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Effective literacy and numeracy skills are cornerstones of academic
achievement and participation in today’s digital society. Reading, writ-
ing and arithmetic problem solving are not innate but mostly learned
explicitly. However, not all individuals acquire these skills with the
same ease, with some showing specific learning deficits. While a large
body of research identified relevant areas for literacy and numeracy
processing in older children and adults, the exact nature of early
pre-school correlates of typical and atypical development remains
elusive. Here, structure of grey matter, whiter matter and coherence
of functional circuits were investigated in children assessed longitu-
dinally from kindergarten to the end of second grade via structural
and resting-state functional magnetic resonance imaging. In the first
study, children were classified as dyslexic and typically developing
individuals based on their performance on standardised, age-normed
reading and spelling tests. The results suggest that dyslexia reveals
itself at the neural level well before children are able to read in terms of
confined cortical malformation and faulty cross-talk within the speech
processing system. Secondly, grey matter plasticity and its relationship
with mathematical attainment in typically developing children was
assessed longitudinally. The findings point to a key role of parietal,
temporal and frontal cortical surface plasticity as the neurobiological
foundation for successful mathematical learning in the first years of
school. Relating neuroplastic correlates with typical and atypical de-
velopment of literacy and numeracy skills, the findings are discussed
in the light of theories of developmental dyslexia and mathematical
learning.
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“Literacy unlocks the door to learning throughout the life [...] and opens
the way for democratic participation and active citizenship.”

Kofi Annan, Secretary-General of the United Nations 1997-2006

“The study of mathematics, like the Nile, begins in minuteness
but ends in magnificence.”

Charles Caleb Colton, English cleric, writer and collector
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CHAPTER 1

INTRODUCTION

In virtually all aspects of daily life, humans engage with written
language and quantitative information. Whenever we communi-
cate via text on a mobile device, critically scrutinise information
provided in graphs or diagrams, or engage in financial transac-
tions, we rely on effective literacy and numeracy skills. There-
fore, these abilities are not just cornerstones of a sound educa-
tion, but also of active participation in today’s society.

Without a foundation of reliable early literacy and numeracy
abilities, however, individuals struggle in daily life and fail to
develop more complex, high level skills (Geary, 2011). In fact,
school-entry math and reading performance rank among the
most reliable predictors of later academic achievement (Duncan
et al., 2007), and are thus crucial prerequisites for professional
success in life.

Importantly, abilities such as reading, writing and complex
arithmetic are not innate but cultural inventions that are typi-
cally learned explicitly. When acquiring literacy, one learns to
link visually perceived symbols to auditory representations of
language, relying on pre-existing sensory skills (Lachmann &

van Leeuwen, 2014). Similarly, while prelinguistic infants as
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young as six months of age show a sense for magnitudes (F. Xu
& Spelke, 2000), the ability to perform exact symbolic arithmetic
requires formal instruction (Barth, La Mont, Lipton, & Spelke,
2005). For both literacy and mathematical abilities, developing
competence involves teaching and effortful training.

Intriguingly, not all individuals acquire these skills with the
same ease (M. Brown et al., 2003; Cockcroft, 1982). Even worse,
some children suffer from specific impairment in literacy or
maths learning. For instance, individuals suffering from devel-
opmental dyslexia (DD) struggle severely to become literate.
Thereby, dyslexic children get increasingly left behind with ev-
ery year in school, placing them at an educational disadvantage
throughout life. Consequences not only include lasting negative
effects on the affected person’s mental health, such as anxiety,
depression and even suicidal tendencies (Klassen, Tze, & Han-
nok, 2013), but affected individuals also have a greatly increased
risk of criminal convictions (Alm & Andersson, 1997; Elbeheri,
Everatt, & Al Malki, 2009). In this way, the failure to master ba-
sic literacy skills also constitutes a burden on society in terms
of costs to the education, health and criminal justice systems
(Gross, 2009).

What are the neural origins of specific differences in such com-
plex cognitive abilities? Why do some individuals struggle with
mastering these cultural inventions we impose on the brain?
Considering these questions is of vital importance: A compre-
hensive understanding of the emergence of complex cognitive

abilities and their developmental trajectories could pave the way
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for effective learning environments, early screening for timely
identification of deficits and individualised programmes cater-
ing to the specific needs of impaired children (Butterworth & Ko-
vas, 2013). Therefore, the current thesis aims to characterise as-
sociations between brain structural and functional development
and individual behavioural variability.

Research into specific neural correlates of literacy and numer-
acy has proven challenging for several reasons. For instance, any
comparison between individuals who perform poorly in either
one of these areas with age-matched controls is confounded by
schooling. Specifically, typically developing children train the
neural systems underlying the respective domains more than im-
paired individuals. This in itself induces changes in the brain’s
structural and functional architecture, impeding the direct dif-
ferentiation between potential causes of disorders and conse-
quences of reduced literacy or numeracy experience (Goswami,
2015; Huettig, Lachmann, Reis, & Petersson, 2018).

When looking at reading, writing and mathematical compe-
tence specifically, one of the most significant discussions con-
cerns the question for possible interactions between these abil-
ities. While evidence based on the cognitive profiles of specific
impairments suggests two largely independent deficits (Lander],
Fussenegger, Moll, & Willburger, 2009), there is a substantial
comorbidity of corresponding learning disorders (Moll, Kunze,
Neuhoff, Bruder, & Schulte-Korne, 2014). Moreover, variabil-
ity in reading and mathematical performance can be partly ex-

plained by a common genetic basis (Davis et al., 2014). Thus,
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when aiming to characterise specific contributions of neural sys-
tems to individual differences and deficits in either domain, a
careful investigation and rigorous statistical control is necessary
to identify effects unique to literacy or numeracy.

The present thesis aims to shed light on networks supporting
early literacy and numeracy in the developing brain. To this end,
we investigated the brain basis of these complex cognitive abil-
ities in two separate studies using structural and resting-state
functional magnetic resonance imaging (MRI). Importantly, the
work presented in this thesis relies on longitudinal imaging data
obtained from young children, in conjunction with extensive
psychometric testing. This design serves as the basis for investi-
gating two distinct key questions: (27) What are neural correlates
of deficient literacy acquisition, distinguishing dyslexic children
from typically developing controls? (b) Which particular devel-
opmental trajectories of cortical surface anatomy are associated
with initial numeracy attainment?

Chapter 2 provides an overview of the current literature on lit-
eracy and numeracy development, particularly considering the-
ories of DD as an example of a severe neurodevelopmental learn-
ing disorder. Further, this chapter will highlight important chal-
lenges facing research when studying specific neural correlates
of both domains. For instance, performance in literacy and nu-
meracy tasks prominantly covaries (Durand, Hulme, Larkin, &
Snowling, 2005; Hart, Petrill, Thompson, & Plomin, 2009; Lund-
berg & Sterner, 2006; Thompson, Detterman, & Plomin, 1991),

such that both domains need to be considered when studying
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specific correlates of distinct skills. In addition, possible con-
founds like sociodemographic status or the quality of individ-
ual experience with reading, writing and maths, are often not
accounted for in previous work. Based on these shortcomings,
I formulate the research aims and hypotheses of the empirical
work presented here in Chapter 3. Subsequently, Chapter 4 out-
lines general principles guiding brain maturation, thus provid-
ing a theoretical foundation for the developmental processes rel-
evant in the context of longitudinal work in children. We em-
ployed MRI to empirically measure brain anatomy and func-
tional coherence in vivo. Therefore, Chapter 5 describes the ba-
sic principles of this neuroimaging approach. Additionally, this
chapter gives detailed accounts of the sophisticated imaging pro-
cessing techniques applied to derive information about specific
neuroanatomical and -functional measures, allowing for a more
comprehensive assessment of neural correlates of complex cog-
nitive abilities. I will report a combined study of structural and
resting-state functional correlates of DD both at a preliterate and
school age in Chapter 6. In contrast, the second empirical study
reported in Chapter 7 focuses on structural developmental tra-
jectories related to individual mathematical abilities. Finally, this
thesis closes with a general discussion on how the present find-
ings add to current models of DD and mathematical learning,
and thus further the understanding of the emergence of com-

plex cognitive abilities in Chapter 8.

5






CHAPTER2

LITERACY AND NUMERACY

Humans rely on literacy and numeracy every day. While our
modern, technology-driven lifes seem impossible without these
skills, one should bear in mind that humans are not naturally
born readers or maths experts. In fact, literacy and numeracy are
relatively recent cultural inventions: while archaeological discov-
eries of notch marks on bone artefacts suggest the emergence of
primitive counting systems as early as 30,000 BC (D. M. Burton,
2011), first scripts emerged around 3300-3200 BC in the ancient
Middle East (Stauder, 2010; Woods, 2010) and the oldest records
of mathematical texts date back to 1800-1600 BC (D. M. Burton,
2011). Importantly, both literacy and numeracy are not acquired
implicitly’ in the same way as we learn language, or how to
walk. Instead, mastering the abstract symbol systems compris-
ing numerals and letters that represent quantities and spoken
language respectively, requires systematic instruction and prac-

tice.

INote: Yet, implicit processes that, for instance, support the automatisation

of relevant skills (Rivera, Reiss, Eckert, & Menon, 2005; Schwanenflugel et
al., 2006) do play a major role for some aspects of literacy and numeracy
acquisition.
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Considering the fundamental importance of these competen-
cies for later academic success (Duncan et al., 2007), it is not sur-
prising that behavioural and neurobiological correlates of both
typical and atypical literacy and numeracy processing have been
studied extensively. Therefore, the aim of the present chapter is
to provide an overview of current models describing the emer-
gence of literacy on the one hand and numeracy on the other,
including literature elucidating their brain basis. For literacy in
particular, theories of developmental dyslexia as an example of
a severe neurodevelopmental learning disorder are described in
Section 2.1.2.1. While the empirical work presented in this the-
sis comprises two distinct studies investigating neural correlates
of individual variation within the two domains independently
from each other, it is important to appreciate potential connec-
tions between emerging literacy and numeracy skills. Accord-
ingly, the chapter closes with an account of possible associations
between them (see Section 2.3), followed by an illustration of
further confounds that pose challenges for research (see Sec-

tion 2.4).

2.1 FOUNDATIONS OF LITERACY

Literacy learning constitutes a complex process involving di-
verse cognitive abilities such as basic visual processing, language
processing, learning and memory (Vellutino, Fletcher, Snowling,
& Scanlon, 2004). To successfully acquire this ability, the begin-

ning reader needs to grasp the so-called alphabetic principle:
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written words consist of subunits (i.e. letters) and there are sys-
tematic correspondences between these letters and the sounds of
a language. Understanding this principle requires phonological
awareness, i.e. the ability to split spoken words into their respec-
tive constituents (i.e. phonemes) and to manipulate them. Profi-
ciency at analysing and modifying the sound structure of spo-
ken language emerges first in preschool children and develops
gradually during childhood (Liberman & Shankweiler, 1985), es-
tablishing the basis of successful early letter-sound decoding.

With instruction and practice, the associations between
speech sounds and visual symbols become more complex, such
that individual phonemes get mapped to groups of letters (i.e.
graphemes). Moreover, they include an increasing proportion of
opaque orthographic rules, such as the digraph “ph” that maps
to the sound /f/ in English. Finally, with more advanced read-
ing experience, whole strings of graphemes get stored in mem-
ory. Thus, an orthographic lexicon interfacing with the semantic
system is built. As this lexicon grows, the emerging reader in-
creasingly relies on whole word recognition rather than sequen-
tial phonological decoding of individual graphemes.

One of the prominent models depicting the mental mecha-
nisms involved in reading is the dual-route-cascaded model (see
Figure 2.1; Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001)>.

Words stored in the orthographic lexicon activate either a lexical-

2Note: Examples for other models include connectionist triangle models
(Harm & Seidenberg, 1999; Plaut, McClelland, Seidenberg, & Patterson,
1996; Seidenberg & McClelland, 1989), the connectionist dual process model
(Zorzi, Houghton, & Butterworth, 1998), and upgraded versions thereof
(Perry, Ziegler, & Zorzi, 2007, 2010).
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Figure 2.1: The dual-route cascaded model of visual word recognition
and reading aloud. Adapted from "DRC: A dual route cas-
caded model of visual word recognition and reading aloud"
by M. Coltheart, K. Rastle, and C. Perry, 2001, Psychological
Review, 108, p. 214. Copyright 2001 by the APA. Adapted
with permission.

Grapheme -
phoneme

rule system

<_

phonological
route

A 4
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quired grapheme-phoneme-rule system.
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semantic path, accessing its meaning and its pronunciation, or
a lexical non-semantic route, generating its mere pronunciation
(see left part of Figure 2.1). In contrast, for novel words that
are not stored in the lexicon, the system falls back onto decod-
ing via cross-modal integration along the phonological route
(see right part of Figure 2.1): each grapheme gets sequentially

mapped onto its corresponding phoneme according to the ac-
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BA 6
BA 44
BA 45

STG
AG/SMG
ATL

OoC
VTOC

Figure 2.2: Brain areas associated with reading. Literacy-related net-
works are typically left-lateralised, thus only the left hemi-
sphere is shown. BA = Brodmann area; STG = superior tem-
poral gyrus; AG/SMG = angular gyrus / supramarginal
gyrus; ATL = anterior temporal lobe; OC = occipital cortex;
VTOC = ventral temporal-occipital cortex.

2.1.1  The brain basis of literacy

The advent of modern, non-invasive neuroimaging tools like
MRI permitted researchers to investigate which brain areas are
typically involved in reading. This research identified a typi-
cally left-lateralised network comprising inferior frontal regions
(spanning Brodmann areas 44, 45 and 6), temporoparietal areas
such as the angular gyrus, the supramarginal gyrus and the pos-
terior portion of the superior temporal gyrus, and the occipital
and ventral temporal-occipital cortex (Pugh et al., 2001, see Fig-
ure 2.2). Further evidence suggests a dissociation of this system
into a dorsal and a ventral reading network, respectively (Jo-
bard, Crivello, & Tzourio-Mazoyer, 2003; Schlaggar & McCan-

dliss, 2007).

11
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The left ventral temporal-occipital cortex—specifically the
print-sensitive visual word form area (VWFA Cohen et al.,
2000)—has been associated with pre-lexical processing of writ-
ten words (Jobard et al., 2003). This notion is supported by
evidence for neural representations of orthographic structures
within this area (Glezer, Jiang, & Riesenhuber, 2009). The ven-
tral temporal-occipital cortex is connected to temporoparietal
and inferior frontal regions via the arcuate fasciculus (de Schot-
ten, Cohen, Amemiya, Braga, & Dehaene, 2014), forming the
dorsal reading network. Functionally, the temporal and ante-
rior regions involved in reading are prominently associated with
phonological processing. For instance, the posterior part of the
inferior frontal gyrus (i.e., BA44) was shown to be active in tasks
requiring the analysis of phonological consituents of words (Pol-
drack et al.,, 1999). Like the left ventral premotor cortex (i.e.,
BA®6), this region has also been implicated in recoding phono-
logical information into corresponding articulatory motor plans
(M. W. Burton, LoCasto, Krebs-Noble, & Gullapalli, 2005; C. J.
Price, 2012). Together with posterior BAg4, temporoparietal re-
gions like the left supramarginal gyrus and superior temporal
areas showed higher activation in phonological compared to
semantic decision tasks (McDermott, Petersen, Watson, & Oje-
mann, 2003) and stronger responses during reading of pseu-
dowords (Borowsky et al., 2006). Furthermore, the posterior su-
perior temporal cortex was shown to exhibit heteromodal re-
sponses to both letter and speech sound stimuli, integrating vi-

sual and auditory speech information (van Atteveldt, Formisano,
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Goebel, & Blomert, 2004). Consequently, the dorsal route is as-
sumed to underly the the integration of orthographic and phono-
logical information (Jobard et al., 2003; Preston et al., 2016).

The ventral route, in contrast, links the temporal-occipital
cortex with regions involved in semantic processing (Carreiras,
Armstrong, Perea, & Frost, 2014). Specifically, this route projects
along the anterior temporal lobe and the ventral part of the in-
ferior frontal gyrus (i.e. BA45) via the inferior fronto-occipital
fasciculus. The anterior temporal lobe has been characterised as
an amodal semantic system, with overlapping activity for pic-
tures, speech and print (Visser, Jefferies, & Lambon Ralph, 2010).
Similarly, the ventral inferior frontal gyrus showed preferential
activation during semantic processing compared to phonologi-
cal processing (Poldrack et al., 1999). Consequently, this ventral
route has been associated with the integration of orthographic

and semantic information.3

2.1.2  Developmental dyslexia

Developmental dyslexia (DD), a severe deficit in literacy acquisi-
tion, is one of the most common specific learning disorders listed
in the International Classification of Diseases (World Health Or-
ganization, 2018) with reported prevalence rates ranging from
3-17% of the population (Barbiero et al., 2012; S. E. Shaywitz et

al., 1998). The first scientific accounts of this deficit date back

3Note: Integration of semantic and orthographic information is not re-
stricted to this ventral route, as semantic processing during reading also
engages the angular gyrus (C. J. Price & Mechelli, 2005), indicating a corre-
sponding role for a further dorsal connection.
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over 140 years ago. After initial reports of “word-blindness”
by German physician Adolf KufSimaul in 1877 (Kufimaul, 1877),
his compatriot, ophthalmologist Rudolf Berlin, coined the term
“Dyslexia” as a severe impairment of reading abilities in 1887
(Berlin, 1887). Nearly a decade later, the British physician W.
Pringle Morgan described the case of a 14-year old boy of aver-
age intelligence and vision, who nevertheless struggled severely
with reading and spelling (Morgan, 1896). Remarkably, this boy
did not have a history of brain lesions or head trauma. As a spe-
cific developmental learning disorder, the pathology of DD must
neither be attributable to intellectual disability, inadequate in-
struction or schooling, or sensory impairment regarding vision
or hearing (S. E. Shaywitz, 1998; Vellutino et al., 2004, World

Health Organization, 2018).

2.1.2.1  Cognitive deficits and neurobiological theories

Persistent impairments in literacy learning—affecting reading,
spelling or both—are at the core of DD. Specifically, reading dif-
ficulties are expressed in terms of significantly decreased read-
ing speed, accuracy and comprehension, while spelling deficits
comprise frequent capitalization errors, elisions or substitutions
of graphemes (Schulte-Korne, 2010).

Interestingly, many individuals with dyslexia show co-
occurring problems in terms of phonological, low-level sensory,
and motor processing. Based on these variable cognitive profiles
exhibited by dyslexic individuals, multiple attempts have been

made to explain DD, while also accounting for the concurrent
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deficits. A number of these accounts make specific predictions
about the neurobiological underpinnings of DD: (i) the phono-
logical deficit theory, (ii) the cerebellar deficit theory, (iii) sensory
processing deficit theories, and (iv) the magnocellular deficit the-
ory. The remainder of this section provides an overview of cog-
nitive impairments prominently observed in dyslexic individu-
als in the context of the above-mentioned theories. Furthermore,
supporting as well as conflicting evidence from neuroanatomi-

cal, electrophysiological and neuroimaging studies is presented.

THE PHONOLOGICAL DEFICIT THEORY.  Individuals suffer-
ing from DD show persistently poor performance in tasks re-
quiring phonological awareness, phonological short-term and
working memory (Snowling, 1998). These tasks include rhyming,
phoneme deletion, non-word repetition, or rapid automatised
naming (Landerl et al.,, 2009; Lehongre, Ramus, Villiermet,
Schwartz, & Giraud, 2011; Ramus et al., 2003; Snowling, Muter,
& Carroll, 2007).

Importantly, adequate phonological awareness skills are nec-
essary to be able to reliably separate a spoken word into its
phonologic constituents represented as alphabetic characters in
script (S. E. Shaywitz et al., 1998). Consequently, the phonologi-
cal deficit theory posits that poor phonological skills inhibit the
development of reliable phoneme-grapheme mapping abilities.
Thus, beginning readers struggle to build the associations be-

tween letters and their corresponding sounds, which in turn im-
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pedes syllable and ultimately whole-word recognition, hinder-
ing fluent literacy acquisition (Snowling, 1998).

Among the accounts arguing for a unique causal factor in
the emergence of DD, the phonological deficit theory has re-
ceived the most attention (Vellutino et al., 2004) and gains sup-
port from various studies identifying structural and functional
anomalies in the dorsal reading network of dyslexic individu-
als. In early post mortem histological work, Galaburda, Sher-
man, Rosen, Aboitiz, and Geschwind (1985) identified small ac-
cumulations of neurons—so-called ectopias—generally in peri-
sylvian cortical areas. Predominantly, these were located in the
typically cell-free layer I of the respective regions. Moreover, the
dyslexic individuals exhibited polymicrogyria, i.e. a dispropor-
tionate number of small cortical foldings, within the planum
temporale and posterior superior temporal gyrus. Finally, the in-
vestigated brains were marked by deviant patterns of symmetri-
cal plana temporale instead of the commonly observed left-ward
asymmetry. In line with this post mortem examination, a meta-
analysis of structural neuroimaging studies identified dyslexia-
specific reductions in grey matter volume of the posterior su-
perior temporal sulcus (Richlan, Kronbichler, & Wimmer, 2013).
Moreover, deficits in phonological awareness have been linked
to the structure of the arcuate fasciculus, the dorsal white mat-
ter connection supporting phonological processing (Saygin et al.,
2013; Vandermosten et al., 2012). In addition, DD has been func-

tionally associated with hypoactivation of the dorsal reading net-
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work during phonological processing (Paulesu et al., 1996; Pugh
et al., 2000; Richlan, Kronbichler, & Wimmer, 2009).

While many agree that a phonological deficit plays a key role
in the emergence of DD, its exact nature remains elusive. For
instance, Boets et al. (2013) demonstrated robust and distinct
phonological representations in adults with dyslexia. Instead,
these authors suggested an impairment of access of otherwise
intact representations, based on the observation of hampered
functional and structural connectivity between the left inferior
frontal and temporoparietal cortex. In contrast, another line of
research suggests impaired phonological representations based
on variable neural responses to speech sounds within the pri-
mary auditory cortex (Lehongre et al., 2011).

Despite the widely recognised contribution of phonological
deficits to reading impairment, their role as the sole cause of
DD has been questioned. One line of criticism drew attention
to dyslexic cases without a phonological disorder (Bosse, Tain-
turier, & Valdois, 2007; Peyrin et al., 2012) and the fact that not
all individuals with literacy difficulties depict equally strong
phonological problems (R. L. Peterson, Pennington, Olson, &
Wadsworth, 2014). Moreover, the phonological deficit theory has
also been criticised for failing to account for co-occurring sen-
sory (Lovegrove, Bowling, Badcock, & Blackwood, 1980) and
motor deficits (Nicolson & Fawcett, 1990) observed in dyslexic

individuals.
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THE CEREBELLAR DEFICIT THEORY.  In addition to com-
promised phonological processing, some studies reported im-
pairments in the maintenance of posture and balance (Fawcett
& Nicolson, 1999; Fawcett, Nicolson, & Dean, 1996; Nicolson
& Fawcett, 1994) and implicit sequence learning (Howard Jr.,
Howard, Japikse, & Eden, 2005; Stoodley, Ray, Jack, & Stein,
2008; Vicari, Marotta, Menghini, Molinari, & Petrosini, 2003)
in some dyslexic individuals. These observations lend support
to the cerebellar deficit theory, suggesting that dyslexia-specific
problems follow from a more general inability to fully automa-
tise skills (Nicolson & Fawcett, 1990). Specifically, this account
suggests that impairments of the cerebellum and the cerebro-
cerebellar loop cause deficits in motor, articulatory and automa-
tisation skills, in turn impeding writing, reading and spelling
abilities (Nicolson & Fawcett, 2005; Nicolson, Fawcett, & Dean,
2001). Consequently, poor phonological abilities prominently as-
sociated with dyslexia are assumed to follow from a more fun-
damental cerebellar deficit.

In support of this theory, Finch, Nicolson, and Fawcett (2002)
reported atypical cell distributions in the anterior and posterior
cerebellar lobes of four dyslexic males investigated post mortem.
Further neuroimaging evidence suggested reduced grey matter
volume of the cerebellum in dyslexic individuals (Eckert et al.,
2003; Eckert et al., 2005). Moreover, Nicolson et al. (1999) and
Nicolson et al. (2001) proposed a cerebellar dysfunction as a

potential functional substrate for dyslexia, based on evidence
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of significantly reduced activation in dyslexic adults when per-
forming a motor-sequence learning task.

However, the cerebellar deficit hypothesis has been met with
scepticism, mainly due to the inconsistency of findings. For in-
stance, S. White et al. (2006), comparing groups of dyslexic,
autistic, and control children that were matched for age and
nonverbal IQ, found motor impairments in some, but not all,
dyslexic children. Moreover, a subgroup of the autistic children
also displayed deficits in the execution of tasks tapping into
manual dexterity and balance skills, but lacked reading impair-
ments. Similarly, Savage et al. (2005) demonstrated that perfor-
mance on a postural stability task did not reliably discriminate
between poor, average, and good readers. Finally, in a recent
study, van Oers et al. (2018) compared adult dyslexics with con-
trols in an attempt to investigate the cerebellar involvement in
dyslexia. While dyslexics did indeed show worse performance
on tasks requiring sound cerebellar function, there was no rela-
tionship between behavioural deficits and grey matter volume of
this brain region. Against this background, these authors oppose

the notion of a causal involvement of a cerebellum in DD.

SENSORY PROCESSING THEORIES.  While acknowledging
the dominant role of phonological deficits in DD, a number of
authors put forward the idea that these problems are secondary
to more basic disturbances of visual or auditory systems.

In one of the first accounts of dyslexia, Kufsmaul (1877) cued

the term “word-blindness” for severe and unexpected reading
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impairment. Indeed, literacy critically depends on reliable iden-
tification of visually presented symbols. In addition, differences
between skilled readers and dyslexic individuals in terms of
basic visual processing have been reported. For instance, Love-
grove et al. (1980) demonstrated diminished contrast sensitiv-
ity in reading impaired participants compared to controls, sug-
gesting disruptions in the cortical circuits associated with pri-
mary visual function in DD. Further, dyslexic individuals were
shown to experience greater interference from surrounding el-
ements when looking at arrays of symbols, so-called ‘visual
crowding’ effects, and to benefit from increased inter-letter spac-
ing (Spinelli, De Luca, Judica, & Zoccolotti, 2002). Bosse et al.
(2007), based on a study of French and British children, sug-
gested that a reduced visual attention span limits the amount of
information that can be sustained, thus hampering reading ac-
quisition independently from phonological deficits. Others char-
acterised the nature of a visual impairment in terms of deficient
visuospatial attention control (Facoetti et al., 2003; Facoetti et al.,
2006), positing that dyslexic individuals fail to shift their focus
of attention smoothly across printed text.

Several studies provide evidence for neural correlates of vi-
sual deficits in dyslexia. In an electroencephalography (EEG) ex-
periment, adult dyslexics showed reduced responses to rapid,
low-contrast stimulation (Livingstone, Rosen, Drislane, & Gal-
aburda, 1991). Importantly, Livingstone et al. complemented
these findings with a post mortem examination of the lateral

geniculate nucleus (LGN), a subpart of the thalamus respon-
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sible for visual processing. Specifically, dyslexic autopsy speci-
mens exhibited disorganised magnocellular layers and reduced
cell size within this thalamic nucleus. Moreover, evidence from
functional magnetic resonance imaging (fMRI) suggested dimin-
ished visual motion sensitivity within the middle temporal area
of adult dyslexic individuals (Eden et al., 1996). Further, Peyrin
et al. (2012) presented the case of a dyslexic individual with an
impaired visual attention span but preserved phonological skills,
demonstrating hypoactivation of parietal lobules during a visual
categorization task. Taken together, these studies support the no-
tion of an underlying visual deficit in DD.

A different line of argumentation characterised deficits in ba-
sic auditory perception as an underlying cause of poor phono-
logical skills. Based on behavioural evidence suggesting a rela-
tion between literacy problems and impaired processing of brief
or rapidly changing acoustic stimulation (Helenius, Uutela, &
Hari, 1999; Tallal, 1980), the auditory deficit theory posits that
dyslexic individuals fail to detect subtle differences in the sound
stream like the distinction between ‘bath” and “path’. In addition,
several studies demonstrated poor performance of dyslexic indi-
viduals with respect to processing prosody-related (Foxton et
al., 2003; Goswami et al., 2002; Richardson, Thomson, Scott, &
Goswami, 2004) and more general acoustic features (Baldeweg,
Richardson, Watkins, Foale, & Gruzelier, 1999).

The notion of a fundamental auditory deficit was supported
by Galaburda, Menard, and Rosen (1994), identifying atypical
right-left asymmetry of the medial geniculate body (MGB), i.e.
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the auditory sensory thalamus: the left MGB contained signifi-
cantly more smaller neurons compared to typical samples in five
dyslexic autopsy specimens. Corroborating this initial structural
finding, Diaz, Hintz, Kiebel, and von Kriegstein (2012) reported
a dysfunction of the MGB when participants were asked to at-
tend to speech sound changes, suggesting a neurobiological cor-
relate of rapid sensory processing deficits in DD. In line with
this, Hornickel and Kraus (2013) demonstrated unstable neural
responses to sound within the inferior colliculus of the brain-
stem.

Nevertheless, the overall causal role of sensory deficits for DD
has been criticised (Vellutino et al., 2004). For instance, a num-
ber of studies failed to replicate auditory (Halliday & Bishop,
2006; Hamaldinen et al., 2009; Hill, Bailey, Griffiths, & Snowling,
1999; Kronbichler, Hutzler, & Wimmer, 2002) or visual (Johannes,
Kussmaul, Miinte, & Mangun, 1996; Kronbichler et al., 2002;
Williams, Stuart, Castles, & McAnally, 2003) deficits in dyslexic
individuals, or detected these only for a subgroup of the inves-
tigated samples (Amitay, Ben-Yehudah, Banai, & Ahissar, 2002;
Bosse et al., 2007; Rosen & Manganari, 2001; Tallal, 1980; S. White
et al., 2006).

Particularly compelling evidence for a causal association be-
tween sensory deficits and dyslexia comes from accounts of
structural abnormality of thalamic nuclei mentioned above (Gal-
aburda et al., 1994; Livingstone et al., 1991). Remarkably, how-
ever, there is experimental evidence for the occurence of such

sub-cortical structural anomalies as a consequence of cortical
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malformation. Herman, Galaburda, Fitch, Carter, and Rosen
(1997), inducing small lesions in bilateral prefrontal, parietal
or occipital cortices of new-born rats, demonstrated that these
anomalies led to changes in cell size distribution of the MGB
in male, but not female, animals. Importantly, these changes re-
sembled the aberrant neuronal distribution observed in human
dyslexic autopsy specimen (Galaburda et al., 1994). Moreover,
the lesioned male rats were also significantly impaired in their
ability to perform fast auditory discrimination.

Overall, despite criticism and evidence to the contrary, sen-
sory deficits remain viable and prominent candidates potentially

contributing to the development of literacy impairments.

THE MAGNOCELLULAR DEFICIT THEORY.  Inan attempt to
integrate the variable findings concerning impairments in the vi-
sual, auditory and motor domain, Stein and Walsh (1997) formu-
lated the magnocellular deficit theory as an overarching account.

The magnocellular theory was first defined based on the dis-
tinction of the visual system into magnocellular and parvocel-
lular branches, processing rapid, low-contrast and slow, high-
contrast sensory information, respectively (Livingstone & Hubel,
1988). Structural abnormalities of the visual thalamus (i.e., the
LGN) in dyslexic individuals reported by Livingstone et al.
(1991) were in fact restricted to magnocellular layers. Integrat-
ing these findings with evidence of reduced visual contrast sen-
sitivity (Hoeft et al., 2007), hypoactivation of motion-sensitive

cortical regions (Eden et al., 1996), auditory temporal dysfunc-
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tion (Helenius et al., 1999; Tallal, 1980) and poor performance in
cerebellar tasks (Nicolson & Fawcett, 1994), the magnocellular
theory suggests a fundamental, cross-modal core deficit in tem-
poral processing in DD (Stein, 2001, 2018; Stein & Talcott, 1999;
Stein & Walsh, 1997). Following this account, the detrimental im-
pact of low-level anomalies extends to more high-level domains,
for instance also affecting visuospatial attention in the posterior
parietal cortex (PPC; Stein, 2001). Therefore, impaired tempo-
ral processing along magnocellular pathways within different
modalities was hypothesised to affect not merely one, but multi-
ple domains, thereby explaining the variable profiles of DD.
However, this theory faces criticism comparable to the propos-
als presented above, failing to account for any study that does
not find visual, auditory or cerebellar magnocellular deficits in
dyslexic individuals. Additionally, it struggles to explain more
general perceptual impairments going beyond the magnocellu-
lar system (Amitay et al., 2002). Furthermore, Sabine Heim, Free-
man Jr., Eulitz, and Elbert (2001) presented evidence suggesting
that in some dyslexic individuals, sensory deficits do not extend
across multiple domains, opposing the notion of a general cross-
modal temporal processing impairment. Thus, the claim for a
causal role of magnocellular deficits as the cause of DD remains

contentious.
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2.1.2.2 Disentangling potential causes from consequences of develop-

mental dyslexia

The diverse list of theories described in Section 2.1.2.1 eluci-
dates that much debate and little agreement exists regarding
the causal neurobiological deficits of DD. Based on results from
data driven clustering approaches, some authors argued for a
division into subgroups derived from distinctive cognitive pro-
files in order to account for its multifactorial nature (Stefan
Heim et al., 2008; King, Giess, & Lombardino, 2007; Morris et
al., 1998). While such behavioural subdivisions have significant
implications for educational practise and remediation, the ques-
tion whether distinct cognitive profiles can be traced back to dis-
tinct neurobiological causes or rather to a sole root dysfunction
remains unanswered.

Successfully learning how to read and write is a highly dy-
namic process, taxing diverse cognitive abilities and inducing
widespread changes in the structural (Carreiras et al., 2009; Yeat-
man, Dougherty, Ben-Shachar, & Wandell, 2012) and functional
(Brem et al., 2010; Carreiras et al., 2009; Dehaene et al., 2010;
Skeide et al., 2017) architecture of the emerging reader’s brain.
However, individuals who fall behind in this process will vary
in amount and quality of neuroplastic change occuring. There-
fore, empirical evidence of neurobiological differences based on
school-aged children and adults may confound potential causes
of being dyslexic with consequences of reduced reading expe-
rience (Goswami, 2015), as individuals with specific learning

disorders like DD actively avoid reading-related material (Haft,
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Duong, Ho, Hendren, & Hoeft, 2018). This line of argumenta-
tion has been recently adopted by Huettig et al. (2018), parallel-
ing cognitive deficits in dyslexic individuals to those observed
in illiterates who have no practice in reading.

Study designs comparing affected individuals with age-
matched and reading-level matched controls aim to distinguish
effects driven by different amount and quality of literacy experi-
ence from anomalies related to DD per se (Goswami, 2015). For
instance, Hoeft et al. (2007) demonstrated that activation pat-
terns in left inferior and middle frontal gyri, the caudate nu-
cleus, and the thalamus in dyslexic adolescents resemble those
exhibited by younger individuals matched in reading perfor-
mance during a visual rhyme judgment task. Compared to age-
matched controls, however, activation in these regions was sig-
nificantly higher, reflecting differences in current literacy abil-
ity unrelated to the aetiology of DD. Instead, reduced activity
in left fusiform and parietal areas and smaller grey matter vol-
ume in a region of interest in left inferior parietal cortex distin-
guished dyslexics from both control groups. In a whole-brain
analysis, Krafnick, Flowers, Luetje, Napoliello, and Eden (2014)
reported reduced cortical volume of the right precentral cortex
and increased grey matter volume of the left middle temporal
gyrus in dyslexic children compared to younger controls with
comparable reading levels. Recently, A. J. Power, Colling, Mead,
Barnes, and Goswami (2016) demonstrated poor encoding of
speech sounds in literacy impaired children compared to age-

and reading-level matched controls. This is in line with previous
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accounts of variable neural responses to speech sounds within
the primary auditory cortex of dyslexic adults (Lehongre et al.,
2011). Taken together, these findings might point to a fundamen-
tal role of inaccurate neuronal representation of prosodic and
syllabic information at level of the primary auditory and supe-
rior temporal cortex.

However, evidence provided by reading-level matched
designs—despite being a valuable tool—requires cautious inter-
pretation. Improved metacognitive skills in older children might
mask behavioural differences actually present between dyslexic
individuals and younger controls (Goswami, 2015). Moreover,
behavioural measures might be not equally reliable, discrimina-
tive and valid across different age groups, raising doubt about
the validity of comparisons (Jackson & Butterfield, 1989).

The gold-standard solution for establishing causality is to em-
ploy longitudinal designs continuously monitoring behaviour
and brain development of children from an early, pre-reading
age until after the onset of literacy instruction (Goswami, 2015;
Ramus, Altarelli, Jednorég, Zhao, & Scotto di Covella, 2018).
Thus, based on the knowledge of future individual learning pro-
gression, neural precursors of DD can be identified from data
acquired at a pre-reading age. Due to their effortful nature, how-
ever, such designs are sparse. A seminal MRI study by Clark et
al. (2014) investigated changes in cortical thickness in children
with dyslexia and controls from pre-school age until grade six
in school. Their results suggested that children later developing

dyslexia have a significantly thinner cortical ribbon in left Hes-
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chl’s gyrus, lingual gyrus, medial frontal gyrus, middle cingu-
late gyrus and right orbitofrontal cortex already before formal
reading instruction. Moreover, cortical thickness in dyslexic in-
dividuals remained significantly smaller in Heschl’s and lingual
gyrus throughout development, while differences in frontal and
cingulate regions disappeared over time. Thus, Clark et al. (2014)
suggest a key role of neuroanatomical anomalies in lower-level
areas responsible for auditory and visual processing for the aeti-
ology of DD. However, this account has been criticised because
of low statistical power and lack of control for genetic factors
and environmental variance such as parental education (Kraft et
al., 2015). Furthermore, children were 6-7 years old and already
attending grade 1 of school at the time of the first scanning, rais-
ing doubts whether the presented data can disentangle potential
causes from consequence entirely (Ramus et al., 2018).

In summary, potential neural causes and consequences of DD
have been the subject of intense debate within the scientific com-
munity. To date, there is no general agreement which of the
proposed theories captures the fundamental causes of literacy
impairments. The most prominent shortcoming in this debate
concerns the fact that data supporting or opposing the different
accounts is derived from individuals past the age of reading ac-
quisition. What is more, the sparse neuroimaging data available
(Clark et al., 2014) is limited to a neo-cortical thickness analy-
sis, thus failing to provide insights into variable neuroanatomi-
cal and -functional profiles potentially extending to subcortical

systems. Therefore, the work presented in this thesis was de-
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signed to overcome these limitations. Specifically, the first em-
pirical study presented here (see Chapter 6) relies on a longitu-
dinal data set comprising various brain structural and functional
measures and psychometric testing of the same dyslexic and typ-

ically reading children at kindergarten and school age.

2.2 FOUNDATIONS OF NUMERACY

Already early in life, prelinguistic infants as young as six months
of age exhibit the ability to differentiate between sets of different
magnitudes (F. Xu & Spelke, 2000). Thus, a sense for number is
available in early childhood, preceding any formal instruction of
numerical concepts (Dehaene, 2011).

One crucial mechanism assumed to support such an innate
number sense is the mental number line in the brain. This con-
cept assumes that—independent of modality (Lipton & Spelke,
2003)—magnitudes are coded spatially. Following this account,
differences between two sets are represented as the spatial inter-
val separating the two given quantities (Dehaene, 2011; Moyer &
Landauer, 1967; Slaughter, Kamppi, & Paynter, 2006). Thereby,
the mental number line provides a cross-modal basis for ap-
proximate number estimation (Feigenson, Dehaene, & Spelke,
2004). Early support for an intrinsic association between coding
of space and magnitude was provided by Dehaene, Bossini, and
Giraux (1993), who demonstrated a marked left-ward advantage
in terms of reaction time for responding to smaller quantities,

and a right-ward advantage for larger values.
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A second fundamental mechanism concerns accurate repre-
sentation of a limited number of items early in life (Feigenson
et al., 2004). For instance, Feigenson, Carey, and Hauser (2002)
demonstrated that ten- and 12-month-old infants instinctively
select the larger set when making one versus two or two versus
three comparisons. This finding suggests infants” ability to track
a small number of discrete objects correctly (Bremner et al., 2017;
Feigenson et al., 2002).

Over development, these two mechanisms mature, increasing
in precision (Lipton & Spelke, 2003) and eventually enabling
preschoolers to perform approximate addition (Barth et al., 2006;
Barth et al., 2005) and subtraction (Slaughter et al., 2006). How-
ever, development of skills needed for exact symbolic arithmetic
requires formal instruction in school (Barth et al., 2005). Im-
portantly, these developmental trajectories are characterised by
marked inter-individual variability in learning rates and success
(M. Brown et al., 2003; Cockcroft, 1982).

Finally, there is a consensus that—during development of
numerical and mathematical competence in school—children
shift from procedural approaches such as counting to memory-
based retrieval strategies to solve simple mathematical equa-
tions (Ashcraft, 1982; Barrouillet & Fayol, 1998; Siegler & Ship-
ley, 1995). Specifically, Qin et al. (2014), investigating arithmetic
problem solving strategies in children, adolescents and adults,
showed that this shift gradually progresses during childhood

and further through adolescence into adulthood.
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2.2.1 The brain basis of numeracy

The ability to engage with and manipulate quantitative informa-
tion rests upon biologically determined circuits for magnitude
and number processing (Dehaene, Piazza, Pinel, & Cohen, 2003).
However, much like literacy, numerical cognition taps into multi-
ple cognitive domains. Beyond core magnitude and number pro-
cessing, it involves working memory, vision, cognitive control,
attention and memory (Menon, 2015). Consequently, a diverse
range of brain regions has been associated with its development,
such as the prefrontal cortex (PFC; Cho, Ryali, Geary, & Menon,
2011; Evans et al,, 2015; Rivera et al., 2005), the posterior pari-
etal cortex (PPC; Cantlon, Brannon, Carter, & Pelphrey, 2006;
Menon, 2010; Qin et al., 2014; Rivera et al., 2005) including the
intraparietal sulcus (IPS; Cantlon et al., 2006; Jolles, Ashkenazi,
et al., 2016), the medial temporal lobe (MTL; Cho et al., 2011;
Qin et al,, 2014; Rivera et al., 2005; Supekar et al., 2013), and
the ventral temporal-occipital cortex (VIOC; Evans et al., 2015;
Rivera et al., 2005).

Importantly, previous developmental studies shed light onto
structural and functional changes within these areas while
mathematical competence matures. In a cross-sectional analy-
sis, Rivera et al. (2005) investigated neural correlates of devel-
opmental changes in mental arithmetic during late childhood
and adolescence. Their results suggested a consistent decrease
of prefrontal activation, reflecting reduced reliance on effort-

ful strategies tapping into working memory and attentional re-
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Figure 2.3: Brain areas associated with numeracy processing. PPC =
posterior parietal cortex; PFC = prefrontal cortex; MTL =
medial temporal lobe; VTOC = ventral temporal-occipital
cortex, IPS = intraparietal sulcus. Regions are schematically
shown for the right hemisphere, but importance of bilateral
areas is prominently reported.

sources. Concomitantly, involvement of regions specialised for
mathematical processing, such as the left supramarginal gyrus
and anterior IPS, increased with time and experience. This find-
ing was corroborated by Evans et al. (2015), who showed that
the longitudinal change in parietal grey matter volume, together
with ventral temporal and prefrontal areas, predicted improve-
ment of mathematical abilities in children between seven and
14 years of age. Moreover, PPC regions are consistently associ-
ated with magnitude processing (Piazza, Izard, Pinel, Le Bihan,
& Dehaene, 2004; Piazza, Mechelli, Price, & Butterworth, 2006;
Piazza, Pinel, Le Bihan, & Dehaene, 2007) and mental arithmetic
(Knops, Thirion, Hubbard, Michel, & Dehaene, 2009; Menon,

2010; Venkatraman, Ansari, & Chee, 2005) in adults, even in ab-
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sence of an explicit task (Ansari, Dhital, & Siong, 2006). Specif-
ically, Dehaene et al. (2003) distinguished three distinct mod-
ules in the parietal cortex crucial for sound numerical cognition.
Following this account, the horizontal segment of the IPS rep-
resents a domain specific core quantity region that can be con-
sidered to house the neural representation of the mental num-
ber line mentioned in Section 2.2. Importantly, developmental
work indicates differential hemispheric trajectories: While four-
year-old children already exhibit adult-like levels of activation
in right IPS (Cantlon et al., 2006), its left homologue increases
in functional specialisation with age (Rivera et al., 2005). In line
with this previous finding, Jolles, Supekar, et al. (2016) associ-
ated increased functional connectivity of the left IPS with in-
dividual improvement when solving simple addition and sub-
traction problems in primary school children after an 8-week
intense math tutoring program. Second, bilateral posterior supe-
rior parietal regions seem to play a more domain general role.
While these regions are differentially activated during counting
(Piazza, Mechelli, Butterworth, & Price, 2002) and mathemati-
cal operations (Rosenberg-Lee, Chang, Young, Wu, & Menon,
2011), they are also prominently associated with visuospatial
processing, attention and short-term memory (Corbetta, Kin-
cade, Ollinger, McAvoy, & Shulman, 2000; Ester, Sprague, & Ser-
ences, 2015; Simon, Mangin, Cohen, Le Bihan, & Dehaene, 2002).
Therefore, Dehaene et al. described the bilateral superior pari-
etal cortex as an auxiliary system, providing attentional orien-

tation along the mental number line. Finally, as part of the left-
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hemispheric perisylvian system, the left angular gyrus has been
shown to be involved in phoneme detection tasks as well as cal-
culation (Simon et al., 2002). Moreover, it activates more strongly
in simple one-digit multiplication tasks that can be solved via
retrieval of arithmetic facts compared to multi-digit multiplica-
tion requiring quantity manipulation (Grabner et al., 2007). This
finding is in line with the suggested involvement of the angu-
lar gyrus in verbal manipulation of number and arithmetic fact
retrieval (Dehaene et al., 2003).

MTL involvement follows a non-linear trajectory. Hippocam-
pal activation initially increases when children first develop
memory-based retrieval strategies, followed by a reduction dur-
ing adolescence reflecting final consolidation (Qin et al., 2014).
This is in line with evidence indicating that larger hippocam-
pal volume predicts learning improvements after intensive math
tutoring (Supekar et al., 2013). Moreover, variable neural rep-
resentations in MTL distinguished children that rely more on
fact retrieval from those who employ procedural strategies (e. g.
counting; Cho et al., 2011).

Lastly, ventral temporal-occipital cortex (VTOC) regions have
been recently associated with symbolic numerical cognition in
terms of a visual number form area that specifically decodes vi-
sual numerals (Amalric & Dehaene, 2016; Hermes et al., 2017;
Shum et al., 2013). However, the concept of a region specifically
tuned to digits is under debate. For instance, G. R. Price and
Ansari (2011) failed to observe any digit-specific activation in

VTOC and instead ascribe a numeral-specific role to the angular
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gyrus. While such a null result might be due to signal drop out
specifically affecting ventral areas (Yeo, Wilkey, & Price, 2017),
there is yet little agreement about the exact localisation or role
of this region. Based on a meta-analysis of neuroimaging stud-
ies, Yeo et al. (2017) identified common numeral-specific tuning
of the right inferior temporal gyrus in addition to a network
of areas involved in symbolic number processing. Even though
this finding aligns with results of Grotheer, Ambrus, and Kovacs
(2016), demonstrating that transcranial magnetic stimulation of
the right—but not left—number form region disrupts visual per-
ception of Arabic numerals, it is noteworthy that stimulation
also interfered with letter processing. In fact, Grotheer, Jeska,
and Grill-Spector (2018), investigating the functional specificity
of candidate VTOC regions, recently reported tuning to numer-
ical content of visual stimuli rather than numerals per se. Thus,
while VTOC activation is consistently reported across studies, its
exact role for numerical cognition remains contentious.

In summary, the brain basis of numerical-mathematical pro-
cessing has been intensely studied in adult participants (Ansari
et al., 2006; Knops et al., 2009; Menon, 2010; Piazza et al., 2004,
Piazza et al., 2006; Piazza et al., 2007, Qin et al., 2014; Venka-
traman et al.,, 2005). From a neurodevelopmental perspective,
specific correlates of basic numerical processing and mathemat-
ical learning have been investigated in independent samples of
preschoolers (Cantlon et al., 2006) and primary school children
(Evans et al., 2015; Qin et al., 2014; Rivera et al., 2005), respec-

tively. However, little is known about the longitudinal neuro-
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plastic changes that underlie emerging mathematical skills at the
transition from kindergarten to the first years of school. There-
fore, the second study presented in this thesis (see Chapter 7)
longitudinally assessed the association between cortical surface
changes from kindergarten to school age and individual differ-

ences in numeracy attainment.

2.3 POTENTIAL LINKS BETWEEN LITERACY AND NU-

MERACY

At first sight, the ability to read and write seems to be very dif-
ferent from the capacity to apply and reason with numerical con-
cepts. However, both sound literacy and numeracy skills are vi-
tal, as letters and numbers belong to the primary means of com-
munication in our modern world. What is more, when consid-
ering the two domains, several common features become appar-
ent. Ultimately, both are—to a great extend—explicitly learned
abilities to derive new meaning from incoming sensory input.
To do so, both require integration of this novel, symbol-based
information with prior knowledge given a particular context.
Moreover, both require monitoring of ongoing processes (L. Sam-
mons, 2011). Considering these striking commonalities, a central
question concerns possible interactions of both domains.

In fact, significant correlations between literacy and numeracy
scores are prominently observed (Durand et al., 2005; Hart et
al., 2009; Lundberg & Sterner, 2006; Thompson et al., 1991). For

instance, Hecht, Torgesen, Wagner, and Rashotte (2001), examin-
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ing cognitive abilities of 201 children longitudinally over the first
years of school, reported positive associations between scores of
reading and simple arithmetic assessed both in fourth and fifth
grade. Moreover, school-entry numeracy skills were shown to
predict later achievement not just in maths, but also in reading
(Duncan et al., 2007). In addition to the association between typ-
ical reading and mathematical acquisition, there is also evidence
for a possible link regarding the impaired development of these
skills. Atypically developing individuals often exhibit combined
learning deficits. Owing to variable cut-off criteria and distinct
operationalisations of deficits, reported comorbidity rates of lit-
eracy and numeracy impairments range from 20% to over 80%
(Badian, 1999; Dirks, Spyer, van Lieshout, & de Sonneville, 2008;
Fletcher & Loveland, 1986; Lewis, Hitch, & Walker, 1994; Moll],
Kunze, et al., 2014; von Aster, Schweiter, & Weinhold Zulauf,
2007). Associations between the two deficits are frequently ex-
plained in terms of more general processes involved in both,
such as complex language (Purpura, Logan, Hassinger-Das, &
Napoli, 2017) and phonological processing skills (De Smedt, Tay-
lor, Archibald, & Ansari, 2010; Hecht et al., 2001), executive func-
tioning underlying cognitive flexibility (Yeniad, Malda, Mesman,
van ljzendoorn, & Pieper, 2013), motivation and focused atten-
tion (Lundberg & Sterner, 2006) and visual associative learning
(Skeide, Evans, Mei, Abrams, & Menon, 2018).

Studies investigating the heritability of literacy and numer-
acy abilities suggest a substantial genetic influence contributing

to individual performance within each domain (Grasby, Coven-
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try, Byrne, Olson, & Medland, 2016; Kovas, Haworth, Dale, &
Plomin, 2007). Large-scale twin studies implied that—not just
the variability within—but also the considerable covariation be-
tween these areas can be in part explained by a common genetic
basis (Davis et al., 2014; Haworth et al., 2009; Wadsworth, De-
Fries, Fulker, & Plomin, 1995). In the same vein, hereditary fac-
tors explain a significant proportion of covarying literacy and
numeracy deficits (Hart et al., 2009; Kovas, Haworth, Harlaar, et
al., 2007; Markowitz, Willemsen, Trumbetta, & Boomsma, 2005;
Thompson et al., 1991). Specifically, a number of authors sup-
ported the notion of a generalist genes hypothesis proposed by
Plomin and Kovas (2005), suggesting the same genetic factors af-
fect both typical and atypical performance across domains (Ha-
worth et al., 2009; Kovas, Haworth, Dale, & Plomin, 2007; Kovas,
Haworth, Harlaar, et al., 2007).

Few studies are available that contrast neural correlates of iso-
lated and shared disorders. Despite the evidence for consider-
able comorbidity and shared genetic components, Landerl et
al. (2009) argue that both disorders are characterised by dis-
tinct deficits. In their study, Landerl et al. compared children
with isolated dyslexia and dyscalculia, respectively, to individ-
uals with comorbid impairments and demonstrated a double
dissociation: deficits were specific for the distinct subgroups, in-
dependent of problems in the respective other domain. Thus,
they concluded that underlying problems are domain-specific
and not attributable to the same basis. In contrast to this sug-

gestion, however, Skeide et al. (2018) recently identified distinct
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patterns of cortical folding and functional connectivity of the
right parahippocampal gyrus as a common neural substrate of
combined deficits.

Overall, research investigating the common basis of both liter-
acy and numeracy in terms of behavioural covariation, genetic
factors and neural correlates of isolated and shared disorders
has granted valuable insights into possible associations between
both domains. The focus of the current dissertation, however,
was to study specific neural correlates of individual variation
within the two domains independently from performance in the
respective other domain. To this end—given the potential links
between these two complex cognitive abilities—information of
both early literacy and numeracy performance was obtained
for all participants under investigation in the present empirical
work. This rigorous psychometric assessment enabled the inclu-
sion of measures of early numeracy skills as covariates of no
interest when examining potential neural causes of literacy im-
pairments in Empirical Study I (see Chapter 6). Likewise, mea-
sures of early reading and spelling performance were included
in the analyses of developmental trajectories associated with
early mathematical achievement presented in Empirical Study
IT (see Chapter 7). Thereby, the contributions of specific neural
circuits supporting either emerging literacy or numeracy skills

were investigated.
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2.4 STUDYING LITERACY AND NUMERACY: PROMI-

NENT CONFOUNDS

Aside from the considerable covariance of individual literacy
and numeracy abilities described in Section 2.3, performance
in both domains may be further affected by a range of other
factors. First, academic achievement is related to parental ed-
ucation as an indicator of sociodemographic status, with the
mother’s highest qualification most strongly impacting cogni-
tive outcomes especially in young children (Carneiro, Meghir, &
Parey, 2013; Mercy & Steelman, 1982; P. Sammons et al., 2004).
Second, literacy and numeracy abilities and deficits vary as a
function of sex. In industrialised countries, there is a gender gap
with girls outperforming boys in terms of reading, while girls of-
ten lag behind boys in mathematics (OECD, 2012). Indeed, male
individuals are affected more often by specific reading difficul-
ties (Lewis et al., 1994). However, while some authors demon-
strated higher rates of girls with arithmetic impairments com-
pared to boys (Moll, Kunze, et al., 2014), others suggested com-
parable prevalence rates for both sexes (Devine, Soltész, Nobes,
Goswami, & Szfics, 2013). Moreover, learning abilities and intel-
lectual abilities are intrinsically linked. Per definition, specific
literacy and numeracy impairments preclude a causal role of
diminished intelligence for observed deficits (World Health Or-
ganization, 2018), and it has been suggested that genetic factors
might have a larger impact in impaired individuals with higher

IQ scores (Wadsworth, Olson, & DeFries, 2010).
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Thus, when aiming to characterise specific contributions of
neural systems to individual differences and deficits in either
domain, a careful investigation and rigorous statistical control
is necessary to identify effects unique to literacy or numeracy.
This includes not only accounting for performance in the respec-
tive other domain, but equally important covariates such as mea-
sures of sociodemographic status or general intelligence. While
evidence of comorbidity and confounds is plentiful, previous
work frequently failed to include the large-scale psychometric
and demographic testing needed to be able to comprehensively
characterise their study sample. These vital oversights—for in-
stance not investigating performance in mathematics when in-
vestigating literacy and vice versa — affect prominent neuroimag-
ing studies of learning deficits (Ansari & Dhital, 2006; Clark et
al., 2014; Hoeft et al., 2011; Hu et al., 2010; Kraft et al., 2016;
Rotzer et al., 2009; B. A. Shaywitz et al., 2002; S. E. Shaywitz
et al., 2003; Vandermosten et al., 2015) and typical development
of both literacy (Ben-Shachar, Dougherty, Deutsch, & Wandell,
2011; Booth et al., 2004; Yeatman et al., 2012) and numeracy (Cho
et al., 2011; Jolles, Supekar, et al., 2016; Rivera et al., 2005).

The empirical studies presented in this thesis (see Chapters 6
and 7) were designed to overcome the aforementioned short-
comings when investigating literacy deficits and numeracy de-
velopment independently from each other. In both studies, neu-
roimaging measures were combined with comprehensive psy-
chometric and demographic assessment, enabling a rigorous sta-

tistical control for prominent confounding factors such as gen-
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eral intelligence, sex, sociodemographic status as quantified by
maternal education, in addition to early performance in reading,

writing and mathematics.



CHAPTER 3

RESEARCH AIMS AND HYPOTHESES

The current research project was designed to analyse specific
neural correlates of deficient literacy acquisition and individual
differences in mathematical ability. As described in Chapter 2,
previous literature associated regionally distinct brain develop-
ment, both structurally as well as functionally, with differential
literacy (Carreiras et al., 2009; Clark et al., 2014) and mathemati-
cal (Evans et al., 2015; Qin et al., 2014) ability. However, the com-
prehensive study of specific neural correlates of these higher cog-
nitive skills faces several challenges that were only incompletely

addressed by earlier research:

i. Longitudinal experimental designs are necessary to identify
neurobiological profiles and developmental changes that are
directly related to behavioural variation (see Section 2.1.2.2).
Specifically, assessment of the respective biological under-
pinnings needs to start before formal instruction in either
literacy or mathematics has begun. However, longitudinal

neuroimaging work starting before school is sparse.

ii. Due to the considerable covariation between literacy or nu-

meracy skills (see Section 2.3), both domains need to be con-
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sidered when studying specific correlates of distinct abili-

ties.

iii. Differential and atypical brain development on the mi-
croanatomical scale potentially induces variable structural
and functional profiles. As will be described in detail in
Chapter 4, early developmental processes include neuronal
migration, maturation of synapses and glial cells like oligo-
dendrocytes, as well as synaptic pruning. These have the
potential to profoundly change the developing brain’s ap-
pearance and functional networks. While previous work se-
lectively focused on specfific measures, a more integrated
approach combining various anatomical and functional di-
mensions (see Chapter 5) is needed to provide a comprehen-
sive understanding of the emergence of complex cognitive

abilities and their developmental trajectories.

The current research project was designed to overcome these
prominent shortcomings of previous work. Specifically, I sought
to comprehensively examine neural correlates of literacy and
numeracy acquisition while addressing these challenges by re-
lying on a longitudinal data set that combines structural T;-
weighted (T,), diffusion-weighted (dMRI) and resting-state func-
tional magnetic resonance imaging (rsfMRI) measurements with
psychometric testing of the same children at kindergarten and
school age. On this basis, we designed two studies to analyse
specific neural correlates of deficient literacy acquisition and in-

dividual differences in mathematical ability.



3.1 EMPIRICAL STUDY I

3.1 EMPIRICAL STUDY I. UNRAVELING POTENTIAL
CAUSES FROM CONSEQUENCES OF DEVELOPMEN-

TAL DYSLEXIA

The aim of the first empirical study presented in this thesis was
to identify neuronal correlates of developmental dyslexia (DD)
and their development during the first two years of literacy ac-
quisition. To this end, region of interest (ROI)-based compar-
isons of cortical grey matter anatomy, white matter structure
and resting-state functional measures in dyslexic children and
controls before and after literacy instruction were performed.
Additionally, the predictive power of effects was assessed to test
their ability for early prediction of DD.

As highlighted in Section 2.1.2.2, the gold-standard to disen-
tangle potential causes from consequences of developmental dis-
orders is to use longitudinal designs as presented in the current
thesis. In particular, we investigated potential neural predisposi-
tions of DD by following children over several years from kinder-
garten to school, assessing their brain structure and resting-state
functional development via magnetic resonance imaging (MRI).
Concomitantly, participants” cognitive development was moni-
tored via comprehensive psychometric testing. Critically, assess-
ing individual’s reading and writing skills at the end of second
grade in school allowed us to compare cortical facets of children
that have developed dyslexia later in life with typical controls
prior to literacy acquisition, thereby removing the confound of

impoverished literacy experience. Additionally, individual math-
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ematical performance was included as a covariate in all statisti-
cal analyses, such that results can be ascribed specifically to lit-
eracy deficits independent of individual numeracy performance.

Thus, we addressed the following main question:

e Which neural differences distinguish future dyslexic chil-
dren from typically developing controls already prior to for-

mal literacy instruction and after two years of schooling?

Hypothesis I.a Following the literature currently available on
preliterate children (Clark et al., 2014), we expected neural differ-
ences between dyslexic cases and controls to be confined to the
phonological system. In particular, we anticipated replicating
previous results indicating atypical functioning and structural
organisation of left superior temporal regions, specifically the

primary auditory cortex.

Hypothesis I.b In line with post mortem work on adult
dyslexic individuals reporting polymicrogyria within the left
perisylvian cortex (Galaburda, LoTurco, Ramus, Fitch, & Rosen,
2006), we expected significantly increased gyrification of the left
perisylvian cortex already in children as young as five years of

age.

Hypothesis I.c Beyond the sparse longitudinal work available
pointing towards atypical structural organisation in confined re-
gions associated with phonological processing, cross-sectional
evidence and work on preliterate children as risk of literacy

impairments suggest altered interregional connectivity in the
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dorsal reading network (see Section 2.1.1; Rimrodt, Peterson,
Denckla, Kaufmann, & Cutting, 2010; Saygin et al., 2013; Skeide
et al., 2015). In line with these reports, we hypothesised that
atypical functional and structural connectivity of the dorsal read-
ing network distinguish individuals with DD from controls both
before and after literacy instruction. In particular, we assumed
differences to appear in connections between superior temporal
cortex areas such as the planum temporale and the primary au-

ditory cortex and upstream prefrontal regions.

3.2 EMPIRICAL STUDY II: SURFACE PLASTICITY AND

EARLY NUMERACY SKILLS

The aim of the second empirical study presented in this the-
sis was to characterise systematic relationships between devel-
opmental trajectories of brain structure and individual numer-
acy competence in typically developing children, independent
of behavioural variability in literacy expertise. To this end, data
from children who developed specific literacy impairments or
who were at a familial risk for DD were not considered in this
second study in order to exclude potential confounding effects.
As pointed out in Section 2.2.1, previous research investigated
the brain basis of magnitude processing in preschool children
(Cantlon et al., 2006) and development of simple arithmetic skills
in school-age participants (Qin et al., 2014; Rivera et al., 2005).
However, little attention has been paid to neural correlates of

emerging numeracy abilities during the first years of formal in-
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struction when children move from approximate to exact calcu-
lation (Cho et al., 2011). Therefore, the current analysis focused
on exactly this age range, by quantifying cortical surface plas-
ticity from kindergarten to second grade in school. Importantly,
I included measures beyond more traditional structural indices
like grey matter volume (GMV) or cortical thickness (CT) (Evans
et al.,, 2015; Rivera et al., 2005), also exploring gyrification, cor-
tical folding complexity and sulcus depth. Thus, the following

main question was addressed:

e Which particular developmental trajectories of brain surface
anatomy from kindergarten to primary school age are asso-
ciated with individual numeracy attainment after two years

of formal mathematical education?

Hypothesis Il.a We expected cortical plasticity to correlate
with individual differences in primary school numeracy ability
in regions associated with early magnitude and later arithmetic
processing, i. e. the intraparietal sulcus (IPS; Cantlon et al., 2006;
Jolles, Ashkenazi, et al., 2016) and the posterior parietal cortex
(PPC; Cantlon et al., 2006; Menon, 2010; Qin et al., 2014; Rivera
et al., 2005), and areas involved in arithmetic problem solving,
i.e. the prefrontal cortex (PFC; Cho et al.,, 2011; Evans et al,,
2015; Rivera et al., 2005) and medial temporal lobe (MTL; Cho
et al., 2011; Qin et al., 2014, Rivera et al., 2005; Supekar et al.,

2013).

Hypothesis IL.Lb For the parietal lobe specifically, we hypoth-

esised a differential involvement of subregions for distinct
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numeracy-related abilities, following the model of the PPC sug-
gested by Dehaene et al. (2003). Specifically, we expected IPS
plasticity to be related to arithmetic processing and superior
parietal lobe (SPL) plasticity to be associated with visuospatial

magnitude processing.
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CHAPTER 4

BRAIN STRUCTURAL AND FUNCTIONAL
DEVELOPMENT

The human brain is a remarkably complex organ. Composed
of approximately 85 billion neurons (Azevedo et al., 2009) with
tens of thousands of synapses per cell (Cragg, 1975) and thus
potentially over 100 trillion connections at the adult age, it is the
origin of human thinking, action, memory, and consciousness.
To fathom neural correlates of literacy and mathematical acqui-
sition to be investigated in this thesis, one needs to understand
the key principles governing brain development itself. This basic
understanding is particularly important for identifying deviant
brain maturation and its link to behavioural deficits and varia-
tion.

Thus, this chapter provides an overview of brain development
in general and maturation of cortical structure in particular. Af-
ter a brief introduction to the anatomy of the human cerebrum
in Section 4.1, Section 4.2 describes general principles of cellular
brain development in utero and across the lifespan. Section 4.3
highlights links between the micro- and the macroscopic scale,

focusing on more global maturational changes in measures like
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cortical folding and thickness. Finally, Section 4.4 provides a

brief overview of functional brain development.

4.1 GENERAL BRAIN STRUCTURE

The brain can be subdivided into several major structures. The
largest of these is the cerebrum, which is composed of grey and
white matter.

The outer mantle of the cerebrum, the cerebral cortex, is a
highly folded, mutli-layered structure that consists of grey mat-
ter. Ranging between 2—-5 mm in thickness, it houses different
cellular structures, including the cell bodies of the brain’s infor-
mation processing cells, neurons (Stiles & Jernigan, 2010). From
inside to outside, density and composition of cortical cell types
vary, giving rise to a distinct laminar pattern. Across the cor-
tex, individual layers show high structural variability, allowing
for parcellations based on cytoarchitectonic composition (Brod-
mann, 1909; von Economo & Koskinas, 1925). Beyond these vari-
ations in structure, different cortical regions are selectively en-
gaged in very specific cognitive functions such as processing
linguistic syntax (Friederici, 2018), numerosity (Cantlon et al.,
2006), or written words (Glezer et al., 2009).

Individual cortical areas are connected via neuronal projec-
tions that run beneath the grey matter mantle, forming the white
matter. Its white appearance stems from myelin, a lipid-rich sub-
stance formed by a specific type of glial cell, so-called oligoden-

drocytes. Mature oligodendrocytes form few membranous out-
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growths that spiral concentrically around nearby neuronal pro-
jections (Kandel, Barres, & Hudspeth, 2013). These tight sheaths
provide the basis for saltatory conduction, thus greatly improv-
ing axonal conduction velocity (Fields et al., 2014). Importantly,
functionally specific regions share variable afferent and efferent
connectivity with other areas in the brain, giving rise to hierar-
chically organised networks (Park & Friston, 2013). In this way,
the cerebral cortex ultimately supports complex higher cognitive
abilities such as learning, memory, language, executive control

and emotion (Kandel & Hudspeth, 2013).

4.2 MICROANATOMICAL BRAIN DEVELOPMENT

Development of the neural system begins with formation of the
neural tube during the third week of gestation in utero (Stiles
& Jernigan, 2010). Neural progenitors that can develop into all
cell types of the future central nervious system line the inside
of the neural tube (Jessell & Sanes, 2013). From there on, further
development of the cortex can be divided into three crucial and
partially overlapping processes: (a) neuronal division and migra-
tion, (b) development of neural connectivity, and (c) synaptogen-
esis and synaptic pruning (Budday, Steinmann, & Kuhl, 2015a).
Process (a), neuronal division and migration, starts after for-
mation of the neural tube and is typically completed until the
first half of gestation (Raybaud, Ahmad, Rastegar, Shroff, &
Al Nassar, 2013). Neurons migrate from the neural plate in an

‘inside-out” fashion. In effect, cells generated early during devel-
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opment form the innermost cortical layers, and later-formed neu-
rons ultimately reside more adjacent to the pial surface (Stiles
& Jernigan, 2010). The distinct 6-layered structure of neocor-
tex becomes recognizable by gestational week 18 (Budday et al.,
2015a).

Process (b) commences as soon as neurons reach their target
position and begin to differentiate, sprouting dendrites and ax-
ons. Thus, the temporal trajectory of early brain connectivity
parallels the “inside-out” pattern of neuronal migration: deeper
layers connect to subcortical targets before midgestation and su-
perficial layers form intra-cortical, short association fibres and
long-range cortico-cortical connections from gestational week 28
until after birth (Raybaud et al., 2013).

Process (c) is comprised of temporally overlapping stages
of synapse formation and elimination. Widespread exuberant
synaptogenesis (Innocenti & Price, 2005) occurs in concert with
the growth of neuronal projections. This initial, large-scale for-
mation of synapses starts before gestational week 27 (Hutten-
locher & Dabholkar, 1997) and leads to a widespread surplus
of transient synaptic connections (Innocenti & Price, 2005). It is
characterised by highly heterogenous and heterochronous pat-
terns throughout the cortex (Huttenlocher & Dabholkar, 1997),
with prefrontal areas showing increases in synaptic density be-
yond four years of age (Liu et al., 2012). Concomitantly, elim-
ination of synapses starts around the end of gestation and ex-
tends until mid-adolescence (Budday et al., 2015a; Huttenlocher

& Dabholkar, 1997). During this period, exuberant projections
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and synapses generated early in cortical development are selec-
tively eliminated, thereby refining the neural circuitry and estab-
lishing a more mature synaptic architecture (Neniskyte & Gross,
2017).

Despite the first appearance of sparse myelin in subcortical
structures by gestational week 25 (Hasegawa et al., 1992), white
matter development in utero is mainly characterised by pre-
myelination processes. First oligodendrocyte progenitors form
around gestational week 10 and need to undergo several stages
before being transformed into myelin-forming cells (Barateiro
& Fernandes, 2014). Unlike neural progenitor cells, immature
oligodendrocytes travel considerable distances before arriving
and proliferating at their target region within the white matter
(Nave & Werner, 2014). After birth, the pace of myelination in-
creases significantly and most rapidly during the first first year
of life (Brody, Kinney, Kloman, & Gilles, 1987; Gao et al., 2009;
Stiles & Jernigan, 2010). Akin to neuronal development, matu-
ration of white matter is characterised by regional variations.
Primary sensorimotor areas start getting myelinated after deep
subcortical structures, followed by a systematic progression of
white matter maturation in a posterior to anterior fashion (Brody
et al., 1987, Hasegawa et al., 1992; Kinney, Brody, Kloman, &
Gilles, 1988). After the first year of life, the rate of myelination
decreases (Gao et al., 2009; Tau & Peterson, 2010) but generation
and proliferation of oligodendrocytes, and thus myelination, per-

sists throughout life (Stiles & Jernigan, 2010).
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4.3 MACROANATOMICAL BRAIN DEVELOPMENT

The microanatomical development explained in the previous sec-
tion is intrinsically linked to profound changes in the developing
brain’s macroanatomy that occur concomitantly.

Following a region-specific progression, development of corti-
cal volume reflects the highly heterogenous and heterochronous
pattern of cell maturation, proliferation, and pruning across the
brain. Over development, there is a net decrease of total grey
matter (Lebel & Beaulieu, 2011, see Figure 4.1). However, rigor-
ous analysis of cortical volume maturation revealed a more com-
plex developmental pattern. In a sample of 145 participants lon-
gitudinally assessed at approximately 2-year intervals, Lenroot
and Giedd (2006) found that grey matter volume typically fol-
lows an inverted U shaped trajectory with region-specific peaks
at different timepoints (see Figure 4.2).

A further crucial component of the cerebral surface anatomy
is cortical thickness (CT), reflecting both dynamic developmen-
tal brain changes and neuroplasticity induced by experience.
The pace of CT increase is most pronounced over the first year of
life (Lyall et al., 2015). However, the exact developmental trajec-
tory of cortical thickness maturation thereafter presents a matter
of debate (Walhovd, Fjell, Giedd, Dale, & Brown, 2016).

Most early studies suggested a general developmental pro-
gression similar to the inverse U-shape observed for grey matter
volume development. For instance, Shaw et al. (2008) reported a

widespread pattern of initial CT increase across childhood, with
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Figure 4.1: Developmental changes of white matter and grey matter
volume from age 5-32 years, derived from 103 individu-
als. Reprinted from “Longitudinal Sevelopment of Human
Brain Wiring Continues from Childhood into Adulthood”
by C. Lebel and C. Beaulieu, 2011, Journal of Neuroscience,
31(30), p. 10939. Copyright 2011 by the authors. Repro-
duced with permission of SOCIETY FOR NEUROSCIENCE
in the format Republish in a thesis/dissertation via Copy-
right Clearance Center.

regionally specific peaks reached at different time points, fol-

lowed by subsequent decline throughout adolescence and adult-

hood, in occipital, parietal, lateral frontal, lateral temporal, ante-
rior cingulate and insular cortex (see Figure 4.3). A linear pro-
gression of consistent cortical thinning was only observed in re-
stricted, mostly medially located regions. These results support
previous literature describing such a pattern of age-dependent

growth and decrease of CT (Shaw et al., 2007; Shaw et al., 2006;

Sowell et al., 2004).

In contrast, a series of more recent studies has indicated a con-
tinuous global reduction in grey matter thickness across child-
hood (Kharitonova, Martin, Gabrieli, & Sheridan, 2013), extend-

ing into adolescence and adulthood (Amlien et al., 2016; T. T.

Brown & Jernigan, 2012; T. T. Brown et al., 2012; Ducharme et
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Figure 4.2: Age-dependent inverse U-shaped trajectories of grey mat-
ter volume in parietal and temporal cortex, derived from
145 individuals. The bold solid line indicates the progres-
sion of grey matter volume in male and bold dotted lines
the trajectory in female individuals. Light solid and dotted
lines denote the respective 95% confidence intervals. Ar-
rows indicate age of peak volume. Adapted from “Brain
Development in Children and Adolescents: Insights from
Anatomical Magnetic Resonance Imaging” by R. K. Lenroot
and J. N. Giedd, 2006, Neuroscience & Biobehavioral Reviews,
30, p. 724. Copyright 2006 by Elsevier Ltd. Adapted with
permission.

al., 2016; O’Donnell, Noseworthy, Levine, & Dennis, 2005, c.f.
Figure 4.4). For example, Ducharme et al. (2016) examined the
developmental tracjectory of CT between the ages of 4.9 and
22 years and identified widespread patterns of linear thinning
throughout the cortex. Crucially, when their analysis was more
stringently controlled for data quality, almost all areas in the
brain exhibited clear linear patterns of cortical thinning across
age.

Such critical inconsistencies regarding CT trajectories re-
ported in structural neuroimaging studies are difficult to recon-
cile. As pointed out by Walhovd et al. (2016), it is important to

note that not just demographic factors of the target population
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Figure 4.3: Regions characterised by variable developmental trajecto-
ries of cortical thickness development, based on MRI data
from 375 individuals. Red and green regions are marked
by a pattern of initial thickness increase and subsequent
decline, while regions in blue show a linear rate of thin-
ning. Adapted from “Neurodevelopmental Trajectories of
the Human Cerebral Cortex” by P. Shaw et al., 2008, Journal
of Neuroscience, 28(14), p. 3588. Copyright 2008 by Society
for Neuroscience. Reproduced with permission of SOCI-
ETY FOR NEUROSCIENCE in the format Republish in a
thesis/dissertation via Copyright Clearance Center.

but also methodological choices may have a crucial impact on

assessment of CT development.

Cortical thickness systematically covaries with the laminar

structure of the cortex (von Economo & Koskinas, 1925; Wagstyl,

Ronan, Goodyer, & Fletcher, 2015). However, it is important to
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Figure 4.4: Rate of change of cortical thickness across the brain for
different age groups, derived from 202 individuals aged
4-20 years. Reprinted from “Brain Development During the
Preschool Years” by T. T. Brown and T. L. Jernigan, 2012,
Neuropsychology Review, 22(4), p. 318. Copyright 2012 by
Springer Nature. Reprinted with permission.

note that cortical thickness is not a biomarker of neuronal den-
sity per se (Skoglund, Pascher, & Berthold, 1996). La Fougere
et al. (2011) described an inconsistent relationship between neu-
ron count and cortical thickness in a combined PET-MRI study:
thickness was independent of cell number in prefrontal and in-
ferior parietal areas, and even inversely related to neuronal den-
sity in temporal, occipital, primary sensory, and motor cortices.
Therefore, CT has to be interpreted with care and may instead
be related to more general elements of cytoarchitecture, specifi-
cally axons, dendrites and synapses (Wagstyl & Lerch, 2018). A
further methodological issue concerns the possible interaction
of grey matter and white matter in MRI. Increased intracortical

myelin content enhances the white matter signal and potentially
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compromises the grey matter signal. Thus, results of cortical
thinning might in fact be a marker of progressive myelination of
deep cortical white matter rather than changes in the thickness
of the cortical sheath itself (Natu et al., 2018; Stiles & Jernigan,
2010).

While the trajectory of CT is still debated, the development
of cortical gyrification pattens is less controversial. In concert
with developing connectivity, the cortex begins to fold (Raybaud
et al., 2013). Primary sulci like the sylvian, central and inferior
frontal fissures form until gestational week 26, followed by de-
velopment of secondary sulci starting throughout prenatal week
30 and tertiary sulci starting during gestational week 36 (Stiles
& Jernigan, 2010). While the location of primary sulci is remark-
ably consistent across individuals (Lohmann, von Cramon, &
Colchester, 2008), secondary and tertiary foldings show more
variability (Bartley, Jones, & Weinberger, 1997). Importantly, to
date, debate continues about the underlying key mechanisms
driving cortical folding (Bayly, Taber, & Kroenke, 2014).

For instance, the axonal tension hypothesis posits that fold-
ing is induced through physical strain along axons connecting
cortical regions, thereby drawing them together such that the
cortex bulges outward (Van Essen, 1997). This view is consistent
with principles of efficient wiring, since reducing the projection
length also minimises the conduction time. However, G. Xu et al.
(2010) failed to show significant axonal tension in the centre of

developing gyri, challenging this account.
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Others associated the onset of cortical folding with the com-
plex interplay of radial and tangential cortical proliferation
(Bayly, Okamoto, Xu, Shi, & Taber, 2013; Bayly et al., 2014, Talli-
nen et al., 2016), spatially and temporally heterogenous growth
patterns (Bayly et al., 2014, Budday & Steinmann, 2018; Ronan
et al., 2014; G. Xu et al., 2010; T. Zhang et al., 2016), developmen-
tal trajectories of cortical thickness (Budday, Raybaud, & Kuhl,
2014; Tallinen et al., 2016), as well as variable properties concern-
ing elasticity and stiffness of grey and white matter (Budday &
Steinmann, 2018; Tallinen et al., 2016; T. Zhang et al., 2016).

In stark contrast to the remarkable variability of grey mat-
ter thickness and volume across the life-span, cortical folding
is much more stable (Armstrong, Schleicher, Omran, Curtis, &
Zilles, 1995). Li et al. (2014) demonstrated the most rapid post-
natal changes in cortical folding during the first year of life, fol-
lowed by a decreasing rate of change (see Figure 4.5). Thus, not
just the pattern of primary, but also that of secondary and ter-
tiary gyrification seems to be determined within the very first
years of life. Consequently, while differences in folding patterns
have also been linked to ongoing myelination and synaptic re-
modeling (Blanton et al., 2001), they are often taken as a sensitive
marker for deviant pre- and early postnatal neural development
(Bayly et al., 2014; Mutlu et al., 2013). For instance, Schaer et
al. (2009) identified deviant gyrification in patients with a neu-
rogenetic disorder that is frequently associated with abberant

neuronal migration and proliferation.
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I Low growth I High growth

Figure 4.5: Significant clusters of change in cortical gyrification within
the first (left) and second (right) year of life, derived from
73 longitudinally assessed infants. Clusters are divided
into regions with high growth rates (red) and regions with
significant, yet low growth rates. Adapted from “Mapping
Longitudinal Development of Local Cortical Gyrification
in Infants from Birth to 2 Years of Age” by G. Li et al., 2014,
Journal of Neuroscience, 34(12), p. 4234. Copyright 2014 by
the authors. Reproduced with permission of SOCIETY FOR
NEUROSCIENCE in the format Republish in a thesis/dis-
sertation via Copyright Clearance Center.

In line with molecular observations of continuous oligoden-
drocyte generation and proliferation throughout life, Lebel and
Beaulieu (2011) report a steady longitudinal increase in whole
brain white matter volume from five years until 32 years of age
(see Figure 4.1). A similar trajectory of white matter maturation
has been described by Barnea-Goraly et al. (2005), who not only
found sustained changes in white matter density with age, but
also specific age-related increases in white matter anisotropy in
individuals aged six to 20 years. Hence, over development from
childhood until adulthood, myelin progressively accumulates

in a highly organised, coherent fashion along axons and fibre

tracts.
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4.4 FUNCTIONAL BRAIN DEVELOPMENT

Much like the anatomical changes described in Sections 4.2 and
4.3, functional brain development is a highly dynamic process.
As neurons mature and form new connections, they also start
transmitting signals from one cell to another. These processes
give rise to first functional networks that can already be identi-
tied in utero (Schopf, Kasprian, Brugger, & Prayer, 2012; Thoma-
son et al., 2013). Remarkably, a range of functional circuits is
already in place by term (Doria et al., 2010), most prominently
encompassing primary sensory and motor regions (Fransson et
al., 2007; Lin et al., 2008). Further during subsequent develop-
ment, the proportion of brain volume that is part of these net-
works increases over the first few years of life, following re-
gionally specific trajectories (Lin et al., 2008). During childhood,
functional interactions between regions exhibit more and more
adult-like patterns. In children six to seven years of age, primary
visual, auditory, somatosensory and frontoparietal networks spa-
tially resemble adult cortical networks, while others associated
with executive control and attention show less mature profiles
(Thornburgh et al., 2017). Further throughout adolescence until
adulthood, individual networks mature, becoming increasingly
independent from each other and, thereby, functionally specific
(Stevens, Pearlson, & Calhoun, 2009).

Considering stimulus- or task-related processing, a similar
shift from diffuse to functionally specific activity can be ob-

served. For instance, infants show a considerably broader tun-
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ing of electrophysiological responses in word learning (Neville,
Mills, & Lawson, 1992) or face recognition (de Haan, Pascalis, &
Johnson, 2002) than exhibited by adults. With age or stimulus ex-
perience, more specialised functioning emerges (Johnson, 2001).
For instance, functional activation during a cognitive control
task is still widespread in nine-year-old children, and becomes
more focal in task-relevant regions throughout the next three
years of life (Durston et al., 2006). Importantly, these functional
responses as well as the functional networks described above are
highly plastic and may be shaped by individual experiences and
skill acquisition. For instance, already brief phoneme-grapheme
training enhances the activity within the fusiform gyrus in six-
year-old, pre-reading children, reflecting how this specific brain
region tunes to print (Brem et al., 2010). Not just during develop-
ment, but also throughout later life, the brain remains plastic, as
demonstrated e. g. by functional reorganisation following motor

skill learning in adults (Karni et al., 1998).
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CHAPTER 5

EXAMINING BRAIN STRUCTURE AND FUNCTION
VIA MAGNETIC RESONANCE IMAGING

As outlined in Chapter 3, the current thesis aims to provide a
comprehensive analysis of potential neural correlates of literacy
impairment and numeracy development. To this end, the analy-
ses presented here combine measures of literacy and mathemat-
ical ability with various estimates of structural and functional
brain development assessed via magnetic resonance imaging
(MRI). Importantly, a fundamental understanding of the basic
principles underlying this neuroimaging approach is key to in-
terpret MRI data. Therefore, this chapter initially provides in-
formation about the foundations of MRI measurements (Sec-
tions 5.1 and 5.2).

Furthermore, sophisticated imaging processing techniques
are necessary to derive specific information of neuroanatomical
and neurofunctional measures from the basic output of an MRI
machine. Based on these techniques, it is possible to draw con-
clusions about grey matter (GM) volume and thickness, cortical
surface geometry such as gyrification, sulcus depth and cortical
folding complexity, white matter (WM) structure, functional con-

nectivity between regions, regional functional homogeneity and
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fractional amplitude of low frequency fluctuations of the resting
brain. As described in Chapter 4, these aspects show character-
istic changes during development, relate to cognitive processing
and may be reflective more fundamental maturational processes
shaping the brain. To create a fundamental understanding of
these MRI-derived measures, the remainder of this chapter gives
detailed accounts describing how GM (Section 5.3), WM (Sec-
tion 5.4) and resting-state functional properties (Section 5.5) can

be obtained from imaging data.

5.1 MAGNETIC RESONANCE IMAGING

MRI proved a valuable tool for analysing the composition and
structure as well as functional properties of the brain. Prior to
the advent of MRI, estimation of neuroanatomy relied on ef-
fortful histology work on post-mortem samples. Investigation of
functional properties was restricted to animal and lesion mod-
els. With respect to developmental research specifically, MRI
data provides the basis for determining rate and change of
differential regional brain maturation between individuals and
groups. Thus, this non-invasive, full-brain imaging approach of-
fers insights into the relation between the maturation of both
the brain’s functional and structural organisation and cogni-
tive development (Casey, Tottenham, Liston, & Durston, 2005;
Gilmore, Knickmeyer, & Gao, 2018; Kanai & Rees, 2011; Lebel
& Deoni, 2018). For instance, MRI techniques allowed to shed

light onto associations of GM growth and higher-order cog-
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nitive functioning (Breukelaar et al.,, 2017). Furthermore, the
importance of white matter development of tracts connecting
temporoparietal and inferior frontal regions for the emergence
of theory of mind (Grosse Wiesmann, Schreiber, Singer, Stein-
beis, & Friederici, 2017) and complex language abilities (Skeide,
Brauer, & Friederici, 2016) was revealed by diffusion-weighted

magnetic resonance imaging (dMRI).

5.1.1 Basic principles of magnetic resonance imaging measurements

As a component of water molecules, hydrogen is one of the most
abundant atoms in the human body. The nucleus of each hydro-
gen atom contains a single proton that spins around its axis,
producing a small magnetic field. MRI exploits this inherent
magnetic property of protons. During an MRI measurement, the
scanner exerts a strong, static external magnetic field B, on the
body. As a result, the hydrogen atoms align to this field, such
that the contained protons spin — or precess — around their axis,
creating longitudinal magnetisation (i. e.net magnetisation along
the direction of B,; Westbrook & Talbot, 2019). The angular fre-
quency of this precession movement is known as the Larmor
frequency wy. It grows in direct proportion to (a) the strength of
the B, field and (b) the gyromagnetic ratio -y, a constant specific
to a particular nucleus, relating its magnetic momentum to its

angular momentum (B. M. Dale, Brown, & Semelka, 2015):

wo = vBy. (5.1)
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In MR, the proton frequency distribution is additionally influ-
enced by secondary magnetic fields generated by gradient coils
that focally distort the primary B,. These coils are commonly ar-
ranged perpendicular to each other in three directions (i.e.x, y,
and z). Induced frequency changes vary depending of the po-
sition of a nucleus along the gradient directions, thus allowing
for spatial encoding of magnetic resonance recordings to pro-
duce sagittal, coronal and axial images, respectively (Lauterbur,
1973).

Radiofrequency (RF) coils in an MRI scanner transmit pulses
and receive signals during a measurement. Specifically, an in-
duced RF pulse generates a second magnetic field B; perpendic-
ular to the stationary B,, oscillating at the specific w, of the cur-
rent system. Consequently, the proton alignment is disturbed in
two ways: (a) a proportion of protons flip to a high-energy state,
thereby decreasing longitudinal magnetisation and (b) protons
become synchronised, precessing in phase. As a result, the net
magnetisation of the whole system is shifted perpendicularly to
the B, field, generating so-called transverse magnetisation. After
the RF pulse is switched off, the protons gradually resume their
original, de-phased state along the B, field (Westbrook & Talbot,
2019).

During this period, the net magnetisation in direction of B, in-
creases over time, resulting in so-called T;-relaxation (red curve
in Figure 5.1). Conversely, as the protons return to a more desyn-
chronised state, magnetisation into the transverse direction de-

creases, known as transverse or T,-relaxation (light blue curve in
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Figure 5.1: Schematic illustration of T;-, T,- and T -relaxation over
time. My,,¢ = longitudinal magnetisation (in the direction
of the By, field); My, = transversal magnetisation (perpen-
dicular to the B, field).

Figure 5.1). This dephasing of spins is additionally accelerated
by inhomogeneities of the primary magnetic field. Therefore, the
observed transverse relaxation essentially consists of a combina-
tion of T,-relaxation and said inhomogeneities, termed T+ (dark
blue curve in Figure 5.1; B. M. Dale et al., 2015).

Importantly, protons emit the energy absorbed from the RF
pulse during relaxation, creating a transient Nuclear Magnetic
Resonance (NMR) signal (Bloch, Hansen, & Packard, 1946; Pur-
cell, Torrey, & Pound, 1946) detectable as induced currents in
the RF coils of the MRI set up. Importantly, organic tissue such
as the brain is characterised by heterogeneous proton density
distributions due to the different composition of cells and vari-
able proportions of hydrogen atoms. These characteristic differ-
ences cause distinct relaxation rates for different tissue types. If
movement of water molecules is less restricted as e. g.in the cere-
brospinal fluid (CSF), their protons require more time to leave
the high-energy state, thus T,-relaxation proceeds at a slower

rate. Reversely, in regions with more restricted water movement,
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for instance due to the high-lipid protein myelin in white mat-
ter, T;-relaxation is quicker. For T, imaging, the reverse pattern
holds at a much quicker rate (Westbrook & Talbot, 20109).
Different MRI sequences capture these distinct relaxation
rates—and thus the contrast between different tissue structures
(see Figure 5.3)—by choice of appropriate imaging parameters.
Specifically, T; and T, imaging capture the longitudinal relax-
ation and transversal relaxation rates, respectively. These signal
values are converted into a temporary image space, so-called k-
space, storing a digitised version during data acquisition. After
applying a Fourier transform, the final MRI image in 3D dimen-
sional space is obtained with information of relaxation rate at a
specific x-, y- and z-position stored in a volumetric pixel, a voxel

(McRobbie, Moore, Graves, & Prince, 2017).

5.1.2 Parameters determining image contrast

The exact whole-brain MRI scanning routine depends on the spe-
cific sequence applied. Due to their specificity, each technique
employs different values for measurement parameters. For the
sake of this thesis, the effects of choosing different measurement
parameters are highlighted based on the example of a typical
gradient echo imaging sequence (Elster, 1993), as the basis of
the magnetisation-prepared 2 rapid acquisition gradient echo se-
quence (MP2RAGE; Marques et al., 2010) used to acquire the

structural images for the studies presented in Chapters 6 and 7.
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Figure 5.2: The basic gradient echo imaging sequence. RF = radiofre-
quency pulse; a = flip angle; GRE = gradient echo; TR =
repetition time; TE = echo time.

During gradient echo imaging, a series of RF pulses is ap-
plied at a certain flip angle « at equidistant time intervals. These
pulses excite a single slice of brain tissue (see Figure 5.2). The
time intervals between them are referred to as repetition time
(TR). The more time elapses between two pulses, the more pro-
tons within different types of tissue—even the more slowly relax-
ating CSF—fully regain longitudinal relaxation before the next
pulse. If all tissues are fully relaxated, they will emmit compa-
rable signals, and image contrast driven by longitudinal relax-
ation will be low. If, however, the TR is short, tissue that is more
strongly longitudinally relaxated releases stronger signals, while
tissue with lower levels of magnetisation into the direction of the
B, field emits weaker signals. Hence, this procedure makes the
characteristic longitudinal relaxation time differences between
tissues detectable (Westbrook & Talbot, 2019). In this way, the

T1-contrast of the image is modulated (see bottom left in Fig-

ure 5.3).
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Subsequent to each RF pulse, a pair of dephasing and rephas-
ing gradients is applied, producing the gradient echo signal that
is ultimately sampled during the scan. The time between the cen-
tre of the RF pulse and the readout of said signal is the echo time
(TE; McRobbie et al., 2017). By choosing an appropriate TE, the
T,+-contrast of the final image is modulated. If TE is low, spins—
independent of the type of tissue they reside in—are given little
time to go out of phase. Consequently, the emitted signal will not
be influenced by the specific differences in T «-relaxation times,
thereby having little T,--weighting. Only if a longer TE is cho-
sen, the distinct differences in transversal magnetisation decay
will have an effect on the final signal, obtaining a T,+-weighted
contrast (Westbrook & Talbot, 2019).

In summary, T, images are typically acquired with short TR
and TE, while long values for TR and TE are chosen for T+ imag-
ing (see Figure 5.3). Consequently, the choice of these parameters
critically determines the contrast of the resulting images, i. e. the
difference in terms of signal strength obtained from different tis-
sue types. Thus, depending on the image weighting, conclusions

about in vivo tissue characteristics can be drawn.

5.2 FUNCTIONAL MAGNETIC RESONANCE IMAGING

Beyond studying anatomy, MRI is able to capture functional
properties of the brain. A functional scan relies on the fact
that the magnetic properties of haemoglobin—the respiratory

protein of red blood cells—vary dependent on its state of oxy-
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Figure 5.3: Examples of MRI contrast weightings in relation to the
choice of repetition time (TR) and echo time (TE). Bottom
left: A T1-weighted image is obtained by choosing short
values for both TR and TE. Consequently, CSF appears
dark and WM appears light. Top right: To create T2- or
T2*-weighted images, long TR and TE values are necessary.
The CSF appears dark and WM appears light. Reprinted
from “Anatomical MRI for human brain morphometry”
(p.14), by A. van der Kouwe, B. Fischl, 2015. In A. W. Toga
(Ed.), Brain mapping: An encyclopedic reference, 2015, San
Diego, CA, USA: Academic Press: Elsevier. Copyright 2015
by Elsevier Inc. Reprinted with permission.

genation (Pauling & Coryell, 1936). When neurons become ac-
tive, their oxygen consumption increases together the volume
of deoxygenated blood. Due to its paramagnetic nature, deoxy-
genated haemoglobin induces inhomogeneities in the local mag-
netic field, enhancing the dephasing of proton spins and thereby
leading to more rapid T,:-relaxation. Subsequently, the blood
flow in the brain’s microvasculature increases to supply active
cells with new oxygen, diluting the concentration of deoxy-
haemoglobin. Thus, the abundance of diamagnetic, oxygenated

blood restores the homogeneity of the magnetic field again, con-
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sequently inducing an enhanced T, signal (Deichmann, 2016).
The characteristic trajectory of the initial small decrease and sub-
sequent increase in T, signal is captured using the so-called
blood oxygenation level dependent (BOLD) contrast.

The relationship between the BOLD responses and neural ac-
tivity have been investigated in animals and humans (Logothetis,
Pauls, Augath, Trinath, & Oeltermann, 2001; Mukamel, 2005).
For instance, in a seminal study, Logothetis et al. (2001) simulta-
neously performed fMRI while recording from electrodes in the
visual cortex of monkeys, demonstrating the correspondence be-
tween the BOLD response and the pooled local field activity.

During fMRI measurements, a sequence of images that quan-
tify the oxygenation patterns across time is obtained, reflecting
changes in neural activity within a given voxel. In task-related
fMRI, these signal changes are related to experimental manip-
ulations. The functional focus of this thesis, however, lies in
resting-state fMRI (rsfMRI), i. e.examining the brain’s functional
responses during rest. By relating spontaneous fluctuations of
fMRI time series of regions, measures of functional coherence
can be obtained. Consequently, this procedure allows for conclu-
sions about brain networks even in the absence of a task (see

Section 5.5).

5.3 EXAMINING GREY MATTER STRUCTURE

As discussed in Section 4.3, the cortical ribbon undergoes pro-

found macroanatomical changes during development. Early in-
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Figure 5.4: Preprocessing of structural MRI data for voxel- and surface-
based morphometry. Images preprocessed within the voxel-
based pipeline serve as basis for the surface-based recon-
structions. Both voxel- and surface-based analyses require
alignment to a template image or mesh, respectively. Final
smoothing enhanced statistical sensitivity and renders data
are more normally distributed. Adapted from “Surface and
shape analysis” by R. Dahnke and C. Gaser, in G. Spal-
letta, F. Piras and T. Gili (Eds.), Brain morphometry (p. 58),
2018, New York, U.S.A.: Humana Press. Copyright 2018 by
Springer Nature. Adapted with permission.

vestigations were restricted to laboursome post-mortem manual

measures to gain insights about dynamic cortical maturation

(Huttenlocher & Dabholkar, 1997). MRI extends the possibili-

ties with non-invasive, in vivo approaches such as voxel-based

(Ashburner & Friston, 2000) and surface-based morphometry

(Dahnke, Yotter, & Gaser, 2013; A. M. Dale, Fischl, & Sereno,

1999; Fischl, Sereno, & Dale, 1999), highlighted in the following

sections.

5.3.1 Voxel-based morphometry

Voxel-based morphometry (VBM; Ashburner & Friston, 2000;
Mechelli, Price, Friston, & Ashburner, 2005) is an approach to

quantify focal differences in GM structure from T;-weighted
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MRI data. Initial VBM preprocessing (see left side of Figure 5.4)
involves alignment of the anatomical data with a standard brain
template. In this way, macroscopic differences in size and struc-
ture of individual brains are compensated for. Consequently,
only local variances in GM will be identified by the ensuing sta-
tistical analysis.

Registration to standard adult templates yields admissible re-
sults for data drawn from adult populations. However, such an
alignment might introduce distortions in data derived from sam-
ples with more variable structural characteristics like children or
patients (Yoon, Fonov, Perusse, Evans, & Brain Development Co-
operative Group, 2009). Paediatric templates derived from equiv-
alent age groups (Fonov, Evans, McKinstry, Almli, & Collins,
2009) or from the sample under investigation (Reuter, Schman-
sky, Rosas, & Fischl, 2012) circumvent this issue, as they reflect
the region- and age-specific variations of the respective study
group (see Chapter 4).

Next, images are segmented into different tissue classes (Ash-
burner & Friston, 2005). The segmentation algorithm applied in
the empirical studies presented in Chapters 6 and 7 of this thesis
relies on prior information provided as tissue probability maps
(Ashburner & Friston, 1997). As with the initial image registra-
tion step, the use of age-appropriate priors is vital to ensure
proper brain extraction.

In the final preprocessing step, spatially normalised and seg-
mented GM images are smoothed using a volume-based kernel.

As a result, the impact of local registration errors is attenuated
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and statistical sensitivity is enhanced. Furthermore, smoothed
data are more normally distributed which is an essential prereq-
uisite for statistical analysis (Lerch & Evans, 2005; Mechelli et al.,
2005; S. M. Smith et al., 2006).

The VBM procedure as explained above generates maps of
GM volume. It has been prominantly used to investigate GM
structure in the context of developmental learning disorders
such as DD (Richlan et al., 2013; Silani et al., 2005) and devel-
opmental dyscalculia (Rotzer et al., 2008), learning induced plas-
ticity (Draganski et al., 2004; Draganski et al., 2006), and ageing
(Hoffstaedter et al., 2015; Tisserand et al., 2004). However, dis-
entangling the biological underpinnings driving changes in the
measure of cortical volume is not trivial. For instance, GM vol-
ume quantified by VBM might not detect subtle changes differ-
entially driven by CT and folding (Mechelli et al., 2005).

5.3.2  Surface-based morphometry

Surface-based techniques extend the possibilities of image analy-
sis provided by VBM, enabling a detailed study of macroanatom-
ical morphometric measures. For instance, surface-based mor-
phometry (SBM) allows to examine CT and folding. Prominent
software tools performing automatic surface reconstruction are
the FreeSurfer image analysis suite (Fischl, 2012; FreeSurfer,
2014) and the Computational Anatomy Toolbox (CAT12; Gaser
& Dahnke, 2017) for SPM12 (Friston, Ashburner, Kiebel, Nichols,

& Penny, 2007).
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Surface-based processing relies on initial, voxel-based prepro-
cessing steps including segmentation and registration to a tem-
plate (Dahnke & Gaser, 2018, see Section 5.3.1 and middle por-
tion of Figure 5.4). Subsequently, surface reconstructions are gen-
erated from the volumetric MRI data as surface meshes, tessel-
lated into triangular faces that connect individual cortical points
designated by vertices (see Figure 5.4; Dahnke & Gaser, 2018;
Fischl, 2012). Since the interface between GM and WM is of-
ten sharper than the borderline between GM and CSF, most ap-
proaches initially reconstruct the surface of the WM. This initial
estimation is subsequently grown out in a bottom-up fashion,
optimised and deformed to reconstruct the outer, pial surface
of the brain (A. M. Dale et al., 1999; Kim et al., 2005; Tosun et
al., 2004). To ensure comparability, individual surface meshes
are spatially registered to a template mesh, commonly a sphere.
Thus, when aligned, the individual data match in a vertex-by-
vertex fashion.

Lastly, surface-based smoothing yields advantages compara-
ble to those of the volume-based smoothing during VBM, such
as enhancing statistical sensitivity and rendering data are more

normally distributed (Lerch & Evans, 2005).

5.3.2.1 Cortical thickness

The thickness of the cortical ribbon is estimated as the distance
between the segmented white matter and the pial surface. The
method employed in the current thesis uses an automated pro-

cedure that combines surface and thickness estimation in one
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step (Dahnke et al., 2013), concomitantly diminishing area dis-
tortion and topological defects (Yotter, Dahnke, Thompson, &
Gaser, 2011; Yotter, Thompson, & Gaser, 2011).

As described in Chapter 4.3, there is a systematic change of
CT in different areas during development (Ducharme et al., 2016;
Lyall et al., 2015; Shaw et al., 2008). Due to the inconsistent rela-
tionship between neuron count and CT (la Fougere et al., 2011;
Skoglund et al., 1996) thickness variations assessed via MRI has
been related to microanatomical processes like neuro-, glio- and
synaptogenesis as well as synaptic pruning (Zatorre, Fields, &
Johansen-Berg, 2012). Furthermore, decreases of CT during de-
velopment may be a marker of progressive myelination of deep

cortical layers (Natu et al., 2018).

5.3.2.2  Gyrification index and cortical folding complexity

Cortical gyrification is one of the most distinctive macroanatom-
ical features of the brain. In the current thesis, its degree and de-
velopmental change were assessed using two separate measures,
i. e.the gyrification index (GI) assessing local and cortical folding
complexity (CF) assessing global gyrification, respectively.

The GI is defined as the absolute mean curvature along the
highly convolved brain surface (Liiders et al., 2006). For this, a
vector pointing outwards perpendicularly to the surface is de-
fined for each vertex along the mesh. Subsequently, the abso-
lute mean change of these vectors within the neighbourhood of

a specified vertex is computed. Thus, the GI increases with in-
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creasing magnitude and frequency of folding, quantifying local
gyrification.

CF is defined as the so-called fractal dimension of the in-
dividual points along the surface mesh. Theoretically, perfect
fractal structures consist of an infinite number of self-similar
shapes at different scales. Analysis of the fractal dimension in
neuroimaging exploits the fact that the brain’s surface structure
exhibits some self-similarity, e. g.in terms of gyral profiles (Hof-
man, 2012). The method employed in this thesis to estimate the
fractal dimension—and thus, the cortical folding complexity—
uses a set of spherical harmonics basis functions to reconstruct
the surface mesh representing cortex (Yotter, Nenadic, Ziegler,
Thompson, & Gaser, 2011). From these functions, the number of
self-similar shapes N(I) can be derived and subsequently related

to their smallest width /, yielding:

_ log(N(1))
CF = W. (5.2)

From this definition it follows that CF decreases with the num-
ber of self-similar shapes of decreasingly narrow widths. In this
way, small CF values indicate more regular structural patterns.
Thus, in terms of gyrification, CF quantifies how regular cortex
is folded, providing insights into the more global cortical geom-
etry.

As highlighted in Section 4.3, cortical gyrification is charac-
terised by dynamic changes especially during early brain de-

velopment. An increasing degree of cortical folding implies an
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increased surface area and thus increased GM volume, even if
the level of CT remains constant morphological variations might
be caused by diverging trajectories of neuronal growth or CT
(Budday et al., 2014). In a longitudinal study tracing age-specific
changes throughout childhood from six to 16 years, Blanton et
al. (2001) linked the observed developmental trajectories to pro-
cesses like ongoing myelination and synaptic remodeling. Im-
portantly, systematic variations in the degree of cortical folding
have been associated with cognitive functioning (Im, Raschle,

Smith, Ellen Grant, & Gaab, 2016; Liiders et al., 2008).

5.3.2.3 Sulcus depth

Beyond frequency and regularity of foldings, another cortical
surface feature is the sulcus depth (SD). This measure quantifies
the inward Euclidean distance between the external brain sur-
face and the banks of the sulcal grooves (Jones, Buchbinder, &
Aharon, 2000).

Due to the highly convolved structure of the cortex, a certain
proportion of the brain’s surface is buried within the sulci (Arm-
strong et al., 1995). Importantly, regions with deeper sulci have
a larger cortical surface area and thus increased GM volume in-

dependent of CT.
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5.4 EXAMINING WHITE MATTER STRUCTURE

Next to the analysis of GM properties, MRI provides functional-
ity to examine maturation and structure of the brain’s WM. Spe-

cific MRI sequences allow for the generation of so-called dMRI.

5.4.1 Diffusion—weighted magnetic resonance imaging

The physical basis of diffusion-weighted magnetic resonance
imaging rests upon the idea of deriving WM information from
the proportion and directionality of water diffusion occurring
within. If located in an unrestricted liquid medium, water
molecules move freely and randomly, termed Brownian mo-
tion. In biological tissue, however, the surrounding cell struc-
tures interfere with this random motion (Le Bihan et al., 2001).
Specifically, certain tissue components like the neuronal cy-
toskeleton restrict diffusion into a specific direction. Thus, undi-
rected isotropic molecular movement is disturbed and becomes
anisotropic. In the brain, for instance, diffusion is more likely to
occur along white matter tracts than perpendicular to them. The
strength and directionality of this resulting anisotropy allows for
conclusions about the underlying anatomical structures (Mori &
Tournier, 2014).

Diffusion-weighted data is obtained by applying additional
diffusion-encoding gradients during an MRI scan. As explained
in Section 5.1.1, all protons resonate with the same frequency

in the homogenous B, field. Applying an in-homogenous,
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diffusion-encoding gradient on top of the B, de-phases the pro-
tons. After the gradient is switched off again, the protons res-
onate at different frequencies depending on their position. To
obtain information about diffusion, a second gradient field with
the reversed polarity relative to the first one is applied. Due to
the reversed polarity, this field restores the phase of the protons.
Importantly, a complete re-phasing can only occur if no molec-
ular motion occurs between the application of the diffusion-
encoding gradients. Protons that moved due to diffusion will
not be in phase with the other protons after use of the second
gradient. Hence, the signal will be lower compared to the signal
obtained before gradient application. Consequently, the extent of
signal loss contains information about the amount of diffusion
occurring, which in turn indicates the structure of the tissue un-
derneath (Mori & Tournier, 2014).

The signal loss measured due to proton movement can be
formulated with the following equation defined by Stejskal and

Tanner (1965):

% — e_bD(g)
bo

(53)

In Equation 5.3, g denotes the direction of the gradient, Sg
represents the strength of the signal, b, is an MRI-signal with
minimal diffusion weighting and the factor b is a constant deter-
mined by the parameters of the measurement. Importantly, D(g)
denotes the diffusion coefficient in the direction of the gradient

g which is to be determined from the other known parameters

and empirical data Sg.
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5.4.1.1 The diffusion tensor

The amount and directionality of water motion as measured via
dMRI is commonly visualised as geometrical shapes. Isotropic
diffusion—i. e. random movement into any direction—is repre-
sented as a sphere (left side in Figure 5.5). As it uniformly ex-
tends into all directions, the radius of this sphere is sufficient
to describe the directionality of diffusion. Therefore, in case of
isotropic proton movement, the coefficient D(g) alone indicates
the strength of diffusion.

In contrast to this scalar value for the isotropic case, six values
are required to describe an ellipsoid used to visualise anisotropic
diffusion: the orientation of the three principle axes together
with their lengths (right side in Figure 5.5). In order obtain these
six values, a so-called diffusion tensor D is needed. This ten-
sor is visualised as a 3 x 3 symmetrical matrix. As a minimal
requirement, at least six diffusion-weighted volumes and one
image without diffusion-weighting (i. e.the by image) have to be
recorded to obtain the six unknown values for this tensor.

Computing the three eigenvalues A1, A; and A3 and the three
eigenvectors vy, vp and v3 of the tensor matrix yields the missing
parameters for the diffusion ellipsoid: the eigenvalues describe
the lengths of the longest, middle and shortest perpendicular
axes, while the eigenvectors describe their respective orientation.
The eigenvalues serve as the basis to derive diffusion indices like

fractional anisotropy (FA) and mean diffusivity (MD).
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Figure 5.5: Geometrical visualisation of different diffusion properties.

Left: isotropic diffusion represented by a sphere with A =
Ay = Az. Right: anisotropic diffusion, represented by an
ellipsoid with A1 > Ay > As.

FRACTIONAL ANISOTROPY. Differences between the three

tensor eigenvalues Aj, Ay and A3 determine the FA (Mori &

Tournier, 2014):

A :\f VAL =27+ (A — A3)2 + (A3 — M1)? 5.0
2 VA2 4 A2 + 252

Thus, FA indicates the extent of anisotropy. For isotropic diffu-
sion with A; = Ay = A3, the FA is o. Higher FA values approach-
ing one indicate a more elongated shape of the diffusion ellip-

soid caused by more anisotropic proton movement.
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MEAN DIFFUSIVITY. MD is defined as the mean of the three

eigenvalues A1, Ay and A3 (Mori & Tournier, 2014):

Mt A+ A

MD 3 (5:5)

As follows, MD indicates the average amount of diffusion.

Strong isotropic and strong anisotropic diffusion result in high

MD.

Axonal diameter, fibre density and the degree of myelination
all impact the directionality of diffusion and thus FA and MD
(Mori & Tournier, 2014). Consequently, variations of tensor de-
rived measures have been taken to indicate anatomical variabil-
ity that is in turn associated with more efficient information pro-

cessing in the brain (Kanai & Rees, 2011).

5.4.1.2  Probabilistic tractography and streamline density

Beyond measuring diffusion anisotropy within individual
voxels, tractography techniques—most notably probabilistic
tractography—provide functionality to re-construct white mat-
ter fibre pathways. Maps generated in this way are assumed to
reflect whole collections of axons that establish structural con-
nectivity between two regions (Mori & Tournier, 2014).
Tractography is based on the computation of a local diffu-
sion model quantifying the principle fibre directions. Proba-
bilistic models specifically estimate distributions of likely fibre

directions within each voxel given the empirical data. In this
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way, tracking based on so-called multi-fibre models is addition-
ally sensitive to non-dominant fibre directions and can disen-
tangle complex white matter configurations such as crossing fi-
bres (Behrens, Johansen-Berg, Jbabdi, Rushworth, & Woolrich,
2007; Behrens et al., 2003). The ball-and-stick model used in the
current empirical studies is an example of such a multi-fibre
model, deriving several anisotropic ‘sticks” that each represent
a distinct fibre orientation. During tracking, so-called stream-
lines are constructed by successively sampling from these dis-
tributions in a stepwise fashion. This process is started within
specified seed voxels and terminates when particular target vox-
els are reached. Importantly, streamlines that meet certain ex-
clusion criteria (e.g.biologically unfeasible curvature) are dis-
carded from the final tractogram. As a result, volumetric maps
signifying the number of streamlines that were fit through each
voxel during tracking are generated, reflecting the connection
probability. Thus, analysis of streamline density maps provides
more comprehensive information about tract shape, and has
been shown to reflect connectivity more reliably than anisotropy
measures in terms of test-retest performance (Buchanan, Pernet,

Gorgolewski, Storkey, & Bastin, 2014).

5.5 EXAMINING FUNCTIONAL COHERENCE OF NEU-

RAL SYSTEMS

As explained in Section 5.2, MRI can be used to detect changes in

blood oxygenation across different brain areas. Importantly, the
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brain exhibits systematic regional covariations even in absence
of specific tasks, and this intrinsic activity shows patterns of re-
markable temporal consistency across regions (Raichle, 2011).
In their seminal study, Biswal, Zerrin Yetkin, Haughton, and
Hyde (1995) reported systematic correlations between the low
frequency domain of signals measured in areas associated with
motor function at rest. Biswal et al. suggested these patterns to
reflect the functional connectivity of the brain.

In the light of the current thesis investigating children as
young as five years of age, rsfMRI offers several benefits. Its ad-
vantages include that no effortful task is needed for the partici-
pants to perform in the scanner. Furthermore, a single functional
scan is sufficient to examine a range of different brain networks.

Approaches for analysing the brain’s functional networks
based on rsfMRI data include functional connectivity and coher-
ence measures like regional homogeneity (ReHo) and fractional

amplitude of low frequency fluctuations (fALFF).

5.5.1 Resting state functional connectivity

Resting state functional connectivity analyses provide the means
to quantify the degree of synchronisation of spontaneous low-
frequency fluctuations from rsfMRI data. Preprocessing includes
motion correction and, optionally, techniques including the re-
gression of average signals derived from the whole brain or in-
dividual tissue types out of each grey matter voxel’s time series

(Murphy & Fox, 2017; Muschelli et al., 2014). After low-pass fil-
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tering and smoothing, individual timecourses are correlated to
compute the functional connectivity. This correlation may be car-
ried out either in a voxel by voxel fashion, or—in terms of seed-
based functional connectivity—based on mean timecourses of a
priori defined ROIs. Positive correlations reflect functional cou-
pling, while negative correlations have been suggested to dif-
ferentiate contrasting neural processes or representations (see
Figure 5.6; Fox, Snyder, Vincent, Corbetta, & Raichle, 2005).
Functional connectivity has been shown to covary with in-
dividual differences in behaviour across domains as variable
as intelligence (Song et al., 2008), working memory (Hamp-
son, Driesen, Roth, Gore, & Constable, 2010; Hampson, Driesen,
Skudlarski, Gore, & Constable, 2006), and reading (M. Zhang
et al.,, 2014). Additionally, Evans et al. (2015) demonstrated that
rsfMRI functional connectivity between regions predicts long-

term numerical abilities of children.

5.5.2 Regional homogeneity

ReHo represents a local functional measure that quantifies the
coherence of timeseries within a confined neighbourhood of vox-
els (Zang, Jiang, Lu, He, & Tian, 2004). Specifically, it is defined
as Kendall’s coefficient concordance (Siegel, 1956) of a given

voxel with the voxels within its immediate vicinity:

n —
,ZO(Ri)Z —n(R)?

ReHo = =
11—2K2(n3 —n)

(5-6)
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BOLD signal

Time
—RegionA  —Region B

Figure 5.6: Schematic illustration of different synchronisation levels of
spontaneous low-frequency fluctuations for two exemplary
regions, based on simulated data. Top: Timecourses exhibit-
ing a strong positive functional correlation, i.e. positive
functional connectivity (r=0.65). Middle: Timecourses show-
ing no correlation (r=-0.01). Bottom: Timecourses exhibiting
a strong negative functional correlation, i. e.negative func-

tional connectivity (r=-0.66).
where the sum rank for timepoint i is denoted by R;; the aver-
age R; for the number of ranks 7 is denoted by R and K denotes
the size of the neighbourhood around the given voxel under con-
sideration. The number of ranks # is typically defined to be 78.
ReHo may range from zero to one, with higher values indicat-
ing that the timeseries of the examined neighbourhood of voxels
is temporally more homogeneous. Advantages of this measure
include its robustness against outliers and temporospatial noise,

as well as its high test-retest reliability (Zuo et al., 2013).

This local similarity measure has been used to shed light onto

the functional organisation of the prefrontal cortex and the ven-
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tral visual stream (Jiang et al., 2015), predict individual perfor-
mance in executive functioning (Tian, Ren, & Zang, 2012) and
distinguish typical from clinical samples suffering from neurode-

velopmental disorders (Cao et al., 2006; Paakki et al., 2010).

5.5.3 Fractional amplitude of low frequency fluctuations

A further measure to examine the brain’s intrinsic functional ar-
chitecture is the fALFF. To obtain the fALFF for a given voxel,
the frequency spectrum of the pre-processed data is determined
first. Subsequently, the sum of amplitude across the whole fre-
quency spectrum (i. e.0-0.25 Hz) along with the amplitude over
the low frequency range (i. e.0.01-0.08 Hz) are computed. fALFF
corresponds to the ratio of the low-frequency amplitude to the
amplitude to the whole range (Zou et al., 2008). Thus, this mea-
sure represents the relative contribution of the low frequency
oscillations to the entire frequency range. Importantly, it is rel-
atively insensitive to physiological noise, especially near blood
vessels, cisterns and ventricles (Zuo et al., 2010).

Over the last decade, fALFF has been used increasingly to
identify alterations in the functional architecture of clinical pop-
ulations (Egorova, Veldsman, Cumming, & Brodtmann, 2017;
Fryer et al., 2015; Hoptman et al., 2010). In healthy participants,
fALFF helped to identify functional plasticity in ageing popula-
tions following cognitive training (Yin et al., 2014). Developmen-

tally, it has been shown to vary across multiple brain regions in
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children with low mathematical performance (Jolles, Supekar, et

al., 2016).

56 STATISTICAL ANALYSIS

Given the various measures of brain structure and function de-
scribed above, mainly two alternative approaches of statistical
inference can be followed: whole-brain voxel-wise or ROI analy-
ses, respectively.

To identify group-specific or behaviourally relevant varia-
tions on a whole-brain level, the respective maps of structural
and functional measures are derived as explained above. Subse-
quently, fitting general linear models allows for a statistical anal-
ysis that takes pertinent covariates into account (Friston et al.,
2007). Employing this kind of model, so-called statistical para-
metric maps are produced. These highlight areas of significant
differences between groups or regions that correlate with perfor-
mance after an appropriate correction for multiple comparisons
has been performed (Mechelli et al., 2005).

As a more hypothesis driven approach, a ROI analysis of-
fers an alternative to this voxel-wise examination of MRI data.
Here, the search space for possible group differences or correla-
tions with behaviour is focused on regions defined beforehand

anatomically, functionally, or based on the available literature.



CHAPTERG6

EMPIRICAL STUDY I: UNRAVELING POTENTIAL
CAUSES FROM CONSEQUENCES OF
DEVELOPMENTAL DYSLEXIA

Empirical study I examines the neurobiological origins of devel-
opmental dyslexia (DD). To this end, it rests upon a longitudi-
nal dataset of children that underwent psychometric testing and
multimodal MRI before and after literacy instruction in school

(i.e. at 5-6 years in kindergarten and 7-8 years in second grade).

6.1 INTRODUCTION

As explained in Section 2.1.2.1, DD is a heterogeneous condi-
tion: affected individuals show different cognitive deficits (Ste-
fan Heim et al., 2008) and various theories of its neurobiological
origin exist. However, formulated claims are primarily based on
data of adult or school-aged participants. Therefore, they have to
be regarded with caution, as observed differences between cases
and controls might in fact be driven by a disparate amount and
quality of literacy experience (see Section 2.1.2.2).

To date, only limited evidence of predisposing neurobiolog-

ical factors distinguishing children with and without DD be-
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fore literacy training is available. Longitudinal EEG studies sug-
gest that future dyslexics show reduced electrophysiological re-
sponses to speech already 2-5 months after birth (Schaadt et
al., 2015; van Zuijen, Plakas, Maassen, Maurits, & van der Leij,
2013). For instance, van Zuijen et al. demonstrated that the au-
ditory system of infants who become non-fluent readers fails to
discriminate between syllables with variable consonant onsets
such as /bAk/ vs. /dAk/.

Moreover, evidence provided from a neuroimaging perspec-
tive suggests early anomalies with respect to structure and func-
tion of regions that will later become part of the dorsal read-
ing network. Specifically, cortical thickness in left temporal and
parietal cortices was shown to be reduced in future dyslexic chil-
dren (Clark et al., 2014; Kraft et al., 2015), together with reduced
myelination of the arcuate fasciculus, the white matter pathway
connecting these areas with premotor and inferior frontal re-
gions (Kraft et al., 2016).

Accordingly, the sparse data currently available indicated
atypical functioning and maturation of an extended brain sys-
tem supporting phonological processing. However, direct and
consistent integration of these disjointed findings into a frame-
work explaining the aetiology of DD is constrained by dispar-
ity of samples and methods in previous work. What is more,
comprehensive research needs to also investigate the potential
predisposing relevance of competing theories highlighting other

sensory or cognitive domains (see Section 2.1.2.1).



6.2 METHODS

The present study aims to systematically test whether existing
neurobiological theories of DD reflect potential developmental
causes rather than consequence. To this end, resting-state fMRI,
T;- and diffusion-weighted imaging data were acquired before
and after literacy instruction in school. Combining these mul-
timodal measures, we scrutinised the contribution of complex
cortical and subcortical networks that were previously linked to
the aetiology of DD (see Table 6.1). Importantly, we controlled
statistical models for sociodemographic factors (maternal edu-
cation), domain-general cognitive capacities (non-verbal IQ, at-
tention) and comorbid learning disorders to reveal anomalies

specific to the emergence of DD (see Sections 2.3 and 2.4).

6.2 METHODS

6.2.1 Participants

82 native German-speaking children were recruited from the
Leipzig metropolitan area. The main target group of the recruit-
ment procedure were individuals with at least one first-degree
relative with DD in order to maximise the number of cases in
the final sample. Accordingly, 37 of the 82 children had a famil-
ial risk of developing dyslexia. Written informed consent and
verbal informed assent to participate were obtained from all par-
ents and children, respectively. The study was approved by the
Ethics Committee of the University of Leipzig, Germany, and

followed American Psychological Association (APA) standards
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Table 6.1: Cortical and subcortical networks that were previously
linked to the aetiology of developmental dyslexia.

Assumed core deficit Target regions Target tracts
Phonological deficit A1 (Lehongre et al., 2011) A1 —PT
PT (Lehongre et al., 2011) PT —BA6

BA6 (Dufor, Serniclaes, Sprenger- PT —BA44
Charolles, & Démonet, 2009)

BA44 (Kraft et al., 2016)

Sensory processing deficits

visual system LGN (Livingstone et al., 1991) LGN —V1
V1 (Livingstone et al., 1991) LGN —MT
MT (Eden et al., 1996) V1 —=VTOC
auditory system  IC (Hornickel & Kraus, 2013) IC —-MGB
MGB (Galaburda et al., 1994) MGB —A1
A1 (Clark et al., 2014; Lehongre et
al., 2011)
orthographic sys- VTOC (Salmelin, Service, Kiesild, VTOC —PT
tem Uutela, & Salonen, 1996)
VTOC
—BA45/47
Cerebellar deficit cerebellum (Nicolson et al., 1999)

A1 = primary auditory cortex; PT = planum temporale; BA = Brodmann area; LGN
= lateral geniculate nucleus; V1 = primary visual cortex; MT = middle temporal
visual area; VTOC = ventral occipitotemporal cortex; IC = inferior colliculus; MGB =
medial geniculate nucleus

in accordance with the declaration of Helsinki (World Medical
Association, 2013).

Of the 82 initially recruited children, 39 individuals were ex-
cluded from further analyses because they (i) received a diag-
nosis of attention deficit hyperactivity disorder (n = 4, deter-
mined based on parental questionnaire), (ii) did not have com-
plete structural MRI datasets (i.e., did not comply with the ex-
perimental procedures in a training session, exhibited excessive
movement during the MRI scan or were unable to attend follow-
up sessions, 1 = 24), (iii) did not finish all psychometric tests (n =

7) or (iv) performed below the 16th percentile in a standardised
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math test (to exclude cases of developmental dyscalculia, n = 4).
One additional participant had to be excluded due to an experi-
mental error during psychometric testing. In the remaining sam-
ple of 42 children, dyslexia was diagnosed based on standard-
ised and age-normed reading and spelling tests. Performance be-
low the 16th percentile rank of the population performance in at
least one of the tests led to assignment to the dyslexic group. Cor-
respondingly, individuals performing above the 25th percentile
rank were assigned to the control group if they had neither first-
nor second-degree relatives with developmental dyslexia. Ap-
plying these criteria, 16 children were classified as dyslexic and
16 children were classified as typically developing controls (Ta-
ble 6.2). None of the participants in the final sample scored be-
low 85 on average in the two non-verbal IQ tests. Note that addi-
tionally, two controls had to be excluded from rsfMRI analysis of
kindergarten data, and two dyslexic cases were excluded from
the functional data analysis of school-age data due to excessive

head motion during the respective scans.

6.2.2  Behavioral cognitive assessment and sociodemographic status

All children underwent psychometric assessment at the two time
points, that is, before they acquired literacy skills (age 5-6 in
kindergarten) and again after first literacy instruction at the end
of second grade (age 8-9; mean time between measurements: 2
years, 11 months; range of time between measurements: 2 years,
2 months — 3 years, 8 months). At kindergarten age, the follow-

ing measures were derived:
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Table 6.2: Overview of demographic information and psychometric performance of participants.

Before literacy instruction

After literacy instruction

Dyslexia Control statistic P value Dyslexia Control statistic P value

Demographic information
N 16 16 . 16 16
Age? 5,8+4 5,6+4 U=169 0.1239° 8;8+3 8,413 t(29)=-3.35  0.0022¢
Sex (male / female) 11/5 9/7 odd’s 0.71604

ratio=1.68

Maternal education® 3.94£0.98 4.63£1.15 U=84 0.0893P
Handedness (laterality quotient)® 79.06+15.22  65.384+39.63 U=148.5 0.4344°
Familial risk statusf 10/16 0/16

Psychometric assessment
Non-verbal IQ¢ 99+12 109+12 t(29)=2.39  0.0236° 107£13 114+£13 t(29)=1.66 0.1081°¢
Phonological short-term 9+1.93 10.25+1.77  U=179.5 0.0473°
memory*®
Phonological awareness® 32.16+4.72  35.38+3.59  t(29)=2.19  0.0368° 21.88+£17.84 62.63%£20.78 U=236 <0.0001"
Rapid automatised naming® 6.06£2.02 6.81£1.05 U=162 0.1790°
Spelling accuracy® 15.19+15.52  55.94+22.83 U=240 <0.0001P
Reading speed® 16.16+24.60 68.47+22.56 U=238 <0.0001"
Mathematical ability® 43.631+26.06 86.69+t11.29 U=230 0.0001°

2 years; months, age at MRI-scan, mean =+ standard deviation in months
PWilcoxon-Mann-Whitney U test (data not normally distributed)
“Welch two sample t-test (data normally distributed)

dFisher’s exact test
¢ mean =+ standard deviation
ffamilial risk of DD / no familial risk of DD
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HANDEDNESS.  Using an adapted version of the Edinburgh
Handedness Inventory (Oldfield, 1971), we assessed children’s
handedness in terms of their laterality quotient (LQ), with scores
ranging from -100 (left handed) to 100 (right handed). Left-
handedness is defined as an LQ < -28, individuals with an LQ
> 48 are considered to be right-handed, and ambidexterity is

defined as values greater -28 and smaller than 48.

NON-VERBAL INTELLIGENCE. Pre-school non-verbal intel-
ligence was quantified using the performance IQ subscale of the
Wechsler preschool and primary scale of intelligence (WPPSI-IIL;
Wechsler, Petermann, & Lipsius, 2009). The average normed 1Q

score is 100 with a standard deviation of & 15.

PHONOLOGICAL SHORT-TERM MEMORY. Using the digit
span subtest of the Kaufmann Assessment Battery for Children
(K-ABC III; Kaufman, Kaufman, Melchers, & Preuf3, 2009), we
assessed children’s preschool phonological short-term memory.
In this test, number sequences of ascending length have to be
recalled. The sequence span increases every three items from
two to maximally nine until all three items of a length are re-
produced incorrectly. Children receive a point for each correctly

recalled number sequence.

PHONOLOGICAL AWARENESS (PA). A composite measure
from rhyming, sound association, syllable segmentation, and

sound-to-word matching tasks from the Bielefeld screening of
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literacy precursor abilities (BISC; Jansen, Mannhaupt, Marx, &
Skowronek, 1999) were computed as a measure of phonological
awareness (PA). The final score corresponds to the combined
number of correct responses in all subtests, with a maximal

value of 40 (10 per task).

RAPID AUTOMATISED NAMING (RAN). To test for chil-
dren’s ability to retrieve phonological representations, we used
the rapid automatised naming (RAN) subtest of the BISC (Jansen
et al., 1999). This task required children to rapidly name colours
of 24 visually presented black and white objects while the time
needed for completion was recorded. Raw values are converted

into scores ranging from zero to eight.

MATERNAL EDUCATION. As a measure of sociodemo-
graphic status, mothers were asked to fill out a self-constructed
questionnaire assessing their highest school degree (4-point
scale: no degree — o points; German “Abitur’ [high school diplo-
ma/A level] — 3 points) and vocational qualification (5-point
scale: no qualification — o points; German ‘Habilitation” [post-
doctoral academic qualification] — 4 points). Overall maternal

education score corresponds to sum of both subscales.

Testing at the end of second grade included the following

measures:



6.2 METHODS

NON-VERBAL INTELLIGENCE.  Using the perceptual reason-
ing 1IQ subscale of the Wechsler intelligence scale for children
(WISC-IV; Petermann & Petermann, 2011), we assessed individ-
ual non-verbal intelligence at the end of second grade. The av-

erage normed IQ score is 100 with a standard deviation of £+

15.

PHONOLOGICAL AWARENESS.  The average standardised
percentile ranks from pseudoword segmentation, vowel-
replacement, word completion, phoneme exchange, sound cat-
egorization, vowel length judgment, and word reversal subtests
of the Basic competences for reading and writing abilities test
(BAKO; Stock, Marx, & Schneider, 2003) were used to assess chil-

dren’s PA at school age.

SPELLING ACCURACY.  Children were asked to write af-
ter dictation as part of an age-normed, standardised German
spelling test (DERET1-2; Stock & Schneider, 2008). Percentile

ranks based on the respective spelling accuracy were measured.

READING SPEED.  To assess reading speed, the correspond-
ing percentile rank based on number of words a child correctly
read within 1 minute as part of the Salzburg test of reading
and spelling, second edition (SLRT-II; Moll & Landerl, 2010) was

used.
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MATHEMATICAL ABILITY.  Mathematical competence at the
end of second grade in school was quantified using the Hei-
delberg computation test (HRT; Haffner, Baro, Parzer, & Resch,
2005) that comprises two subscales. The first quantifies early
arithmetic abilities with subtests requiring basic addition and
subtraction, solving simple equations and greater-or-smaller-
than comparisons. The second subscale assesses visuospatial
skills, providing a composite score of tasks that require children
to estimate the length of line-drawings and the number of ele-
ments needed to build given block figures, to count shapes in
a visual array, to connect spatially scrambled numerals in as-
cending order and to extract the logical rule determining the
sequence of a particular row of numbers. General mathematical

ability was defined as the composite score of both subscales.

6.2.3 Magnetic resonance imaging data acquisition

At kindergarten age, a training session using a mock scanner
was conducted first to familiarise children with the MRI pro-
cedure and maximise compliance. In a next session, scanning
was performed on a 3 T Siemens TIM Trio magnetic resonance
scanner (Siemens AG, Erlangen, Germany) with a 12 channel

radio-frequency head coil.

T,-WEIGHTED IMAGING. To obtain reliable T; maps, a
magnetization-prepared 2 rapid acquisition gradient echo se-

quence (MP2RAGE, Marques et al., 2010) was acquired with the
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following parameters: repetition time of the total sequence cycle
(TR) = 5000ms; first inversion time (TI;) = 7ooms; flipangle a; =
4°; second inversion time (TL,) = 2500ms; flipangle ay = 5°; echo
time (TE) = 2.82ms; field of view (FOV) = 250 X 219 X 188mm;
voxel size = 1.3mm?; generalised auto-calibrating partially paral-

lel acquisitions (GRAPPA) factor = 3.

DIFFUSION-WEIGHTED IMAGING.  Diffusion-weighted data
were acquired using the echo planer imaging (EPI) method (pa-
rameters: TE = 83 ms; TR = 8000 ms; voxel size = 1.86mm x
1.86mm x 1.90mm3; FOV = 186 x 186 x 126). Overall, two sets
of diffusion-weighted measurements were obtained. The first
set was acquired along the anterior-to-posterior phase-encoding
direction with 6o diffusion-encoding gradient directions and a
b-value of 1000 s/mm?. Additionally, seven volumes without
diffusion-weighting were obtained, one at the beginning and the
remaining interleaved after each block of 10 diffusion-weighted
images. The second set of diffusion measurements was acquired
along the reverse, posterior-to-anterior phase-encoding direc-
tion, consisting of one volume without and one with diffusion-
weighting (b-value = 1000 s/ mm?). Both sets are used to correct
for artifacts such deformations induced by magnetic field inho-

mogeneities later in the analysis.

RESTING-STATE FMRI.  Resting-state fMRI data was ac-
quired on the same system using a T, gradient-echo echo-

planar imaging (EPI) sequence with the following parameters:
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TR = 2000 ms; TE = 30 ms; flip angle & = 9o°; FOV = 192 X 192

3: 100

X 111 mm; 28 slices; resolution: 3.00 X 3.00 X 3.99 mm

volumes.

A second MRI session was performed when children were at
the end of second grade on the same scanner upgraded to a 3T

Prisma system, using a 64 channel head coil.

T,-WEIGHTED IMAGING. T, maps were acquired using an
MP2RAGE sequence with parameters TR = 5000oms; TI; = 7ooms;
flipangle a1 = 4°; Tl = 2500ms; flipangle ay = 5°; TE = 2.01ms;
FOV = 256 x 240 x 176mm; voxel size = 1.omm3; GRAPPA

factor = 2).

DIFFUSION-WEIGHTED IMAGING.  Comparable to the mea-
surement at kindergarten age, two sets of diffusion-weighted
imaging data were acquired using the EPI method (parameters:
TE = 73 ms; TR = 4700 s; voxel size = 1.72 X 1.72 X 1.70 mm;
FOV = 210 X 204 X 133). Again, in the first set of measurements,
acquisition was along the anterior-to-posterior phase-encoding
direction with 60 diffusion-encoding gradient directions and a
b-value of 1000 s/mm?. Additionally, eight volumes without
diffusion-weighting were obtained, two at the beginning and the
remaining interleaved after each block of 10 diffusion-weighted
volumes. The second set of diffusion measurements was ac-
quired along the reverse, posterior-to-anterior phase-encoding

direction, consisting of one image without and one image with
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diffusion-weighting (b-value = 1000 s/mm?) as a basis for later

correction for inhomogeneity induced deformations.

RESTING-STATE FMRI. 150 volumes of rsfMRI data were ac-
quired on the updated system with an EPI sequence with param-
eters TR = 2000 ms; TE = 30 ms; flip angle a = 9o°; FOV = 192 X

192 X 127 mm; 32 slices; resolution: 3.00 X 3.00 X 3.99 mm?3.

6.2.4 Magnetic resonance imaging data preprocessing

T1-WEIGHTED IMAGES.  Initial preprocessing of T, brain im-
ages was performed using Version 5.3.0 of the FreeSurfer image
analysis suite (Fischl, 2012; FreeSurfer, 2014). Thereby, data were
motion corrected (Reuter & Fischl, 2011) and brain tissue was
extracted using a hybrid watershed/surface deformation proce-
dure (Ségonne et al., 2004).

These extracted brain images were subsequently rigidly
aligned to an unbiased, asymmetric template for paediatric data
in Montreal Neurological Institute (MNI) standard space, de-
rived from 82 children aged 4.5-8.5 years (Fonov et al., 2011;
Fonov et al., 2009). Common group templates were created from
the individual T, images in MNI space for each of the two time-
points using Version 2.2.0 of the Advanced Normalization Tools
(ANTs; Avants, Tustison, & Johnson, 2017, Avants et al., 20171;
Avants et al., 2010), adapted for paediatric data as in Cafiero,

Brauer, Anwander, and Friederici (2018).
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DIFFUSION-WEIGHTED DATA. Prior to preprocessing,
dMRI data was screened for motion artifacts by a semi-
automatic method identifying intensity dropouts in the dif-
fusion signal caused by motion (Schreiber, Riffert, Anwander, &
Knosche, 2014). Additionally, directions were visually inspected
for artifacts (Soares, Marques, Alves, & Sousa, 2013; Tournier,
Mori, & Leemans, 2011). Preprocessing of dMRI data was per-
formed the FMRIB Software Library (FSL, Version 5.0.9; FMRIB
Analysis Group, 2015; Jenkinson, Beckmann, Behrens, Woolrich,
& Smith, 2012).

In order to correct for motion, diffusion volumes were rigidly
aligned to the first by image (Jenkinson, Bannister, Brady, &
Smith, 2002; Jenkinson & Smith, 2001). To compensate for inho-
mogeneity induced deformations, the susceptibility-induced off-
resonance field was computed based on the diffusion-weighted
image pairs acquired with opposite polarity of phase-encoding
(FSL's TOPUP; Andersson, Skare, & Ashburner, 2003; S. M.
Smith et al., 2004). Additionally, dMRI data were rigidly aligned
to the T,-weighted image in MNI standard space and interpo-
lated to 1mm voxel size. To preserve high data quality, all trans-
formations necessary for image correction and registration to
the individual T; anatomy in MNI space were combined and
applied in a single step of interpolation. The diffusion tensor
was estimated using FSL's DTIFIT. Finally, the fibre orientation
distribution for each voxel was determined using crossing fibre
bayesian estimation of diffusion parameters as implemented in

FSL (Behrens et al., 2003).
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RESTING-STATE FMRI DATA.  Processing of rsfMRI data was
performed using FSL, MATLAB Version R2017b (The Math-
Works, Inc., 2017) and the Analysis of Functional NeuroIlmages
software (AFNI) Version 17.2.17 (Cox, 1996; Cox & Hyde, 1997;
Scientific and Statistical Computing Core, 2017). Preprocessing
included removal of the first four images of each scan to allow
for stabilization of magnetization followed by slice time correc-
tion. Volume-by-volume head motion was quantified by frame-
wise displacement (FD), defined as the sum of rotational and
translational rigid body realignment parameters from one vol-
ume to the next (J. D. Power, Barnes, Snyder, Schlaggar, & Pe-
tersen, 2012). Volumes with FD > o.smm were excluded from
further analysis. Following this criterion, the 75 or 100 volumes
with lowest FD values were retained for the two measurement
time points, respectively, to ensure an equal amount of data
per participant to be used in the analysis. Next, rsfMRI data
was masked to exclude non-brain voxels. To generate partial
volume maps for GM, WM and CSF, T; images in MNI space
were segmented (Y. Zhang, Brady, & Smith, 2001). WM and
CSF masks were first thresholded at 80% tissue probability, min-
imising partial voluming with grey matter, and then rigidly
aligned to rsfMRI space. We applied the anatomical CompCor
method (Behzadi, Restom, Liau, & Liu, 2007) in order to remove
scanner-related and physiological noise from the data, thereby
also attenuating persistent effects of motion (Muschelli et al.,
2014). Five principal components from WM and CSF were es-

timated on the rsfMRI data and regressed out together with
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the six linearly detrended motion parameters previously deter-
mined. Unlike standard global signal regression approaches, this
technique also uncovers anticorrelations between resting state
networks (Chai, Castafién, ()ngiir, & Whitfield-Gabrieli, 2012),
while avoiding spurious negative correlations (Murphy, Birn,
Handwerker, Jones, & Bandettini, 2009). As a final step, the
residual data was bandpass filtered at 0.01-0.1Hz and spatially

smoothed with a 6mm FWHM kernel.

6.2.5 Voxel-based and surface—based morphometry

Further pre-processing of T, data were performed using the
Computational Anatomy Toolbox (CAT12; Version ri109; Gaser
& Dahnke, 2017) for SPM12 Update Revision Number 6906 (Fris-
ton et al., 2007; SPM12, 2016) in MATLAB Version R2017b (The
MathWorks, Inc., 2017). T; data in template space were seg-
mented into grey and white matter. For segmentation, SPM re-
lies on anatomical priors provided as tissue probability maps.
Since the tissue priors provided as a standard are obtained
from adult data, we replaced them with custom tissue proba-
bility maps, derived from the common group template of the
respective timepoint to account for the anatomical details of our
developmental sample. Probabilistic maps of the individual tis-
sue types were created using FSL's FAST (Y. Zhang et al., 2001).
Tissue probabilities were normalised to sum to one. Finally, all
maps were resampled to a voxel size of 1.5 mm? and smoothed

using a 35mm FWHM kernel, to approximate the resolution and
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smoothness of SPM’s default anatomical priors. Additionally,
grey and white matter maps created this way also replaced the
default template for the fast diffeomorphic image registration
procedure (DARTEL; Ashburner, 2007). Consequently, maps of
grey matter volume (GMYV), cortical thickness (CT), gyrification
index (GI; Liders et al., 2006), cortical folding complexity (CF;
Yotter, Nenadic, et al., 2011) and sulcus depth (SD) were ex-
tracted for each participant. Finally, GMV data were smoothed
using an 8 mm full width at half maximum (FWHM) kernel,

while 15 mm kernels were used to smooth surface-based data.

6.2.6  Regions of interest selection

Participant-specific ROI masks (see Table 6.1) were obtained by
aligning a multi-modal parcellation of brain areas comprising
180 cortical regions per hemisphere (Glasser et al., 2016, re-
trieved from https:/ /balsa.wustl.edu/study/show /RVVG) to
each participant’s MNI-T; image for GMV, and to Freesurfer’s
tsaverage subject for CT, GI, CF, SD. The definition of ROIs in
terms of regions defined in the multi-modal parcellation is given
in Table 6.3.

Subcortical areas MGB, LGN, and the inferior colliculus (IC)
were manually defined by two independent observers (the au-
thor of this thesis and Dr Michael A. Skeide) on a T; template
with a resolution of o.smm? isotropic (Tardif et al., 2016). The
overlap of both definitions was taken as final ROI. Location

of thalamic regions corresponds to coordinates specified in the
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Table 6.3: Definition of regions of interest in terms of regions defined
in the multi-modal parcellation atlas (Glasser et al., 2016).

Region of interest Atlas labels

left primary visual cortex (V1) L_V1_RO] 1

left middle temporal area (MT) L_MT_RO], 23

left fusiform gyrus (FG) L_VVC_RO], 163

left primary auditory cortex (A1) L_A1_RO], 24

Jeft planum temporale (PT) L_LBelt_ROI, 174; L_PBelt_ROI,
124

left ventral premotor cortex (BA6) L_6v_ROI, 56; L_6r_ROI, 78

left pars opercularis of the inferior L_44_ROI, 74
frontal gyrus,(BA44)

left pars triangularis/orbitalis of L_45_ROI, 75; L_47_ROI, 76
the inferior,frontal gyrus (BA45/47)

V1 = primary visual cortex; BA=Brodmann area; MT = middle tem-
poral area; FG = fusiform gyrus; A1 = primary auditory cortex; PT
= planun temporale; BA = Brodmann area; if several areas are given,
they were combined to form the final ROL

literature from other manual and connectivity-based segmenta-
tions (Devlin et al., 2006). Finally, the Spatially Unbiased Atlas
Template (SUIT; Diedrichsen, 2006; Diedrichsen, Balsters, Flavell,
Cussans, & Ramnani, 2009) of the cerebellum and brainstem

were used to extract a cerebellar ROL

6.2.7 Tractography

Structural connectivity was quantified by probabilistic tractog-
raphy using probabilistic tractography as implemented in FM-
RIB’s Diffusion Toolbox as part of FSL (Behrens et al., 2007;
Behrens et al., 2003). Each tract was generated by using each ROI
involved once as seed and once as target for tracking. For each

voxel in the grey/white matter interface region of the seed at
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hand, 5000 streamlines were initiated. Tracking was constrained
by a curvature threshold of 0.2 and step length of 0.5 mm. Ad-
ditionally, to quantify connectivity of the left planum temporale
with inferior frontal regions BA6 and BA44 via the dorsal route
only, we restricted tracking for the respective seed target pairs
with a rectangular ventral exclusion mask. Likewise, tracking
was restricted by both the ventral and an additional dorsal ex-
clusion mask to quantify only local connectivity between the
left primary auditory cortex and left planum temporale (see Fig-
ure 6.1). Specifically, the respective masks were defined within
the commonMNI group templates for the respective time points.
Position in y-direction of the ventral exclusion mask was 5smm
anterior of the maximal y-coordinate of all subject’s planum tem-
porale seeds, spanning 3mm into the anterior direction (i.e.y =
7 —9). In x- and z-direction, the plane extended from coordinare
o into the negative directions (i.e.x = 0 — -61, z = 0 — -49), cover-
ing the entire anterior temporal lobe. The dorsal exclusion mask
was defined as a plane covering the whole field of view in x- and
y-direction for z = 22 — 24.

The resulting streamline density maps were first log-
transformed and then divided in a voxel-wise manner by the
log-transformed maximal number of possible streamlines. These
log-transformed and normalised data were added for each tract.
In order to obtain a mask for statistical analysis, individual par-
ticipants” maps of combined connectivity indices were averaged
and thresholded with the 8oth percentile to extract only the core

of the respective tract.
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Il dorsal exclusion mask
[T ventral exclusion mask

Figure 6.1: Dorsal and ventral exclusion masks used to restrict tracking
between planum temporale and frontal regions (red) and
between primary auditory cortex and planum temporale
(red and orange combined). Masks are displayed on a 3D
rendering of the group template generated from subject’s
T, data acquired at the end of second grade.

6.2.8 Functional coherence measures

In order to investigate the local as well as the global similarity of
time-series, we extracted regional homogeneity (ReHo; Zang et
al., 2004, see Section 5.5.2) for a neighbourhood of K=27 voxels
(see Section 5.5.2 and Equation 5.6). Additionally, we computed
the fractional amplitude of low frequency fluctuations (fALFF;
Zou et al., 2008, see Section 5.5.3), using the Data Processing
Assistant for Resting-State fMRI toolbox (DPARSF; Yan & Zang,

2010), and finally converted into z-scores.

6.2.9 Statistical analysis

Demographic and behavioural data were tested for normality
of distributions using the Shapiro-Wilk test. To compare groups,
we used the non-parametric Wilcoxon-Mann-Whitney U test in
case of non-normality, the Fisher’s exact test for nominal data,

and the Welch two sample t-test otherwise (all two-tailed).



6.2 METHODS

ROI means of CT, CF, GI, SD, ReHo, fALFF, volumes of LGN,
MGB, IC, and mean GMYV of the cerebellum were extracted in
MNI space. Mean functional connectivity was computed by ex-
tracting mean haemodynamic time-series for each ROI and cal-
culating pair-wise correlations. FA and MD (see Section 5.4.1.1),
as well as streamline density (see Section 5.4.1.2) were computed
voxel-wise along the tracts identified by probabilistic tractog-
raphy in SPM. ROI-wise or ROI-pair-wise comparisons of the
different mean brain measures were performed using R—3.3.3
(R Core Team, 2016) by running multiple one-way analyses of
covariance with covariates age, sex, handedness, maternal edu-
cation, and arithmetic ability. Additionally, we included IQ ac-
quired at the second timepoint as covariate for all analysis, be-
cause IQ measures were shown to be more reliable in school-age
than in preschool children (Bishop et al., 2003).

Possible interactions between individual covariates and the
categorical predictor variable were assessed beforehand to en-
sure homogeneity of regression slopes. A significant interaction
was found between group and sex for functional connectivity
between the left primary auditory cortex and the left planum
temporale at kindergarten age. Consequently, separate analyses
were run for male and female participants with respect to this
comparison. No other significant interaction was found, indicat-
ing homogeneity of remaining regression curves. Within each
comparison, results were family-wise-error corrected for num-
ber of ROIs. To test for potential effects not covered by our ROIs,

we performed whole-brain analyses of each brain measure.
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To assess prospective case-control discrimination based on
neural and behavioural predictors, we calculated receiver operat-
ing characteristic curves. Variance inflation factor computed on
all models indicated only weak multicollinearity between predic-
tors (range 1.00-3.41). Areas under the receiver operating charac-
teristic curve (AUC) of all models were compared using a two-

tailed bootstrapping approach.

6.3 RESULTS

In terms of phonological short-term memory and phonological
awareness, children with developmental dyslexia performed sig-
nificantly worse compared to controls, both before literacy in-
struction at mean age 5y+7m (phonological short-term memory:
N =32, U = 179.5, p = 0.0473, d = 0.75, two-tailed; phonological
awareness: N = 32, £(28) = 2.19, p = 0.0368, d = 0.78, two-tailed)
and after literacy instruction at mean age 8y+6m (phonological
awareness: N = 32, U = 236, p < 0.0001, d = 2.06, two-tailed; see
Table 6.2). Furthermore, reading speed (N = 32, U = 238, p <
0.0001, d = 2.14, two-tailed) as well as spelling accuracy (N =
32, U = 240, p < 0.0001, d = 2.23, two-tailed) were significantly
reduced in dyslexic cases versus controls.

Group comparisons of the various cortical and subcortical
measures (see Figure 6.2) revealed a significant gyrification dif-
ference in terms of higher absolute mean curvature of the left pri-
mary auditory cortex in dyslexic children compared to controls,

persistent across time points (before literacy: N = 32, F(1,24) =
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9.64, p = 0.0048, 7% = 0.19; after literacy: N = 32, F(1,24) = 9.21,
p = 0.0057, §* = 0.22). Additionally, functional connectivity be-
tween left primary auditory cortex and left planum temporale
was significantly lower in dyslexic children before literacy acqui-
sition (N = 30, F(1,24) = 14.73, p = 0.0009, 17> = 0.32). This effect
was driven by a significant difference in boys (N = 20, F(1,13) =
34.58, p = 0.0001, 11> = 0.45), but not girls (N = 10, F(1,3) = 0.05, p
= 0.8388, 172 = 0.01; see Figure 6.2).

In terms of white matter structural connectivity, we found
significantly higher streamline density within the left arcuate
fasciculus (N = 32, 70 voxels, F(1,24) = 19.80, p = 0.004, * =
0.45), connecting the left planum temporale with the left ventral
premotor area (BA 6). No other region-of-interest or whole-brain
control analysis revealed any additional statistically significant
effects for any measure under investigation.

Finally, to assess prospective case-control discrimination of
the cortical differences identified in our analysis, predictive sen-
sitivity and specificity of three models were compared: (i) a
model comprising only the three significant neural indices, (i)
a model comprising the three most powerful behavioural pre-
dictors known from the literature (rapid automatised naming,
phonological short-term memory, and phonological awareness;

Moll, Ramus, et al., 2014; Raschle, Chang, & Gaab, 2011; Say-
gin et al., 2013; Ziegler et al., 2010), and (iii)) a model combin-
ing both brain and behaviour. Data of 30 children with com-
plete behavioural, structural and functional datasets at kinder-

garten age were used for model estimation. The area under the
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Figure 6.2: Overview of significant neural differences between dyslexic
and control children. Horizontal lines within the box plots
represent the group median. Vertical lines at the top and
the bottom of the box plots depict the standard deviation.
Red diamonds denote the mean of the distribution. Grey
and black dots are individual data points. N = 32 for com-
parisons of structural measures, N = 30 for comparisons
of functional connectivity. Asterisks indicate family-wise-
error corrected differences significant at p < 0.05. A1 =
primary auditory cortex; PT = planum temporale; BA6 =
Brodmann area 6; AF = arcuate fasciculus.

receiver operating characteristic curve (AUC) of the first model

was 0.86 (standard error (SE) = 0.07, 95% confidence interval (CI)

= 0.72-1.00, d = 1.53). The AUC of the model based purely on

behaviour was 0.76 (SE = 0.09, 95% CI = 0.58-0.94, d = 1.00), and
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the AUC of the combined model was 0.91 (SE = 0.05, 95% CI
= 0.81-1.00, d = 1.90). Statistical comparison of AUCs showed
that the combined model has significantly higher discrimination
power than the purely behavioural model (D = -2.00, p = 0.0464),
while there were no significant differences between AUCs of the
neural model and the behavioural model (D = -0.95, p = 0.3429,
two-tailed) and the combined model and the neural model (D =

-0.91, p = 0.3644, two-tailed; see Figure 6.3).

6.4 DISCUSSION

In the present study, we aimed to distentangle potential causes
of DD from the consequence of impoverished reading experi-
ence. All analyses relied on a longitudinal dataset that combines
psychometric testing with brain measures derived from dMRI,
T, and rsfMRI acquired before and after literacy instruction in
school. Thereby, contributions of complex cortical and subcor-
tical networks that were previously linked to the aetiology of
reading and writing impairments were investigated systemati-
cally. Importantly, we took particular care to exclude cases of at-
tention deficit hyperactivity disorder and developmental dyscal-
culia to reduce the potentially confounding role of prominent
comorbidities of DD. Additionally, all analyses were carefully
controlled for individual performance in mathematics such that
reported findings reflect differences specifically related to liter-

acy impairment.
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Figure 6.3: Receiver operating characteristic curves of models predict-
ing later literacy outcome. Dashed/purple = model based
on behavioural measurements only, dotted-dashed/orange
= model based on neural indices identified in the current
study, solid/green = model based on combined neural
and behavioural measures, AUC = area under receiver op-
erating characteristic curve. All measures were collected
prior to literacy training. Included behavioural measures
(“behaviour”) were phonological awareness, phonological
short-term memory, and rapid automatised naming. In-
cluded brain measures (“brain”) comprised gyrification of
left primary auditory cortex, functional connectivity be-
tween left primary auditory cortex and planum temporale,
and streamline density of a cluster in the arcuate fasciculus.
The label “brain+behaviour” denotes a model combining
both behavioural and brain measures. N = 30 for all mod-
els. Asterisks indicate differences significant at p < 0.05
(two-tailed).

Our results show that pre-literate children who will face lit-
eracy deficits later in life have reduced phonological processing
skills compared to typically developing controls. Additionally,
we found altered gyrification patterns of the left primary audi-
tory cortex and structural differences in terms of increased con-
nectivity strength of the left arcuate fasciculus. Finally, dyslexic
boys—but not girls—exhibited decreased functional connectiv-

ity between the left primary auditory cortex and the planum
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temporale. Preceding literacy acquisition, these effects point
to predispositions rather than manifestations of DD. Moreover,
due to our rigorous statistical control, they can also not be ex-
plained by individual differences in sociodemographic status,
non-verbal IQ, attention or mathematical deficits. Interestingly,
investigation of the same cohort at the end of second grade
in school revealed only the difference in gyrification pattern of
the left primary auditory cortex as a persistent anomaly in the
dyslexic subgroup.

Behaviourally, phonological awareness, phonological short-
term memory, and rapid automatised naming are consistently
reported to be the most reliable predictors of reading attainment
(Moll, Ramus, et al., 2014; Raschle et al., 2011; Saygin et al., 2013;
Ziegler et al., 2010). In line with these reports, future dyslexic
children and controls in the current study differed significantly
in terms of phonological processing skills. In accord with this be-
havioural profile, we found cortical malformation and aberrant
connectivity within these individuals, affecting a coherent net-
work of brain areas known to specifically support speech sound
processing (Hypothesis I.a).

In the first longitudinal MRI study investigating neural pre-
cursors of DD, Clark et al. (2014) also identified malformations
of the left primary auditory cortex as the distinguishing feature
between dyslexic cases and controls both before and after liter-
acy instruction in school. In contrast to this earlier finding that
focused on cortical thickness, however, our results highlight au-

ditory cortex differences in terms of gyrification patterns, in line
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with postmortem work on adult dyslexics reporting polymicro-
gyria (Galaburda et al., 2006, Hypothesis I.b). The reasons for
this disparity are unclear. As the brain’s folding patterns might
be intrinsically linked to differential trajectories of cortical ex-
pansion (Budday et al., 2014; Tallinen et al., 2016), it is possible
that both studies capture a similar anomaly using different mea-
sures. This is unlikely, however, as we provide a complementary
analysis of cortical thickness that fails to replicate the previously
reported differences. Additionally, since the analysis reported by
Clark et al. (2014) was restricted to one measure, it is impossible
to say whether the observed effects also co-occured with differ-
ences in gyrification. Moreover, the work by Clark et al. (2014)
has been criticised for its limited sample size (Kraft et al., 2015;
Ramus et al., 2018) of comparing 7 dyslexic individuals with 10
controls before reading acquisition.

Remarkably, increased gyrification stood out as the sole signif-
icantly different macroanatomical measure in our study, while
cortical folding and thickness, as well as sulcus depth, were
comparable between groups. In seminal histological work, Gal-
aburda et al. (1985) identified a disproportionate number of
small foldings, so-called polymicrogyria, in perisylvian cortical
areas of dyslexic specimens. It seems possible that our gyrifica-
tion measure may capture consequences of these anomalies. In
fact, changes in cortical folding patterns rapidly decrease after
birth (Li et al., 2014; T. White, Su, Schmidt, Kao, & Sapiro, 2010)
and are thus often taken as a sensitive marker for deviant pre-

and perinatal neuronal development (Bayly et al., 2014; Mutlu
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et al., 2013). Accordingly, the differences in gyrification reported
here might best be explained in terms of prenatal genetic effects
that disrupt formation of the auditory cortex, consequently lead-
ing to the phonological processing deficits frequently associated
with literacy impairments. In fact, prominent candidate dyslexia
genes have been linked to neuronal migration and axon guid-
ance (R. L. Peterson & Pennington, 2012). Remarkably, one of
the best characterised gene variants was shown to increase vari-
ability of neural responses in the primary auditory cortex of ro-
dents, thereby hampering encoding of speech sounds (Centanni,
Booker, et al., 2014; Centanni, Chen, et al., 2014).

With respect to functional coherence of the cortical and sub-
cortical networks investigated, our finding of reduced func-
tional connectivity between the left primary auditory cortex
and planum temporale corroborates the large body of literature
demonstrating the vital role of these areas for spectro-temporal
analysis of the continuous speech stream (Giraud & Poeppel,
2012; Lehongre et al., 2011). Interestingly, our analysis revealed
this effect to be driven by a significant difference in boys, but not
in girls, thus confirming the functional aspect of Hypothesis I.c
only for a specific subset of our study sample. Given the small
sample sizes of the two gender subgroups, these results should
be interpreted with caution. Still, it is noteworthy that typically
more boys than girls show literacy deficits (Moll, Kunze, et al.,
2014). Considering that we also replicated this gender imbalance

in our study group, a possible hypothesis that warrants further
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investigation may be that deficits in functional coherence are less
likely to occur in female than in male dyslexics.

Farther downstream, we found significantly increased stream-
line density in a branch of the left arcuate fasciculus, connect-
ing the planum temporale with the ventral premotor cortex
(Hypothesis I.c). This finding is consistent with studies linking
literacy and the structure of this tract (de Schotten et al., 2014;
Yeatman et al., 2012). Moreover, it also accords with the long-
standing view that children with literacy deficits increasingly
rely on articulatory recoding strategies supported by the ventral
premotor cortex to compensate for faulty speech encoding in
the planum temporale (Pugh et al., 2000; Richlan, Kronbichler, &
Wimmer, 2011; S. E. Shaywitz et al., 1998).

It is important to note that anomalous gyrification patterns
were the only persistent neural difference observed both at pre-
literate and school age. There are several possible reasons for
the discontinuity of the functional and structural connectivity
effects. One plausible—though speculative—explanation lies in
distinct early maturational trajectories that fail to reach signifi-
cance in later years (Yeatman et al., 2012). In fact, a similar ob-
servation was made by Yeatman et al. (2012), who demonstrated
higher initial structure of the arcuate fasciculus in children with
poor literacy abilities. What is more, in poor readers investi-
gated cross-sectionally, FA subsequently declined until adoles-
cence. Typically developing controls, in contrast, exhibited a con-

tinuous increase in FA during the same period.
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Finally, a prospective classification model combining known
behavioural predictors and the neural indices identified in
our experiments proved excellent, above-chance discriminatory
power with an area under the receiver operator characteristic
curve (AUC) of 0.91. In contrast, prediction based on the be-
havioural performance alone did not distinguish between fu-
ture dyslexics and controls. Importantly, a neural-only model
derived from our significant MRI measures performed signifi-
cantly above chance.

In conclusion, the results of empirical study I critically add to
the understanding of neural underpinnings of DD. Specifically,
we provide converging behavioural and neuroimaging evidence
for a phonological deficit that manifests early in dyslexic indi-

viduals, even before literacy instruction has begun.
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CHAPTER 7

EMPIRICAL STUDY II: SURFACE PLASTICITY AND
NUMERACY SKILLS

Empirical Study II examines neural correlates of individual
differences in typical mathematical ability. By providing an
in-depth analysis of longitudinal changes of cortical surface
anatomy during the first two years of school in typically develop-
ing children, I demonstrate how early cortical surface plasticity

relates to basic numeracy skills.

7.1 INTRODUCTION

While a considerable amount of literature identifies the impor-
tance of specific brain areas for numerical-mathematical process-
ing in adults (also see Section 2.2.1; Ansari et al., 2006; Knops et
al., 2009; Menon, 2010; Piazza et al., 2004; Piazza et al., 2006;
Piazza et al., 2007; Qin et al., 2014; Venkatraman et al., 2005),
dynamic brain changes related to the acquisition of numeracy
competence early in life is less well understood. Most develop-
mental studies investigate mathematical development at school
age (Evans et al., 2015; Qin et al.,, 2014; Rivera et al., 2005). In a

seminal study, Cantlon et al. (2006) link specific brain areas have
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been linked to magnitude processing at a preschool age (Cantlon
et al., 2006).

However, little is known about specific plastic changes of corti-
cal surface anatomy relating to early mathematical performance
in children at the transition from kindergarten to second grade.
This initial period of first formal mathematical instruction is a
crucial time for individual numeracy development, accompa-
nied by a shift from counting-based to fact-retrieval strategies
used for problem-solving as children master basic mathematical
concepts (Cho et al., 2011). Therefore, the present study aims to
characterise specific associations between components of early
numeracy skills assessed in second grade of school and neuro-
plastic changes between five and eight years of age. Importantly,
all analysis accounted for important confounds such as literacy

skills and sociodemographic status.

7.2 METHODS

7.2.1 Participants

Participants of this study were selected from the same group of
82 inititially recruited children described in Chapter 6. Impor-
tantly, the focus of the second study presented in this thesis was
on the association between cortical surface plasticity and early
mathematical ability in typically developing individuals, rather
than investigating neural correlates related to specific learning
disorders. Therefore, different exclusion criteria from those used

in the first empirical study applied. Consequently, data from
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a subset of 28 children of the initially recruited sample went
into the current analysis (15 female; age range at kindergarten:
5 years, 0 months — 6 years, o months; mean £ SD: 5 years, 6
months + 6 months; age range at second grade in school: 7
years, 11 months — 8 years, 11 months; mean + SD: 8 years, 5
months + 5 months). The remaining 54 children were excluded
from further analysis because they received a diagnosis of at-
tention deficit hyperactivity disorder (n = 4) or developmental
dyslexia (n = 9, both determined based on a parental question-
naire), did not have complete datasets (i. e., did not comply with
the experimental procedures in a training session, exhibited ex-
cessive movement during the MRI scan or were unable to attend
follow-up sessions, n = 22), did not complete all psychometric
measurements (1 = 3), scored below the 20th percentile rank
of the population performance in standardised and age-normed
reading or spelling tests (n = 12) or performed below the 20th
percentile in a standardised math test (clinical cases of develop-
mental dyscalculia, n = 3). One other child had to be excluded
due to an experimental error during psychometric testing. None
of the remaining children scored below 85 on average in two

non-verbal IQ tests.

7.2.2  Behavioral cognitive assessment and sociodemographic status

Assessment of psychometric measures and sociodemographic

status has been described in Section 6.2.2.
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7.2.3 Magnetic resonance imaging data acquisition

Details on MRI data acquisition have been described in Sec-
tion 6.2.3. Note that only the T,-weighted data were used in the

current study.

7.2.4 Magnetic resonance imaging data preprocessing

Using Version 5.3.0 of the FreeSurfer image analysis suite (Fischl,
2012; FreeSurfer, 2014), T; brain images were corrected for mo-
tion (Reuter & Fischl, 2011). Brain tissue was extracted based on
a hybrid watershed/surface deformation procedure (Ségonne et
al., 2004) and rigidly aligned to an unbiased, asymmetric tem-
plate for paediatric data in MNI standard space, derived from
82 children aged 4.5-8.5 years (Fonov et al., 2011; Fonov et al.,
2009).

A common group template based on all individual T, images
in MNI space from both timepoints was created with Version
2.2.0 of the Advanced Normalization Tools (ANTs; Avants et
al., 2017; Avants et al., 2011; Avants et al., 2010), following the

method described in Cafiero et al. (2018).

7.2.5 Surface based morphometry

EXTRACTION OF CORTICAL SURFACE MEASURES. Using
the Computational Anatomy Toolbox (CAT12; Version ri1og;
Gaser & Dahnke, 2017) for SPM12 Update Revision Number
6906 (Friston et al., 2007, SPM12, 2016) in MATLAB Version
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R2017b (The MathWorks, Inc., 2017), T, data in template space
were segmented into grey and white matter.

For segmentation, study-specific paediatric tissue probabil-
ity maps were generated using the Automated Segmentation
Tool (Y. Zhang et al., 2001) as part of the FMRIB Software Li-
brary (FSL, Version 5.0, FMRIB Analysis Group, 2015). Tissue
priors were derived from the common group template of both
timepoints to account for the anatomical details of our devel-
opmental sample. Probability maps were normalised to sum to
one. Finally, all maps were resampled to a resolution of 1.5mm
isotropic and smoothed using a 35mm FWHM kernel, to approx-
imate the resolution and smoothness of SPM’s default anatom-
ical priors. Additionally, grey and white matter maps created
this way were used to replace the default template for the fast
diffeomorphic image registration (DARTEL; Ashburner, 2007)
procedure. For each participant, surface-based maps of cortical
thickness (CT), gyrification index (GI; Liiders et al., 2006), cor-
tical folding complexity (CF; Yotter, Nenadic, et al., 2011) and
sulcus depth (SD) were extracted during segmentation. Follow-
ing the matched-filter theorem, thickness data were smoothed
with a 15mm FWHM kernel, and folding, gyrification and sul-

cus depth data were smoothed with a 20mm FWHM kernel.

QUANTIFYING DEVELOPMENTAL CORTICAL CHANGES.
The goal of the current study was to examine the relation
between cortical surface plasticity and early numeracy abili-

ties. To this end, participant-specific templates based on the
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individual T; MNI images at both time points were generated
using ANTs (Avants et al., 2017; Avants et al., 2011; Avants et al.,
2010; Cafiero et al.,, 2018). Registration of a child’s T; data to
its respective template before segmentation and extraction of
surface-based measures ensured optimal alignment for both
time points. For each child, cortical change was quantified by
subtracting the whole-brain maps of time point 1 from the
whole-brain maps of time point 2, thus creating difference maps
(Act, Acr, Ack and Agp).

Additionally, we performed a ROI based analysis focused on
areas previously linked to mathematical processing in adults
and children: bilateral IPS, hippocampus (HIP), dorso-lateral
prefrontal cortex (DLPFC), VTOC, and VWFA. ROIs are de-

picted in Figure 7.1.

B IPS 0 HIP [] DLPFC
B VTOC 0 VWFA

Figure 7.1: Overview of regions of interest. Only right-hemispheric
regions are depicted, but bilateral regions were used in
the analysis. IPS = intraparietal sulcus; VTOC = ventral
temporal-occipital cortex; DLPFC = dorso-lateral prefrontal
cortex; HIP = hippocampus; VWFA = visual word form
area.
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Participant-specific surface-based ROI masks were generated
based on a multi-modal parcellation of brain areas comprising
180 cortical regions per hemisphere (Glasser et al., 2016). To this
end, the parcellation was first spatially aligned with each child’s
MNI-T, volumetric image and then mapped to the respective
participant’s surface using the ‘Map volume (Native Space) to
individual surface” function in CAT12. The resulting ROISs in in-
dividual surface space served as masks to extract region-specific
means of CT, GI, SD and CF for both time points. Finally, ROI-
based cortical change from kindergarten to school was quanti-
tied by subtracting the mean of a region from time point 1 from
the respective mean derived from time point 2 (school) for each

participant, creating measures of Act, Agy, Acr and Agp.

7.2.6  Statistical analysis

Whole-brain maps of Act, Agr, Acr and Agp were correlated
with the two subscales of the Heidelberg computation test (HRT;
Haffner et al., 2005) using SPM12 (Update Revision Number
6906; Friston et al., 2007, SPM12, 2016). These subscales com-
prise a measure of (a) early arithmetic abilities and (b) visuospa-
tial skills. Covariates included in the general linear models used
for analysis were age at time 1, time between scans, sex, hand-
edness, non-verbal IQ at time 2, maternal education, spelling ac-
curacy, reading speed, and familial risk of developing dyslexia.
To examine possible associations between brain maturation and

the specific subscales, the respective other test score was added
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Table 7.1: Overview of demographic information and psychometric
performance of participants.

Kindergarten End of second

grade
Demographic information
N 28 28
Age? 5,6+6 8,5+5
Sex (male / female) 13/15 13/15
Maternal education® 4.43+0.51
Handedness” 58.11+44.63
Psychometric assessment
Non-verbal IQ¢ 104.61+11.54 113.64+11.83
Arithmetic abilityd . 69.64+23.17
Numerical-logical / visu- .. 77.00+20.00
ospatial abilitiesd
Spelling accuracy? . 52.39+24.33
Reading speedd . 63.71+24.96

2 years; months, age at MRI-scan, mean + std in months

b measure only assessed at kindergarten age

¢ mean + standard deviation

d percentile ranks, mean + std; measure only assessed at school age

as a further covariate. We considered clusters to be significant
when they exceeded a voxel-level threshold of p < 0.001 (un-
corrected), with family-wise-error (FWE) correction for multiple
spatial comparisons at the cluster level (p < 0.05).

Additionally, ROI-wise partial correlations of the z-
transformed difference measures Act, Agr, Acg and Agp with
arithmetic abilities and visuospatial skills, respectively, were
computed using R-3.3.1 (R Core Team, 2016). These correlations
were corrected for the same confounding variables stated above.

The ROI-based analysis was controlled for multiple comparisons
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by correcting for number of ROIs (i.e. ten) and number of be-
havioural subscales (i. e. two). Consequently, ROI results are re-

ported if p < 0.0025.

7.3 RESULTS

Information regarding participant’s demographic data and per-
formance in psychometric testing is provided in Table 7.1.

Our set of whole-brain analyses tested for clusters of signifi-
cant correlation between cortical surface plasticity within CT, GI,
CF and SD and school-age visuospatial and arithmetic abilities.
Several clusters denoting associations between cortical change
and behavioural measures reached significance (see Table 7.2
and Figure 7.2). Specifically, CT plasticity was positively corre-
lated with visuospatial skills in the right superior parietal lobe
(SPL; R%(16) = 0.74, p < 0.0001) and the right precentral gyrus
(R%(16) = 0.66, p = 0.0060). Furthermore, CT change was nega-
tively correlated with arithmetic abilities in the right temporal
pole (TP; R%(16) = 0.68, p = 0.0200). Additionally, a negative cor-
relation between CF change and visuospatial abilities reached
significance in a cluster within the right middle frontal gyrus
(MFG; R%(16) = 0.70, p = 0.0020). Beyond the whole-brain results,
the ROI-based analysis revealed a significant negative correla-
tion between change in CF and the arithmetic ability subscale
within the right IPS (R?*(16) = 0.71, p = 0.0010, Figure 7.3). No
further significant correlations were observed as part of the ROI

analysis.
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Figure 7.2: Overview of clusters denoting significant partial correla-
tions of surface change and arithmetic (top row) and visu-
ospatial abilities (middle and bottom). The color bar depicts
the proportion of explained variance within each cluster in
terms of the determinant of covariation (R?), overlaid on
the inflated cortical surfaces. (Continued on the following

page.)
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Figure 7.2 (cont.): Scatterplots show associations of the z-scored, max-
imal R? value of each residual cluster and the respective residual
behavioral test score after removing the effects of age at kindergarten,
time between scans, sex, handedness, non-verbal IQ at the end of
second grade, maternal education, spelling accuracy, reading speed,
familial risk of developing dyslexia, and the other subscale of the
standardised math test (HRT). Shaded areas surrounding regression
lines depict the respective 95% confidence level intervals. All reported
results are significant at a level of p < 0.05 (family-wise-error corrected).
Act = change in cortical thickness; Acr = change in cortical folding
complexity; R = right; TP = temporal pole; SPL = superior parietal
lobe; MFG = middle frontal gyrus.

7.4 DISCUSSION

The second study of the present thesis examined associations
between changes in cortical surface anatomy and emerging indi-
vidual differences in arithmetic and visuospatial abilities—two
essential components of numeracy—in typically developing chil-
dren. Importantly, to identify anatomical correlates of numeracy
skills specifically, particular care was taken to include pertinent
covariates such as sociodemographic status and individual lit-
eracy performance. Unlike previous studies, the current anal-
ysis focused on developmental trajectories from kindergarten
to school, when children start undergoing formal mathemati-
cal instruction. Developmental trajectories of different surface
morphological measures were correlated with arithmetic and vi-
suospatial magnitude processing performance derived from a
standardised, age-normed math test conducted at the end of sec-
ond grade in school.

The results revealed significant correlations of cortical sur-

face plasticity with individual differences in primary school nu-

137



138

EMPIRICAL STUDY II

Table 7.2: Results of the whole brain surface-based morphometry anal-
ysis. The table provides and overview of clusters denoting
significant partial correlations of surface change and arith-
metic and visuospatial abilities, respectively.

Coordinates  Size?R> pP

X y z

Arithmetic ability

Acr
R temporal pole 50 14 -19 359 0.68 0.0200

Numerical-logical /
visuo-spatial abilities
Acr

R middle frontal 33 17 50 657 0.70 0.0020
gyrus

R superior pari- 18 -65 53 762 0.74 0.0001
etal cortex

R pre-/ postcen- 60 -2 17 462 0.66 0.0060
tral gyrus

a size in vertices

b family-wise error corrected

Act = change in cortical thickness; Acr = change in cortical folding
complexity; R = right.

meracy ability in regions associated with early quantity pro-
cessing, arithmetic problem solving and memory (Hypothesis
IL.a). Specifically, the analysis revealed significant positive as-
sociations between visuospatial magnitude processing and Act
within the right SPL (Hypothesis IL.b) and precentral gyrus.
Additionally, we detected a significant negative correlation of
visuospatial magnitude processing skills with Acp within the
right MFG. Further, there was a significant negative relation-

ship between arithmetic performance and CT change in the right
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Figure 7.3: Partial correlation results of regions-of-interest analysis in
the right IPS. The scatterplot illustrates the negative asso-
ciation between z-scored residual mean Acg and residual
arithmetic score in right IPS after removing the effects of
age at kindergarten, time between scans, sex, handedness,
non-verbal IQ at the end of second grade, maternal edu-
cation, spelling accuracy, reading speed, familial risk of
developing dyslexia, and the visuospatial magnitude pro-
cessing score of the standardised math test (HRT). The
shaded area surrounding the regression line depicts the
95% confidence level interval. Acg = change in cortical
folding complexity; AR = arithmetic.

temporal pole. Finally, the right IPS revealed a significant nega-

tive correlation between Acg and symbolic arithmetic processing

(Hypothesis ILb).

As discussed in Section 4.2, CT is a prominent measure for
brain development and covaries systematically with the lami-
nar structure of the cortex (Wagstyl & Lerch, 2018). However,
as the relationship between the number of neurons and thick-
ness of the cortex varies greatly across different brain areas (la
Fougere et al., 2011), it is an unlikely marker of neuronal density.
Rather, changes in this measure may be related to processes af-
fecting the cytoarchitecture more generally. These may include
glio- and synaptogenesis, synaptic pruning (Wagstyl & Lerch,

2018), and progressive white matter maturation of deep corti-

139



140

EMPIRICAL STUDY II

cal layers (Natu et al., 2018). CF during development has been
suggested to be driven by compression forces induced by sus-
tained growth of the outer cortical surface, as neurons mature
and form connections (Budday et al., 2015a, 2015b; Richman,
Stewart, Hutchinson, & Caviness, 1975). Therefore, a possible
explanation may be that observed differences reflect differential
myelination and synaptic remodelling (Blanton et al., 2001).
Semantic and episodic memory associated with the medial
and anterior temporal lobe are important neurocognitive pro-
cesses supporting numeracy, e.g. in terms of storage and re-
trieval of number facts and knowledge of mathematical con-
cepts (Menon, 2010). The vital role of the temporal lobe regions
for sound numeracy development was further highlighted by
reports of variable cortical structure within this area in dyscal-
culic children and adolescents (Ranpura et al., 2013). In line with
this notion, our results suggest that neuroplastic change in the
right temporal pole fulfils a seminal role for early mathematical
development. Specifically, its change in CT was negatively as-
sociated with arithmetic performance. As a multimodal assoca-
tion area, the right anterior temporal pole supports integration
of conceptual information from distributed regions (Patterson,
Nestor, & Rogers, 2007). During neurotypical development, the
anterior temporal lobe has been associated with a steady decline
of CT (Ducharme et al., 2016; Fjell et al., 2015). Therefore, the pos-
itive link between reduced change and better arithmetic abilities
observed in the current study might indicate a decreased rate of

cortical thinning in well-performing children. Consequently, this
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might reflect sustained synaptogenesis within the semantic and
episodic memory system during more successful mathematical
learning.

Second, the posterior SPL has been associated with visuospa-
tial processing across domains. For instance, Simon et al. (2002)
report common superior parietal activation for tasks involving
grasping, pointing, saccadic and visual attention orienting. Ad-
ditionally, this region is assumed to house representations of the
remembered orientation of visual stimuli (Ester et al., 2015). At
the same time, the SPL is involved in adult numerical cognition
in terms of counting (Knops et al., 2009; Piazza et al., 2002) and
mathematical operations (Rosenberg-Lee et al., 2011). Remark-
ably, the right SPL supports approximate calculation already in
preschool children (Cantlon et al., 2006).

In line with Hypothesis IL.b, the current findings complement
these data by suggesting a fundamental contribution of SPL plas-
ticity for the refining visuospatial magnitude skills from kinder-
garten to school. In parietal regions such as the SPL, CT typi-
cally increases between five and eight years of age, before subse-
quently declining later in life (Ducharme et al., 2016; Shaw et al,,
2008). The positive association of thickness change and mathe-
matical ability might therefore suggest that increased synapto-
genesis supports development of visuospatial skills in the first
school years.

Not anticipated by the hypotheses of the current study, there
was an additional positive association between visuospatial pro-

cessing skills and CT change of the right lateral precentral gyrus,
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an area typically associated with cortical thinning over develop-
ment (Ducharme et al., 2016). Precentral regions have been pre-
viously linked to working memory processes that might play
a supportive role on mathematical cognition by refreshing vi-
suospatial short-term representations (Menon, 2015). Following
this speculative interpretation, it is important to note that right
precentral regions are involved in tasks requiring spatial work-
ing memory rehearsal processes (E. E. Smith & Jonides, 1998). In
line with this finding, the present result might suggest a link be-
tween visuospatial processing skills and more rapid growth of
intracortical white matter indicated by increased rates of cortical
thinning within the precentral gyrus.

Further, better visuospatial performance was associated with
reduced change in the regularity of cortical folding within the
prefrontal cortex, specifically the right MFG (Hypothesis ILa).
Previous studies emphasises the role of this region for work-
ing memory, thus supporting numerical cognition. For instance,
Menon, Rivera, White, Glover, and Reiss (2000) report involve-
ment of the MFG during calculation tasks with increased work-
ing memory demands in adult participants. In line with this,
Rotzer et al. (2008) link the working-memory deficits specific
to numerical processing in children with dyscalculia to reduced
grey-matter volume in bilateral MFG. The rate of plasticity of
gyral convolutions might be driven by differential synaptogene-
sis within outer cortical layers across individuals (Budday et al.,

2015a, 2015b). Therefore, children with better visuospatial mag-
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nitude processing skills might exhibit more mature intracortical
synaptic connectivity in the right MFG early on.

Finally, the ROI analysis revealed a negative association be-
tween folding plasticity if the right IPS and arithmetic ability
(Hypotheses Il.a, IL.b), indicating less folding change for well-
performing children. The right IPS is known as a key region for
the development of typical numerical cognition. In children as
young as four years of age, magnitude processing is related to
right-lateralised parietal activation (Cantlon et al., 2006). With
development of symbolic arithmetic processing skills during
later childhood and adolescence, involvement of left parietal
regions increases (Rivera et al., 2005). The degree of this func-
tional shift, however, seems to be related to the individual level
of competence: Individuals that perform poorly in maths persis-
tently recruit the right IPS, even during simple arithmetic tasks
(De Smedt, Holloway, & Ansari, 2011; G. R. Price, Mazzocco, &
Ansari, 2013). In view of these findings, the current results in-
dicate that successful mathematical learning is related to more
mature intracortical synaptic connectivity of the right IPS at an
early age. Thus, more stable magnitude representations might
support acquisition of efficient basic processing strategies.

Contrary to the expectation formulated in Hypothesis ILa,
the current analysis did not identify any numeracy-related struc-
tural plasticity within the MTL. This was somewhat surpris-
ing, given the prominently reported role of MTL regions dur-
ing mathematical development. For instance, Qin et al. (2014)

demonstrated an age-related increase in hippocampal involve-
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ment in children from seven to nine years of age, associated
with an increased use of memory-based fact retrieval strate-
gies for solving simple arithmetic tasks. Furthermore, Supekar
et al. (2013) showed that initial hippocampal volume predicts
behavioural improvement in mathematics following an intense
eight-week math tutoring program. In stark contrast to these ac-
counts, the present results suggest a less important role of the
MTL memory system at a younger age when children first un-
dergo formal mathematical instruction. Instead, the results of
the current study emphasise the role of areas involved in work-
ing memory, visuospatial processing and basic representation of
magnitude. Nevertheless, it is impossible to rule out any func-
tional contributions of the MTL during this time from the struc-
tural analysis presented here. Future investigations are neces-
sary to examine the functional organisation of emerging mathe-
matical abilities from kindergarten to school age.

Taken together, Empirical Study II links cortical surface plas-
ticity to numeracy learning during the first years of formal
mathematical instruction in school. The results reveal associa-
tions between specific trajectories of structural reorganisation
and emerging arithmetic and visuospatial magnitude skills, re-
spectively. Thereby, this study highlights the role of regions as-
sociated with working memory, basic magnitude processing, se-
mantic memory and visuospatial processing, identifying early
cortical surface plasticity as the structural brain basis of emerg-

ing numeracy abilities during the first years of school.



CHAPTERS8

GENERAL DISCUSSION

This final chapter will focus on summarising the results of the
two empirical studies presented in this thesis (Section 8.1) and
provide a general discussion on how they corroborate and ex-
pand the current understanding of literacy deficits and numer-
acy acquisition.

Specifically, Section 8.2 will put the results of the experiment
described in Chapter 6 in context with prominent neurobiolog-
ical theories of DD. Subsequently, Section 8.3 incorporates the
findings of the second empirical study presented in Chapter 7
with previous neuroimaging research in the field of numeracy
and mathematical cognition. Finally, the present thesis closes

with some concluding remarks in Section 8.4.

8.1 SUMMARY OF RESULTS

The current thesis was designed with the aim to examine spe-
cific neural correlates of deficient literacy acquisition and indi-
vidual differences in numeracy attainment. Consequently, the
two studies presented here targeted research questions concern-

ing (a) neural differences distinguishing future dyslexic children
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from typically developing controls before and after literacy in-
struction in school and (b) specific developmental trajectories of
brain surface anatomy between five and eight years of age as-
sociated with individual numeracy attainment. Both questions
were investigated using longitudinal data acquired from chil-
dren undergoing a comprehensive series of psychometric testing
and neuroimaging from kindergarten until the end of second
grade in school. Following participants over this period of time
revealed specific neurobiological profiles related to individual
behavioural variation. Specifically, the presented analysis quan-
tified diverse neuroanatomical and -functional measures, while
controlling for pertinent covariates including sociodemographic
status, intellectual abilities and individual performance in liter-
acy and numeracy.

The focus of Empirical Study I presented in Chapter 6 was
a systematic investigation of neural origins of DD, a prominent
neurodevelopmental disorder. There is much debate concerning
the underlying causal neurological deficits due to its heteroge-
nous nature (see Section 2.1.2.1). Importantly, comprehensive
data of preliterate dyslexic children is sparse and previous stud-
ies often paid little attention to comprehensively control for co-
morbidities and confounding factors such as mathematical abil-
ity or socio-economic status. Consequently, while also taking
these factors into account, I systematically examined the involve-
ment of complex cortical and subcortical networks assumed to
play a causal role for the emergence of literacy deficits by com-

bining resting-state fMRI, T;- and diffusion-weighted imaging.



8.1 SUMMARY OF RESULTS

The results show converging evidence for cortical malformation
and reduced functional coherence within the speech processing
system. Specifically, future dyslexics’ left primary auditory cor-
tex was characterised by higher degrees of CF both before and af-
ter first formal literacy instruction. Additionally, transient differ-
ences between children that developed DD later in life and those
who acquired literacy effortlessly were detected when compar-
ing structural and functional connectivity of left perisylvian re-
gions. These effects include increased connectivity strength of
the arcuate fasciculus connecting the planum temporale and
BA6 and reduced functional connectivity between the left pri-
mary auditory cortex and the planum temporale. In conclusion,
these findings contribute to our understanding of the nature of
a phonological deficit ultimately hampering literacy learning in
dyslexia.

So far, little was known regarding neural correlates of individ-
ual achievement in early numeracy abilities acquired within the
first two years of school. Therefore, Empirical Study II was de-
signed to investigate trajectories of cortical development specifi-
cally related to these skills, while accounting for individual lev-
els of literacy achievement. Specifically, correlations between cor-
tical surface plasticity from the last year of kindergarten until
the second grade in school and performance in arithmetic and
visuospatial magnitude processing tasks at eight years of age
were analysed. The results reveal a link between these two fun-
damental aspects of basic numeracy and cortical surface reorgan-

isation within right-hemispheric regions. Specifically, arithmetic
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abilities significantly correlated with CF plasticity of the right
intraparietal sulcus and CT of the anterior temporal pole. At the
same time, visuospatial magnitude processing skills were signif-
icantly associated with changes in CT within the right superior
parietal lobe and the precentral gyrus, as well as with CF plas-
ticity of the middle frontal gyrus. Overall, these results reveal
a connection of emerging numeracy skills and structural reor-
ganisation of regions known to support visuospatial processing,

working memory and semantic memory.

8.2 INTEGRATING THE CURRENT FINDINGS WITH

THEORIES OF DEVELOPMENTAL DYSLEXIA

Section 2.1.2.1 highlights the disagreement within the literature
regarding the aetiology of DD. This disagreement is sparked by
the broad range of behavioural variability in terms of atypical
phonological, low-level sensory, and motor processing exhibited
by dyslexic individuals. Additionally, the equally inconsistent
neurobiological evidence provided by numerous studies over
decades of research supplies further fuel for this debate. De-
velopmental evidence, tracing atypical behavioural and neural
profiles of dyslexic individuals from early in life, offers the po-
tential to disentangle possible causes from consequences of DD
to get to the root of the deficit.

The multimodal MRI assessment presented in Chapter 6
clearly points towards a phonological deficit at the core of lit-

eracy problems in the children participating in our study. Im-
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portantly, the results presented here extend the currently sparse
evidence of neuroanatomical anomalies within the speech pro-
cessing system of preliterate dyslexic children (Clark et al., 2014),
by providing a thorough analysis of cortical surface morphom-
etry, white matter connectivity and resting-state functional co-
herence. Thereby, the data supports the prominent phonological
deficit theory (Vellutino et al., 2004). According to this account,
poor phonological skills hinder beginning readers to form asso-
ciations between letters and their corresponding sounds, imped-
ing fluent literacy attainment (Snowling, 1998).

Importantly, the current neuroimaging results are in line with
the behavioural profile exhibited by future dyslexic children in
our study, emphasising the role of deficient speech sound pro-
cessing. This behavioural variation is well-established in the lit-
erature, with phonological awareness—followed by phonologi-
cal short-term memory and rapid automatised naming—most
reliably distinguishing cases from controls already before liter-
acy instruction (Moll, Kunze, et al., 2014; Ziegler et al., 2010).
These observations are in line with a considerable body of previ-
ous neuroanatomical research in older participants past the age
of initial literacy acquisition, from early post-mortem histologi-
cal work (Galaburda et al., 1985), over evidence from structural
neuroimaging (Richlan et al., 2013), to studies reporting aber-
rant white matter structure within the dorsal reading network
(Saygin et al., 2013; Vandermosten et al., 2012). Additionally,
they complement foregone functional work suggesting abnor-

mal spectro-temporal analysis of speech (Lehongre et al., 2011)
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contingent on the same areas exhibiting faulty cross-talk in the
present study (Giraud & Poeppel, 2012).

Observed differences between future dyslexic children and
controls at a preliterate age encompass different aspects such
as gyrification, functional connectivity and streamline density
within the dorsal reading network. Based on the data at hand,
however, it is impossible to say whether these effects arise con-
comitantly over development. In fact, it may be that one acts
as a primary deficit causing the other differences already at a
pre-reading age. A likely—though speculative—scenario could
be that atypical gyrification of the primary auditory cortex and
disrupted functional coherence between regions within Heschl’s
gyrus mark aberrant neural migration. Especially gyrification is
a measure that typically undergoes only very little change after
the first years of life (Li et al., 2014; T. White et al., 2010), strongly
pointing to malformations during pre- or perinatal neuronal de-
velopment (Bayly et al., 2014; Mutlu et al., 2013). Consequently,
the observed differences in streamline density might present a
secondary result arising from compensatory articulatory recod-
ing strategies supported by the ventral premotor cortex (see Fig-
ure 8.1; Pugh et al., 2000; Richlan et al., 2011; S. E. Shaywitz et al.,
1998).

To draw a comprehensive picture of neural precursors of DD,
tibre pathways and areas beyond the phonological domain were
examined. However, no significant differences between cases
and controls were detected in subcortical sensory processing re-

gions, ventral occipitotemporal cortex or the cerebellum. Thus,



8.2 INTEGRATING FINDINGS WITH THEORIES OF DYSLEXIA

-
1 streamline density

, (arcuate fasciculus)

gyrification pattern (A1)

4

|

I

]

]

]

~ ]

r-- —0 - functional connectivity
1 . .

;neural migration’ '

I

]

]

]

I

i

Figure 8.1: Putative developmental scenario underlying differences
observed in preliterate children that developed dyslexia.
Neural migration defects reported in post-mortem data
within left perisylvian regions (Panel 1; Galaburda & Kem-
per, 1979; Galaburda et al., 1985) might lead to the present
findings of aberrant gyrification within the left primary
auditory cortex and disrupted functional connectivity be-
tween the primary auditory cortex and the planum tempo-
rale (Panel 2). As a consequence, dyslexic individuals may
rely more on articulatory recoding strategies supported
by the ventral premotor cortex (BA 6; Pugh et al., 2000;
Richlan et al., 2011; S. E. Shaywitz et al., 1998). This in-
creased compensatory activity might in turn strengthen the
structure of the interconnecting arcuate fasciculus, leading
to the observed increase in streamline density (Panel 3). A1
= primary auditory cortex; PT = planum temporale; SLD =
sreamline density; BA6 = Brodmann area 6; red region =
BAG6; blue region = superior temporal gyrus.

our data fails to provide support for corresponding theories
claiming respective deficits to be at the root of DD (see Table 6.1).

While the results presented in this thesis support the phono-
logical deficit theory of DD, the lack of evidence for non-

phonological impairments has to be taken with the care gener-
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ally devoted to null effects. This could imply one of several alter-
native scenarios that cannot be disentangled here. For instance,
it might be that deficits supposed in most prominent neural ac-
counts beyond the phonological theory are indeed consequences
of impoverished literacy experience and thus a side effect of liv-
ing a life with DD (Huettig et al., 2018).

A second feasible interpretation regards the possibility that
there are several independent neural profiles leading to literacy
deficits. This notion aligns with the account of distinct cogni-
tive subgroups of dyslexia provided by Stefan Heim et al. (2008)
(see also Pennington et al., 2012). In fact, Jednorég, Gawron,
Marchewka, Heim, and Grabowska (2014) reported distinct vari-
ations in cortical volume for groups with different behavioural
phenotypes in 10-year-old dyslexic children and adults. In the
light of this subgroup-account, it would be highly remark-
able that our sample predominantly included children with the
phonological subtype while no such focus was placed during the
recruiting procedure. Nevertheless, this scenario could account
for dyslexic cases that do not exhibit phonological processing
deficits (Bosse et al., 2007; Peyrin et al., 2012), an otherwise sub-
stantial limitation of the results presented here.

A third possibility concerns the fact that the power of our
study was too limited to pick up more subtle differences, even
though the number of dyslexic cases included in the analysis
was comparable if not superior to previous work. However, it
cannot be ruled out that—given a larger, behaviourally more

heterogenous sample—further differences might emerge.
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To disentangle these possibilities, subsequent studies are re-
quired adapting the experimental design employed here at
an even grander scale. Work based on a larger population of
dyslexic children will offer higher levels of statistical power. An
even more comprehensive assessment of behavioural character-
istics (e.g. also measuring individual motoric abilities) would
further add to our understanding of possible behavioural pheno-
types present in DD. Additionally, future studies are needed to
evaluate the generalisability of the current results to other, non-
alphabetic or less transparent writing systems. Further, follow-
ing children over an even more extended amount of time would
permit to characterise the progression of atypical brain develop-
ment that also arises as a consequence of literacy deficits.

In conclusion, Empricial study I adds to the understanding
of neural precursors of DD. While the presented results cannot
give unequivocal proof that impairments in speech sound pro-
cessing are the sole underlying cause, they highlight phonologi-
cal deficits as a significant contributor to the dyslexic phenotype.
What is more, they describe a disruption of the phonological sys-
tem in terms of early auditory cortex malformation and aberrant
downstream connectivity, thus indicating a fundamental neural

deficit that hampers successful literacy learning.
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83 INTEGRATING CURRENT FINDINGS WITH THEO-

RIES OF NUMERACY DEVELOPMENT

Empirical Study II addresses an important research gap in the
literature by shedding light onto the associations between corti-
cal surface plasticity from kindergarten to school and early nu-
meracy skills. Controlling for pertinent covariates such as liter-
acy abilities and sociodemographic status, the results of the pre-
sented analysis reveal specific correlates of individual numeracy
attainment, thus complementing the existing neurobiological ac-
counts.

Importantly, insights about the structural and functional re-
organisation supporting numeracy maturation are often derived
from school age children that already master the first basic math-
ematical concepts. As explained in Section 2.2, a common pic-
ture emerges from these data: In addition to recruitment of core
magnitude processing areas in the right PPC, immature process-
ing seems to be related to greater reliance on regions associated
with auxiliary functions including working memory and atten-
tion (i.e. PFC regions; Rivera et al., 2005). With age and expe-
rience, the contribution of these processes to numerical cogni-
tion diminishes, while the functional specialisation of the left
PPC increases (Rivera et al., 2005). In line with this notion, left
parietal grey matter volume at eight years of age, alongside pre-
frontal and ventral temporal regions, reliably predicts the longi-
tudinal gain in mathematical abilities until adolescence (Evans

et al., 2015). Additionally, involvement of MTL during mathe-
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matical processing initially increases, followed by a decrease in
the course of adolescence (Qin et al., 2014). This trajectory has
been associated with the initial development and subsequent
consolidation of memory-based retrieval strategies that are more
efficient than procedural approaches for mathematical problem
solving (Ashcraft, 1982; Barrouillet & Fayol, 1998; Qin et al., 2014;
Siegler & Shipley, 1995). Consistent with this view, variable neu-
ral representations in MTL distinguish children that rely more
on retrieval from those who employ procedural strategies (Cho
et al., 2011).

The results of Empirical Study II presented in this thesis
shed light onto structural reorganisation processes occurring at
an even earlier stage before the above-mentioned changes occur
(see Figure 8.2). In doing so, the current results reveal differential
contributions of right PPC regions to distinct subcomponents of
numeracy skill, namely arithmetic and visuospatial magnitude
processing abilities. Specifically, cortical surface reorganisation
in terms of cortical folding within the IPS was related to indi-
vidual performance in arithmetic. Plasticity of cortical thickness
within the SPL was related to behavioural differences in visu-
ospatial magnitude processing. This distinction lends new sup-
port from a very young age group to the tripartite model of
parietal contributions for numerical processing formulated by
Dehaene et al. (2003). In this model, the IPS is characterised as a
domain specific region housing the core magnitude representa-
tions equivalent to concept of the mental number line, crucial for

stable neural representations and thus successful mathematical
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Figure 8.2: Regions of longitudinal neuroplastic change relevant for
emerging numeracy skills, as identified in Empirical Study
II of this thesis. Labels on the brain denote functions indi-
vidual regions were associated with in previous literature
(for core magnitude representations and visuospatual at-
tention orienting, see Dehaene et al., 2003; for working
memory, see Menon et al., 2000; E. E. Smith and Jonides,
1998; for semantic memory, see Menon et al., 2000; Patter-
son et al., 2007). Boxes on the right denote which region’s
neuroplastic change from kindergarten to primary school
was related to either visuospatial magnitude processing
(top) or arithmetic abilities (bottom). PrCG = precentral
gyrus; MFG = middle frontal gyrus; SPL = superior pari-
etal lobe; TP = temporal pole; IPS = intraparietal sulcus.

learning. In contrast, the SPL is characterised as an area involved
in visuospatial attention orienting, thereby supporting visuospa-
tial magnitude processing (see Figure 8.2).

Based on the reported associations between specific pari-
etal surface trajectories and differential mathematical and visu-
ospatial performance, it could conceivably be hypothesised that
parietal plasticity differentiates groups of well-performing from
poorly performing children already at an early age. Further sup-
port for such a hypothesis comes from accounts of deficient pari-

etal processing in older children and adults with developmental



83 INTEGRATING FINDINGS WITH THEORIES OF NUMERACY

dyscalculia (Mussolin et al., 2009; G. R. Price, Holloway, Réasa-
nen, Vesterinen, & Ansari, 2007). Taken together with the current
results, these deficits might potentially be rooted in structural
parietal malformations. This hypothesis might be addressed in
future studies with larger sample sizes, also including individu-
als with severe deficits in mathematical learning.

Beyond parietal contributions to emerging numeracy abilities,
the current results highlight the role of regions associated with
more domain-general, auxiliary processes during early numer-
acy attainment. Observed effects were located in regions asso-
ciated with working memory processing, i.e. the right MFG
(Menon et al., 2000) and the right precentral gyrus (E. E. Smith
& Jonides, 1998). There is a large number of studies demonstrat-
ing that working memory explains a substantial proportion of
the variance of individual performance in mathematical tasks,
both in typically developing children and those that experience
difficulties in numeracy processing (Raghubar, Barnes, & Hecht,
2010). Thus, the current results provide insights into structural
correlates of this working memory contribution at the transition
from kindergarten to school age, when children first undergo
formal mathematical instruction.

While previous work in older children consistently ascer-
tained contributions of the MTL to the development of numeri-
cal cognition (Cho et al., 2011; Qin et al., 2014; Rivera et al., 2005),
no association between emerging numeracy abilities and me-
dial temporal surface plasticity was identified for our younger

study sample. This may put a new perspective on the current
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understanding of developmental trajectories involved in the mat-
uration of early numerical cognition. Typically, MTL correlates
are interpreted to reflect the development of memory-based re-
trieval strategies based on the consolidation of mathematical
knowledge (Ashcraft, 1982; Barrouillet & Fayol, 1998; Qin et al.,
2014; Siegler & Shipley, 1995). The current data, however, sug-
gest that initial formal mathematical learning is predominantly
supported by plasticity in core magnitude and working mem-
ory regions and does not provide evidence for a putative role of
memory processes within the MTL. Importantly, as a null find-
ing, this lack of evidence does not permit to draw conclusions
about the involvement of memory-based processing at such an
early stage in mathematical development. Rather, it opens up an
avenue for future research to examine if structural reorganisa-
tion of the MTL gradually emerges as a function of individual
problem-solving strategies. Children in second grade—the age
when our sample was tested—are reported to predominantly
rely on procedural counting strategies (Barrouillet & Fayol, 1998;
Qin et al., 2014; Siegler & Shipley, 1995). Via thorough assess-
ment of distinct approaches used by individual children, future
studies may shed light onto the association between plasticity of
the MTL and emerging mathematical competence, also across a
more extended age range as presented here.

Overall, it is noteworthy that all significant effects reported
in Empirical Study II were confined to the right hemisphere.
This is in stark contrast to the results presented by Evans et

al. (2015), who showed that gain in arithmetic abilities could
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be predicted from intrinsic connectivity and grey matter volume
within left-sided areas of the arithmetic network at eight years of
age. This lends support to the hypothesis that right-hemispheric
processes promote initial numeracy development, while involve-
ment of left hemispheric regions increases with age and experi-
ence (Rivera et al., 2005).

Despite providing information about intrinsic associations be-
tween cortical surface plasticity and individual behavioural per-
formance, it is important to stress that the results presented
here are purely correlational, such that causation cannot be in-
ferred. Consequently, from these results we cannot disentangle
whether behavioural changes drive neuroanatomical variation
Or vice versa.

In conclusion, Empirical Study II provides evidence high-
lighting the little-known associations between cortical surface
reorganisation from kindergarten to school age and individual
numeracy skills. The insights obtained from this study comple-
ment previous work investigating the relationship between brain
maturation and numerical cognition in older children. Specifi-
cally, the results provide support for the importance of specific
developmental trajectories in confined, right-hemispheric areas
promoting core magnitude, visuospatial and memory process-
ing at the transition from kindergarten to school, when children

first undergo formal mathematical instruction.
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8.4 CONCLUDING REMARKS

In the scope of this thesis, I examined the brain basis of com-
plex cognitive abilities—i. e. literacy and numeracy—using struc-
tural and resting-state functional MRI data longitudinally ob-
tained from young children. Combining longitudinal neuroimag-
ing and extensive psychometric testing in children from kinder-
garten to school, the results shed light onto neural correlates of
(a) deficient literacy acquisition in DD and (b) individual differ-
ences in mathematical development.

Thereby, the work reported in the current thesis overcomes
prominent shortcomings in the literature: Based on a longitudi-
nal design, neural correlates identified before the start of school
are less likely to be confounded by individual variations in lit-
eracy and numeracy experience. Assessing both literacy and nu-
meracy abilities, the considerable covariation between these do-
mains was accounted for. Combining measures of cortical sur-
face geometry, white matter structure and resting-state func-
tional coherence, a more complete characterisation of the vari-
able neuroanatomical and -functional profiles through develop-
ment could be achieved.

By controlling for prominent covariates including measures
of the respective other domain, specific associations between
neural development and literacy and numeracy were revealed.
Consequently, this thesis does not engage with identifying the
common neural basis of these complex cognitive functions and

their deficits. Even though beyond the scope of the current
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work, such an undertaking would be certainly worthwhile. To
obtain a complete developmental picture of these processes and
their deficits, children that will go on to develop either isolated
dyslexia, dyscalculia, or co-occurring deficits in both domains to-
gether with typical controls would need to be assessed as early
as possible. Adapting a longitudinal design, children should be
continuously assessed starting from pre-school and continuing
throughout the first years of their academic career. Despite the
relatively high prevalence rates of dyslexia and dyscalculia, this
is hard to achieve: it is unclear how many children recruited
before schooling will develop deficits, so it is impossible to de-
termine how many cases will be included in the final set. Fur-
thermore, developmental neuroimaging work is often riddled
with high drop-out rates due to lack of compliance or disrupted
data quality especially for young children. One of the rare stud-
ies looking at such a unique sample of children aged seven to
12 years was reported by (Skeide et al., 2018), who describe a
distinct neuroanatomical and -functional profile centred on the
right parahippocampal gyrus for children with co-occurring dif-
ficulties, providing a first theoretical framework as a possible
basis for future work.

Still, the current sample grants valuable insights into the emer-
gence of literacy deficits and numeracy skills. Together, the re-
sults of both studies present a strong case for more compre-
hensive analyses of cortical surface anatomy as a valuable ad-
dition to classical measures such as GMV and CT. Importantly,

both gyrification and CF were identified as region-specific early
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correlates of literacy outcome and individual numeracy skills.
This may be taken as an important implication for developmen-
tal psychology, as cellular mechanisms that underly the emer-
gence of complex cognitive behaviour may profoundly shape the
brain’s anatomy across various dimensions. Thus, while future
investigations are necessary to validate the microanatomical un-
derpinnings of differential cortical surface development, these
measures may provide more detailed insights into the brain’s
anatomy and its intricate relationship with cognition (Mechelli
et al., 2005; Rivera et al., 2005).

As emphasised in Section 2.3, the empirical work presented
in the current thesis comprises two studies investigating specific
neural correlates of early literacy deficits and emerging numer-
acy skills. Importantly, in all analyses behavioural variation in
the respective other domain was taken into account. Integrating
the current results of both studies highlights the importance of
distinct core processes for sound literacy and numeracy learn-
ing, respectively. The findings of Empirical Study I revealed
the severe ramifications of disruptions within confined cortical
circuits supporting phonological processing within the dorsal
reading network for literacy acquisition. The data presented in
Empirical Study II, in contrast, underlines the role of plastic-
ity within parietal regions specifically involved in magnitude
processing for early mathematical performance. What is more,
previous literature suggested parietal dysfunction in older chil-
dren and adults with developmental dyscalculia (Mussolin et al.,

2009; G. R. Price et al., 2007; Rotzer et al., 2008), even though it



8.4 CONCLUDING REMARKS

remains to be shown whether this also holds for young children
who struggle with numeracy at the transition from kindergarten
to school. Nevertheless, a common picture that seems to hold
for both literacy and numeracy skills is the reliance on separate
core processes supported by distinct neural circuitries. Conse-
quently, specific disturbances of these core faculties may be the
most likely candidates for a neural basis of isolated deficits in
the respective domains.

However, it is important to note that these core processes do
not seem to operate in isolation. Evidence for the importance
of auxiliary functions—most notably working memory—needed
to acquire complex cognitive abilities like numeracy is provided
by the results of Empirical Study II. While an empirical assess-
ment of domain-general faculties supporting successful literacy
acquisition was beyond the scope of the current work, it could
be conceivably hypothesised that processes like working mem-
ory, in concert with executive functioning (Yeniad et al., 2013),
focused attention (Lundberg & Sterner, 2006) and visual associa-
tive learning (Skeide et al., 2018) constitute a common cognitive
basis for both emerging literacy and numeracy skills in typically
developing children.

In the introduction of this thesis, I set out with the ques-
tion for the specific neural origins of differences in emerging
complex cognitive abilities. Consequently, the current work—
shedding light onto the developmental trajectories underlying
literacy deficits and numeracy development—makes a substan-

tial step towards a more comprehensive understanding how
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complex cognitive skills emerge and how specific disruptions
may cause learning deficits. The presented evidence suggests
that acquisition and maturation of these abilities reshapes the
circuitries for domain-specific as well as domain-general auxil-
iary functions (i. e. magnitude, visuospatial and working mem-
ory processing in numeracy), and that disruptions in regions
supporting very specific aspects of complex processes have se-
vere consequences for learning (i. e. disruptions of the phonolog-

ical systems impeding literacy development).
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SUMMARY OF DISSERTATION

Reliable early literacy and numeracy abilities provide the foun-
dation of more complex, high level skills (Geary, 2011) and suc-
cessful academic achievement (Duncan et al., 2007). However,
not all individuals acquire abilities such as reading, writing and
arithmetic with the same ease (M. Brown et al., 2003; Cockcroft,
1982). Importantly, the neural origins of behavioural differences
in such complex cognitive skills still represent a matter of de-
bate.

Research into specific neural correlates of literacy and numer-
acy has proven challenging. First, longitudinal experimental de-
signs starting before school are necessary to identify neurobio-
logical profiles and developmental changes directly related to
behavioural variation (Goswami, 2015; Ramus et al., 2018). Thus
tar, however, longitudinal evidence is sparse. Second, the consid-
erable covariation between literacy or numeracy skills (Durand
et al., 2005; Hart et al., 2009) has to be taken into account when
studying specific correlates of distinct abilities. Third, a more in-

tegrated approach combining various anatomical and functional
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dimensions may be needed to provide a comprehensive under-
standing of the emergence of complex cognitive abilities and
their developmental trajectories.

The aim of the present dissertation was to shed light on neu-
ral development supporting early literacy and numeracy. To this
end, we investigated the brain basis of these complex cognitive
abilities using structural and resting-state functional magnetic
resonance imaging. Specifically, this thesis focuses on two cen-
tral questions: What are the neural correlates of (a) deficient lit-
eracy acquisition and (b) individual differences in mathematical
development? Both questions were investigated using longitu-
dinal data acquired from children undergoing a comprehensive
series of psychometric testing and neuroimaging from kinder-
garten until the end of second grade in school, i.e. at 5 and 8
years of age. Following participants over this period of time re-
vealed specific neurobiological profiles related to individual be-
havioural variation. What is more, the presented analyses quan-
tified diverse neuroanatomical and -functional measures, while
controlling for pertinent covariates including sociodemographic
status, intellectual abilities and individual performance in liter-
acy and numeracy.

The first empirical study presented in this thesis aimed to sys-

tematically test whether existing neurobiological theories of de-
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velopmental dyslexia reflect potential neural causes rather than
consequences of impoverished literacy experience. In fact, var-
ious accounts suggesting neurobiological origins of specific lit-
eracy impairments exist. These range from deficits in auditory
(Diaz et al., 2012; Hornickel & Kraus, 2013) or visual (Eden et al.,
1996; Livingstone et al., 1991) pathways, over more general mag-
nocellular defects (Stein, 2001; Stein & Walsh, 1997) and theories
of cerebellar deficits (Nicolson et al., 2001), to higher-order pro-
cessing impairments within the phonological speech processing
system (Boets et al., 2013; S. E. Shaywitz et al., 1998). However,
formulated claims are primarily based on data of adult or school-
aged participants. Therefore, observed differences between cases
and controls might be driven by a disparate amount and qual-
ity of literacy experience (Goswami, 2015; Ramus et al., 2018).
To circumvent this issue, resting-state functional magnetic res-
onance imaging, T;- and diffusion-weighted imaging data were
acquired before and after literacy instruction in school. Based on
standardised reading and writing measures acquired at school
age, 16 children were classified as dyslexic and 16 as typically
developing controls. Structural and functional measures charac-
terizing complex cortical and subcortical networks that were pre-
viously linked to the aetiology of developmental dyslexia were

subsequently compared.
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The results show converging evidence for cortical malforma-
tion and reduced functional coherence within the speech pro-
cessing system in individuals that develop literacy impairments.
Specifically, future dyslexics’ left primary auditory cortex exhib-
ited higher degrees of cortical folding complexity both before
and after first formal literacy instruction. Additionally, transient
differences between dyslexic and typically developing children
were detected when comparing structural and functional con-
nectivity of left perisylvian regions. These effects included in-
creased connectivity strength of the arcuate fasciculus connect-
ing the planum temporale and Brodmann area 6 and reduced
functional connectivity between the left primary auditory cor-
tex and the planum temporale. Finally, prospective classifica-
tion models based on the neural indices identified in the anal-
ysis proved above-chance discriminatory power, both alone or
in combination with behavioural predictors. These findings ex-
tend the currently sparse evidence of neuroanatomical anoma-
lies within the speech processing system of preliterate dyslexic
children (Clark et al., 2014). Thereby, the current data supports
the phonological deficit theory, suggesting that poor phonologi-
cal skills impede the formation of reliable associations between
letters and their corresponding sounds (Snowling, 1998). A spec-

ulative neurodevelopmental scenario I suggest based on the cur-
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rent results may be that atypical gyrification of the primary audi-
tory cortex and disrupted functional coherence between regions
within Heschl’s gyrus mark aberrant neural migration. Conse-
quently, the observed differences of the arcuate fasciculus might
present a secondary result arising from compensatory articula-
tory recoding strategies supported by the ventral premotor cor-
tex (Pugh et al., 2000; Richlan et al., 2011; S. E. Shaywitz et al.,
1998). Still, subsequent studies based on larger populations of
dyslexic children are required to validate the current findings
and to evaluate their generalizability to other, non-alphabetic or
less transparent orthographies.

In the second empirical study, we investigated how cortical
surface plasticity from the last year of kindergarten until the sec-
ond grade in school systematically covaries with performance in
arithmetic and visuospatial magnitude processing tasks at eight
years of age. To this end, data from a sample of 28 children with-
out any developmental learning disorders were assessed longitu-
dinally. Previous research emphasised the role of structural and
functional plasticity of core magnitude processing areas in the
right posterior parietal cortex (Cantlon et al., 2006; Menon, 2010;
Rivera et al., 2005) for typical numeracy development. Addition-
ally, more immature processing has been linked to a greater re-

liance on regions associated with auxiliary functions including
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working memory and attention (i.e. prefrontal cortex regions;
Rivera et al., 2005). With age and experience, the contribution
of these processes to numerical cognition diminishes, while the
functional specialisation of the left posterior parietal cortex in-
creases (Rivera et al., 2005). Additionally, involvement of the me-
dial temporal lobe during mathematical processing is thought
to reflect the initial development and subsequent consolidation
of memory-based retrieval strategies for mathematical problem
solving (Qin et al., 2014).

The results of the second study reveal links between early
arithmetic and visuospatial magnitude processing, two funda-
mental aspects of basic numeracy skills, and cortical surface re-
organisation within right-hemispheric regions. Specifically, arith-
metic abilities significantly correlated with plasticity of cortical
folding complexity of the right intraparietal sulcus and cortical
thickness of the anterior temporal pole. At the same time, vi-
suospatial magnitude processing skills were significantly asso-
ciated with changes in cortical thickness within the right supe-
rior parietal lobe and the precentral gyrus, as well as with cor-
tical folding complexity plasticity of the middle frontal gyrus.
By highlighting differential contributions of right parietal divi-
sions for distinct subcomponents of numeracy skill, the current

results lend support from a very young age group to a char-
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acterisation of the intraparietal sulcus as a domain specific re-
gion housing core magnitude representations, and the superior
parietal lobe as an area involved in visuospatial attention ori-
enting (Dehaene et al., 2003). Further, the observed effects in re-
gions associated with working memory are in line with studies
demonstrating that working memory explains a substantial pro-
portion of the variance of individual performance in mathemati-
cal tasks (Raghubar et al., 2010). Based on the fact that all signif-
icant effects reported in the second study were confined to the
right hemisphere, I suggest that right-hemispheric processes pro-
mote initial numeracy development, while involvement of the
left hemisphere increases with age and experience. This view is
in line with findings from the literature in school-aged children
(Rivera et al., 2005), but has to be further corroborated in future
work.

Taken together, the current dissertation sheds light onto the
developmental trajectories underlying literacy deficits and nu-
meracy development, making a substantial step towards a more
comprehensive understanding of how complex cognitive skills
emerge and how specific disruptions may impair learning. The
presented evidence suggests that acquisition and maturation of
these abilities reshapes the circuitries for domain-specific as well

as domain-general auxiliary functions (i. e. magnitude, visuospa-
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tial and working memory processing in numeracy), and that dis-
ruptions in regions supporting very specific aspects of complex
processes may bear severe consequences for learning success (i. e.
disruptions of the phonological system impeding literacy devel-

opment).
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Der erfolgreiche Erwerb von Lese-, Schreib- und Rechenkompe-
tenzen bildet die Grundlage fiir komplexere Fahigkeiten (Geary,
2011) und eine erfolgreiche akademische Laufbahn (Duncan et
al., 2007). Allerdings lernt nicht jedes Kind lesen, schreiben
und rechnen mit der gleichen Leichtigkeit (M. Brown et al.,
2003; Cockcroft, 1982). Dartiber hinaus sind die neuralen Ur-
spriinge individueller Unterschiede in solch komplexen kogni-
tiven Fahigkeiten noch immer umstritten.

Die Erforschung spezifischer neuraler Korrelate der Lese-,
Schreib- und Rechenkompetenz steht besonderen Heraus-
forderungen gegentiber. Erstens sind Langsschnittstudien er-
forderlich, die mit der Erhebung bereits vor Schuleintritt begin-
nen und so neurobiologische Profile und Entwicklungsverlaufe
identifizieren konnen, die im direkten Zusammenhang mit Ver-
haltensvielfalt stehen (Goswami, 2015; Ramus et al., 2018). Bis-
lang sind solche langsschnittlichen Betrachtungen jedoch selten.
Zweitens muss die betrdchtliche Kovariation zwischen Lese-,

Schreib- und Rechenleistungen (Durand et al., 2005, Hart et
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al., 2009) bei der Erforschung spezifischer Korrelate einzelner
Fahigkeiten berticksichtigt werden. Drittens ist moglicherweise
eine ganzheitlichere Vorgehensweise vonnéten, die mehrere
anatomische und funktionale Dimensionen kombiniert und so
ein umfassenderes Verstandnis der Entstehung komplexer kog-
nitiver Fahigkeiten und ihrer Entwicklungsverldufe bietet.

Das Ziel der vorliegenden Arbeit war es, einen Einblick
in neurale Entwicklungsverldufe zu gewinnen, die den ini-
tialen Erwerb von Lese-, Schreib- und Rechenkompetenz unter-
stiitzen. Dazu haben wir die die Zusammenhdnge von Gehirn
und komplexen kognitiven Fahigkeiten mittels struktureller und
funktioneller Magnetresonanztomografie im Ruhezustand unter-
sucht. Die vorliegenden Studien kombinieren Analysen langss-
chnittlicher Bildgebungsdaten von Kindern, die am Ende der
Kindergartenzeit und im Schulalter erhoben wurden, mit umfan-
greichen psychometrischen Tests. Dabei konzentriert sich diese
Arbeit auf zwei Kernfragen: Was sind neurale Korrelate von
(a) defizitairem Schriftspracherwerb und (b) individuellen Un-
terschieden in der Entwicklung mathematischer Fahigkeiten?
Die langsschnittliche Betrachtung dieser Fragen offenbarte spez-
ifische neurale Profile, die in Zusammenhang mit phdnotyp-
ischer Verhaltensvariation stehen. Im Einzelnen quantifizierten

die vorgestellten Analysen unterschiedliche neuroanatomische
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und -funktionale Mafde, wihrend fiir relevante Kovariate wie
dem soziodemographischen Status, intellektuellen Fahigkeiten
und individueller Lese-, Schreib- und Rechenleistung kontrol-
liert wurde.

In der ersten vorliegenden Studie wurde systematisch unter-
sucht, ob wissenschaftliche Theorien zur Entstehung von Legas-
thenie potentielle entwicklungsbedingte Ursachen oder eher
Folgen der reduzierten Ubung im Umgang mit Schriftsprache
beschreiben. In der Tat existieren diverse Ansichten, die ver-
schiedene neurobiologische Urspriinge spezifischer Defizite im
Schriftspracherwerb nahelegen. Diese reichen von Beeintrachti-
gungen auditorischer (Diaz et al., 2012; Hornickel & Kraus, 2013)
oder visueller (Eden et al., 1996; Livingstone et al., 1991) Sig-
nalwege, tiber generelle, magnozelluldre Storungen (Stein, 2001;
Stein & Walsh, 1997) und Theorien zerebellarer Defizite (Nicol-
son et al., 2001), bis hin zu Fehlleistungen innerhalb {ibergeord-
neter Prozesse im phonologischen Sprachverarbeitungssystem
(Boets et al., 2013; S. E. Shaywitz et al., 1998). Problematisch
ist jedoch, dass diese Theorien in erster Linie auf Erkenntnis-
sen von Untersuchungen in Erwachsenen oder Schulkindern
beruhen. Daher kann nicht ausgeschlossen werden, dass Un-
terschiede zwischen Legasthenie- und Kontrollgruppen durch

einen abweichenden Umgang mit Schriftsprache getrieben wer-
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den (Goswami, 2015, Ramus et al.,, 2018). Um dieses Prob-
lem zu umgehen, wurden hier Messungen der funktionellen
Magnetresonanztomographie im Ruhezustand, der T;- und der
Diffusions-gewichteten Bildgebung in Kindern vor und nach Be-
ginn der formalen Schriftsprachanleitung in der Schule erhoben.
16 Kinder wurden auf der Grundlage standardisierter Lese- und
Reschtschreibtests im Schulalter als legasthenisch eingestuft und
mit 16 Kindern ohne Auffilligkeiten im Schriftspracherwerb
verglichen. Im Einzelnen wurden strukturelle und funktionelle
Mafle komplexer kortikaler und sub-kortikaler Netzwerke, die
zuvor mit Legasthenie in Verbindung gebracht wurden, zwis-
chen beiden Gruppen verglichen.

Die Ergebnisse zeigen einen Zusammenhang zwischen dem
Auftreten von Legasthenie, kortikalen Fehlbildungen und re-
duzierter funktioneller Konnektivitit innerhalb des Sprachver-
arbeitungssystems. Im Einzelnen zeigte sich bei Kindern mit
zukiinftigen Problemen im Schriftspracherwerb ein hoherer
Grad kortikaler Faltung vor und nach Beginn der formalen
Schriftsprachanleitung in der Schule. Aufierdem haben wir
voriibergehende Unterschiede in der strukturellen und funk-
tionellen Konnektivitat linkshemipsherischer, perisylvischer Re-
gionen beobachtet. Diese umfassten eine stiarkere Konnektiv-

itdit zwischen dem Planum Temporale und dem Brodmann-
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Areal 6 durch den Fasciculus Arcuatus und reduzierte funk-
tionelle Konnektivitdt zwischen dem priméren auditorischen Ko-
rtex und dem Planum Temporale. Vorhersagemodelle, die auf
diese Ergebnisse aufbauen, zeigten allein und in Kombination
mit relevanten Verhaltensmafsen statistisch signifikante Klassi-
fikationsraten. Diese Befunde erweitern die bisher spéarliche em-
pirische Evidenz neuroanatomischer Auffélligkeiten innerhalb
des Sprachverarbeitungssystems in Kindern mit Problemen im
Schriftspracherwerb vor Eintritt in die Schule (Clark et al., 2014).
Dadurch unterstiitzen die vorliegenden Ergebnisse Theorien, die
Legasthenie ein spezifisches phonologisches Defizit zugrunde
legen. Dieses bedingt moglicherweise geringere phonologische
Fahigkeiten, die wiederum den Aufbau zuverldssiger Assoziatio-
nen zwischen Buchstaben und den zugehorigen Lauten storen
(Snowling, 1998). Auf dieser Grundlage schlage ich vor, dass
atypische kortikale Faltung der primdren Horrinde und gestorte
funktionelle Konnektivitdt zwischen perisylvischen Regionen
moglicherweise als Konsequenz abweichender neuronaler Mi-
gration entstehen. Die Unterschiede in der Faserstirke des Fas-
ciculus Arcuatus konnten so als Folge des Einsatzes artikula-
torischer Kompensationsstrategien, die durch den ventralen pra-
motorischen Kortex unterstiitzt werden (Pugh et al., 2000; Rich-

lan et al.,, 2011; S. E. Shaywitz et al., 1998) entstehen. Eine solches
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Szenario muss in Folgestudien konkretisiert werden. Zudem
sind weitere Studien notwendig, um die vorliegenden Ergeb-
nisse zu validieren und deren Generalisierbarkeit auch auf an-
dere, nicht-alphabetische oder weniger transparente Schriftsys-
teme zu untersuchen.

In der zweiten Studie haben wir den Zusammenhang zwis-
chen kortikaler Plastizitit vom letzten Kindergartenjahr an bis
hin zur zweiten Klasse und der individuellen Leistung in arith-
metischer und visuell-rdumlicher Mengenverarbeitung unter-
sucht. Zu diesem Zweck wurden Daten von 28 Kindern ohne
Lernentwicklungsstorungen ldngsschnittlich ausgewertet. Hin-
weise fiir die Rolle struktureller und funktioneller Plastizitat
in Kernregionen der Mengenverarbeitung im rechten posteri-
oren parietalen Kortex fiir die verhaltenstypische Entwicklung
von Rechenfédhigkeiten finden sich in der Literatur (Cantlon et
al., 2006; Menon, 2010; Rivera et al., 2005). Zusétzlich gibt es
Belege fiir die Einbeziehung von Regionen, die typischerweise
mit Arbeitsgeddchtnis- und Aufmerksamkeitsprozessen verbun-
den werden, bei noch nicht voll ausgereifter mathematischer
Verarbeitung (i.e. préafrontale Areale; Rivera et al., 2005). Mit
steigendem Alter und mathematischer Ubung verringert sich
der Beitrag dieser Prozesse fiir numerische Kognition, wahrend

die funktionelle Spezialisierung des linken posterioren pari-
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etalen Kortex voranschreitet (Rivera et al., 2005). Die zusétzliche
Beteiligung des medialen Schldfenlappens fiir die Entwicklung
mathematischer Verarbeitung weist zudem auf die Bildung und
Konsolidierung gedéchtnisbasierter Strategien fiir mathematis-
ches Problemltsen hin (Qin et al., 2014).

Die Ergebnisse der zweiten Studie zeigen Verbindun-
gen zwischen frither arithmetischer und visuell-raumlicher
Mengenverarbeitung—zwei Grundkompetenzen numerischer
Fahigkeiten—und kortikaler Reorganisation innerhalb recht-
shemisphérischer Areale. Im Einzelnen korrelierten arithmetis-
che Fahigkeiten signifikant mit Plastizitat kortikaler Faltung des
rechten Sulcus intraparietalis und kortikaler Dicke der Spitze
des Temporallappens. Gleichzeitig haben wir gezeigt, dass
visuell-rdumliche Mengenverarbeitung signifikant mit Verdn-
derungen der kortikalen Dicke im Lobulus parietalis superior
und im Gyrus praecentralis, sowie mit Plastizitdt der kortikalen
Faltung im mittleren Teil des Frontallappens zusammenhéngt.
Somit legen unsere Ergebnisse eine Aufteilung des Parietal-
lappens in den Sulcus intraparietalis als doméanenspezifisches
Zentrum der neurale Reprédsentationen von Zahlen und Men-
gen, und dem Lobulus parietalis superior als ein Areal, das
die visuell-rdumliche Ausrichtung von Aufmerksamkeit unter-

stiitzt, nahe (Dehaene et al., 2003). Des Weiteren stimmen die Be-
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funde in Regionen, die mit Prozessen des Arbeitsgeddchtnisses
verbunden sind, mit vorangegangenen Studien iiberein, die
zeigten, dass die Arbeitsgeddchtnisleistung einen wesentlichen
Teil der behavioralen Varianz in mathematischen Aufgaben
erklart (Raghubar et al.,, 2010). Angesichts der ausschliefdlich
rechts-hemisphéirischen Befunde schlage ich vor, dass rechts-
seitige Prozesse im Besonderen die initiale Entwicklung von
Rechenkompetenzen unterstiitzen. Daraus folgt die Hypothese,
dass linksseitige Befunde, wie in Studien mit Schulkindern
gezeigt (Rivera et al., 2005), durch spitere Ubung mit und Rei-
fung von mathematischen Prozessen entstehen. Dies kénnte Un-
tersuchungsgegenstand zukiinftiger Studien sein.

Insgesamt beleuchtet die vorliegende Arbeit Entwicklungsver-
laufe, die dem Erwerb von Schriftsprach- und Rechenkompetenz
zugrunde liegen. Somit stellen die Befunde einen wesentlichen
Schritt in Richtung eines umfassenderen Verstindnisses der
Entstehung komplexer kognitiver Fahigkeiten und spezifischer
Fehlentwicklungen, die moglicherweise Lernstérungen hervor-
rufen, dar. Zum einen legen die vorliegenden Ergebnisse nahe,
dass der Erwerb und die Entwicklung komplexer Fahigkeiten
mit Plastizitit von Netzwerken im Gehirn zusammenhédngen,
die doménenspezifische sowie doméneniibergreifende Funk-

tionen unterstiitzen (z.B. Mengen-, visuell-rdumliche und Ar-



ZUSAMMENFASSUNG DER DISSERTATION 215
beitsgedédchtnisprozesse fiir Rechenkompetenz). Zum anderen
deuten sie darauf hin, dass Storungen in Regionen, die sehr spez-
ifische Aspekte komplexer kognitiver Fahigkeiten unterstiitzen,
schwerwiegende Konsequenzen fiir den Erwerb haben kon-
nen (z.B. eine Beeintrdchtigung der phonologischen Sprachver-

arbeitung, die den Schriftspracherwerb behindert).
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