads to several
issues and is therefore not commonly used. In addition to the problem that only a small set of
marker IDs can be encoded into the colors, changing lighting conditions and the presence of
shadows lower the robustness of the detection significantly. While shadows can at least partly be
compensated by using color spaces where the lightness of a pixel can be explicitly disregarded
(such as the HLS color space), changing lighting conditions and in particular sun light make it
almost impossible to define the color distribution of a marker. More advanced approaches, that
use time-adapting color histograms partly compensate these issues, but cannot counteract sudden
changes of the lighting conditions, such as the sun emerging from behind a dark cloud.
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Monochromatic Fiducials

The issues with color-based fiducials led researchers to the idea of using structured monochro-
matic markers that are distinguished by their characteristic black and white appearance. Again,
the appearance must be different from the remaining scene or at least it must be very unlikely to
occur. Markers usually consist of two visual components, one that allows for easy detection and
one that encodes marker IDs. A very early fiducial marker type was introduced with the open-
source ARToolKit framework [Kato and Billinghurst, 1999], originally developed for augmented
reality applications. The classical ARToolKit markers3 (see Figure 4.2a) were distinguished by a
thick bordered black rectangle on a white background. Inside the rectangle is an arbitrary gray-
scale image surrounded by a white margin that is used to distinguish different markers. For marker
detection, the ARToolKit searches for quadrangular black regions in a thresholded input image.
For each detected marker, the inner marker region is rectified and compared pixel-wise to a set
of registered reference images. Since the marker orientation is not known in advance, this step
is performed for all four possible marker rotations. A global similarity threshold is used to reject
non-marker regions. For each marker, a position and orientation in the 2D image plane is com-
puted. Assuming known camera parameters, the warped shape of the marker boundary can also
be used to compute the 6D marker pose in space with respect to the camera coordinate frame. In
the background of augmented reality applications, the resulting homogeneous marker transform
can be used to render objects in the marker frame as an image overlay, which gives the impression
that the rendered objects are stuck to the marker. A dual camera mode is also available and can be
used for real stereoscopic 3D visualization with head mounted displays. The ARToolKit library
provides satisfying results for images with a limited number of large markers. However, in scenes
with many small markers or cluttered backgrounds, both speed and detection accuracy is severely
affected [Fiala, 2005]. High false positive rates as well as the low processing speeds arise from
the rather simple method that is used to compare the rectified centers of potential markers with the
set of registered markers. The more markers that are registered, the more image patches must to
be compared. Furthermore, it becomes increasingly likely that the rectified image of a non-marker
quadrangle coincidentally looks similar to one of the registered marker images.
Considering the drawbacks of the ARToolKit library, in 2005 Fiala [2005] introduced the ARTag
library. Even though the appearance of the ARTag markers (see Figure 4.2b) is very similar to AR-
ToolKit markers, the marker IDs are encoded in a much more sophisticated manner. Each marker
center contains a 2D 6 by 6 pixel (36 bit) BCH binary code [Bose and Chaudhuri, 1960], which
encodes a 10 bit marker ID. ARTag can also detect inverted (white border on a black background)
markers, producing a total of 2048 possible markers. The use of BCH codes rather than simple
image matching techniques results in several advantages in both detection speed and accuracy. For
each potential marker found, the marker center is simply rectified into a 6 by 6 pixel binary image,
whose pixel-vector then directly contains the marker’s BCH code word (or, due to the unknown
marker orientation, a 90◦, 180◦ or 270◦ rotated version). Since the processing time needed to
decode a single 36 bit code word is constant, the marker detection speed no longer depends on the
number of registered markers. If the homography based rectification step yields no more than a
few errors in the resulting code word, the self-error-correction property of the BCH code enables
the system to still obtain a valid marker ID. Furthermore, a valid 36 bit code is extremely unlikely
to coincidentally occur in the scene. The ARTag library also came with several other optimizations
such as using local and temporarily adapting thresholds to cope with varying or inhomogeneous
lighting conditions. Although it was originally released as an open-source library it is no longer
available.
The idea of using BCH code markers was also adopted by the ARToolKitPlus library, which was
designed on top of the older ARToolKit [Wagner and Schmalstieg, 2007]. In contrast to ARTag,

3 In March 2015, a new open-source version of ARToolKit, which also features other marker types, was released.
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a different BCH code that encodes a 12 bit ID at the expense of a little less robustness was de-
veloped. In 2009 the authors came up with a new closed source library [Wagner and Schmalstieg,
2009] called Studierstube Tracker, which is mainly focused on the use on mobile devices.
A very different fiducial marker design was presented in the libfidtrack-library [Kaltenbrunner,
2009], who used the markers for tracking tangible objects in an experimental sound synthesis ap-
plication. In contrast to the thus far discussed libraries, these markers (see Figure 4.2c) do not
use different appearance aspects for detectability and ID encoding. Rather their markers are dis-
tinguished by a well defined region pattern that is to be found in an image region containment
graph. All markers are bounded by a coarsely quadrangular but irregular black border on a white
surface. The contained white image region defines the root region for the marker’s region contain-
ment graph. The graph contains a set of black regions each containing 0 to 12 white sub-regions,
which uniquely defines the marker’s ID. The detection framework performs a connected compo-
nent analysis of the binarized input image and creates the region-containment graph of the whole
image. The markers are then detected and identified by an optimized graph matching implemen-
tation. For optimal detection properties, the design of the fiducial markers was optimized using an
evolutionary algorithm [Bencina et al., 2005]. The topology based marker detection is very fast
because the marker detection is not performed on the image data, but on the region-graph, whose
data footprint is usually at least two orders of magnitude smaller than the input image. However,
this also leads to a severe disadvantage of the markers. The topological image representation does
not allow 2D positions of marker regions to be identified. Together with the irregular shape of the
markers, this makes monocular 3D/6D marker pose estimation impossible. Furthermore, libfid-
track’s GPL license hindered us from adapting their code for integration into ICL4 and they also
do not allow their markers to be used with other detection libraries.

Comparison and Benchmarks

To provide a better overview of what is available, we coarsely compared the different fiducial
marker detection libraries (see Table 4.1). At a later stage in the development process, all underly-
ing detection mechanisms were natively re-implemented in ICL. By these means, it was possible
to not only provide a unified interface for all marker-types, but also to significantly reduce the
implementation footprint. A benchmark that compares the performances of the original libraries
with the ICL implementations was also conducted and the results are in the table.
Even though, from the list of existing marker detection libraries, the BCH-code based markers
used by ARToolKit+ and ARTag performed best, we decided to develop a new marker layout with
a new marker detection library. While ARTag could not be used as it was simply no longer avail-
able for download, ARToolKit+ was ruled out because of certain API-inconsistencies and the fact
that it is neither supported by the authors nor its GPL-based license would allow the source-code
to be integrated into ICL. In contrast to this, the results of the, at that time, newest ARToolKit ver-
sion were simply not good enough. Libfidtrack was not used because of its infeasibility to handle
monocular 3D/6D marker pose estimation and license incompatibilities. ARToolKit 5, which was
released as open-source in March 2015, was not available at that point and is therefore not listed
in the Table.
The new fiducial marker layout (see Section 4.2.1) developed for the picking up paper robotic sys-
tem (see Section 4.5), is also listed in the comparison Table 4.1. At this early stage of the project,
a re-implementation of a BCH-code-based marker detection library, similar to ARTag, seemed too
time-consuming, so an approach based on region-containment-graphs, like that implemented in
libfidtrack, was decided upon. In a later iteration of our detection framework a plugin for the de-
tection of BCH-code-based markers was developed, integrated into ICL and used for the folding

4 ICL uses the less restrictive LGPL-license
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ARToolKit 2.x ARToolKit+ Studierst. Tracker libfidtrack New Markers7

Supported Platforms all1 Win./Lin. Win./Lin./Android all all
Distribution bin./src bin/src bin. bin/src bin/src
License GPL2 GPL commercial GPL4 LGPL
Detection Time (ICL) 3 100ms 9 (23ms) n./a.8 (8ms) n./a.5 8.7ms (9.5ms) 10ms
Marker count O(10)6 2048 n./a. 206 60 (×2)
Main issue for accuracy marker count marker size, n./a. marker size, marker size,

image noise n./a. image noise image noise
Main issue for speed vis. & loaded large vis. markers, vis. marker count image noise image noise

marker count vis. marker count n./a.
1.) Windows, OSX, Linux 2.) a commercial Version called ARToolworks exists. In March 2015, this was released as ARToolKit 5
under the terms of LGPL 3.) 1280 × 960 images with 20 visible markers (numbers in braces refer to the detection time of ICL’s
marker detection framework) 4.) The amoeba markers cannot be used with other libraries 5.) No free version available 6.)
There is not a theoretical limit, but detecting many markers at once leads to a very bad performance in both, speed and accuracy 7.)
Presented in Section 4.2.1 8.) Due to the no longer ongoing support, ArtoolKit+ could not be compiled on a recent Ubuntu Linux
system anymore. The introduction paper provides some benchmark results, but they neither mention the full computer specs, nor the
used image resolution. 9.) Benchmark was coarsely estimated form the results presented in [Fiala, 2004]. Here different hardware
specs and VGA image resolution was used)

Table 4.1: General comparison of alternative fiducial marker detection libraries. The detection times were
measured on an Intel R©Xeon R©E5530 CPU, running at 2.4GHz, with 64bit Linux. The entry
main issue for accuracy provides the main factor for decreasing the detection accuracy, i.e.
false-positive, false-negative and wrongly estimated marker IDs. The entry main issue for speed
gives the factors that influence the detection speed.

paper robotic system (see Section 5.2.1).

4.1.2 Modeling Paper

In the literature a number of different approaches for paper modeling can be found. Much re-
search has focused on origami modeling, and due to its origins, this is particularly popular in
Japan. Another field of research, in which paper and other thin deformable objects are modeled,
is computer-graphics. In mathematics research, bent paper without creases can be well described
by developable surfaces defined by a zero Gaussian curvature.

Origami Modeling

The origami-related publications extend from purely mathematical models that try to formal-
ize aspects of origami-folding [Alperin, 2000; Hull, 2006], toolkits that facilitate origami con-
struction [Lam, 2009; Shimanuki et al., 2009] or allow for an interactive manipulation of virtual
origami models [Fastag, 2006; Ida et al., 2006; Tachi, 2009] to examples of applying origami-
formalisms to real world applications [Cromvik and Eriksson, 2006; You and Kuribayashi, 2006].
Even though these publications provide an impressive set of mathematical formalisms, folding and
manipulation axioms and even GUI-based origami editors, they do not strongly intersect with the
work presented in this thesis. First of all, folding origami is only a very specific subset of possible
manipulation scenarios with paper and usually strives for very complex target paper configura-
tions. However, starting from an anthropomorphic robotics point of view, even the most simple
manipulation primitives, such as picking up the sheet of paper or folding it in half are already
extremely difficult to realize. Therefore, most origami formalisms are simply too complex to use
as a modeling back-end for the targeted robotic manipulation system.
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Vision-driven Modeling of Origami

Being able to automatically track the deformation of paper while it is iteratively folded could help
to automatically derive folding instructions from demonstration. To this end, using visual input to
update model parameters has already been addressed in origami-related research.
The work presented by Mitani [2006] looks astonishingly similar to the detection and modeling
sections presented in this chapter. They use QR-codes printed on a standard sheet of paper to
reconstruct the fold-configuration while the paper is iteratively folded. However, in contrast to the
system presented here, they state no real-time constraints and they assume the absolute absence of
occlusions. In their system, a single snapshot of the paper is taken and analyzed after each fold
using a brute force search though all possible configuration spaces, which they admit becomes
computationally extremely complex as more folds are iteratively applied. In contrast, the system
presented here tracks the deformation of the paper at real-time frame-rates, which allows for the
inference of self-occluded parts of the paper.
Kinoshita and Watanabe [2008] presented a system that was able to track an origami folding
sequence based on silhouette detection. They assumed trivial color-based segmentation of the
origami’s front and back face and almost no occlusion of the paper by the human hand. By defin-
ing a set of restrictions to trackable folding operations, in order to avoid ambiguous intermediate
states, the system was able to track several classes of possible fold types, such as valley-folding
or inside-reverse-folding. The system did not run completely autonomously, i.e. some actions
needed to be explicitly named by the folding person and the capturing of camera images had to
be triggered manually. Due to its many restrictions, in particular the missing robustness against
occlusions, it was deemed not very suitable for our requirements. Nonetheless, their system was
used by [Miyazaki et al., 2010] to augment virtual origami models with realistic textures extracted
from camera images.

Modeling Deformable Objects in Computer-Graphics

An important goal in the computer-graphics community is the realistic rendering of animations.
To achieve this, physically plausible object trajectories and deformations are of paramount impor-
tance and necessitate the modeling of deformable objects. In particular, the physical modeling
of cloth and hair has become very important in order to attain realistic rendering in computer-
games and CGI-based visual effects in movies. Also, the modeling of deformable objects with
high internal stiffness such as paper or rubber is very much in the focus of computer-graphics
research. Deformable 2D surfaces are commonly modeled by thin shell models [Arnold, 2000;
Ciarlet, 2000; Grinspun et al., 2003] and are characterized by curved objects with a negligible
thickness. Existing systems allow for impressively realistic modeling, but are not yet applicable in
real-time [Grinspun, 2005]. More recent approaches such as that proposed by Martin et al. [2010]
allow for modeling several different aspects of deformation, such as bending, buckling, writhing,
cutting and merging by using a unified simulation rule. However, they require very complex im-
plementations and are only real-time-capable in very simple situations.
Since physically plausible modeling of paper is only one sub-aspect of this thesis, the choice was
made to use and, where necessary, adapt the Bullet physics-engine [bul] as an existing simulation
tool rather than to implement one from scratch.

Developable Surfaces

From a mathematical point of view, developable surfaces are well suited to describe deformed
paper [Hilbert et al., 1952]. Developable surfaces in 3D space are always ruled, which means that
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each point on the surface lies on a straight line that also lies completely on the surface. Assuming
that paper is only bendable, but not stretchable, this applies perfectly to surfaces that can be cre-
ated by bending or rolling a flat piece of paper. Huffman [1976] provides an additional definition
based on Gaussian curvature: developable surfaces have a Gaussian curvature of zero. The Gaus-
sian curvature of a 2D surface in 3D space at a point p is defined by the quotient K = G/F . F is
defined by the area bounded by a small closed path around p, and G is the area of that path when
it is mapped to the Gaussian sphere S2. Since a developable surface is locally always bent in one
direction only, G and therefore alsoK is always zero. Huffman [1976] states that developable sur-
faces are well suited for modeling surfaces in computer aided design and manufacturing, because
they are, compared to arbitrary surfaces, well defined and more powerful than planar surfaces.
However, the missing intuitive link between a detected set of 2D/3D point correspondences and
these definitions, led us to select a simpler mathematical model that represents the paper surface
by smoothly interpolating between localized linear functions (see Section 4.3.2).

4.1.3 Robot Control

Picking up paper with anthropomorphic robot hands has so far not been addressed in research.
Due to the complexity of the task, paper-like objects are usually picked-up and manipulated with
very specialized tools or robots. In industry, paper, sheet metal, cardboard, cloth, food and other
deformable objects are usually moved using rolls located on one or both sides of the surface. While
thin metal plates can, dependent on the type of metal, also be grasped using magnetic grippers,
vacuum grippers have to be used for paper. A common example of a machine that can pick up
paper is a printer. The origami folding robot developed by Balkcom [2004] used air pressure to
pick-up and move the manipulated sheet of paper. The dexterous paper folding robot developed by
Tanaka et al. [2007] was not able to pick up paper. Instead, it used high and low friction fingertips
to either fixate the paper at a certain position or to bend it.
In research towards automatic folding of cardboard-boxes, the picking-up problem is also often
neglected by using special supply trays for the raw material [Dubey and Dai, 2006; Lu and Akella,
2000; Yao et al., 2011].
Other than this, picking-up deformable objects and materials has been mostly addressed from the
perspective of manipulating laundry and cloth [Bersch et al., 2011; Maitin-Shepard et al., 2010;
Van Den Berg et al., 2011]. It seems at first glance that this could be assumed to be very similar
or at least easily transferable to the problem of picking up paper, but this turns out not to be the
case. Cloth is usually thicker, more flexible and is only weakly plastic. This means that picking
up a piece of cloth can be achieved by simply grasping it with a two jaw gripper, even if it lies flat
on a surface. Applying a similar technique for picking up paper would add non-reversible creases
to the paper with must be avoided.

4.2 Perception

In this section, a new detection and tracking framework for deformable surfaces is presented.
While the detection and tracking engine for the paper-shifting experiment (see Section 2.2) as-
sumed a rigid paper model linked to the 2D space of the table-top, a more complex tracking
method is needed here. The new method not only generalizes to 3D, but also allows for modeling
and tracking deformation of the sheet of paper. The tracking framework is inherently linked to
the paper model that is used. In order to decouple tracking and visual detection, a generic inter-
face was defined (see Figure 4.3). In each processing step, the vision module extracts a set of
key-points K = {kl} each linking a point kml ∈ R2 on the model surface to an estimated point
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Figure 4.3: Interface between perception and modeling (based on Figure 2.4). The detection unit produces
key-points K = {kl} that are sent to the modeling unit. The current model is not only used
for the robot control, but also as feed-back for the detection module, which can exploit knowl-
edge about the current model configuration to enhance detection speed and robustness by only
searching for features in the model’s vicinity.

kwl ∈ R3 in 3D space. The set K is passed to the vision module. In turn, the modeling component
provides feedback about the current belief (the current model), which can be used by the visual
detection engine to narrow the search space for features if required. This feedback channel is used
by the RGBD-point-cloud based detection engine described in Section 6.2.

4.2.1 Marker-based Detection of a Deformed Sheet of Paper

The task of the vision module is to find the set of key-points K = {(kml ,kwl )}, each linking
a 2D position on the paper to a 3D position in the world. 3D information can be obtained by
different means. Monocular vision systems can provide 3D information, however usually with a
poor accuracy along the camera’s view-axis. In contrast, calibrated multi-camera systems can be
used to much more accurately estimate 3D positions using triangulation techniques. However this
assumes known point correspondences in the different camera images, which can be difficult to
compute. By using fiducial markers, printed directly on the tracked sheet of paper, several issues
are significantly simplified all at once. First, the fiducial markers can be efficiently detected in the
input images. Second, each marker encodes an ID, which can be used to solve the correspondence
problem for the multi-camera setups and lastly, by memorizing the marker layout printed on both
sides of the paper, the correspondence problem between 3D world positions and 2D model posi-
tions is also explicitly solved.
Another obvious source for acquiring accurate real-time 3D data are 3D cameras such as the Mi-
crosoft Kinect camera or Mesa Imaging’s time-of-flight camera Swiss-Ranger5. However, while
these devices provide accurate and dense 3D data at low computational cost, it remains unclear
how to estimate the corresponding 2D paper coordinates for the 3D points. Furthermore, it is worth
mentioning that the decision to use markers was made before the existence of an open-source in-
terface to acquire 3D point cloud data from Kinect. For marker-less tracking, based on RGBD
point cloud data, an additional tracking framework was developed and evaluated (see Section 6.2).
As discussed before, when the existing fiducial marker detection frameworks were looked at, it
turned out that none of them were well suited to the desired task (see Section 4.1.1). Therefore,
a new marker layout was created that allowed for fast detection with a low false positive rate and
features a built-in mechanism for 6D pose estimation.

Region-Containment based Marker Detection

The new fiducial marker design is very similar to the Amoeba-markers introduced by Kaltenbrunner
[2009]. The markers are detected by their unique image region containment structure derived from
a topological region containment graph that is extracted from a binarized input image. The pro-
cessing pipeline is sketched in Figure 4.4.

5 http://www.mesa-imaging.ch

http://www.mesa-imaging.ch


4.2. PERCEPTION 57

Figure 4.4: Tool-chain for the fast fiducial marker detection. The binarized and de-noised input image is
fed into the connected component module. Here, the region connectivity is estimated based on
a preceding run-length coding phase. With the resulting connectivity information, a contain-
ment graph is computed that allows markers to be found by means of sub-graph matching.

The gray-scale input image is first binarized using a locally adaptive threshold operator, which
compares each pixel to the average gray-value in its neighborhood. The average values can be
efficiently computed from the gray image’s integral image [Viola and Jones, 2001]. The adaptive
threshold leads to much better binarization results in case of shadowy image regions than a stan-
dard global threshold operation. The use of adaptive threshold techniques was already suggested
and evaluated by [Fiala, 2005]. Subsequently a binary median operator is applied to the binary
image to remove very small regions. The connected component analysis first transforms the binary
image into a run-length-encoded (RLE) representation. Here, each image line is represented by a
list of runs, each defined by a gray-value, an offset, a length and the line’s y-index. This can be
implemented very efficiently and allows for the reduction of the memory footprint of the binary
image to a fraction of its original size. By conservatively assuming an average run-length of 100
pixels, a 1KB-line of a 1000 × 1000 image can be represented by only 80 bytes6. RLE-based
connected component analysis was shown to outperform traditional methods by a factor of ten
[He et al., 2008]. The estimation of the region-connectivity can then efficiently be implemented
on the basis of the RLE-representation. More details can be found in the ICL API documentation7.
The connectivity analysis results in a list of regions each defined by a set of corresponding RLE-
runs (necessary to compute region features, such as pixel-count or center of gravity) and a set of
adjacent regions, including special regions that represents the image borders. Region containment
is defined as follows:

Definition 2 (Region Containment) An image region A contains an image region B if there is no
path along the image’s connectivity graph that allows it to reach the image border when starting
from B without passing A. If A and B are adjacent, A contains B directly otherwise, A contains B
indirectly.

Due to the transition from O(106) image pixels to a maximum of O(103) image regions, it is
possible to pre-compute the region-containment graph, by endowing each region structure with a
pointer to its parent region and a list of directly contained child regions.

New Fiducial Marker Layout

The geometrical structure of the new markers is designed to allow for an easy identification of
each single marker region by means of simple geometric heuristics. The topology of each marker
is defined by a top-level region, A (see Figure 4.5a) that includes four child-regions, Bi. In turn,
each Bi contains an additional set of one to five 3rd-level regions Ci1 to CiNi , i.e. Bi contains

6 If the four members of each run are represented by 16bit values (i.e. two bytes per value)
7 www.iclcv.org

www.iclcv.org
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(a) (b) (c)

Figure 4.5: New fiducial marker design, region layout and identification (a) Each marker ID is defined
by its unique structure in the region containment graph. The top-level region A contains four
sub-regions B1-B4 each containing one to five 3rd-level regions Cij . (b) The vector v is used
to sort theBis. Then v⊥ is created perpendicular to v in order to sort the Cij . (c) Used sheet of
paper. Back-face markers are inverted, which allows the use of identical and aligned markers
on both sides of the sheet of paper.

exactly Ni 3rd-level regions. A marker’s ID is encoded by the combination of the numbers Ni of
3rd-level regions. This allows for defining the marker ID as a four-tuple M = (N1, N2, N3, N4).
As an example, the marker shown in Figure 4.5a has the ID N = (1, 1, 2, 3). Each Ni has five
possible values leading to a total for 45 = 1024 distinguishable marker IDs.

Selection of used Marker IDs

In order to avoid mixing up markers and to increase the detection accuracy, additional heuristics
for the choice of actually used IDs had to be introduced. Due to the fact that the sheet of paper
(and therefore also the makers) can be arbitrarily rotated with respect to the camera, IDs that are
ambiguous with respect to a reversion of their code M could not be used. This is achieved by only
allowing markers that have a monotonic increasing number of 3rd level regions: Ni ≤ Ni+1 and
where not all Ni are equal: N1 < N4. Thus, the markers get a direction, well defined by a light
top part that contains less 3rd-level regions as the heavier bottom part. This restriction reduces the
number of possible IDs to 120.
In order to increase the detection accuracy by decreasing the false-positive detection ratio, an error
detection mechanism was implicitly added by using only a subset of the remaining 120 marker
IDs. In the marker detection step, the 3rd level regions are smallest and therefore most difficult
to detect. On the one hand, image noise – in particular existing in shadowy image regions – can
be strong enough to show up as phantom regions even after median-based noise reduction. On
the other hand, 3rd-level regions that are tilted away from the camera plane or too far away can
easily be eliminated in the noise reduction layer. In both cases, this results in a wrong marker ID.
In order to allow for the detection of such recognition errors the set of used markers was further
reduced. The final set of used marker IDs contains only 60 markers, whose pairwise hamming
distance d(M1,M2) =

∑
i |N1

i − N2
i | is greater than one. This means that wrongly detecting

a single 3rd-level regions by either missing an existing one or detecting a region that does not
actually exist, implicitly leads to an unused marker ID.
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Paper Layout

For the robotic experiments conducted, a printed A4 sheet of paper with 5 × 6 markers on both
sides was used. Even though this exactly equals the number of possible markers, only 30 different
IDs were actually used. Rather then using the available 60 markers to cover both sides of the
paper, markers with an inverted color scheme (i.e. using white A and Cij regions and black Bi
regions) were used on the paper’s back-face (see Figure 4.5c), making it possible to perfectly align
every single front and back face region. This also allowed for joining marker detection results of
cameras that see different sides of the sheet of paper. The order of used markers was randomized
to have a more homogeneous density of Cij on the paper.
The 2D-paper coordinate frame was defined on the front face with its origin in the top left corner.
If the paper is seen in portrait format, the positive x-axis points to the right and the positive y-axis
points downwards. The paper size in 3D space, is given by w × h = 0.210m× 0.297m.

Sub-Graph-Matching in the Region-Containment-Graph and Region Identification

In order to combine the detection results of different cameras to obtain 3D marker positions, the
regions must be identified. Then corresponding regions, belonging to markers that were detected
in at least two camera views, can be joined for triangulation to get 3D key-points. The known
layout, which defines exactly where markers were printed on the sheet of paper, then provides
information about the corresponding 2D model coordinate.
In the sub-graph matching step, only regions with four sub-regions are used as potential top-level
regions A. As a first criterion, potential A regions are filtered out, if one of their sub-regions, Bi,
contains less than one or more than five child-regions. In addition, some hand-tuned heuristics are
applied to filter out too small, too large and too elongated regions. Then, the counts of sub-sub-
regions, Cij , are sorted in ascending order to estimate the marker ID, M = (N1, N2, N3, N4).
If M is a valid marker ID (i.e., part of the set of the 30 markers actually used), A and its corre-
sponding ID is stored in the list of found markers. This step does not use geometrical, but only
topographical information. In the next processing step, all marker regions Bi and Cij are identi-
fied by means of geometric heuristics. First, the centers of gravity bi and cij of the regions Bi and
Cij are estimated8. Once all bi are known, the vector v, connecting the centers bm and bn with
largest pair-wise distance, is computed (see Figure 4.5b):

v = bm − bn, with (m,n) = arg max
(k,l)
‖bk − bl‖

The direction of v is defined by always letting it point towards the bi where the corresponding
region Bi has fewer child regions Cij . The Bis are then sorted along v according to their center of
gravity’s inner product bτi v. Subsequently, for eachBi, the set of child-regions Cij is sorted along
v⊥ ( perpendicular to v) according to the inner products cτijv⊥ (see Figure 4.5b). For back-face
markers (identified by a white top-level region A) −v⊥ is used in order to compensate the mirror
effect caused by the two-sided print. By these means, front and back side regions are automatically
ordered in the same direction, thus regions detected on opposite sides of the paper are implicitly
associated correctly.

8 Note that the underlying RLE-representation of the region pixels allows this step to be significantly sped up,
because the center of gravity of all pixels is identical to the weighted center of gravity of all of the RLE code
runs
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(a) (b)

Figure 4.6: (a) Calibrated camera setup for robust 3D key-point detection. The use of five cameras leads to
a better coverage of the whole scene and partly compensates occlusions. The used PointGrey
Flea2G cameras use the IEEE-1394-B (FireWire-800) interface to provide Quad-VGA (1280×
960) images at 30Hz. (b) Offset between real center of gravity (COG) of a bent region and the
COG of the projected image region. The more a region is bent, the less accurate its COG can
be estimated in the projected image.

4.2.2 3D Key-Point Estimation

For 3D estimation of key-points, a calibrated multi-camera setup is used (see Figure 4.6a). Even
though two cameras would in general be sufficient for triangulation-based 3D estimation, five
cameras are used. This leads to a much better coverage of the scene and significantly reduces the
area of the paper that gets completely occluded by the robot hands.
The marker detection algorithm is applied to each camera image. For 3D estimation, only the
smallest regions, Cij , of the markers are used. Due to possible deformation of the paper the
centers of gravity of larger regions cannot be accurately estimated (see Figure 4.6b). Therefore,
given that even small errors in the pixel domain can result in large errors in the 3D estimation, the
centers of gravity of the larger regions, A and Bi, are disregarded. For each marker, three cases
are distinguished:

1. The marker was not detected in any of the camera images

2. The marker was detected in exactly one camera image

3. The marker was detected in at least two camera images

While markers that are not detected are simply disregarded, two different 3D estimation methods
are used in the cases 2 and 3. If a marker is only detected by a single camera, all its regions are
processed conjointly. By assuming the marker to be planar9, planar pose detection from single
view methods can be used. If a marker is detected by more than one camera, the 3D position of
each of its regions is estimated separately by joining the multi-view information.

9 This seems to be conflictive to the observation of falsified centers of gravity in case of bent markers, but tests
revealed that the assumption leads to acceptable errors.
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Planar 3D Estimation from a Single View

3D pose estimation for a known planar target from a single view is commonly performed in
two steps [Kato and Billinghurst, 1999; Schweighofer and Pinz, 2006; Wagner and Schmalstieg,
2007]. First, an initial guess is computed that usually minimizes an algebraic error. In order to
minimize the projection error, i.e., the MSE between detected and projected key-points, heuristics
and non-linear optimization techniques are applied to refine the initial result.
In our system, the closed-form-solution suggested by Yang et al. [2009] is used to obtain an initial
pose. Here, the problem is transferred into a 2D homography estimation problem that needs at
least four points. The method uses the camera matrix, the image pixel coordinates, cij , of the
region centers Cij and their corresponding local 2D coordinates, lij , on the paper/marker surface.
The latter are derived from the known layout of the printed paper by mapping the centers of the
printed regions, Cij , to a local 2D coordinate frame positioned at the marker center. If a region
Cij is centered at cmij on the paper surface, and the corresponding top-level region A is centered at
am, the local coordinates are obtained by a simple shifting operation

lij = cmij − am.

The method is fast and it provides very good results given optimal input data, but it is very sensitive
to errors in the input data. Therefore a non-linear optimization of the resulting pose is applied,
using the result of the closed-form solution as initialization. Due to it’s simplicity a simplex
optimization based method [Press et al., 1992] was used here.
Once the homogeneous transformation matrix T of a marker is known, it can be used to compute
the 3D coordinates of the maker regions. To this end, the regions’ 2D local planar coordinates lij =
(xij , yij) are assumed to be 3D with z = 0, leading to homogeneous vectors l′ij = (xij , yij , 0, 1).
The desired 3D world coordinates of the regions can then be computed by

cwij = T l′ij .

By associating the original model coordinates cmij with the computed 3D world coordinates cwij ,
each marker detected in exactly one camera image allows for the computation of a set of key points

{(cmij , cwij)|i ∈ {1, .., 4} and j ∈ {1, .., Ni} }.

Multi-View Position Estimation

The 3D positions of regions that belong to markers detected in at least two cameras are estimated
using a direct linear transform based triangulation method. Given n > 1 camera matrices

Qi = [Ri|ti] =

 xi txi
yi tyi
zi tzi

 ,
where xi, yi and zi ∈ R3, the projection of a point pw in the image of camera i is given by

(ui, vi) =

(
xip

w + txi
zipw + tzi

,
yip

w + tyi
zipw + tzi

)
.

For a given set of camera matrices {Qi} and corresponding image projections {(ui, vi)}, each en-
try provides two constraints for the estimation of the unknown 3D position p̂w. By reformulating
the problem in matrix notation Ap̂w = B, with

A =


u1z1 − x1

v1z1 − y1

u2z2 − x2

. . .

 and B =


tx1 − u1t

z
1

ty1 − v1t
z
1

tx2 − u2t
z
2

. . .

 ,
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where A is a 2n× 3 matrix and B is a 2n-dimensional column vector, the problem can be solved
by p̂w = A+B, where A+ is the pseudo inverse of A.
In the present marker region detection scenario, the image coordinates (u, v) are given by the
estimated centers of gravity cij of the regions Cij .

4.3 Modeling

The schematic depicted in Figure 4.3 is now used as an interface to implement two different
modeling techniques. The first model that was implemented is a purely mathematical model,
which is explicitly defined to be as simple as possible. The model represents the 2D paper manifold
by a finite set of 2D polynomial functions embedded into 3D space. The surface is smoothed using
soft-max interpolation. Furthermore, the model’s resulting surface function, p, is at a given time-
step directly defined by the current set of key-points provided by the perception module. The
mathematical model is compared to a more sophisticated physical model that was implemented
using the soft-body-physics module of the Bullet physics engine10. In contrast to the mathematical
model the physics model uses a large set of constraints that explicitly limit local curvature and
provide distance preservation and even temporal tracking. Therefore, the physical model’s surface
function p is only indirectly connected to the set of key-points provided by the perception module.
For the connection between the real-world observation and the model, a special control law is
defined.

4.3.1 Prerequisites

Before the vision-system or the modeling engine can be introduced properly, an abstract paper
model has to be defined. By disregarding the paper’s thickness, it can be modeled by a 2D mani-
fold, embedded into 3D space (see Figure 4.7). The paper model is assumed to be bounded and to
have a rectangular shape, leading to the a parametric paper function

p : P → R3, where P = [0, w]× [0, h]. (4.1)

The paper function p transforms 2D-model coordinates (denoted by xm) into 3D world coordinates
(denoted by xw). A further requirement is that the latent parameters of p are compatible to the
metric of the embedding 3D space, i.e. moving small distances along the paper surface always
results in a comparable movement, in terms of the distance, in the 3D world space

lim
∆xm→0

‖p(xm)− p(xm + ∆xm)‖3 ≈ ‖∆xm‖2. (4.2)

This constraint will be referenced as distance preservation. The rule calls for a comparable rather
than for an equal distance to take into account that paper can be stretched minimally. Furthermore,
the surface is required to be smooth, i.e. it has a limited local Gaussian curvature

K(xm) < Kmax ∈ R ∀xm ∈ P. (4.3)

K(xm) can be derived from the Gauss map g : P → S2 that maps from a given model sur-
face position to a normalized surface-normal vector on the unit sphere S2 [Sullivan, 2005]. The
constraint would be violated by hard folds. However, it can be argued that a fold can always be
approximated with an arbitrary desired accuracy by a large-enough finite curvature. The model
constraints would also have to be adapted if also cutting or ripping the paper was to be modeled.

10 http://bulletphysics.org

http://bulletphysics.org
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Figure 4.7: Rectangular 2D paper manifold embedded into 3D space.

In contrast to developable surfaces [Huffman, 1976] that are defined by a zero Gaussian curva-
ture, only a limited Gaussian curvature is claimed here. In addition to the fact that real paper is
minimally stretchable [Balkcom, 2004], which violates the zero Gaussian curvature constraint, the
additional constraint would make the modeling process much more complicated.
If the modeling affords (or implicitly leads to) a different parametrization with parameter space
P ′, an invertible mapping µ : P ′ → P must be provided so that equation 4.2 becomes true for
p′(xm) = p(µ−1(xm)).

4.3.2 The Simple Geometric Mathematical Model

The soft-max interpolated polynomial model approximates the paper surface by a set of 2D poly-
nomials

Pi : R2 → R3,

embedded into 3D space. Each Pi maps 2D paper model coordinate xm to a corresponding real-
world position xw, but only approximates well for a small patch of the paper surface. For each
detected markerMi, a polynomial, Pi, is fitted into the set of key-points {(kml ,kwl )|l ∈ {1, .., ni}}
(see Section 4.2.1) computed from the regions, associated with marker Mi. These keypoints for-
malize the output of the vision system, which estimates 3D world coordinates kw1 ..k

w
ni

of the
detected 2D positions of the regions of each Marker Mi.
The polynomials Pi are defined as a weighted superposition of scalar basis functions bj(xm)

Pi(x
m) = Ai(b1(xm), b2(xm), . . . , bp(x

m))τ . (4.4)

The 3× p parameter matrix Ai can be estimated by standard regression to solve W = AiM , with

W = (kw1 ,k
w
2 , . . . ,k

w
ni

) and M =


b1(km1 ) b1(km2 ) . . . b1(kmni

)
b2(km1 ) b2(km2 ) . . . b2(kmni

)
. . . . . . . . . . . .

bp(k
m
1 ) bp(k

m
2 ) . . . bp(k

m
ni

)

 .
Here, W is a 3× ni matrix and M is a p × ni matrix. Using the pseudo-inverse M+ of M leads
to a least-square solution Ai = WM+.
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(a) (b)

Figure 4.8: Comparison of the approximation of local marker patches by polynomials of different com-
plexity. Only a single marker (marked by the green sphere) is detected here; other markers
were deactivated by drawing a line through them (a) Polynomial with three basis functions.
The marker surface is approximated by a plane, which leads to large errors at model positions
further away from the detected marker if the paper is curved (b) More complex polynomial
using six basis functions. Here, the marker surface is approximated by a quadratic function
allowing for a better approximation of the paper surface, even for model coordinates further
away from the detected marker.

Choice of Scalar Basis Functions

The mathematical approximation of model patches by polynomials described by Equation 4.4
allows us to implicitly change the model complexity by altering the set of used basis functions bj .
Let xm = (x1, x2)τ , the minimal set of three basis functions

b1(xm) = 1

b2(xm) = x1

b3(xm) = x2

models each marker patch by a plane. While adding more polynomial terms increases the flexi-
bility of the Pi, the use of less basis functions leads to unusable results. In particular, if only b1
is used, each marker patch is approximated by a single point in 3D space, making it impossible
to extrapolate model edges correctly, because these are not located between detected key-points.
Therefore, in addition to the bjs defined for the linear function Pi, an extended set was evaluated,
which adds three extra basis functions

b4(xm) = x1x2

b5(xm) = x2
1

b6(xm) = x2
2.

Here, each Pi can model curvature and, due to the mixed term x1x2, even twists. However, adding
more degrees of freedom not only leads to a better local approximation (see Figure 4.8), it also
makes the model more prone to overfitting, which is the reason why polynomials with cubic basis
functions were not used.
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(a) (b) (c)

Figure 4.9: Influence of the soft-max interpolation bandwidth parameter σ (a) A small value of σ leads
to winner takes all interpolation, resulting in a piece-wise linear approximation of the paper
surface. (b) A larger value of σ interpolates between the linear pieces Pi and therefore leads
to a smooth surface. (c) If σ becomes too large, the model becomes stiffer, which limits the
maximum curvature that can be modeled

Soft-Max Interpolation

Once each detected marker surface is approximated by a polynomial function, Pi, the paper sur-
face function, p, is defined using soft-max interpolation. For this, a Gaussian kernel

gi(x
m, σ) = exp(−‖x

m − µmi ‖2

2σ2
)

is centered at each center µmi of a detected marker, Mi. The paper surface function is defined by

p(xm) =

∑
i

gi(x
m, σ)Pi(x

m)∑
i

gi(xm, σ)
. (4.5)

The single parameter σ can be used to adjust the smoothness of the model (see Figure 4.9). While
a very small σ leads to a piece-wise linear paper surface function, values in the order of the real
size of a paper surface patch covered by a marker, provide good interpolation results. If σ is too
high, all linear functions get a similar contribution at each point on the surface, leading to more or
less linear paper function p. Therefore, σ indirectly defines the stiffness of the paper model.

Model Properties

The maximum local curvature of the mathematical model is implicitly defined by the soft-max
interpolation bandwidth σ. Setting σ to zero would not only violate the local curvature constraint
(see Equation 4.3), but also lead to numerical issues. The choice of polynomial basis functions
also indirectly affects the curvature of the resulting paper function.
The distance preservation rule (see Equation 4.2) is not handled optimally by the mathematical
model. While the polynomials strictly include the distance preservation property in their min-
imized errors, the soft-max interpolation mechanism does not (see evaluation in Section 4.4.4).
In some special cases, this leads to very implausible modeling results. More details and some
qualitative results are given in Section 4.4.

4.3.3 Physics-Based Modeling

After evaluating the mathematical model (See Section 4.4.2 et seq.), it became clear that extra
constraints were needed to make the modeling more plausible and indeed more stable. The main
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issues of the mathematical model are:

• Missing mechanism to ensure distance preservation
• No temporal tracking
• Extremely bad approximation of the parts of the paper that are not visible
• Inflexible global interpolation bandwidth parameter
• Difficult to extend

By adding more and more explicit constraints to the mathematical model that allow for compen-
sating one or several of these issues, one would basically approach an approximation of the actual
physics of the paper. So rather than trying to extend the mathematical model, an alternative model
was implemented using the Bullet physics engine11. This allows for optimizing the model behav-
ior from a logical perspective of a physical object. The interface of the physics engine was taken
as a basic layer to avoid having to deal with the implementation of the physical behavior of the
paper and the interaction with possible other objects manually. The internal implementation of the
physics engine was not analyzed.

The Bullet Physics Engine

Bullet is an open source physics engine provided under the terms of the zlib license and was mainly
written by Erwin Coumans. In addition to standard rigid-body collision and dynamics, it provides
a soft-body physics module. Bullet has been used in game engines, physics and graphics demos
and even for rendering special effects in Hollywood movies. Many 3D modeling and animation
tools use Bullet plugins for physics simulation.
Bullet was preferred to other physics engines because of its easy-to-use soft-body physics module,
which was needed for the paper simulation. But also the free license and the active community
accessible via an associated internet forum contributed to the decision to use it. In addition, Bullet
is known to be fast and accurate. The version used for the work in this thesis was 2.8. A new
major version, featuring a GPGPU-based rigid body physics pipeline, has already been featured at
the recent Game Developers Conference (GDC 2013).

A Soft Body Physics Model of Paper

In the Bullet engine soft-body objects are defined by a set of nodes, a set of parametrized links and
a set of faces. Each link connects two nodes and is set up with a resting distance and a stiffness
parameter. Links that connect adjacent nodes provide distance preservation, by defining a desired
distance between the two referenced nodes. Links that span over several nodes provide a bending
stiffness. Both effects can be adjusted by altering the link’s stiffness parameter. Faces, connecting
either 3 or 4 nodes, are defined by a resting area. For physical simulation, each node is defined
by its mass, its position, its velocity and its current acceleration. Each dynamic factor such as
reacting to external forces, using links or using faces can be separately enabled.
The implemented paper model is a 2D-specialization of the general soft-body physics object in
Bullet. The model is defined by a regular 2D grid of nodes npm , pm ∈ P ′ = {1, ..,W} ×
{1, ..,H}. According to the abstract model defined in Section 4.3.1, pm defines the model space
coordinate of a node. The resulting paper function p : P ′ → R3 is defined by the piecewise
bi-linear interpolation of the model grid. The mapping µ : P ′ → P that maps from the natural
numbered model space P ′ to the metric space P , can easily be derived from the grid size W ×H
and the actual size of the modeled sheet of paper. The position and the velocity of node npm will

11 http://bulletphysics.org

http://bulletphysics.org
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be denoted by xwpm and vwpm respectively. In order to allow for a direct mapping between detected
marker positions and physical model nodes, each marker patch is modeled by 2× 2 model cells12.

Moving The Model According to the Observation

Once the model is defined, a tracking mechanism is needed that moves the model according the
current detection results, i.e., the set of key-points K = {(kml ,kwl , )}, which associate the model
and world space positions at the current time step. In order to move the model nodes that corre-
spond to detected marker centers13 there are three physical options:

1. Move nodes by controlling the physical node’s positions

2. Move nodes by controlling the physical node’s velocities

3. Move nodes by controlling the physical node’s accelerations

Even though force-based control, i.e. accelerating nodes towards their target positions seems like
the obvious choice, a velocity based control was used. The main argument against using the
acceleration-based control approach is that the existing node inertia would have to be compen-
sated by an overdrive mechanism. This effect was verified in test experiments, which showed
that acceleration-based control is too unstable. Controlling node positions directly also leads to
extremely unstable model behavior.
For the velocity-based model control law, it turned out that a simple P-controller,

vkm
l

= λ(kwl − xwkm
l

), (4.6)

parametrized by a single scalar proportional gain, λ, provided very good results. For each used
key-point in the model space coordinates, kml , the velocity, vkm

l
, of the corresponding model node

is set to the distance vector (weighted by λ) between the current node position, xwkm
l

, and the
detected target position, kwl .
In each detection cycle the control rule and the physics engine are iterated several times14 for all
key-points. This leads to an exponential convergence of nodes corresponding to detected markers
being moved towards the observed positions, while other nodes are interpolated smoothly and in
a physically plausible manner by the constraints of the underlying physical model. By altering the
controller gain, λ, the responsiveness of the tracking system can be adapted. While higher values
make the tracking faster but very sensitive to single detection outliers, a smaller gain leads to a
noticeable tracking latency. λ was manually optimized to a value around 0.9, which provided a
good trade-off between theses two competing factors.

Model Properties and Parameters

In comparison to the mathematical model, the physical model is linked more directly to the model
requirements formulated in Section 4.3.1. Distance preservation is directly controlled by the stiff-
ness of links connecting adjacent grid nodes. The link stiffness can also be adapted for every link
separately, allowing an inhomogeneous stretching of the paper to be modeled. It is important to
underline, that the local stretching is not just a modeling artifact here. Instead, it is an important
property, which is required for a numerically stable modeling of common paper deformations. The

12 When using the real paper, the unprintable printer margin made it necessary to adapt the size of model cells
adjacent to the model edges. However, for simplification, this fact is disregarded in the following.

13 In the case of the physical model, only marker centers were used as key-points.
14 In the experiments the iteration count was 10
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model curvature is limited by the stiffness parameter of links that connect non-adjacent nodes. Set-
ting the stiffness to values close to zero even allows for the modeling of hard folds along existing
edges of the 2D model grid. However, as the paper is only bent, but not folded, in the picking-up
experiment, the use of a global stiffness value was sufficient. An extended model that is able to
model folds is presented in Section 5.3. Another parameter that needs to be taken into account is
the number of links to use. This was decided upon by adding links between all model node pairs
(npm , nqm), whose city-block distance,

dpq = ‖pm − qm‖L1,

in the model space P ′ is less than or equal to Dmax ∈ N. Increasing Dmax leads to a stiffer
surface, which has to be compensated by lowering the global link stiffness. However, the real-
time performance is also significantly decreased if too many links are used. In the final system
Dmax was set to a minimum of 4, since lower values did not allow the desired surface stiffness to
be reached, which results in a model behaving more like cloth than paper.
The proportional gain λ and the number of physics iterations performed in each detection cycle
are parameters that can be set by trial and error and through experience by visual inspection of
the model. This allows the temporal responsiveness of the model to be adjusted. Smaller updates
using lower values of λ, in combination with a higher number of physics iteration cycles, usually
lead to a more realistic tracking behavior. However, in a real-time tracking system, the system
performance scales linearly with the number of physics iterations and this can lead to performance
issues if the iteration count is too high. Taking this into account, the number of iterations was set
to 10. The underlying physics engine is also used to automatically provide self-collision detection.
This helps avoid unrealistic model configurations in which parts of the model intersect each other.
By inserting a ground-plane object into the physics scene, physical collision and contact simulation
improves the modeling of the parts of the paper that are not detected by the vision system.

4.4 Evaluation

In this section the accuracy of the marker detection module and the presented modeling strategies
are both evaluated qualitatively and quantitatively. The capabilities of the marker detection frame-
work are systematically plotted using artificially rendered images. This means that the test results
can be linked not only to image-space related quantities, such as a marker’s pixel count, but also to
real-world-related quantities such as marker to camera distance and marker to camera elevation
angle.
Regarding the evaluation of the modeling framework, two different versions of the mathematical
model were tested. A simpler one that uses three polynomial basis functions to model surface
patches by planes (the poly-3-model) and a more complex one, that uses six basis functions in-
cluding squared and mixed polynomial terms (the poly-6-model).
Even though the qualitative comparison (see Section 4.4.2) yields helpful insights into the ca-
pabilities and the drawbacks of the different models, some quantitative data was also collected.
However, since there is no easy way to acquire reliable ground-truth information, artificial input
data was used. For this, a GUI-editor was implemented that allows for mouse-gesture based in-
teraction with a virtual model of the paper. We note that the editor does not use the paper models
presented in this Chapter, but a more sophisticated extension of the physical model (see Section
6.1). In order to use the virtual paper model as an input for the modeling framework, the editor
was endowed with an interface to simulate marker-based key-point detection results.
After comparing the course of the mean modeling error in the artificial interaction sequence (see
Section 4.4.3), a few special cases are evaluated. First, localized error maps were created along a
set of key-frames of the interaction sequence. These give more detailed information about where
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(a) elevation 90◦ (b) elevation 45◦ (c) elevation 15◦

Figure 4.10: Qualitative impression of the detection accuracy with respect to the marker’s size and tilt
angle using images of size 800× 600 and an approximate distance to the markers of 300mm.
Green markers were detected correctly, red markers were detected, but their ID was estimated
wrongly. While the detection rate is optimal in case of a frontal view (a), a higher tilt angle
leads to less positive detections and more ID-errors (b,c).

the particular models are prone to large errors (see Figure 4.15). As the major drawback of the sim-
ple mathematical model turned out to be missing distance preservation, this aspect is additionally
evaluated in Section 4.4.4.

4.4.1 Fiducial Marker Detection Accuracy

In order to quantitatively asses the accuracy of the different approaches, the new fiducial marker
design and the corresponding detection framework was evaluated using artificially rendered im-
ages. Given a fixed camera resolution, the main factors involved in reliable marker identification
and 6D pose estimation are the distance between the marker and the camera and the elevation an-
gle of the camera from the marker plane. While marker identification is at its most reliable when
the marker plane is parallel to the camera plane (camera elevation 90◦), the pose estimation is,
due to pose-ambiguity [Schweighofer and Pinz, 2006], more accurate if the marker plane is tilted
away from the camera plane (elevation ≈ 45◦).
As a first step, the marker detection and identification mechanism was qualitatively evaluated and
visualized (see Figure 4.10). For the tests, markers of different sizes were detected with different
camera elevation angles in real camera images of SVGA (800×600) resolution. When the markers
are viewed at an angle of 90◦, robust detection of 15mm markers is possible (see Figure 4.10a).
Average distortions of the marker quadrangles, arising from elevation angles of about 45◦, make
the detection worse due to a perspective-related decreased size of the markers (see Figure 4.10b).
If the camera elevation angle is decreased even more (see Figure 4.10c), only very large markers
can still be detected robustly.

Quantitative Evaluation of the Marker Identification Reliability

In order to provide quantitative results, artificially rendered input images were used. This does
not only provide ground truth information in terms of position and orientation of the markers
with respect to the camera frame, but it also allows for systematically sampling a large set of
possible configurations. The sampling was performed on three parameters: The distance between
the camera and marker center (in the range [100mm, 900mm]), the elevation angle of the camera
normal from the marker plane and the rotation of the marker in the marker plane (both in the range
[0◦, 90◦]). All other camera parameters were fixed, the camera resolution was set to 800 × 600.
For each configuration, four different cases were possible:
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Figure 4.11: Quantitative evaluation containing 66000 samples from images of size 800 × 600 using a
square marker with an edge length 30mm. The plot visualizes the detection accuracy with
respect to image based features: marker region size and form factor. The structure within the
green dots originates from systematic sampling of the marker-to-camera configuration.

1. The marker is correctly detected. This is the optimal case, in which a set of 2D-3D corre-
spondences is made available for the modeling framework.

2. The marker is not detected. This results in missing key-points on the paper surface. The
corresponding patch of the paper surface needs to be interpolated by the modeling mecha-
nism.

3. The marker is detected, but an invalid ID is extracted. In this case, the marker ID selec-
tion heuristic allows the system to detect the marker identification error, since the resulting
marker ID is not in the list of valid IDs. This means that this case is identical to case 2.

4. The marker is detected, but a wrong yet valid ID is extracted. This is the worst as wrong
2D-3D correspondences will be fed into the modeling framework.

The first evaluation was conducted with respect to the size of the marker in the image and its
elevation angle with respect to the camera, approximated by the marker region’s form-factor15

(see Figure 4.11). Since these features are related to the marker projected to the image space only,
the plot is independent of camera parameters. It shows that markers that are smaller than 500
pixels in size, cannot be detected reliably. The ID selection heuristic presented in Section 4.2.1
can filter out most errors if the marker size is not smaller than 400 pixels. Due to the sampling
of the parameter space, which only indirectly results in a sample’s x/y-coordinate in the plot, the
relationship between the marker detection reliability and the form-factor is not obvious.

A second evaluation of how reliable marker detection is, was performed with respect to real world
quantities (see Figure 4.12). The plot shows that the furthest possible distance between marker and
camera is about 600mm, but only when the elevation angle is about 90◦. As the marker plane’s
elevation angle decreases, the distance at which marker detection is possible reduces significantly.
In the vicinity of the maximum detection distance, errors are very likely to occur. Only some of
these are filtered out by the ID-selection heuristic.
These results led to the conclusion that further heuristical constraints had to be incorporated to
avoid system instability due to the many possible ID mismatches. The plot in Figure 4.11 revealed
a possible template for this. Before an image region is used as a potential candidate for a marker’s

15 Defined by C2/(4πA), where C is the marker region’s boundary length and A is it’s area
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Figure 4.12: Dependency of the marker detection and identification accuracy with respect to the distance
of the marker to the camera and the camera’s elevation angle from the marker plane. The in-
plane marker rotation was set to a representative, but fixed value of 30◦. The colors encode the
detection and identification outcomes. Red samples are particularly bad, as they correspond
to cases in which wrong IDs are computed but not excluded by the ID selection heuristic.

top level region, A, its size and its form-factor should be validated. The figure shows that a
minimum size threshold of about 500 pixels avoids most detection errors. Furthermore, the sample
distribution provides the information that the form-factor of marker regions is most likely within
the range [2.6, 3.8]. Adding these constraints not helps to avoid detection and identification errors,
but also yields a performance speedup by avoiding the graph-matching step for the regions filtered
out.
It is worth mentioning that the results presented here strongly depend on the intrinsic camera
parameters, in particular, the camera resolution and the focal-length. Increasing one of these
directly increases the maximum detection distance. In addition, when working with real camera
images, it must be taken into account that due to image noise and distortion the results will be
worse than the presented results obtained from artificially rendered images.

Marker Pose Estimation Accuracy

Finally, the pose estimation accuracy was evaluated. Due to the fact that single camera pose esti-
mation from a planar target is known to be much more prone to errors than multi-view-based pose
estimation techniques, the evaluation is only focused on the single camera case. The evaluation
was conducted in a similar fashion to the previous one, however, rather than plotting a discrete
detection and identification outcome, the pose estimation error was split into position and rotation
part and mapped to a pseudo-color scale (see Figure 4.13). While the position estimation error
(see Figure 4.13a) mainly depended on the distance of a marker to the camera, the rotation estima-
tion accuracy (see Figure 4.13b) was mainly linked to the camera elevation angle. In the marker
detection pipeline (see Figure 4.4), the pre-processing threshold operation leads to 1-pixel noise
at the borders of marker regions, which causes errors in the computation of the region’s centers
of gravity. As in the pose estimation step, a constant pixel shift of a keypoint leads to a higher
position offset the further an object is away from the camera, the resulting errors are inversely
proportional to the region’s size. The errors in the rotation estimation are particularly high due to
the ambiguity arising from an almost frontal view of the marker (i.e. where the camera elevation
is close to 90◦). In these cases, the isometric perspective does not yield significant distortion,
resulting in the estimation of orientations that are mirrored along the camera normal. This effect
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(a) position estimation error [mm](clipped to 20mm)

(b) rotation estimation error [deg](clipped to 23◦)

Figure 4.13: Pose estimation error, split into position and rotation errors. Empty cells correspond to con-
figurations in which the marker could not be detected. (a) The position error mainly depends
on the distance of the marker to the camera. In contrast, the rotation error (b) depends more
strongly on the camera elevation angle. Here, a larger distance to the camera leads to a higher
likelihood for extreme errors (dark red) that occur if the estimated marker tilt angle with
respect to the camera normal is mirrored along the camera normal.

is compensated by a very short distance to the camera, which magnifies the camera’s perspective
distortion. This ambiguity is explained more detailed by Schweighofer and Pinz [2006].

4.4.2 Qualitative Comparison of Modeling Performance

In order to provide a coarse understanding of the modeling capabilities of the different approaches,
a qualitative comparison was conducted. For this, a set of seven exemplary paper configurations
was created and provided as input to each model (see Figure 4.14). Due to the fact, that the
physical model implicitly performs temporal tracking, the configurations shown in the different
images were always arrived at from an initial situation in which the paper was flat on the table.
In addition, the support plane (known from the camera calibration) was explicitly added to the
physics engine.
The first three rows in Figure 4.14 demonstrate the modeling capabilities in the absence of severe
occlusions and deformation. Here, all three models perform very well. However, due to the
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Figure 4.14: Comparison of the different paper models. Green dots mark the centers of detected markers.
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fact that the physical model uses marker centers only, while the polynomial models also exploit
the knowledge about the 3D orientation of the markers, the polynomial models have a better
resolution in regions with higher local curvature. This effect can be seen in the right-most image
of the bulged up case, when the physical model misses the paper bulge closer to the hand. As soon
as it comes to heavier occlusions the physical model usually outperforms the polynomial models
significantly. In particular, the weak distance preservation of the polynomial models can leads to
very unrealistic modeling results (Figure 4.14d-e). The advantage of the physical model becomes
even more obvious in the rolled fully example. Here, only markers on the paper part held by the
hand are fully visible and detectable. Due to the absence of temporal tracking, the polynomial
models give a very weak estimate of the lower paper layer. While the poly-6 model extrapolates
at least the coarse trend of the paper, the poly-3 model cannot distinguish the depicted situation
in which the paper is lying flat. In contrast to this, the physical model manages the configuration
very well by using temporal tracking and by modeling collision and friction with the ground plane.
The last row of Figure 4.14 compares the capabilities of the models in presence of creases. Here,
the polynomial models perform better because the physical model is not set up to model extreme
local curvatures or hard folds.
In summary, the qualitative comparison shows that the physical model behaves more realistically
as soon as situations arise with anything more than minimal occlusions. In contrast, if fold lines
are to be modeled, an extension that locally relaxes the maximum model curvature limitation of
the physical model needs to be added to allow the physical model to compete with the polynomial
models.

4.4.3 Quantitative Evaluation of the Mean Modeling Error

In the following evaluation, quantitative error data is presented. Due to fact that there is basically
no way to get reliable ground-truth data from the actual paper configuration, artificial input data
was used. The input data was generated by creating an interactive GUI-based editor that uses a
more sophisticated physical paper-model presented in Section 6.1. The interaction sequence con-
sists of 612 frames in which the paper is bent, turned around and even creased (see Figure 4.15).
Even though it would have been possible to render the virtual interaction sequence in several vir-
tual cameras in order to provide the rendered images as input for the marker detection framework,
a more direct interface was implemented, where the position of detected marker regions was di-
rectly computed from the input model configuration. If a textured paper model were rendered,
several rendering effects such as aliasing or clipping artifacts could have introduced too many
uncontrollable error sources. The used interface allows for an easier and more direct control of
determining which artificial markers are assumed to be detected by the vision framework. We
used this feature to simulate two cases: in the first case, (see Figure 4.15 left graph), we modeled
self occlusions by passing only such key-point correspondences to the models that belonged to
markers that would theoretically have been visible from above. In the second case, (see Figure
4.15 right graph), self occlusions were not modeled, i.e. all key-point correspondences were used
without taking into account their theoretical detectability.

Modeling Error

The evaluation is based on the local modeling error. Given the ground-truth paper function
p∗ : P → R3, the local model error em(xm) of a paper model p (at paper coordinates xm) is
given by the Euclidean distance

em(xm) = ‖p∗(xm)− p(xm)‖,
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leading to the mean modeling error

Em =
1

WH

∫
P
em(xm)dxm.

For the calculations in Figure 4.15, Em is approximated by a mm-sampling accuracy:

Êm =
1

210 · 297

210∑
x=1

297∑
y=1

em((x, y)τ ).

Results

The course of the mean modeling error Êm shows that the models have different strengths and
weaknesses (see Figure 4.15). In the case of fast paper movements, the temporal tracking per-
formed by the physics model sometimes leads to situations, in which the model is a few frames
behind the input data yielding oscillating error curves (frames 200-300 and 450-500). In the case
of strong deformation with high local curvature (key-frames 145, 410-566), the physics model’s
curvature limitation produces larger errors as well. In contrast, the qualitative evaluation under-
lines the behavior in case of severe occlusion such as shown in key-frame 104 and 234. However,
while the physics model outperforms both polynomial models in frame 104, its mean error is still
worse in frame 234, which can be explained by its inability to model the wavy structure of the
right paper part. This can again be explained by the fact that the physical model uses only a single
3D input point per marker, i.e. a maximum of 30 2D-3D correspondences, while the polynomial
models regard up 19 correspondences per marker.
The poly-3 and poly-6 models perform comparably for most of the trial. In some cases, the poly-6
model manages to mirror the detected surface structure extremely well (key-frame 234 right part
of the paper). However its extrapolation abilities can also lead to very unrealistic modeling results,
such as in key-frame 234 and 566.
The expected outcome that the physical model strongly outperforms the mathematical one could
not convincingly be shown in this evaluation. This can be explained by the important fact that
the simulation did not exclude markers that would have been occluded by the manipulating hands.
In situations in which the visual perception is distinguished by severe occlusions (e.g. key-frame
104), the physical model performed much better. Therefore, in real manipulation scenarios in
which the paper is not only occluded by itself, but also by the manipulating hands, we made the
reasonable assumption that the physical model would dramatically outperform the mathematical
one. Furthermore, the physical model implicitly performs temporal tracking and automatically
interpolates between movements that originate from the physical simulation and such movements
that are induced by the updates from the vision system. The performance of our final modeling
and tracking system, which handles complex paper deformations including folds and crunches,
proves this claim convincingly (see Section 6.2).

4.4.4 Distance Preservation Error

While the physical model uses a constraint-based built-in mechanism to provide distance preser-
vation, the mathematical model does this only implicitly. Each local polynomial Pi implicitly
minimizes the error in the input domain due to the polynomial regression based optimization in
an algebraic least-square manner. In contrast, the soft-max interpolation mechanism smoothes
the surface using the global smoothing parameter σ without regard to the distance preservation
aspects. The surface distance between two marker centers heavily depends on the choice of σ.
In order to examine the quality of the distance preservation the tracking system was enabled to
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Figure 4.15: Course of the mean modeling error of the three different models in an artificial manipulation
sequence (smoothed by a 3-frames running mean filter). In the left graph, self occlusions were
modeled by disregarding key-points not visible from the top view (the images correspond to
this graph). In the right graph, perfect detection was assumed, so each model was trained as
if all markers were always detected. The images visualize the local error, em(xm), mapped
to the model surface for the selected key-frames with modeled occlusion.
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Figure 4.16: The Effect of the interpolation parameter σ for the distance preservation of the poly-3 model.
In the images the local distance preservation error, êdp (in mm units), is mapped to the model
surface. Green dots mark detected fiducial markers. (a-c) For the case of a flat model the error
is very small. Note that the pseudo-color scale is adapted separately for each image. A higher
interpolation bandwidth smoothes the error map. (d-f) If the paper is bulged up, a smaller
σ allows for more precise modeling and the distance preservation error is very localized.
While a high bandwidth lowers the maximum error, high curvature parts are smoothed too
much. (g-i) For the case of stronger deformation a low σ makes the model overshoot the real
curvature, which leads to very large errors. (j-l) Only a small σ can realistically model folds.
If a higher σ is used, folds are smoothed too much.
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augment the modeling result with a pseudo-color map that shows the local distance preservation
error edp(xm). The unit is set to be a mm and is obtained by walking small steps of ∆s = 1mm
into each direction ê1 = (1, 0)τ and ê2 = (0, 1)τ of the model’s surface. According to Equation
4.2, the resulting movements in 3D space should also be approximately 1 mm. Therefore, the
estimated distance preservation error is defined by

êdp(xm) = abs(‖p(xm)− p(xm + ∆sê1)‖+ ‖p(xm)− p(xm + ∆sê2)‖ − 2) (4.7)

An evaluation of the distance preservation error for the poly-3 model is given in Figure 4.16. The
poly-6 model produced similar results.

4.4.5 Conclusion

The evaluation shows that both presented approaches are well suited to model a deformed paper
manifold. Even though the polynomial model performed slightly better than the physics model on
average, the physics model was used for the picking-up paper experiment. The main reason for
this choice is the better extensibility of the physics model and its much more realistic behavior in
presence of severe occlusions, which occur frequently during interaction. Using a physics engine
also allows additional features such as fold lines or folds on the basis of a physical description to
be modeled. In contrast, extending the mathematical model requires a much deeper understanding
of complex differential geometry methods. Particularly with regard to real-time capabilities, this
not only requires complex tasks to be solved theoretically, but also imposes a major challenge if
an efficient and real-time-capable implementation is desired.
As was mentioned before, the evaluation was also biased towards the polynomial models because
these were able to use many more 2D-3D correspondences per frame than the physics model. The
main reason for this is the lack of a model control-law that allows for controlling arbitrary model
positions rather than single nodes only. Such an extension of the control law presented in this
chapter can be found in Section 5.3.2.
During the course of this thesis, several iterations in which the physics model is extended are
presented, resulting in a final version that can model fold lines and also memorize local deforma-
tions. In addition, new control laws are defined that allow for arbitrary paper coordinates to be
controlled.

4.5 Robot Control

Using the presented paper tracking and modeling system, an interaction sequence was imple-
mented that enables a bi-manual robot to pick up a sheet of paper lying on a flat surface16. Picking
up the paper bi-manually is easier to realize since a more human-like strategy in which one thumb
is carefully brought under a corner of the paper would require extremely sensitive tactile feedback
(see Figure 4.1). Nonetheless the implemented bi-manual strategy mirrors how a person, given a
certain situation, might pick up the paper (see Figure 4.17b).

4.5.1 Vision- and Robot System

For the picking up experiment, four separate Active Memory instances were created to facilitate
inter-process communication (see Figure 4.17a). Five cameras were connected to two separate PCs

16 A video of the robotic picking up sequence can be found in [Elbrechter et al., 2011b].
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(a) IPC Scheme (b) Robot picking-up paper

Figure 4.17: (a) Data flow and inter-process communication (IPC) structure of the setup. IPC is imple-
mented using four event driven Active Memory instances. For each camera a dedicated image
capturing and 2D marker detection process sends its results to the Paper 2D Active Memory
instance. The 3D Estimation and Modeling component processes the 2D marker positions
into a 3D model of the paper surface, which is committed to the Paper 3D Active Memory
instance. The Robot Task Control (HSM) schedules and monitors the action sequence carried
out by the bi-manual robot system to pick up the sheet of paper in a data-driven fashion. (b)
Image of robot picking-up the paper bi-manually with overlayed model.

to distribute the CPU-load and optimally exploit the available Fire-Wire bandwidth. Each camera
image was processed by a dedicated 2D paper-detection process. The results were sent to a Paper
2D Active Memory instance. In order to avoid expensive XML-parsing, the positions of detected
marker-regions were sent as binary attachments of simple XML-headers that define a minimum set
of meta data, such as the associated camera ID. The 3D Estimation & Modeling process subscribed
to these documents. The last available frames of each camera were used to compute 3D positions
of the detected marker regions. In order to avoid triggering and synchronization issues of the
2D detection processes, the paper was simply assumed to move slow enough to perform this in an
asynchronous fashion. This also allows the 3D-detection and modeling frame-rate to be decoupled
from the camera frame-rate which was, due to the bandwidth of the Fire-Wire interfaces, limited
to 15Hz. The estimated 3D positions of marker-region are fed into the modeling framework which
computes the paper model using one of the presented modeling approaches. The resulting model,
parametrized as a regular grid of connected nodes, is sent to the Paper 3D Active Memory instance.
In addition, some task-related meta features, such as the papers center-coordinate frame and the
position and orientation of its highest bulge, are also sent. These could also be computed by the
task control unit, but due to performance and practical reasons it proved better to implement this
withing the 3D Estimation & Modeling process.
The robot is logically controlled by a hierarchical state machine (HSM) [Harel, 1987] that is
specified in XML-syntax. Dependent on the current state, the HSM controls both robot hands
and robot arms. Robot control is also realized by Active Memory instances. These are used bi-
directionally, i.e. the task HSM sends robot-movement commands interpreted by the arm and
hand server processes, which in turn provide feedback of the current robot sensor information. In
addition, a query mechanism is provided, that allows for interacting with the robot-servers internal
scene representation.
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Figure 4.18: Hierarchical state machine (HSM) used for robot control in the picking-up paper experiment

4.5.2 Picking up Paper With the Robot

The final system that was built to bi-manually pick up a sheet of paper lying on a flat surface is
depicted by the Robot Task Control HSM (see Figure 4.18). Even though internally an almost
linear state-order is implemented, the HSM is used as an overarching framework. The system
starts in an idle state and then can be manually put into the idle:curious sub-state, in which it
awaits information from the modeling unit regarding the paper coordinate frame (paper/T). The
transformation is simply derived from the mean marker transform. Once such an event is received,
the touch state is entered, which directly transitions into the touch:position sub-state. Here, the
robot’s right hand is actuated and in parallel the right arm is placed relative to the received paper
frame paper/T. When both actions are finished, the touch:down sub-state is activated. The system
loops, moving the right arm towards the paper-plane until contact is established. When the system
was implemented, no built-in controller for contact-establishment was available. Therefore this
was implemented as an active perceive-action loop that exits when the finger-displacement from
the reference posture overshoots a given threshold. Once contact is established, the paper can be
bulged. This is performed by exploiting the compliant design of the shadow hands. If the joints
were completely stiff, moving up the arm and slightly closing the hand would have to be synchro-
nized to avoid damaging the hand when closing too fast or loosing contact with the paper when
moving up too fast. However, the compliance of the hand allows the final bulging hand posture to
be simply actuated, which can, due to the resistance of the table-top, not be achieved in a single
step. Therefore the hand constantly preserves contact while the arm is slowly moved up in the
bulge:up sub-state.
When the paper is suitably bulged, it can be pinch-grasped by the left robot hand. Starting in
the grasp:curious sub-state the system waits to receive the bulge’s coordinate frame bulge/T, also
computed by the modeling unit. For this, the elevation of the paper model’s long edges is ap-
proximated by polynomials of degree five (see blue and green lines in Figure 4.19). The bulge’s
highest line is defined by the connection of the two maximums. In the grasp:position sub-state,
the left hand is positioned relatively to bulge/T while the right hand actuates a pre-grasp posture
for pinch-grasping. Subsequently, in the grasp:pinch sub-state, the right hand is moved relative to
bulge/T in order to bring the bulges top-center into the center of the following pinch-grasp final
posture.
Before the paper can be lifted, the right hand has to release the paper, which is performed in the
pick-up:release sub-state. Here, the compliant behavior of the hands turned out to be actually a
disadvantage. Even emptying the hand’s muscles does not necessarily lead to a fully relaxed hand,
but sometimes rips the paper from the left hand’s pinch-grasp. Therefore, this step had to be op-
timized by releasing in several steps. First, the right hand is opened carefully, i.e. using a very
low stiffness value leading to a very slow finger movement. After two seconds the arm is moved
upwards while the hand muscles are simultaneously emptied. Finally, the right arm is moved away
from the paper in the pick-up:home sub-state. In the final sub-state pick-up:lift, the sheet of paper
held by the left hand can be lifted and the system returns to the idle-state. Real images of the
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bi-manual picking-up sequence are presented in Figure 4.19.

4.6 Discussion

In this chapter a system was presented that enabled a robot to bi-manually pick up a standard A4
sheet of paper lying on a flat surface. The system was developed from the ground up, but used
some existing frameworks for physical simulation and for the event driven low-level robot control
and inter-process communication. The main components of the system are the marker-based visual
detection of paper-key-points, the physics based modeling engine and the robot-control HSM.
The development of the final robotic interaction sequence confirmed the presumption that even
picking-up paper is a complex task for an anthropomorphic robot. Even though a lot of effort was
exerted optimizing the relative tool transforms necessary for the bulging and pinch-grasping, the
final system only had a reliability of about 60%. The main reason for failure was dislodging the
pinch-grasped paper when releasing the bulging right hand. A better mechanism to compensate
for the problems with the hand’s muscle tension is clearly needed. Furthermore, actual pinch-
grasping was also implemented in a feed-forward fashion. The computation of the position and
orientation of the grasp point is statically triggered, and then all the information is derived from
a single frame. A more detailed analysis of an approximate paper shape, optimally taking several
frames into account17 would most likely help to make this more robust.

4.6.1 Visual Detection

The marker-based visual detection engine proved perfectly capable of providing a sufficient amount
of information about the sheet of paper. However, the fact that the paper needs to be fully aug-
mented by fiducial markers is disappointing. For the experiment presented here, a much simpler
visual detection method could also have worked, but with the caveat that it would fail in more
complex interactions. However, when complex interactions lead to severe occlusions or heavy
deformations of the paper, such as iterated folding, even the presented marker detection frame-
work might not work. Although the new marker layout explicitly introduces a mechanism to avoid
false-positive marker detections and erroneous marker ID estimation, it turned out that the used
combination of image-resolution and relative size of the markers is already exhausted. As soon
as the paper is folded, many markers become undetectable because their region-structure is cut by
occlusions or along the fold lines. This effect could be minimized by using more marker that are
smaller, but for the present marker layout, this would require a higher image resolution to avoid
an increase of detection errors. This in turn would, due to bus-limitations, reduce the possible
frame-rate, which would entail further issues.
Therefore, to improve visual detection, two possible alternatives were examined. In Section 5.2.1 a
new marker layout (similar to the one introduced by the ARToolKit Plus library) that allows mark-
ers to be smaller while preserving a tolerable error rate is presented. Taking into account negative
criticism about the necessity for fiducial markers in the first place, an alternative 3D-point-cloud
based detection engine and the necessary adaptions to the modeling engine are presented in the
Sections 6.2 and 6.3.

17 The physics engine internally performs physical tracking. However, an explicit averaging over several frames
would still provide more stable results.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.19: Images of the robotic interaction sequence using the physics based model (note, the left robot
hand is seen on the right side of the image and vice versa). (a) The paper is put somewhere
into the workspace. Due to the lack of occlusions, all markers (green dots) are detected
and the paper model is perfectly fitted. The paper’s center coordinate frame is computed
and visualized. (b) Right hand established contact with the paper. (c) Right hand bulges up
the sheet of paper. The long paper edges are approximated by polynomials (green and blue
lines) and the connection between the maximums (thick red line) defines the position and
orientation for the left hand’s pinch-grasp. (d) Left hand approaches the paper actuating a
pre-grasp posture. (e) Left hand is positioned. (f) Paper is pinch-grasped. The right hand
carefully releases the paper. (g) Right hand moves back to home position. (h) The paper can
be lifted by the left hand. The shape of the paper is modeled well during the whole interaction
sequence.
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4.6.2 Physics-based Modeling

The physical modeling engine serves well for the picking-up task. Yet it could be argued that a
much simpler modeling unit that provides the paper’s center coordinate frame and the position and
orientation of the top of the bulge would have been sufficient. However, if a more sophisticated
manipulation is required to model more complex behavior of paper such as creasing, folding and
memorizing deformation, a hard-coded model would definitely become too complex to maintain.
It is important to emphasize that the used modeling framework is fully generic and for the model
control, no task-specific information is used. Assuming the paper is to be bulged in advance would
obviously provide additional constraints for the model deformation but also link the model-update
mechanism strongly to the task.
Another major drawback of the physical modeling approach is the limited control law that only
allows existing model nodes to be controlled. In order to avoid having to adapt the grid-structure
of the model to reflect the layout of detectable keypoints, a more general control law would be
required. This would already constitute a major prerequisite for the use of marker-less tracking
methods based on generic keypoint detection. In order to model not only bending but also folding,
the features of the existing bending constraints could be altered. Again, this can be reached by
two different mechanisms. As a first rather simple extension, only the stiffness of existing bending
constraints is adapted. A system, that implements this technique is presented in Section 5.3.1.
Disproportionally more complex is an extension that automatically inserts new nodes along a
fold-line. For this, the regular grid-structure of the paper-model would have to give way to a more
general irregular triangle-based structure. Such a model, like that already used to generate artificial
ground-truth-data in Section 4.4, is presented in Section 6.1.

4.6.3 Robot Control

Although the design of the presented robot control sequence is very specific to the picking-up
task, its components, in particular the finger displacement based contact establishing mechanism,
are likely to be reusable building blocks for further more sophisticated manipulation systems. In
addition, the development of the system helped to get a better understanding of what difficulties
can arise when trying to manipulate paper using the present anthropomorphic robot setup. While
some of these difficulties, such as the sensitivity of the system when working with hard-coded
relative transforms, were anticipated, some others, such as simply trying to release the sheet of
paper, were not obvious in advance.
The major drawback of the system is the missing use of closed-loop tactile and visual feedback.
The information from the visual tracking and modeling system is only used in a few key-frames to
align the otherwise feed-forward manipulation sequence with the observation. In a simplest case,
the system could be enhanced by installing a concurrent surveillance process that automatically
detects non-tolerable differences between the present and an anticipated current state in order to
stop the robot given an error. Building on this, a recovery mechanism could be implemented,
which allows the system to undo recent steps until a recovery point is reached that allows further
actions to be re-planned. This would also bring out a starting point for online-leaning by alter-
ing interaction parameters after an error has occurred. Regarding the use of tactile feedback, the
integration of parametrizeable built-in controllers in the robot control framework that incorporate
tactile and proprioceptive feedback would be of great help for the development of further interac-
tion tasks. Two such controllers and their integration into the robot system are presented in Section
5.5.3





5 Bending and Folding

After endowing our robot with the ability to pick up a sheet of paper bi-manually, we wanted to
understand the requirements of anthropomorphic robotic folding strategies, in order to obtain a
deeper understanding of anthropomorphic robot manipulation in general. Recalling the variety of
common manipulations that can be performed on and with paper, folding was chosen as a crucial
ability the robot would need. However, after reviewing existing robotic paper folding systems
(see Section 4.1), it became clear, that existing methods cannot be applied in the present scenario.
While other systems use specially designed folding robots [Balkcom, 2004; Dubey and Dai, 2006;
Tanaka et al., 2007], our task was to realize these actions on the presented anthropomorphic robot
setup (see Section 2.1.1). The lack of a specialized robot with custom-designed tools for folding
paper shifts the focus from the development of folding theorems and interaction sequences that
lead to a certain complex folded structure to more fundamental questions. For example, the new
system will have to deal with severe occlusions while the paper is being folded. Moreover, in
order to compensate the lack of optimal calibration, feedback-based controllers are needed that
use visual and haptic feedback to establish or maintain contact forces during interaction.
In order to get deeper insights into the complexity of paper folding using an anthropomorphic
robot, we initially limited the scenario to folding a piece of paper in half. The folding robot pre-
sented by [Balkcom, 2004] (see Figure 5.2) would perform this by aligning the paper’s central
line with the fold slot using a vacuum gripper, followed by an automated folding step. Here, a
blunt folding blade descends from above into the fold slot of the support plane. The paper, which
intersects the slot, is pushed downwards by the blade with both ends of the paper getting bent
upwards. When the blade is removed, the slot is closed to ensure the crease remains. Finally, the
blade swipes over the opened fold slot from one side to the other in order to place the paper again
flat on the support plane.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.1: Folding a sheet of paper in half. (a-b) shift paper towards table edge (c) fixate with left hand
(d) grasp corner with right hand (e-f) bend over (g) align corners (h) crease coarsely (h) harden
crease (i) folded sheet of paper
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In contrast, an anthropomorphic robot needs to perform a human like sequence of actions. For
demonstration, an equivalent folding sequence applied by a human is presented in Figure 5.1. In
order to pinch-grasp a corner of the paper, it is shifted towards an edge of the support plane. Then,
one side of the paper needs to be fixated with one hand, while the other hand pinch-grasps the
corner to bend the paper in half. Once, two corners are aligned, the pinch-grasping hand can be
used to fixate the aligned layers of the paper again. This allows the other hand to be released to
make the fold. This is usually performed in two steps. First, a little force is used to flatten the
paper around the target fold line with all fingers. After this, a precise one-finger creasing motion
is applied to harden the crease.
Even though it would be possible to use it, the presented sequence does not incorporate the picking-
up paper-sequence presented in Chapter 4. This is due to the fact that in the present scenario, an
initial shifting of the paper is much more natural. Furthermore, the final robustness of the robotic
picking-up sequence was not high enough to use it as a mandatory initial step for the robotics
experiment conducted in this chapter.
In contrast to the picking-up experiment where the paper could be modeled by a smooth 2D sur-
face in 3D space, folding paper requires folds to be explicitly modeled. This is implemented by
altering the stiffness of the physical paper model’s bending constraints along fold lines. In order
to increase perception accuracy, the existing fiducial marker detection system was enhanced using
a new set of fiducial markers. The new markers can be detected more robustly even if they are
much smaller, allowing the possibility to print even a more detailed grid of markers on the paper.
This chapter is organized as follows. In Section 5.1 related work especially relevant for paper
folding is presented and discussed. Subsequently, Section 5.2 introduces the new fiducial marker
layout and the corresponding marker detection pipeline. The adaptions to the structure of the
physical paper model is presented in Section 5.3. A generalizing extension of the model control
law that moves the model according to the observation is also presented. Once perception, model-
ing and the connection between these has been established, the capabilities of the framework are
evaluated by monitoring several human folding sequences (see Section 5.4). Finally, in Section
5.5, the system is used to implement the folding sequence on our anthropomorphic robot system.
For this, a simplified inter-process-communication scheme and a new HSM for the robot control is
presented, and a set of new visuo-haptic feedback-controllers are introduced. Finally, we conclude
with a discussion in Section 5.6.

The work presented in this chapter is mainly based on the author’s conference paper:

Folding Paper with Anthropomorphic Robot Hands using Real-
Time Physics-Based Modeling [Elbrechter et al., 2012a]

This paper won the best paper award at the IEEE-RAS International Conference on Humanoid
Robots (Humanoids 2012), in Osaka, Japan. An associated video can be found on the CITEC
YouTube-channel [Elbrechter et al., 2012b].

5.1 Related Work

The robot paper folding experiment encompasses several sub-disciplines. Even though the result-
ing processing pipeline is very similar to the one developed for the picking-up experiment (see
Section 4.5), a set of new aspects needs to be anchored in the literature. In contrast to the related
work presented in Section 4.1, here particular focus is placed on the interaction.
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5.1.1 Visual Detection

The visual detection of deformed and creased surfaces poses several, still unsolved, challenges.
While rigid object tracking can be approached using RANSAC-optimized correspondences of
locations of edges [Drummond and Cipolla, 2002] or generic image features [Miao et al., 2011]
methods, deformation within the object leads to changing model coordinates of the features. Fur-
thermore, the presence of severe occlusions caused by the manipulating hands as well as by the
paper itself when it is folded, makes it very difficult to apply standard methods such as key-point
or edge tracking.
It is for these reasons that visual detection of deformed and creased surfaces is usually facilitated
by either using fiducial markers [Bersch et al., 2011; Mitani, 2006], or by restricting the amount of
occlusion that is allowed. Kinoshita and Watanabe [2008] used edge features, but they manually
selected well suited perception frames to avoid having to deal with occlusions (see also Section
4.1.2). The tracking and manipulation system presented by Schulman et al. [2013b], used RGBD-
point cloud data to drive an internal physical model of a towel-like object while it was folded twice.
In order to avoid the use of fiducial markers, they assumed trivial color based segmentation of ob-
ject sub-patches. Furthermore, the manipulating human hands were filtered out explicitly by using
gloves of the same color as the background. In the work presented by Balkcom and Mason [2008],
visual feedback was omitted completely by insisting on a well defined initial location of the paper,
resulting in only feed-forward manipulations being able to be carried out. In [Tanaka et al., 2007],
a paper folding robot system used edge features to determine paper contact positions, however,
since their edge detection was not reliable enough, edges had to be interactively labeled by a hu-
man assistant.
Due to these difficulties, visual detection of the sheet of paper here is again based on fidu-
cial marker tracking (reviewed in detail in Section 4.1.1). The improved markers used for the
folding experiment (see Section 4.2) are distinguished by a self-error-correcting 2D BCH code
[Bose and Chaudhuri, 1960] at their center. Using an explicit model of the detected sheet of pa-
per as an interface between recognition and robot control, the marker-based tracking module can
easily be replaced by a more sophisticated marker-less tracking option. Such a system was devel-
oped and is later presented in Section 6.2.
In addition, we note that the visual detection engine presented in this chapter is not able to detect
when and where the paper is folded automatically, entailing the necessity that fold lines must be
added manually. The automatic detection of folds is a very difficult problem with its own set of
issues and these are investigated in Section 6.4.

5.1.2 Modeling Foldable Objects

Objects that can be folded such as paper, cardboard boxes and bendable sheet metal are usually
modeled as piecewise rigid objects (faces) connected by revolute joints (creases) [Liu and Dai,
2003; Lu and Akella, 2000; Song and Amato, 2004]. By not explicitly modeling bending, the
model is restricted to a finite number of DOFs leading to a well defined configuration space C =

S1k, where S1 = [0, 2π[ is the unit circle and k is the number of joints. However, this leads
to severe challenges if creases intersect [Balkcom and Mason, 2008]. In this case, the resulting
kinematics system can no longer be treated as a kinematic tree. Instead, it has to be handled
as a much more complex closed kinematic chain. Origami models (reviewed in Section 4.1.2)
explicitly model creases. However, most approaches are only able to represent discrete 180-degree
fold angles and are therefore not suited for real-time tracking, which requires continues folding
angles to be possible. In contrast, it was important for our requirements that our model tracking
system could represent arbitrary folds. Schulman et al. [2013b] presented a comparable robotic
system, which was able to manipulate deformable objects, such as rope, cloth and foamed material.
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Figure 5.2: Author’s impression from the video of the Balkcom’s origami folding robot [Balkcom, 2004].
The robot is endowed with a custom-designed tool. For shifting the paper, a vacuum gripper
is attached. Folding is applied by inserting the folding blade into the fold slot, followed by
closing the slot while the blade is removed.

They also used the Bullet physics engine for modeling, but their system did not explicitly model
folds. In comparison to paper, the objects they chose were all thick, so that folds could always be
satisfactorily approximated by high curvature bends. In contrast, the modeling engine presented
here explicitly models folds by adapting the stiffness-constraints of the physical model along folds
lines.

5.1.3 Robot Control

In 2004, Balkcom [2004] introduced a custom designed origami folding robot (see Figure 5.2).
The precise folding mechanism works without the need to fixate the paper. The limited capabilities
of the robot, however, also illustrate the need for more general purpose robots like the one we are
working with. Furthermore, due to the precision achieved by its custom design, it can fold paper
in a feed-forward manner. Assuming two paper edges are initially aligned with the front edge
of the support plane and the fold slot, no further visual or haptic feedback is needed. Another
comparable robot system designed to fold paper was presented by [Tanaka et al., 2007]. In contrast
to Balkcom’s custom-designed paper folding robot, they used a more dexterous robot hand. Driven
by the idea of going one step further than Balkcom, they designed a minimal robot able to fold
an origami tadpole, which includes not only valley folds, but also a squash-fold, which was not
possible on Balkcom’s robot. However, even though their developed robot hand had four fingers
with tips and nails, it’s anatomy is too different from our anthropomorphic robot hand to allow
for directly porting their folding approach. Due to the kinematics of their folding robot, folding
can better be compared with two humans folding paper each holding a stick in both hands. Their
work provides important insights into the core issues of dexterous robotic paper manipulation and
includes very honest reporting of the low success rates and the long completion times of their
system. Their idea is to perform several iterations in optimizing the robot hand in order to create
more and more complex origami models. They expect that through an evolution-like optimization
a final generation that is possibly even able to fold an origami crane1 could look very similar to
the human hand.

1 The classical origami crane is considered to be much more difficult than the tadpole. While the tadpole folding
can well be described in a 6-step instruction, instructions of folding the origami crane commonly have more
then 15 steps.
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5.1.4 Planning Folding Sequences

Another related field of research concerns planning approaches for folding sequences. In parti-
cular the automatic inference of robot control patterns for the folding of cardboard boxes is very
important for the packaging industry. Here, foldable objects are commonly modeled as kine-
matic trees, comparable to robots, allowing the application of classical robot planning algorithms.
Liu and Dai [2003] presented a planning approach for folding cardboard boxes with two one-finger
robots. In their system, a configuration control point (CCP) is attached to the center of each face
of the carton model. After computing an optimal folding sequence for the faces of the cardboard
box, by heuristically modeling face motion and collision, these CCPs were used to generate mo-
tion trajectories for one-finger robots. A comparable system that also models cardboard boxes
as articulated robots was presented by Lu and Akella [2000], who used fixtures for efficient fold-
ing. Song and Amato [2004] presented a motion planning approach for more complex kinematic
chains, such as a polyhedral model of a cardboard football and even 120 DOF protein strands.
Their system used probabilistic roadmap methods (PRMs) [Kavraki et al., 1996] to infer folding
sequences from a given kinematic model.

In summary, it can be stated that none of the related systems employed anthropomorphic robot
hands. Furthermore, all systems bypass the visual detection issues that arise from occlusions by
either adapting the hardware to minimize occlusions, by using fiducial markers, or by pre-planning
the whole manipulation sequence. In addition, none of the mentioned systems is able to model all
three major aspects of paper deformation:

• Compliant, soft-body-like behavior

• Plastic behavior, leading to fold memorization

• Locally relaxed bending stiffness along straight fold lines

As already discussed in the introduction, further approaches to foldability, complexity classes of
origami and planning of origami folding sequences deal with higher-level problems that are less
relevant for the task of creating a single fold. However, since the presented formalisms only as-
sume a robot capable of folding paper along a defined line, it is not overly optimistic to assume that
they could be extended without major adaptions as soon as anthropomorphic robots are endowed
with this ability.

5.2 Perception

After analyzing the weaknesses of the fiducial marker detection framework developed for the
picking up experiment, it turned out that its major drawback was the large market size required for
robust detection. In addition, the large minimal marker size makes the structure of markers very
likely to be broken by occlusions, leading to even more missing detections. This effect is even
amplified by folds that break all intersected markers apart. The used marker detection approach,
based on topological image region containment information was too prone to detection errors.
While not detecting a visible marker only leads to gaps in the dense key-point grid used for the
modeling, false positive detections and wrong marker identifications involve major issues that
could even lead to instability of the physical model. The ID selection heuristic that was introduced
did not provide a sufficient improvement to this issue.
Therefore, another fiducial marker type, similar to ARToolKitPlus/ARTag markers (reviewed in
Section 4.1.1) was added to the marker detection framework. The markers are distinguished by a
rectangular black region that contains a 6 × 6 bit binary BCH code in its center, which is used to
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Figure 5.3: Tool-chain for the detection of BCH-code markers. Blue boxes illustrate how image regions
are filtered. The binarized and de-noised input image is passed into the connected component
module, in which the resulting image regions are internally filtered by size and value. The
lengths of the remaining region’s traced boundaries and the region’s pixel count are then used
for a form-factor-based filtering. The following curvature scale space (CSS) based corner
detection approximates each region by a polygon serving as input for the quadrangle extraction
module. Here, several heuristics are applied to find quadrangular region parts that are potential
marker bases. After optimizing the quadrangle corners, convex quadrangles are perspectively
undistorted by rectification, and their inner BCH-pattern is binarized and BCH-decoded.

identify a 12 bit marker ID. The BCH code can automatically correct up to 4 bit-errors, however,
it turned out, that dropping markers with an error count larger than 3 significantly increases the
detection accuracy at the cost of only a minimally decreased recall. As discussed in Section 4.1.1,
the existing fiducial detection libraries did not meet the requirements, in terms of speed, accuracy
and licensing. Therefore, a marker detection plugin for BCH code markers was integrated into
ICL’s marker detection framework. The author emphasizes that only the detection pipeline for the
BCH code markers was re-developed. The marker layout itself was copied from the design used
in the ARToolKitPlus library.

5.2.1 Detecting BCH Markers

The detection of BCH code markers differs a lot from the detection pipeline implemented for
the former marker layout. The only common part of the new detection pipeline (see Figure
5.3) consists of image acquisition, adaptive-threshold based binarization and morphological pre-
processing. The following connected component analysis is already much simpler, since no region
containment graph has to be computed. The connected component module can directly filter out
regions by their size (pixel-count) and their value. By these means, white, too small and too large
regions are filtered out. In the next step of the pipeline, the boundaries of the regions are traced.
Unlike all other region features that are computed on the basis of the internal run-length-encoded
(RLE) region representation, this is performed on the input binary image. The resulting list of con-
tour pixels is internally memorized for later use. The number of boundary pixels and the region’s
pixel count are then used to filter out regions that are too elongated using a form-factor threshold
(see Section 4.4.1).

From Region Boundaries to Quadrangles

In the next step, the region boundaries are approximated by polygons using a curvature scale
space (CSS) based corner detection implementation [Mokhtarian and Suomela, 1998]. The CSS
module has several parameters that were manually tuned for common conditions. Only the internal
contour smoothing bandwidth is dynamically adapted with respect to the region size, allowing to
more robustly detect corners of both very small and very large regions. For the resulting polygons
(defined by the region corners), three cases are distinguished:
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(a) thresholded image (b) intersection heuristic (c) perpendicular heuristic (d) mirror heuristic

Figure 5.4: (a) Bad thresholding parameters lead to a broken region with more than 4 corners. (b) The
intersection heuristic allows a quadrangle to be reconstructed if two adjacent edges are broken.
To this end, it extracts the longest edge ab and the second longest edge ac. The adjacent border
segments ce and bd are extended yielding the intersection point f used as missing corner. (c)
The perpendicular heuristic assumes an untilted view of the quadrangle, where all angles are
square and all edges have a similar length. It rotates the longest edge ab by 90◦ around b,
which yields c. Since even a minor perspective distortion of the quadrangle results in non-
square angles, c is not used directly, but the closest original corner d. This step is repeated
a second time, originating from bd. This provides a new guess e, yielding the last missing
corner f, closest to e. (d) The mirror heuristic also uses the longest edge ab and the longest
adjacent edge ac. The missing point d is obtained by mirroring the open corner c along the
perpendicular bisector X of ab.

1. The polygon has less than four corners. In this case, no quadrangle can be extracted, so the
corresponding region is dropped.

2. The polygon has exactly four corners. This is the most common case, where the quadrangle
is directly passed to the corner optimization module.

3. The polygon has more than four corners. Usually, this implies that the regions does not
correspond to a marker. However, in order to avoid dropping markers whose region borders
have additional corners due to binarization artifacts, a set of heuristics is applied to extract
potential sub-quadrangles from the polygon.

In contrast to the trivial cases of 1 and 2, case 3 involves three different heuristics that are applied
to the initial set of region corners that are explained in Figure 5.4. The results of these are rated, al-
lowing the likeliest solution to be selected. The use of heuristics for quadrangle reconstruction was
also suggested and implemented by Fiala [2005]. However, the paper does not explain the used
heuristics in detail and the corresponding software library is no longer available, so the heuristics
were developed from scratch.

Quadrangle Rating

The rating, used to select the most consistent quadrangle reconstruction result, is based on a given
quadrangle, defined by its four corners, ci, which are initially transformed to vectors vi = ci −
c(i−1) mod 4. The rating is based on the five types of possible marker views presented in Figure
5.5. The rating R ∈ [0, 1] is defined by a combination of sub-ratings:

R = λ(RlenRangle) + (1− λ)Rcross.

The length similarity rating Rlen is defined by the relation of the average lengths of opposing
edges:

Rlen = rel(‖v0‖+ ‖v2‖, ‖v1‖+ ‖v3‖),
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(a) (b) (c) (d) (e)

Figure 5.5: Different types of marker perspectives (a) Untilted frontal view (b) diagonally tilted isometric
perspective (c) diagonally tilted perspective projection (d) tilted isometric perspective (e) tilted
perspective view.

where the relationship function rel : R+ × R+ → [0, 1] is given by

rel(a, b) = min(
a

b
,
b

a
) and R+ = {x ∈ R : x > 0}.

Rlen reaches its maximal value of 1 if the two pairs of opposing edges have the same average length
ratio, which is true for Figure 5.5a-c. In addition to comparing the lengths of opposing edges, also
the angles of opposing edges can assumed to be similar. Approximating the angle similarity of
two vectors by their inner product, Rangle is defined by

Rangle = 0.5(v̂τ0 v̂2 + v̂τ1 v̂3),

which yields high values for untilted rectangles (see Figure 5.5a) or for isometrically projected
rectangles (see Figure 5.5b,d). The multiplicative combination of Rlen and Rangle yields good
results most of the time. However, it prefers isometrically projected rectangles leading to issues
with strong distortions caused by a perspective projection occurring when markers are close a
camera with a small focal length (in particular in configurations similar to Figure 5.5e). This effect
is compensated by the second additive sub-rating Rcross, which explicitly allows shorter opposing
edges to be less parallel, while longer opposing edges may have a larger length difference. Let
qab = rel(‖va‖, ‖vb‖), Rcross is given by

Rcross = rel(v̂τ0 v̂2, q13) rel(v̂τ1 v̂3, q02).

A more sophisticated rating could be defined by extracting the 6D marker pose from a potential
quadrangle. Assuming the original marker to be squared, the resulting re-projection error would
yield a reliable consistency measure. However, this would assume known camera parameters
entailing the necessity of performing camera calibration even for simple 2D marker detection. In
addition, the presented rating always provides results ∈ [0, 1] allowing for the definition of a single
scalar threshold to control the number of potentially reconstructed marker regions in an intuitive
manner. The weighting parameter λwas manually tuned to a value of 0.5, which allows the system
to reconstruct even very tilted quadrangles, while slightly preferring untilted ones2.

Quadrangle Optimization

Once a quadrangle is extracted, the edges that were not created by one of the reconstruction heuris-
tics are optimized by fitting straight lines into the set of boundary points between the edge start
and end points. For a set of points P = {pi : i ∈ {1, .., n}}, this is performed by explicitly
conducting principal component analysis (PCA). Let

C =

[
cxx cxy
cxy cyy

]
=

1

n

n∑
i=1

(pi − p̄)(pi − p̄)τ ,

2 The author thanks Viktor Losing for the ideas and the implementation of the heuristics and ratings
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Figure 5.6: Marker identification pipeline. After rectifying the marker patch, the extracted image is
cropped and down-scaled using multi-sampling. A following thresholding operation yields
the BCH-binary code of the marker. Due to the fact that the marker rotation is unknown,
all four possible rotations are evaluated. Given the properties of the used BCH-code, invalid
rotations lead to invalid codes.

then the solution of the eigenvalue problem is given by det(C − λ1) = 0, yielding

λ1/2 =
cxx + cyy

2
±
√

(cxx − cyy)2

4
+ c2

xy.

If λ1 > λ2, the eigenvector condition yields v̂1 = (cxy, λ1 − cxx)τ as a direction vector of the
approximated line l(α) = p̄ + αv̂1.
The adjacent optimized straight lines and the straight lines that can trivially be extracted from the
heuristically created edges are then intersected to obtain optimized quadrangle corners. While this
step provides only a moderate benefit for the 2D marker detection and the marker identification, it
significantly improves the 6D pose estimation results.

Marker Identification

Each extracted quadrangle is used as a potential root-region for a marker. False positives are ro-
bustly removed by extracting the marker’s BCH-encoded ID. The marker identification pipeline is
depicted in Figure 5.6.
Due to the fact that the initial binarization step discards a lot of information, the following recti-
fication step is performed on the original gray-scale image. 2D homography is used to rectify the
marker center resulting in a perspectively undistorted 20 × 20 gray-scale image of a marker. The
edge-length of 20 pixels is derived from the appearance of the markers. The marker design uses
2 size units for the marker border and 6 × 6 units for the binary BCH-code, resulting in a total
of 10 × 10 units, so the rectified image is a, by a factor of two, scaled up version of the marker.
Consequently the BCH-code of the marker can be extracted by simply cropping a four pixel border
from the image, followed by downscaling the image by a factor of two. The BCH-code extrac-
tion is performed in two steps because during rectification, the image is only linearly interpolated,
leading to interpolation artifacts in case of down-sampling. These artifacts are mostly removed
by averaging every four neighboring pixels in a two step down-sampling approach. In order to
obtain the binary BCH-code, an optimized threshold is estimated using a two-class vector quan-
tization implementation. Let P = {p1, .., p36} be the gray values of the pixels of the extracted
marker BCH code, then the threshold θ is derived recursively starting with θ0 = E(P ), where
E(.) denotes the expected value 3

θi =
1

2
(E({pi : pi ≥ θi−1}) + E({pi : pi < θi−1}))

3 E({x1, .., xn}) = 1
n

∑
i xi



94 CHAPTER 5. BENDING AND FOLDING

The mechanism converges quickly after a few iterations. Due to the fact that the marker rotation
is unknown, the resulting 2D binary code must be decoded for each of the four possible rota-
tions. In contrast to encoding information into a BCH code, which can be implemented by a
simple binary multiplication of the word with a binary generator polynomial, the decoding step
is much more complicated and is omitted from this thesis. The interested reader is directed to
[Bose and Chaudhuri, 1960; Massey, 1969; Wang et al., 2001] for a detailed description of the
process.

5.2.2 Paper Layout

The improved fiducial marker design allows more markers to be placed on the manipulated sheet
of paper. Tests showed that a regular 9× 13 grid of markers with an edge length of approximately
20mm printed on both sides of the paper provides a good trade-off between detection detail and
accuracy. This led to a total of 234 markers, each providing its four corners as robustly detectable
key-points on the paper surface.
While these numbers sound impressive in comparison to the 60 markers (5×6 per side) used in the
picking-up experiment (see Section 4.2.1), there are some drawbacks. While each of the former
markers provided an average of 8− 12 key-points, the new markers only provide four. This leads
to a significant decrease of accuracy for the single-view 6D marker pose estimation. A detailed
evaluation and comparison to the former fiducial marker types is presented in Section 5.4.

5.3 Modeling

The extended physical paper model implemented for the paper folding experiment, not only allows
for the modeling of folds, but also for memorizing the deformation of the model. Both of these
features are achieved by altering the parameters of the constraints of the physical paper model.
Furthermore, our new model is set up with a new control mechanism that allows the tracking
system not only to control the position of single nodes of the model grid, but also the position of
arbitrary interpolated positions in between existing nodes.
Just like the original physical paper model (see Section 4.3.3), the extended model can be described
by a regular grid of nodes npm , each associating the discrete 2D model coordinate pm ∈ P ′ =
{1, ..,W}×{1, ..,H} of a node, with its current world location xwpm . The resulting paper function
p : P ′ → R3 is again defined by the piecewise bi-linear interpolation of the model grid.
A constraint that connects two nodes npm and nqm is denoted by cpq 4 and parametrized by its
stiffness coefficient spq and its resting distance rpq. Constraints that connect adjacent nodes
(dpq = ‖pm − qm‖L1 = 1) limit the stretchability of the model and are not adapted. In contrast,
constraints that connect not directly neighbored nodes (dpq > 1) limit the local curvature of the
model and are therefore referenced as bending constraints.
In comparison to the original physics model, the set of used bending constraints was significantly
reduced by dropping constraints whose referenced nodes have a model space city-block distance
dpq of 2. While qualitative tests showed that this has no noticeable effect on the modeling accuracy
or stability, it significantly reduces the number of constraints used (depending on the dimensions
of the physical model grid, usually by about 30%), allowing for a higher frame-rate of the physical
simulation.

4 the super script .m denoting that p and q are coordinates in the model space is omitted here for simplicity
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5.3.1 Simulation of Folds

A fold is considered to be a straight line, l, in the model space. The parameters of bending
constraints cpq whose connection pq intersects with l are adapted, allowing the modeling of two
important aspects of folds. By significantly decreasing the stiffness coefficients of the intersecting
constraints, the model becomes locally creasable resulting in a hinge-joint-like behavior of the
model. At this point, the self-collision simulation of the physics-engine becomes important to
avoid self-penetration of the paper model. However, hinge-joint-like behavior of real-paper can
only be achieved by repeatedly folding the paper along the same line into opposite directions.
When simply folded, paper usually shows plastic behavior resulting in memorization of external
deformation.
For the simulation of plastic behavior, the resting distances rpq of intersecting constraints also
have to be adapted. Therefore, the modeling of folding behavior along a straight line l is performed
in the following steps:

1. Find the set C = {cqipi} of intersecting bending constraints

2. Lower the associated stiffness coefficients {sqipi}

3. Perform the folding operation along l

4. For each constraint cqipi , set the resting distance to the current distance of the referenced
nodes in the world: rqipi ← ‖pwi − qwi ‖

5. Reset the associated stiffness coefficients to standard values

For the demonstration of this sequence, a GUI-based editor was created that allows mouse-gestures
to be used to define fold lines and to move the paper in a drag-and-drop manner. The editor
was also used for the demonstration of how fold lines are added and how they effect the set of
bending constraints (see Figure 5.7). Furthermore, the editor allows random rigid boxes to be
added to manipulate the global paper stiffness and to fixate nodes of the paper model manually. It
is important to note that the achieved modeling of diagonal folds is sub-optimal since folds that
are not aligned with the structure of the regular model grid are approximated by the model’s grid
structure. A more sophisticated model-adaption technique where fold lines are created by actually
adding new paper-model nodes along the fold line is presented in Section 6.1.

Choice of Link Stiffness Values

The choice of scalar values for normal and decreased link stiffness strongly depend on the internal
implementation of the bullet-physics engine, which expects the values to be in range ]0, 1]. The
values are not directly coupled to a physical quantity. Experiments showed that a global link
stiffness of 0.9 results in a stable and paper-like model behavior. In contrast, lower values of 0.01
are well suited for modeling fold lines. Decreasing the global stiffness values makes the model
behave more and more like cloth rather than paper (see Figure 5.8).

5.3.2 A Generalized Model Control Law

Due to the fact that model nodes and key-points are no longer required to be aligned in the 2D
model space, a new control law was needed that allows for the adaption of the position of arbitrary
model positions according to real world observations provided by the feature tracking component.
While currently the corners and the center of the fiducial markers are used as features, the new
control law paves the way for replacing marker-based features with more generic image features
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: Simulation editor used for the creation and memorization of fold lines. (a) Initial paper model.
The red sphere, initially located at the corner of the model, indicates the last point where the
model was dragged by mouse. (b) Initial paper model, augmented with the full set of initial
bending constraints. (c) A fold line was added along a grid line parallel to the short edge of the
paper. All intersecting bending constraints were removed (internally, their stiffness coefficients
are lowered to 0.01). (d) The paper model can now be folded along the fold line (using mouse
drag and drop gestures). (e,f) After the memorization of the fold, the paper cannot simply be
unfolded. The modeling engine tries to maintain the resting distances from the folded state.
(g) An additional diagonal fold line was added, and again, all intersecting bending constraints
were removed. (h,i) Now the paper is folded along the diagonal fold line. However, while the
first fold parallel to the grid is completely straight, the diagonal fold appears slightly crinkled
since it is approximated by the existing grid structure.
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(a) high global stiffness (b) low global stiffness

Figure 5.8: Comparison of different values for the global link stiffness of the paper model. (a) uses a
high global link stiffness of 0.9 leading to a stiff paper-like model behavior. (b) a low global
stiffness value of 0.01 allows the model behave more like cloth. The gap between the paper
model and the rigid box objects is a result of a relatively large collision margin that is necessary
for the real-time rigid versus soft object collision simulation in the bullet physics engine.

computed from edge or texture information.
As in the original physical paper model presented in Chapter 4, the control law is independently
applied for each observed key-point correspondence (kml ,k

w
l ). However, due to the missing direct

association of the key-point kl to a node of the physical model grid, the displacement of nodes now
has to be distributed to the 4 nodes nqi closest to the key-point’s model space coordinate kml . Since
the model nodes are aligned in a regular grid, the 4 closest nodes are always given by the corners
of the grid cell that contains the key-points model position kml . The new control law, illustrated in
Figure 5.9, first computes the desired displacement

d = kwl − p(kml )

of model surface point referenced by the feature. Like before, the new control law works like a
P-controller, acting iteratively on the node’s velocity. In each iteration step, the velocity

vi = αiλd (5.1)

is added to the velocity of each of the 4 closest nodes nqi . The desired displacement of a specific
node nqi is therefore not only weighted by the controller’s proportional gain λ, but also by a
node-specific weighting factor

αi = max(1− ‖kml − nmqi
‖, 0) (5.2)

that distributes the displacement relatively to the node’s inverse distance to feature point in model
space. Due to the fact that the used model space P ′ uses a unit length of 1 for the grid cells, a
simple threshold that suppresses negative weights is sufficient here.
As a matter of fact, the new control law is a pure generalization of the original law. In cases where
a feature point’s model coordinate kml is coincidentally identical to a model grid point nmp , the
weighting αi becomes 1 for the closest node np and 0 for the other 3 nodes, directly leading back
to the original version of the control law presented in Section 4.3.3.

5.4 Evaluation

In this section, the extensions of the physical model and the capabilities of the adapted fiducial
marker layout and the corresponding detection engine are evaluated. For the physical model, the
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Figure 5.9: The current model is above the current observation of a marker. A key-point kl, here corre-
sponding to the marker’s left corner (in image space), links an observed world position kw

l to
a position km

l in model space. The displacement vector of the current model position p(km
l )

of that point and the observed position kw
l yields the base for the actual displacement of the 4

neighboring nodes nqi
. The displacement is weighted, dependent on the nodes distance to the

key-point in model space.

ability to add fold lines and to memorize model deformation is put into focus. Since the evaluation
provided in Section 4.4 conveyed an intuitive connection between qualitative results – usually pre-
sented by a model rendered as an image overlay, and quantitative values, this section will mainly
focus on the presentation of qualitative results. However, due to the well defined scale given by the
A4-sized paper, the presented images are also inherently linked to quantitative information. Due to
the fact that the ability to model and to memorize folds offers a whole new level of manipulability,
there is no direct comparison to the former version of the model, which did not allow folds to be
modeled.
In contrast, the BCH markers are compared and contrasted with the previously used custom de-
signed markers presented in Section 4.2. The comparison is performed quantitatively, on the basis
of artificially rendered marker images, and also qualitatively as a part of the complete new paper-
perception and modeling pipeline.

5.4.1 BCH-Code-based Markers

The new BCH-marker design is evaluated as an extension of the evaluation for the region-based
markers, presented in Section 4.4.1. Again, the two aspects identification and pose estimation
were evaluated separately. As the new BCH-markers can be detected from significantly further
distances, the y-axes of the plots were adapted to cover the full possible distance range of up to
1.6m. As an extension of Figure 4.12, Figure 5.10 presents the robustness of the implemented de-
tection system for BCH-markers. The figure shows that they outperform the region-based markers
significantly. While the maximum detection distance of the region-based markers is about 600mm
(frontal view) and 400mm (30◦ camera elevation angle), the BCH-markers are robustly detectable
from up to double that distance. Furthermore, untilted BCH-markers (camera elevation angle
about 90◦) are still likely to be detected at more that 1500mm. The detection of BCH-markers
is also much less prone to marker identification errors. In fact, the experiment revealed only two
erroneous samples of none-crucial errors5. In comparison, the region-based markers are much
more problematic because they are very prone to marker identification errors in the vicinity of
their maximum detection distance.

5 For these two samples, valid but unused marker IDs were computed.
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Figure 5.10: Evaluation of the robustness of the BCH-marker detection system, based on artificially ren-
dered SVGA (800 × 600) images of square BCH-markers with an edge length of 30mm.
For the experiment, 100 of the possible 4096 BCH-codes were picked and assumed to be
the markers that are actually used. The two samples, where the ID estimation went wrong
(yellow), yielded marker IDs that were not in this list, so the system would have been able to
filter out these errors automatically.

With regard to the targeted tracking system, both aspects, detection distance and ID-estimation
reliability are important. The higher possible detection distance provided by the BCH-markers
indirectly allows a higher number of smaller markers to be placed on the tracked sheet of paper,
yielding a denser grid of key-points. The increased marker identification reliability is, however,
even more important for the system. Marker identification errors lead to erroneous key-points,
which make the model control module move a part of the paper to an unrealistic world position.
While the temporal physics-based model control law handles single instances of such outliers ro-
bustly, a larger or repetitive set of such errors would either lead to random model deformations, or
even to numerical instabilities of the physics engine. These can usually only be detected after they
have already occurred, so that an automatic avoidance or recovery is very hard.
Figure 5.11 plots the position and orientation estimation errors for BCH-markers. Even though
the coarse shape of the error landscapes is comparable to the error plot of region-based markers
(see Figure 4.13) , the overall pose estimation of BCH-code markers is significantly less accurate
(see Figure 5.11a). While the average position error for the region-based markers in a represen-
tative distance of about 400mm to the cameras is only about 5mm, BCH-markers produce errors
in the order of 20mm. The feature that BCH-markers can be detected from further distances even
magnifies this issue here, leading to errors of more than 100mm. The low position estimation
accuracy is mainly due to the thresholding operation that is used in the marker detection pipeline.
The black-to-white transition of the marker boundaries lead, due to aliasing artifacts, to further
gray pixels around the marker boundary. Dependent on the selected threshold, these gray pixels
either become a part of the marker or not, resulting in radial errors in the order of one pixel for
the boundary pixels, which are used to compute the corner key-points of the marker. When the
marker is further away from the camera it appears smaller and the influence of this pixel-related
error carries a higher weight in the pose-estimation.
In contrast, the estimation of the marker rotation (see Figure 5.11b) is more robust than for region-
based markers, which is, however, due to the disadvantages of the position estimation of small
use. While a robust estimation of the marker position could be used without reliable information
about the marker orientation, an accurate marker orientation alone does not provide useful infor-
mation for the tracking system. Therefore it was decided to employ more robust multi-camera
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(a) position estimation error [mm](clipped to 100mm)

(b) orientation estimation error [deg](clipped to 23◦)

Figure 5.11: Single-camera pose estimation error for synthetic SVGA input images of 30× 30mm BCH-
markers split into a position component (a) and a rotation component (b).

pose-detection methods only in the BCH-marker based tracking system.
In conclusion it can be stated that BCH-markers significantly improve the paper tracking system.
The detection of the markers is fast and robust. The missing suitability for single-view marker
pose estimation methods can mostly be compensated using a larger set of cameras to reduce the
number of occluded markers.

5.4.2 Detecting and Modeling Paper with Creases

The capabilities of the new detection and modeling framework are presented using five different
paper manipulation sequences, carried out by a human. The sequences are captured by a calibrated
6-camera setup described in Figure 5.12. The selected manipulation sequences are:

1. Iterative folding Here, the paper is folded in half 3 times iteratively in crossing directions.
The system here has to deal with a simple fold and with folds that are applied to two or even
four layers of paper simultaneously. Finished folds are memorized by the model.

2. Paper aeroplane A simple paper aeroplane is folded. This interaction sequence adds di-
agonal folds that have to be approximated by the model grid. In addition, the aeroplane
folding sequence incorporates temporal folds that are not immediately memorized, leaving
parts of the model in a hinge-joint-like configuration, not only while the corresponding fold
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Figure 5.12: Calibrated 6-camera setup used for monitoring the human paper manipulation sequences.
Each camera runs at 15Hz with quad-VGA resolution (1280×960). The whole setup runs on
a single quad-core Intel R©Xeon R©E5530 (2.4 GHz) machine, endowed with three separate
FireWire-800 buses. The 2D marker detection unit uses a dedicated thread for each camera,
processing images at the video frame-rate. The 3D-estimation and modeling application con-
currently receives the 2D fiducial marker detection results via shared-memory and performs
3D-point estimation and physical modeling asynchronously in an extra working thread, run-
ning at 5-40Hz (depending on the complexity of the self-collision state of the paper-model).

is applied, but also while the whole model is moved and while other fold lines are added to
the model and their corresponding folds are made.

3. Paper hat A paper hat is folded. While the complexity of this interaction sequence is com-
parable to that of the aeroplane folding sequence, its final configuration consists partly of six
closely overlapping layers, pushing the physical model’s self-collision handling capabilities
to their limit. In addition, some faces of the resulting paper hat are small enough, so that
they do not even contain a single whole fiducial marker.

4. Squash fold A complex squash fold is performed, where two overlapping layers of the
paper are squashed from the top to produce an inner bag. Here, the system has to deal with
extreme occlusions, caused by the manipulating hands as well as by the overlapping layers
of the paper. Additionally, the very complex physical deformation of the paper should be
reflected by the model.

5. Crushing The whole sheet of paper is crushed, first slightly and then more heavily. This
interaction sequence differs most from the other examples as no distinct fold lines can be
used. Instead, the global model stiffness is decreased in order to allow the model to reflect
the desired deformation.

During the interaction sequences, the lack of an automatic fold line detection, was compensated by
manually adding fold lines to the model using mouse drag and drop gestures in the model editor,
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which is integrated into the 3D estimation and modeling application. From here, the memorization
of the current deformation of the paper can also be triggered manually on demand.

Iterative Folding

(a) Initial model (b) After first fold (c) After second fold

(d) Before third fold (e) During third fold (f) After third fold

Figure 5.13: Iterative folding manipulation sequence. While two iterative folds can be tackled well by the
system (a-d), the third fold (e,f) leads to major differences between model and observation.

As a first step, the system was used to track a sheet of paper that is iteratively folded three times
in cross-wise directions. Before the folds are performed by the human, the next fold line is added
manually to the model, leading to a hinge-joint like model behavior along that line. This means
that the fold line is added to one, two or four overlapping layers of paper respectively. After a fold
is performed, the folded state of the model is memorized to avoid an accidental unfolding while
the following folds are carried out. Figure 5.13 visualizes the results of the experiment. The results
show that only two iterative folds can be tracked well by the system. There are two major reasons
that explain this. First, the system has to deal with extreme occlusions (see Figure 5.13e), leaving
only a very few markers visible while the last fold is performed. Second, the fact that folds are
only approximately added manually to the model leads to a set of error sources. The used mouse-
input method weakens all constraints that intersect with the 3D-plane defined by the mouse drag
and drop gesture. The plane is derived from the three points defined by the camera origin and the
intersections of the mouse drag and drop point’s view rays with the z=0 plane. While this allows
for an intuitive manual definition of fold lines, it also entails that fold lines in overlapping layers of
the paper are only perfectly aligned in the image space of the manipulating camera view, but not
necessarily in the model space. This effect can be compensated to a certain degree by adding two
adjacent parallel fold lines, in order to create a broader fold line (see Figure 5.13b,d). However,
the presented example shows the limitation of this fix. A more precise hand-crafted programmatic
creation of fold lines would solve this issue, albeit leading to a loss of generality of the system.
Another issue that occurred when performing iterative folds concerns the memorization of defor-
mation, which is implemented by simply reading out the current model configuration to memorize
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the current distance of each two nodes referenced by a bending constraint as its new resting dis-
tance. Due to the internal self-collision handing of the physical model that employs a collision
margin to stabilize the internal system, folds are never precisely 180◦ and two folded layers will
never really touch. Therefore, the collision margin basically defines the modeled thickness of the
sheet of paper. However, due to numerical reasons, the minimum thickness that can be modeled
properly turned out to be in the order of 3mm, i.e. about 30 times thicker than real paper. Due
to this issue, each memorized fold of two overlapping layers leads to tension in the model. This
tension is even amplified in case of four or more overlapping layers. To overcome this effect, an
explicit handling of folds would have to be added to the modeling engine. Once a fold is per-
formed and is to be memorized, the rectangular model would have to be replaced by a polygonal
one that internally models the folded two layers of paper as a single layer. However, this approach
would not allow a fold to be undone and leads to several further non-trivial issues, both theoretical
and practical in nature.

Folding a Paper Aeroplane

(a) Preparing center fold (b) Wings (c) Center fold and Wing

(d) Turn around (e) Abduct left wing (f) Final paper aeroplane

Figure 5.14: Tracking a sheet of paper while it is folded into a paper aeroplane. The detection and track-
ing system performs very well during the whole interaction sequence. Even temporary and
diagonal folds can be successfully modeled and tracked.

The iterative folding sequence covers only a small set of common paper folding aspects. In par-
ticular, it does not employ diagonal folds or steps in which folds are inverted. Therefore, folding
a paper aeroplane seemed to be a reasonable next step6. Furthermore, a paper aeroplane is one of
the first complex objects many children learn to fold. The steps of the manipulation sequence are
shown in Figure 5.14. The center fold line and the diagonal fold lines for the wings are initially
added to the model. Before the wings can be folded diagonally (see Figure 5.14b), the center fold
line of the real paper is created by temporarily folding the paper in half (see Figure 5.14a). After
memorizing the diagonal wing folds, the fuselage of the aeroplane is created. Here, the whole

6 The tracking of the paper aeroplane folding sequence is also shown in the video [Elbrechter et al., 2012b].
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partly folded paper aeroplane is turned around (see Figure 5.14d) revealing that tracking of a com-
plex deformed model is well supported by the system.
The most problematic part of this manipulation sequence is the necessity to precisely define the
fold lines of the model. While fold lines like the one for the center fold can easily be defined,
the exact definition of the diagonal fold lines is not trivial. Actually also fold lines parallel to the
model grid can easily become problematic in cases where the targeted fold line is not close enough
to a model grid coordinate. As soon as the model fold lines and the folds of the real paper differ
more then minimally, the tracking performance significantly decreases. A crucial parameter, in-
herently linked to this issue is not only the key-point density, i.e., the density of the fiducial marker
grid, but also the resolution of the physical soft-body grid of nodes. The needed key-point density
depends on the smallest face of the created model. For the used marker-based key-points, faces
must be large enough to show at least one marker completely. Otherwise, the face provides no
external information to the tracking, leaving the positioning of the face over time to the constraints
of the physical model.
In contrast, the dependency on the resolution of the physical model leads to several interesting
aspects. While in general, a higher model resolution results in a more flexible model and therefore
increases the likelihood that an actual, in particular diagonal, fold can be exactly reflected by a
model fold line, it significantly lowers the real-time performance of the system. In turn, since the
model is tracked over time, this also affects the resulting spatial step-width between two succes-
sive effectively used frames, resulting in a higher possibility to loose the model.
The uncomfortable trade-off between model flexibility and tracking-speed could be compensated
by precisely modeling arbitrary fold lines by inserting new nodes along a to-be-inserted fold line.
This mechanism was implemented for the model presented in Section 6.1.

(a) First side (b) Second side (c) First part of the brim

(d) Turning around (e) Second part of the brim (f) Final paper hat

Figure 5.15: Observing the deformation of a sheet of paper while it is folded into a paper hat by a human.
The coarse tracking performance is satisfying, but the small triangles that fixate the brim of
the hat (f) cannot be tracked since their corresponding paper face covers only a part of a
fiducial marker.
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Folding a Paper Hat

The hat-folding experiment (see Figure 5.15) shows that even six layers of paper can be modeled
and tracked satisfyingly. However it must be admitted that the interaction was explicitly performed
slowly in order to compensate the low tracking frame-rate of down to 5Hz as soon as too many
layers of the paper overlap (see Figure 5.15c-f). Additionally the sharp corners of the hat’s brim
demonstrate the limitations of the system, because the corresponding small triangular paper faces
only contain a fraction of a single fiducial marker. Since there is no physical constraint that could
draw these triangles around the brim, they cannot be tracked properly. A manual adaption of
the model could be used to fix this issue. The fact that the diagonal fold lines of the model do
not perfectly coincide with the actual folds of the paper does not negatively affect the tracking
performance.

Performing a Squash-Fold

(a) Initial Model (b) Pre-folding creases (c) Positioning

(d) Opening inner bag (e) Squashing (f) Final model

Figure 5.16: Observing the deformation of a sheet of paper while a human performs a squash fold.

As motivated by Tanaka et al. [2007], a squash-fold, where a double-layered part of the paper is
squashed in order to produce an inner bag, is significantly more complex then other types of folds.
Squash folds are even used as examples of complex folds by Balkcom and Mason [2008]. The
increased complexity of squash folds not only makes it more difficult to design robots to perform
them, but also means that the vision and modeling system is severely tested. The visual tracking
of a squash fold is particularly difficult because squashing the paper leads to severe occlusions that
need to be compensated and this requires an appropriate model, able to reflect the principle of a
squash fold. Figure 5.16 shows the performance of our system at various key frames as a human
performs a squash fold.
The results show that the system almost perfectly tracks the squash folding manipulation (see
Figure 5.16c-e). However the final state (see Figure 5.16f) reveals a problem of the modeling
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engine. Since the deformation of the paper is not explicitly memorized, a glitch in the model’s
self-collision handling allows the inner squashed part of the paper to unrealistically penetrate the
top layer, resulting in a wrong final model state. Memorizing the squashed state of the model
before the error occurs, would help to minimize this effect. The actual issue, however, seems to
derive from numerical instabilities in the Bullet physics engine’s collision handling and it is not
unreasonable to expect that this will be improved upon in a future release.

Crushing Paper

(a) (b) (c)

(d) (e) (f)

Figure 5.17: Observing the deformation of a manually crushed sheet of paper. (a) The model is made
fully flexible by adding fold lines (yellow/orange) through every cell of the regular model
grid (red). (b-d) Average deformation is satisfactorily tracked by the model. (e) Stronger
deformations lead to major differences between observation and the model. (f) After partly
undoing the deformation, the qualitative impression becomes acceptable again.

In contrast to the well defined folds and fold lines used for the other manipulation sequences,
crushing leads to more general deformation of the paper. To globally reduced the model’s stiffness,
it is initially made fully flexible by manually adding a grid of fold lines so that every model cell
is covered (see Figure 5.17a). This step is comparable to adapting the model’s global stiffness
resulting in a more cloth-like behavior (see Section 5.3.1). In the case of minor deformations (see
Figure 5.17b-d), most of the fiducial markers remain detectable leading to robust tracking results.
However, due to the low paper stiffness, invisible parts (e.g. in Figure 5.17c, the parts hidden by
the human’s hands) are unrealistically smoothed. Since the model is only loosely constrained, a
possible solution would be to physically model the manipulating hands.
As soon as the average curvature of the sheet of paper increases to the point that most markers
become undetectable, the tracking accuracy decreases dramatically. While the general position and
rough orientation of the model is still tracked as long as a single whole fiducial marker remains
visible to the system, the tracking of the deformation fails completely. If the totally crushed
sheet of paper is slightly straightened again (see Figure 5.17f), the tracking performance of the
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(a) (b)

Figure 5.18: (a) Data-flow and inter-process communication (IPC) scheme used for the paper folding ex-
periment. IPC is implemented by a combination of the XCF/Active Memory infrastructure
and shared-memory based communication. A single 2D Detection module processes all cam-
era images in dedicated threads and publishes the detection results using the shared memory
interface. The 3D Estimation & Modeling unit combines these results and inserts the current
3D paper model into the single Active Memory instance. The Robot Task Control (HSM) also
uses this Active Memory instance to communicate with the robot servers. (b) Adaption to the
Robot workspace. The folding manipulation was carried out on a raised support box. The use
of a cardboard box increased the height of the table-top, which optimized the action radius of
the robot hands and provided an edge that could be used by the robot to grasp a corner of the
paper. In addition, the flexibility of the cardboard box lowered the risk of damaging the hand
during the interaction sequence.

deformation can recover.

5.5 Robot Control

Using the new paper tracking and modeling framework, a robot interaction sequence was im-
plemented that enabled our bi-manual anthropomorphic robot to fold a sheet of paper in half.
Obviously, this manipulation does not fully exhaust the capabilities of our tracking and modeling
framework. However, its accurate real-time feedback even in the presence of strong occlusions
caused by the robot hands allowed us to fully focus on the unsolved robot-control related issues.
The first task is to figure out how the folding sequence, sketched in Figure 5.1, can be transferred
to the robot in general. In particular, it is not initially clear how the paper needs to be placed with
respect to robot, and how well the accruing interaction primitives, such as fixating, pinch-grasping
and creasing, can be implemented on the robot. As a sub-topic of this, we examined in which way
tactile feedback can or must be called upon to supplement the feedback provided by the vision-
framework. Furthermore, we explored, how the system can be made more robust with respect to
changing starting conditions, such as the initial paper position and orientation.

5.5.1 Updated Vision and Robot Setup

Originating from the software setup used for the picking up experiment (see Section 4.5.1), the
whole system was significantly simplified and optimized (see Figure 5.18a). As was shown in
the evaluation (see Section 5.4.2), the improved vision and modeling framework can be run on a
single PC, which not only reduces the complexity of the whole software setup, but also allows for
further performance optimizations. In particular, this allows the original XCF/Active Memory-
based conflation of the 2D fiducial marker detection results to be replaced by a shared memory



108 CHAPTER 5. BENDING AND FOLDING

interface. This reduces not only the data transfer latency, but also significantly lowers the compu-
tational overhead arising from otherwise necessary massive XML parsing performed by the Active
Memory server.
In comparison to the picking up experiment, the robot workspace was adapted by using a card-
board box as a raised support plane for the manipulation task (see Figure 5.18b). The edge of
the box simulates a table edge that is, as motivated in the introduction of Chapter 5, often used
by people to simplify the grasping of a corner of a sheet of paper. Furthermore, the support-box
raises the level of the table plane, which means the robot forearms can be oriented more parallel
to the table, increasing the robot’s interaction radius. As a further advantage the box significantly
lowered the risk of damaging the robot during implementing and testing of the folding sequence.
Our robot hands are equipped with different types of tactile sensors (see Figure 2.3a). The right
hand’s fingertips are equipped with a tactile sensor matrix comprising 34 taxels7, providing a spa-
tial resolution of 3mm, but at the expense of a rather limited sensitivity. On the left hand we
employ PST sensors from the Shadow Robot Company that have no spatial resolution but have
a very high sensitivity over a range of small forces. Therefore, we make asymmetric use of the
hands and employ the right hand for fixating the paper and the left hand for the manipulation ac-
tions. To this end high friction rubber finger covers were added to the right hand’s finger tips to
facilitate fixating, while the friction of the left hand’s finger tips was decreased by endowing them
with fabric covers.

5.5.2 Registration of Reference Objects on the Robot Server

In order to simplify robotic object manipulation an updated version of the robot arm server was
employed that provides a mechanism allowing objects to be manually registered on the server.
The registered objects can be updated externally and the robot control primitives can be formu-
lated relatively to the coordinate frame of a registered object. The extended syntax can handle
different coordinate frames for the rotation and for the translation part of a movement command
and it allows for the definition of a translation offset. By combining different frame assignments,
absolute, as well as relative, movements can be performed with respect to an arbitrary coordinate
frame. By internally performing all the necessary coordinate frame transformations between the
object frame, the world frame and the robot end-effector frame, this feature allows for a significant
reduction of both the complexity and the length of the robot controller code.
In the robot folding sequence, a single paper object was registered. However, since the object
registration mechanism can handle rigid objects whose coordinate frames are defined by single
rigid homogeneous transforms only, the paper frame was defined to be located at the center of the
sheet of paper. As the paper is bent, only fiducial markers that are coplanar with the box’s top
surface are used to compute the paper coordinate frame.

5.5.3 Closed Loop Feedback Controllers

The previous systems for shifting (see Section 2.2) and for picking up paper (see Chapter 4) al-
ready employed closed loop controllers, but these were implemented explicitly in the robot control
HSM. Due to the loose coupling (via network and XCF/ActiveMemory) between HSM and the
robot servers (see Section 2.1) and because of the explicitly implemented perceive/action loops,
only slow feedback cycles could be achieved, which resulted in very slow and jerky robot move-

7 Tactile pixel
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(a) (b)

Figure 5.19: Two-stage implementation of the feedback based controllers Ctouch and Cgen
touch. (a) The Ctouch

controller is implemented as a reusable sub-HSM and it internally employs Cgen
touch to allow

an object to be touched. (b) The generic Cgen
touch controller is implemented using python code

(here explained using pseudo-code) embedded into the HSM description.

ments8. To improve this, both the hand and the arm server were extended by built-in interfaces9

for the implementation of closed loop controllers.
While sketching the robotic folding sequence, two repeatedly occurring sub-patterns were identi-
fied, which led to the development of two different types of controllers, Ctouch and Cforce. Analo-
gous to the explicitly implemented perceive/action loop for contact establishment in the picking up
system (see Section 4.5.2), Ctouch allows the robot to establish contact with the paper by exploiting
the robot hand’s passive compliance to estimate the contact force on the basis of the hand-posture
displacement induced by an arm movement. In contrast,Cforce allows a given contact force, caused
by the finger-tips touching the paper, to be maintained.

Feedback-based Contact Establishment

The first closed loop controller that we implemented was Ctouch, which was designed for feedback
based contact establishment between the robot hand and an object. The actual implementation is
split into a generic component, Cgen

touch (see Figure 5.19b), and a more specific includable conve-
nience-wrapper HSM, Ctouch (see Figure 5.19a), that employs Cgen

touch in order to make the robot
touch an object (see Figure 5.19).
Inspired by the method successfully employed to establish contact with the paper in the picking-
up experiment (see Section 4.5.2), Cgen

touch initially registers the robot hand’s current joint angles as
reference posture, θref. Alternatively, a given posture could be used as reference, but tests revealed
that the desired hand posture and the actually actuated hand posture often differed too much. Once
θref is known, an arm-motion is performed until the current hand posture θcur differs by more than
a specified threshold, ∆θmax, from the reference posture:

contact established if ‖θcur − θref‖P > ∆θmax,

where ‖.‖P is the normalized Euclidean distance with diagonal weighting matrix P and ∆θmax
is the posture difference threshold. Usually, P contains diagonal entries ∈ {0, 1}, allowing us to
manually select hand joint angles that are to be taken into account for the stop criterion. Subse-
quently Cgen

touch triggers a transition into a selectable target state. As Cgen
touch does not specify the

robot actions that actually induce the change of the hand posture, it can be seen as a concurrent
interrupt mechanism.
In order to reduce the amount of boiler-plate code that was necessary to employ Cgen

touch to actually

8 A single perceive/action cycle consisting of a downwards movement and a subsequent sensor-readout could
easily take some seconds.

9 The author thanks Robert Haschke for his help with the ideas and the implementation of the interface and the
controllers
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touch the paper, the more specialized Ctouch controller was implemented (see Figure 5.19a) that
internally employs Cgen

touch. Ctouch initiates an arm movement before entering Cgen
touch. It is important

that this movement actually (after some time) leads to the desired change of the hand posture,
which causes Ctouch to immediately interrupt the arm movement before exiting to a selectable tar-
get state.
Due to the passive compliance of the air-pressure controlled robot hands, joint deviations can di-
rectly be translated to applied forces according to a nonlinear spring law. Therefore, not only the
posture difference threshold, but also the joint stiffness employed for the initial hand posture θinit
can be used to select an appropriate contact force.
Alternatively, sufficiently sensitive tactile feedback could be used to estimate contact forces. How-
ever, even though a variant of the Cgen

touch controller employing tactile feedback was initially imple-
mented, this feedback channel was subsequently not used. In addition to the unfortunate placing
of the touch sensors (see Section 2.2), the main reason for this was that the measured tactile feed-
back based contact forces were very sensitive to changes in the angle between the touched surface
normal and the sensor orientation. Here, the passive hand compliance is actually disadvantageous
as even a stiffly actuated contact hand posture allows the robot fingers to comply with the surface,
which alters the angle between sensor and the touched surface and thus makes it very hard to select
an appropriate force threshold.

Actively Maintaining Contact Force using Tactile Feedback

The second feedback based controller that was implemented for the paper folding experiment was
used to maintain a contact force between the finger tips and an object surface. In contrast to the
Ctouch controller that was implemented as an includable HSM-substate, the Cforce controller was
implemented as a native feature of the hand server. The basic feature of the hand server process is
to actuate hand postures defined by a posture vector and a joint mask. In the standard version of
the hand server, the hand controller would simply try to maintain the target posture. An optional
stiffness parameter defines the maximum air pressure value that is internally used to counteract
contact forces with workspace objects.
The extension of the hand server features so called active postures, which are enriched with target
tactile sensor values for selected finger tips. When receiving an active posture, the hand server
internally spawns a controller process that actively maintains the target tactile values. Since the
robot hand’s finger-tip sensors are sensitive on the inner side only, closing the hand increases
the contact force and opening the hand decreases it. Due to this direct relationship, a simple
P-controller driving the finger flexion yields good results:

∆θflex
i = αi · kp · (ftarget − fcurrent).

The αi define joint-specific gain modulation factors that are needed to accomplish stronger flexion
of proximal joints. Otherwise fingers would tend to curl inwards, which would, in turn, result in
loosing contact with the tactile-sensitive palmar surfaces of the fingertips.
As theCforce controller only acts on the hand-joints, it can easily be combined with arm movements
tangential to the touched surface. By implementing the controller as a native part of the hand
server, it is not only reusable in a much simpler manner, but also significantly reduces the network
communication load of systems that deploy it.
For the folding experiment, two different active hand postures were used. The first active posture
employs all fingers except for the thumb, which is not used as in the given hand-arm-paper con-
figuration its kinematics do not allow its tactile sensors to be sufficiently oriented towards the
support box surface. This posture is used for shifting the paper and for swiping over the folded
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Figure 5.20: Hierarchical state machine (HSM) used for robot control in the folding paper experiment.
The whole structure is implemented in a linear fashion. The remaining feedback loops are
either encapsulated within the Ctouch controllers or natively implemented as active postures
(orange sub-states) using Cforce.

paper to prepare the crease. The second active posture employs only the index and the middle
finger and is used for a final precise hardening of the fold.

5.5.4 Folding Paper With the Robot

Once the feedback-based controller Ctouch and the active posture controller Cforce were available,
the final robot control system for bi-manual robotic paper folding was implemented10. Similar
to the robotic framework for picking-up paper (see Section 4.5.2), the resulting hierarchical state
machine (HSM) (see Figure 5.20) was mainly realized in a feed-forward manner. The figure does
not explicitly visualize the feedback loops of the system as these are either encapsulated within
the Ctouch controller, which is used several times, or natively implemented as active postures that
use Cforce controllers (highlighted as orange states in Figure 5.20).
The system initially registers the paper object in the arm server. The registered object’s coordinate
frame can then be used as a reference for robot movement commands.
In the following, each top-level HSM state is explained successively. For an optimal connection
to the corresponding robot movements, four representative and temporally ordered key-frames are
provided for each state. In order to facilitate the comparison of these key-frames, all images are
identically cropped.
It is important to note that the course of the interaction sequence is deliberately explained in a
very detailed manner in order to emphasize the large set of minor heuristics and pragmatical
fixes that were necessary to accomplish the task. Although the developed system is currently not
capable of solving arbitrary anthropomorphic folding tasks, the principled way in which the system
was designed means that, in theory, more complex interactions can be achieved by building upon
simpler interaction primitives. The concept of a bottom-up approach that combines basic action
primitives in order to implement complex actions is presented in Section 6.5.

10 A video that shows the final robotic folding sequence can be found [Elbrechter et al., 2012b] (second half).
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Prepare Placing

(a) (b)

(c) (d)

Figure 5.21: (a) Initially the paper is placed arbitrarily on the support box and its coordinate frame is
estimated. (b) The right hand (visible on the left side of the images) hovers relative to the
paper coordinate frame. (c) By performing a diagonal movement with the hand (upper right
to lower left) using the Ctouch controller, unintended shifting caused by touching the paper is
minimized. (d) Contact is established; the paper can be shifted.

The system starts in the idle state and transitions to the prepare placing state when a manual trig-
ger command is received. Here, the system detects the initial position of the paper and establishes
contact with the paper. The first sub-state of the prepare placing state is detect, which is itself im-
plemented as an includable sub-HSM. The detect sub-state11 subscribes to paper/T events, which
are inserted into the ActiveMemory instance by the 3D estimation and modeling unit (see Figure
5.18a). As soon as a paper/T event is received, the transformation of the registered paper reference
object is updated and a transition to the next state is performed. During the implementation of the
HSM, it first seemed obvious to implement these features by creating an overarching super-state,
which concurrently receives paper/T events in order to keep the paper object’s reference frame
always up-to-date. However, tests revealed that performing robot movements with respect to the
paper object’s coordinate frame while that frame is updated concurrently led to chaotic outcomes.
Therefore, updating the paper reference object’s transformation with respect to visual feedback
was performed only when it is explicitly needed. The subsequent place-hand sub-state aligns the
robot hand with the edge of the paper using a predefined relative transformation with respect to the
registered paper object. Thereafter, an instance of the Ctouch controller is used to establish contact
with paper.

11 Dependent on the location where its HSM snippet is included to the main HSM file, detect can also become a
top-level state etc.



5.5. ROBOT CONTROL 113

Place Paper

(a) (b)

(c) (d)

Figure 5.22: The paper is shifted towards the rear right corner of the support box to facilitate pinch-
grasping its corner with the other hand (a-d) . While the paper is shifted, the Cforce controller
(implemented as an active posture) is used to maintain a given contact force.

Once contact with the paper is established, it has to be shifted towards an edge of the support box to
allow pinch-grasping with the left hand. In order to deal with paper movements that occurred while
the hand established touch with the paper, vision-based paper detection is once again triggered to
update the paper object’s coordinate frame, Tpaper. The following shifting motion moves the paper
to a predefined position and orientation in the world, described by the homogeneous transform
Ttarget. This is possible by assuming a well known and fixed position and orientation of the support
box. If the support box, or a real table edge, were not previously known they could be detected by
visual input, and the resulting target position of the paper would have to be computed dynamically.
During the shifting action the paper is now temporarily assumed to be attached to the robot hand.
The high friction of the rubber covered fingers avoids slippage. Let Trobot be the current robot
end effector transform, which is queried in the plan shift sub-state, the end target robot effector
transform is given by

T ′robot = TtargetT
−1
paperTrobot

The resulting shifting motion itself is implemented using an active shifting posture that uses all
fingers (except the thumb) for feedback-based control of the contact force. The active posture is
not deactivated when the movement is finished. Instead, the controller remains active to fixate the
paper while it is pinch-grasped and bent by the other robot hand.
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Pick Corner

(a) (b)

(c) (d)

Figure 5.23: While the paper is fixated by the right robot hand, its rear right corner is pinch-grasped by the
left robot hand (visible on the right side of the image). (a) A fast arm movement is used to
approach the paper quickly. In parallel, the pre-grasp posture is actuated. (b) A much slower
velocity is used for adjusting the z-position to avoid that the robot-server’s collision handling
predicts a collision between the extrapolated position of the hand knuckles and the table top.
(c) The hand is moved horizontally to bring the paper corner between thumb and forefinger.
(b) To grasp the corner of the paper, the final pinch-grasp posture is actuated.

After the paper has been shifted towards an edge of the support box, one of the paper corners can
be pinch-grasped by the left hand. Due to the lack of an integrated global planner, the left arm
is initially pre-rotated to ensure a desired arm-rotation for the subsequent steps. The compliant
hand design, the non-rigid support box and even minor slippage lead to the fact that even after
a precise computation of the shifting trajectory, the resulting paper position cannot be predicted
accurately. Therefore, the internally used paper coordinate frame is once again updated from the
visual feedback. Pinch-grasping is then performed in three steps. In the approach sub-state, the
left hand is positioned coarsely and the hand’s pre-grasp posture is actuated. While the robot
movement in this step can be applied very fast, the final approach to touch the paper must be
performed much more slowly, as the robot hand is in close proximity to the setup’s table top at
this point. To avoid damaging the robot hand by erroneously colliding with the fixed parts of the
setup, the robot controller uses an internal collision avoidance mechanism that extrapolates robot
movements in simulation to avoid hardware collision. The faster the robot moves, the earlier it has
to be interrupted to ensure that it can be stopped before a collision occurs. Therefore, the final part
of the movement (the last 6cm) is performed very slowly in the dedicated down sub-state. Finally,
in the grasp sub-state, the hand is moved towards the corner of the paper and the final pinch-grasp
posture is actuated.
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Step-wise Bending

(a) (b)

(c) (d)

Figure 5.24: The hand-crafted bending motion, defined relative to the detected paper coordinate frame is
performed. (a) The hand is moved upwards without rotation. (b) The paper is bent by si-
multaneously translating and rotating the hand. This is achieved by interpolating smoothly
through a recorded sequence of reference postures. (c) The intrinsic maximum model cur-
vature is reached. Therefore the modeling unit is triggered to add a center fold line (orange
line) to the physical paper model. (d) At the end of the folding sequence, the Ctouch controller
is used to fixate the bottom layer of the paper while the top layer is fixated by the grasp.

After pinch-grasping the corner of the paper, the time has come to execute the bend. An obvious
approach for the realization of the bending movement was to implement a circular hand trajec-
tory that is applied in parallel to an appropriate hand rotation. However, the task turned out to
be much more complex than initially expected. The practical issue, that the arm server did not
support independent translation and rotation movements in a synchronized manner, was solved
by performing rotation and translation in small alternating steps. However, also apart from this
technical issue the bending trajectory proved to be very complicated to realize programmatically.
The desired arm trajectory was neither a circle nor an ellipse, but a rectangular movement with
beveled corners. Furthermore, it turned out that the rotation and translation speed need to be de-
coupled and have to be adapted over time. Together with the fact, that a very special movement
was necessary to finally orient the left hand appropriately so that fixating both layers of the paper
using the Ctouch controller was possible while not releasing the pinch-grasp, it was decided to im-
plement the movement by interpolating smoothly within a series of hand-tuned reference postures
recorded relatively to the paper coordinate frame12. Due to the lack of an automatic fold detection,
the detection and modeling unit (see Figure 5.18a) is explicitly triggered to add the fold line to the
model at a certain point during the bending motion.

12 The postures were manually defined by moving the robot with a space mouse.



116 CHAPTER 5. BENDING AND FOLDING

Re-fixate Paper

(a) (b)

(c) (d)

Figure 5.25: (a) The right robot hand releases the paper carefully to avoid dislodging it from the left
hand’s fixation. To do this, the pneumatic muscles are relaxed. (b) The right hand is moved
out from the space between the two layers of the paper. (c) The right hand is appropriately
re-positioned on top of the paper. (d) Finally, both paper layers are fixated using the Ctouch
controller.

When the system transitions to the refixate paper state, the paper is temporarily fixated by both
robot hands. However, at this point neither of the hands fixates the paper appropriately for flat-
tening with the other hand. The right hand fixates only the bottom layer so that releasing the left
hand would result in the paper unbending immediately. In contrast, the left hand fixates both pa-
per layers, but only the top layer, which is still pinch-grasped, is firmly fixated. The fixation of
the bottom layer is not only weak due to the decreased friction of the hand’s fabric finger covers,
but also because of the fact that the left hand touches that layer of the paper with the outer finger
surfaces only. A human would easily adapt the fixation posture to achieve a more stable fixation
center, but such a movement was not possible with the robot hand. Therefore, the paper fixation by
the right hand is updated to fixate both layers of the paper properly. To this end, a trivial sequence
of hand-crafted and manually tuned movement primitives, defined with respect to the paper frame,
was used. The initial release sub-state employs the knowledge about the difficulty of carefully
releasing the paper gained in the picking up experiment (see Section 4.5.2). In the following arm
up state, the robot arm is first slightly moved upwards and then horizontally away from the paper
to minimize contact with the upper layer of the paper. Before the hand is positioned appropriately
over the paper to prepare the re-fixation in the reposition sub-state, the paper coordinate frame is
updated from visual input. The final fixation is again implemented using the Ctouch controller.
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Release Grasp

(a) (b)

(c) (d)

Figure 5.26: The complex fixation of the paper by the left robot hand is undone (a,b) Carefully releasing
the paper starts with relaxing the hand’s pneumatic muscles. This not only releases the top
layer from the grasp, but also the pressure-based fixation of the bottom layer. (c,d) The left
hand is moved away from the paper.

Once both layers of the paper are firmly fixated by the right robot hand, the left hand is prepared
to transform the bent center of the paper into a fold. To this end, first the right hand is released
and the arm is moved upwards. Releasing the hand is particularly complex here since the upper
layer of the paper is still firmly grasped and held down. However, releasing the pneumatic hand
muscles before moving the arm helps to minimize unintended pulling or shifting of the paper.
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Flatten Paper

(a) (b)

(c) (d)

Figure 5.27: The bent paper is flattened by the left hand in order to facilitate creasing. (a) The left hand
was released from the paper and the paper coordinate frame is queried from the modeling
unit. (b) The hand is positioned over the paper. A downwards movement is initiated to
establish contact using theCtouch controller. (c) Once contact is established, the active posture
controllerCforce is used to maintain contact pressure while swiping over the bent paper center.
(d) Swiping over the bent center results in a weak crease.

Making a fold into the sheet of paper is realized in a two step manner. Before a precise creasing
operation can be applied to harden the paper’s fold line, the fold is prepared by swiping with a low
force over the bent paper. The current paper coordinate frame is once again queried. After posi-
tioning the hand appropriately with respect to the detected paper coordinate frame, a combination
of the feedback-based controllers is used to realize the swiping motion. First, Ctouch is used to
establish contact using a low posture difference threshold, resulting in a weak contact force. Sub-
sequently a hand-crafted swiping motion is performed while an active posture is activated. The
pattern of this combination of the feedback-based controllers matches the method used for initially
shifting the paper. However, while shifting was performed with the high-friction rubber covered
fingers of the right robot hand, the swiping motion is performed with the low-friction fabric covers
of the left hand and the paper is simultaneously fixated by the right hand. At the end, the left hand
and the arm are released and moved upwards to prepare the robot for the final creasing motion.
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Crease Paper

(a) (b)

(c) (d)

Figure 5.28: The weakly flattened crease is hardened by a precise two-finger creasing motion of the left
hand. (a) Initially, the coordinates of the physical model’s fold line is queried (blue line, in
(a) hidden by the orange line) from the detection and modeling unit and the hand is placed.
(b)The Ctouch controller is configured to measure the joint displacements of the two used
fingers only. (c) As soon as contact is established, the Cforce controller is used to maintain the
contact force during the creasing motion. (d) Once the creasing motion is accomplished, the
paper is folded in half.

Creasing the paper is achieved in a very similar way to the preceding flattening step, but with a
few noticeable differences. In the crease paper:detect sub-state, not the paper coordinate frame
Paper/T, but the 3D position and the orientation of the approximated crease-line Paper/C is queried
from the detection and modeling system. Once the coordinates of the fold line are available,
the actual creasing motion is performed with the robot’s fore and middle fingers. Again, both
feedback-based controllers are used here. The end result of the folded paper after both robot hands
have been removed is shown in Figure 5.29. The folding was successful, but the final creasing did
not fully harden the fold on the left hand side.

5.6 Discussion

In this chapter, the formerly presented robot system for picking up paper (see Section 4.5) was
extended and improved in order to realize the more complex task of bi-manually folding a sheet
of paper in half. To realize this, extensions along several axes were necessary.
By improving the marker-based visual detection of key-points, the system is much better able to
deal with even severe occlusions, which naturally occur very frequently during the manipulating
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Figure 5.29: End result of the robotic folding sequence. The paper is well folded, but the hardening of the
fold was not fully successful on the left hand side.

of paper. The implemented detection engine for BCH-markers was shown to significantly out-
perform the previous markers in terms of the maximum detection distance and the error rate for
marker identification. The more flexible physical model, which is able to represent crease-lines
and to memorize deformation of the paper significantly increases the complexity of paper config-
urations that can be modeled and tracked by the system. The capabilities and the limitations of
the system were evaluated on the basis of several common paper folding experiments carried out
by a human. By introducing a new vision-guided model control law that is able to move arbitrary
model coordinates, not only was the present marker-based key-point detection mechanism inte-
grated, but also a major prerequisite for the potential use of other more general and marker-less
key-point estimation mechanisms was provided for. Furthermore, the performance of the whole
vision-based detection and modeling system was optimized so that it can deal with at least 6 1-
mega-pixel cameras running at 15Hz on a single PC in real-time.
For the realization of the robotic experiment, two versatile feedback-based controllers were devel-
oped and integrated. Their value was demonstrated by deploying them several times during the
robotic paper-folding sequence. The Ctouch controller, which is used for joint-feedback based con-
tact establishment, was used in several very different hand-object configurations. It proved to be
useful not only for common four or two finger based touching, but also when establishing contact
while a grasping posture is actuated. The tactile feedback based controller for maintaining a cer-
tain contact force, Cforce, was also successfully used for different tasks, such as shifting, fixating
or creasing the paper.
The final robot control system was successfully used to fold the paper in about 80 seconds and
through an extensive manual tuning process a final overall success rate of 80% (16 our of 20
trails) was achieved.

5.6.1 Visual Detection

Even though, the improvements applied to the marker detection system were very satisfying, the
necessity to densely cover the paper with fiducial markers on both sides is one of the system’s
major drawbacks. While a possible alternative would be to use invisible to the human eye IR-
reflective ink markers with appropriately filtered cameras, this overhead is not something we seri-
ously considered. Furthermore, fiducial marker detection cannot simply be exchanged by the use
of common generic image features, such as SURF [Bay et al., 2008] or ORB [Rublee et al., 2011]
as such generic image features are very prone to errors [Rublee et al., 2011]. While these are
commonly filtered out using RANSAC [Fischler and Bolles, 1981] based methods, the assump-
tion is that objects are rigid, which is not the case for highly deformable paper. Alternatively, 3D
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point-cloud-based detection of deformed paper seems possible, but common ICP [Zhang, 1992]-
based rigid body tracking algorithms need to be adapted and several performance issues have to
be solved. In addition, the segmentation of the paper object from the whole point-cloud becomes
very difficult, in particular in presence of severe occlusions by the manipulating robot or human
hands. In order to provide a better idea of possible marker-less detection and tracking of the de-
formation of paper, a prototype system was developed and its potential was qualitatively evaluated
in the Sections 6.2 and 6.3.

5.6.2 Modeling

The physics-based model of paper was shown to provide the flexibility needed for the given task.
One of its major drawback is, however, the inaccurate approximation of diagonal folds. Due to the
fact that the grid and constraint structure of the paper is static and only the stiffness coefficients
of existing bending constraints are altered to model foldable parts of the paper, a relatively high
number of initial model grid cells is needed. In order to make the resulting denser grid of soft
body nodes behave like paper, a very large set of bending constraints is needed, which makes
the modeling system easily hit the computational limits on current hardware. In Section 6.1, a
generalized paper model is presented in which the paper is no longer defined by a regular grid of
nodes, but by an irregularly triangulated and bounded 2D surface in 3D space. When a fold line
is added to the paper model, each existing paper triangle that is intersected by that line (in the 2D
paper model space) is broken into three further triangles. By this mechanism an intended fold can
be modeled precisely by a line. In turn, this allows the initial triangulation of the paper to be much
more coarse.
Another drawback of the detection and modeling engine is the fact that crease lines have to be
added manually to the model. A more elaborate system could start with a coarse paper grid that
is then automatically refined locally along automatically detected fold lines. For automatic fold
line detection several promising approaches, such as incorporating local curvature approximation
or even particle based systems, in which each particle represents a whole fold configuration of
the paper, could be considered. In order to provide a better understanding of the potential and the
limitations of such a system, a prototype was developed and coarsely evaluated (see Section 6.4).

5.6.3 Robot Control

Even though, the extensions to the presented detection and modeling engine were shown to be
well suited for monitoring even very complex paper manipulations, the task selected for the robot
was explicitly chosen to be simple. The main reason for this was the uncertainty of how to inte-
grate vision, modeling and proprioceptive robot feedback in a more complex interaction scenario.
Instead, a simpler task allowed the essential aspects to be explicitly put into focus. In particular
we wanted to explore contact situations with the paper, which led us to the development of the
generic closed loop feedback controllers Ctouch and Cforce. However, while these controllers al-
lowed the paper-folding task to be carried out in a sufficient manner, the experiment also revealed
the limitations of the hard and software setup.
The Shadow dexterous robot hands were not only very difficult to maintain in good working order,
but an increase in their speed and pose-accuracy (in both actuation and proprioceptive measure-
ment) would have contributed significantly to the quality of the final demonstrator. An adaption of
the system to the newly available Shadow motor hands [Shadow Robot Company, b], would solve
most of these issues. However, while the passive compliance of the used Shadow dexterous hands
reduced the likelihood of the hands becoming damaged, using motor hands would necessitate a
detailed active modeling of their compliance properties.
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The system for bi-manual paper folding was able to react to many dynamic factors, mostly result-
ing from the imprecise shape prediction of the deformed paper. Despite its flexibility, most parts
of the manipulation sequence had to be hard-coded. Possible future extensions range from more
dynamic handling of proprioceptive, visual and haptic feedback, over autonomous and hierarchi-
cal planning of paper manipulation patterns to learning from demonstration or even autonomous
exploration.
The deformable but plastic behavior of manipulated paper generates high demands on tactile sen-
sors needed for the robot hands. While humans can detect forces with their finger tips ranging over
many order of magnitudes, tactile sensors, small enough to fit into a robot finger tip and yet able
to robustly recognize contact with a part of a piece of paper are still not available [Kõiva, 2014].
Given sensitive enough finger sensors, the demand for the visual feedback could be significantly
relaxed. In turn, this would also allow more complex in-hand manipulation that does not rely
necessarily on the counter-force provided by the table-top to be performed. In an optimal system,
the robot’s hand-eye-calibration would be smart enough to seamlessly join both visual and tactile
information streams, allowing the system to dynamically rely on the type of information that is
given with a higher accuracy, relevance or certainty.
Finally, we note that the system does not use autonomous planning at all. The main reason for
this is that it is not supported natively by the used robot control architecture. As discussed in
Section 5.1, planning of interaction with compliant objects, in particular paper, is a very complex
task that is thus far not even close to being fully solved in all of its aspects. By integrating the
Bullet-Physics engine into a robot planning framework, the paper model could be used for plan-
ning without a large overhead. However, it is important to mention that the integration of physics
into robot planning has until now not been completely solved as it requires the accurate tuning of
physics parameters, which is even difficult for the case of rigid objects [Weitnauer et al., 2010].
Further concepts regarding the robot control for anthropomorphic manipulation of paper and other
paper-like objects are comprehensively discussed in Section 6.5.



6 Advanced Aspects

This chapter provides some insights into possible future extensions and indeed general directions
the paper detection, modeling and manipulation framework could proceed in. While thus far, each
application chapter contained a whole iteration cycle along each of the axes detection, modeling
and robot control, the aspects presented here are treated separately and are not integrated into final
demonstrator systems.
As discussed in Section 5.6.2, the regular grid structure of the original paper model shows a poor
modeling accuracy when modeling diagonal folds. Therefore, a more sophisticated physical pa-
per model was developed and implemented that no longer relies on a predefined and regular grid
structure. The new model’s surface is represented by an unordered set of triangles, whose corner
vertices define the link between a position in the world and an arbitrary position on the bounded
2D surface in space. Instead of modeling folds by adapting the stiffness coefficients of intersecting
bending constraints, the new model automatically splits intersected triangles in order to represent
the fold line precisely in a geometrical manner. The model is described and qualitatively evaluated
in Section 6.1 and it is used as a basis for other extensions presented in this chapter.
The strongest negative remark received concerning the detection system was the necessity to
densely cover the sheet of paper with fiducial markers. Due to the availability of the Microsoft
Kinect camera, the obvious question is whether the marker-based detection could be replaced em-
ploying point cloud processing methods – if necessary, supported by standard 2D-image feature
detection. In order to provide a better understanding of the possibilities, difficulties and realis-
tic limitations of such an approach, a marker-less point-cloud-based test system for paper-tracking
was designed, implemented and evaluated in a qualitative fashion. As an initial test, a trivial exten-
sion of standard iterative rigid-body tracking methods is presented and a set of possible heuristical
optimizations is evaluated (see Section 6.2). This leads to the insight that the major drawback of a
missing static and reliable association between paper-surface points and points in the point-cloud
cannot be fixed without incorporating more complex features. Therefore, an additional extension
that combines classical Iterative Closest Point (ICP)-based tracking with 2D SURF-features that
are mapped into the input point-cloud is introduced (see Section 6.3) and its tracking performance
is compared to the original marker-based tracking.
Another drawback of the existing system is the fact that folds have to be added manually, i.e. both,
the temporal onset of adding a fold as well as the new fold’s geometry have to be provided. A
system that allows folding actions to be detected automatically would significantly contribute to
the reduction of the needed user input. However, we note that when embedded into a robotics
system, the temporal onset of the adding of a fold can be easily obtained as the robot knows when
it starts to fold the paper. In contrast to this, the actual fold geometry is extremely likely to differ at
least slightly from the intended geometry. Therefore, a service that automatically detects the actual
fold geometry would allow the robotic system to decide whether a folding action was carried out
successfully or whether it has to be redone. A difficult sub-problem here is to distinguish between
heavy bending of the paper and actually folding it. As this can become arbitrarily complex to
differentiate if the system’s input is only the current paper configuration, two extended approaches
were considered. The first idea was to not only track the deformation of the paper, but also the
movements of the manipulating hands. From this, the system would be able to much more easily
detect when the paper is actually folded. However, since this entails the necessity of being able
to track the manipulating human hands, an alternative method was investigated, developed and
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evaluated. In certain situations, when it seems probable to the system that a fold line was added, a
particle system is initialized, where each particle represents a fold (or non-fold) hypothesis linked
to a separate instance of the paper model. In the following processing steps, these potential models
are used in parallel for tracking the ongoing paper manipulation. After some time, the model that
is calculated to be closest to the real world situation is assumed to be correct and the other particles
are discarded. Of course, it has to be admitted that this leads to a significantly increased computa-
tional complexity that scales at least linearly with the number of particles spawned. Furthermore,
the testing system is thus far not implemented in a hierarchical manner which is a necessary step if
the system is to track several creasing operations in parallel. Some extensions towards automatic
fold detection and a discussion about the limitations of straight-forward approaches are provided
in Section 6.4.
The chapter ends with providing a theoretical concept of a generic robotic system for anthropo-
morphic manipulation of paper and other 2D deformable objects (see Section 6.5). The system is
conceptualized in a bottom-up approach, that is, it is based on an extendable set of basic action
primitives (BAPs) that are sequenced, combined in parallel or hierarchically cascaded to realize
more complex actions. The initial set of BAPs is created by monitoring an interaction sequence in
which a human folds a paper aeroplane. Subsequently, the set is employed to theoretically realize
other increasingly complex manipulations, such as flicking through the pages of a book, folding
a piece of cloth or putting a slice of cheese on a slice of bread. This allows us to continuously
refine our set of BAPs by extending and generalizing the existing primitives or by adding new
ones. Furthermore, by considering examples, which are progressively less related to paper, the
generalizability of the system is tested and tuned.

6.1 A Generalized Paper Model

The poor modeling accuracy of diagonal folds was shown to be a major drawback of the suggested
paper model (see Section 5.6.2). It not only leads to aliasing effects along non-axis-aligned fold-
lines (see Figure 6.1a), but also accounts for modeling difficulties in cases of iterative folding (see
Section 5.4). If a regular grid of nodes is kept, the only way to decrease the aliasing effect along
diagonal fold lines is to use a more fine-grained grid structure (see Figure 6.1b). However, this not
only leads to computational disadvantages, as the model’s constraint structure scales quadratically
with the number of nodes, but it also affects the overall modeling quality. The main reason for
this is the fact that a more fine-grained grid surface implicitly behaves less stiffly and therefore
more cloth-like in the Bullet physics engine. This effect can be compensated by increasing the
number of bending constraints and their stiffnesses, but only to a certain degree at which point
a further increase of link stiffness coefficients negatively effects the numerical stability of the
physics simulation.
Therefore, in this section, a generalized paper model is presented (see Figure 6.1c). In contrast to
the model used for the folding experiment (see Section 5.3), the new model is no longer limited
to a regular grid of nodes. Instead, the generalized paper model is distinguished by a set of nodes
ni = (xmi ,x

w
i ) (i = 1, .., N ), each linking an arbitrary position xmi ∈ P on the paper surface

to a current world position xwi ∈ R3. Note that P = [0,W ] × [0, H] is the bounded 2D paper
manifold (see Section 4.3.1) and the paper’s undeformed size is assumed to be W × H . The
nodes are connected by a set of triangles ti = (t1i , t

2
i , t

3
i ) where each tji ∈ {1, .., N} indexes a

certain node. The triangle set is defined in such a way, that i) P is fully covered by triangles and
ii) triangles never intersect. The paper surface function p : P → R3 is defined by piece-wise
bi-linearly interpolating between the world positions referenced by the triangles’ corner indices.
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(a) Old model (coarse grid) (b) Old model (fine grid) (c) New model (dynamic)

Figure 6.1: Comparison of the fold modeling accuracy between the original model (a,b) and the new model
(c). After performing an initial diagonal fold (top row), a second intersecting fold is added
(bottom row). (a) The coarse grid structure (12 × 15 nodes) leads to a strong aliasing effect
along the fold. The resulting model tension limits the maximum fold curvature so that the fold
appears not as sharp as intended. In turn, the surface stiffness remains too refractory to allow
a second intersecting fold to be added unless all constraints within an area around the fold are
also weakened by adding several additional parallel folds (bottom a). (b) A fine grid structure
(30 × 40 nodes) allows folds to be modeled more precisely but the increased computational
complexity is no longer real-time tractable. (c) The new generalized model features a dynamic
grid structure. Thus, folds no longer have to be approximated, but they can be represented
by real geometry. By these means, even with a very small initial node count (here 39) both,
diagonal and intersecting folds are represented very precisely.

6.1.1 Constraints

In a similar fashion to the formerly presented paper models, the physical soft-body stiffness of
the generalized model is defined and controlled by constraints cij that define a desired distance
rij ∈ R+ of the two referenced nodes ni and nj . An additionally attached stiffness coefficient
sij ∈ [0, 1] allows us to control the weight of the constraint. Again, we have to distinguish be-
tween constraints that connect adjacent nodes (distance preservation constraints) and those span-
ning over one or more other nodes (bending constraints). However, in contrast to the model used
for the picking-up experiment, the adjacency of nodes is no longer defined by a minimal city-
block distance in the discrete paper model grid, but by the edges of the triangles associated with
the paper-model. To this end, for each triangle ti, the 3 edges {(tki , tli)|k, l ∈ {1, 2, 3}, k 6= l} are
treated as distance preservation constraints. Since adjacent triangles can share an edge, doubled or
reversed links are discarded internally. The missing regular grid of nodes leads to the same issues
for systematically creating bending constraints, which were before also added using the city-block
metric. Instead, bending constraints are now added on the basis of the pairwise 2D Euclidean
distance of two nodes in the paper space.

6.1.2 Folds

Adding a fold line to the paper model was from a technical point of view, one of the most complex
and difficult features to implement (see Figure 6.2). In a similar fashion to the formerly presented
testing applications, fold lines are added manually to the model using a mouse-based drag-and-
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(a) Initial paper model (b) Model after fold line added (c) Magnification of one triangle

Figure 6.2: Adding a new fold line to the paper model by splitting existing intersecting triangles (a) Shows
the original paper model that is initialized with a regular triangle structure. (b) Adapted paper
model. Each triangle that intersects with the fold line is split into 3 smaller triangles. (c)
Magnification of a single split triangle. The two intersected edges, A and B, of the triangle are
cut at the points iA and iB .

drop gestures. As a simplification, the splitting of triangles can be performed in the 2D projection
space of a virtual camera, which allows us to perform the splitting in 2D rather than in 3D space,
however, the implemented method can easily be extended.
The mouse gesture yields a 2D line L. The split of the paper along that line can basically be
performed on each triangle separately. To this end, the paper nodes are first perspectively pro-
jected using the visualization’s current view camera parameters, yielding the paper as a set of
2D-triangles that can be intersected efficiently with L. In general, a 2D triangle is either split by L
into a triangle and an irregular quadrangle or it is not intersected at all. Without loss of generality,
the split intersects two lines A = ab and B = ac of a triangle (a,b, c) (see Figure 6.2c). The
split ratios of A and B, rA and rB , provide the intersection points iA on A and iB on B. These
are defined by

iA = a + rA(b− a) and iB = a + rB(c− a).

Hence, the problem of finding the intersection between the line L and the triangle can be reduced
to finding the intersection of two line segments (pairwise, L with ab, ac and bc), which can be
implemented efficiently using standard 2D geometry methods.
Due to the law of the preservation of distance ratios under projective transforms, the splitting
factors rA and rB can directly be used for the splitting of the model triangles that are defined
in the model space P . While the adding of a fold lines requires mostly trivial adaptions to the
first order links (i.e. distance preservation constraints) of the model which basically reflect the
model’s triangulation state directly, the adaption of the bending constraints is much more com-
plex. In particular, if the system is to adapt the stiffness of a certain fold in a subsequent step of
the manipulation sequence, added fold lines have to be stored internally. By these means a fold’s
current geometry can be memorized. This was implemented using a discrete 2D fold map, which
memorizes the fold state of each very small (i.e. 1mm2) surface patch of the paper model. The
fold map function C : P ′ → [0, 1] approximates the theoretical bending stiffness of the paper at a
given 2D model position, where P ′ is the discretized version of the model space P .
Whenever a fold is added, or its stiffness is altered, it is memorized in a discrete fashion in the fold
map C. After each adaption, all bending constraints are re-created and their stiffness coefficients
is set to the minimal fold map entry that intersects with the link (see Figure 6.3g-j). As an alterna-
tive to this, folds could also be memorized in a geometrical representation, which, however, leads
to several non-trivial numerical issues when deriving a constraint’s stiffness from the set of inter-
sected fold lines. The presented technique that is based on the 2D projection has several indirect
advantages and disadvantages. It’s major drawback is the fact that it only guarantees completely
straight fold lines if the paper is fully flat. In other cases (see Figure 6.3a-c), a bend model can
lead to also curved fold lines that do not allow the paper to be actually folded.
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However, in contrast to this rather negative side effect of the method, it also provides a set of
implicit advantages that allow for a very natural and intuitive mouse based adaption of the model.
In order to force straight fold lines, the system could compute the intersection of the mouse line
L with the paper edges only and then perform the splitting along the straight connection line in
the undeformed 2D paper model space. However, tests showed that such a heuristic feels far less
intuitive and even sometimes leads to completely unpredictable behavior, in particular, when the
model edge is, due to its deformation, intersected more than twice. In addition, the presented in-
teraction method mimics the behavior of real paper very well when many layers are folded on top
of each other (see Figure 6.3d-f).

6.1.3 Moving the Model

The movement of the model is important for both, mouse based interaction with the model as well
as for moving the model to reflect incoming vision based input. Due to the lack of a regular grid
structure, the original control law (see Section 5.3.2) had to be extended in order to be able to deal
with the new model structure that is based on irregular triangles. In contrast to moving the nodes
defining the model quadrangle that contains the model position pm that is to be controlled, the
new control law moves all nodes in the vicinity (in the paper space) of pm. Again, the movement
is applied using velocity based control in the physics engine. However, rather than using αi =
max(1−‖pm−xmi ‖, 0) (see Equation 5.2) as a node-specific weighting factor for the movement
amplitude of node ni, a Gaussian

αi = gσ(‖pm − xmi ‖) (6.1)

is used to model the locality of the movement law. An internal cut-off threshold αmin that avoids
moving nodes using negligible velocities is only used for performance optimization. Thus, based
on the 3D displacement d = tw−pw between the to-be-moved paper surface position pw and the
target position tw, the P-controller for the velocity-based control of node ni is defined analogously
to Equation 5.1:

vi =

{
αiλd αi > αmin
0 else

(6.2)

By altering the movement radius σ of the Gaussian, more centralized and more localized move-
ments can be implemented (see Figure 6.4).
The new model, along with the generalized control law, can be used as an alternative to the original
model. However, rather than using the new model to re-do the original experiments, its capabilities
are now demonstrated by employing it in the following extensions for marker-less paper detection
(see Sections 6.2 and 6.3) and automatic fold detection (see Section 6.4).

6.2 Kinect-based Paper Detection

One of the main drawbacks of the paper tracking approach thus far (see Sections 4.2 and 5.2) is
the necessity to cover the paper with markers. While the use of fiducial markers significantly fa-
cilitates tracking, it also severely decreases its suitability for daily use, since augmenting all paper
with markers is not feasible. Due to the availability of affordable RGBD-cameras such as the Mi-
crosoft Kinect device, an obvious advancement would be to replace the current multi-view marker
tracking with a new detection framework based on point cloud processing. However, before a pro-
totype marker-less system is proposed, the particular issues solved by the marker-based detection
approach are highlighted again. In the absence of 3D information, multi-view approaches must
solve the registration issue in the different camera views, i.e. the system has to find identical points
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(a) Fold through curved paper (b) After relaxation (c) Possible deformation

(d) Fold line through several layers (e) Successive folds (f) Resulting fold lines

(g) 2nd order links (h) No links along crease (i) Complex double quash fold (j) Fold-map

Figure 6.3: Demonstration of the presented mouse-based technique for manually adding fold lines. (a-c)
Curved fold lines. (d-f) Intersecting fold lines. (g-j) Bending constraints and fold map. (a) The
mouse gesture results in a straight (blue) line L, but the paper model is curved. All triangles
of the current deformed paper model that intersect with L are split. (b) Once the fold is added,
the paper can be transformed back into its undeformed state, revealing the resulting curved
fold line. (c) The curved fold line does not allow the paper to be actually folded, but bending
along the line is possible. (d) Another model was folded once and a second fold line is added.
The new fold line intersects both layers of the paper model. (e) The second iterative fold
was applied. Note that the visible clipping artifacts are caused by an internal tension in the
physical model that is caused by the physic engine’s self collision handling. Deactivating self
collisions suppresses these issues, but allows impossible folding operations to be performed.
(f) After unfolding the model, the resulting fold line structure is revealed. The second fold line
was only straight, when it was applied to the deformed paper. (g) In its initial state, the paper
nodes are connected by bending constraints if their pairwise distance on the paper surface is
below a given threshold. (h) Once a fold line is added the intersecting links are deactivated by
setting their stiffness to a very small value (10−5). (i) The mouse based interaction framework
even allows complex double squash folds to be added to the paper model. In order to lower the
model tension in the vicinity of the sharply intersecting folds, each fold line was added twice.
(j) Fold map of the model before performing the double squash fold. It shows that each fold
line was added twice.
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(a) Small σ (b) Medium σ (c) Large σ

Figure 6.4: Effect of different movement radii σ. In order to amplify the local movement of the paper
for visualization, the global paper stiffness coefficient was set to 0.01, which made the paper
behave softer, i.e. more like a tissue than like common printer paper. The lines show the
movement direction and the qualitative movement strength of each of the nodes.

in several views. Since the extraction of dense depth-maps using common multi-view geometry
methods is known to have severe issues with homogeneous image regions and with their real-time
applicability, key-point based method are often preferred. These, in general, estimate a large set of
key-points in each of the images. Subsequently, at each key-point position, a generic image feature
vector is computed that usually describes the image’s local color distribution and/or gradient in-
formation in the vicinity of the key-point. In the subsequent matching phase, the feature vectors of
different views are pair-wise compared. The ratio between the matching quality of the best match
and the second best match yields a good indicator for the overall specificity of the match, allowing
good matches to be filtered out using a simple threshold. If a feature match in at least two views
is found, the key-point’s 3D position can be computed using standard triangulation methods.
However, Rublee et al. [2011] showed that existing state of the art generic image features1 strug-
gle with matching reliabilities of only between 30-50%. Actually in our experience even these
numbers are only attainable with images showing either high contrast textures or structures. This
means that an empty sheet of paper might offer few, if any, generic features that could be used to
solve the registration issue in a multi-view system. Moreover, the manipulating hands that also
produce features have to be taken into account.
In order to still use generic image features even in the presence of more outliers than inliers, the
rigidity of a tracked object is commonly taken into account to allow a consensus set of inliers to
be statistically filtered out using RANSAC based methods. However in the present case of de-
formable objects, there is no rigidity that can be exploited. For deformable objects that have a
distinct number of links and joints, each link could be tracked separately by performing RASAC
only on the key-points associated to that link. However, even assuming a characteristic texturing
of the manipulated object, these methods can still not be transferred to compliant objects such as
paper or cloth directly. The continuous deformability could be counteracted by approximating the
object surface by a large number of small rigid patches – comparable to the physical modeling
that we presented – but the smaller the patch size, the less likely it is to find a sufficient number
of distinguishable features. The marker-based detection engine we implemented simply uses the
defined key points provided by the markers to bypass all of these issues.
The Microsoft Kinect device circumvents the registration problem internally using a structured
IR-light emitter that projects a – for the human eye invisible – quasi-random speckle pattern into
the scene. From the displacement of the dots in the IR-image and the known stereo axis between
the IR camera and the IR emitter, an 11bit depth image is computed in hardware on the camera de-

1 They compared SURF, SIFT and their own ORB features
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vice. Together with intrinsic and extrinsic camera parameters obtained from camera calibration2,
a non-linear transform is used to compute a metric depth image that is then again used to obtain a
3D point cloud. Unfortunately, the color camera in the Kinect is not pre-calibrated, necessitating
an expensive mapping of the color image into the point-cloud in software to associate color infor-
mation to point-cloud points.
However, while the use of Kinect for point-cloud acquisition indirectly avoids the multi-view re-
gistration problem, finding an association from a detected 3D point in the world to the correspond-
ing 2D position on the paper surface, previously accomplished using fiducial markers printed onto
the paper, cannot be solved in a trivial fashion. A simple estimate of this association can be calcu-
lated if temporal consistency is assumed. Once the paper-model and the point cloud of the paper
are correctly aligned, the assumption of small paper movements between two consecutive pro-
cessing frames allows us to assign the nearest point in the point cloud to a given model position,
i.e. by performing Iterative Closest Point (ICP) [Besl and McKay, 1992] for tracking. We imple-
mented an initial Kinect-based tracking prototype in order to investigate how well this approach
can cope with configurations in which the assumption of temporal consistency is wrong, i.e. when
the tracking of the paper is lost. The remaining question of how to segment the point cloud in
order to filter out non-paper points is initially solved using a bright blue sheet of paper in front of
a non-blue background, which allows simple color-based segmentation to be used.
In 2003, Haehnel et al. [2003] presented an extension of the ICP algorithm that allows deformable
objects to be tracked. Due to the lack of a ready-to-use physics engine, they defined simple soft-
links between neighboring model nodes and because of the absence of appropriate sensors, they
did not address the real-time applicability of their system. Another comparable system for Kinect-
based tracking of 3D objects was presented by Schulman et al. [2013b] with impressive results.
However, while their system conceptually generalizes to using arbitrary point-cloud features, they
used a completely homogeneous model that did not take into account folds. Instead, a low global
model stiffness was combined with thick materials so that the created folds could satisfactorily be
modeled by narrow bends. Furthermore, we note that the basis of our algorithm is significantly
simpler than the EM-based algorithm they used. Most recently in 2017, Petit et al. [2017] pre-
sented a further comparable system to track the deformation of a pizza-shaped object. Based on
state-of-the-art GrabCut segmentation and spatio-temporal tracking, they used a model based on
finite elements methods that they tracked using an ICP-variant for deformable object.
While all of these system are conceptually very similar to our initial approach, non of them used
a model that explicitly handles folds. In addition, we first present an extra set of heuristics to im-
prove the tracking results (see Section 6.2.2). Subsequently, we include 2D-image-based SURF-
feature tracking into our ICP pipeline, which leads to an astonishing improvement in tracking
performance. (see Section 6.3). Finally, even methods to automatically detect when and where
folds are added to the model are presented and discussed (see Section 6.4).

6.2.1 A Kinect-based Prototype for Tracking Paper

In this and in the following sections, a prototype system for marker-less paper tracking is pre-
sented. Starting with a straight forward ICP-based approach, the system is enhanced heuristically
in a step-by-step manner in order to deal with the most obvious issues. We emphasize that our goal
was not to completelysolve the issue of marker-less tracking of a sheet of paper being manipulated
by a human in this work. Rather, the presented and evaluated iterations of the system should be
considered as a feasibility study towards such a system. We employ the generalized model pre-
sented in Section 6.1.
The processing pipeline (see Figure 6.5), can coarsely be subdivided into three processing steps.

2 This is also natively supported by ICL (see Figure 3.5)
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Figure 6.5: Processing pipeline for the initial kinect-based paper tracking framework. The whole pipeline
can be coarsely divided into the three parts Point cloud creation, Octree creation and Model
fitting

(a) Input color image (b) Eroded binary image (c) 3D Segmentation LUT

Figure 6.6: Color segmentation. (a) Input color image. The segmentation task is rather simple because the
paper color can be easily distinguished. (b) Resulting binary mask. In order to remove single
pixel outliers that often occur due to bayer-decoding artifacts along image edges, the segmen-
tation output is post-processed with an erosion filter. Remaining small foreground regions,
such as the one corresponding to the Intel logo on the notebook, are filtered out by using only
image regions that have at least a chosen minimum amount of pixels. (c) Visualization of the
3D color distribution of the paper. Due to the use of a different amount of significant bits per
channel, the distribution space is flat. A common practice is to use less bits for the lightness
channel to better cope with changing lighting conditions and shadows. In the example, 6 bits
were used for the hue and the saturation channel, but only 4 bits for the lightness channel.

In the first step, the scene’s point cloud is created. To this end, the calibrated camera parameters
are used to create the points’ XYZ coordinates. In parallel, the relative transformation between
the Kinect’s color camera and the Kinect’s depth camera are used to map the provided RGB image
into the point cloud, resulting in an additional mapped RGB-tuple for each point.
Subsequently, points that do not belong to the paper have to be filtered out. After extracting a color
image from the point cloud, which is necessary to obtain the image data in a supported planar pixel
layout, color segmentation is used to create a binary paper-pixel mask. The employed color seg-
mentation method uses a certain number of significant bits per HLS color channel for efficient
indexing in a 3D look-up-table, which represents the color distribution of the paper. An example
is shown in Figure 6.6. For additional details about the segmentation method, which is also avail-
able in ICL (see Section 3.3), the reader is referred to Schroder et al. [2012]. By using the mapped
color image for the color segmentation, the binary mask’s x/y-pixel positions directly correlates to
the x/y-positions of the points of the organized input point cloud. In the initial ICP-based model
tracking approach, for each model node, the closest paper point cloud point must be found. This
crucial step is performed in each ICP-iteration, so when using a naive nearest neighbor search, the
overall complexity is O(N ·M · K), where N is the number of model nodes, M is the number
of paper point-cloud points and K is the number of ICP-iterations. For the case of standard rigid
body ICP the update steps between ICP-iterations are commonly performed directly by comput-
ing a single affine mapping between the current points and associated points, which usually results
in a fast convergence after less then five iterations. In contrast to this, in our method, the affine
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Creation NN search Approx. NN search
PCL Octree [1mm resolution] 19ms 1000ms 250ms
PCL Octree [10mm resolution] 8ms 1400ms 185ms
PCL Octree [32mm resolution] 4ms 2700ms 300ms
ICL Octree [Leaf capacity 16] 6ms 45ms 11ms

Figure 6.7: Benchmark of the two Octree implementations. For the creation, a full 320× 240 point cloud
was inserted into the Octrees. Subsequently, each contained point was used for a nearest
neighbor search and for an approximate nearest neighbor search. A further decrease of the
PCL Octree resolution did not provide better results.

rigid body mapping is replaced by applying the P-controller-based model control law (see Section
6.1) for each association, which works, due to the coupling with the physics engine, less directly.
This means that our ICP tracking implementation requires more iteration cycles to reliably reach
convergence.
A common method to reduce the ICP complexity to O(N · logM · K) is to pre-organize the
point cloud data in a hierarchical spatial search structure, such as an Octree or a KD-Tree. In a
first attempt, the PCL-Octree implementation 3 (see Section 3.2.6) was integrated into the sys-
tem. However, it turned out that the provided nearest neighbor search mechanism was at least
an order of magnitude too slow for the desired real-time performance of the system. As a re-
placement, an Octree module was implemented and integrated into ICL. The implementation was
realized as a generic class template that employs several compile-time constants for optimization
of data-handling, fixed-point-approximation and memory allocation. In contrast to the PCL-Octree
implementation that operates on top of an existing point cloud and deals with point indices, the
ICL-implementation directly contains the point cloud points in order to optimize memory ac-
cesses internally. While the time for the Octree creation is comparable in both implementations,
our implementation’s nearest neighbor search is at least 20 times faster. A concise benchmark
comparison is given in Figure 6.7. The PCL Octree is defined by an internal leaf node resolution.
Each cubic leaf node contains a list of points that are in the corresponding voxel. In contrast to
this, the ICL Octree implementation uses a maximum capacity for each leaf node. In general, the
use of larger leaf nodes make the Octree creation faster, but the nearest neighbor search slower.
It is important to mention that the PCL Octree only supports a more general K-nearest neighbor
search which was called with K = 1 for the benchmark. For the ICP-based tracking, the points of
the paper segments of the point cloud are inserted into the Octree structure. This can be done in
negligible time since the number of points that are actually inserted is only a fraction of the size
of the whole point cloud. Subsequently the ICP-loop is entered and iterated for a fixed number of
cycles.
While the basic formulation of the ICP algorithm is used to align two rigid 3D point sets, in our
case, only the observation data is given as a 3D point set. However the grid-nodes of the model
provide a well suited approximation of the model surface and thus are analogous to a 3D point
cloud. Therefore, per iteration step, each model node is moved into the direction of its nearest
neighbor in the paper point cloud, if the distance to this nearest neighbor is not larger than a
threshold that was manually set to 50mm. The model movement (see Section 6.1.3) is realized
with a very small movement radius so only the actual node is affected by its movement. Using
10 ICP iterations, a sufficient tracking adaptability of the model is reached. Even though a very
visible tracking latency exists, the model usually never gets lost. However, due to the small com-
putational footprint of each cycle, it takes more then 90 ICP iterations before the overall tracking
frame-rate is affected4. We note that the Kinect acquisition frame-rate is itself limited to 30 Hz. At

3 pcl::octree::OctreePointCloudSearch<pcl::PointXYZ>
4 On an Intel R©CoreTM i7-4700MQ CPU @2.40GHz, 16GB Ram, 64Bit Ubuntu Linux
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(a) (b) (c)

(d) (e) (f)

Figure 6.8: Tracking the paper while it is turned upside down. When the paper is too parallel to the
camera’s view-axis, it becomes invisible for the used Kinect device. (a-c) The paper normal is
rotated away from the camera’s view axis direction. (d) The paper is lost by the Kinect camera
and the model is slowly straightened by the physics constraints. As the model tracking is only
applied when the paper point-cloud is visible, the model orientation is not adapted. (e) Once
one part of the paper point cloud becomes visible again, tracking continues. However, since
only the top-part of the paper is visible, also the bottom part of the model is drawn upwards
leading to a curled model surface. (f) Only when the whole paper point cloud becomes visible
again, the model straightens.

approximately 50 iteration cycles, the tracking system seems to be saturated so that more iterations
do not lead to an additional obvious improvement.

6.2.2 Strengths, Weaknesses and Heuristical Improvements

Despite our rather simple approach, the tracking performance of system is very impressive as
long as the paper deformation is moderate and the paper is mostly oriented towards the camera.
However, in contrast to the marker-based tracking system, the new system can not distinguish
which side of the paper is oriented towards the camera or one long/short edge of the paper from
the other one, which means that whenever the system recovers from a loss in tracking of the paper
deformation or orientation, the model might have flipped its sides. Whether this has undesirable
consequences or not, depends on the actual application.
A more severe issue of the kinect-based tracking system emerges if the paper’s surface normal
direction gets orthogonal to the direction of the camera’s view axis (see Figure 6.8d). If this
happens, the Kinect cannot detect the paper surface and the paper simply disappears from the
scene. As long as the paper remains in this relative orientation to the camera, the nearest-neighbor-
based tracking does not detect any close neighbors and the tracking is disabled. Figure 6.8 shows
a very common paper movement scenario in which a sheet of paper is turned over. Due to the
fact that this issue actually emerges from the image acquisition in the camera, there is no straight
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forward way to fix it. A possible solution would be to use two Kinect devices with orthogonal
view axes, but in that case the surface re-construction quality deteriorates due to the interference
of the two speckle patterns.
Figure 6.8e highlights another major issue of this tracking approach. In cases in which only a part
of the point cloud is visible, the model can become curled as more and more nodes are drawn into
the attractor field of the visible section of the paper. A workaround for this issue is to invert the
ICP-tracking, i.e. to not find a nearest point cloud neighbor for each of the model nodes, but to
find a nearest model node for each (or for a subset) of the paper point cloud points. Since the
point cloud has a variable size that is usually at least one or two orders of magnitude larger than
the number of paper nodes, only a subset of the point cloud points can be used as origins for the
nearest neighbor search if real-time applicability is to be preserved. In order to achieve a better
control of the size of the subset, the number of random samples that is drawn from the paper point
cloud can be linked to the current number of paper nodes. Using four times as many random
points than model node points provided a good trade-off between speed and ensuring with a high
probability that the majority of the model nodes are selected at least once as a nearest neighbor.
This adaption of the ICP heuristic fixes the issue of a curling of the paper model if only a part of
the paper point cloud is actually visible. However, it also introduces two new issues. While the
original version was not responsive to segmentation errors as long as the paper remained visible
(see Figure 6.9a), the adapted version tends to pull the model towards erroneously detected paper
point cloud segments (see Figure 6.9b). In addition, the coarse sampling of the model leads to a
strong randomization of the movement targets for single nodes, which makes the model shaky and
the physics engine slower. Increasing the number of samples that are drawn enables a stronger
balancing of these updates, but it also increases the resulting magnitude orthogonal to the model
surface, which can lead to alternating model movements due to an overshooting of the target
position. This, in turn, must be counteracted by decreasing the movement amplifiers. While
the affinity to attract the model towards erroneous point cloud segments is a general issue of the
inverted tracking method, the randomization can be decreased by not only using the model grid
nodes, but by further sampling the model surface in order to get a more detailed approximation.
Alternatively, it would have been possible to extend the ICP implementation internally, to estimate
closest points by minimizing point-to-triangle distances, but while a sketch of this extension was
carried out, implementation was not feasible given the limited remaining time. Moreover, it is
not clear that the results would actually be better as one can easily argue that the two methods
converge as the model sampling resolution is increased. Figure6.9c shows the decrease of the
node-movement randomization. However, the sampling-heuristic comes with a severe increase of
the computational cost for each ICP step, which then does not only consist of nearest neighbor
searches and applying the physics engine, but also of sampling the model and inserting the model
points into an extra Octree to be able to perform the nearest neighbor search efficiently. This
limits either the number of ICP cycles that can be performed at full frame-rate (here, only about
10 rather than 90 cycles are possible) or the tracking frame-rate itself, which in turn makes the
tracking more difficult due to larger frame-to-frame movements of the paper.
Another issue that can be observed with both ICP methods is a deterioration in tracking speed for
in-plane model movements, in particular in-plane rotation. A possible reason for this is the small
tangential movement force component (see Figure 6.9a) of the velocity-based control. While for
movements along the surface-normals each movement contributes mostly to move the model to the
target position, in the rotation case, only the corner nodes and a few adjacent edge nodes actually
provide a rotational impulse. The same effect exists for the case of translating the paper in-plane,
because here, also only the edge nodes that are moved out of the point cloud contribute to the
movement. A first attempt to correct this involved amplifying the control velocity in cases where
the node movement direction is more orthogonal to the nodes surface normal n̂i, which leads to a
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(a) Original version (b) Inverted ICP heuristic (c) Inverted with sampling

Figure 6.9: Analysis of the model updates in case of in-plane model movement for the different heuris-
tics. The images assume the model (blue grid) and the point-cloud (light gray background) to
be perfectly aligned in the z-direction. (a) The initial ICP method provides small rotational
updates only for the corner nodes and for a few adjacent edge nodes. Erroneous paper point-
cloud segments usually do not have a negative influence on the tracking performance unless
they are close to the model. (b) The inverted ICP heuristic avoids curling of the paper if only a
part of the whole paper point cloud is visible (not visible in the figure), but it has issues caused
by a stronger randomization of node movements and with erroneously detected paper point-
cloud segments. (c) Sampling the model in order to achieve a better point-cloud approximation
minimizes node movement randomization, but also incurs a significant reduction in speed.

refinement of Equation 6.2:

vi =

{
αiλd(1 + βn̂τi d̂) αi > αmin
0 else

, (6.3)

where d̂ defines the normalized displacement direction and β defines the gain of the compensa-
tion 5. Before the movement law (see Equation 6.3) was finalized avoiding movement amplifi-
cations that are not orthogonal to the node’s surface normals, an experiment was carried out in
order to test whether the compensation term actually improves the tracking of in-plane rotations.
Using a synthetically created rotating paper point cloud as input, the experiment showed that the
fix only has a minimal effect. By repeating the same rotation tracking experiment with differ-
ent model grid resolutions, it turned out that the tracking becomes worse with larger numbers of
model nodes, leading us to the conclusion that the rotational velocities, applied to the corner and
edge nodes are mostly compensated by the resting majority of inner nodes. A strategy to handle
this issue would need to also suggest movement directions for the inner model nodes. This idea
is readopted for the extension of the point-cloud based tracking system presented in Section 6.3.
Here, inner model updates are generated by detecting SURF-features in the Kinect color image
that mapped into the point-cloud.

6.2.3 Folding the Paper in Half

It was important to test the capabilities of the Kinect-based tracking system during an interest-
ing interaction Scenario. However, unlike the marker-based tracking system, which worked for

5 i.e. β = 0: no compensation, β = 1: maximum compensation factor is 2, etc.
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many complex interaction sequences (see Section 5.4.2), here, we restricted the experiment to a
single folding action (see Figure 6.10). To be able to track more complex interactions additional
extensions are needed. The figure shows an unsuccessful (see Figure 6.10a-d) and a successful
tracking trail (see Figure 6.10e-i) and once again underlines the lack of a reliable association be-
tween point-cloud points and model surface coordinates. The tracking of the manipulation fails
when the bent part of the paper is lost by the Kinect due to its orientation towards the camera (see
Figure 6.10c). When this occurs, all parts of the model are drawn towards the remaining visible
point cloud, leading to an unfolding of the already modeled 90 degree fold. When the bent part
of the paper becomes visible again the tracking mechanism cannot recover as the discrepancy be-
tween the model and the point cloud data is too large.
In a second exemplary sequence (see Figure 6.10e-i), the movement was carried out more quickly
which reduced the time when the top part of the paper was invisible and thus the model does not
have time to erroneously unfold completely and therefore the tracking continues correctly. How-
ever, once the model reflects the folded state of the paper, the tracking technique does not suffice to
track subsequent unfolding (see Figure 6.10j-l). It is important to mention that the success rate for
tracking the folding operation was less than 10% and it strongly depended on the relative orienta-
tion of the paper towards the camera, the overall speed of the manipulation and thus the movement
speed of the paper parts and the amount of occlusion. In particular, the fact that in its current form
the system cannot recover once tracking is lost means that it has limited value. Attempts to track
more complex scenarios were not carried out given these failings.

6.2.4 Discussion

The development of the prototype system for point-cloud based detection of a manipulated sheet
of paper helped to get valuable insights about the potential and the difficulties of such an approach.
While the initial ICP-based algorithm provided promising results, the introduction of heuristics to
fix some of the most obvious issues led to new errors. However, these prototyping studies allowed
us to illuminate the two main issues of the Kinect tracking system.
The first and most severe drawback is the lack of a reliable association mechanism between de-
tected paper point-cloud points and 2D model coordinates. The only mechanism available to us
is the spatio-temporal one in which the previous state of the model is used to drive the current
state. This is sufficient if the paper remains fully visible and the movement is slow. An obvious
first improvement would be to try to identify edges and corners of the paper in the point-cloud,
but the development of an additional prototype led to severe complications when confronted with
occlusions and deformations. Therefore, a more complex but also more general extension of the
original tracking approach was implemented that enhances the ICP-based tracking using SURF-
features6 that are detected in the Kinect’s color image and then mapped onto the model surface.
The final tracking system, presented in Section 6.3, then employs a combination of ICP-based and
SURF-feature-based tracking.
The second drawback, which turns out to be even more difficult to overcome, is that the method
only pulls the model towards detected paper point-cloud points, it does not push it away from
positions where no points were found. Solving this requires us to overcome two major difficul-
ties. First, the system would have to be able to distinguish whether the non-existence of a paper
point-cloud patch around a given position allows to infer that the real paper is actually not there.
Alternatively, the paper could just be invisible due to (self-)occlusion or due to the perception
geometry itself. A proper differentiation of these situations would require the system to actu-
ally model the perception system, in a similar way to the view-based model-tracking approach of

6 The actual feature type must not necessarily be SURF; the implemented system only requires features to have a
2D image anchor.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.10: Kinect-based tracking of a sheet of paper while it is folded in half using the Kinect-based
tracking system. We here used the initial version as the inverted ICP heuristic yielded worse
results. A central fold line was manually added to the model beforehand. (a-d) In the first
sequence the motion was slow and the tracking failed. As soon as the grasped part of the
paper is oriented towards the kinect device it disappears and the model is dragged towards
the visible part of the paper point cloud. When the missing part of the paper reappears, the
tracking cannot recover (d). (e-i) In the second sequence that was explicitly performed with
a faster movement, the folding operation could actually be tracked successfully. Due to the
faster movement, the model did not relax its deformation in the short time where the bent
part of the paper was not visible (between f and g). After this, the tracking recovers, so the
final folded state of the paper is recognized (i). (j-l) However, a following unfolding of the
two parts is not recognized by the tracking system as the two folded parts are not explicitly
distinguished.
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Oikonomidis et al. [2011]. Secondly, a repulsion mechanism is needed to make the model avoid
locations where the actual paper is known not to be.
Due the immense programming effort required for such an approach, which would only attain real-
time performance if major parts of the system were ported to a GPU-based implementation, this
was not pursued any further. Furthermore, the manipulating hands would also have to be tracked
and modeled in real-time in order to correctly model occlusions.

6.3 Supplementing Point-clouds with 2D-SURF-Features

In the previous ICP-based approach, associations between 3D point cloud patches and 2D model
coordinates were derived using only spatio-temporal information, which led to severe issues in
cases where the tracking was lost. In order to obtain an additional information source to augment
this association mechanism, a new approach that extends the original ICP-based tracking by at-
taching SURF-features to the paper model surface, was implemented.
While the original ICP-based tracking was not adapted, the new SURF-feature-based mechanism
is triggered concurrently and yields additional model node updates for coarser paper movements.
Several adaptions to the system structure and also to the paper itself were necessary to facilitate
this update to the system.
As our method can employ any kind of 2D image features, we omit a detailed investigation of
SURF-features. We decided to use SURF-features because of their known combination of accu-
racy and speed and therefore integrated a SURF-feature tracking module into ICL (see Chapter
3) that provides a unified interface for a CPU and a GPU-based detection backend. In order to
combine the option for trivial color-based segmentation with reliable SURF-feature detection, a
blue-tinted graffiti image was printed on both sides of the paper (see Figure 6.12a).
After describing how the original ICP-based processing pipeline was extended (see Section 6.3.1),
the results of a set of new interaction experiments are presented (see Section 6.3.2) and the gen-
eralization of our approach when tracking the folding of commonly textured paper is evaluated
(see Section 6.3.3). Finally in Section 6.3.4, we discussion the results of our marker-less tracking
approach in general.

6.3.1 Extending the ICP-Pipeline by SURF-feature Detection

The input to the SURF-feature detection pipeline is a gray-scale converted instance of the origi-
nal pipeline’s mapped RGB color image, which is as an intermediate processing result that was
already available (see Figure 6.11). However, the image cannot directly be used for SURF-feature
detection. A number of initial experiments showed that the low texture contrast, emerging from
the artificial necessity of a segmentation-friendly blue-in-blue texture, leads to a very low number
of significant SURF-features. Therefore, a contrast enhancement operation must be applied to the
gray-scale image. To this end, a custom high speed local contrast operator was employed.

Local Contrast Enhancement for Optimized SURF-Feature Detection

State-of-the-art methods for contrast enhancement usually aim to reach an equalization (or a sim-
pler stretching) of locally computed histograms and are therefore computationally very expensive
[Kokufuta and Maruyama, 2009]. In contrast, the proposed method is based on a region’s average
gray-value only, which can be computed in constant time when exploiting the properties of the
integral image representation introduced by Viola and Jones [2001]. The correction of an input
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Figure 6.11: Extended processing pipeline including the original ICP-based model tracking (bottom, red
boundary, for more details refer to Figure 6.5) and the new additional SURF-feature-based
tracking components (top, blue boundary). The new pipeline is subdivided into a SURF-
matching part and an Update creation part. While the ICP-based pipeline remains indepen-
dent from the new components, the SURF-feature-based pipeline uses several existing inter-
mediate processing results from the ICP-based pipeline, such as the RGB-D-mapped color
image and the paper-Octree.

pixel’s intensity value gxy is computed using the following linear function

f(gxy) = s · (gxy − µxy,wh + θglobal) + 127, (6.4)

where s is the linear slope, µxy,wh is the average gray value in the rectangular region of size
w × h centered at (x,y) and θglobal is an additional global threshold. The results are clipped to the
range [0,255]. The open parameters of the operator, the global threshold θglobal, the neighborhood
size w × h and the slope s allow a wide variety of results to be obtained. We found the most
crucial factor to be the mask size. While a very small mask size, e.g. w = h = 3, yields a
Laplacian-like border image, a very large mask size approximately a third the size of the input
image size, results in a local contrast equalization. An intermediate mask size, 10 × 10 pixels,
yields a good combination of both (see Figure 6.12d) leading to a strong amplification of local
contrasts. Depending on the used slope value, gray-scale gradients can be also be intensified. A
list of the important intermediate image processing result images is presented in Figure 6.12.
Figure 6.13 visualizes the SURF-feature matching performance that was reached by employing
the presented local contrast enhancement method. Even in the presence of a cluttered background
and despite the fact that the front face texture and the back face texture look – at least to the human
eye – very similar, an outstanding matching performance is achieved. In the depicted snapshot (see
Figure 6.13b) more than 50 real matches but only 3 false ones were detected. Of course, it has to
be admitted that the error ratio gets significantly larger in the presence of severe occlusions and in
situations in which the paper is oriented further away from the camera, but in the running system,
a very simple selection heuristic allows us to achieve good tracking results (see Section 6.3.1).

Octree-based Ray-Casting for Fast 2D/3D Association

An additional implementational difficulty was the fact that the mapping from the color image into
the point cloud could not simply be created using a constant-time projective transform. Instead,
an Octree-based ray-cast mechanism was implemented that uses a feature’s view-ray to find the
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(a) Input RGB image (b) Segmentation (c) Grayscale image (d) Local contrast enhanced

Figure 6.12: Intermediate image processing results (a) Input RGB image, derived from the Kinect point-
cloud. In contrast to the raw color image, provide natively by the Kinect driver, the image
is mapped into Kinect’s depth camera’s frame resulting in some black gaps, where no point-
cloud points were detected. (b) Color segmentation result. Even though the paper is no longer
uniformly colored with a single blue tone, the segmentation works satisfactorily well. The
remaining single-pixel error regions are intrinsically removed by only using larger connected
regions as the input for the paper point-cloud. (c) Converted gray-scale version of the input
image (a) underlines the low contrast of the paper texture. (d) After local contrast enhance-
ment, the paper region’s texture uses the full scale of possible pixel values from black to
white, allowing for a much better and more reliable detection of SURF features.

(a) Paper texture maps (b) Detected paper

Figure 6.13: SURF-feature matches between the two paper reference images (front and back face, left)
and the current observation (right). Even though, the textures of the front and back face
look very similar, there is only a negligible amount of mismatches in which features from
the actual (front) side of the paper are erroneously matched to features on the back face’s
reference image. Without using the presented contrast enhancement method, only about 5
correct feature-matches were detected in the present situation.
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Figure 6.14: Visualization of the implemented Octree structure and ray-cast mechanism. In order to speed
up the search of points that are within an epsilon-tube around the view-ray (purple line), only
sub-volumes of the Octree are searched whose bounding sphere is close enough to the view-
ray. Searched sub-volumes and points, actually used for the view-ray distance calculation,
are highlighted in white. The resulting points, closest to the view-ray are highlighted in red.

corresponding point-cloud point closest to the ray (see Figure 6.14). The ray-cast mechanism
implements a broad-phase search mechanism that pre-filters the point-cloud’s points on the basis
of the Octree’s axis aligned bounding boxes (AABBs). Thus, only point-cloud points, whose
parent AABB intersects with an epsilon-tube around the view-ray need to be processed. The use
of an epsilon-tube rather simply the view-ray, is necessary to avoid missing very close points. If
several point-cloud points are very close to the view-ray, the point closest to the camera is used.
Here, the hierarchical structure of the Octree allows the ray-cast to be sped up significantly as for
AABBs that are filtered, none of the child-AABBs must be processed at all. In the example in
Figure 6.14, about 67000 points 7 are contained in the point cloud but the distance to the view-ray
has to be calculated for only for 870 of them. For a speed comparison against the naive point-
by-point comparison, a small experiment was conducted. 100 naive ray-casts take about 30ms for
QVGA resolution and, due to the linear dependency to the number of points, about 120ms for a
VGA point cloud. The Octree-based ray-cast mechanism performs the task in about 0.8ms and
does not even take measurably longer in the VGA case, i.e. it provides a speed-up of factor 35 to
150, dependent on the point cloud resolution. The additional time needed to create the Octree can
be neglected as the Octree is already available from a previous processing step.

Creation and Selection of Optimal SURF-Feature-based Model Updates

The SURF-features are detected in the grayscale converted instance of the Kinect’s mapped color
image. However, in order to use a detected SURF-feature, its current 3D world position and cor-
responding 2D paper-space position must be computed. For the latter, the fact that the obtained

7 In the example, the point cloud is 2D-organized and has QVGA (320 × 240) resolution, but the unknown 3D
points that correspond to the gaps in the depth image of the used Kinect-Device are heuristically discarded
before the insertion into the Octree
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(a) While shifting the paper (b) While rotating the paper (c) While folding the paper

Figure 6.15: Visualization of the resulting SURF-feature-based model updates. Each gradient (yellow to
red) line indicates a matched SURF-feature and thus visualizes directly the associated model
update, by connecting the position where a particular feature was detected in the world (yel-
low end) and the current position of the associated paper patch (red end). For the examples,
the feature-match filtering technique of using only 90% of the actual feature matches (filter-
ing out the longest updates) was employed. The thick white lines are the explicit fold lines
that were explicitly added to the model.

feature association is not necessarily correct has to be taken into account. Initially, each SURF-
feature match Mj = (mm

j ,m
i
j) is described by two 2D positions, where mm

j defines the position
of the match in the template, i.e. in the paper-model space 8, and mi

j defines the associated pixel
position in the current input image. By using the Octree-based ray-cast mechanism with the view-
ray that corresponds to mi

j , the 3D world position mw
j of the feature is estimated leading to a

simple model update: move paper model position mm
j towards mw

j in the world, which can be
realized directly with the model movement law presented in Section 6.1.3.
However, due to the missing rigidity of the tracked object, erroneous feature matches cannot be
filtered out statistically by means of RANSAC-based methods, another filtering mechanism is
needed. While single outliers that would move a model patch to an arbitrary wrong position in the
world is implicitly coped with very well by the constraints of the physical model, more frequently
occuring outliers are likely to negatively influence the whole tracking performance.
It can be assumed that correct matches are statistically much more likely to produce updates with
a smaller displacement ‖p(mm

j ) −mw
j ‖ between the to-be-moved paper position and the target

position than wrong matches that erroneously link two more or less random positions. Thus an
almost trivial filtering heuristic can be defined. In each tracking step all model updates are sorted
by their displacement and only the shortest 90% are actually executed. In cases where more errors
are to be expected, such as when not using SURF-Feature-friendly textures (see Section 6.3.3),
the percentage can of course be lowered. The heuristic implicitly provides good adaption proper-
ties in cases of larger paper movements. The relative contribution of erroneous matches linearly
decreases with the magnitude of the actual movement of the paper. We expect erroneous matches
to yield updates that are uniformly distributed but have on average a magnitude of approximately
half the size of the field of view. Thus, in cases of larger movements of the paper, the likelihood
to accidentally include erroneous updates increases. However, as in this case the relative con-
tribution of the wrong updates with respect to the sum of the correct ones becomes increasingly
negligible, the update mechanism is still able to handle the situation satisfactorily. As soon as the
paper movement stops, the 90% cutoff works perfectly well again. Examples for the resulting set
of SURF-feature-based model updates are given in Figure 6.15 and they are also visualized in the
evaluation images in Section 6.3.2.
An advantage of the presented approach is the seamless combination of the ICP-based tracking

8 For the actual internal implementation, the features on the front face of the paper and on the back face of the
paper must of course be handled appropriately.
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and the SURF-feature-based tracking. The ICP-based tracking is particularly well suited to fine-
tune the model-surface locally, which can, due to the dense point-cloud-based target, also react to
very small paper-patches. In contrast, the SURF-feature based tracking produces a much sparser
and unevenly distributed set of updates that are, however, able to associate points independently
from their distance in the world-frame. In contrast to the ICP-based tracking, a rather large image
patch must be visible to robustly detect a SURF-feature.
The tracking system runs at frame-rates between 5Hz and 20Hz on an Intel R©Xeon R©E5-1620 run-
ning at 3.60GHz equipped with an NVidia R©GeForce 660Ti graphics card. Even when using a full
VGA XYZRGB-point cloud from Kinect, the computationally most expensive processing step is
to solve the soft-body dynamics carried out by the bullet physics engine. In particular due to
the inaccurate SURF-feature-based model updates, the solving step takes significantly longer in
cases of larger paper movements, which explains the large variability of the obtained frame-rate.
A significantly faster solving of the soft-body dynamics would only be possible by integrating a
GPU-based solver.

6.3.2 Qualitative Evaluation of Human Folding Sequences

Analogously to the evaluation of the marker-based tracking system (see Section 5.4), the marker-
less tracking framework based on a combination of classical ICP and SURF-feature-based track-
ing was evaluated on the basis of a set of typical human manipulation sequences. The results can
be summarized by saying that even though the marker-less tracking system does not completely
match the original marker-based approach, its performance gets very close to it. Indeed there are
even some less complex folding scenarios in which it even outperforms the marker-based system.
Due to stability issues with the underlying bullet physics engine, self-collision handling was dis-
abled for the tests and tracking frame-rate bottlenecks were sometimes manually counterbalanced
by deliberately decreasing the manipulation speed.

Iterative Folding

Iterative folding interactions were difficult for the original marker-based tracking system. In par-
ticular, a third fold resulting in eight layers of paper stacked on top of each other could not be
tracked satisfactorily. Here, the new marker-less tracking system performed significantly better,
allowing not only a third fold, but also a forth fold to be robustly tracked (see Figure 6.16).

In contrast to the iterative folding experiment with the marker-based tracking system, it was not
even necessary to have the system memorize the folds that were applied to the paper. This can
partly be explained by the disabling of the physical self-collision of the model that leads to less
tension around the folds within the model and by the fact that the generalized model represents
the fold lines much more accurately than the grid-based model used in combination with the
marker-based tracking system. However, the main reason for the superiority of the point-cloud-
based tracking in this case is the fact that the marker-based tracking only provides features for the
model update as long as markers are fully visible. Here, in particular the ICP-based model update
branch still provides reliable and dense model updates for the tracking. In addition, the ICP-based
tracking has an implicit tendency to glue layers of the paper together if they are aligned. This effect
is explained in Figure 6.17. If the maker-paper is folded in half, only the top of the resulting two
layers of the paper is visible, resulting in absolutely no updates to the invisible layer. Therefore
the movement of the invisible part of the model depends on the physical constraints only, making
it necessary to avoid an accidental unfolding of the model by memorizing the fold explicitly. In
case of the ICP-based tracking, however, also the theoretically invisible parts of the model parts
not seen by the camera are attracted to the point-cloud, so all model layers are moved towards
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(a) Initial model with fold lines (b) After first fold (c) After second fold

(d) Extra fold line added (e) After third fold (f) After fourth fold

Figure 6.16: Tracking of an iterative folding sequence. (a-c) The first five fold lines are added initially
allowing the paper to be folded three times in orthogonal directions. (c,d) After the second
fold, an extra fold line through all four layers of the folded paper is added, which then allows
the paper to be folded two more times. (e) The paper is folded in half for the third time.
At this stage reliable SURF-features are scarce, so the system mainly relies on ICP-based
tracking. (f) The paper is folded in half for the forth time while its deformation is still almost
perfectly tracked.

(a) Marker-based (b) SURF-feature-based (c) ICP-based (frame t) (d) ICP-based (frame t+ 1)

Figure 6.17: Schematic comparison of the influence of the marker-based and the point-cloud-based model
update mechanisms. In the current situation, the real paper was moved towards the camera.
(a) Model updates for the marker-based tracking. Here, only model parts that map to actually
visible parts of the paper are moved. The remaining model parts are moved according to the
physical constraints. (b) SURF-feature-based updates. In comparison to (a), the updates are
less stable, less homogeneously distributed and some of them are filtered out, but the general
update mechanism is similar. (c,d) ICP-based model updates. The updates are denser and due
to the missing sophisticated link between point-cloud points and model-patches model parts
that map to the invisible layer of the paper are attracted towards the point cloud. An internal
ICP distance threshold that limits the maximum distance for the nearest neighbor search of
the ICP allows this effect to be partly suppressed. However, in successive time frames (d),
more and more parts of the model are drawn into the threshold region leading to both layers
of the model being stitched together after a short time.
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the same plane. This effect also explains the instability of the physical model when enabling self-
collision, which would permanently try to counteract the model updates in such configurations.
This gluing effect leads to severe issues for the marker-less tracking approach when the paper is
unfolded. Here, the two model update branches (ICP/SURF) partly work against each other during
unfolding. While the SURF-feature-based branch yields correct updates to actually separate the
layers of the paper, the ICP-based updates hold the paper layers together. When undoing the
last of the performed iterative folds, only a few SURF-based updates are available and these are
furthermore relatively small as the actual displacement of surface coordinates when folding in
half is halved with each iterative fold. At the same time, however, the ICP-based updates are not
affected, so they keep their strength. A possible heuristical solution to this drawback would be an
automatic adaption of the controllers’ proportional gains for the two update branches, but this is
left for future work.

Folding a Paper Aeroplane

The aeroplane folding experiment (see Figure 6.18), adds an additional level of complexity to the
detection and modeling framework. While the necessity to model diagonal folds was only more
difficult for the earlier regular grid based model, the more complex interaction itself yields the
major difficulty increase for the new tracking system. The aeroplane folding sequence contains
several transient states and the final shape contains many types of folds. The folds that abduct
the wings from the fuselage are approximately 90 degrees and the bottom fold of the fuselage is
approximately 130 degrees and need to be modeled. In addition, the folding sequence contains a
180 degree out-of-plane rotation of the deformed paper.
Before starting to fold the paper, all fold lines that are needed for the final paper aeroplane are
explicitly added (see Figure 6.18a). The first manipulation steps (see Figure 6.18b) pose no major
challenge for the tracking system. The diagonal fold lines of the wings’ fronts are manually mem-
orized and added to the model. When folding the wings (see Figure 6.18c), the number of good
SURF-matches found is sufficient to separate the two model wings correctly. Before the second
wing can be folded (see Figure 6.18d), the whole partly folded aeroplane must be tracked while
it is turned upside down, which is handled very well by the system. However, after folding the
second wing, the tracking of the final construction steps of the aeroplane by rotating and adapting
the wings’ fold angles fails completely (see Figure 6.18e). This step is particularly difficult for the
system for a combination of reasons. First, the large out-of-plane rotation in parallel to abducting
the wings is a difficult task, which gets even harder by the large amount of occlusions caused by
the two manipulating hands. In addition to this, the paper is already in a complexly folded con-
figuration state exposing only smaller surface patches to the camera, which not only hardens the
SURF-feature-matching significantly, but, due to new combined surface patches resulting from
the folding, also increases the likelihood for pseudo-features occurring randomly during the in-
teraction. Moreover, for the combined ICP/SURF-based tracking, the abduction of the wings is
particularly difficult because of the ICP-based tracking’s tendency to keep paper layers (here the
fuselage and the wings) together once they were co-planar.
Only by manually spreading the finished aeroplane (see Figure 6.18f) in order to expose a ma-

jor fraction of its upper surface, the system is able to recover and track the paper’s deformation
correctly. In this configuration, a significant portion of the difficulties that arose from the putting
together the aeroplane were nullified. However, it must be mentioned that even though the tracking
recovered to an acceptable level of inaccuracy, subsequent tracking was very unstable and likely to
fail again when the paper was minimally adapted. Here, the original marker-based tracking system
yielded much more robust results.



146 CHAPTER 6. ADVANCED ASPECTS

(a) Initial model with fold lines (b) Wing fronts (c) First wings

(d) Second wing (e) Severe issues (f) Improved with spreading

Figure 6.18: Tracking an aeroplane folding sequence. (a) Initial paper model with explicitly added fold
lines. Each fold line was added twice to increase the model flexibility around the folds. (b)
The front parts of the wings were folded and the folds are memorized. (c) After folding the
paper in half the first wing is folded back. (d) Before the second wing can be folded the paper
is turned upside down. (e) After finishing the last fold, the final paper aeroplane is turned the
right way up. Here, severe tracking issues occur and the system is not able to automatically
recover. (f) By spreading apart the wings, the deformation becomes less complex and more
SURF-features become visible, which allows the system to recover its tracking of the object.
However, it must be admitted that this final configuration is very unstable even if the object
remains motionless.

Folding a Paper Hat

The paper hat folding experiment adds some further aspects to the aeroplane folding sequence.
It allows us to focus on more subtle aspects emerging from small paper faces being folded and
furthermore it underlines an additional class of limitations of the tracking system. Similar to the
paper aeroplane folding experiment, the first folding steps in which the paper is only moderately
folded does not pose a large challenge for the system. Starting with an unfolded model with
prepared fold lines (see Figure 6.19a), the initial folding in half, the two diagonal folds of the
hat’s top part as well as the first part of the hat’s brim are tracked robustly without any significant
issues (see Figure 6.19b). However, while turning the partly folded model upside down in order
to prepare it for the folding of the second part of the brim, the already folded part of the model’s
brim becomes erroneously unfolded (see Figure 6.19c). This is due to the missing memorization
of the brim’s fold line, which is caused by the technical difficulty in our mouse-based approach to
select single folds by hovering them in the 2D image space. Actually the deactivated model self-
collision allows the system to perfectly recover from this by letting both layers of the paper brim
follow the folded one (see Figure 6.19d). A more severe issue of the tracking system occurs in the
next folding step. While in contrast to the marker-based tracking system, the ICP-based tracking
branch allows the brim-corner folds to be tracked (see Figure 6.19e, right), it is also prone to
accidentally believe that a small patch of the paper was folded, even though it was not (see Figure
6.19e, left). The main reason for this is the small inertia and the lack of reliably matchable SURF-
features on such small model patches, which is even compounded by the fact that such tracking
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(a) Initial Model with fold lines (b) First part of the Hat’s brim (c) After turning upside down

(d) Second part of the brim (e) One corner bent around (f) Final model tracking

Figure 6.19: Tracking of a human folding a paper hat. (a) Model endowed with all fold lines needed,
except for the final small corners of the brim. (b) All initial steps, such as folding in half and
performing the two diagonal folds were robustly tracked. The tracking of the first part of the
hat’s brim was also successful but as the resulting fold is co-linear with the still to-be-folded
part’s fold line, the fold cannot be memorized. (c) After turning the paper upside down,
tracking of the already folded part of the brim was lost. (d) The folding of the second part of
the brim also brings the lost first part correctly into position. After this, the fold lines for the
brim’s corners are explicitly added. (e) While folding the corner on the right hand side of the
image, the other model corner appears erroneously folded as well. (f) The final configuration
can be tracked, but the resulting model behaves like a flat surface. Its underlying cone shape
is not modeled correctly.

errors cannot be undone in hindsight as the ICP-tracking continuously moves the small patch along
with the actual layer of the paper it was folded onto.
Even though this error coincidentally reflects the desired target paper configuration in the present
example, its underlying explanation must be emphasized as one of the most severe drawbacks of
the proposed tracking approach because it is also responsible for the fact that the two faces of
the hat’s top cannot be separated to form the hat’s actual cone shape. Figure 6.19f shows that the
layers of the paper model behave like they are glued together.

Performing a Squash Fold

The tracking of an origami squash fold is more difficult for the system with regard to the phy-
sical modeling than to the actual visual detection. As model self-collision had to be explicitly
deactivated due to stability and performance issues within the bullet physics engine, the physical
modeling is much more likely to fail here. After preparing the sheet of paper and the model by
adding fold lines to the model (see Figure 6.20a) and performing the first diagonal fold (see Figure
6.20b), the actual squash fold is performed. However, even though the deformation of the paper
is initially tracked satisfactorily, the final model configuration is wrong (see Figure 6.20c) as the
actually to be squashed part of the paper penetrates to the top layer. Thus, the model part ends
up on the, from the viewers perspective, left hand side of the model rather than between the two
paper layers on the right hand side. A fix that makes such interactions robustly trackable would
necessitate solving the stability issues with the physics engine. Since the stability issues are a
direct result of the implemented ICP-based tracking branch, it can be concluded that the squash
fold discipline was accomplished better by the marker-based tracking system.
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(a) Initial model (b) Before squash fold (c) After squash fold

Figure 6.20: Tracking a human performing a squash fold. (a) Initial model prepared with all fold lines
needed. (b) First diagonal fold applied. (c) Final paper model after performing the squash
fold. Even though the general shape of the real paper seems to be approximated well, the
tracking of the folding operation was not successful. The doubled appearance of a diagonal
fold on the right hand side of the image shows that the inner pocket erroneously penetrates to
the top layer while the squash-fold is performed.

Crushing Paper

As the final experiment, also a paper crushing interaction was monitored, which has a stronger
randomized element and therefore requires significantly more from the tracking and modeling
system. While in the previous folding experiments the target model state was defined in a precise
fashion, which was accomplished by initially adding paper fold lines, the crushing of the paper is
supposed to deform all paper patches with equal likelihood. Therefore, the model cannot simply
be prepared with a given set of fold lines. Instead, in order to allow all parts of the paper to be
locally bent with a high curvature, the global model stiffness must be decreased. Due to the fact
that the stiffness coefficients sij ∈ [0, 1] (see Section 6.1.1) of the model’s bending constraints
internally used by the bullet physics engine do not have a well defined or documented unit, which
would us allow to infer reasonable values for the global model stiffness, the value was manually
tuned in a trial and error manner. An initial attempt to allow for an almost arbitrary curvature to
be modeled by using an extremely low global stiffness of slow = 0.01 emphasized the importance
of the internal model stiffness for the whole tracking framework. Figure 6.21 shows that the low
stiffness value leads to a permanent underfitting and agglutination of the model faces, which in
turn yields a bad tracking performance. Further tests showed that a global stiffness coefficient of
smedium = 0.2 provides a good trade-off between large local curvatures and preventing the model
from agglutinating. Figure 6.22 shows the outcome of the crushing experiment conducted using
smedium as the global stiffness value. While lighter crushing manipulations (see Figure 6.22a-c) are
tracked very well and also quantitatively correct, the result of stronger crushing (see Figure 6.22d-
e) is usually only replicated qualitatively well by the tracking system. However, in situations such
as (see Figure 6.22e), it has to be admitted that humans would also naturally switch their internal
model from a distinct deformation described by the actual shape of the paper surface, to a more
general representation, most likely referenced by a token, such as a crushed paper sphere.
Once the paper is heavily crushed, the paper deformation cannot simply be reverted. Instead, an
unfolding only flattens out the paper coarsely but the surface remains wrinkled (see Figure 6.22f).
This leads to an extra difficulty for the SURF-feature based tracking component. Even though the
qualitative change of the paper surface texture is not very obvious for the human eye, the spatially
varying lighting conditions of the wrinkled paper patches lead to a strong change of the SURF-
feature descriptors that are computed. This leads to a severe decrease of usable SURF-feature
matches, which, in turn, weakens the SURF-feature-based tracking branch significantly in such
situations.
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(a) Undeformed paper (b) Slightly crushed and occluded (c) Crushed and bent

Figure 6.21: Paper crushing manipulation carried out using a too low global model stiffness of slow = 0.01.
(a) Even in case of the undeformed paper, the model corners have a tendency to curl inwards.
(b) Parts of the model that once have been aligned are unlikely to become detached at a
later point in time, leading to a shrinkage of the model. (c) In the course of the interaction
sequence, more and more parts of the model are agglutinated into a small pack.

(a) Slight crushing (b) Crushed without occlusion (c) Point-cloud vs. model

(d) Stronger crushing (e) Crushed paper sphere (f) After unfolding

Figure 6.22: Paper crushing manipulation carried out using the manually optimized global model stiffness
of smedium = 0.2. (a) Initial slight crushing while the paper is severely occluded by the
manipulating hands. The tracking of the surface deformation works sufficiently well, except
for the occluded parts. (b) Once the occluding hands are removed, the deformation of the
whole sheet of paper is well reflected by the model. (c) For a more detailed comparison,
the situation shown in (b) is visualized again, but from another perspective. Here, the model
is not rendered on top of the scene, but, in order to visualize what is on top of what, into
it. The differences between the model and the point cloud are not critical, but some smaller
structures such as the actual shape of the center bending of the paper are smoothed out by the
model. (d) Stronger crushing of the paper in order to make a paper sphere. The visible parts
are still tracked. (e) Final paper sphere. Due to the extreme occlusions, the deformation can
only be judged in a qualitative fashion. (f) If the paper was heavily crushed once, the variable
lighting of different paper surface patches distorts the actually seen surface texture too much.
Therefore, most SURF-features cannot be matched anymore, making the unfolding of the
model much more difficult for the system.
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(a) Paper texture maps (b) Detected paper

Figure 6.23: Visualization of SURF-feature matches in case of using realistic paper textures for the front
and back face. The fact that the fold lines of the paper and the prototypes are amplified by
the local threshold enhancement operation does not effect the results significantly.

6.3.3 Tracking Folding of Common Textured Paper

The marker-less tracking system that combines ICP with SURF-featured based tracking was shown
to provide very good tracking results. However, the important initial assumption of a segmentation
and SURF-feature friendly paper texture cannot easily be extended to real-world scenarios. Thus,
another important question is how well the tracking system can deal with a more realistically tex-
tured sheet of paper. A blank sheet of paper would naturally provide no SURF-features for the
tracking and thus the results would be identical to the results presented for the tracking approach
based only on ICP (see Section 6.2). As pure printed text will, due to the limited texture resolu-
tion visible in the VGA Kinect color camera images, also provide very unreliable SURF-feature
matching results, a double sided research paper page was used. The two pages (Page 3 and 4 from
[Rublee et al., 2011]) used for the front and the back-side texture, contain text, formulas, enu-
merations and a few diagrams. By using the contrast enhancement operator presented in Section
6.3.1 the coarse structure of the paper, amplified by the two-column layout and the different para-
graphs, yields a small, but representative, number of reliable SURF-feature matches (see Figure
6.23). The figure shows five correct and one incorrect matches, i.e. this represents, in comparison
to the previously introduced SURF-feature-friendly texture, an order of magnitude less features
(see Figure 6.13). However, many matches are very fragile, i.e. they are likely to occur and to
disappear in subsequent processing frames, leading to an at least two times lower number of ac-
tually used SURF-feature matches over time. Even though the average error percentage of about
20% of the matches did not change in comparison to the optimized texture, the fraction of actually
used matches needs to be decreased to about 50%. This is due to the fact that in both cases an
occasional occurrence of three to five erroneous matches seems to have remained equally likely,
which is, however, a much higher percentage of all matches in the present case. In addition, the
smaller numbers of features must be partly compensated by increasing the proportional gains for
the SURF-feature-based updates, which, in turn, makes the tracking more prone to become com-
promised by feature matching errors.
In the present scenario, the increase in segmentation difficulty does not carry weight as a simple
adaption of the segmentation lookup table (see Figure 6.6c) is sufficient to separate the white and
bright gray paper pixels from the background. When using the system in a more realistic scene,
where other objects are also white, a more sophisticated segmentation method, which not only re-
lies on color information would be needed. An automatic and model-free point-cloud-based scene



6.3. SUPPLEMENTING POINT-CLOUDS WITH 2D-SURF-FEATURES 151

(a) Initial model with folds (b) Preparing second fold (c) Rigid tracking is very slow

(d) Error while tracking 3rd fold (e) Repeated 3rd fold successfully (f) 4th fold added and performed

Figure 6.24: Folding a realistically textured sheet of paper. (a) Initial paper model. The fold lines of the
first three folds are already added. The red-to-orange gradient lines indicate that only a few
SURF-feature-matches are used. A single but steady SURF-feature matching error yields
unstable tracking results. (b) After successfully tracking the first fold, the second fold is
already in preparation. (c) Due to the small number of SURF-based updates, the in-plane
tracking of paper operates very slowly. (d) When applying the third fold for the first time,
the manipulation was carried out too quickly, so the tracking was not able to follow the
deformation of the paper fast enough. (e) In the second trial, the third folding movement
was carried out more slowly, so that it could be successfully tracked. (f) After adding an
additional fold line though all layers of the folded model, the fourth iterative fold could be
tracked accurately.

segmentation, such as [Ückermann et al., 2013] could be used here.
Figure 6.24 shows the course of an iterative folding sequence, carried out using the realistically
textured paper. The first three fold lines are initially added to the model. As it can be seen from
the SURF-feature matching indicators (red-to-yellow gradient lines in Figure 6.24a), only in the
order of 10 SURF-matches are actually used, which is why larger movements of the whole paper
can only be tracked slowly. With each iterative fold applied to the paper, the contribution of the
SURF-feature-based model update mechanism is decreased as more and more SURF-features dis-
appear. However, as this was also the case for the former SURF-feature-friendly paper, the results
of later folding stages are very similar. Thus, the tracking system is also able to robustly track the
second and the third iterative fold directly. After manually adding the fourth fold line at run-time
(after Figure 6.24e), the fourth fold is also successfully tracked.
However, due to the lower density of SURF-feature matches, the tracking of an unfolding of the
paper becomes more problematic. Figure 6.25 shows the results of an exemplary experiment, that
started at the end-state of the previous folding experiment (see Figure 6.24). Even after reverting
the first three folds (see Figure 6.25a), the system is not able to unfold the model appropriately.
Only when finally undoing the last fold (see Figure 6.25b) the model starts to partially unfold as
well. However, once again the model does not even get close to the real unfolded paper. This
effect is explained by the ratio of the proportional gains of the two model update branches SURF
and ICP. The gluing force from the ICP-based updates outperforms the accumulative forces from
the SURF-feature-based updates, so the model does not unfold any further. By manually altering
the proportional gain ratio in favor of the SURF-feature-based update branch, the model unfolds
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(a) Model remains agglutinated (b) Modeling still very inaccurate (c) Enhanced SURF-based updates

Figure 6.25: Unfolding realistically textured sheet of paper. (a) Even after reverting all but one fold from
the originally four times folded sheet of paper, the gluing characteristic of the ICP-based
model update branch still outperforms the SURF-based updates that try to unfold the model.
(b) Even when unfolding the paper completely, the tracking is very inaccurate. In this situa-
tion, both the small number of found SURF-matches, as well as the decreased ratio of used
SURF-matches, do not suffice for more accurate tracking. (c) Only after manually adapt-
ing the ratio of the proportional gains used for SURF-based updates and ICP-based updates
respectively, is the tracking restored.

correctly (see Figure 6.25c). However, this manual adaption is not suited for permanent use as
the amplification of the SURF-feature-based updates creates a heavy jitter in model leading to bad
tracking results and lower tracking frame-rates.
As a more permanent heuristical solution, it would be necessary to integrate an automatism that
only temporarily amplifies the SURF-feature-based updates if the discrepancy between the model
and the observation is high. This, of course, leaves the question of how to estimate the discrepancy
and it also adds a larger set of additional parameters, such as a discrepancy threshold, the length
of the time window for the amplification and the actual strength of the amplification.

6.3.4 Discussion

The presented combination of ICP and SURF-feature based tracking yields promising results even
when not using explicit SURF-feature-friendly textures. An intrinsically emerging and welcome
property is the seamless automatic interpolation between using SURF-feature updates and working
in ICP-only mode. SURF-features that are detected enhance the system significantly but even
in the complete absence of reliable SURF-features, the system continues to work. Regarding
the introduced non SURF-friendly textures the use of common printed sheets of paper that show
mostly text and whose global appearance structure is mainly distinguished by vertical paragraph
structures only randomly provides useful SURF-features and therefore the system switches to
mostly ICP-only mode.
In addition to increasing the camera resolution to detect a larger amount of reliable SURF-features,
points in the point-cloud that correspond to paper-edges could be used. However, initial tests
showed that the identification of edge-features is a very complex task, in particular in the presence
of heavy occlusions.
An obvious question is whether our tracking system scales to other deformable objects or indeed
can track rigid objects. Even though this would require a fundamental re-organization of the
implemented tracking framework, it is very likely that the system would perform well in both
cases. Extending our approach to other deformable objects in theory only requires the model
to be adapted. While the tracking of comparably stiff deformable objects, such as a pillow would
intrinsically be very similar to tracking paper, softer deformable objects, such as a piece of laundry
would necessitate larger adaptions to the model.
In contrast to this, the tracking of rigid objects is likely to be managed even better by the system. In
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particular box-shaped objects, or objects whose shape can be approximated well by a combination
of such shapes, could be represented by a much smaller number of nodes and faces. This would
lead to a significant reduction of the number of constraints that are needed to increase the model
stiffness, which would, in turn, allow for a much more efficient tracking run-time. In contrast to
common ICP-based or feature-based tracking systems that use non-physical rigid object models,
the use of the physics engine would still provide a set of most welcome implicit features, such as
the simulation of collisions and automatic temporal tracking constrained with physical-plausibility.

6.4 Automatic Fold Detection and Optimization

The necessity to manually add folds accurately is a severe limitation of our tracking and modeling
system. Even though the proposed mouse-based interaction makes it very easy to add fold lines in
a drag-and-drop fashion, an automatic detection mechanism that could optionally be primed with
the definition of a coarse target fold line, would enhance the system significantly. The problem of
automatic fold detection can be split into two parts:

1. Fold onset detection

2. Fold geometry estimation/optimization

In order to solve the first part, a mechanism is needed that is able to distinguish whether a given
paper configuration (optionally supplemented with the temporal configuration history) shows a
fold has been added to the model. However, exhaustive tests revealed that the creation of a robust
estimation system based on the paper configuration alone is a very difficult task to achieve (see
Section 6.4.2). In particular the discrimination between heavy bending and actually folding seems
– even for a human – very difficult without taking into account further sources of information,
such as tracking the manipulating hand motions. If a robot is used, information about when a fold
is being attempted can simply be assumed to be given. In order to relax the necessity to manually
add fold lines to the model using mouse-based input when monitoring human folding sequences,
a simple speech-based triggering mechanism that allows the human manipulator to keep his hands
on the paper permanently could be added trivially. From the perspective of a human expert ex-
plaining how to fold a certain origami figure, it would also be quite natural to supplement the
observation of the folding procedure with hints such as “ok, now we fold here”, “now I have to
undo that fold“ or “next, this part has to be bent, but we have to take care not to fold it”.
In order to solve the second part, the system must be enabled to estimate the geometry of a fold
line. Assuming that the onset for the adding of the fold line is given, the system has to provide the
paper-space coordinates of the to-be-added fold line. Optionally, it should be possible to provide
an educated guess of the new fold line to narrow the search space for the system. This educated
guess could either be given by the robotic manipulation sequence, in which the coarse geometry
of the to-be-achieved fold line is known or it can be calculated on the basis of the perception of
either the model deformation alone or by employing other features. It is important to account for
the fact that the onset detection might be subject to errors so the geometry optimization must also
feature a rejection mechanism.
In this Section, first the coarse structure of a particle-based prototype system is presented (see
Section 6.4.1). In Section 6.4.2 experiments that were conducted towards automatic fold onset
detection are presented. Even though no satisfactory solution could be found, the section provides
important insights into the inherent difficulties of this problem and in particular it explains why
Gaussian curvature computed on the model does not suffice. Subsequently, a system for the auto-
matic estimation of a fold’s geometry is presented (see Section 6.4.3) and is qualitatively evaluated
(see Section 6.4.4).
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Figure 6.26: Control flow diagram for the automatic fold detection prototype system. Starting with an
initial current model (left), the system remains in the normal operation state until the Fold
initialized? component detects that a fold line is potentially being added to the paper. In this
case, based on the current model-surface deformation, a most likely fold line is estimated and
then used to enter the second operation state that is based on a particle set. After a given
number of processing frames, the system automatically selects the best performing particle
in order to go back to the original single model operation mode.

6.4.1 A Prototype System

The developed prototype system for automatic fold detection employs two major operating states
(see Figure 6.26). In the first state, the system operates like the previously presented model track-
ing system, where the model is updated and physically simulated using the perceptual belief in
each time frame. On top of this, the fold onset detection module is inserted. If the adding of a new
fold is detected/triggered, the system enters the second operating state. Here, a particle system
is instantiated, in which each particle represents a hypothesis about the actual geometry of the
potential fold line. The particles are randomly distributed around a heuristically estimated first
guess that is based on the evaluation of the paper surface deformation at the instantiation time of
the particle system. In order to allow the system to reject the newly added fold line, one of the
spawned particles represents the paper without a new fold line. The no-fold particle’s weighting
is explicitly increased to account for the fact that a more flexible model with an erroneously added
fold line would not automatically provide worse modeling results if the real paper was not actually
folded. From a more general perspective, this could be seen as a penalization of high numbers of
folds. Once the particles are spawned, the resulting set of models – one for each particle – has to be
tracked in parallel, each in a dedicated physics world to avoid unwanted inter-model collisions. In
the implementation, in order to avoid a resulting processing frame-rate drop directly proportional
to the number of particles, each particle is explicitly handled in a dedicated thread. The rating
scores of the particles are computed and integrated over time, yielding a historical particle score
that is used to dissolve the particle system after a given number of time-steps. Here, the model
that corresponds to the best performing particle over time, i.e, the one with the highest temporally
integrated score, is used to replace the original current model. Further common variants of particle
systems, such as Condensation-based [Isard and Blake, 1998] hierarchical iterations or joining the
resulting particles with respect to their score could be implemented in future work.

6.4.2 Fold Onset Detection

In order to automatically detect that the observed paper has been folded, a local paper surface
curvature estimator seems like an obvious choice. However, as the best guess available about the
actual paper surface deformation is the shape of the current model, we face a so-called chicken and
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egg problem. At the time, when the real paper is folded, the current model is not endowed with a
corresponding fold line. Therefore the model will, due to the underlying physical model’s stiffness
constraints, not reflect the fold, but simply have a smooth bend, which in turn makes it impossible
to detect the fold on the basis of the model deformation alone. In order to explain this issue in a
more detailed fashion, a common surface curvature operator and the paper surface curvature map
that results from applying that operator to each model node is presented.

Gaussian Curvature for Discrete Triangle Patches

A very common surface curvature quantity is Gauss curvature [Sullivan, 2005]. While for smooth
surfaces there exists a precise definition, several equally accepted definitions are available for
discrete surfaces that are represented by triangle patches. A very simple method to approxi-
mate the Gauss curvature κg at a vertex vi of a surface defined by a triangular grid is defined
by κg = (2π −

∑
j αj)/(

1
3

∑
j Aj) [Calladine, 1986; Gray et al., 1998]. Here, the sum index j

runs over all triangles spanned by the direct neighbor nodes of vi, αj is the angle subtended at
vi by each triangle and Aj is the corresponding triangle area [Razdan and Bae, 2005]. The result
is non-negative, and only 0 if vi and all neighbors j are co-planar. However, an initial test im-
plementation confirmed the statement by Razdan and Bae [2005] that the approximation is “not
necessarily accurate under all circumstances”. In particular a non-uniform surface triangulation
as well as the finite edges of the paper surface lead to a non-equal number of neighboring faces
per vertex, which in turn has a very strong influence on the resulting curvature values. Therefore,
commonly more complex continuous methods are used. These approximate the discrete surface
locally by a parametric continuous surface model, whose Gaussian curvature can be computed
analytically.
For the introduction of the paper model surface curvature-map, a method based on bi-quadratic
Bézier surfaces, x(u, v) =

∑2
i,j=0 bi,jB

2
i (u), B2

j (v), was implemented. The method was pro-
posed by Razdan and Bae [2005] and it was shown to outperform previous methods. While the
actual fitting of the Bézier control point parameters bi,j is performed in a standard least-squares
manner extended with a surface smoothing parameter, the preparation of the input data was of a
more complex nature that came up with a non-negligible implementational expense.

Fold Detection Based on a Gaussian Curvature Map

The creation of the Gaussian curvature map was implemented by approximating the surface around
each paper model node with a bi-quadratic Bézier surface. For the fitting, a node’s double-star9

neighborhood was used (see Figure 6.27b-d) as suggested by Razdan and Bae [2005]. As it turned
out that using the Gauss curvature at the center of the resulting Bézier patch provided almost
random results, a patch’s maximum Gauss curvature10 was used instead. However, as Figure
6.27e shows, even a morphological dilation and an additional exponential temporal smoothing did
not yield very convincing results. A large set of other heuristical adaptions, such as using a node’s
star or the triple-star neighborhood, different 2D-filters, such as median, Gaussian smoothing and
different kinds of morphological operations was also implemented and tested, but did not improve
the results.
Further investigations lead to the insight that this failure is caused by two main reasons. The first
reason is the above mentioned chicken and egg problem that the method can only detect a fold that

9 Representing the triangle grid as a set of nodes {xi} and a set of triangles {(a, b, c)j}, the star of xi (or simply
x?i ) is defined by {xk|∃(a, b, c)j : i, k ∈ {a, b, c}}, i.e. the set of nodes directly connected to xi by one of the
triangle edges. The double star x??i is then defined as ∪xj∈x?

i
x?j and the triple star is defined analogously.

10 Estimated by evaluating the patch’s Gaussian curvature at 10× 10 regularly sampled positions



156 CHAPTER 6. ADVANCED ASPECTS

(a) (b) (c) (d) (e)

Figure 6.27: Bi-quadratic Bézier approximation of the paper model surface and resulting Gaussian cur-
vature map. (a) Point-cloud image with augmented paper model. While the real paper is
actually folded, the model’s bending stiffness does not allow a sharp fold to be reproduced,
so the model appears bent only. (b-c) Examples for the bi-quadratic Bézier approximation
centered at selected model vertices. For the Bézier fitting, the double-star neighborhood
(black vertices) of the selected nodes is used. In contrast to the well fitting regression of flat
(b) and curved (d) model regions, the region next to the fold (c) reflects only the curvature
of the smoothly curved model, but not the curvature of the actually folded paper. (e) Dilated
and temporarily averaged Gaussian curvature map.

(a) (b) (c) (d)

Figure 6.28: 2D-visualization of the Bézier surface approximation used for the creation of the Gauss curva-
ture map. For a model node (marked red), the local surface is approximated by a bi-quadratic
Bézier curve (dotted orange line). In cases, where the actual model curvature is comparably
low (a,b), the surface normal (red dashed line) is very accurate and also the estimated curva-
ture is low. In contrast to this, in cases with a high local curvature (c,d) the surface normal
calculation is less accurate leading to more or less random Bézier approximations with also
random Gaussian curvature estimates.
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has already been added to the model. Even though this issue is severe, it is not completely sure
whether the system would perhaps still provide acceptable results if the model’s global stiffness
was lowered appropriately. However in that case, the second issue is responsible for bad curvature
approximation results. This issue is originated in the curvature computation that internally needs
to transform the 3D paper model vertex data into training data for the Bézier surface fitting. As
the Bézier surface is a scalar function defined on a 2D input space, the model points must be
locally projected onto a tangential plane to the model surface (see Figure 6.28). The plane normal
is provided by the physics engine, but results showed that higher actual local curvatures yield
higher noise values in the normal estimation, which then in turn result in randomized curvature
map entries (see Figure 6.27e). This effect could only be overcome by using a much higher
node density for the physical model, which is, however, due to the associated increased of the
computational complexity not possible.
The results indicate that the used local model surface curvature estimation method is not the right
approach to automatic fold detection. There are, of course, plenty of possible next directions,
such as replacing the local Bézier surface approximation or even the whole Gaussian curvature
estimation method, employing other directly available properties from the physical model, such as
the node velocities or even trying to extract additional information from the input point cloud data
directly. As also further endeavors that were made towards finding an appropriate replacement
for the Gaussian curvature map did not yield promising results or clues, the problem remains
unsolved. However, the described course of the implementations and experiments yields valuable
insights into the underlying complexity of the problem.
The fold geometry optimization method presented in Section 6.4.3 uses a manual trigger for adding
folds.

6.4.3 Fold Geometry Estimation

For the proposed particle-based prototype system (see Section 6.4.1), the fold geometry estimation
module is needed to automatically compute an initial guess of the actual fold, which is then used
as the center for the particle distribution. Assuming that no prior information about the geometry
of the to-be-added fold is available, the initial guess has to be derived from the properties of the
current paper model. The insights gained from experiments towards automatic fold onset detection
(see Section 6.4.2), strongly suggest that the model deformation alone will most likely not suffice
here. In particular the information gap between the actual paper and the current belief – repre-
sented by the paper model deformation – is the issue. However, due to the nature of the proposed
observation-based model control law (see Section 6.1.3) there are other promising model features,
that a possible system could build on. By initially assuming simple and non-degenerate paper
configurations, the localized magnitude of this information gap, i.e. the local modeling error, can
directly be used to infer the position and orientation of a fold. To this end, the model stress map,
which associates a so called stress value to each position of the paper surface is introduced. As-
suming that, due to the bending stiffness of the physically constrained paper model, the modeling
error is statistically worse in the local vicinity of a fold, an analysis of the distribution of high
stress values is likely to allow for a good enough approximation of the fold geometry.

The Model Stress Map

Since the above motivated local modeling error is an unknown quantity, the model stress map is
introduced as an approximating function Cstress(x

m) : P → R that associates a local stress value
to each position of the paper surface. As a simplification, a stress value si is first defined for
each of the paper nodes ni = (xmi ,x

w
i ) (see Section 6.1). The actual mapping function is then
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(a) In-plane rotation (b) Soft bending along long edge (c) Hard bending along long edge

(d) Hard twisted bending (e) Creasing without added fold (f) Creasing after fold was added

Figure 6.29: Visualization of the generated model stress map Cstress (right part of each sub-figure) in a set
of selected manipulation situations (left part of each sub-figure). The results of the spatial-
PCA-based direction estimation is visualized as a red-cross on top of the stress map. The
brighter white/grayish stress map values are the ones taken into account for the direction
estimation. Values less than the threshold θC (tinted bluish colors) are disregarded. The
actual value domain of Cstress depends on several internal parameters, such as the controller’s
proportional gain λ (see Section 6.1.3) and the number of controller iterations conducted
per frame and is therefore not directly linked to a real physical quantity. For the sake of
comparability, the gain’s domains were equally quantified in all sub-figures.

defined by conducting Voronoi tessellation, i.e. by employing a simple nearest neighbor look-up
along the paper surface: Cstress(x

m) = snn(xm), where nn(xm) = argmini(|xm − xmi |). The
stress value si that is supposed to approximate the local modeling error at the model position xmi
of node i, is computed by accumulating the velocity-based model updates for that node over all
model control iterations corresponding to a single input frame (see Section 6.1.3). Initial experi-
ments revealed that only the ICP-based velocity updates are suited for this. The surf-feature-based
updates include too much noise and thus negatively affect the stress map quality. The accumu-
lated ICP-based update velocities serve well for the approximation of the modeling error as it
can be assumed that model nodes that are close to the observed corresponding point cloud points
are moved only minimally. In contrast, nodes that can not be moved completely towards their
point-cloud counter-parts, due to actual paper movements or due to the constraints, still receive an
update move command from the observation-based update mechanism. While the discrepancies
caused by movements or bending of the actual paper are implicitly exponentially decreased during
the course of the update mechanism’s iterations, deformations that can not be modeled due to the
physical model constraints lead to a steady tension that reaches an equilibrium between external
update forces and internal physical forces and thus result in continuously high update velocities.
This assumption allows us to define three node classes, characterized by their stress value ranges:

1. Steady nodes that correspond to model regions that match the observation (si : low)

2. Nodes corresponding to slight bends or that are moved in space (si : medium)

3. Nodes that are close to strongly bent or folded paper regions (si : high)

Figure 6.29 shows a set of selected manipulation situations together with the resulting stress maps.
In the case of a simple in-plane rotation (see Figure 6.29a), significant ICP-based updates are only
generated for the border nodes of the model. By employing the default ICP-variant presented in
Section 6.2.1, nodes that correspond to occluded parts of the model, such as those hidden by a
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manipulating hand, are implicitly drawn towards the nearest non-occluded sections of the visible
point-cloud. Due to the fact that these are commonly further away, this leads to larger update
velocities and thus in higher stress map entries for the occluded parts. This effect can be seen in
the center of the right edge of Cstress in Figure 6.29a(right). While the effect is only barely visible
in the example, larger amounts of occlusions are likely to negatively influence the stress map’s
validity. In 6.29b, the paper is softly bent along the long edge. Due to the large bending radius,
the bend appears blurred in Cstress. In contrast to this, in case of sharper bending (see Figure
6.29c,d), the fold is more distinct in the stress map. The fact that the position of the corresponding
computed fold geometry estimate is some centimeters off to the left (see Figure 6.29c,d), could
be explained by arguing that the lower part of the model overshoots the associated part of the real
paper (see Figure 6.29c(left)). However, as a position error orthogonally to the fold estimate can
be observed in the other examples as well, a different effect must be responsible for this. A deeper
analysis (see Figure 6.30) revealed that the point-to-point association accuracy of the ICP-based
update mechanism is much higher for the visible parts of the paper. A heuristical compensation
mechanism is presented along with the description of the particle creation. Figure 6.29d(left)
shows that even a slight twisting of the bend is recognized by the stress map. In case of a hard
fold (see Figure 6.29e), the resulting stress map reveals a comparably wider structure with also a
higher amplitude and the fold geometry estimation is very accurate. In contrast, after (manually)
adding the fold line to the model (see Figure 6.29f(left)), the relaxation of the bending constraints
along the fold allows the model to perfectly fit the observation and thus both, the fitting-error
and stress-map entries become very small. Therefore the resulting stress map does not show any
significant structures anymore (see Figure 6.29f(right)).

Extracting the Fold Geometry from the Stress Map

In order to compute the most-likely fold geometry, the stress map is initially thresholded using a
dynamic threshold θC = αmax (Cstress). The relative threshold α, which was manually tuned to a
value of 0.5, allows a corresponding fraction of low stress map values to be disregarded in the next
step. Here, the center-of-gravity and the orientation of the axis with the highest variance of the
remaining stress map entries is computed using a value-weighted spatial PCA-approach. The fold
geometry is intrinsically represented by a vector cest ∈ [0, 1]2 where each of the two components
describes one relative intersection position of the fold with the unrolled boundary of the paper
surface.

Particle Creation and Score Calculation

In situations in which the adding of a fold was detected or triggered, the particle system is initial-
ized. To this end, the initial fold geometry guess cest is reformulated, yielding the 2D center c of
the fold and the orientation γ. For each spawned particle (except for the one that represents the
no-fold hypothesis), c and γ are altered using Gaussian distributions. The orientation of the initial
guess turned out to be quite accurate, so a zero-centered Gaussian with a small standard-deviation
of 2 degrees suffices. As the orientation is altered separately, the position has to be altered along
the orthogonal axis to the fold only11. In order to compensate the shift that was detected in the
fold line estimation (see Figure 6.30), the center positions of the spawned particles not only statis-
tically spread using a Gaussian-distribution with a standard-deviation of 2 cm, but also statically
shifted by 3 cm along the same orthogonal axis. The fold line estimate splits the paper into two
halves. The sign of the static shift is chosen, so that the resulting fold is moved towards the half

11 We explicitly avoided the use of standard polar-coordinates for the representation in order to avoid an unwanted
coupling of angle and position.
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(a) Top view (b) Side profile view (c) stress map

(d) Schematic side profile view

Figure 6.30: Finding the reason for the shift in the stress map. (a) In the top view, the fitting of the
model seems very accurate. Only the fact that the model does not actually reach the fold
lines indicates fitting discrepancies. (b) The side view of the identical situation reveals the
extent of the fitting error, which is caused by the model’s physical bending stiffness. (c) In
conjunction with the side view (b), the shift in the stress map becomes comprehensible. The
actual fold is indicated by the dashed green line. (d) The schematic side view explains the
effect in a qualitative manner.

of the paper, whose vertex-mean is closer to the camera center. Examples and results are shown in
the evaluation Section 6.4.4.
Once all particles are spawned, the system runs in its second operating mode (see Section 6.4.1)
for a fixed number T of time-steps. After time step T , the system goes back to the first operation
mode by replacing the last valid current model by the model that corresponds to the particle that
performed best over the course of these time-steps.
The overall matching score Si of a particle i is computed using recursive linear interpolation. Let
Ei[t] be the modeling error for particle i at time step t, then Si = Si[T ] is defined recursively:

Si[t] = λSi[t− 1] + (1− λ)
1

Ei[t] + ε
,

where the initial score Si[0] = 0 defines the basis for the recursion and a small ε avoids numerical
issues in cases where Ei[t] becomes too small. The formalism allows the scores resulting from
more recent time steps to be made more important. The current error Ei[t] is computed by a
combination of four different components:

Ei[t] = Fi · Vi[t] · Li[t] ·Ai[t]2 ,

where Fi is the fold penalty error, Vi[t] is the node velocity error, Li[t] is the link tension error and
Ai[t] is the appearance error. The different error terms are computed as follows. The fold penalty
error, Fi, artificially increases the score of the non-fold particle. Assuming that w.l.o.g. particle 1
corresponds to the non-fold model, Fi is set to 1 for all i, except for i = 1, where Fi is set to 0.1.
The node velocity error, Vi[t], is defined by the average node velocity after the last iteration step
in each cycle. It penalizes nodes that could, due to physical constraints, not be moved towards
the observation. The link tension error takes into account that a good model’s bending constraints
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(a) (b) (c) (d) (e)

Figure 6.31: A set of exemplary fold geometry optimization results. The closer the fold gets to a corner of
the paper, the less accurate the resulting fold estimate.

should be well satisfied. To this end, Li[t] is given by the mean difference between the constraints’
desired distances and the actual distances of the linked nodes. The last component, the appearance
error Ai[t], describes how well a model covers the current paper point cloud segment. For this, the
mean distance between the paper point cloud nodes and the closest corresponding model nodes
is used. As the mean is formed over all paper point cloud points, the nearest neighbor search is
internally sped up by inserting the model node positions into an Octree structure. The appearance
error is included in a squared fashion to amplify its effect even if a large fraction of the point-cloud
is covered perfectly.

6.4.4 Qualitative Evaluation

For the evaluation of the fold estimation system, several folding experiments were conducted. To
this end, the real paper was arbitrarily folded by hand. After giving the system some seconds
to adapt the fold-less model to the observation as well as possible, the adding of a fold line was
manually triggered so that a pre-defined number of 50 particles were spawned. The particle count
was manually adjusted to this value so that the resulting frame-rate drop to about 2 FPS12 still
allowed the model to be tracked satisfactorily (given that the manipulation is deliberately carried
out slowly). The number of time-steps T the system stayed in the particle mode was set to 20, i.e.
after about 10 seconds, the best particle was selected. Figure 6.31 shows a set of examples. It is
apparent that folds that are closer to the corner of the paper are detected slightly less accurately.
This can be explained by the fact that the computed stress map shows more edge-artifacts here
and thus the PCA-based centroid computation becomes less robust. However, the overall accuracy
can be said to be very promising. It is very likely that fold estimates given by humans after seeing
the folded sheets of paper would be much worse. A more detailed examination of the example
fold depicted in Figure 6.31a is given in Figure 6.32. Figure 6.32a visualizes the initial PCA-
based fold line estimate (green line), as well as the heuristically shifted origin line used as the
center for the particle distribution (yellow line). In addition, the random spread of the spawned
particles is shown. In the example, the position estimate was comparably better than the angle
estimate. The used Gaussian distribution to generate random fold positions and orientations in
the vicinity of the origin covered that variance sufficiently, so that a convincing best particle (red
line) could be found. Figure 6.32b compares the course of the temporally accumulated particle
scores as the paper is unfolded after the particle creation. To this end, the automatic transition to
the single-model mode after T time-steps was explicitly disabled. In the initial state (top plot),
right after the particle creation, the variance of the particle performances is very high, but the
best rated particle (highlighted red) is significantly ahead of the second winner. The non-fold
particle (highlighted purple) logically performs worst although its score is, due to the Fi error

12 Performed on an Intel R©Xeon R©E5-1620 CPU running at 3.6GHz with an NVIDIA R©GeForce R©GTX 660 Ti
graphics card.
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(a) (b) (c)

Figure 6.32: Visualization of the particle variances and performance scores. (a) Visualizes the fold lines
that correspond the different particles. In addition, the green line indicates the PCA-based ini-
tial fold geometry estimate which is then heuristically shifted by 3 cm (yellow line). The fold
line that corresponds the best performing particle is highlighted by the red line. (b) Shows
the scores, Si, of the 50 particles in three different folding situations. For this, the particles
were created only once when the paper was folded and the particles were not dissolved after
20 iteration steps. Instead, all particles were continued to be tracked in parallel even when the
fold was manually unfolded. (c) Shows corresponding folding situations with a wire-frame
overlay of all 50 models.

component, already amplified by a factor of 10. Figure 6.32c(top) shows that the diversity of the
models is also reflected by the corresponding model set wire-frame overlay image. In the second
situation, the fold was partly undone, resulting in a 90 degree fold. Here, as shown in Figure
6.32c(middle) the models only differ significantly on one side of the paper, which is indicated by
the now much smaller variance in the corresponding particle error plot. While the former best
particle still achieves the highest rating, the non-fold particle is now within the best performing
10%. This is again a result of the particle’s fold penalty error-term. Even though the combination
of the other model and appearance-based error components is higher, its score is now comparable
to score of the other particles. If, however, the paper is flattened out completely, as shown in Figure
6.32b,c(bottom), the system robustly favors the non-fold particle, whose score is now about three
times as high as the best other particle’s score.

6.4.5 Discussion

Even though a robust method for fold onset detection could not be found, the research towards
the realization of such a system provides a valid scientific contribution. In addition, the course
of the experiments yielded valuable insights into the particular difficulties that one is confronted
with when trying to develop such a system. Moreover, the preliminary used manual fold onset
triggering mechanism is likely to be sufficient for robotic paper manipulation.
The developed fold geometry estimation and particle-based fold geometry optimization system
revealed many promising results. While using a most-simple particle system approach that could
still be optimized along several directions, the introduced physics and appearance-based particle
score seems to cover most of the important aspects already very well. The conducted experiments
show that both, the stress map-based initial geometry estimation as well as the particle-based
optimization perform astonishingly well for several different model-axis-aligned and also diagonal
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folds.
After the development and the prototype implementation of the model stress map, the PCA-based
fold geometry estimation method seemed to be a promising candidate that could also help to solve
the original fold onset detection problem. However, it again turned out that such a system still
did not work in many situations. In particular, a stress map, such as the one shown in Figure
6.30c could also be the result of occluding the center of the paper with one hand, so again, further
heuristics become necessary to disambiguate such situations.
A further, so far not addressed issue of the presented system is the fact that it is not able to easily
detect a second or any further fold. The main reason for this is the natural bending behavior of
paper which is also reflected by the physical model. The surface distance preservation of paper
means that bents and folds are not allowed to intersect. Excluding folds that are not parallel but
that cross outside the bounded paper surface, the only exceptions are given by very hard folds
and by folds that are fully undone. In the latter case, the paper theoretically behaves like an
unfolded sheet of paper. In the case of a hard 180 degree fold, the resisting part of the paper
surface shrinks into the singular intersection point of the folds. If a real sheet of paper is folded
iteratively so that the folds intersect, a very small area around the fold intersection is locally
stretched to make the fold possible. For a fold that was undone before folding across it, the
behavior is different. Here, a minimal remaining fraction of the fold would theoretically not allow
the crossing fold to be applied. The real paper nullifies this issue, by automatically straightening
the area around a potential fold intersection. Since neither of these effects is explicitly modeled
in the physics engine, the model becomes very stiff along each direction not parallel to an already
added fold. Unfortunately the resulting increased stiffness even overcomes the perception-based
model update mechanism and thus, the stress map, which is based on the idea that the model at
least approximates a newly added fold be a smooth curve, does not yield enough information for
the initial fold line estimate.
A large fraction of all these difficulties could be overcome by using the particle-system idea in
a more general fashion. Instead of explicitly linking particle-creation and dissolution to certain
events such as triggers and timeouts, it would be possible to permanently track the model by a
set of particles, each representing a hypothesis about the current model configuration. The idea
of particle-based tracking is actually not new. Already in 1998 Isard and Blake [1998] introduced
the CONDENSATION method, whose performance was verified in several 2D-silhouette tracking
tasks. In a similar fashion, a normalized particle score Ŝi = Si/

∑
j Sj , could be used as a re-

sampling probability for consecutive particle generations, which would implicitly not only feature
an exploration of the space of possible fold configurations, but it would also automatically perform
iterative fold geometry optimization. The main reason why the potential of such a hierarchical
system was not evaluated at least in a prototype implementation is the fact that the necessity to
track many particles in parallel in real-time would require too much code re-organization and
optimization.

6.5 Robotic Manipulation of Paper from a System Perspective

While the extensions along the modeling and the perception axes were accompanied by prototype
implementations, extensions to the robotic control part are discussed in a purely theoretical and
conceptional manner. Given the fact that we wish to discuss much more complicated interactive
scenarios, it simply was not feasible to implement the ideas presented here on a real robotic sys-
tem. Due to the complexity of the undertaken tasks, the actual implementations of the bi-manual
paper manipulation systems for picking-up (see Chapter 4) and folding (see Chapter 5) paper were
carried out in a more or less hand-crafted manner. In the following, an abstract framework for
dexterous robotic paper manipulation is suggested in order to provide a structure for more general
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and more powerful robotic systems. Once again, we do not claim to be able to come up with a fully
fledged and ready-to-use robot control and planning system for such tasks. Instead, the following
elaboration is intended to provide an initial idea of how the creation of a generic robot system for
dexterous robotic paper manipulation could be approached.

6.5.1 Bootstrapping a Bottom-Up Approach

To cope with the inherent complexity of our goal, a system for bi-manual dexterous robotic paper
manipulation must be split into several sub-components. Once again, we suggest an overarching
conceptual modularization into perception, modeling and robot control (see Figure 2.4), but this
time, we assume the first two components to be given, in order to fully focus on the robot control
part.
For a bottom-up approach, a first step is to select a set of minimally parametrized and atomic
basic action primitives (BAPs) that serve as the basis for carrying out robotic paper manipula-
tion. In order to bootstrap the bottom-up approach, a manipulation sequence of folding a simple
paper aeroplane is used to create an initial minimal, yet sufficient, set of primitives for the given
task. The set can be extended or adapted later in order to support other interactions, which might
require additional or more general BAPs. Before these primitives can be derived, a description
of how to fold an A4 paper aeroplane is provided as a basis for further explanations (see Figure
6.33). Please note that the written instruction steps in this description are optimized for an adult
who has a good knowledge of paper manipulation already and therefore is able to understand and
implement higher-level steps. Even though the written instructions would suffice for most people
to easily follow to build the desired paper aeroplane, five images are provided along with each
each step to simplify the following discussion. The fact that the written instructions assume a lot
of information to be either known or to be deduced by the reader employing both context and real
world knowledge, underlines the difficulty of the task.
In the following discussion, we will successively work through these steps and discuss how they
could be accomplished with an anthropomorphic robot system. To this end, the steps are subdi-
vided into their smallest logical units, whose functionalities are formalized as BAPs and thereby
retained for later use. New BAPs are only created if a part of a processed instruction step cannot
be realized using the existing set of BAPs. As new BAPs are added to accomplish the current
task, suggestions of how they may be parametrized to achieve more varied outcomes are often
presented. In addition, in order to ensure we arrive at a minimal set of BAPs, the definition of
a new primitive is sometimes avoided by extending or generalizing an existing one. To verify
our assumption that the preferred re-use of BAPs leads to a convergence over time as more and
more different manipulation actions are included, we subsequently continue the process for a set
of further more general manipulation examples (see Section 6.5.4). For some of the introduced
primitives, additional figures are provided that illustrate details that are not optimally visible in
top-view of the sequence Figure 6.33.
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Step 1: Fold the paper in half along the short edge and harden the crease.

(1a) (1b) (1c) (1d) (1e)

Step 2: Undo the previous fold.

(2a) (2b) (2c) (2d) (2e)

Step 3: Diagonally fold one corner towards the center fold and harden the crease.

(3a) (3b) (3c) (3d) (3e)

Step 4: Repeat with the opposite side – mirrored along the initial fold.

(4a) (4b) (4c) (4d) (4e)

Step 5: Redo the first/center fold so that the diagonally folded edges are on the inside.

(5a) (5b) (5c) (5d) (5e)

Step 6: Fold the top two layers parallel to and at a distance of about 4cm form the first/center fold.

(6a) (6b) (6c) (6d) (6e)

Step 7: Turn the paper around and mirror the previous operation on the other two layers.

(7a) (7b) (7c) (7d) (7e)

Step 8: Adjust the last two folds so that the wings are at 90◦ to the fuselage..

(8a) (8b) (8c) (8d) (8e)

Figure 6.33: Instruction steps to build a simple A4 paper aeroplane.
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(a) Corner alignment (b) Fixate with both fingers (c) Shift pressure to thumb (d) Release forefinger

Figure 6.34: Explanation of the PlaceFixate primitive. (a) The top layer of the paper is pinch-grasped to
perform the desired alignment. (b) Both thumb and forefinger are used to fixate the layers
of the paper. To this end both the back of the forefinger and the tip of the thumb must be
horizontally aligned by slightly rotating the maintained grasp. (c) Once the tip of the thumb
fixates both layers, the grasp and the downwards pressure exerted by the forefinger can be
released. (d) The forefinger is withdrawn from between the layers of the paper to allow the
paper edge to relax into a straightened configuration.

Step 1: Fold the paper in half along the short edge and harden the crease
(Introduces primitives: RigidMove, Fixate, Grasp, Move, Release, Align, PlaceFixate and Swipe)

As Step 1 is identical to the robotic folding experiment described in Chapter 5 we directly use the
insights gained there. In order to optimize the interaction space of the robot hardware and to enable
the robot to reach certain parts of the paper, the paper needs to be rigidly moved during the mani-
pulation. This leads to the definition of the RigidMove primitive. In addition to the paper shifting
system presented in Section 2.2, common rigid-body pick-and-place frameworks can be employed
here. The RigidMove primitive uses the target pose as a parameter and thus has to autonomously
decide whether to shift or to first pick and then place the object again. The next BAP needed
for Step 1 is Fixate, which means that the paper is fixated at a certain paper space coordinate.
Usually, this can be achieved by pressing one or several layers of the paper against the work-top,
but certain configurations might require a part of the model to be fixated without exploiting the
work-top by using a pinch-grasp. Fixate needs to be performed with at least two fixation points
to increase the leverage effect against an unwanted rotation of the paper. For the initial folding
of the paper in half, Fixate is performed on one half of the paper while it is grasped and bent
by the other hand. The next three primitives, Grasp, Move and Release, are used to actually
manipulate the paper. Grasp is parametrized with the paper space coordinates, the fingers that are
used and the direction of robot hand relative to the paper. When initially sequencing manipulation
steps, Grasp must often be prepared by an explicit RigidMove step to expose the to-be-grasped
part of the paper appropriately. The Move primitive, parametrized by a pre-planned movement
trajectory that is defined relatively to the fixated part of the paper, is followed by a specialized
BAP, Align, which can align paper corners, edges or creases. Due to the high precision that is
needed to avoid an increasing inaccuracy while carrying out successive manipulation tasks, Align
should be implemented in a closed-loop fashion. For the case of Step 1 of the paper aeroplane
example, Align is used to align the corner of the bent-over upper paper layer with the corner of the
fixated bottom layer. The used point-to-point alignment is comparably simple as the alignment
has no intrinsic null space. In contrast, e.g. diagonal point-to-line alignments require additional
constraints to be defined in order to become fully specified. After accomplishing the desired
alignment, a very special dexterous ability is needed. The grasp that was used for the alignment
is directly reused to fixate the aligned paper layers. This actually commonly used by people
technique is achieved by aligning a pinch-grasp in such a way with the paper on the work-top,
that both the thumb and the forefinger have direct contact the work-top (see Figure 6.34). By
increasing the vertical contact force of the thumb, the paper gets fixated by the thumb’s tip, so that
the opposing forefinger can be slid out. This placing/fixating movement defines the PlaceFixate
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(a) Perfectly aligned layers (b) Shift to displace layers (c) Grasp isolated layer (d) Layers are separated

Figure 6.35: Explanation of the PinchDisplace primitive. (a) The sheet of paper is folded in half leading
to a perfect alignment of two folded layers. (b) By shifting the thumb along the tip of the
opposing forefinger while maintaining the pinch-grasp force, the two edges are displaced. (c)
Now, the isolated bottom layer can be pinch-grasped by the other hand. (d) Once, only the
bottom layer is grasped, the layers can be fully separated.

primitive, which is later needed again. PlaceFixate allows the other hand that was originally used
to fixate the bottom layer while Align was active, to re-position in order to fixate both aligned
layers. Internally, this requires a Release primitive to be concatenated with another Fixate step.
Release not only implements a careful releasing of the initially fixated part of the paper, but also
automatically moves the hand to a free position on a trajectory that does not intersect with the
upper layer of the paper. The hand can now fixate both layers (see Figure 6.33-1c), freeing up
the other hand to perform the Swipe primitive to actually crease the paper. As demonstrated in
Chapter 5, creasing can be carried out in a two-step fashion. In the first run, minimal pressure
and four fingers are used to slightly crease the paper along the center fold. After that, the fixating
hand is re-positioned closer to the fold line (Release followed by Fixate) to ensure that the paper is
not accidentally moved during the following higher-force/one-finger swipe movement. A human
can accomplish such a hard crease by performing a single swipe movement (see Figure 6.33-1d),
but here a very complex coordination of both hands is needed, which is even more difficult for a
robotic system to accomplish than the suggested two-step approach.

Step 2: Undo the previous fold
(Introduces primitives: PinchDisplace and Stretch)

Step 2 directly confronts us with a thus far unsolved task. In order to undo the previous fold, the
now perfectly aligned layers of paper have to be separated. This is achieved by pinch-grasping
the paper at a position close to a corner of the opposite side of the crease. Once again, this is
done by positioning the paper using RigidMove followed by Grasp. Now, after lifting the sheet
of paper, a complex in-hand movement must be performed to allow the other hand to grasp only
one of aligned layers of the paper (see Figure 6.35). To this end, the pinch-grasping thumb is
moved along the surface of the opposing forefinger tip towards the forefinger’s nail, which will
be referenced as the PinchDisplace primitive. Due to the fingertip friction, the corners of the two
grasped paper layers are displaced, exposing the layer that is touched by the forefinger, which
allows the other hand to pinch-grasp only that layer. Releasing the pinch-grasp that was used to
perform the PinchDisplace movement leads to a further unfolding of the paper (see Figure 6.33-
2c).
In order to put the paper, which now contains a center fold line parallel to its short edge, flat
onto the worktop, it must first be spread. To this end, the opposite corner to that which is being
held, is grasped and both corners are put simultaneously on the work-top, while maintaining a
stretching force along the diagonal of the paper. Even though, this move could be formalized by a
two-handed combination of the Grasp and Move primitives, we introduce it as a special primitive,
Stretch, to emphasize the complexity that is caused by the difficult coordination of both hands.
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The maintaining of a stretching-force is actually a very difficult task to achieve as common finger-
tip touch sensors still have difficulties measuring tangential forces. The stretching is followed by
a flattening of the sheet of paper in order to re-adjust the center folds resting angle to be 180◦.
This is achieved by finishing the Stretch primitive for one hand using PlaceFixate, followed by
performing a low-force four-finger Swipe-movement along the fold.

Step 3: Diagonally fold one corner towards the center fold and harden the crease/
Step 4: Repeat with the opposite side – mirrored along the initial fold
(no new primitives introduced)

Creating the diagonal folds needed for the front-wings of the paper aeroplane in Steps 3 and 4 is
similar to the creation of the initial center fold except for the parameters of the Align primitive.
Due to the fact that the fold is diagonal, a line-to-line alignment (paper edge to the center fold line)
is needed. For a human, this is particularly complex, as an exact alignment can only be achieved if
the top to-be-aligned paper edge is straightened during this step. However, as we initially assumed
accurate perception and modeling components to exist, the exact target point for the bent-over
paper corner on the center fold line can be derived from the model, transferring the task into a
fully specified point-to-point alignment problem that can be solved similarly to the initial center
fold employing the PlaceFixate and the Swipe primitives. The opposite diagonal wing-fold can
be carried out similarly but mirrored along the paper’s center fold axis as the target-point for the
paper corners are identical.

Step 5: Redo the first/center fold so that the diagonally folded edges are on the inside
(no new primitives introduced)

The re-creation of the center fold in Step 5 can be achieved analogously to the initial fold (Step 1),
but this time, the already existing fold-line leads to an automatic alignment of the folded layers.
Similar to a human who folds a paper aeroplane, the system would here have to decide whether to
trust the accuracy of the previous folding steps by simply assuming the hinge-joint like behavior
of the center fold to be correct or by re-ensuring the correctness of the center fold by explicitly
employing the Align primitive again. For the generated primitive sequence this means that Align
can either be used or simply be left out. In an optimal case, the system would test the necessity of
using Align by checking the perceived alignment error.

Step 6: Fold the top two layers parallel to and at a distance of about 4cm form the
first/center fold
(Introduces the PinchFold-primitive and generalizes the Align-primitive)

At the beginning of Step 6, the PinchDisplace primitive might be needed to separate the two folded
wings. Depending on the hardness of the center crease, the wing-tips could also be far enough
apart from each other, allowing the top wing to simply be pinch-grasped. Both approaches would
allow the system to use the Grasp primitive with both hands to achieve a hand/object configuration
similar to Figure 6.33-6a. However, the subsequent bi-manual folding technique requires a thus
far unseen dexterity and coordination skill of both hands, leading to the definition of the PinchFold
primitive (see Figure 6.36). The starting configuration of this primitive is that two pinch-grasps
are placed closely and in parallel to the desired fold-line (see Figure 6.33-6a and 6.36a). Then,
the two pinch-grasps are used to bend over the grasped layer of the paper (see Figure 6.36b,c). To
this end, the forefingers are used as rotation centers while they fixate the bottom layer of the paper
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.36: Manipulation sub-steps to get from Figure 6.336a to Figure 6.336c leading to the definition
of the PinchFold primitive. (a-c) Bi-manual folding using two pinch-grasps. (d) Dexterous
fixate using the left forefinger while maintaining Fixate with both thumbs. (e,f) Swipe prim-
itive carried out with the right forefinger tip to harden the crease. (g,h) Swipe primitive with
the left forefinger for the other part of the crease.

on the tabletop. In order to move the thumb-tips along the surface of the fixating forefingers the
whole hand-posture must be controlled (see Figure 6.36a-c). At the end of this bi-manual rotation
movement (see Figure 6.36c), the fold-alignment is controlled by slight x/y position-changes of
the thumbs relative to each other, requiring a severe generalization of the Align primitive. For the
alignment, the parallelism of the current fold and the existing center fold (bottom of the aeroplane’s
fuselage) as well as the parallelism of the aeroplane’s rear paper edges must be measured and
optimized. As soon as the thumb tips establish contact (see Figure 6.36c), an extremely dexterous
maneuver is needed to withdraw the forefingers from between the folded layers (see Figure 6.36d).
The right forefinger is used to fixate the fold while it is still held by the two thumbs. Only when
the fold is fully fixated by the left thumb and forefinger (see Figure 6.36d,e), is the right hand
free to perform a one finger Swipe primitive to harden the crease. For the other side of the crease,
the right hand is used for Fixate while the left hand carries out the Swipe primitive (see Figure
6.36g,h).

Step 7: Turn the paper around and mirror the previous operation on the other two layers
(no new primitives introduced)

The folding of the other wing of the paper aeroplane in Step 7 can be carried out analogously
to Step 6, except for the fold alignment sub step. In contrast to the first folded wing, for which
only an approximate distance of 4cm to the center fold was required, the fold alignment in Step
7 also needs to achieve an ideal alignment of the two wing folds. Actually, as we have to al-
low for the system making a small but not completely negligible error when applying a fold, the
over-determination of the exact fold geometry here leads to a trade-off between the different to-
be-aligned edges and folds. By employing world knowledge about the aerodynamics of paper
aeroplanes, a human expert would place high importance on the symmetry of the wing folds.
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Step 8: Adjust the last two folds so that the wings are at 90◦ to the fuselage.
(no new primitives introduced)

The final abduction of the wings (Step 8) can be achieved in many different ways. While the very
special bi-manual 3-finger fold adjustment technique presented in Figure 6.33-8c,d is quite natural
for a human, a robotic system could use a simpler manipulation sequence that can be created from
the existing primitives. As a matter of fact, the presented PinchFold primitive can be employed
inversely to this end. Thus, by using a combination of RigidMove, Grasp and PinchDisplace, the
robot could separate the wings in order to achieve an appropriate initial hand/paper configuration
for PinchFold. The actual adjustment of the fold angle (here from about 180◦ to 90◦) is typically
accomplished by an explicit over bending action, that is, we adjust the fold to about 60◦ so that
the paper’s plastic resiliency leads to an actual folding angle of the desired 90◦. The needed
angle depends on many variables such as the paper’s thickness and stiffness, the reduction of that
stiffness along the fold caused by the creasing and also on the grasp-force that is used during the
inverted PinchFold. In addition, a multiple execution of the same primitive will yield different
results. The physics-based simulation might prove useful to acquire a well suited initial guess of
the angle, but when performing the abduction, a closed-loop trial and error based execution might
be necessary.

6.5.2 An Extendable Set of Basic Action Primitives

The analysis of the folding sequence to make a paper aeroplane (see Section 6.5.1) provided us
with an initial set of BAPs. Before we try to realize other similar and also very different mani-
pulation actions with paper and paper-like objects (see Section 6.5.4), the existing primitives are
described more systematically. Some of these primitives need to be implemented as combined
controllers that must achieve or maintain a set of different sub-goals, which is commonly done
using a control basis approach [Huber and Grupen, 1997]. In a control basis framework, high and
low-level controllers can be composed in a hierarchical fashion using the subject to-relation. If a
controller C1 is executed subject to a controller C2 (commonly written as C1 � C2), the frame-
work will internally execute C1 in the null-space of the potential-function that underlies C2. The
potential function associated with the controller can be derived either from a high-level state logic
or sequence planner or from a low-level closed-loop feedback mechanism.
The suggested BAPs are, however, defined on a level above the controller concept of the control
basis framework. Therefore, BAPs can be single controllers or combinations of controllers that
have to be executed in a dependent fashion using the subject to relation. In addition to this, there
are situations in which BAPs themselves must be cascaded so that one BAP is executed subject to
another BAP.
In the following, the presented BAPs are discussed with regard to common use-cases, parameters
and other related BAPs. In addition, possible difficulties and extensions for an actual implementa-
tion are suggested. It is important to underline that we do not claim to provide blueprints that allow
the primitives to be implemented directly. Instead, this section aims to provide information and
useful insights and to highlight predictable problems in order to bootstrap and support the devel-
opment process of such blueprints. Sometimes we suggest the extension of a primitive’s desired
functionality to automatically perform other actions before, in parallel or after the execution of the
basis function of the primitive. It is obvious that moving a certain action from to be performed
before the primitive to an initial part of the primitive does not significantly facilitate the actual
development of that functionality. Instead, including certain actions into primitives makes these
more powerful and easier to integrate into an interaction sequence and thus simplifies the global
planning and primitive sequencing mechanism.
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Align: The Align primitive is employed to achieve an alignment of paper edges, corners and fold
lines. To this end, Align is usually executed while the part of the paper, to which the grasped part
needs to be aligned with, is fixated using the Fixate primitive. A high accuracy can be achieved by
implementing Align using a closed-loop controller. The desired alignment goal can be defined as
a single point-to-point alignment or it can encompass several to-be-aligned geometrical primitives
and thus, the target might be over or under-specified. While in the case of an over-specification, an
appropriate mediation function must be selected, an under-specification is usually complemented
by additional constraints that could originate from a parent controller so that Align is executed
subject to it.
It is conceivable that the low-level alignment is implemented purely on the basis of the information
provided by the current model. However, a direct image-feature-based alignment method might
prove more accurate in given situations.

Fixate: The fixation of certain parts of the manipulated paper is a very common and frequently
used action primitive. If possible, Fixate is applied by wedging in one or several folded layers of
the paper between the fingers and the worktop. Humans would usually prefer this technique as it
is energy efficient and due to the fact that its friction-based contact to a steady worktop offers high
stability. For a robotic system both of theses features might not directly apply, which could lead
to differences in the final way a robot interacts with paper.
Internally, Fixate has two states. The first state is active to establish contact with the desired
fixation point commonly employing both visual and tactile feedback to achieve this. After con-
tact establishment, the second state is activated, in which Fixate maintains a given contact force.
Active-posture based controllers for this skill were presented in the robotic folding experiment
(see Section 5.5.3). The Fixate primitive is parametrized by a number of paper-space coordinates
that are to be fixated. The coordinates have to be derived from the higher level action planner and
sequencer as usually only the actions that are performed in parallel to Fixate provide the necessary
information enabling optimal fixation points to be computed.
While most of the time, fixate can be performed with the fingers of an otherwise free hand, certain
actions such the left forefinger fixation depicted in Figure 6.36c-f can require extremely dexterous
movements, in which Fixate is applied with one finger of a hand while the other fingers are used
to run a different action primitive. Thus, it can be necessary to execute Fixate subject to another
BAP or even subject to another instance of Fixate.

Grasp: The Grasp primitive is used to either fixate (see the Fixate primitive) or move a part of
(see the Move primitive) or the whole sheet of paper (see the RigidMove primitive). Grasp needs
to be initialized with a given grasp-type, the to-be-grasped paper-space coordinate as well as the
direction of the grasp. Internally, Grasp must be able to avoid collisions with other parts of the
paper.

Move: Move is used for coarse paper deformation operations that can be planned in advance.
A pre-planned relative movement trajectory is used as a preparation for another, more precise,
manipulation action such as Align or PinchDisplace – usually while the other hand executes Fixate.
Thus, the definition of the Move-primitive basically acts like a BAP-wrapper for an already well
understood robot controller that works in task or object-space.

PinchDisplace: As demonstrated in Section 6.5.1 and in particular in Figure 6.35, a special ability
is needed to separate aligned layers of paper. A simple implementation of the PinchDisplace
primitive would use a pre-defined relative movement trajectory of the thumb with respect to the
opposing forefinger. However, more elaborate variants also seem possible that use visuo-haptic
feedback to optimize the grasp’s contact force and visually ensure that the conducted relative finger
movement actually yields the desired result. PinchDisplace can only work if the actual friction
between fingertips and paper is higher than the friction between the to-be-separated paper layers.
Due to possible non-linearities caused by the materials and construction of the robotic fingertips an
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Figure 6.37: Additional explanation for the PlaceFixate-primitive, illustrating the expected alignment er-
ror, eother, with respect to the given ratio between the fold length f and the orthogonal paper
width w. (left) The quotient fa/w ∼ 1 results in an expected alignment error, eother,a ∼ e.
(right) Even though the point-to-point alignment error, e, is identical to the one in the left
figure, the larger quotient fb/w > 2, yields a proportionally larger expected alignment error
eother,b � e.

optimal force can not necessarily be given in advance. Instead, a closed-loop controller based on
high-frequency tactile feedback [Schöpfer et al., 2010] could be employed to maintain a minimal,
yet sufficient, contact force. In our robotic folding experiment (see Section 5.5), we counteracted
slippage by using rubber finger covers to increase friction.

PinchFold: The thus far most specialized of the defined BAPs is PinchFold, which is used for
precise folding operations. While for the initial folding in half of the paper in our paper aeroplane
example, a folding technique that consists of the steps Fixate, Grasp, Move and Align (FGMA) is
employed (see Figure 6.33-1a-e), the later folding of the aeroplane’s fuselage is achieved using the
technique that led to the introduction of the PinchFold-primitive (see Figure 6.33-6a-e). Reviewing
several random origami folding videos on the internet provided us with the insight that the FGMA-
fold seems to be used only in cases, in which the desired target fold line divides the paper or a
large-enough and not too-elongated part of the folded paper in half. Some people even seem to
prefer a technique similar to PinchFold all of the time. There are several obvious reasons that
explain this observation. In the case of the FGMA-fold, the folded part of the paper is usually
grasped close to one end of the fold, which significantly facilitates the subsequent alignment step.
This makes particularly sense if the paper is folded in half as here, the alignment is sufficiently
specified by the alignment of the two corners and thus high accuracy can be attained. In contrast
to this, if the fold geometry of the desired fold precision requires a second point to be aligned,
the PinchFold-technique is often preferred. The latter also becomes mandatory for cases in which
the length, f , of the fold is multiples higher than the width, w, (orthogonally to the fold) of the
to-be-folded part of the paper. Given an expected point-to-point alignment error, e, (parallel to the
fold). The expected alignment error, eother, for the opposite corner is proportional to the quotient
f/w (see Figure 6.37).

PlaceFixate: As explained in Figure 6.34, the PlaceFixate primitive is used as a natural and ef-
ficient transition between placing a part of the paper and immediately fixating it. Similar to the
chosen example, it is commonly preceded by an Align step. Depending on the actual implemen-
tation, it might even be necessary to execute the initial placing-part of PlaceFixate subject to
a simultaneously executed Align primitive. Otherwise a previously achieved perfect alignment
might be undone during the fixation movement. Once contact is established so that the desired
parts of the paper are fixated, the previously described thumb-rotation frees the forefinger, which
can then be withdrawn in order to directly perform a subsequent BAP or at least to decrease the
limitation of the fixating hand’s possible interaction space. As PlaceFixate is assumed to be ex-
ecuted in a situation in which a part of the paper is already pinch-grasped, a parametrization that
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allows a possible parent Align primitive to be selected, suffices here.

Release: Careful releasing of a previously grasped or fixated part of the paper, followed by an
automatic withdrawal that avoids collision between hands and the paper is needed several times in
many interaction sequences. While for a simple rigid placing of a folded or unfolded sheet of paper
it would be sufficient to simply let the paper fall from above the target position, releasing the paper
during an interaction sequence must not result in the paper accidentally displaced. The importance
of a sophisticated Release-primitive was even shown with regard to our very early paper shifting
experiment (see Section 2.2). By extending the functionality of the primitive to accomplish a
full collision-free withdrawal of the robot hand, the primitive becomes even more powerful. To
this end, however, an actual implementation must initially evaluate the whole scene, including
the posture of both arms and hands and the complete deformation of the paper. How to actually
perform the release-movement strongly depends on the used robot hardware. We exploited the
compliant spring-like construction of the Shadow dexterous robot hands as a hardware buffering
mechanism to maintain a given contact force while avoiding damage to the hands. However,
the same spring-like behavior in turn automatically leads to an unwanted displacement during a
release motion as the fingers tend to bounce back to their specialized postures. Other types of
robot hands that implement compliance though a software-controller could natively suppress or
even completely avoid this behavior.

RigidMove: The RigidMove primitive is used whenever the to-be-manipulated object pose needs to
be altered. An actual implementation could use an existing pick-and-place framework. However,
the non-rigid nature of the paper introduces a new layer of complexity to the trajectory planning.
The main reason for this is the object’s tendency to deform under the influence of gravity or even
due to its own inertia. Given a desired target pose parameter, the internal implementation could
employ physical simulation to find a suited trajectory.

Stretch: The stretching of a (previously folded) sheet of paper, which is formalized by the Stretch-
primitive is an example of a bi-manual manipulation. In contrast to most of the other BAPs, which
are also executed with two active hands, Stretch employs both hands in an equal but counteracting
fashion. As mentioned earlier, a stretching force that emerges tangential to the fingertip surfaces
is difficult to measure with existing tactile sensors, necessitating the integration of force torque
sensors into the robot arms. Alternatively, an accurate perception module could be employed to
estimate the stretching state of the paper. The definition of stretching on the basis of the shape
rather than on the basis of the force would be an even more direct quantity that could be used.
A possible implementation could use such a measurement function as a plugin-parameter or even
employ several sources at once to perform sensor-fusion for more robust results. The Stretch
primitive requires the paper to be grasped at two positions, so that the to-be-stretched-out part of
the paper is located in the middle. In our example, Stretch did not contain either the initial two-
point grasping of the paper nor the subsequent releasing of the paper. A possible generalization of
the Stretch concept could require the primitive to be able to automatically compute and perform
these actions, which would facilitate its integration into an action sequencing mechanism.

Swipe: The most simple imaginable variant of the Swipe-primitive could be configured with a
linear paper space trajectory, defined by start and end points, the fingers that should be used and a
desired contact force. However, similar to the aeroplane example, such a swiping motion is, due
to the friction of the finger-tips, prone to move or rotate the paper, which is why the paper must
be fixated appropriately by the other hand. While an unwanted translation of the paper can be
satisfactorily prevented using an arbitrary stable-enough single point fixation, avoiding accidental
rotation requires two points to be fixated that are optimally not too close to each other. In addition,
at least one of the fixation points must be close enough to the starting point of the swipe-trajectory
as otherwise the leverage effect can cause the paper to curl. In order to relieve the global planning
and primitive sequencing mechanism, the definition of Swipe could be extended so that it that can
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also automatically compute optimal fixation points.

6.5.3 Primitive Sequencing and Planning and Learning

In the context of the introduced primitives, learning could be understood in different ways. From a
conceptual point of view, a simple way to start would be to search for optimal primitive parameters.
Such a learning process could be based on human demonstration or on an exploratory search.
However, while the manual creation of training data is a very time-consuming task, exploration
demands that either a real robot is used and thus leading to high hardware maintenance costs or
that a physics simulation is employed, which might, due to an incomplete modeling of physical
effects, yield sub-optimal or even wrong parameters for the real-world.
In contrast to this, learning could also be understood as the ability to find out how to plan and
automatically sequence the existing primitives to achieve desired paper configurations. The two-
fold nature of this problem can be underlined by splitting it into two sub-tasks:

1. How must the paper be moved/transformed to achieve the desired target deformation?

2. What robot movements are needed to make the paper move that way?

The first sub-task is mainly related to modeling and manipulating the paper. In most of the related
work (see Section 5.1), and in particular when dealing with the formalization of origami folding,
folds are modeled as temporally discrete events that happen between two consecutive time steps.
In contrast, for the planning of robotic manipulation sequences, the dynamic nature of the folding
process must be incorporated. Furthermore, many related systems model to-be-manipulated pa-
per or cardboard objects as rigid faces connected by a finite set of revolute joints (analogous to a
robotic kinematic chain), which allows classical robot-planning algorithms to be directly applied.
While this is a sufficient approximation for the initial inference of folding sequences, the actual
non-idealized folding of paper requires the deformability of the faces to be taken into account and
these should therefore be reflected in the model. The first sub-task could be approached by extend-
ing an existing system by directly integrating a more advanced model, such as the one proposed in
Section 6.1. As an alternative to this, a two-tier framework in which an initial traditional solution
is refined with the addition of such a model seems also plausible.
The second sub-task of planning robot movements by sequencing and parametrized action primi-
tives in order to achieve a desired paper-deformation trajectory is even more complex. This step
is commonly simplified by using simple robot hands [Tanaka et al., 2007] [Liu and Dai, 2003]
or even specialized folding robots [Balkcom, 2004; Lu and Akella, 2000] and accordingly, rather
simple action primitives can be applied. In contrast, our vision is to use fully-fledged anthropo-
morphic robot hands and correspondingly sophisticated action primitives, both having several tens
of degrees of freedom. Due to the resulting combinatorial explosion, such a problem presents
classical planning approaches, such as PRM-based methods [Kavraki et al., 1996], with a very
difficult task.

6.5.4 Using our Primitives to Manipulate other Deformable Objects

As a final thought experiment, we discuss, how well our developed set of BAPs is theoretically
sufficient to carry out manipulation actions with other more general deformable objects. The
selected exemplary set of actions extends from manipulations that are very similar to our paper
folding experiments to radically different sequences. Our initial focus remains on planar (2D)
objects. By restricting ourselves to 2D objects, we can achieve a much higher re-usability of the
existing BAPs and thus limit the set of needed BAPs to a reasonable size. Nonetheless, the impact
of the BAPs with regard to their applicability for manipulation of 1D and 3D deformable objects



6.5. ROBOTIC MANIPULATION OF PAPER FROM A SYSTEM PERSPECTIVE 175

(a) contact established (b) displace upper page (c) touch upper page’s edge (d) separate pages

(e) two pages grasped (f) displace (g) release lower page (h) upper page separated

Figure 6.38: One-handed flicking by grasping the bottom right corner of the upper page. (a-d) After
establishing contact, the top page is shifted towards the bottom of the book, so that the top-
most page can be separated in order to grasp it. (e-h) Possible extension of the technique is
shown in (a-d). Already grasped pages are held between the fore and middle fingers while
the forefinger and thumb continue flicking. In cases in which several pages are accidentally
grasped, a PinchDisplace-movement is used to separate the upper page.

is discussed later in Section 6.5.6. The following list represents the set of chosen manipulation
examples for 2D deformable objects:

• Flicking though a book

• Putting a letter into an envelope

• Folding a piece of cloth

• Putting a slice of cheese on a slice of bread (including the opening of the packages)

Flicking Through a Book

Even though it could be argued that the ability to flick through the pages of a book is becoming
more and more obsolete, especially for an agent that theoretically has access to the contents of
every publication in existence through internet, this example was chosen as its underlying interac-
tion defines a prototype for the separation of aligned layers of deformable planar objects. There
are many other domains, such as when dealing with loose sheets of paper, food, banknotes or
laundry, in which this ability is needed. Actually there are many types of flicking actions devel-
oped by people depending on the particular situation or goal, such as the type of the book, the
thickness and the friction of the pages (anticipated and observed), whether the pages have to be
handled carefully and whether we are performing a specific search (content-based or a page num-
ber) or aim to simply get an overview of the book’s content. From the vast set of possible flicking
techniques and individual variants of these, four common ones (the first one is presented in Figure
6.38 and three further ones are shown in Figure 6.39) were selected for the subsequent discussion
with regard to performing them with a robot. In the optimal case a combination of our defined
BAPs are used to specify them. Figure 6.38a-d shows a very natural flicking technique that is
commonly used to traverse page by page into a book. The 3D structure of the book necessitates
the generalization of the Fixate primitive to block the book’s movement into a particular direction.
With this, the displacement of the top-most page (see Figure 6.38b) can be achieved employing
the Swipe-primitive. However, as our original definition of Swipe was designed to swipe over the
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(a) contact established (b) shift with thumb (c) move thumb under page (d) grasp

(e) contact established (f) shift with fingers (g) move thumb into gap (h) grasp

(i) several pages in hand (j) release single page (k) flip page with hand (l) pick top page if more than
one page was released

Figure 6.39: More page flicking techniques. (a-d) The page is fixated with the fingers while the thumb
is used to bulge up the top page. (e-h) Analogous to (a-d), but now the thumb fixates while
the fingers are used to bulge up the top page (requires the other hand). (i-k) Faster flicking
that offers a good overview of the page content but needs preparation to get to the situation
depicted in (i). Single pages are released by a minimal rotation of the thumb’s tip. (l) If more
than one page is accidentally released, the free left hand can be used to pick off the top-most
page.

paper, another extension is needed here. Similar to the PinchDisplace-primitive, the contact force
must be adjusted to ensure that the paper is shifted along with the finger movement. To avoid
confusion with swiping movements, we introduce this functionality as the Shift-primitive. Shift
can seamlessly be blended into Fixate by stopping the movement and by increasing the contact
pressure if needed. The separation of the top-most page requires very sensitive tactile feedback,
whose contact-shape must be maintained while moving the thumb upwards (see Figure 6.38c). As
this seems to be another common sub-step for paper-manipulation, it is used to define another new
primitive, EdgeGrasp. The Grasp component of its name underlines the fact that it is mostly used
to pinch-grasp the corner or the edge of the lifted page (see Figure 6.38d).
Figure 6.38e-h shows a commonly occuring error situation, in which more than one page is ac-
cidentally grasped using the previously defined flicking method. This situation can be resolved
using an extended PinchDisplace-primitive that is able to release the displaced layer touched by
the thumb by translocating the pinch-grasp center away from the thumb’s tip (see Figure 6.38g,h).
A remaining question is how a robot system would be able to detect, whether one or several pages
were grasped. Assuming that the thickness of the grasped layers cannot be measured accurately
enough to distinguish between one and two layers, a probing movement similar to PinchDisplace
could be performed in order to detect a single page based on slip-detection as was presented by
Schöpfer et al. [2010].
Figure 6.39 shows three additional page flicking techniques. The first two techniques (see Fig-
ure 6.39a-d and e-h) could be achieved using the new Shift-primitive, followed by Grap executed
subject-to the Fixate-primitive parametrized with the end-posture of Shift. The third flicking tech-
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(a) center-align corner (b) prepare fold (c) crease fold line (d) perform second fold

Figure 6.40: Folding a paper in thirds. (a-c) The main difference to the previously discussed sequence of
folding paper in half is the more advanced alignment that is needed in step (a) and the second
fold that has to be applied (d).

nique (see Figure 6.39i-l) requires an extra action to arrive at the initial situation depicted in Figure
6.39i. To this end, our first flicking technique (see Figure 6.38a-d) must be slightly adapted so that
not only the first, but a whole stack of pages are lifted to allow grasping with the right hand.
The most difficult step is depicted in Figure 6.39j. Here, a minimal rotation of the thumb-tip is
performed so that only the top-most page is released. The extreme dexterity that is needed for
this step is underlined by the fact, that it also often happens that we accidentally release more
than one page at a time. In this case the robot could, in a similar fashion to a human, switch
its operation mode to separating the released pages with the free hand (see Figure 6.39l). While
this error handling could be implemented by re-using the EdgeGrasp-primitive, a very special
ReleaseTopPage-primitive needs to be introduced to perform the releasing action.

Putting a Letter into an Envelope

While folding a sheet of paper in half was already solved both theoretically and even using our
robot, folding into three equal parts, as is needed when fitting an A4 sheet of paper into a C 5/6
(DIN-lang) envelope requires an additional set of actions to be carried out, including an under-
specified Align-step. For the initial fold, a paper corner must be aligned with the adjacent long
edge so that the target point splits the original paper in equal thirds. Given a good modeling and
detection module, a robot system is likely to solve this task even more precisely than humans, who
easily end up with thirds that differ in the order of a centimeter in their sizes. While this is, given
the additional height of the envelope13, usually sufficient, a robot could easily reach millimeter
accuracy here. Figure 6.40 shows how a human would solve this tasks. By extracting the desired
alignment coordinates from the model, a robot could carry out the initial fold (see Figure 6.40a-c)
like the initial paper aeroplane fold. The second fold (see Figure 6.40d), prepared by turning the
paper over using the RigidMove-primitive, can be performed in a similar fashion. To this end, the
already folded paper can be treated as an unfolded sheet of paper with an altered aspect ratio.
In contrast to this, the actual insertion of the folded sheet of paper into the envelope (see Figure
6.41) is indeed very different from the interactions that were considered for the initial definition
of BAPs. Even though, an apparently very special one-handed interaction is needed to open the
envelope (see Figure 6.41a,b), it can be modeled by a simple cascade of existing BAPs. To this
end, Grasp is executed subject-to Fixate using the required pinch-grasp prototype with one hand.
While maintaining the grasp, a Move-primitive can be used to open the envelop, leading to a final
cascade of three primitives: Move � Grasp � Fixate. Once the envelope is opened (see Figure
6.41b), the previously folded paper can be inserted. After grasping the paper appropriately (see
Figure 6.41c) using one of the already presented picking-up techniques, the insertion is initialized
by aligning one short-edge with the corresponding inner edge of the envelope. The desired edge-

13 A 297mm A4 page, folded in 99mm thirds, put into a 110mm envelope allows for an inaccuracy of about one
centimeter.
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(a) position hand (b) open envelope (c) align first edge (under inner flap)

(d) align other edge (under inner flap) (e) slide in (f) slide in last part

Figure 6.41: Inserting a folded sheet of paper into an envelope. (a,b) The envelope is opened with a special
one-handed combination of grasping, lifting and fixating. (c,d) The insertion is performed in
two steps, aligning first one and then the other edge of the paper. The paper must be brought
under the envelope’s inner flaps (see marked area in c). (e,f) For the last fraction of the
sliding-in movement the hand that grasps the paper must be moved slightly upwards to avoid
crumpling the bottom part of the envelope’s closure flap.

to-edge alignment is particularly difficult as the paper corner must be brought under the envelope’s
inner flap (see marked area in Figure 6.41c). This is achieved by first aligning the paper edge
vertically with the envelope, followed by aligning the edges, which can be expressed by cascading
two instances of Align: Align(edges) � Align(vertical). The same action must be mirrored to
insert the opposite paper edge, while ensuring to maintain the existing alignment: Align(right
edges) � Align(right vertical) � Align(left edges) � Align(left vertical)14. Shifting the paper
into the envelope is achieved using a rather simple RigidMove primitive. For the last 20% of the
movement, the grasping hand must be slightly lifted to avoid crumpling the bottom part of the
envelope’s closure flap with the bottom fingers, which can, however, be trivially realized using a
3-step RigidMove trajectory (shift, lift, shift).

Folding a Piece of Cloth

Due to its high relevance for potential household robots, laundry folding has become a very pop-
ular sub-domain of robotic manipulation of deformable objects. The main difference to the ma-
nipulation of paper is the softer nature of cloth leading to a basically negligible bending stiffness
and shape permanence. While gravity could be neglected almost totally in the case of paper, it
becomes a fundamental factor for the manipulation of cloth.
Transitioning to a purely gravity based method leads to a total shift in the actual difficulties the
robotic system needs to address. While we could reasonable expect in most situations to start
out with perfectly flat sheets of paper, cloth is very prone to crumple, leading to the conceptional
necessity to include straightening as an initial step of the manipulation sequence. However, as the
straightening out itself is a very complex task, existing work has largely focused on untangling
and straightening of laundry objects [Bersch et al., 2011; Maitin-Shepard et al., 2010], or simply
assumes the to-be-folded laundry be straightened already [Miller et al., 2012; Van Den Berg et al.,

14 Left and right are here used with respect to the images in figure 6.41
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(a) flat placing (b) folding in half

(c) folding in thirds (d) folding in equal fifths

Figure 6.42: Visualization of the GravityPlace-primitive. The number of folds that are added depends on
the horizontal movement that is performed while slowly lowering the hands.

2010].
The straightening of crumpled laundry objects is determined by a possibly proactive search for
the corners for the object. In the following, we assume that the objects are crumpled only, so that
more difficult situations, in which the object is knotted or even partly turned inside is ignored.
Thus, once two adjacent corners are identified, the enclosed edge can be stretched so that the grav-
ity automatically straightens the entire piece. In cases in which the edge is twisted, re-grasping
might be necessary. The identification of the object corners is closely linked to the capabilities of
the visual detection and modeling module that has to be able to bootstrap itself given an initially,
perhaps strongly, deformed object. Under the concededly unrealistic assumption that an accurate
model is given under these circumstances, the corners can either be grasped directly, or they have
to be uncovered by picking and placing other parts of the object appropriately, which both can be
implemented using our Grasp and Move primitives. However, as even for humans it is naturally
not possible to extract the complete deformation of a crumpled piece of cloth, it must be assumed
that the vision system can only provide a very coarse impression of the object deformation from an
undisturbed object. This leads to the necessity to proactively move and deform the object to reveal
obvious key-points such as texture, corners, collars or buttons which allows the initialization of an
internal model as was shown by Maitin-Shepard et al. [2010]. However the actions that are needed
for this cannot be classified to be actually dexterous as they can be fully described using sequences
of Grasp and Move actions that could be performed just as well using a simple two-jaw-gripper.
Similar to the domain of paper folding, (gravity-based) folding of laundry consists of two almost
orthogonal aspects, the planning of folding sequences and the actual generation of robot trajecto-
ries to execute the folding actions. Planning is conceptually very close to the planning of origami
[Miller et al., 2012], which was extensively reviewed in Section 5.1.4.
For the generation of robot trajectories for laundry folding, inertia is often considered to be a neg-
ligible factor, which is, however, only true as long as the robot movements are carried out slowly.
The faster the robot moves, the higher the influence of mass and inertia that has to be taken into ac-
count during the trajectory generation. Due to their intrinsic similarity, we combine gravity-based
folding and gravity-based placing into a new GravityPlace-primitive (see Figure 6.42).
In order to accelerate the folding process, faster robot movements are required. Thus, the resulting
swinging of the loose object ends caused by inertia must be taken into account for the trajectory
generation. In an optimal case, the planning process should not only try to counteract these effects,
e.g. by a controlled slowing down of movements, but should also try to exploit them to improve
the folding speed. This, however, requires the system to have a good anticipation of the object’s
physical mass, mass distribution and stiffness – properties that can be extracted by weighing the
object using force-torque sensors after lifting it. In addition, a sophisticated physical simulation is
needed for the planning.
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It is important to underline that folding is not the only possible interaction that can be imag-
ined with laundry. In particular, with regard to the care of elderly people (e.g. the Care-o-Bot
[Graf et al., 2004, 2009; Hans et al., 2002]), the ability to be able to dress people will also become
important. When dealing with clothes, the topology of an item is very important, but such consid-
erations lead to a large set of additional challenges for perception, modeling and the robot-control.
The work of Lukas Twardon [Twardon and Ritter, 2015b], who enabled a robot to grasp and hang
up a knit cap using a bi-manual anthropomorphic robot, is particularly relevant to this topic.

Putting a Slice of Cheese on a Slice of Bread

A completely different set of deformable objects are food items. For the chosen example of putting
a slice of cheese on a slice of bread, the actual appropriate placing of the grasped slice of cheese
can be trivially realized using the GravityPlace-primitive. However, given a package of sliced
bread, packaged cheese and a plate, both bread and cheese must first be unpacked, which pro-
vides, due to the compliant nature of the packaging materials used, even further examples for the
manipulation of common deformable objects. Therefore, in order to get a deeper and more com-
plete understanding of the needed preparation-steps, the opening and the closing of the packaging
is added to the following discussion. Figure 6.43 shows the course and the sub-steps of this task.
To remove a slice of bread, the packing’s clip must be opened, a slice of bread must be picked off
from the stack and ideally the packaging should be sealed again by closing it with the previously
removed closure clip. A similarly difficult action sequence is needed to pick a slice of cheese from
an initially sealed packet of cheese.
In contrast to the other examples that have been discussed so far, we here deal with numerous
objects of different types. In order to focus on the robot control aspects, we assume that the vi-
sual detection and modeling system has been generalized appropriately so that the objects can be
detected and their deformation can be tracked during the course of the manipulation sequence.
However, some particularly demanding visual detection tasks are addressed in order to call atten-
tion to the most obvious difficulties for this domain.

The first sub-task is to open the closure clip that seals the bread packaging (see Figure 6.43a).
While for the visual detection of the packaging, reflections and transparency must be handled, the
detection of the closure clip is difficult because of its small size – in particular given the large
amount of occlusion that has to be dealt with. As a preparation, the closed packaging must be ori-
ented appropriately (using the RigidMove-primitive) so that the open end of the closure clip can be
conveniently reached. While a very accurate visual detection could possibly allow the open end to
be grasped using the standard Grasp-primitive, occlusion and the small size of the graspable end
suggests a more sophisticated grasping technique that based on tactile servoing [Li et al., 2015] is
needed. By generalizing Grasp to optionally maintain a desired tactile feedback through an alter-
ing of the grasp posture, the fixation of the clip could be maintained and optimized while Move
is executed subject-to the Grasp primitive to unwind the closure clip. Once the closure clip is
unwound, it can be removed by means of trivial picking and placing action.
The next sub-task is to open the packaging to be able to pick off the top slice of bread from within.
The visual detection of the packing’s opening could be simplified and enhanced using a dedicated
topology-based boundary detection mechanism such as was implemented by Twardon and Ritter
[2015a]. For the sake of brevity, the main part of the packaging, which contains the bread, will in
the following be referred to as body and the open end that forms the opening will be referred to as
neck. Due to the extreme deformation of the material around the neck, a heuristical initialization
on the basis of the Spread-primitive (see Figure 6.43b1,2) might be necessary or at least very help-
ful. Picking off the top-most slice of bread from within the packing’s body is conceptually very
similar to the EdgeGrasp-primitive that was introduced for the page flicking example earlier in
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(a) open and remove closure clip

y1 y2 y3 y4 y5
(b) open package (1-3) and pick upper slice of bread (4,5)

y1 y2 y3 y4 y5
(c) close and seal package of bread by reusing the closure clip

y1 y2 y3 y4 y5
(d) first try to open the cheese package causes an accidental tearing of the lid (4)

y1 y2 y3 y4 y5
(e) error handling by starting again at the tear requires several re-grasps

y1 y2 y3 y4 y5
(f) pick slice of cheese (1-3) and place it on the slice of bread (4,5)

y1 y2 y3 y4 y5
(g) close cheese package

y1 y2 y3 y3 y3
Figure 6.43: Putting a slice of cheese on a slice of bread includes opening and closing of food packages.

The complete interaction demands the robot to be capable to deal with several most different
types of deformable materials: bread, cheese, the wire in the closure clip and the different
types of plastic found in the packages. A very important situation is depicted in (d4) in which
an error situation must be detected an handled.
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this section. The main difference here is that the severe space limitations might require the robot
to separate the top slice using its finger-tips (see Figure 6.43b4), before pinch-grasping and pulling
out the slice. While the bending stiffness of bread is close to the stiffness of paper, it introduces a
very important property that has not yet been taken into account for the physical modeling frame-
work: tear strength. Not only for physics-based planning, but also for closed-loop feedback-based
controllers, the possible tearing of objects must be considered – most of the time in order to avoid
tearing. In the present example the slice of bread must be extracted without damaging it. To this
end, we generalize the primitives Move and RigidMove to optionally support tearing avoidance.
Without claiming to provide an actual solution for such a complex functionality, it can be stated
that a possible implementation would have to use all different kinds of visual, haptic and proprio-
ceptive feedback available.
Subsequently, the packaging must be sealed again by wrapping the closure clip around its neck.
This can be significantly facilitated by an initial twisting of the neck relative to the body, which
leads to a narrowing of the neck’s diameter. A trivial implementation based on Grasp and Move
would suffice here (see Figure 6.43c1). The wrapping of the closure clip around the now twisted
neck (see Figure 6.43c2-4) is particularly difficult as it requires not only strength and dexterity at
the same time, but also a very tight coordination of both hands. While the left hand15 fixates the
twisted neck to avoid any unwanted untwisting, it must also prevent the body from rotating, which
can be achieved by gently pressing it against the table-top: Fixate(body) � Fixate(neck).
Now, the right hand must grasp the closure clip appropriately. The fact that the clip does not have
to be completely straightened when removing it, its bent part can now directly be shifted over the
packing’s neck (see Figure 6.43c2). Otherwise, it would have been necessary to prepare the clip
with two hands before occupying the left hand with the fixation. An appropriate grasp orientation
can, if necessary, be achieved in a one-handed fashion by successive pick, place and re-pick ac-
tions. Once the closure clip’s opening is shifted over the neck, the right hand’s Grasp/Move (clip)
merges into an extra fixation primitive (Fixate), which is possible by pinching the neck together
using the clip (see Figure 6.43c3). Subsequently, the left hand uses the forefinger to bend the
closure clip’s open end firmly around the neck (see Figure 6.43c4). By introducing a new Bend-
primitive, which realizes a possibly closed-loop controlled bending of an object, the fixation of the
closure clip can be implemented using Bend � Fixate(body) � Fixate(neck).
In the next interaction step, the packaging of the cheese must be opened. This seems initially triv-
ial (see Figure 6.43d1,2) as the opening flap can be easily picked using the EdgeGrasp-primitive.
However, the high force that is needed to open the packing’s top lid is likely to accidentally tear
it (see Figure 6.43d4). While the previously introduced tear-avoidance-enabled Move-primitive
would theoretically prevent the material from tearing, it remains unclear, how the system could
be enabled to automatically alter the Grasp position and the Move direction to still fully open the
packing’s top lid. Such a situation could conceptually be approached either by employing physi-
cal simulation or by local optimization, assuming there is a small sub-space in which the system
can probe the local tearing tension of the material by altering the Grasp and Move-parameters.
Alternatively, the system would have to be endowed with an error handling mechanism, so that
it could automatically infer task-dependent alternative Grasp/Move combinations to open the lid
with minimal damage. However, the highly complex planning needed for this would also necessi-
tate a well-parametrized physical simulation.
In order to pick off the top-most slice of cheese, once again EdgeGrasp is employed (see Fig-
ure 6.43f1,2). The lifting of the slice (see Figure 6.43f3) using Move with tear-avoidance enabled
underlines that even friction forces and the stickiness of the lifted food item with respect to its tear-
strength can be significant factors in avoiding tearing. The final appropriate placing of the cheese
on the slice of bread (see Figure 6.43f4,5) can be performed with GravityPlace and the closing
of the cheese-packaging can be achieved using Move to roughly fold back the packing’s lid (see

15 Left and right here refer to the examples depicted in Figure 6.43 – they could be trivially swapped
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Figure 6.43g1-3), followed by Swipe to ensure the lid remains closed (see Figure 6.43g4,5).

6.5.5 Discussion

We presented an idea of a generic robotic system for the anthropomorphic manipulation of planar
deformable objects. The system is based on an extendable set of basic action primitives (BAPs),
each of which allowed a certain parametrized action to be performed. For some interaction steps,
BAPs had to be sequenced, executed in parallel, or put into a precedence cascade using the subject
to relation. Starting with an initial set of BAPs that were extracted from a paper aeroplane fold-
ing sequence, several other manipulation examples were run through in order to find out whether
the existing primitives sufficed for the realization of these examples. Some primitives had to be
extended or generalized and sometimes new primitives were required. However, a convergence
effect could be detected over time. That is, the more examples that were taken into account, the
less likely adaptions to the set of BAPs were required.
By design, we here concentrated on the definition of BAPs and their potential combination, which
even allowed us to conceptually enable the robot to open food packaging and to handle food items.
A next possible step would be to develop an automatic BAP sequencing mechanism that combines
and parametrizes the existing primitives to achieve a specified target object configuration. To this
end, Probabilistic Roadmap (PRM)-Methods combined with a physical simulation [Bayazit et al.,
2002] or simulation-based planning approaches [Yoshida et al., 2015] could be employed. How-
ever, as the bad predictability of the actual outcome of manipulation actions on deformable objects
leads to an almost non-deterministic deformation behavior, it is likely that not only some of the
primitives themselves, but also the planning and sequencing of actions will have to be imple-
mented in a closed loop manner. The research towards finding appropriate BAPs to realize the
selected action examples also provided valuable insights into the inherent difficulties that have to
be dealt with when manipulating planar deformable objects. Furthermore, in addition to the most
obviously common and rather generic primitives Grasp, Move, RigidMove and Fixate, the desire
to re-use existing primitives revealed other re-occuring actions, such as the ones described by the
EdgeGrasp or the GravityPlace primitives.
The manual extraction and definition of BAPs as basic constituents of complex interactions is not
only a difficult and time consuming task, but due to the lack of well defined rules that tell us how
to segment a perceived interaction into primitives it also has a rather random or arbitrary charac-
teristic property. As an alternative, many research projects focus on the automatic extraction of
action primitives from demonstrated actions. This led Schaal [2006] to introduce Dynamic Move-
ment Primitives (DMPs) – a framework that represents given input trajectories on the basis of the
dynamics of differential equations that allow start and end configurations of the trajectories to be
altered. Many later research projects took on the idea of DMPs and developed a large set of ex-
tensions, such as for the automatic learning of primitive functions and parameters [Ijspeert et al.,
2013; Pastor et al., 2009, 2013], the coordination of different robots [Zhou et al., 2016] and the
planning of collaborative tasks between robots and humans [Cui et al., 2016; Maeda et al., 2014,
2016].
However, the close coupling between perception and robot actions in many of our BAPs poses the
question of how to integrate highly complex visuo-haptic sensor feedback into a DMP-framework
in an online fashion. This could necessitate a hybrid approach, in which single BAPs are internally
realized on the basis of DMPs. While progress is being made, a long road lies ahead until robots
possess the dexterous capabilities we would like them to have.
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6.5.6 Generalization to 1D and 3D Deformable Objects

By initially arguing (see Chapter 1) that the field of the manipulation of generic deformable objects
is too versatile, we decided to narrow the domain by restricting the manipulated type of objects.
Thus, we first assumed objects to be planar and we put our main focus on the manipulation of
paper. With the development of a concept for a generic system for the manipulation of paper and
paper-like objects (see Section 6.5), we showed, that – conceptually – a small set of basic action
primitives (BAPs) suffices for the realization of very complex manipulation actions. By employing
the primitives, which were originally derived from and therefore also tuned for paper manipula-
tion, to the handling of other kinds of deformable 2D objects including plastic packaging material
and even food items such as cheese, their generalizability was investigated (see Section 6.5.4).
An obvious next generalization step is to apply our set of BAPs to the manipulation of 1D and
3D deformable objects. Some of the most common types of 1D deformable objects that we deal
with on an every day basis are cables and threads (including thin threads, common USB, head-
phone and power-cables and thick ropes). As discussed in Section 1.1.2, the robotic handling
of 1D deformable objects commonly requires a specialized 1D model. The adaption of the pre-
sented Kinect-based detection mechanism for planar objects (see Section 6.2) combined with an
appropriate physics-based linear deformable model, seems straight forward. However, the pre-
sented SURF-feature-based extension that provides more reliable associations between real-world
points and object coordinates would have to be replaced and for thinner objects an alternative 3D
sensor with a higher spatial resolution would be needed. The quite similar system presented in
Schulman et al. [2013b] used a thick rope and required different patches of that rope to be tinted
in well distinguishable homogeneous colors. Assuming a reliable detection and modeling mecha-
nism to be given, we can concentrate on the robotic manipulation. As an example, the untangling
of a cable is considered. Similar to the folding domain (see Section 1.1.3), it seams reasonable to
split the problem into the three sub-problems: theoretical solving of the required untangling, gen-
eration of the required model deformation trajectory and the generation of robot movements that
accomplish this. However, the complete theoretical solving of the untangling strongly assumes
a reliable guess of the initial model deformation, which might be very difficult to extract from a
fully entangled cable. Therefore, an iterative untangling strategy, similar to how a human would
perform this task, might be needed. Once such a strategy is available, the manipulation itself could
most likely be performed using the Grasp-primitive, which is appropriately set up with a desired
tactile pattern to ensure a stable grasp of the thin cable, and the Move-primitive alternately applied
by each hand. As another example for the handling of a linear deformable object, one of the most
precise manipulations that humans are able to perform is the threading of a needle, which remains,
due to the high accuracy needed, a difficult challenge for robots. In 2015, Huang et al. [2015]
provided a setup that is able to thread a needle with a thread of a diameter of 1 to 4mm, but they
introduced a custom designed robot that spins the thread fast enough to fully straighten it, before
the actual insertion is performed. Even though industrial robots with sub-millimeter accuracy ex-
ist, the threading of a needle seems to be a typical example requiring a closed-loop visual-servo
controller, which, in this case, must be combined with an appropriate macro lens to enable the
robot to visually guide the task. However, from the perspective of dexterous manipulation, the
task can once again be trivially described using our Grasp and Move primitives.
The tying of a bow could be deemed as example that particularly requires not only accuracy, but
also a high level of dexterity. A possible planning approach that uses two needle-like grippers, was
proposed in 2006 by Saha and Isto [2006] and there is even a patent for a custom designed bow
making apparatus [Monahan, 1993]. However, the task was thus far not solved for an anthropo-
morphic robot hand, which would, given the ease and speed with which humans can tie a bow, be
a very desirable skill for a robot to handle. Once learned, human bow tying seems to be mostly
reflex-driven rather than an action that requires intense action planning. Furthermore, visual feed-
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back is likely to play only a secondary role as the action can easily be performed without looking
but trying to tie a bow while wearing thick gloves, which severely reduces our tactile sensibility, is
extremely difficult. Even neglecting the fact that an anthropomorphic robotic solution would have
to deal with the – in comparison to the human hand – typically strongly limited touch sensitive
area, an easy implementation on the basis of our BAPs seems not possible as the whole bi-manual
manipulation sequence would most likely have to be modeled as one complex tactile-servoing-
controlled action.
Typical examples for commonly handled 3D deformable objects are pillows, mattresses, sponges,
loaves of bread, soft toys and inflatable items such as balloons or swimming pools. However, in
contrast to their 1D or 2D counter-parts, typical manipulations with 3D deformable objects are
neither distinguished by a high accuracy nor by high dexterity. Instead, they are often either only
grasped, placed and fixated or they are manipulated with rather coarse interactions. There are two
main reasons why humans usually do not use 3D deformable objects in a highly precise manner.
First, the objects’ compliant nature allows actions to be performed with less precision and second,
the deformability of the objects impairs our prediction accuracy so that we might not be able to
perform the task in the first place.
Another class of deformable objects that has not yet been taken into account is defined by pro-
totypes such as dough or clay. Objects that consist of such materials are not only continuously
deformable, but they also display plastic behavior. In addition, parts can be removed and later
be attached somewhere else. Going even one step further, fluids could be classified as 3D de-
formable objects that are characterized by different properties, such as surface tension and viscos-
ity. However, even though these examples reveal many interesting research questions for the field
of anthropomorphic robotic manipulation, they will not be discussed in more depth here as the
presented concepts for detection, modeling and robot control cannot trivially be ported.
Before we conclude, a very important, but perhaps not obvious type of 3D deformable object that
humans deal with every day must be examined: other humans. In addition to surgical robots, in
particular with regard to geriatric care, possible assistance robots have to be endowed with the
ability to interact with human bodies. The required level of detail of an employed model here
heavily depends on the actual application, but the use of a soft-body physics-based model will no
doubt be required. While our set of BAPs would require a number of additional aspects such as
caution and comfort, our vision system could be extended to track people without major adaptions.





7 Conclusion

Having presented initial results for general extensions of our robot paper manipulation system (see
Chapter 6), we now provide a short wrap-up and discussion of our contributions (see Section 7.1).
We conclude with some final thoughts and finish up by providing a summary of possible future
directions (see Section 7.2).

7.1 Summary & Discussion

By iteratively extending our initial robot system for shifting paper (see Section 2.2) along Percep-
tion, Modeling and Robot Control axes, we developed several systems for dexterous anthropomor-
phic manipulation of paper and paper-like objects. The realization of these systems required us
to tackle numerous previously unsolved challenges, such as the tracking of paper while it is being
manipulated by humans or robot hands, the real-time modeling of paper deformation including the
update of the model parameters on the basis of perceptual input and the development of robot sys-
tems that can execute complex paper manipulation actions. During this process, the requirements
for the next system and the knowledge and the insights gained from the current system mutually
supplemented each other, and allowed us to conceptualize and implement increasingly complex
systems. Perception, Modeling and Robot Control aspects were always closely coupled so that in
each iteration of the system, the complexity of the required world and object models and the cor-
responding detection systems were driven by the aspects of the paper that the robotics application
was about to change.

The Image Component Library (ICL)

During the different iterations of the robotic system, our computer vision library, ICL (see Chapter
3), was always a crucial prerequisite for the realization of ideas and prototypes developed for the
perception and modeling domains. ICL allowed us to implement all applications presented in this
thesis from the ground up. The integration of the developed algorithms and software components
into ICL, not only ensured their re-usability, but also demanded that we severely reconsider and
optimize the generality of the existing and new classes and interfaces.
Through its unmatched combination of speed, ease of use and function volume, ICL was shown
to have a leading position among existing computer-vision libraries and we note that beyond the
work presented here, it has been employed in many projects in and outside Bielefeld University.
Its main unique characteristic is its widely spread function volume that not only covers computer-
vision related functions and classes, but also a large set of tools that facilitate the development
of complex interactive and real-time capable applications. This allows diverse applications to be
implemented in ICL using a single, consistent, API.
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Shifting Paper

Our initial system for shifting paper (see Section 2.2), treated the paper as a rigid object and
altered the model position and orientation in 2D space only. Thus, a 2D model described by a
3D feature vector1, combined with a fixed paper size, sufficed to fully specify the relationship
between detected paper corners and edges and their associated counterpart in the model. The
restriction to 2D and the assumption of a top-view allowed the detection to be simply performed
in 2D image space. Using a simple color-edge detector, the corners and the edges of the paper
could be sufficiently tracked even in the presence of occlusions. The limited reachability of our
robot setup led to a comprehensive reachability-study that helped us to define a shifting posture
as a trade-off between optimal finger placement and maneuverability. The implementation of
the contact establishment for the shifting action revealed that the contact force measured by the
existing touch sensors heavily depends on the alignment of the sensors with the contact surface
and thus is not the ideal feedback channel to achieve and maintain a desired contact force. Even
though the compliant nature of the Shadow-Robot hands meant higher inaccuracy as the paper was
released, the final system was able to satisfactorily align a sheet of paper with a desired position
and orientation on a 2D worktop employing several online-planned perceive/action steps.

Picking up Paper

Our next iteration was to enable the robot to bi-manually pick up paper (see Chapter 4). The
picking up action was realized by bulging up the paper with one hand so that the other hand could
pinch-grasp the bulged-up center. While our previous 2D detection module would have been suf-
ficient for the detection of the paper’s initial pose, the robotic grasping of the bulged-up edge
required 3D information. Not only with regard to further manipulations that were planned but also
in order to optimize the generalizability of the detection and modeling mechanism, a deformable
3D paper model was preferred to a heuristical solution that only estimates the xyz-position of the
paper’s bulge. Given the severe amount of occlusion that was expected, multi-camera registration
and 2D/3D-keypoint detection and association issues were bypassed using a newly introduced type
of fiducial marker that were printed directly on the paper. Using a calibrated multi-camera setup,
the resulting correspondences between 2D paper space coordinates and 3D world coordinates were
used to compare a mathematical model with a physics-based model. A detailed comparison, con-
ducted using a realistic 3D simulation, of the performances of these models in different paper
manipulation scenarios showed that the simpler mathematical model performed as well as the
physics model in many situations and even showed better accuracy in some cases. However, due
to the physical model’s superior properties when handling occlusions and its extensible character-
istics, the detection system for the robotic picking-up of paper experiment employed the physical
model.
The development of the robot control system underlined the fact that a mechanism for the na-
tive integration of closed-loop controllers was missing in our existing system. By replacing the
touch-sensor based contact establishment mechanism, employed in the shifting system, by mea-
suring finger joint-angle discrepancies with respect to a base posture, the risk of damaging the
hand due to too high a contact force being produced was significantly decreased. However, as the
associated closed-loop system was implemented indirectly through out the network-based robot
control interface, the robot’s movements were slow and suffered from excessive jerk. The slightly
disappointing overall success rate of only 60% was mainly caused by the internal tension in the
pneumatic muscles of the Shadow robot hand that often caused a dislodging of the paper from the
pinch-grasp when the hand responsible for bulging up the paper released contact.

1 x/y-position and in-plane rotation
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Folding Paper

The next task we devoted ourselves to was to endow our anthropomorphic robot with the ability
to fold paper (see Chapter 5). This required us to tackle several drawbacks of the previous system
and to implement a set of additional features. Due to the limited detection accuracy of our custom
fiducial marker layout, a first enhancement was to implement and include a more powerful marker
design. A generic marker detection framework was implemented in ICL that includes plugins
for all common fiducial marker types and we found that BCH-code markers provided the most
optimal performance in terms of speed, accuracy and false positive rates. Providing the previous
physics-based model with the ability to be able to simulate folds by altering model constraints
along fold lines, coupled with a generalized model control law, allowed us to significantly im-
prove the capabilities of our detection and modeling framework. After extensively evaluating the
performance of the framework by tracking several human paper manipulation sequences, a set of
extensions required for the robot control framework were identified.
By extending the arm-server so that rigid objects can be registered and their pose can be updated at
run-time, robot movements can be specified relative to an object frame. Along with a parametrized
embedding mechanism for sub-HSMs, these extensions provided a significant simplification of the
required HSM description code. In particular, this embedding mechanism was employed for the
Ctouch controller for joint angle feedback based contact establishment, which allowed us to signif-
icantly reduce the implementation overhead arising form the former explicitly coded joint-angle
discrepancy based perceive/action loops. In addition, the Cforce-controller based active postures,
which maintain a desired touch-sensor contact force by altering the finger flexion angles, were
added in order to facilitate fixating, swiping and shifting. These extensions facilitated the develop-
ment of the anthropomorphic paper folding system. By assuming the initial paper rotation is close
enough to the desired orientation for the start of the folding action2, the initial positioning can be
reached using of the new contact establishment and force-maintaining controllers in combination
with a single joint shifting and rotation movement. Once positioned correctly, the paper can be
registered in the server so that all following commands can be executed relative to the paper co-
ordinate frame, which was continuously updated by the visual input. By these means the system
implicitly adapts to all unintended paper movements. While the implementation of the actual fold-
ing action using a predefined and hand-tuned movement trajectory allowed an acceptable level of
accuracy to be attained, a closed-loop mechanism that strives for an optimal alignment of the two
folded paper corners and edges would be a desirable extension. The creasing was implemented
using two successive swipe-movements, one that is carried out with four fingers utilizing a low ac-
tive posture force, and a second one carried out with two fingers employing a high force to harden
the crease.
Given the many steps of the manipulation sequence, the system’s final overall success rate of 80%
was very satisfactory.

Advanced Aspects

The iterations of the system for shifting, picking up and folding paper provided valuable insights
into the field of anthropomorphic robot paper manipulation. In order to ground the discussion
about the opportunities and the limitations of some next steps, a set of prototype-systems were
conceptualized and developed (see Chapter 6). As a first step, the physical paper model was ex-
tended so that arbitrary folds can be represented accurately and the model control law was further
generalized to be able to handle the resulting irregular grid of nodes.
While our initial marker-based detection systems showed a very good tracking accuracy, their

2 Otherwise, several reaching back and forward rotation actions are required (see Section 2.2)
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real-world applicability remained questionable. Even though certain industrial or research appli-
cations might be able to cope well with the necessity to endow manipulated objects with markers,
the approach must be seen as an intermediate step that eventually must be replaced by a marker-
less system if the aim is to employ such systems in general environments. The expensive and
precisely calibrated camera-setup that is required, along with the resulting large footprint of the
to-be-processed data poses an extra drawback that not only leads to high hardware costs, but also
necessitates a large hardware setup. Our advanced system that employs a single Kinect device
for the tracking (see Section 6.2) uses an ICP-variant on the RGB-D point cloud. Initial results
were promising, but the lack of reliable associations between point cloud points and 2D points
in the paper-space yielded unacceptable results in many situations. By extending the system to
additionally employ 2D SURF-features that are mapped into the point cloud (see Section 6.3),
a remarkable improvement in the tracking performance was achieved – even when realistically
printed paper textures were used.
A remaining drawback of the visual detection system was the fact that fold lines had to be man-
ually added to the model. An extensive study of common and custom designed curvature metrics
revealed that automatic inference of when a fold is added to the model is very difficult to achieve.
However, by assuming that a possible temporal fold onset is known by the system, a developed
particle-based prototype, in which each particle represents a fold/non-fold hypothesis, was shown
to not only provide good estimates of a fold’s geometry, but could also be used to figure out when
the paper had not been folded.
Finally, a concept of a generic anthropomorphic robotic manipulation framework for paper and
paper-like objects, based on an extendable set of hand-crafted basic action primitives (BAPs) was
developed. An initial set of BAPs was iteratively extended and generalized in order to realize
increasingly complex manipulations by combining the BAPs successively, in parallel and in a
hierarchically cascaded fashion. By the end, a comprehensive discussion revealed a promising
generalizability of the BAPs with regard to the manipulations of some more general, non paper,
1D and 3D deformable objects. However, it also underlined the fact that many special manipula-
tions such as the tying of a bow, require additional highly specialized BAPs that heavily rely on a
closed-loop visuo-haptic feedback being available.

Final Thoughts

In this thesis, the challenges and opportunities for dexterous robotic manipulation systems for
paper and paper-like objects were investigated. The results provide a snapshot of what is currently
possible, and includes insights into what is being actively researched and indeed what advances
we can expect to see over the coming years. Using our novel Computer-Vision library, ICL, a
very powerful and extendable detection and modeling system was provided that has the potential
to become a basis for further projects in this domain. The system cannot only be employed as
a source of reliable online-feedback for robotic manipulation systems, but it can also be used to
enrich studies about human manipulation of paper and paper-like objects. The developed robotic
systems reveal, how well manually tuned heuristic interaction primitives, optionally implemented
employing closed loop feedback, can be combined to realize various capabilities for dexterous
anthropomorphic manipulation of paper. By conceptually extending this bottom-up approach of
combining basic action primitives to achieve increasingly complex and generic interaction skills,
we were able to show that such a system is indeed promising to be used to perform even the most
difficult dexterous manipulations.
The research described in this thesis provides a significant contribution to the field of dexterous
anthropomorphic robotic manipulation of paper and other deformable objects and thus takes us a
couple of steps closer to the vision of early roboticists who dreamed of having general purpose
robots in every home.



7.2. OUTLOOK & FUTURE WORK 191

7.2 Outlook & Future Work

Although the extended systems (see Chapter 6) provide significant improvements that in places
reach far beyond the capabilities of the final fully-fledged robotic system for paper folding, there
are still countless possible routes towards further expansions of capabilities and improvements.
Our final physical paper model (see Section 6.1), which is able to precisely represent folds, consti-
tutes a promising start for a large set of further possible enhancements. By adding further modeled
properties of actual paper and other 2D deformable objects, such as tearing and cutting, surface
friction, stretching (e.g. for plastic object) or the effects of moisture absorption, even more real-
istic behavior could be reflected and thus allow additional manipulations to be tracked. Another
possible extension could more explicitly deal with folds. Given the numerical instabilities aris-
ing from several layers of paper that are stacked through folding, a mechanism that automatically
aggregates these layers into a simpler (if necessary thicker) polygon, would not only allow for a
significant reduction of the computational power needed, but also increase the system’s overall
stability. However, we note that in situations in which it is not known in advance whether a fold
will be undone at a later point in time, the actual geometry would have to be stored. In terms of
generalizability, future work could also strive for a more generic model that can not only repre-
sent 1D, 2D and 3D deformable objects, but that would implicitly also allow parts of the object
or even the whole object to be rigid. While the employed Bullet physics engine allows all these
extensions to be implemented, the challenge in this regard is to develop a framework that allows
such models to be easily created and refined – optimally even from visual input alone or facilitated
by a robotic system that pro-actively explores an unknown object to deduce its configuration and
physical properties. Such an approach could be even extended by developing an Internet database
of models that can be queried to skip or at least bootstrap the model creation.
A first step to further enhance the Kinect-based tracking system would be to generalize its feature-
detection mechanism. Even though the employed SURF-features allowed us to achieve a very
good tracking performance, other feature types might still help to further improve the results.
In particular given the small output of SURF-features for common paper textures (see Section
6.3.3), a plugin mechanism for other feature types that would even allow several different fea-
tures to be used simultaneously would indeed allow for even better tracking accuracy. In addition
to incorporating further standard 2D image feature types, such as ORB [Rublee et al., 2011] or
BRIEF [Calonder et al., 2010], an explicit handling of color and object-edge/corner features also
seems desirable. Furthermore, 3D point cloud features, such as FPFH [Rusu et al., 2009] or SHOT
[Salti et al., 2014], could be included and do not require a computationally expensive mapping be-
tween the 2D image space and point cloud. An optimal system could be able to access a large
set of such feature types in order to automatically select a minimal set with respect to different
preferred system properties, such as optimal speed, optimal accuracy or low memory/CPU/GPU
usage. If possible, the set of employed features types could even be adaptable at run-time, so that
the system could for example automatically adapt to changing lighting conditions. In the context
of the robotic system, a further improvement could be achieved by more explicitly taking the ma-
nipulating hands into account. Using the robot’s forward kinematics, the positions of the fingers
of the hand are known and therefore the point cloud segments that belong to the hand can be fil-
tered out from the point-cloud. Even though this does not restore the parts of the object that were
occluded by the hands, it would provide a significant improvement for the overall object segmen-
tation. In addition, by explicitly adding an articulated object of the robot hands into the physical
simulation, the hand-surface would implicitly interact with the object model providing an extra
source for physically-plausible model updates. If sufficiently sensitive touch sensors are available,
tactile information could be incorporated into the model to further enrich the feedback.
By bundling all different kinds of visual, proprioceptive and tactile feedback into a single world
model that is set up and enhanced with many kinds of available a priori information (such as the
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robot geometry and kinematics or world knowledge about the manipulated objects), the spatio-
temporal integration performed by an overarching physics engine is likely to allow for the creation
of a very powerful global inference mechanism. Such a system could prove invaluable for boot-
strapping the development of future general purpose robotic systems.
A possible future path towards a system similar to the one sketched in Section 6.5 would be to ac-
tually start to implement the suggested basic action primitives. It must be admitted that the process
of the actually implementing these primitives would most likely reveal insights that suggest a dif-
ferent segmentation into primitives of the overall required interaction skills. Moreover, reducing
the primitives to an actual implementation level and the associated pursuit of encapsulating any
re-occurring functionalities and behaviors is likely to yield an additional set of underlying, per-
haps even more basic, or atomic low-level primitives. However, similar to the described process
of combining existing primitives using a set of operators such as sequential or parallel execution
or the execution of one primitive subject-to another one, this would not break the general bottom-
up idea of this approach. The time-consuming nature of the process of the implementation of
primitives, could be counteracted by creating an open-source data-base for such primitives that
allows researchers from all over the world to contribute their own primitives or extend, employ or
test existing ones. However, in order to simplify the exchange and the re-usability of the created
primitives, a commonly accepted and more widely distributed robot control platform, such as ROS
[ros] should first be agreed upon3. A predominant issue for the creation of such primitives is the
fact that many labs work with different kinds of robot hardware, which includes different robot
arms, hands, relative mounts of bi-manual systems and also a large variety of different sensor en-
dowments. To still be able to transfer primitives between different setups, the primitives either
have to be implemented in a generalized fashion, or – more realistically – for some primitives, dif-
ferent robot/hand dependent versions must be provided. Actually, given the fact that the diversity
of robot hardware might partly lead to completely different implementations of certain primitives,
it seems mandatory to regard a primitive more in the sense of a description of what it does rather
than in terms of how it is actually implemented, which, in turn, increases the impact of our pro-
vided elaborations. In a final bottom-up hierarchy of interaction primitives, the bottom layers that
strongly depend on the hardware can be viewed as an abstraction layer from the employed robot
hardware. Higher-level primitives that are mainly defined by a combination of other primitives
must not necessarily have to deal with these issues.
Once a set of primitives is available, automatically sequencing them to achieve a desired object
state and the learning of such sequences or even the learning of parameters of a sequencing mech-
anism would come into focus. In a similar way to how humans learn, it might be necessary to
combine different learning paradigms such as imitation learning, reinforcement learning and even
autonomous learning from proactive exploration4.
Stepping back from our proposed bottom-up system, the problem of dexterous anthropomorphic
manipulation of deformable objects could perhaps be approached from a more holistic perspec-
tive. Through the recent advancements in neural networks [LeCun et al., 2015], deep learning
methods have become very powerful and deep convolutional neural networks have been shown
to approach human performance in many recognition tasks. However, it must be admitted that
in contrast to pure recognition tasks, which achieve astonishing performances when trained in a
supervised fashion with millions of training examples, the intrinsic combinatorial complexity of
interaction in general is still far beyond what neural networks are capable of tackling at present.
Even though it seems theoretically possible to create a neural network that, similar to the human
brain, automatically combines supervised and unsupervised learning techniques in order to fully
autonomously bootstrap a dexterous manipulation system, it remains unclear whether our current
approaches for hard and software yield enough resources to actually achieve this.

3 Our robot control framework is also being gradually updated to employ ROS.
4 Note that we do not claim these to be fully disjunctive.
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The enthusiasm to reduce the natural complexity between raw input sensor and output actuator
signals to more realistically tractable dimensions, once again suggests a pre-structuring on the ba-
sis of well known constituents of interaction. Thus, a set of well developed primitive actions could
even be employed together with techniques from the fields of machine learning, AI and neural
networks.
Although there are many possible ways in which this research can be built upon to improve the
abilities of anthropomorphic robot hands further and to even provide them with human-like and
beyond manual intelligence capabilities, we can, with some degrees of confidence, state that the
first significant steps of this endeavor have been taken with this work.
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