
Detaillierte Untersuchungen der
Oxidationschemie verschiedener
konventioneller und alternativer

Brennstoffe und Brennstoffgemische

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

Universität Bielefeld
Fakultät für Chemie

vorgelegt von
Julia Pieper

März 2018





Danksagung

Die vorliegende Arbeit wurde im Zeitraum von Juli 2015 bis März 2018 in der Arbeits-
gruppe Physikalische Chemie I der Fakultät für Chemie an der Universität Bielefeld unter
der Leitung von Frau Prof. Dr. Katharina Kohse-Höinghaus angefertigt. Ihr möchte ich
herzlich für die gute Betreuung, die Bereitstellung spannender Forschungsthemen und
-projekte und die stetige Unterstützung danken. Darüber hinaus konnte ich während dieser
Zeit an einigen internationalen Messkampagnen und Konferenzen teilnehmen, die meine
persönliche Entwicklung stark vorangebracht haben. Für die Vielzahl dieser Möglichkeiten
möchte ich mich aufrichtig bedanken.

Bei Prof. Dr. Thomas Hellweg möchte ich mich für die freundliche Übernahme des Zweit-
gutachtens und die schnelle Bearbeitung bedanken.

Großer Dank gilt der Arbeitsgruppe PC I, in der ich mich in all der Zeit immer sehr
wohlgefühlt habe. Ein überaus guter Zusammenhalt und ein mehr als angenehmes Arbeits-
klima haben die vielen Stunden in Form von Kaffeepausen, KuDo’s, Betriebsausflügen
und Weihnachtsfeiern geradezu wie im Flug vergehen lassen. Ein besonderer Dank gilt
meinen Mitstreitern der Massenspektrometrie-Gruppe Eike Bräuer, Lena Ruwe, Steffen
Schmitt und Julia Wullenkord, sowie den ehemaligen Mitgliedern Patrick Oßwald, Marina
Schenk, Kai Moshammer, Daniel Felsmann und Christian Hemken für stetige Hilfs- und
Diskussionsbereitschaft.

Auf der experimentellen Seite gilt mein Dank vor allem Harald Waterbör für techni-
sche Hilfe jeglicher Art und der elektronischen und mechanischen Werkstatt für die allseits
zügige Hilfe in Notlagen. Außerdem möchte ich mich bei meinen Forschungspraktikanten
und Masteranden Steffen Schmitt und Raphael Dalpke für die außerordentlich gut geleistete
Arbeit im Labor bedanken.

Regine Schröder möchte ich für die viele organisatorische Hilfe in jeglicher Hinsicht danken.

Für die stetige Hilfe bei IT-Problemen, der Programmierung von kleinen Helfer-Routinen
und den immer wieder anregenden und aufmunternden Gesprächen danke ich Michael
Letzgus-Koppmann herzlich. Ohne dich wären wir hier alle verloren.

Im Rahmen dieser Arbeit sind einige Veröffentlichungen entstanden, die ohne die tol-
le Zusammenarbeit mit vielen nationalen und internationalen Partnern nicht möglich
gewesen wäre. Deshalb möchte ich mich besonders bei Luc-Sy Tran und Hanfeng Jin



bedanken. Darüber hinaus gilt mein Dank Christian Hemken, Rene Büttgen und Alexander
Heufer vom Institut für Physical Chemical Fundamentals of Combustion (PCFC) der
RWTH Aachen, sowie Julia Krüger, Gustavo Garcia und Laurent Nahon vom Synchrotron
SOLEIL. Für einen spannenden und sehr lehrreichen aber auch spaßigen Aufenthalt an
der Advanced Light Source (ALS) in Berkeley, USA, möchte ich dem Flame Team und
insbesondere Nils Hansen danken.

Für eine immer sehr angenehme Stimmung im Büro und nicht zuletzt den Gewinn einer
tollen Freundin danke ich Lena Ruwe von Herzen.

Weiterhin möchte ich mich bei Mona Remmers und Isabelle Graf für das Korrektur-
lesen dieser Arbeit bedanken.

Abschließend danke ich meiner Familie für die stetige Unterstützung und das Verständnis
seit Beginn meines Studiums, zu dessen Gelingen ihr letztendlich einen großen Teil beige-
tragen habt. Meinem Mann Matthias Pieper danke ich insbesondere für die bisherige tolle
Zeit und blicke gespannt auf unsere gemeinsame Zukunft. Ohne dich wäre ich jetzt nicht
hier.



Abstract

It is well known that emissions from combustion processes are harmful and dangerous for
climate, air quality, environment and health. However, a significant increase of anthro-
pogenic CO2, particulate matter, and soot has been measured over the past years. Since
more than 80 % of the global primary energy is still covered by fossil energy sources, an
immediate substitution by renewable energy is not yet possible and efficient and cleaner
alternatives are needed for the transition period in the next 10-20 years.

To achieve such cleaner combustion goals, several changes in different fields should be
considered, while in engine combustion two main approaches are pursued. These suggested
developments include the technical approach of a homogeneous low-temperature combustion,
which is supposed to lead to a lower emission of pollutants, as well as the use of alternative
fuels (e.g. alcohols, ethers, esters) with a proposed cleaner emission than prototypical fuels.
However, due to their different molecular structures including heteroatoms, they often
exhibit a very different species distribution in their combustion. The respective chemical
composition can lead to the emission of toxic species or pollutants that can have negative
influences on human health and the atmosphere by photochemical reactions. Therefore,
the combustion behavior of these types of fuels needs to be analyzed in more detail to gain
understanding of their complex reaction pathways, especially in the low-temperature regime.

Technical studies often analyze global parameters of combustion as e.g. ignition delay times,
flame speeds or the concentration of unburnt hydrocarbons at the tailpipe. However, from
the chemical point-of-view, the combustion process is highly complex. Therefore, the aim of
this work was to achieve detailed knowledge about specific reaction pathways in the combus-
tion process of different fuels and fuel mixtures to help evaluating the potential of possible
alternative fuels and fuel additives. For this purpose, laminar premixed low-pressure flames
and a laminar flow reactor were used as model experiments on a laboratory scale to cover a
broad range of the relevant phase space including temperature, pressure and stoichiometry.
The species distributions in different oxidation processes were analyzed by molecular-beam
mass spectrometry serving as a universal technique to measure a multitude of species at
the same time. A combination of different ionization techniques covering electron impact
ionization, photoionization and photoelectron/photoion coincidence spectroscopy has been
used to cross-validate the obtained data and to gain complementary information for a
detailed structure analysis of species occuring in the oxidation processes. Therefore measu-
rements at Bielefeld University were combined with several measurements at large-scale
setups using synchrotron-generated vacuum-ultraviolet radiation from the Advanced Light
Source in Berkeley, USA, the National Synchrotron Radiation Laboratory in Hefei, China



and the SOLEIL Synchrotron in Gif-sur-Yvette, France. Furthermore, the experimental
data has been complemented by specific and internally consistent reference measurements,
theoretical calculations and kinetic modeling as a connection between laboratory-scale
experiments and technical processes.

The main focus of this work was the investigation of alternative fuels and their influ-
ences on the combustion process of mixtures, as these are already used on the road (e.g.
E10, biodiesel). Adding alternative fuels to prototypical compounds can have a significant
impact on the reacitivity and the reaction pathways of the oxidation leading to interaction
between species rising from the oxidation process. Currently, only little information is
available on these mixing effects. Therefore, several pure fuels as well as mixtures of prototy-
pical and alternative fuel candidates have been analyzed in the low- and high-temperature
environment to investigate the influence of fuel additives and interactive effects in mixtures.
As a fundamental result of this work it could be confirmed that a combination of several
experimental techniques together with theoretical calculations and kinetic modeling is very
important and necessary to obtain the complex information needed on the combustion
process of fuels. The results revealed that the molecular structure of the fuel molecules as
well as the oxidation environment are of significant influence for the reaction pathways
and therefore the formation of possible pollutants. For the addition of alcohols and ethers
very strong and partially contrary influences on the fuels reactivity and the resulting
species distribution could be observed for the low- and high-temperature regime. While
in a high-temperature environment only small effects and mainly on the formation of
soot precursors were found, the reactivity of the mixtures was dramatically influenced in
a low-temperature environment leading to a different species distribution, enabling the
possibility to influence the combustion process by changing the oxidation environment and
a selective addition of specific components. Furthermore, the experimental results of this
work have contributed to the further development and validation of several kinetic models
by detecting new species and possible reaction pathways that have not been included in
simulations before, but can be used to improve the predictability of such mechanisms in
the future.
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KAPITEL 1
Einleitung

Die aus Verbrennungsprozessen entstehenden Emissionen haben nachweislich einen schädli-
chen Einfluss auf das Klima, die Luftqualität, die Umwelt und die Gesundheit [7, 8]. Die
globale Emission von CO2 ist von 1990 bis 2015 um mehr als 60 % gestiegen, wobei 2015
der anthropogene CO2-Anteil bereits bei 94 % lag [9]. Jedoch ist nicht nur der CO2-Ausstoß
relevant, auch die Emission von Feinstaub und Ruß hat einen signifikanten Einfluss auf das
Klima [10], zählt zu den größten globalen Gesundheitsbedrohungen und führt nachweislich
zu schweren Atemwegs- und Herz-Kreislauf-Erkrankungen [11–17]. Im Hinblick auf all
diese Aspekte ist vor allem ein kritisches Überdenken der Strategien im Transportsektor
notwendig, jedoch sind auch viele andere Bereiche für diese Entwicklung verantwortlich.
Eine reine Umstellung auf Elektromobilität reicht somit nicht aus, da nicht zuletzt auch die
Elektroenergie zum größten Teil aus fossilen Energieträgern produziert wird [18]. Heutzuta-
ge wird insgesamt immer noch mehr als 80 % des globalen Primärenergiebedarfs aus fossilen
Energiequellen abgedeckt [7, 8, 19]. Eine vollständige Substitution durch erneuerbare Ener-
gie (z.B. aus Wind, Sonne, Wasser) ist zwar rein technisch möglich [20], jedoch aufgrund
der starken Fluktuation im Hinblick auf die Verfügbarkeit solch natürlicher Ressourcen
schwierig. Mit dem weiterhin steigenden Energiebedarf ist für die nähere Zukunft keine
Prognose für eine vollständige Substitution fossiler Brennstoffe möglich [7, 8, 21]. Die
Übergangszeit mit komplementärer Nutzung fossiler und erneuerbarer Energien wird daher
noch mindestens die nächsten 10-20 Jahre andauern. Daher ist es besonders wichtig, auch
im Flüssigbrennstoffbereich Alternativen zu erforschen, die über eine sauberere Verbren-
nung im Vergleich zu momentan genutzten Kraftstoffen verfügen. Dazu existieren bereits
vielversprechende Ansätze und Konzepte, welche jedoch ein interdisziplinäres Wissen über
Brennstoffe, Energieumsätze, technische Infrastruktur und die motorische Verbrennung
kombinieren müssen [22].

Im Bereich der motorischen Verbrennung gibt es zwei wesentliche Ansatzmöglichkeiten,
diese Ziele zu erreichen. Eine CO2-Reduktion kann durch effizientere Verbrennungsstrategi-
en sowie durch Brennstoffe mit verringerter Kohlenstoffsignatur ermöglicht werden. Zum
einen ist die technisch relevante homogenisierte Niedertemperaturverbrennung zu nennen,
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2 1 Einleitung

bei der durch eine möglichst gleichmäßige Vormischung von Brennstoff und Oxidator sowie
einer Reduktion der Verbrennungstemperatur eine effiziente Verbrennung erreicht sowie
der Ausstoß von Schadstoffen signifikant verringert werden soll. Dasselbe Ziel kann mithilfe
der Nutzung alternativer Kraftstoffe verfolgt werden, die aufgrund von unterschiedlichen
Molekülstrukturen ein verändertes Emissionsverhalten im Vergleich zu herkömmlichen
Kraftstoffen aufweisen.
Im technischen Bereich werden dazu vorrangig Messungen von globalen Parametern der
Verbrennung, wie z.B. Zündverzugszeiten, Flammengeschwindigkeiten oder der Konzen-
tration von Kohlenwasserstoffgemischen am Auspuff unter verschiedenen Bedingungen
durchgeführt, um wesentliche Erkenntnisse für eine technische Andwendbarkeit und Nutz-
barkeit von alternativen Kraftstoffen zu erhalten. Der Verbrennungsprozess ist jedoch
aus chemischer Sicht sehr komplex. Daher wurden in dieser Arbeit spezifische Details
der Verbrennung in Umgebungen untersucht, die auch tatsächlich chemisch analysiert
werden können. Dazu wurden Modellexperimente eingesetzt, die dazu dienen, ein um-
fassendes chemisches Verständnis komplexer Verbrennungsprozesse und Reaktionswege
zu erhalten. Dies ist insbesondere im Hinblick auf das noch nicht ausreichend erforschte
Schadstoffbildungspotential alternativer Kraftstoffe und Kraftstoffzusätze wichtig, da diese
oftmals ein sehr unterschiedliches Emissionsverhalten im Vergleich zu momentan genutzten
Kraftstoffen aufweisen und auch Schadstoffe emittieren, die ebenfalls kritisch im Bezug
auf Klima, Atmosphäre und Gesundheit betrachtet werden müssen und unter Umständen
bisher gesetzlich nicht reguliert sind [23].

Im Rahmen dieser Arbeit wurden mit der laminaren vorgemischten Niederdruckflam-
me und dem laminaren Strömungsreaktor zwei verschiedene Modellexperimente verwendet,
die einen größeren Bereich des relevanten Phasenraums aus Druck, Temperatur und Stö-
chiometrie abdecken. Als Bindeglied zwischen Laborexperimenten und technisch relevanten
Prozessen werden üblicherweise kinetische Modelle verwendet. Solche Modelle können
mithilfe experimenteller Ergebnisse, wie sie in dieser Arbeit vorgestellt werden, weiterent-
wickelt werden. Bisher sind solche Modelle vorrangig für den Bereich von Molekülen mit
ein bis vier Kohlenstoffatomen gut entwickelt und erprobt [23–25], für größere Moleküle
und Mischungen verschiedener Brennstoffmoleküle sind jedoch weiterhin eine Vielzahl
experimenteller Daten zur Entwicklung und Validierung notwendig.

In dieser Arbeit wurde die Molekularstrahl-Massenspektrometrie (Molecular-beam mass
spectrometry, MBMS) als universelle Detektionsmethode eingesetzt, da sie durch die gleich-
zeitige Analyse einer Vielzahl an Spezies eine wertvolle und etablierte Methode in vielen
Bereichen, wie z.B. Pyrolyse, Photolyse und Oxidation darstellt [26–34]. Damit können
auch im Verbrennungsbereich nützliche Informationen für die Modellentwicklung und die
Erprobung neuer Betriebsbedingungen gewonnen werden [35, 36]. Die Nutzung verschiede-
ner Ionisationstechniken ist dabei sowohl im Hinblick auf die Kombination unterschiedlicher
Erkenntnisse als auch eine Kreuzvalidierung verschiedener Experimente sinnvoll. Daher
wurden zunächst quantitative Messungen an der Universität Bielefeld mit der relativ einfach
anwendbaren Elektronenstoßionisation (EI) [37, 38] durchgeführt, die jedoch aufgrund einer
breiten Elektronenverteilung keine scharf definierte Ionisationsenergie liefert und damit
über die reine Detektion der Masse keine Isomere voneinander getrennt werden können.
Dies ist hingegen mithilfe der Photoionisation (PI) möglich [26, 27, 39], da dabei mittels
synchrotrongenerierter Vakuumultravioletstrahlung Photonen mit einer sehr schmalen
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Energieverteilung erzeugt werden und somit eine zusätzliche Identifizierung und Separation
von Isomeren ermöglicht wird. Solche Messungen wurden an der Advanced Light Source
(ALS), Berkeley, USA und dem National Synchrotron Radiation Laboratory, Hefei, China
durchgeführt und ebenfalls für die Ergebnisse dieser Arbeit genutzt. Auch eine Quantifizie-
rung der beobachteten Spezies mittels PI ist möglich, jedoch gelangt auch diese Methode
bei Spezies mit nah beieinanderliegenden Ionisationsenergien an ihre Grenzen. Eine zusätz-
liche Kombination mit Messungen der doppelt abbildenden Photoelektronen-Photoionen
Koinzidenz-Spektroskopie (i2PEPICO), die am Synchrotron SOLEIL, Gif-sur-Yvette, Frank-
reich durchgeführt wurden, liefert eine weitere Identifizierungsmöglichkeit über die Messung
individueller Photoelektronenspektren (PES) [40]. Die Nutzung dieser Methode ist erst
kürzlich in den Fokus der Verbrennungsdiagnostik gerückt und die aktuelle Forschung
liefert vielversprechende Ergebnisse [2, 41–43]. All diese Methoden liefern eine Vielzahl
von Informationen zur Analyse von Verbrennungsprozessen, sowohl qualitativ als auch
quantitativ, und eine Kombination mehrerer Analysemethoden ist im Bereich komplexer
Prozesse nicht nur sinnvoll, sondern unbedingt notwendig. Darüber hinaus gilt zu beachten,
dass zur Identifizierung und Quantifizierung von in der Verbrennung relevanten Spezies
komplexe Informationen sowie Literaturdaten in Form von Ionisationsquerschnitten oder
Photoelektronenspektren bekannt sein müssen, die oft bisher nicht gemessen wurden. Eine
theoretische Berechnung solcher Parameter ist zwar ebenfalls möglich, aber nicht weniger
zeitintensiv.

In dieser Arbeit wurde daher eine Kombination aus EI-MBMS-, PI-MBMS-Experimenten
und PEPICO-Messungen zur zusätzlichen Identifizierung spezifischer Isomere genutzt.
Dazu wurden die Photoelektronenspektren einer Vielzahl von möglichen Referenzsubstan-
zen gemessen und teilweise auch theoretisch berechnet. Die Ergebnisse dieser Arbeiten
dienen insbesondere dem detaillierten Verständnis der während der Verbrennung ablaufen
Reaktionsmechanismen und konnten für die Verbrennung von Cyclopenten, iso-Pentan
und Diethylether wertvolle Erkenntnisse für die weitere Modellentwicklung liefern. In Kap.
3 sind einige der in [1] veröffentlichten Ergebnisse zusammengefasst.

Ein zentraler Fokus dieser Arbeit lag auf der Analyse alternativer Kraftstoffe. In die-
sem Bereich sind besonders Stoffklassen wie Alkohole, Ether und Ester im Gespräch
[23, 35, 44], da sie zum Teil aus Biomasse produziert werden können und nachweislich weni-
ger Schadstoffe emittieren als herkömmliche Kraftstoffe [23, 45–47]. Durch ihre veränderte
molekulare Struktur werden jedoch auch signifikante Unterschiede in der Verbrennung
erhalten, welche insbesondere durch enthaltene Sauerstoffatome zu einem erhöhten Ausstoß
von toxischen Carbonylverbindungen führen [48–50] und einen signifikanten Einfluss auf
photochemische Reaktionen in der Atmosphäre haben können [51]. Im Fokus dieser Arbeit
standen insbesondere Mischungen alternativer und prototypischer Kraftstoffe, da selbige
schon in Form von E10 und Biodiesel im Alltag relevant sind. Ein interessanter Kraftstoff
mit technisch relevanten Eigenschaften ist Diethylether. Dieser wurde zunächst individuell
und anschließend auch in Mischungen in laminaren vorgemischten Niederdruckflammen
untersucht. Im Hinblick auf die Auswirkung der Brennstoffstruktur auf die Schadstoffbil-
dung wurden dann die Isomere Diethylether und n-Butanol - ebenso ein vielversprechender
Kraftstoff - in Mischungen mit n-Butan analysiert. Die in [3, 4] veröffentlichten Ergebnisse
sind in Kap. 4 zusammengefasst.
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Im Anschluss an die im Hochtemperaturbereich analysierten Niederdruckflammen wurden
die Auswirkungen von Kraftstoffadditiven ebenfalls im Niedertemperaturbereich untersucht.
Viele motorische Anwendungen beruhen auf dem Konzept der homogenisierten Niedertem-
peraturverbrennung [52, 53]. Durch eine niedrigere Temperatur kann eine Reduktion der
Rußbildung sowie der NOx-Emission erzielt werden [54, 55], wobei durch die langsamer
ablaufenden Reaktionen vorrangig die Reaktionen der Brennstoffradikale mit Sauerstoff
zu Peroxylradikalen dominieren [56–58]. Durch diese Einflüsse ergeben sich deutlich ver-
änderte Reaktionswege über sogenannte Niedertemperaturspezies, deren Strukturen und
Bildungswege detaillierter erforscht werden müssen. In Gemischen sind zudem in diesem
Temperaturbereich komplexe Interaktionen der Verbrennungsreaktionen möglich, die die
Zündung beeinflussen und die bisher nur sehr wenig erforscht wurden. Brennstoffstruktur-
spezifische, nicht regulierte Schadstoffe sind möglicherweise die Konsequenz der langsamen
Reaktionszeiten. In dieser Arbeit wurde detalliert die Auswirkung der Addition zweier
potentieller Biokraftstoffe, nämlich Dimethylether und Ethanol, auf die Niedertemperatur-
oxidation eines Kohlenwasserstoffes untersucht. Die Ergebnisse wurde bereits in Form des
Manuskripts [5] zur Veröffentlichung akzeptiert und sind in Kap. 5 zusammengefasst.

Die Entwicklung möglichst schadstoffarmer Biokraftstoffe ist ein sehr aktuelles Thema.
Die Verbrennung von kleinen Methylketonen ist kürzlich in den Fokus der Diskussionen
gerückt, da diese eine hohe Klopffestigkeit aufweisen und oft mikrobiologisch herstellbar
sind [59, 60]. So wurde z.B. 2-Butanon vom Exzellenzcluster "Maßgeschneiderte Kraftstoffe
aus Biomasse"(Tailor-Made Fuels from Biomass, TMFB) der RWTH Aachen als möglicher
Zukunftsbrennstoff vorgestellt. Bisherige Untersuchungen zu diesem Brennstoff [61–63]
zeigten vielversprechende Ergebnisse im Hinblick auf eine niedrige Schadstoffbildung wie
z.B. die Reduktion von Ruß, NOx und unverbrannten Kohlenwasserstoffen [46, 61]. Auf-
grund seiner höheren Energiedichte ist 2-Pentanon interessant, obwohl es bisher nicht aus
Biomasse herstellbar ist. Daher wurde in dieser Arbeit die Hochtemperaturkinetik von
2-Pentanon in einer laminaren vorgemischten Niederdruckflamme besonders im Hinblick auf
mögliche Unterschiede in der Verbrennungskinetik zu 2-Butanon untersucht. Die Ergebnisse
sind zur Veröffentlichung eingereicht [6] und in Kap. 6 zusammengefasst.



KAPITEL 2
Theoretische und experimentelle Grundlagen

In diesem Kapitel werden die zum Verständnis der Arbeit benötigten theoretischen Grund-
lagen zu den untersuchten Verbrennungsprozessen sowohl im Hochtemperatur- als auch im
Niedertemperaturbereich erläutert sowie die experimentellen Untersuchungsobjekte und
die verwendete Molekularstrahl-Massenspektrometrie kurz vorgestellt. Außerdem wird eine
kurze Übersicht über die Datenauswertung und die Quantifizierung für die verschiedenen
Experimente gegeben. Da viele der experimentellen Ergebnisse mit kinetischen Model-
lierungen verglichen werden, werden abschließend die verwendeten Simulationsmethoden
beschrieben.

2.1 Verbrennungsprozesse
Bei einer Verbrennung wird ein Brennstoff mit einem Oxidator in einer schnell ablaufenden
Folge exothermer, meist radikalischer Kettenreaktionen zu den Verbrennungsprodukten
umgesetzt [64]. Je nach Verhältnis von Brennstoff und Oxidator wird die Verbrennung
brennstoffreich oder brennstoffarm genannt, während die stöchiometrische Verbrennung
den Fall beschreibt, in dem Brennstoff und Oxidator stöchiometrisch zueinander vorliegen
und bei der Verbrennung eines Kohlenwasserstoffes damit vollständig zu Kohlendioxid und
Wasser reagieren [56]. Eine bespielhafte verallgemeinerte Reaktionsgleichung dieser Art
zeigt Gl. 2.1. Die daraus resultierende Stöchiometrie 𝜑 der Oxidation gibt das Verhältnis
von Brennstoff zu Oxidator normiert auf den stöchiometrischen Fall an (s. Gl. 2.2).

𝐶x𝐻y𝑂z + 𝛽 O2 → 𝑥 CO2 + 0.5 · 𝑦 H2O (2.1)

mit 𝛽 = 𝑥 + 0.25 · 𝑦 − 0.5 · 𝑧

𝜑 =
𝑛Brennstoff
𝑛Oxidator

𝑛Brennstoff,stöch.
𝑛Oxidator,stöch.

= 𝑛Brennstoff
𝑛Oxidator

· 𝛽 mit 𝑛: Stoffmenge (2.2)

Die ablaufenden Kettenreaktionen bei der Verbrennung unterscheiden sich im Allgemei-
nen stark in Abhängigkeit von den vorliegenden Umgebungsbedingungen (Druck und
insbesondere Temperatur). Dies führt zu sehr unterschiedlichen Reaktionsmechanismen
in verschiedenen Temperaturbereichen. Die sich dabei hauptsächlich unterscheidenden
Reaktionswege sind in Abb. 2.1 nach [65, 66] schematisch und verallgemeinert dargestellt.
Typische Reaktionsklassen für beide Bereiche werden im Folgenden kurz erläutert.
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Abbildung 2.1: Reaktionswege für den (a) Hochtemperatur- und (b) Niedertemperaturbereich,
Reaktionsklassen adaptiert aus [65, 66].

Im Hochtemperaturbereich, der für die hier untersuchten Systeme deutlich oberhalb von
900 K beginnt, findet zunächst eine H-Abstraktion vom Brennstoffmolekül vorrangig durch
H- und OH-Radikale statt. Durch anschließende C-H- bzw. C-C-𝛽-Spaltung werden dann
entweder Olefine oder andere Spaltungsprodukte (stabile Spezies + Radikal) gebildet. Im
Niedertemperaturbereich (hier ca. 500-900 K) findet die erste H-Abstraktion hauptsächlich
durch OH- und HO2-Radikale statt. Für eine anschließende 𝛽-Spaltung ist bei niedrigerer
Temperatur jedoch nicht genügend Energie vorhanden, weshalb es hier vorrangig zu einer
Anlagerung eines Sauerstoffmoleküls kommt. Das daraus gebildete Peroxylradikal RO2
kann dann über mehrere in Abb. 2.1 dargestellte Reaktionswege weiter reagieren, die die
Gesamtreaktivität des Systems steigern oder verringern können, je nachdem ob und wie viele
weitere Radikale dabei gebildet werden. Zum Beispiel werden durch die Reaktion über das
Isomerisierungsprodukt QOOH zum Ketohydroperoxid und dessen anschließende Spaltung
der Peroxidgruppe mehr OH-Radikale produziert, als für die initiale H-Abstraktion vom
Brennstoff benötigt werden, was zu einer erheblichen Steigerung der Gesamtreaktivität des
Systems führt. Die Stabilität solcher peroxidischen Spezies ist jedoch sehr gering und wird
durch eine Erhöhung der Temperatur stark reduziert. In diesem Fall kommt es vermehrt
zu Kettenabbruchreaktionen wie der Bildung von Olefinen sowie zu weniger reaktiveren
HO2-Radikalen. Im Bereich von ca. 800-1200 K spricht man von einem Übergangsbereich,
da hier sowohl die Reaktionsklassen der Hoch- als auch der Niedertemperaturkinetik auf-
treten können. Die Auswirkungen dieser unterschiedlichen Reaktionswege sind in Abb. 2.2
dargestellt.
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Abbildung 2.2: Typische Edukt-, Produkt- und Intermediatverläufe für die Oxidation eines
Brennstoffs (a) ohne und (b) mit Niedertemperaturkinetik.

Zündunwillige Brennstoffe mit einer hohen Oktanzahl1 zeigen erst bei höheren Temperatu-
ren eine Reaktivität und somit einen Brennstoffumsatz (Abb. 2.2a), während Brennstoffe
mit einer niedrigen Oktanzahl bereits eine ausgeprägte Kinetik im Niedertemperaturbereich
aufweisen und einen sogenannten NTC-Bereich (NTC: Negative Temperature Coefficient)
zeigen können. Dies bedeutet, dass mit steigender Temperatur der Brennstoffabbau zu-
nächst zurückgeht und die Reaktivität des Systems abnimmt (s. Abb. 2.2b).

Aufgrund der hier vorgestellten unterschiedlichen Reaktionsabläufe ist es wichtig, den
Brennstoffabbau unter verschiedenen Konditionen (Druck, Temperatur, Stöchiometrie) zu
untersuchen, um ein möglichst breites Parameterfeld abzudecken.

2.2 Modellexperimente
In dieser Arbeit wurden zwei verschiedene Modellexperimente verwendet, die jeweils stark
unterschiedliche Randbedingungen darstellen. Die vorgemischte laminare Niederdruckflam-
me wird bei niedrigem Druck 𝑝 (hier 40 mbar) untersucht und spiegelt vorrangig Reaktionen
des Hochtemperaturbereichs wider, da die vorliegende Flammentemperatur 𝑇 im Bereich
von 1000-2000 K liegt. Um hingegen die Niedertemperaturchemie zu untersuchen, wurde
ein laminarer Strömungsreaktor verwendet, der bei einem Umgebungsdruck von 970 mbar
und in einem Temperaturbereich von 450-1100 K betrieben wird. Im Folgenden werden die
verwendeten Systeme und ihre Spezifikationen kurz vorgestellt.

2.2.1 Vorgemischte laminare Niederdruckflamme
Die vorgemischte laminare Niederdruckflamme eignet sich für die Untersuchung von Ver-
brennungsprozessen im Hochtemperaturbereich besonders gut, da sie parallel zur Austritts-
öffnung eine konstante Intermediatkonzentration gewährleistet. Idealerweise ist durch diese

1 Klassifizierung der Zündunwilligkeit von Brennstoffen, meist Angabe als RON (Research Octane Number).
Definitionsgemäß ist die RON für 2,2,4-Trimethylpentan (”Isooktan”) mit einem Wert von 100 maximal
und liegt für n-Heptan bei 0. Die RON gibt an, wieviel Isooktan in einer Mischung mit n-Heptan
vorliegen muss, um die gleiche Klopffestigkeit wie der zu prüfende Kraftstoff aufzuweisen [67].
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Geometrie der Ausströmung die Flussgeschwindigkeit des Reaktionsgemisches an jeder
Stelle der Flamme identisch und die Konzentration von Edukten, Produkten und Ver-
brennungsintermediaten daher nur eine Funktion der Reaktionszeit. Die Position ℎ (Höhe
oberhalb der Brenneroberfläche) innerhalb der Flamme korreliert somit direkt mit dem
Reaktionsfortschritt, wodurch quasi-eindimensionale Molenbruchprofile erhalten werden
können. Ein solches Beispiel ist in Abb. 2.3 dargestellt.

Abbildung 2.3: (a) Foto einer brennstoffreichen vorgemischten Niederdruckflamme und
schematische Darstellung der darin vorliegenden Zonen. (b) Typische Konzentrationsprofile
von Edukten, Intermediaten und Produkten und der Verlauf der Flammentemperatur in
Abhängigkeit von der Höhe über der Brenneroberfläche ℎ (horizontal dargestellt).

Die laminare Vormischflamme kann grob in die drei Zonen aus Abb. 2.3a unterteilt werden.
In der Vorheizzone direkt oberhalb der Brenneroberfläche liegen Brennstoff und Oxidator
vor. In der sich anschließenden Reaktionszone finden die eigentlichen chemischen Reaktio-
nen über die Bildung von Intermediaten statt. Im weiteren Reaktionsverlauf finden in der
Rekombinationszone Kettenabbruchreaktionen statt und stabile Produkte werden gebildet.
In der vergleichsweise heißen und druckarmen Umgebung dieser Flammen werden in der
Regel Hochtemperaturspezies über die Reaktionswege in Abb. 2.1a gebildet. Die Detektion
von typischen Niedertemperaturspezies (vgl. Abb. 2.1b) ist aufgrund der rasch ansteigen-
den Temperatur eher nicht zu erwarten, jedoch wurden oxygenierte Spezies, die z.B. den
zyklischen Ethern zugeordnet wurden, auch in der Vorheizzone der Flamme (die mit einer
niedrigeren Temperatur korreliert, vgl. Temperaturprofil in Abb. 2.3b) gefunden [37, 61].
Solche Spezies können zwar detektiert werden, dominieren die Flammenchemie jedoch nicht.

Messungen in laminaren vorgemischten Niederdruckflammen wurden im Rahmen die-
ser Arbeit sowohl an der Universität Bielefeld als auch an der Advanced Light Source
(ALS) in Berkeley, USA und dem National Synchrotron Radiation Laboratory in Hefei,
China durchgeführt. Alle drei Systeme folgen einem sehr ähnlichen Aufbau, sodass die
erhaltenen Ergebnisse aller Apparaturen gut miteinander vergleichbar sind. Die Flamme
wird dabei jeweils auf einer Brennermatrix innerhalb einer Brennerkammer stabilisiert,
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wobei ein konstanter Druck vorgegeben wird. Brennstoff und Oxidator werden unterhalb
der Brennerkammer partiell vorgemischt und strömen anschließend gleichmäßig durch die
Brennermatrix in die Brennerkammer. Gasförmige Brennstoffe werden dazu über Mas-
seflussregler mit einer Ungenauigkeit von ca. 5% des eingestellten Masseflusses direkt
eingeleitet, während flüssige Brennstoffe zunächst über ein Verdampfungssystem konstant
in die Gasphase überführt werden. Um die in Abb. 2.3b gezeigten Speziesprofile über den
entsprechenden Höhenbereich über der Brenneroberfläche zu erhalten, kann der Brenner
mit einem Schrittmotor verfahren werden. Dadurch kann die Probenahme an verschiedenen
Orten in der Flamme erfolgen und die Zusammensetzung der Spezies in Abhängigkeit vom
Reaktionsfortschritt analysiert werden.

2.2.2 Laminarer Strömungsreaktor
Im Rahmen dieser Arbeit wurden Messungen am laminaren Strömungsreaktor an der Uni-
versität Bielefeld durchgeführt. Ein solches System eignet sich besonders gut für die gezielte
Untersuchung von einigen der in Abb. 2.1b vorgestellten Niedertemperaturspezies und
bietet aufgrund seiner einfachen Geometrie eine vergleichsweise einfach zu beschreibende
Strömungsdynamik, was insbesondere für die Modellierbarkeit von großer Bedeutung ist.
Eine schematische Darstellung des in dieser Arbeit verwendeten laminaren Strömungsre-
aktors kann Abb. 2.4a entnommen werden. Der eigentliche Reaktor besteht aus einem
Quarzglasrohr mit einer Länge von 1.30 m, einem Innendurchmesser von 8 mm und einem
Außendurchmesser von 10 mm, welches durch acht unabhängig voneinander regelbare
Ni-Cr/Ni-Thermoelemente an der Außenseite auf Temperaturen im Bereich von 448-1173 K
(175-900 °C) geheizt werden kann. Die Thermoelemente sind mit einem Fehler von 0.4 %
behaftet, jedoch haben interne Kalibrationsmessungen und Vergleiche mit Modellierungen
ergeben, dass die Temperatur im Reaktor aufgrund von Inhomogenitäten eher mit einer
Ungenauigkeit von ±15 K angenommen werden muss. Das in Abb. 2.4b gezeigte Tempe-
raturprofil über die Länge des gesamten Reaktors zeigt außerdem, dass der Reaktor im
Wesentlichen in drei Zonen unterteilt werden kann (Vorheizzone 0-0.14 m, Reaktionszone
0.14-1.25 m, Abkühlzone 1.25-1.30 m). Dies ist besonders für die Berücksichtigung des
Wärmetransfers bei der Modellierung des Reaktors wichtig (s. Kap. 2.5).

Um die Konzentrationen der durch Oxidationsreaktionen entstehenden Spezies messen zu
können, werden Brennstoff und Sauerstoff, wie in Abb. 2.4a dargestellt, jeweils unabhän-
gig voneinander mit dem Verdünnungsgas Argon vorgemischt und anschließend über ein
Y-Konnektorstück zusammengeführt. Im Reaktor wird das Gemisch auf die von außen
eingestellte Temperatur erhitzt und durch den kontinuierlich nachströmenden Fluss durch
das Quarzglasrohr hindurchgeleitet. Für dieses System ist bei einer Flussrate von bis zu
0.5 slm (Standard Liter pro Minute, bei 273.15 K und 1 atm) von einer sogenannten
Plug-Flow-Strömung auszugehen. Das bedeutet, dass sich das Gemisch wie eine Schei-
be durch den Reaktor bewegt und Reibung an der Reaktorwand vernachlässigt werden
kann. Durch die zusätzliche Vernachlässigung von Rückdiffusionsprozessen kann so eine
homogene Konzentrationsverteilung an jeder Position des Reaktors angenommen werden,
was zu einer deutlich vereinfachten Modellierung des Reaktorsystems führt. Am Ende
des Quarzglasrohrs erfolgt dann die Probenahme und die anschließende Detektion und
Analyse der Spezieszusammensetzung bei der jeweils eingestellten Temperatur, sodass
Temperatur-Konzentrations-Profile wie in Abb. 2.2 erhalten werden.
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Abbildung 2.4: (a) Schematische Darstellung des laminaren Strömungsreaktors. (b) Tempe-
raturprofil von Argon über die Reaktorlänge mit Vorheizzone (Zone 1), Reaktionszone (Zone
2) und Abkühlzone (Zone 3).

2.3 Molekularstrahl-Massenspektrometrie
In dieser Arbeit wurde zur Probenahme und Detektion der bei der Oxidation entstehenden
Spezies die Molekularstrahl-Massenspektrometrie (Molecular-beam mass spectrometry,
MBMS) eingesetzt. Dabei wird zunächst eine Quarzglasdüse mit einer sehr kleinen Öffnung
(hier 50-500 µm; Öffnungswinkel Bielefeld: 25°, ALS: 40°, Hefei: 30°) an den Ort der
Probenahme gebracht. Mithilfe einer zweistufigen Expansion über einen Druckgradienten
bildet sich ein sogenannter Molekularstrahl aus, was bedeutet, dass die mittlere freie
Weglänge der Teilchen so stark zunimmt, dass Stöße untereinander stark reduziert werden
und somit näherungsweise eine Konservierung der Speziesverteilung am Probenahmeort
gewährleistet wird. Dies trifft auch auf Radikale zu, die mithilfe dieser Technik identifiziert
werden können. Die Überführung aus der ersten in die zweite Druckstufe erfolgt dabei
über einen Skimmer (Bielefeld: Kupfer, ALS: Nickel, Hefei: keine zweite Druckstufe) mit
einer Öffnung von ca. 1-2 mm, um ausschließlich den zentralen Teil des Molekularstrahls
auszuschneiden. Eine schematische Darstellung dieses Verfahrens ist in Abb. 2.5 gegeben.

Der gebildete Molekularstrahl wird anschließend mit einem Elektronen- oder Photonenstrahl
gekreuzt und die Moleküle werden dadurch ionisiert. Nach der Beschleunigung in ein
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Abbildung 2.5: Schematische Darstellung des Molekularstrahl-Probenahmeverfahrens.

angrenzendes Flugzeit-Massenspektrometer und der Detektion über eine Multichannel
Plate (MCP) kann ein Massenspektrum der Speziesverteilung am Probenahmeort erhalten
werden. Zur Ionisation können unterschiedliche Techniken genutzt werden, wozu die in dieser
Arbeit verwendeten Methoden der Elektronenstoßionisation (EI) und Photoionisation (PI)
sowie die Photoelektronen-Photoionen Koinzidenz-Spektroskopie (PEPICO) als spezielle
Form der Photoionisation gehören. Die drei Methoden werden im Folgenden kurz vorgestellt.

Elektronenstoßionisation
Bei der Elektronenstoßionisation (EI) werden Elektronen durch Anlegen eines Stroms aus
einem Filament (hier Wolframdraht) erzeugt. Dies bietet den großen Vorteil einer besonders
einfachen und kostengünstigen Ionisation, führt jedoch zu einer sehr breiten Energievertei-
lung der erzeugten Elektronen (Full Width at Half Maximum (FWHM) ca. 1 eV). Daraus
resultiert die gleichzeitige Ionisation vieler Spezies, auch mit Ionisationsenergien oberhalb
der eingestellten Elektronenenergie, wodurch keine Trennung von Isomeren erfolgen kann.
In dieser Arbeit wurden EI-MBMS-Messungen an zwei Massenspektrometern in Biele-
feld durchgeführt, die jeweils mit dem laminaren Strömungsreaktor und der laminaren
Niederdruckflamme kombiniert sind. Beide Massenspektrometer bieten mit Massenauflö-
sungen 𝑚

𝛥𝑚 von ca. 2000 (Strömungsreaktor-MS) bzw. 4000 (Niederdruckflammen-MS)
die Möglichkeit, nicht nur die Nominalmasse, sondern im untersuchten Massebereich von
2-120 amu auch die exakte C/H/O-Zusammensetzung einer Spezies zu bestimmen. Weitere
Details zu den verwendeten EI-MBMS-Systemen können der Literatur entnommen werden
[37, 38, 62, 68].

Photoionisation
Die Photoionisation (PI) bietet gegenüber der Elektronenstoßionisation den Vorteil einer
extrem schmalen Energieverteilung. Daher werden nur Spezies ionisiert, deren Ionisations-
energie unterhalb der verwendeten Photonenenergie liegt, was eine Separation von Isomeren
ermöglicht, sofern sich die Ionisationsenergien der Isomere ausreichend unterscheiden. Ein
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wesentlicher Nachteil besteht jedoch in der aufwändigen Zugänglichkeit, da die dazu be-
nötigten, über einen weiten Energiebereich durchstimmbaren Strahlungsquellen wie z.B.
Synchrotrons als Großanlagen nur mit begrenzter Messzeit zur Verfügung stehen.
Im Rahmen dieser Arbeit konnten Messungen in einer laminaren Niederdruckflamme am
PI-MBMS unter Verwendung von Synchrotronstrahlung der Advanced Light Source (ALS)
in den Lawrence Berkeley Laboratories (Berkeley, Kalifornien, USA) durchgeführt werden.
Das verwendete Massenspektrometer erlaubt mit einer Massenauflösung von 𝑚

𝛥𝑚 > 4000
ebenfalls eine eindeutige Bestimmung der Summenformel (C/H/O-Zusammensetzung).
Die Energieauflösung der durch die Synchrotronstrahlung generierten Photonen ist mit
𝛥𝐸 = ±0.05 eV angegeben. Weitere Details zum ursprünglichen Aufbau des verwendeten
PI-MBMS-System können der Literatur entnommen werden [69]. Es sei jedoch darauf
hingewiesen, dass nach Veröffentlichung der angegebenen Publikation durch die Integration
eines Reflektrons die Massenaufllösung des Systems von damals 400 auf >4000 erhöht
wurde.
Weiterhin wurden Messungen am PI-MBMS am National Synchrotron Radiation Laboratory
(NSRL) der University of Science and Technology of China in Hefei, China durchgeführt.
Das dort verwendete Massenspektrometer weist eine Massenauflösung von ca. 2500 auf,
während die verwendete Synchrotronstrahlung eine Energieauflösung 𝐸

𝛥𝐸 von etwa 4000 be-
sitzt. Weitere Informationen zum Aufbau des Systems sowie der Speziesidentifizierung und
Quantifizierung der erhaltenen Daten können der Literatur entnommen werden [27, 70–72].

Photoelektronen-Photoionen Koinzidenz-Spektroskopie
Für die Photoelektronen-Photoionen Koinzidenz-Spektroskopie (PEPICO) werden eben-
falls am Synchrotron generierte Photonen zur Ionisation genutzt. Bei dieser Methode
werden jedoch zusätzlich zur Detektion der Ionen in Form des Massenspektrums auch
die aus dem Ionisationsprozess entstehenden Elektronen in Koinzidenz detektiert, sodass
die zur Ionisation benötigte Energie und daraus resultierend zusätzlich ein Photoelek-
tronenspektrum (PES) erhalten werden kann. Damit können Isomere zusätzlich durch
ihre charakteristischen Photoelektronenspektren identifiziert werden. Im Rahmen dieser
Arbeit wurden Messungen in laminaren Niederdruckflammen an der Beamline DESIRS am
Synchrotron SOLEIL (Gif-sur-Yvette, Frankreich) durchgeführt. Dazu wurde eine wie oben
beschriebene Brennerkammer mit zweistufiger Expansion und Molekularstrahl-Probenahme
an das vor Ort vorhandene DELICIOUSIII Spektrometer gekoppelt. Dieses bietet die
Möglichkeit, detektierte Ionen und Elektronen aus einem Ionisationsprozess mithilfe einer
Multi-Start/Multi-Stop-Technik miteinander in Koinzidenz zu bringen. Die Elektronen
werden von einem zweidimensionalen Velocity Map Imaging (VMI) Spektrometer mit einer
Energieauflösung von ca. 30 % in der Detektormitte (langsame Elektronen) und ca. 3-4%
am Detektorrand (schnelle Elektronen) aufgenommen, was bei einer kinetischen Über-
schussenergie der Elektronen (eingestellte Photoelektronenenergie abzüglich der für den
Ionisationsprozess benötigten Energie) im Bereich von 0-3.6 eV zu einer Energieauflösung
von 30-140 meV in den daraus resultierenden Photoelektronenspektren führt. Für die hier
vorgestellten Messungen wurde dabei größtenteils der sogenannte Fixed-Photon-Energy
Mode verwendet, bei dem bei einer fest eingestellten Photonenenergie gemessen wird und
durch den zweidimensionalen Detektor Elektronen unterschiedlicher kinetischer Energie
anhand ihres Aufschlagortes unterschieden werden können, sodass aus einer einzelnen
festfrequenten Messung ein Photoelektronenspektrum in einem Energiebereich von der
eingestellten Photonenenergie bis ca. 3-4 eV darunter erhalten wird. Wird hingegen ein
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sogenanntes Threshold Photoelectron Spectrum (TPES) aufgenommen, werden mehrere
Messungen variierender Photonenenergie durchgeführt und für jede Messung jeweils die
Elektronen ohne kinetische Überschussenergie (Zero Kinetic Electrons, ZKE) ausgewertet.
Aufgrund der Abfolge mehrerer Messungen wird hierfür jedoch mehr Zeit benötigt (ca.
12 h vs. ca. 1 h für eine festfrequente Messung, vgl. [43]). Die Ionen werden mithilfe eines
Wiley-McLaren-Flugzeit-Massenspektrometers mit einer Massenauflösung von 𝑚

𝛥𝑚 < 1700
detektiert. Durch die angekoppelte Brennerkammer und die Molekularstrahl-Probenahme
wird diese jedoch auf ca. 300 reduziert. Ausführliche Informationen zur Ankopplung der
Brennerkammer [1, 2, 43], der DESIRS-Beamline [73] und dem DELICIOUSIII Spektro-
meter [74, 75] können der jeweiligen Literatur entnommen werden.

2.4 Datenauswertung und Quantifizierung
Da die Auswertung und Quantifizierung der erhaltenen Daten für die verschiedenen Experi-
mente generell einer vergleichbaren Prozedur folgt und sich für die verwendeten Experimente
lediglich in wenigen Aspekten unterscheidet, wird im Folgenden zunächst die allgemeine
Vorgehensweise erläutert. Im Anschluss daran werden die Besonderheiten für die einzelnen
Experimente zusammengefasst.
Zur Quantifizierung der detektierten Signale im Massenspektrum wird zunächst die erhalte-
ne Flugzeit der Ionen mithilfe einer quadratischen Anpassung von Kalibrationsmessungen
in das Masse-zu-Ladungsverhältnis umgerechnet. Eine anschließende Integration über
die gaußförmigen Signale liefert die zugehörige Signalintensität 𝑆i. Diese ist jedoch nicht
nur vom Molenbruch 𝑥i der entsprechenden Spezies, sondern auch von einigen weiteren
Parametern abhängig. Dieser Zusammenhang ist in Gl. 2.3 gegeben.

𝑆i = 𝑥i · c ·D(Mi) · 𝑆𝑊 · 𝜙 · FKT(𝑇 ) ·
ˆ

𝑑𝐸 𝜎i(𝐸) · 𝑓(𝐸) (2.3)

Dabei ist c eine Gerätekonstante, D(Mi) der Massendiskriminierungsfaktor, 𝑆𝑊 (sweeps)
die Anzahl der jeweils aufsummierten Spektren, 𝜙 die Zahl der Elektronen bzw. Photonen,
FKT(𝑇 ) eine temperaturabhängige Gerätefunktion, 𝜎i(𝐸) der Ionisationsquerschnitt der
Spezies bei der Energie 𝐸 und 𝑓(𝐸) die Energieverteilung der Elektronen bzw. Photonen.
Die Quantifizierung der Molenbrüche basiert anschließend auf unterschiedlichen Methoden
je nach Art der Ionisation.

Auswertung der EI-MBMS-Daten
Da bei der Elektronenstoßionisation Elektronen mit einer breiten Energieverteilung erzeugt
werden, wird auch das Verdünnungsgas Argon bei jeder Messung ionisiert, sodass es als
Referenz zur Kalibration und Quantifizierung genutzt werden kann. Da somit jede Spezies
und Argon aus derselben Messung verwendet werden, können die energieabhängigen und
gerätespezifischen Faktoren in einem Kalibrationsfaktor 𝑘i/Ar(𝐸) zusammengefasst werden
und Gl. 2.3 vereinfacht sich wie folgt:

𝑆i
𝑆Ar

= 𝑥i
𝑥Ar
· 𝑘i/Ar(𝐸) (2.4)

Zu den sogenannten Hauptspezies zählen alle Spezies mit einem Molenbruch von mindestens
0.01 (Brennstoff, Sauerstoff, Argon, Kohlenstoffmonoxid, Wasserstoff, Kohlenstoffdioxid
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und Wasser). Für ihre Quantifizierung werden Bilanzgleichungen aufgestellt, für die an-
genommen wird, dass zu Beginn der Oxidation ausschließlich Brennstoff, Sauerstoff und
Argon und nach vollständiger Oxidation nur noch die Produkte Kohlenstoffdioxid, Koh-
lenstoffmonoxid, Wasserstoff und Wasser und das Verdünnungsgas Argon vorliegen. Als
zusätzliche Größe zur Lösung dieses Gleichungssystems wird das CO/CO2-Signalverhältnis
aus einer Kalibrationsmessung bestimmt. Somit können die Kalibrationsfaktoren 𝑘i/Ar aller
Hauptspezies und daraus letztendlich deren Molenbrüche für jede Spezieszusammensetzung
bestimmt werden.
Zur Quantifizierung der in geringeren Mengen vorliegenden Intermediate der Oxidation
werden die erhaltenen Rohsignale zunächst fragment- und isotopenkorrigiert. Anschließend
wird der entsprechende Kalibrationsfaktor entweder direkt aus einer Referenzmessung der
entsprechenden Spezies mit Argon oder über theoretische Abschätzungen bestimmt. Zu
letzteren zählen zum Beispiel die Signalsimulation basierend auf der Faltung des Ionisations-
querschnitts mit der Energieverteilung der Elektronenenergie (Convolution-Methode) oder
der Vergleich und die entsprechende Skalierung des Ionisationsquerschnitts mit strukturell
sehr ähnlichen Spezies (Relative Ionisation Cross Section, RICS-Methode). Während der
Molenbruchfehler bei den Hauptspezies auf ca. 10-15 % geschätzt wird, ist er für die
Intermediate von der Art der gewählten Kalibrationsmethode abhängig. Für die direkte
Kalibration liegt er in etwa bei einem Faktor von 2, während die Convolution- und die
RICS-Methode je nach Verfügbarkeit und Qualität der verwendeten Ionisationsquerschnitte
einen Fehler bis zu einem Faktor von 4 aufweisen können.
Eine detailliertere Beschreibung der vollständigen Quantifizierung und der unterschiedlichen
Kalibrationsmethoden kann den Referenzen [37, 38] entnommen werden.

Auswertung der PI-MBMS-Daten
Aufgrund der schmalen Energieverteilung bei der Photoionisation wird Argon mit einer
Ionisationsenergie von 15.763 eV [76] bei Messungen mit niedrigerer Photonenenergie
nicht ionisiert und kann daher nicht als Referenz verwendet werden. Die Quantifizierung
erfolgt somit nach Gl. 2.3, welche sich aufgrund der als Delta-Distribution angenäherten
Energieverteilung wie folgt vereinfacht:

𝑆i = 𝑥i · c ·D(Mi) · 𝑆𝑊 · 𝜙 · FKT(𝑇 ) · 𝜎i(𝐸) (2.5)

Dabei werden die Anzahl der zur Ionisation verwendeten Photonen 𝜙 mithilfe einer kali-
brierten Photodiode und die Massendiskriminierungsfaktoren D(Mi) durch Messungen von
definierten Kalibrationsmischungen über einen großen Massebereich bestimmt. Das Produkt
c · FKT(𝑇 ) wird nach der Quantifizierung der Hauptspezies aus dem Argonmolenbruch
bestimmt. Um geräteabhängige Schwankungen zwischen den Messungen bei unterschiedli-
chen Photonenenergien auszugleichen, werden Messungen aufeinanderfolgender Energien
mithilfe eines sogenannten Scanfaktors korrigiert. Aus Gl. 2.5 folgt, dass ausschließlich
Spezies quantifiziert werden können, für die ein Ionisitationquerschnitt 𝜎i(𝐸) bekannt ist.
Die Quantifizierung der Hauptspezies erfolgt analog der Elektronenstoßionisation über
die bereits genannten Bilanzgleichungen. Im Wesentlichen unterscheidet sich die Methode
dadurch, dass für jede Spezies eine Messung mit einer oberhalb der Ionisationsenergie
liegenden Photonenenergie und der entsprechende Ionisationsquerschnitt der Spezies ver-
wendet werden müssen. Dies gilt auch für die Quantifizierung der Intermediate. Der Fehler
des Molenbruchs ist hier somit insbesondere von der Qualität der verwendeten Ionisations-
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querschnitte abhängig und liegt ebenfalls im Bereich von einem Faktor 2-4.
Zur Quantifizierung von Isomeren können Messungen bei unterschiedlichen Photonenener-
gien (jeweils knapp oberhalb der Ionisationsenergie der entsprechenden Isomere) verwendet
werden. Dabei wird zunächst eine Energie verwendet, bei der nur ein Isomer vorliegen kann
und dieses quantifiziert. Durch Subtraktion des von diesem Isomer rührenden Signals in der
Messung bei einer höheren Photonenenergie kann der Beitrag eines weiteren Isomers zum
Gesamtsignal ermittelt und dieses quantifiziert werden. Um eine eindeutige Zuordnung
der Isomere zu erhalten, können außerdem sogenannte Photoionisationseffizienzkurven
(PIE-Kurven) aufgenommen werden, bei denen mit zunehmender Photonenenergie ein
Signalanstieg gemessen wird. Durch Anpassung der bekannten Ionisationsquerschnitte an
diese Signale kann eine Identifizierung und relative Quantifizierung (Isomerenverhältnis)
erfolgen.

Auswertung der PEPICO-Daten
Wie bei den EI- und PI-MBMS-Messungen werden bei den PEPICO-Messungen eben-
falls Massenspektren der Spezieszusammensetzung am Probenahmeort gemessen. Darüber
hinaus kann auch für jede Masse ein zweidimensionales Bild der mit diesen Ionen koin-
zidenten Elektronen erhalten werden. Durch eine inverse Abel-Transformation [77] kann
die ursprüngliche Kugelverteilung der Elektronen berechnet und daraus ein Photoelek-
tronenspektrum generiert werden. Felsmann et al. [2] konnten bereits zeigen, dass mit
einem vergleichbaren Prinzip wie dem der PI-MBMS-Auswertung auch eine Quantifizierung
der Spezies aus den Massenspektren erfolgen kann. In dieser Arbeit wurden jedoch keine
absoluten Quantifizierungen vorgenommen, vielmehr wurden die erhaltenen Photoelek-
tronenspektren zur Identifizierung von bis zu vier auftretenden Isomeren bei einer Masse
genutzt. Durch die zusätzliche Aufnahme von Referenz-Photoelektronenspektren der reinen
Komponenten kann sowohl eine Speziesidentifizierung als auch eine relative Quantifizierung
(Isomerenverhältnis) durch Anpassung der Referenzspektren erfolgen. Dies ist insbesondere
in Ergänzung zu bereits vorliegenden und quantifizierten EI-MBMS-Messungen hilfreich,
da so der Molenbruch einer Summenformel in die Anteile der entsprechenden auftretenden
Isomere zerlegt werden kann und zusätzliche Informationen gewonnen werden.

2.5 Kinetische Modellierungen
Die im Rahmen dieser Arbeit gemessenen Daten wurden jeweils mit den Ergebnissen kine-
tischer Modellierungen1 verglichen. Diese wurden für die laminaren Niederdruckflammen
unter Verwendung eines gemessenen Temperaturprofils mithilfe von sogenannten Burner
Stabilized Premixed Flame Modulen geeigneter Software (LOGEsoft [78], CHEMKIN-PRO
[79] und OPENSMOKE++ [80]) durchgeführt. Das Modellexperiment der laminaren Nie-
derdruckflamme ist in diesen Modulen bereits unter Berücksichtigung von thermischer
Diffusion und Mehrkomponenten-Transporteigenschaften hinterlegt und nur die Flussbe-
dingungen der Flamme und ein gestörtes Temperaturprofil müssen als Eingabeparameter
verwendet werden. Letzteres wird aus dem Druckprofil in der ersten Expansionsstufe
der Molekularstrahl-Probenahme über den gesamten Flammenbereich unter Kalibration
auf eine gemessene Abgastemperatur erhalten [4, 37, 81], welche mithilfe von OH-pLIF-

1 Modellierungen für die untersuchten Systeme erfolgten in Kooperation mit den jeweiligen in den
Originalpublikationen genannten Partnern.
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Messungen1 (pLIF: planare laserinduzierte Fluoreszenz) bestimmt wird [82].
Da für die Simulation des laminaren Strömungsreaktors kein Modul zur Verfügung steht, das
die Eingabe eines Temperaturprofils erlaubt, wurde die von Hemken et al. [62] vorgestellte
Prozedur verwendet, in der die Zerlegung der Modellierung in die drei Zonen des Reaktors
(Vorheizzone, Reaktionszone und Abkühlzone, vgl. Kap. 2.2.2) erfolgt und mithilfe eines
gemessenen, dem nicht reaktiven Zustand entsprechenden Temperaturprofils von Argon
(s. Abb. 2.4b) ein Wärmetransferkoeffizient vorgegeben wird. Diese Prozedur nutzt die
Simulationssoftware LOGEsoft [78] und kombiniert die modellierten Temperaturprofile für
die drei Reaktorzonen.

Für die Modellierungen der durchgeführten Experimente wurden jeweils brennstoffspezi-
fische kinetische Modelle aus der Literatur verwendet (Reaktionsmechanismen, thermo-
chemische Eigenschaften und Transporteigenschaften) oder aufbauend auf der Literatur
in Kooperation mit verschiedenen Arbeitsgruppen mit neu entwickelten Submechanismen
kombiniert. Die Details dazu sind in den jeweiligen Abschnitten zu den entsprechenden
Experimenten angegeben.
Obwohl es sich bei den Ergebnissen der Simulationen um theoretische Berechnungen han-
delt, die in jedem Fall ebenso wie experimentelle Daten mit einem Fehler behaftet sind,
ist es schwierig, diesen für die erhaltenen Molenbrüche zu quantifizieren. Dies stellt beim
Vergleich mit experimentellen Daten immer wieder ein Problem dar, jedoch konnte bisher
noch keine einheitliche Möglichkeit zur Fehlerquantifizierung solcher Modellierungen eta-
bliert werden. Ein vielversprechender Ansatz dazu wurde bereits von Wang und Sheen [83]
vorgestellt, ist jedoch noch nicht vollständig für die Verwendung in kinetischen Modellen
etabliert.

1 Die Messungen der Abgastemperatur wurden von Isabelle Graf an der Universität Bielefeld durchgeführt.



KAPITEL 3
Identizierung von Isomeren in Flammen mittels
Photoelektronen-Photoionen Koinzidenz-Spektroskopie

Die Photoelektronen-Photoionen Koinzidenz-Spektroskopie (PEPICO) bietet in der Gas-
phasenanalytik eine besonders wertvolle Methode der Speziesidentifizierung. Die häufig
verwendeten Methoden der Elektronenstoßionisation und Photoionisation sind bei zuneh-
mender Komplexität der untersuchten Brennstoffe und der hohen Anzahl möglicher bei
ihrer Oxidation auftretender Isomere schnell an ihren Grenzen angelangt. Eine zusätzliche
Möglichkeit der Zuordnung und gleichzeitige Kreuzvalidierung vorhergehender Experimente
durch die für jede Spezies spezifischen Photoelektronenspektren (PES) ist daher besonders
nützlich. Eine eindeutige Identifizierung von Spezies kann dabei nur unter Kenntnis der
entsprechenden Referenzspektren auftretender Spezies erfolgen, die jedoch in der Literatur
oft fehlen. Im Rahmen der Veröffentlichung [1] wurden laminare Niederdruckflammen, die
vorher mittels EI- und PI-MBMS untersucht wurden, im Hinblick auf spezielle Probleme
der Isomerentrennung untersucht. Zur Zuordnung der erwarteten Spezies wurden dazu die
PES von 18 Referenzsubstanzen gemessen und von zwei nicht verfügbaren Spezies mithilfe
von theoretischen Berechnungen1 bestimmt. Im Folgenden sollen exemplarisch Teile der
veröffentlichten Ergebnisse kurz zusammengefasst werden.

Messung von Referenzspektren
Zur Identifizierung der Isomere bestimmter Masse-zu-Ladungsverhältnisse, die in dieser
Arbeit untersucht wurden, ist die Kenntnis der entsprechenden Photoelektronenspektren
unumgänglich. Um fehlende Referenzspektren zu erhalten und darüber hinaus eine gute
Vergleichbarkeit der einzelnen Komponenten mit den Ergebnissen aus Flammenmessungen
zu erreichen, wurden die PES von 18 Reinsubstanzen mit dem gleichen experimentellen
Aufbau wie die Flammenmessungen aufgenommen. Somit haben die Spektren der puren
Substanzen die gleiche spektrale Auflösung wie die Spektren aus den Flammen und es
muss keine Verschiebung der Energieskala vorgenommen werden, um die experimentellen
Ungenauigkeiten anderer Systeme auszugleichen. Dieser Ansatz wurde in einem kürzlich
erschienen Review-Artikel von Baer und Tuckett [40] als signifikanter Vorteil herausge-
stellt. Die gemessenen PES umfassen Spezies der Summenformeln C5H6, C5H8, C5H10 und
C4H8O und sind in Abb. 3.1 dargestellt.
Für die in Abb. 3.1a,b gezeigten Komponenten sind die gemessenen PES relativ unter-
schiedlich und daher in Isomerenmischungen gut unterscheidbar. Für C5H10 (Abb. 3.1c)

1 Diese Berechnungen erfolgten durch Steffen Schmitt und Wolfgang Eisfeld in Kooperation mit der
Arbeitsgruppe Theoretische Chemie der Universität Bielefeld.
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sehen sich die Spektren von 3-Methyl-1-buten und 1-Penten jedoch sehr ähnlich und liegen
zusätzlich im gleichen Energiebereich, sodass hier eine Unterscheidung der Spezies in einer
Mischung schlecht möglich ist. Selbiges gilt für die Spektren der oxygenierten C4H8O
Isomere n-Butanal, iso-Butanal, 3-Buten-2-ol, 3-Buten-1-ol und iso-Butenol (Abb. 3.1d),
welche zudem auch kaum eine Vibrationsstruktur aufweisen.

Abbildung 3.1: Gemessene Photoelektronenspektren für verschiedene molekulare Strukturen
der Summenformeln (a) C5H6, (b) C5H8, (c) C5H10 und (d) C4H8O. Alle Spektren wurden
bei einer festen Photonenenergie von 10.1 eV gemessen. Zur besseren Übersicht wurden alle
Spektren normiert und als Linien ohne Fehlerbalken übereinander dargestellt. Adaptiert von
[1].

C5H10-Isomere in der Verbrennung von iso-Pentan
Eine brennstoffreiche iso-Pentanflamme (𝜑 = 1.7) wurde im Hinblick auf die ersten stabilen
Intermediate aus dem Brennstoffabbau untersucht. Besonderes Augenmerk wurde dabei
auf die Trennung der Isomere mit der Summenformel C5H10 (𝑚/𝑧 = 70) gelegt, da diese
durch H-Abstraktion und direkt anschließende C-H-𝛽-Spaltung aus dem Brennstoffmole-
kül entstehen und somit kritisch für die Modellentwicklung und -validierung sind. Durch
vorhergehende Messungen der Flamme mittels EI-MBMS konnten bereits Molenbrüche
für die jeweiligen Summenformeln erhalten werden, jedoch war eine Quantifizierung der
Isomere nicht möglich. Die Verteilung der durch erneute Abfolge dieser Reaktionen ge-
bildeten C5H8-Isomere (𝑚/𝑧 = 68) wurde ebenfalls untersucht; die Ergebnisse werden
hier nicht gezeigt, können aber in [1] nachgelesen werden. Gleiches gilt für die Ergebnisse
vergleichbarer Messungen für eine iso-Pentanflamme mit einer Dimethyletherdotierung von
20 %.

In Abb. 3.2 sind die Strukturen und Ionisationsenergien einiger relevanter C5H10-Isomere
zusammengefasst. Aus der bereits verzweigten Struktur des Brennstoffmoleküls iso-Pentan
werden hauptsächlich die ebenfalls verzweigten Spezies 2-Methyl-2-buten, 2-Methyl-1-buten
und 3-Methyl-1-buten erwartet. Hier ist insbesondere das Verhältnis der drei Isomere
interessant. Lineare Moleküle wie 1- und 2-Penten können nicht direkt aus dem Brenn-
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Abbildung 3.2: Strukturen und Ionisationsenergien [84–86] einiger für die Verbrennung von
iso-Pentan relevanter C5H10-Isomere. Adaptiert von [1].

stoffabbau, sondern erst durch Rekombination kleinerer Abbauspezies entstehen, weshalb
es ebenfalls interessant ist, ihre Existenz nachweisen oder ausschließen zu können. Die
Bildung des zyklischen Moleküls Cyclopentan ist aufgrund seiner Ringstruktur kinetisch
sowie thermodynamisch eher nicht favorisiert.

Zur Identifizierung der infrage kommenden Isomere wurde eine festfrequente Messung bei
einer Photonenenergie von 10.1 eV in einer brennstoffreichen iso-Pentanflamme bei einer
Höhe von 3.2 mm oberhalb der Brenneroberfläche (korrespondierend zum Maximum des
Molenbruchs für C5H10 aus den vorangegangenen EI-MBMS-Messungen) durchgeführt. In
Abb. 3.3a ist das invertierte 2D-Elektronenbild für 𝑚/𝑧 = 70 dargestellt, woraus mithilfe
der zuvor beschriebenen Auswerteroutine das zugehörige PES (Abb. 3.3b) erhalten wird.
Zur Identifizierung der vorliegenden Isomere wurden ebenfalls die PES der erwarteten
Spezies (2-Methyl-2-buten, 3-Methyl-1-buten, 1-Penten, 2-Penten) als Referenzsubstanzen
gemessen (s. Abb. 3.1c). Das PES von 2-Methyl-1-buten wurde im Rahmen der Publikation
[1] von Steffen Schmitt und Wolfgang Eisfeld mithilfe von Franck-Condon-Simulationen
berechnet (vgl. Abb. 3.3c). Aufgrund von zuvor durchgeführten Simulationen mit dem
kinetischen Modell für Pentane von Bugler et al. [87] und Gaschromatographie-Messungen
(s. Supplementary Material 1 zu [1]) konnte die Präsenz von 1-Penten ausgeschlossen
werden. Weiterhin kann aufgrund der Messung bei einer Photonenenergie von 10.1 eV kein
Cyclopentan (IE 10.3 eV) detektiert werden. Deshalb wurden zur Anpassung der Referenz-
spektren ausschließlich die drei Methylbutene und 2-Penten berücksichtigt (vgl. Abb. 3.3c).
Mithilfe einer Subtraktionsmethode [1, 2] konnten die Referenzspektren gewichtet und somit
ihr Anteil am gesamten PES bestimmt werden. Die einzeln gewichteten Referenzspektren
und das daraus resultierende Gesamtspektrum sind in Abb. 3.3d dargestellt. Mithilfe des
zuvor aus EI-MBMS-Messungen bekannten Molenbruchs von C5H10 konnten die Anteile
somit in zugehörige Molenbrüche umgewandelt werden. Die Ergebnisse der Experimente
und Simulation sind in Tab. 3.1 zusammengefasst. Als Hauptisomer kann 2-Methyl-1-buten
mit einer guten Übereinstimmung zwischen Experiment (38.8 %) und Simulation (34.4 %)
bestimmt werden. Die beiden weiteren Methylbutene wurden mit ca. 18-24 % im Expe-
riment zu ähnlichen Teilen, aber mit größerer Abweichung zur Simulation (ca. 28-33 %)
erhalten. Die Messung bestätigt ebenfalls die Präsenz von 2-Penten (18.5 %), allerdings
mit einer noch größeren Abweichung zur Simulation (3.8 %), was auf Ungenauigkeiten
bei der verwendeten Subtraktionsmethode sowie die starke Überlappung der PES von
2-Penten und 2-Methyl-1-buten zurückzuführen sein kann. Letztendlich sind aber auch
die Ergebnisse der Modellierung nicht fehlerfrei und stark von den im Modell enthaltenen
Reaktionen und Reaktionsraten abhängig, sodass hier auch Unterschiede zum Experiment
auf Probleme im Modell hinweisen können.
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Abbildung 3.3: (a) Invertiertes 2D-Elektronenbild korrespondierend zu Ionen mit 𝑚/𝑧 = 70.
(b) PES für 𝑚/𝑧 = 70 gemessen in einer brennstoffreichen iso-Pentanflamme mit einer Photonen-
energie von 10.1 eV bei einer Höhe von 3.2 mm oberhalb der Brenneroberfläche. (c) Normierte
Referenzspektren von 2-Methyl-2-buten, 3-Methyl-1-buten und 2-Penten (gemessen bei 10.1 eV)
und 2-Methyl-1-buten (Franck-Condon-Simulation von Steffen Schmitt und Wolfgang Eisfeld,
Geometrie-Optimierung auf CCSD(T)-F12a/aug-cc-pVDZ-Basis und Frequenzrechnung auf
MP2/cc-pVDZ-Basis). (d) Vergleich des gemessenen PES mit der gewichteten Summe aller
betrachteten Referenzspektren. Adaptiert von [1].
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Tabelle 3.1: Anteile C (in %) und Molenbrüche x bei einer Höhe über der Brenneroberfläche
von 3.2 mm in einer brennstoffreichen iso-Pentanflamme aus dem Experiment und der Simula-
tion. n.q.: nicht quantifiziert. Die Referenzen der verwendeten Photoionisationsquerschnitte
sind jeweils mit dem Speziesnamen gegeben (für 2-Penten wurde der Mittelwert des cis- und
trans-Isomers verwendet).

Experiment Simulation
Spezies C x C x

2-Methyl-2-buten [88] 18.6 1.5·10-4 32.8 3.3·10-4

2-Methyl-1-buten [88] 38.8 3.0·10-4 34.4 3.4·10-4

3-Methyl-1-buten [88] 24.1 1.9·10-4 28.5 2.8·10-4

2-Penten [89] 18.5 1.4·10-4 3.8 3.8·10-5

1-Penten [90] n.q. - 0.5 4.5·10-6

Summe C5H10 100 7.8·10-4 100 9.9·10-4

Identifizierung von Ethylvinylether in einer brennstoffreichen
Diethylether-Flamme
In einer vorherigen Untersuchung von Tran et al. [3] wurde bereits eine brennstoffreiche
Diethyletherflamme mithilfe von EI- und PI-MBMS-Experimenten untersucht. Aufgrund
der hohen Massenauflösung der verwendeten Spektrometer konnte dabei eindeutig das
C4H8O-Signal von dem der gleichen Nominalmasse entsprechenden C5H12-Signal separiert
und auf einen Molenbruch von ca. 1.0·10-5 quantifiziert werden. Aus der Messung einer
Photoionisationseffizienzkurve (PIE-Kurve) konnte zudem ein deutlicher Anstieg im Bereich
der von Ethylvinylether liegenden Ionisationsenergie (8.98 eV [91]) vermerkt werden. Auf-
grund dieser Messungen wurde Ethylvinylether in den Diethylether-Submechanismus des
kinetischen Modells integriert. Eine eindeutige Identifizierung dieser Spezies wäre darüber
hinaus jedoch wünschenswert.

Im Rahmen dieser Arbeit wurden daher die Photoelektronenspektren von neun Refe-
renzsubstanzen der Summenformel C4H8O mithilfe von festfrequenten PEPICO-Messungen
aufgenommen (vgl. Abb. 3.1d). Darüber hinaus wurde in der brennstoffreichen Diethyle-
therflamme identischer Bedingungen ein Threshold Photoelectron Spectrum (TPES, vgl.
Kap. 2.3) bei einer Höhe von 2.3 mm aufgenommen, da dort in den vorangegangenen
Messungen die höchste Konzentration an C4H8O gemessen wurde. Dabei wurde nicht
bei einer fest eingestellten Energie gemessen, sondern die Energie in einem Bereich von
8.35-9.35 eV variiert. Dadurch konnte eine erhöhte Energieauflösung von etwa 10 meV
im Vergleich zu den festfrequenten Messungen (30-70 meV im untersuchten kinetischen
Überschussenergiebereich von 0-1.75 eV) erzielt werden, was in diesem Fall aufgrund der
nahe beieinanderliegenden PES der Referenzsubstanzen eine übersichtlichere Trennung
ermöglichen sollte. Das gemessene TPES ist in Abb. 3.4a zusammen mit den PES der
Referenzsubstanzen 2-Methoxypropen, Ethylvinylether und iso-Butenol dargestellt. Die
weiteren gemessenen Referenzspektren liegen außerhalb des hier untersuchten Energie-
bereichs und tragen daher nicht zum gemessenen Signal im TPES bei. Der erste leichte
Anstieg des TPES bei ca. 8.55 eV und die bei 8.70 eV stärker steigende Tendenz stimmt
sehr gut mit dem Verlauf des PES von Ethylvinylether überein, während die Präsenz von
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2-Methoxypropen durch einen fehlenden Anstieg bei 8.40 eV ausgeschlossen werden kann.
Beiträge von iso-Butenol können nicht explizit ausgeschlossen werden, sind im Rahmen die-
ser Messung aber auch nicht quantifizierbar. Dazu, und auch zum Nachweis oder Ausschluss
weiterer Isomere der Summenformel C4H8O mit jeweils höherer Ionisationsenergie, müssten
zusätzliche Messungen bei höheren Photonenenergien durchgeführt werden. Dies gestaltet
sich jedoch schwierig, da ab einer Energie von 9.51 eV [92] auch das Brennstoffmolekül
Diethylether ionisiert wird und aufgrund seiner hohen Konzentration im Massenspektrum
zu einem Überlappen der Signale der Masse-zu-Ladungsverhältnisse von 72 (C4H8O) und
74 (C4H10O, Diethylether) führen würde. Es sei jedoch darauf hingewiesen, dass weitere
Strukturen mit C4H8O nicht direkt aus dem Brennstoffabbau gebildet werden können,
sondern zunächst aus kleineren Abbauprodukten über Rekombinationsreaktionen entstehen
müssen. Dies findet meist jedoch nur in sehr kleinen (schwer nachweisbaren) Mengen statt,
weshalb die bevorzugte Bildung von Ethylvinylether naheliegt.

Abbildung 3.4: (a) Gemessenes TPES im Bereich von 8.35-9.35 eV (𝛥𝐸 = 10 meV) für
𝑚/𝑧 = 72 bei einer Höhe von 2.3 mm in einer brennstoffreichen Diethyletherflamme zusammen
mit den PES von 2-Methoxypropen, Ethylvinylether und iso-Butenol, gemessen bei einer festen
Photonenenergie von 10.1 eV. (b) Integriertes TPES und integrierte PES aus (a) zusammen
mit den PIE-Kurven identischer Flammenmessungen von Tran et al. [3], zweifache Messung
(1,2). Zum Vergleich ist die tabellierte Ionisationsenergie von Ethylvinylether als vertikale Linie
eingezeichnet [91]. Adaptiert von [1].

Da das TPES in Abb. 3.4a aufgrund einer geringen C4H8O-Konzentration und knapper
Messzeit nur ein geringes Signal-zu-Rausch-Verhältnis aufweist, wurde mittels Integration
die entsprechende PIE-Kurve bestimmt. Diese ist für das in der Flamme gemessene TPES
und die PES der Referenzsubstanzen in Abb. 3.4b zusammen mit den PIE-Kurven aus den
vorherigen PI-MBMS-Messungen von Tran et al. [3] dargestellt. Es kann eine exzellente
Übereinstimmung zwischen dem integrierten TPES und dem intergrierten PES von Ethylvi-
nylether mit einem Anstieg bei ca. 8.75 eV festgestellt werden. Die besonders hohe Qualität
des integrierten TPES aus dem geringen Signal-zu-Rausch-Verhältnis unterstreicht erneut
den Vorteil der PEPICO-Technik, auch in kurzer Messzeit qualitativ hochwertige Daten zu
erhalten. Beim Vergleich mit den PIE-Kurven von Tran et al. [3] kann eine Verschiebung
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von ca. 0.1 eV festgestellt werden. Dies spricht insbesondere dafür, Referenzspektren zur
eindeutigen Identifizierung immer zusammen mit den eigentlichen Messungen wie in dieser
Arbeit am selben experimentellen Aufbau durchzuführen. Trotz des minimalen Versat-
zes kann jedoch für jede Methode an sich eine hohe Reproduzierbarkeit erreicht werden.
Insgesamt konnte mit diesen Ergebnissen eindeutig Ethylvinylether als Hauptisomer der
Summenformel C4H8O in der Verbrennung von Diethylether identifiziert werden.

Zusammenfassung
Mithilfe der in diesem Abschnitt vorgestellten Ergebnisse aus [1] konnte die enorme Fähig-
keit der Photoelektronen-Photoionen Koinzidenz-Spektroskopie als wertvolle Methode zur
Trennung spezifischer komplexer Isomerensituationen in der Gasphasenanalytik von Brenn-
stoffen mit fünf schweren Atomen gezeigt werden. Der Ansatz der eindeutig unterscheidbaren
individuellen Photoelektronenspektren wurde in [1] auf laminare Niederdruckflammen der
Brennstoffe Cyclopenten, Diethylether und iso-Pentan (pur und mit Dimethylether dotiert)
für spezielle, nicht mit anderen Methoden zugängliche Informationen einzelner Massen
angewendet. Dazu wurden in [1] zur Identifizierung einzelner Spezies die Referenzspektren
von 18 Strukturen der Summenformeln C5H6, C5H8, C5H10 und C4H8O am gleichen ex-
perimentellen Aufbau unter identischen Messbedingungen aufgenommen, sowie von zwei
Molekülen mittels Franck-Condon-Simulationen berechnet. Einige wichtige Beispiele aus
[1] wurden in dieser Arbeit vorgestellt.

Bei der Untersuchung des Brennstoffes iso-Pentan konnten die Anteile der bei einem
Masse-zu-Ladungsverhältnis von 𝑚/𝑧 = 70 (C5H10) und 𝑚/𝑧 = 68 (C5H8) auftretenden
Isomere quantifiziert und mithilfe vorangegangener Messungen mittels Elektronenstoßio-
nisation auch die entsprechenden Molenbrüche bestimmt werden. Für C5H10 konnte eine
bevorzugte Bildung verzweigter Strukturen (Methylbutene) festgestellt werden, was mit
der verzweigten Struktur des Brennstoffmoleküls in Einklang steht. Jedoch wurde auch ein
Beitrag des linearen Isomers 2-Penten eindeutig identifiziert. Während das kinetische Modell
nur geringfügige Mengen an 2-Penten und die Methylbutene in vergleichbaren Anteilen
vorhergesagt hat, konnten in der Messung ein höherer Anteil an 2-Penten gemessen werden
und 2-Methyl-1-buten eindeutig als Hauptisomer identifiziert werden. Für C5H8 wurde, wie
aus der ebenfalls verzweigten Struktur erwartet, Isopren als dominantes Isomer gefunden,
jedoch wurden auch Beiträge von Cyclopenten und Pentadienen quantifiziert. Einige dieser
Spezies waren zuvor nicht im kinetischen Modell enthalten und sollten daher auf der
experimentellen Grundlage dieser Ergebnisse in Zukunft im verwendeten Reaktionsmecha-
nismus berücksichtigt werden. Insgesamt konnten die Ergebnisse somit einen wertvollen
Beitrag für die Optimierung des Modells liefern. Zusätzliche Messungen des Brennstoffes
iso-Pentan mit einer Dotierung von 20 % Dimethylether als oxygeniertem Brennstoff mit
stark unterschiedlichen Verbrennungseigenschaften konnten zeigen, dass die Zugabe von
geringen Mengen unter den analysierten Bedingungen von hoher Temperatur und niedrigem
Druck kaum Einfluss auf die ersten brennstoffspezifischen Abbauwege des iso-Pentans
haben. In einem niedrigeren Temperaturbereich wird jedoch für beide Brennstoffe eine
frühe peroxidbildende Oxidation erwartet, dessen Auswirkung im Mischungsfall besonders
interessant ausfallen könnte.
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In der Verbrennung von Diethylether konnte mithilfe der hier vorgestellten Messungen
und Ergebnisse die dominante Bildung von Ethylvinylether eindeutig beobachtet werden.
Mithilfe eines präzise aufgenommenen Photoelektronenspektrums und entsprechenden Refe-
renzspektren vieler möglicher Strukturen konnte die Bildung anderer Isomere weitestgehend
ausgeschlossen und vorherige Messungen mittels Elektronenstoßionisation und Photoionisa-
tion bestätigt und um eindeutig identifizierende Photoelektronenspektren ergänzt werden.
Die eindeutige Identifizierung von Ethylvinylether ist für einen neu entwickelten Subme-
chanismus von Diethylether besonders für die kinetische Modellierung interessant, da diese
Spezies zuvor nicht in bereits existierenden Modellen enthalten war.

Abschließend lässt sich festhalten, dass insgesamt mehrere experimentelle Methoden mit ent-
sprechenden Referenzmessungen zusammen mit theoretischen Berechnungen und kinetischen
Modellierungen nur in Kombination Aufschluss über komplexe Probleme in der Verbren-
nungsanalytik bieten. Die Photoelektronen-Photoionen Koinzidenz-Spektroskopie konnte
dabei als wertvoller Baustein zur spezifischen Isomerentrennung für die Weiterentwick-
lung und Validierung kinetischer Modelle zur Vorhersage von Verbrennungseigenschaften
unterschiedlichster Brennstoffe genutzt und vorgestellt werden.



KAPITEL 4
Einfluss der Addition von Biokraftstoffen auf die Flammenstruktur und
Schadstoffbildung in vorgemischten Niederdruckflammen

Während der Energiebedarf insbesondere im Transportsektor stark ansteigt, ist gleichzeitig
eine Strategie zur Reduktion von Treibhausgasen notwendig, weshalb sich die Verbren-
nungsforschung zunehmend in die Richtung von erneuerbaren Kraftstoffen wie Alkoholen,
Ethern und Estern orientiert [23, 35, 44]. Die Addition oxygenierter Biokraftstoffe zu
erdölbasierten Kraftstoffen konnte bereits als vielversprechender Ansatz zur Reduktion von
Rußemissionen charakterisiert werden [45, 93, 94]. Sowohl n-Butanol [95–97] als auch sein
Isomer Diethylether [98–100] (beide C4H10O) wurden aufgrund ihrer positiven physiko-
chemischen Eigenschaften im Hinblick auf die motorische Verbrennung sowie die Möglichkeit
der Produktion aus Fermentationsprozessen bzw. Bioethanol bereits als mögliche Alter-
nativen zu herkömmlichen Kraftstoffen diskutiert. Daher wurden in dieser Arbeit die
Auswirkungen der Addition von n-Butanol und Diethylether auf die Verbrennung eines
einfachen Kohlenwasserstoffes im Hinblick auf die Schadstoffbildung untersucht. Als mög-
lichst einfaches Untersuchungsobjekt wurde dazu eine bereits gut bekannte vorgemischte
Niederdruckflamme des Brennstoffes n-Butan herangezogen. Diese Untersuchungen, die
auf ersten orientierenden Vorarbeiten aus meiner Masterarbeit [101] aufbauen und in den
Publikationen [3] und [4] veröffentlicht sind, werden im Folgenden kurz zusammengefasst.

Flammenmessungen
Brennstoffreiche vorgemischte laminare Niederdruckflammen der Brennstoffe n-Butan (Bu),
n-Butanol (BuOH) und Diethylether (DEE), sowie 50:50-Mischungen von n-Butan mit
n-Butanol oder Diethylether, wurden unter identischen Bedingungen (Druck 40 mbar,
Argonverdünnung 25 %, Kaltgasgeschwindigkeit 73 cm/s bei 333 K und 40 mbar, C/O-
Verhältnis 0.52) mittels Molekularstrahl-Massenspektrometrie (MBMS) unter Verwendung
von Elektronenstoßionisation (EI) untersucht. Darüber hinaus wurden für alle fünf Flammen
einige stabile Isomere mithilfe eines an das System gekoppelten Gaschromatographen (GC-
MS) getrennt. Die reine DEE-Flamme sowie die Bu/DEE Mischung wurden von Luc-Sy
Tran zusätzlich mittels PI-MBMS am National Synchrotron Radiation Laboratory der
University of Science and Technology of China in Hefei, China untersucht. Der Übersicht
halber sind alle Flammen in Tab. 4.1 zusammengefasst.
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Tabelle 4.1: Flammenbedingungen der untersuchten laminaren Niederdruckflammen. slm:
Standard Liter pro Minute (bei 273.15 K und 1 atm), ṁ: Massefluss bei Einlass. * Leicht andere
Bedingungen mit einem Argonfluss von 1.00 slm wurden im PI-MBMS-Experiment verwendet.

Flamme (Abkürzung) Gasflussrate (slm) ṁ Verhältnis 𝜑

Ar O2 DEE n-Butanol n-Butan (g/cm2/s) C/H C/O

n-Butan (Bu) 1.14 2.71 0.71 0.004013 0.40 0.52 1.70

n-Butan/DEE (Bu/DEE)*
1.14 2.67 0.37 0.37 0.004174 0.40 0.52 1.75
1.00 2.35 0.33 0.33 0.004174 0.40 0.52 1.75

DEE (DEE)*
1.14 2.63 0.79 0.004355 0.40 0.52 1.80
1.00 2.31 0.70 0.004355 0.40 0.52 1.80

n-Butan/n-Butanol (Bu/BuOH) 1.14 2.67 0.37 0.37 0.004174 0.40 0.52 1.75

n-Butanol (BuOH) 1.14 2.63 0.79 0.004355 0.40 0.52 1.80

Kinetische Modellierung
In der Publikation [3] wurde zunächst nur auf Basis der Daten der DEE-Flamme in Zusam-
menarbeit mit dem Laboratory for Chemical Technology der Ghent University, Belgien ein
neuer Submechanismus für die kinetische Modellierung des Brennstoffes DEE entwickelt.
Dabei wurden im Vergleich zu einem vorherigen DEE-Mechanismus [102] zusätzliche Reak-
tionen der direkt aus dem Brennstoff entstehenden Radikale berücksichtigt, sowie neue
Ratenkonstanten für die primären Reaktionen unter Verwendung genauerer theoretischer
Berechnungen auf CBS-QB3 -Basis bestimmt. Das optimierte DEE-Modell wurde mithilfe
der gemessenen Flammendaten sowie Messungen von laminaren Flammengeschwindigkeiten
unter hohem Druck validiert und konnte die gemessenen Daten gut wiedergeben.
Das entwickelte und validierte DEE-Modell konnte anschließend in der Publikation [4]
genutzt werden, um ein kombiniertes Modell für die Beschreibung aller drei untersuchten
Brennstoffe und deren Mischungen zu erstellen. Dazu wurde zunächst die Reaktionsda-
tenbank des Combustion Chemistry Center der National University of Ireland Galway
(NUIG) [103, 104] als Basismodell verwendet. Hierarchisch gewachsen, baut diese auf den
AramcoMech 1.3 [105] auf und beinhaltet bereits einen Großteil der in der Verbrennung
relevanten Reaktionen und Spezies im Bereich von C0 bis C6, unter anderem auch die
brennstoffspezifischen Reaktionen für n-Butan. Um auch die potentiellen Rußvorläufermo-
leküle Toluol und Ethylbenzol vorhersagen zu können, wurden die brennstoffspezifischen
Reaktionen dieser Spezies zur Konsistenz ebenfalls von dieser Gruppe übernommen [106].
Einen Submechanismus für n-Butanol und Diethylether gibt es dort bisher jedoch nicht,
weshalb diese von Sarathy et al. [107] für n-Butanol und, wie oben beschrieben, von Tran
et al. [3] für Diethylether verwendet wurden. Dabei wurde auf interne Konsistenz der
Ratenkonstanten, Thermo- und Transporteigenschaften von Spezies aus mehreren dieser
Mechanismen geachtet und diese, wann immer möglich, aus dem Basismodell verwendet.
Alle verwendeten Reaktionsmechanismen sind bereits zuvor durch zahlreiche Experimente
über ein weites Parameterfeld validiert worden.

Brennstoffabbau und primäre Zerfallsprodukte
Um einen genaueren Überblick über die Abbauwege der verschiedenen Brennstoffe zu er-
halten und mögliche Gemeinsamkeiten und Unterschiede zu ermitteln, wurden sogenannte
Rate of Production Analyses (ROP) für alle analysierten Brennstoffe bei einer Höhe über
der Brenneroberfläche von 2.1-2.2 mm (korrespondierend zu einer Temperatur von 1100 K
und einem Brennstoffumsatz von 78 %) durchgeführt. Diese sind in Kombination für alle
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drei Brennstoffe in Abb. 4.1 dargestellt. Um Gemeinsamkeiten besonders herauszuarbeiten,
wurden die auftretenden Spezies mit verschiedenen Boxen umrahmt; primäre Abbauspezies,
die von allen drei Brennstoffen gebildet werden, sind mit einer dreifachen Linie (rot) um-
randet, während Spezies, die aus dem Basisbrennstoff n-Butan und einem der oxygenierten
Brennstoffe gebildet werden, mit einer zweifachen Linie (grün) und Spezies, die nur aus
einem Brennstoff entstehen, mit nur noch einer Linie (blau) umrahmt sind. Zusätzlich
wurden die C-H-Bindungsenergien für alle drei Brennstoffe aus den thermodynamischen
Daten des kinetischen Modells berechnet und sind jeweils unterhalb des Brennstoffmoleküls
angegeben.

Abbildung 4.1: Rate of Production Analyses (ROP) für den Brennstoffabbau von n-Butan
(NC4H10, Bu), Diethylether (DEE) und n-Butanol (NC4H9OH, BuOH) für eine Höhe über der
Brenneroberfläche von 2.1-2.2 mm, korrespondierend zu einer Flammentemperatur von 1100 K
und einem Brennstoffumsatz von 78 %. Die prozentualen Angaben sind relative Verbrauchsraten
der entsprechenden Spezies. Die Intensität der Pfeile charakterisiert spezifische Reaktionsschrit-
te (dick: H-Abstraktion vom Brennstoffmolekül, mittel: 𝛽-Spaltung der Brennstoffradikale,
dünn: andere Reaktionen primärer Spezies). Isomerisierungen der Brennstoffradikale treten
auf, sind jedoch der Übersicht halber nicht eingezeichnet. Dargestellte Bindungsenergien der
Brennstoffmoleküle wurden mithilfe der thermodynamischen Daten aus dem in [4] verwendeten
kombinierten Modell berechnet. Adaptiert von [4].

Aus der ROP in Abb. 4.1 kann entnommen werden, dass für alle drei Brennstoffmoleküle
mindestens 97 % des initialen Brennstoffabbaus nur durch H-Abstraktion erfolgen. Für
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die symmetrischen Moleküle n-Butan und DEE findet diese bevorzugt am C2 statt und
weniger am C1, was entsprechend konsistent mit der niedrigeren C-H-Bindungsenergie
am C2 ist. Beim unsymmetrischen n-Butanolmolekül kann die H-Abstraktion zu fünf
Brennstoffradikalen führen, wobei die Abstraktion am C1 aufgrund der niedrigsten C-
H-Bindungsenergie bevorzugt wird. Die sich in der Hochtemperaturkinetik üblicherweise
an die H-Abstraktion anschließende 𝛽-Spaltung liefert für n-Butan ausschließlich Kohlen-
wasserstoffe, hauptsächlich Spezies mit drei Kohlenstoffatomen (C3), aber auch C1- und
C2-Spezies. C4-Spezies, wie 1- und 2-Buten werden ebenfalls gebildet, jedoch zu weniger
als 1 %. Wird nun DEE zu n-Butan addiert, wird der Speziespool durch zusätzliche
Kohlenwasserstoffe, aber auch oxygenierte Spezies erweitert. Dies umfasst vor allem C2-
aber auch C1-Spezies, die größtenteils aus dem Abbau von DEE entstehen. Erwartet
wird somit eine Reduktion der C3-Spezies bei einer gleichzeitigen Erhöhung der C1- und
C2-Spezies. Wird hingegen n-Butanol zu n-Butan addiert, wird der Speziespool zwar auch
durch Kohlenwasserstoffe und oxygenierte Spezies erweitert, jedoch im Gegensatz zu DEE
nicht nur durch C1- und C2-Spezies, sondern vorrangig durch C3- und C4-Spezies. Um
diese theoretischen Überlegungen experimentell zu bestätigen, werden in Abb. 4.2 die
Molenbruchprofile einiger wichtiger erster auftretender Intermediate aus dem Diagramm in
Abb. 4.1 für die verschiedenen untersuchten Flammen verglichen.

In Abb. 4.2a-c wird zunächst Ethen als Vertreter aus allen drei Brennstoffen verglichen.
Dabei fällt auf, dass die Bildung von C2H4 für die Mischungen im Wesentlichen kaum von
der Zugabe der oxygenierten Brennstoffe beeinflusst wird. Alle fünf Flammen sowohl der
drei reinen Brennstoffe als auch der beiden Mischungen weisen vergleichbare Molenbrüche
an Ethen auf. Dies liegt zum einen daran, dass es aus allen Brennstoffen auf direktem
Weg gebildet werden kann, zum anderen aber auch für alle Brennstoffe als sekundäres
Produkt aus dem weiteren Zerfall auftretender größerer Intermediate entsteht. Ähnliche
Beobachtungen konnten auch für weitere kleine Spezies, die hier nicht gezeigt sind, gemacht
werden. Zusätzlich kann festgehalten werden, dass für die DEE-Flamme und die Bu/DEE-
Flamme eine sehr gute Übereinstimmung der Daten aus dem EI- und dem PI-Experiment
zu beobachten ist, was für eine gute Kreuzvalidierung beider Experimente spricht.

Beispiele für Spezies, die sowohl aus dem Basisbrennstoff n-Butan und einem oxygenierten
Brennstoff gebildet werden können, sind mit Propen (C3H6, Abb. 4.2d-f) und Buten (C4H8,
Abb. 4.2g-i) gegeben. Beide Spezies weisen im Experiment für die Zugabe von n-Butanol
entgegengesetzte Trends auf, welche auch vom kinetischen Modell sehr gut wiedergegeben
werden. C3H6 bildet einen großen Anteil am Abbau von n-Butan, während der entsprechen-
de Weg auf der Seite von n-Butanol nur einen kleineren Anteil ausmacht. Im Gegensatz
dazu wird C4H8 nur in sehr geringen Mengen aus n-Butan erhalten, während der Weg aus
n-Butanol deutlicher stärker ausgeprägt ist. Dadurch können die gegensätzlichen Trends
im Experiment erklärt werden. Wird hingegen DEE zu n-Butan addiert, welches weder
C3H6 noch C4H8 durch direkten Brennstoffabbau bilden kann, sinken die experimentell
bestimmten Molenbrüche beider Spezies stark. Dies stimmt auch mit den Modellierungen
überein.

Eine weitere interessante Spezies ist C2H4O (Abb. 4.2j-l), obwohl es keine Überlappung aus
dem Zerfall der oxygenierten Brennstoffe mit dem Basisbrennstoff n-Butan gibt. Jedoch
wird aus DEE das C2H4O-Isomer Acetaldehyd gebildet, während aus n-Butanol Vinylalko-
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Abbildung 4.2: Molenbruchprofile ausgewählter Intermediate aus den ersten Stufen des
Brennstoffabbaus. Links: n-Butanflamme, Mitte: n-Butan/Diethylether- und Diethylether-
flamme, Rechts: n-Butan/n-Butanol- und n-Butanolflamme. Unausgefüllte Symbole: EI-
MBMS-Experiment Bielefeld, Ausgefüllte Symbole: PI-MBMS-Experiment Hefei (nur für
n-Butan/Diethylether- und Diethyletherflamme), Dicke Linien: Ergebnisse der kinetischen
Modellierung mit dem kombinierten Modell, Dünne Linien: Verbindung der Messpunkte mit
einer Spline-Funktion zur besseren Übersicht. Adaptiert von [4].
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hol entsteht. Im für alle Flammen verwendeten EI-MBMS-Experiment können diese nicht
unterschieden werden, während ihre Identifizierung durch das PI-MBMS-Experiment jedoch
möglich war [4]. Beide Spezies werden in großen Mengen gebildet und der Vergleich der
Summen zeigt daher für die Zugabe von DEE sowie für n-Butanol einen hohen Anstieg. Dies
kann als eher negativer Aspekt der Biokraftstoffaddition festgestellt werden, da Aldehyde
sowohl als gesundheitsgefährdend für den Menschen als auch als schädlich für die Umwelt
und die Atmosphäre charakterisiert werden.

Einfluss der Addition von DEE und n-Butanol auf die Schadstoffbildung
Um die Trends und Effekte der Biokraftstoffaddition genauer zu untersuchen, werden im
Folgenden ausschließlich die maximalen Molenbrüche einzelner Spezies in Abhängigkeit
vom Zusatz des Additivs analysiert (0% Additiv: pure n-Butanflamme, 50% Additiv:
50:50-Mischungen von n-Butan und DEE oder n-Butanol, 100% Additiv: pure DEE- bzw.
n-Butanolflamme). Dabei werden einige generelle Trends gefunden. Allgemein kann bei der
Addition von DEE und n-Butanol ein starker Anstieg für toxische Carbonylverbindungen,
insbesondere Aldehyde (hier vorrangig Formaldehyd und Acetaldehyd) beobachtet werden.
Diese Tendenz potentieller Biokraftstoffe zur vermehrten Bildung von Aldehyden wurde be-
reits von Kohse-Höinghaus et al. [23] als bedenklich erwähnt und ist im Wesentlichen auf die
vergleichsweise schnelle Bildung in wenigen Reaktionsschritten aus den meist oxygenierten
Biokraftstoffmolekülen zurückzuführen. Werden hingegen die potentiellen Rußvorläuferspe-
zies analysiert, können gegenläufige Tendenzen für die Addition von DEE und n-Butanol
identifiziert werden. Mit der Zugabe von DEE wird ein signifikanter Rückgang der Bildung
von Rußvorläuferspezies festgestellt, während für die Zugabe von n-Butanol nahezu keine
Reduktionseffekte, für manche Spezies sogar ein deutlicher Anstieg gemessen wird. Diese
beiden gegenläufigen Trends können auch mithilfe der kinetischen Modellierung erhalten
werden und bestätigen die Erwartungen aus Abb. 4.1, da für die Bildung der als Rußvor-
läuferspezies genannten Strukturen größtenteils C3- und C4-Bausteine benötigt werden, die
aufgrund der maximalen Kohlenstoffkette von zwei Atomen im Diethylethermolekül nicht
aus dem direktem Brennstoffabbau entstehen können. Das Molekül n-Butanol hingegen
weist mit einer C4-Kette schon die entsprechenden Voraussetzungen auf, was somit zu einer
möglichen Bildung von Strukturen im Bereich von C4 bis C8 führt. Zum Beispiel konnte
mittels einer Rate of Production Analysis für Benzol die Radikalrekombination von C3H5
(Allyl) und C3H3 (Propargyl) als entscheidender Bildungsweg identifiziert werden (vgl. Tran
et al. [4]). Beide Spezies werden aus den direkten 𝛽-Spaltungsprodukten C3H6 und C4H8
des n-Butanolabbaus (vgl. Abb. 4.1) gebildet und sind daher in großen Mengen verfügbar.
Eine anschließende H-Abstraktion am Benzol liefert das Benzylradikal (C6H5), welches
im weiteren Verlauf schnell mit anderen Radikalen wie z.B. C2H5 (Ethyl) zu Ethylbenzol
oder CH3 (Methyl) zu Toluol, aber auch mit weiteren größeren Radikalen rekombiniert
und somit größere Strukturen aufbaut, die letztendlich zu Rußpartikeln führen können.

Zusätzlich zu den analysierten Trends sollte ebenfalls untersucht werden, ob die Bil-
dung der betrachteten Intermediate ein rein kombinatorischer Effekt ist oder ob es zwischen
den Speziespools zweier Brennstoffe zu Interaktionen kommt. Dazu wurde für jede Spezies
der Mittelwert des detektierten Molenbruchs in der n-Butanflamme und der entpspre-
chenden Flamme des Biokraftstoffes berechnet und dann mit dem tatsächlich gemessenen
Molenbruch in der Mischung verglichen. Die Auftragung der Abweichung des tatsächlich
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gemessenen Wertes zum berechneten Mittelwert ist in Abb. 4.3 für einige relevante Spezies
dargestellt. Unter der Annahme, dass eine tatsächliche Interaktion vorliegt, wenn diese
Abweichung existiert, bzw. höher ist als der entsprechend zu berücksichtigende Fehler
der Molenbrüche, können die Ergebnisse interpretiert werden. Dazu wurde der Fehler im
Experiment mit 5 % angenommen (rote gestrichelte Linie in Abb. 4.3), da in diesem Fall
alle Messungen unter identischen Bedingungen durchgeführt wurden und daher nicht der
absolute Molenbruchfehler, sondern der relative Fehler innerhalb der Reproduzierbarkeit
des Experiments entscheidend ist. Dieser wurde durch Wiederholung identischer Messungen
auf unter 5 % bestimmt.

Abbildung 4.3: Abweichungen der maximalen Molenbrüche ausgewählter Kohlenwasserstoff-
spezies und Carbonylverbindungen in den Mischungsflammen vom berechneten Mittelwert der
jeweils beiden puren Flammen in Prozent. Positive Werte zeigen an, dass die Spezies in der Mi-
schung mehr gebildet wird als der Mittelwert der beiden puren Komponenten und andersherum.
Oben: Mischung von n-Butan und Diethylether, unten: Mischung von n-Butan und n-Butanol.
Die gleichen Berechnungen wurden für die Ergebnisse der Simulation mit zwei verschiedenen
Basismechanismen durchgeführt (NUIG und Cottbus, Details zu den Mechanismen s. Text und
[4]). Im Cottbus-Modell ist kein Ethylbenzol (C8H10) enthalten. Adaptiert von [4].

Die in Abb. 4.3 dargestellten Spezies der Klassen Rußvorläufer und Aldehyde wurden
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besonders im Hinblick auf die mögliche Beschränkung der Nutzung der Biokraftstoffe
aufgrund von Auswirkungen auf die Gesundheit sowie die Luftqualität und Atmosphä-
renchemie ausgewählt. Weiterhin sind in der Abbildung auch die Berechnungen für die
Molenbrüche aus dem kinetischen Modell eingetragen, um einen direkten Vergleich zu
ermöglichen. Dabei wurde sowohl das kombinierte Modell dieser Arbeit (basierend auf
dem NUIG Basismechanismus) als auch zum Vergleich ein weiteres kombiniertes Modell
mit einem anderen Basismechanismus des Lehrstuhl Thermodynamik und Thermische
Verfahrenstechnik der Brandenburgisch Technischen Universität Cottbus-Senftenberg [37]
verwendet.
Bei der Analyse der Abweichungen fällt auf, dass diese für viele der gezeigten Spezies,
insbesondere kleinere Spezies bis in den C4-Bereich, innerhalb oder um die Fehlergrenze
liegen. Diskutable Abweichungen sind in der n-Butan/DEE-Mischung nur für C4H8 (nur
im Experiment), C5H6 und C7H8 und in der n-Butan/n-Butanol-Mischung nur für Spezies
über C6 (C7H8 und C8H10) zu finden. Da aber gerade diese C7-C8-Spezies wichtige Schlüs-
selintermediate für die Rußbildung sind, ist es besonders interessant, dass die wenigen
gefunden Interaktionen offensichtlich vorrangig diesen Bereich betreffen. Es fällt ebenso
auf, dass alle diskutablen Abweichungen jeweils negativ sind, d.h. eine Interaktion führt
zu einer Reduktion der Spezies im Vergleich zum theoretischen Mittelwert. Ein solcher
Effekt kann jedoch sowohl auf thermische, als auch Transport- oder chemische Eigenschaf-
ten zurückzuführen sein. Letztere weisen dabei insbesondere auf Synergien zwischen den
Reaktionswegen zweier Brennstoffe hin, welche detaillierter im Hinblick auf Unsicherheiten
im Experiment, vor allem aber auch in den kinetischen Modellierungen analysiert werden
müssen. Die zum Teil stark unterschiedlichen Abweichungen der zwei hier vorgestellten
Modelle deuten darauf hin, dass die Ergebnisse solcher Simulationen stark abhängig vom
verwendeten Mechanismus und folglich mit Vorsicht zu interpretieren sind.

Zusammenfassung
Der Einfluss der potentiellen Biokraftstoffe Diethylether und n-Butanol auf die Flammen-
struktur einer laminaren Niederdruckflamme des Brennstoffes n-Butan wurde im Hinblick
auf die Bildung erster Intermediatspezies als auch von Schadstoffen untersucht. Dazu
wurden insgesamt mehr als 40 stabile und radikalische Spezies im Bereich von C0 bis C8 in
fünf brennstoffreichen Flammen (n-Butan, Diethylether, n-Butanol und 50:50-Mischungen
von n-Butan mit Diethylether oder n-Butanol) unter gleichbleibenden Flammenbedingun-
gen aufgenommen und mithilfe von EI-MBMS und zum Teil auch PI-MBMS identifiziert
und quantifiziert. Um die Ergebnisse entsprechend interpretieren zu können, wurde ein
kinetisches Modell aus einem hinreichend validierten Basismechanismus und den Subme-
chanismen der Additive Diethylether und n-Butanol kombiniert. Der Submechanismus
für Diethylether wurde dabei auf Grundlage von theoretischen Berechnungen und den
gemessenen Speziesprofilen in der laminaren Niderdruckflamme sowie gemessenen Flam-
mengeschwindigkeiten neu aufgebaut.

Die Ergebnisse zeigen, dass die Bildung toxischer Carbonylverbindungen, insbesonde-
re von Aldehyden, durch die Addition der Biokraftstoffe stark ansteigt. Die Analyse der
untersuchten Rußvorläuferspezies fiel dahingegen unterschiedlich aus. Für die Addition von
Diethylether zu n-Butan konnte eine signifikante Reduktion der Bildung von spezifischen
Rußvorläuferspezies gefunden werden, während diese durch die Addition von n-Butanol zu
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n-Butan kaum sinken, in einigen Fällen sogar ansteigen. Dies konnte sowohl im Experiment,
als auch in den Ergebnissen der kinetischen Modellierung beobachtet werden. Der Effekt
konnte im Wesentlichen auf die molekulare Brennstoffstruktur zurückgeführt werden, da die
längste Kohlenstoffkette im Diethylethermolekül aus zwei Atomen besteht, während sie im
n-Butanolmolekül vieratomig ist und dadurch wesentlich die entsprechenden brennstoffspe-
zifischen Verbrennungsreaktionen beeinflusst. Die Analyse interaktiver Effekte zwischen den
Verbrennungsabläufen zweier Brennstoffe ergab, dass diese im untersuchten Temperatur-
und Druckbereich nur eingeschränkt vorliegen. Dies kann sowohl an Unsicherheiten im
Experiment oder auch insbesondere in den kinetischen Modellen liegen, weshalb beides in
Zukunft detaillierter analysiert werden sollte. Auch die Untersuchung solch interaktiver
Effekte in einem niedrigeren Temperaturbereich scheint vielversprechend für weitere Expe-
rimente, da dort hochreaktive Spezies wie Peroxide gebildet werden, die die Zündwilligkeit
und Reaktivität beeinflussen und somit eine starke Auswirkung auf interaktive Effekte
haben können.





KAPITEL 5
Chemische Interaktion und synergistische Effekte in
Brennstoffmischungen im Bereich der Niedertemperaturoxidation

In diesem Kapitel werden die Ergebnisse zu Untersuchungen von chemischen Interaktionen
zwischen zwei Brennstoffen im Niedertemperaturbereich vorgestellt. Diese Arbeiten sind
bisher nicht veröffentlicht, sind jedoch bereits in Form des Manuskripts [5] zur Veröffentli-
chung akzeptiert.
Ziel der Untersuchungen war die Analyse eines möglichen interaktiven Effekts in der
Niedertemperaturoxidation von Brennstoffgemischen. In Kapitel 4 wurde bereits gezeigt,
dass solche Interaktionen im Hochtemperaturbereich unter den hier untersuchten Rand-
bedingungen nur wenig auftreten. Brennstoffadditive finden jedoch besonders im Bereich
des intelligenten Fuel Designs Anwendung zur Kontrolle der Zündzeiten in zukünftigen
Motorenkonzepten, immer mit dem Ziel einer saubereren Verbrennung und einer höheren
thermischen Effizienz [52, 108]. Dazu fehlen jedoch bisher essentielle Informationen über
mögliche synergistische Effekte und chemische Interaktionen der Brennstoffkomponenten im
dabei relevanten Bereich der Niedertemperatur, in welchem die Selbstzündung stattfindet
und beeinflusst werden kann. In solchen Low-Temperature Combustion Engines werden
zum Beispiel Mischungen aus einem Brennstoff mit hoher Cetanzahl1 und einem Brennstoff
mit hoher Oktanzahl eingesetzt, um über eine interaktive Verbrennung die gewünschte
höhere thermische Effizienz zu erreichen. Eine gute Übersicht über mögliche Strategien zur
effizienteren Kontrolle von Motoren und Zündzeiten wurde von Saxena und Bedoya [53]
zusammengestellt.
In dieser Arbeit wurden daher Untersuchungen zu möglichen Interaktionen prototypischer
konventioneller und biobasierter Brennstoffe am laminaren Strömungsreaktor durchgeführt.
Temperaturabhängige Speziesprofile wurden im Hinblick auf interaktive Effekte während
des Oxidationsprozesses analysiert. Als Basis wurde hier das C5-Alkan n-Pentan gewählt,
da seine Oxidation vergleichsweise einfacher modelliert werden kann als die der technisch
relevanteren Moleküle, wie z.B. das Primary Reference Fuel n-Heptan. Zur ersten Analyse
überhaupt möglicher interaktiver Effekte ist es wichtig, die ablaufenden Reaktionen gut
zu verstehen und entsprechend modellieren zu können. Mit größer werdenden Brennstoff-
molekülen ist dies aber bisher aufgrund der exponentiell ansteigenden Zahl auftretender
Spezies und ablaufenden Reaktionen noch nicht vollständig etabliert. n-Pentan ist daher
ein guter Kompromiss zwischen Anwendbarkeit und Komplexität, da es eine bekannte

1 Die Cetanzahl beschreibt die Zündwilligkeit von Dieselkraftstoffen und -surrogaten und gibt an, dass
sich ein Kraftstoff so verhält wie ein Gemisch aus dem als Cetanzahl angegebenen Volumentanteil
des zündwilligen n-Hexadecan und dem zündträgen Methylnaphthalin. Je höher die Cetanzahl, desto
zündwilliger das Gemisch, handelsübliche Dieselkraftstoffe weisen eine Cetanzahl von 51-56 auf [67].
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Niedertemperaturkinetik aufweist, die durch Additive beeinflusst werden kann und seine
Oxidationsreaktionen mithilfe aktueller kinetischer Modelle gut beschrieben werden können
[109]. Als Additive wurden Dimethylether und Ethanol (beide C2H6O) gewählt, welche
sich sowohl strukturell als auch in ihren Oxidationseigenschaften sehr stark unterschei-
den. Für Dimethylether ist eine hohe Reaktivität im Niedertemperaturbereich bekannt,
und ablaufende Reaktionen und auftretende Spezies sind bereits ausführlich untersucht
worden [68, 110–114]. Darüber hinaus hat es eine hohe Cetanzahl und ist seit längerem
als potentieller Biokraftstoff im Gespräch [23, 44]. Ethanol hat im Gegensatz eine hohe
Oktanzahl und wird bereits als Kraftstoffadditiv verwendet (z.B. E10). Bisher konnte im
Niedertemperaturbereich kaum Reaktivität gezeigt werden [111, 115]. Demzufolge werden
unterschiedliche Effekte für die Addition von Dimethylether und Ethanol zu n-Pentan
erwartet.

Reaktormessungen
Die Niedertemperaturoxidation von n-Pentan, Dimethylether (DME), Ethanol (EtOH)
und entsprechenden Mischungen mit 25 bzw. 50 % der oxygenierten Komponente wurde
im laminaren Strömungsreaktor (s. Kap. 2.2.2) in einem Temperaturbereich von 450-930 K
unter konstanten Bedingungen untersucht. Dabei wurden für jede Messung eine Stöchiome-
trie von 𝜑 = 0.7, ein Reaktordruck von 970 mbar, ein Gesamtfluss von 300 sccm (standard
cubic centimeters per minute bei 273.15 K und 1 atm) und eine Argonverdünnung von
90 % verwendet. Alle Bedingungen sind in Tab. 5.1 zusammengefasst.
Temperaturabhängige Speziesprofile wurden mithilfe von EI-MBMS (vgl. Kap. 2.3) aufge-
nommen und wenn möglich quantifiziert. Interessante Spezies für die keine entsprechenden
Literaturdaten zur Quantifizierung vorlagen wurden mithilfe einer Normierung auf die je-
weiligen Eingangsbedingungen relativ untereinander verglichen, um Trends und interaktive
Effekte zu visualisieren.

Tabelle 5.1: Experimentelle Bedingungen und Benennungen der Messungen am lami-
naren Strömungsreaktor. 𝛾 wird als Anteil von n-Pentan in den Mischungen definiert:
𝛾 = 𝑥𝐶5𝐻12/(𝑥𝐶5𝐻12 + 𝑥𝐶2𝐻6𝑂). sccm: standard cubic centimeters per minute bei 273.15 K
und 1 atm.

Gasfluss / sccm

Brennstoff Name 𝑝 / bar 𝜑 𝛾 Gesamt Ar O2 C5H12 DME EtOH

n-Pentan (C5H12) P100 0.97 0.7 300.0 270.0 27.59 2.414
Dimethylether (DME) D100 0.97 0.7 300.0 270.0 24.32 5.676

Ethanol (EtOH) E100 0.97 0.7 300.0 270.0 24.32 5.676
C5H12/DME PD75 0.97 0.7 0.75 300.0 270.0 27.18 2.114 0.705
Mischungen PD50 0.97 0.7 0.50 300.0 270.0 26.61 1.694 1.694

C5H12/EtOH PE75 0.97 0.7 0.75 300.0 270.0 27.18 2.114 0.705
Mischungen PE50 0.97 0.7 0.50 300.0 270.0 26.61 1.694 1.694

Kinetische Modellierung
Obwohl die experimentellen Ergebnisse in dieser Arbeit im Vordergrund stehen, wurden
unterstützend Simulationen der Speziesprofile mithilfe kinetischer Modelle durchgeführt.
Dazu wurde die in Kap. 2.5 vorgestellte Methode nach Hemken et al. [62] zur Beschreibung
des laminaren Strömungsreaktors verwendet und der Wärmetransferkoeffizient des Systems
mithilfe von Messungen für reines Argon (nicht reaktive Bedingungen) auf 10 W ·m−2 ·K−1

bestimmt. Als kinetische Modelle wurden die Mechanismen von Bugler et al. [109] (hier:
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NUIG-Modell) und Ranzi et al. [116] (hier: Polimi-Modell) gewählt, da sie beide bereits
alle drei untersuchten Brennstoffe und ihre jeweilige Kinetik enthalten. Im Folgenden
werden die experimentellen Ergebnisse jedoch nur mit dem NUIG-Modell verglichen, für
Vergleiche mit dem Polimi-Modell sei auf [5] verwiesen. Die kinetischen Modellierungen
dienen hier vorerst der Unterstützung des Verständnisses möglicher interaktiver Effekte
der Oxidationsprozesse zweier Brennstoffe. Es konnte festgestellt werden, dass weitere
Parameter bei der Modellierung des laminaren Strömungsreaktors (Massenkonvektion,
Diffusionsprozesse, Wärmefreisetzung des reagierenden Gases, thermische Leitfähigkeit,
thermischer Austausch mit der Reaktorwand) berücksichtigt werden müssen und die
Auswirkung der nicht detaillierten Berücksichtigung dieser Effekte konnte bisher noch nicht
abschließend geklärt werden. Diese Überlegungen sind Gegenstand der aktuellen Forschung.

Reaktivität der Brennstoffgemische
Um mögliche Interaktionen der Oxidationsprozesse zweier Brennstoffe zu visualisieren,
sind in Abb. 5.1 die Temperaturprofile für die jeweiligen Brennstoffumsätze gezeigt. Daran
lässt sich erkennen, wie effizient und bei welchen Temperaturen der jeweilige Brennstoff
umgesetzt wird und ob die Addition eines anderen Brennstoffes dieses Verhalten beeinflusst.
In Abb. 5.1a ist der Umsatz von n-Pentan unter Zugabe von DME gezeigt (P100, PD75,
PD50), während in Abb. 5.1b der Einfluss der Ethanoladdition dargestellt ist (P100, PE75,
PE50). Um auch den Umsatz des jeweiligen Additivs auf Beeinflussung durch das n-Pentan
zu analysieren, sind in Abb. 5.1c,d die Temperaturprofile für DME und Ethanol gezeigt
(D100, PD50, PD75 bzw. E100 und PE75, PE50 ist nicht gezeigt, da dort noch keine
Interaktion gemessen wurde und das Profil dem von E100 gleicht). Damit die jeweili-
gen Profile überhaupt miteinander verglichen werden können, wurden die quantifizierten
Molenbrüche jedes Profils auf den jeweiligen Brennstoffmolenbruch der Gasmischung bei
Einlassbedingungen normiert. Somit müssten alle Profile gleich aussehen, wenn keine Inter-
aktion stattfinden würde. Jegliche Unterschiede in Form und Position sind demzufolge auf
Mischungseffekte zurückzuführen.

In Abb. 5.1a kann für die Addition von DME zu n-Pentan ein geringfügiger Trend hin zu
niedrigeren Temperaturen festgestellt werden. Außerdem ist ein stärkerer Brennstoffumsatz
im Bereich zwischen 600 und 625 K zu sehen, der Unterschied ist jedoch sehr gering und
liegt damit im Fehlerbereich des Experiments. Das Modell gibt den Brennstoffverbrauch
für pures n-Pentan (P100) sowie die Trends unter DME-Addition sehr gut wieder, lediglich
der Temperaturversatz wird etwas stärker vorhergesagt. Für die Addition von Ethanol in
Abb. 5.1b wird ein gegenläufiger Trend erhalten. Der Brennstoffverbrauch von n-Pentan
wird reduziert, zu leicht höheren Temperaturen verschoben und das NTC-Fenster (vgl. auch
Abb. 2.2) wird schmaler. Auch dieses Verhalten kann vom Modell in Übereinstimmung
mit dem experimentellen Befund dargestellt werden, lediglich für PE50 wird etwas weniger
Inhibierung des Brennstoffumsatzes vorhergesagt als experimentell gemessen wurde.
Wird der Brennstoffumsatz aus Sicht des DME betrachtet (Abb. 5.1c), fällt auf, dass die Zu-
gabe von n-Pentan den Umsatz von DME stark beeinflusst. Zwar ist ebenfalls nur ein kleiner
steigernder Effekt auf den Umsatz zu erkennen, der Temperaturbereich ist jedoch mit 35 K
bzw. 49 K für PD50 bzw. PD75 stark verschoben. Im Modell ist dieser Temperatureffekt
etwas geringer. Für pures Ethanol (E100) ist in Abb. 5.1d kein messbarer Umsatz im Bereich
von 600-650 K zu sehen. Durch Addition von n-Pentan kann jedoch auch für Ethanol eine
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Abbildung 5.1: Reaktivität der reinen Brennstoffe und Brennstoffgemische anhand der
Brennstoffumsätze. Experimentell erhaltene Molenbruchprofile (Symbole) und Ergebnisse der
Modellierung (Linien), jeweils normiert auf den Anteil des jeweiligen Brennstoffes in der
Mischung als Funktion der Temperatur. Adaptiert von [5].

verstärkte Reaktivität in diesem Bereich gemessen werden. Dieser Effekt ist jedoch erst bei
75 % n-Pentan signifikant genug und kann auch vom Modell sehr gut wiedergegeben werden.

Insgesamt kann für die Mischung von n-Pentan und DME ein interaktiver Effekt festgestellt
werden. Dies lässt sich durch den intensiveren Umsatz beider Brennstoffe im Vergleich zum
jeweils puren Fall bestätigen. In der Mischung von n-Pentan mit Ethanol wirkt Ethanol
eher hemmend auf den n-Pentanumsatz, während umgekehrt n-Pentan die Reaktivität
von Ethanol erhöht. Um diese Effekte zu verstehen, ist es nötig, die ablaufenden Reak-
tionen im Niedertemperaturbereich für die jeweiligen Brennstoffstrukturen miteinander
zu vergleichen. Ein entscheidender Parameter für die Reaktivität eines Brennstoffes im
Niedertemperaturbereich ist die OH-Bilanz, also die Differenz zwischen gebildeten und
konsumierten OH-Radikalen. In Abb. 5.2 sind die Reaktionszyklen der drei untersuchten
Brennstoffe im Hinblick auf die Bildung und den Verbrauch von OH dargestellt. Die dabei
betrachteten hauptsächlich ablaufenden Reaktionen wurden bereits in Abb. 2.1b in Kap. 2.1
vorgestellt. Die beim Ablauf eines solchen Reaktionszyklus entstehenden OH-Radikale sind
durch die durchgezogenen dicken Pfeile (türkis) hervorgehoben, während der Verbrauch
von OH-Radikalen durch die H-Abstraktion am Brennstoffmolekül mit durchgezogenen
dünnen Pfeilen (blau) dargestellt ist. Um die maximale OH-Bilanz zu bestimmen, dürfen
jedoch nur die gebildeten OH-Radikale nach der zweiten O2-Addition betrachtet werden,
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da es sich nur dann um einen vollständigen Zyklus handelt und die vorherige Bildung von
OH zu einem Kettenabbruch führen kann.

Abbildung 5.2: Schematische Darstellung der Hauptreaktionszyklen in der Niedertemperatur-
oxidation der untersuchten Brennstoffe n-Pentan (a), DME (b) und Ethanol (c). Durchgezogene
dicke Pfeile: Reaktionen, die OH produzieren, durchgezogene dünne Pfeile: H-Abstraktion
am Brennstoffmolekül, wodurch OH verbraucht wird, gestrichelte dicke Pfeile: Reaktionen,
die den Reaktionszyklus begünstigen, gestrichelte dünne Pfeile: andere Produkte während
des Oxidationsprozesses, durchgezogene hellgraue Pfeile: fiktiver Zyklus für Ethanol, der auf-
grund der Struktur von Ethanol nicht stattfinden kann. KHP: Ketohydroperoxid, HPMF:
Hydroperoxymethylformat (Ketohydroperoxid bei der Oxidation von DME). Adaptiert von [5].

Aus Abb. 5.2a kann ermittelt werden, dass die zweistufige Oxidation von n-Pentan maximal
drei OH-Radikale produziert, während für den initialen Reaktionsschritt der Produktion
von Pentylradikalen nur eins benötigt wird. Dieser sogenannte 𝛼-Schritt ist besonders
wichtig, da er den gesamten Zyklus einleitet. Die für diesen Schritt zur Verfügung stehenden
OH-Radikale sind das maßgebliche Kriterium für den Brennstoffumsatz jedes Brennstoffes.
Wird ein weiterer Brennstoff addiert, kommt es an dieser Stelle zu Konkurrenz um die
vorhandenen OH-Radikale. Ebenso ist die H-Abstraktion durch OH der dominanteste
Prozess für die Verzweigung im DME. In Abb. 5.2b ist dies ebenfalls der einzige OH-
Verbrauchsschritt, während aus dem weiter ablaufenden Zyklus wiederum maximal zwei
OH-Radikale entstehen. Durch die Addition von DME zu n-Pentan können OH-Radikale
aufgrund der höheren Niedertemperaturaktivität von DME schon bei niedrigerer Tempera-
tur gebildet werden und somit auch für die Initialisierung des n-Pentanzyklus verwendet
werden. Dadurch wird die Gesamtreaktivität im System erhöht. In Abb. 5.1a konnte jedoch
gezeigt werden, dass der maximale Umsatz von n-Pentan durch die Zugabe von DME kaum
erhöht wird. Dies deutet möglicherweise darauf hin, dass bei gleicher Stöchiometrie der
Brennstoffe eine vergleichbare Konzentration der OH-Radikale vorliegt oder n-Pentan im
Konkurrenzkampf um OH-Radikale die Oberhand gewinnt. Ebenso können möglicherweise
weitere Radikale involviert sein oder es sich ausschließlich um einen Temperatureffekt
handeln.
Bei Betrachtung von Abb. 5.2c wird schnell klar, warum Ethanol die Reaktivität von
n-Pentan in der Mischung senkt. Die grauen Pfeile zeigen eine fiktive zweite O2-Addition,
die aufgrund der Molekülstruktur von Ethanol jedoch nicht stattfinden kann. Auch die
erste O2-Addition findet aufgrund von bevorzugt ablaufenden Konkurrenzreaktionen so
gut wie nicht statt. Demzufolge wird für die initiale Erzeugung von Ethanolradikalen ein
OH-Radikal benötigt, im weiteren Reaktionsverlauf des Brennstoffes jedoch keins erzeugt.
Dies bedeutet, dass Ethanol dem Gesamtsystem nicht nur kein OH zur Verfügung stellt,
sondern aktiv OH-Radikale verbraucht und sie aus dem Reaktionssystem entfernt. Dadurch
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wird die Reaktivität im System stark verringert, was die experimentellen Befunde in
Abb. 5.1b,d bestätigt und erklärt.
Für einen intensiveren Einblick in das Reaktionsverhalten der Brennstoffgemische im
Niedertemperaturbereich werden im Folgenden ausgewählte Intermediate aus dem Oxidati-
onsprozess im Hinblick auf eben diese Interaktion analysiert.

Interaktive Einflüsse auf die Intermediatbildung
Zur Analyse brennstoffspezifischer Intermediate im Niedertemperaturbereich ist in Abb. 5.3
und 5.4 eine stark eingeschränkte Auswahl der in Ref. [5] vorgestellten Spezies gezeigt. In
Abb. 5.3 sind die für die Niedertemperaturoxidation von n-Pentan spezifischen Spezies
C5H12O2 (ROOH) und C5H10O3 (Ketohydroperoxid) als Vertreter stabiler Intermediate
dargestellt. Die jeweiligen Reaktionsdiagramme der untersuchten Brennstoffe sind im Detail
in [5] abgebildet und folgen dem Schema aus Abb. 2.1 in Kap. 2.1. Die Abb. 5.4 zeigt
Acetaldehyd (C2H4O) und Formaldehyd (CH2O) als Vertreter wichtiger Schlüsselspezies
bei der Analyse der Niedertemperaturoxidation, da ihr Auftreten aufgrund ihrer hohen
Toxizität und Umweltschädlichkeit bei der Betrachtung alternativer Kraftstoffe besonders
berücksichtigt werden sollte. Da beide Spezies jeweils aus vielen Brennstoffen entstehen
können und typische Niedertemperaturspezies sind, ist ihre Herkunft aus unterschiedlichs-
ten Reaktionen oft schwer zu beschreiben und ihr Verhalten in den Kraftstoffgemischen
daher besonders interessant.

Hydroperoxyalkane entstehen durch eine Kettenabbruchreaktion aus den vorhergehenden
ROO-Radikalen. Die Bildung von Hydroperoxypentanen (C5H12O2) steht damit in direkter
Konkurrenz zur Isomerisierung ROO ←−→ QOOH [31]. Aus dem ROO-Radikal des
n-Pentan können drei isomere Hydroperoxypentane gebildet werden, eine Isomerentren-
nung war in dem hier verwendeten EI-MBMS-Experiment jedoch nicht möglich. Aufgrund
mangelnder Stoßquerschnitte konnte ebenso keine Quantifizierung der erhaltenen Signale
erfolgen, in Abb. 5.3a,b sind daher relative Temperaturprofile, normiert auf die entsprechen-
den Einlassbedingungen des n-Pentan, dargestellt, um Trends und interaktive Effekte zu
visualisieren. Für pures n-Pentan (P100) kann ein Maximum bei 585 K detektiert werden,
welches gut mit dem Beginn des Brennstoffumsatzes in Abb. 5.1a übereinstimmt. Durch
Zugabe von DME (Abb. 5.3a) wird das Maximum bei einer höheren Temperatur detektiert
und die Bildung von C5H12O2 aus C5H12 steigt leicht an. Das Modell bestätigt diese Trends,
überschätzt jedoch sowohl den Temperatureffekt, als auch die Umsatzsteigerung, wie bereits
für den Brennstoffumsatz bemerkt wurde. Wird hingegen Ethanol zugesetzt (Abb. 5.3b),
wird das Maximum zu höherer Temperatur verschoben und die Intensität nimmt stark ab.
Für PE50 konnte bereits kein Signal mehr gemessen werden. Da C5H12O2 ausschließlich
aus n-Pentan gebildet wird, kann ein Anstieg oder eine Abnahme nicht aufgrund zusätz-
licher Moleküle aus den Additiven erfolgen. Ein Einfluss durch Addition von DME und
Ethanol auf die Reaktivität des n-Pentan kann damit klar bestätigt werden. Die Bildung
von C5H12O2 ist maßgeblich durch die initiale Produktion von Pentylradikalen gegeben.
Da durch die Zugabe von DME mehr OH-Radikale ins System gelangen und somit die
Produktion von Pentylradikalen gesteigert werden kann (vgl. Abb. 5.2 und entsprechende
Diskussion im vorangegangenen Abschnitt) kann im Gegensatz zur Addition von Ethanol,
welches OH-Radikale aus dem System entfernt, mehr C5H12O2 gebildet werden.
Ein ähnliches Verhalten wird auch für die Bildung des Ketohydroperoxids (C5H10O3)
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Abbildung 5.3: Signalintensitäten (Symbole, linke Achse, normiert auf den Anteil n-Pentan
in der Mischung) und quantitative Molenbrüche aus der Modellierung (Linien, rechte Achse,
ebenfalls normiert auf den Anteil n-Pentan in der Mischung) für C5H12O2 (zugeordnet zu
Hydroperoxypentanen, ROOH) und C5H10O3 (zugeordnet zu Ketohydroperoxiden aus der
n-Pentanoxidation) jeweils für die n-Pentan/DME-Mischungen (a,c) und n-Pentan/EtOH-
Mischungen (b,d). Adaptiert von [5].

erwartet, da die Bildung mit dem gleichen Reaktionsablauf verknüpft ist und zunächst
Pentylradikale zur Verfügung stehen müssen. Die Profile für C5H10O3 sind in Abb. 5.3 für
die Zugabe von DME (c) und Ethanol (d) dargestellt. Da auch hier nicht isomerenspezifisch
gemessen werden konnte und keine Stoßquerschnitte verfügbar waren, ist ebenfalls ein
relativer Vergleich über die Normierung auf die Einlassbedingungen gezeigt. Laut Rod-
riguez et al. [117] handelt es sich vorrangig um die Isomere 3-Hydroperoxypentanal und
1-Hydroperoxy-3-pentanon, wohingegen nach Messungen von Rodriguez et al. [117] das
dritte mögliche Isomer 2-Hydroperoxy-4-pentanon eher weniger vertreten sein soll, obwohl
es das chemisch stabilere und kinetisch wahrscheinlichste ist. Die Positionen der Maxima
stimmen mit denen von C5H12O2 überein und der Einfluss der Zugabe von DME und
Ethanol auf die Temperatur ist vergleichbar. Allerdings kann kein deutlicher Anstieg der
Intensität mit DME-Addition gefunden werden, während die Ethanoladdition trotzdem
zu einer Reduktion führt. Im Rahmen der Fehlertoleranz sind die Intensitäten für P100,
PD75 und PD50 in etwa gleich, das Modell sagt jedoch einen klaren Anstieg vorher. Eine
mögliche Begründung für diesen Unterschied kann in den im Modell fehlenden Reaktionen
liegen. Gerade für die Mischungen sind Niedertemperaturreaktionen zwischen beiden Reak-
tionswegen wie z.B. RO2 + R’O2 −−→ RO + R’O + O2 oder die H-Abstraktion durch die
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RO2-Radikale beider Brennstoffe besonders wichtig, jedoch nicht im Modell enthalten, da
es sich hier nicht um ein Modell zur Simulation der Reaktionen von Brennstoffgemischen
handelt. Eine Implementierung solcher Reaktionen könnte zur besseren Beschreibung der
experimentellen Resultate führen.

Abbildung 5.4: Quantitative Molenbrüche aus Experiment (Symbole) und Modellierung
(Linien), jeweils normiert auf den Anteil n-Pentan in der Mischung für Acetaldehyd (C2H4O)
und Formaldehyd (CH2O) für die n-Pentan/DME-Mischungen (a,c) und n-Pentan/EtOH-
Mischungen (b,d). Adaptiert von [5].

In Abb. 5.4 sind die Temperaturprofile von Acetaldehyd (C2H4O) und Formaldehyd (CH2O)
gezeigt. Für diese beiden Spezies kann eine Quantifizierung erfolgen, weshalb die Molen-
brüche der Spezies bestimmt wurden. Damit trotzdem eine Vergleichbarkeit innerhalb der
durchgeführten Messungen erfolgen kann, wurden diese anschließend ebenfalls mithilfe des
jeweiligen n-Pentan Einlassmolenbruchs normiert, um aus Unterschieden der Profile aus-
schließlich interaktive Effekte zu erhalten. Für Acetaldehyd kann festgestellt werden, dass
eine 25 %ige Addition beider oxygenierter Komponenten keinen Einfluss hat, während eine
50 %ige Addition für beide Fälle zu einer signifikanten Reduktion des Molenbruchs führt.
Die Ergebnisse der kinetischen Modellierung sagen für die DME-Addition jedoch keinen
und für die Ethanoladdition nur einen kleinen Effekt voraus. In diesem Fall ist es besonders
interessant, auf welchen Wegen Acetaldehyd für die jeweiligen Brennstoffe und Brennstoff-
gemische vorrangig gebildet wird. Laut dem Modell wird Acetaldehyd im Oxidationsprozess
von n-Pentan bevorzugt aus dem Ketohydroperoxid 2-Hydroxy-4-pentanon (C5H10O3)
gebildet, welches aber, wie bereits beschrieben, laut Rodriguez et al. [117] das am wenigsten
gebildete Ketohydroperoxid ist. Auch für die Mischungen von n-Pentan und DME ist dies
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der vorrangige Bildungsweg von Acetaldehyd, weshalb das Modell keine Unterschiede im
Molenbruch vorhersagt. Möglicherweise fehlen im Modell entsprechende Reaktionen zur
Beschreibung der Mischungen, da üblicherweise der Abbau der Ketohydroperoxide über
eine O-O-Spaltung und anschließende 𝛽-Spaltung direkt Acetaldehyd produziert. Laut
Ranzi et al. [116] ist jedoch auch ein Abbauweg über eine H-Abstraktion und anschließende
𝛽-Spaltung zu Pentadion und Keten möglich. Durch die Addition des reaktiven DME wird
der Beitrag dieser Reaktion möglicherweise erhöht, wodurch für PD50 weniger Acetaldehyd
gebildet werden würde. Da dieser Reaktionsweg jedoch nicht im Modell enthalten ist,
kann in der Simulation kein Effekt beobachtet werden. Aufgrund der experimentellen
Ergebnisse können an dieser Stelle also Verbesserungen im Modell vorgenommen werden.
Die Effekte der Ethanoladdition auf den Molenbruch von Acetaldehyd können über die
bevorzugte Bildung von Acetaldehyd aus dem sekundären Ethanolradikal, welches zu 70 %
aus Ethanol gebildet wird, erklärt werden. Durch die Anwesenheit von n-Pentan und zur
Verfügung stehende OH-Radikale wird die Reaktivität von Ethanol erhöht, es können mehr
Brennstoffradikale gebildet werden, weshalb ebenfalls zusätzlich Acetaldehyd gebildet wird.

Im Gegensatz zum Acetaldehyd wird für Formaldehyd ein gegenläufiger Trend für die
Addition von DME (Abb. 5.4c) und Ethanol (Abb. 5.4d) erhalten. Bei der DME-Addition
kommt es zu einem Anstieg des Molenbruchs, der jedoch für PD75 und PD50 etwa gleich
groß ist. Da Formaldehyd ein typisches Oxidationsintermediat ist, welches bei der Oxidation
aller drei untersuchten Brennstoffe in vielen Reaktionen gebildet wird, wurden mithilfe
des kinetischen Modells die wichtigsten Reaktionen zur Bildung von Formaldehyd für die
Brennstoffe und die Mischungen mithilfe einer Rate of Production Analysis (s. Abb. 13
in Ref. [5]) analysiert. Bei der Oxidation von n-Pentan sind hauptsächlich Reaktionen
von entstehenden Methylradikalen für die Bildung von Formaldehyd verantwortlich. Wird
nun DME zugegeben, kommen die Bildungswege aus CH3OCH2O2 (ROO von DME) und
CH2OCH2O2H (QOOH von DME) hinzu. Da wie bereits gezeigt, die Mischung beider
Brennstoffe den Umsatz beider Komponenten verstärkt und insgesamt mehr OH-Radikale
zur Verfügung stehen, werden auch diese Bildungswege mehr hervorgehoben und somit
mehr Formaldehyd gebildet.
Wird hingegen Ethanol zu n-Pentan addiert, kann für PE75 zunächst kein Effekt festge-
stellt werden, mit 50 % Ethanol wird jedoch eine Reduktion von Formaldehyd beobachtet.
Durch die zuvor analysierte Verringerung der Reaktivität des Gesamtsystems würde jedoch
für beide Mischungen insgesamt eine stärkere Reduktion erwartet werden. Die Bildung
von Formaldehyd erfolgt bei der Oxidation von Ethanol vorrangig über Methoxyradikale
und ebenfalls aus dem ROO-Radikal von Ethanol (hier O2C2H4OH). Aufgrund des Ver-
brauchs von OH-Radikalen durch Ethanol gewinnt jedoch ein anderer Weg zur Bildung von
Formaldehyd aus n-Pentan an Bedeutung. Das Ketohydroperoxid von n-Pentan wird nun
zunehmend über einen unimolekularen Zerfall abgebaut. Daraus entsteht 2-Pentanoxid-4-on
(C5H9O2), welches durch eine 𝛽-Spaltung in Acetaldehyd und Acetonyl zerfällt. Durch eine
O-Addition an das Acetonylradikal und anschließende 𝛽-Spaltung entstehen Formaldehyd
und ein Acylradikal, wodurch die Formaldehydbildung gesteigert wird. Diese Erklärung ist
nur ein möglicher Vorschlag und basiert zunächst vorrangig auf der Analyse des Modells.
Es ist jedoch bekannt, dass gerade die Acetonreaktionen, und damit auch die Acetonyl-
reaktionen, in dem verwendeten Mechanismus noch nicht vollständig sind und aktuell
überarbeitet werden.
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Zusammenfassung
Im Rahmen dieser Arbeit wurde die Niedertemperaturoxidation von Mischungen aus
n-Pentan und den oxygenierten Isomeren Dimethylether oder Ethanol bei einer Stöchio-
metrie von 0.7 und einem Druck von 970 mbar im Temperaturbereich von 450-930 K in
einem laminaren Strömungsreaktor mittels Molekularstrahl-Massenspektrometrie unter
Verwendung von Elektronenstoßionisation untersucht. Für eine Vielzahl von Spezies wurden
quantitative Molenbruchprofile in Abhängigkeit von der Temperatur erhalten. Spezies für
die eine Quantifizierung aufgrund fehlender Referenzdaten nicht erfolgen konnte wurden
mithilfe einer Normierung vergleichbar gemacht, um relative Trends und Effekte zwischen
den Mischungen visualisieren zu können.

Durch die Analyse der Reaktivität der drei unterschiedlichen Brennstoffe und ihrer Mi-
schungen wurde festgestellt, dass Ethanol aufgrund seiner Struktur keine für die Nieder-
temperaturoxidation wichtigen OH-Radikale produziert, sondern selbige aktiv verbraucht
und damit die Reaktivität des Gesamtsystems mit n-Pentan reduziert. Für Dimethylether,
der als sehr reaktiver Brennstoff im Niedertemperaturbereich bekannt ist, konnten hin-
gegen starke synergistische Effekte mit dem Oxidationsverhalten des ebenfalls aktiven
n-Pentans gefunden werden. Mithilfe der temperaturabhängigen Brennstoffumsätze und
der Betrachtung der Hauptreaktionszyklen für die Niedertemperaturoxidation konnten
diese Beobachtungen erklärt werden. Ein zur Unterstützung der Ergebnisse herangezogenes
kinetisches Modell konnte diese Trends ebenfalls gut wiedergeben. Bei der Betrachtung
einiger relevanter Intermediatspezies konnten die experimentellen Befunde ebenfalls gut
über die Reaktivität und Interaktion der Brennstoffe erklärt werden, hier ließen die Ergeb-
nisse der kinetischen Modellierung aber oft noch Raum für Verbesserungen. Insbesondere
einige relevante fehlende Reaktionswege müssen für die Weiterentwicklung des Modells in
Betracht gezogen werden.



KAPITEL 6
Untersuchung der Hochtemperaturoxidation von 2-Pentanon

Kleine Methylketone sind als Vertreter der sogenannten Biokraftstoffe der zweiten Generati-
on interessant, da sie eine hohe Oktanzahl und somit eine sehr hohe Klopffestigkeit aufweisen.
Für Brennstoffe wie Aceton (RON=110-117 [118, 119]) und 2-Butanon (RON=117 [46])
wurden bereits niedrige Emissionen von Ruß, NOx und unverbrannten Kohlenwasserstoffen
im Vergleich zu anderen Biokraftstoffkandidaten wie Ethanol und 2-Methylfuran gemessen
[46]. In einer vorgemischten laminaren Niederdruckflamme wurde für 2-Butanon sogar
bereits gezeigt, dass vergleichsweise wenig Rußvorläuferspezies und toxische oxygenierte
Spezies gebildet werden [61]. Pentanon weist aufgrund seiner größeren Atomanzahl eine
höhere Energiedichte auf, weshalb es interessant ist, ob ein ähnlich positives Emissions-
verhalten vorliegt. Bisher wurden jedoch vorrangig Untersuchungen zum symmetrischen
3-Pentanon durchgeführt [120–122], wohingegen das asymmetrische 2-Pentanon bisher
kaum Aufmerksamkeit erhielt. Die lineare, dreiatomige Kohlenstoffkette kann jedoch zu
Veränderungen in der Kinetik beitragen, was sich zum einen in Form eines verringerten
Effekts der Carbonylgruppe äußern könnte, zum anderen aber auch eine erhöhte Bildung
von Rußvorläuferspezies wie C3H3 bedingen kann. Bisher wurden für 2-Pentanon vorran-
gig Zündverzugszeiten im Temperaturbereich von 1000-1500 K und für Drücke von 2.65,
20 und 40 bar gemessen [123, 124]. Eine vollständige Analyse der Kinetik mithilfe von
Speziesprofilen liegt bisher nicht vor. Daher wurden im Rahmen dieser Arbeit Messun-
gen in einer brennstoffreichen laminaren vorgemischten 2-Pentanon-Niederdruckflamme
durchgeführt und 47 Spezies mithilfe von EI- und PI-MBMS quantifiziert. Darüber hinaus
wurden die experimentell erhaltenen Daten durch die Modellierung mit einem kinetischen
Modell aus der Arbeitsgruppe Physical Chemical Fundamentals of Combustion der RWTH
Aachen zur Beschreibung der Hochtemperaturkinetik unterstützt, welches aus einem bereits
existierenden Basismechanismus und neuen Berechnungen für den Submechanismus von
2-Pentanon besteht. Die erhaltenen Ergebnisse wurden in Form des Manuskripts [6] zur
Veröffentlichung in Proceedings of the Combustion Institute eingereicht und sind bereits
positiv begutachtet worden.

Flammenmessungen und kinetische Modellierung
Eine laminare vorgemischte Niederdruckflamme (𝑝 = 40 mbar) des Brennstoffes 2-Pentanon
(C5H10O/O2/Ar: 0.093/0.407/0.500) mit einer Stöchiometrie von 𝜑 = 1.6 und einer Kalt-
gasgeschwindigkeit von 73.85 cm/s (bei den Einlassbedingungen von 333 K und 40 mbar;
2.574 cm/s bei 298 K und 1 atm) wurde mithilfe von EI-MBMS in Bielefeld und PI-MBMS
an der Advanced Light Source in Berkeley, USA untersucht. Für die Ergebnisse beider
Apparaturen wurden gute Übereinstimmungen gefunden; diese Kreuzvalidierung reduziert
die Ungenauigkeiten in der Quantifizierung der Molenbruchprofile erheblich. Mithilfe der
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schmalen Energieverteilung der Photoionisation wurden Messungen bei unterschiedlichen
Photonenenergien durchgeführt, um spezifische Isomerengruppen voneinander trennen zu
können. Außerdem wurden Photoionisationseffizienzkurven (PIE-Kurven) aufgenommen,
um die entsprechend auftretenden Isomere identifizieren zu können. Im Folgenden werden
daher nur die Ergebnisse der PI-MBMS-Messungen vorgestellt.

Zum Vergleich der experimentell erhaltenen Daten und zur Analyse der Kinetik in der
Verbrennung von 2-Pentanon wurde darüber hinaus ein kinetisches Modell verwendet.
Dazu wurde der aktuelle AramcoMech 2.0 [125] zusammen mit einem Submechanismus
für 2-Butanon von Hemken et al. [62] und einem Submechanismus für kleine aromatische
Spezies von Zhang et al. [126] als Basismechanismus verwendet und um einen neuen
Submechanismus für die Hochtemperaturkinetik von 2-Pentanon ergänzt. Dieser wurde in
Analogie zu den Reaktionen von 2-Butanon [63] und n-Pentan [87] von Kooperationspart-
nern des Instituts für Physical Chemical Fundamentals of Combustion der RWTH Aachen
entwickelt. Außerdem wurden dort die Thermochemie sowie die Transporteigenschaften für
2-Pentanon und die entsprechenden Brennstoffradikale berechnet und in den Mechanismus
integriert. Das Modell wurde zusätzlich zu den hier vorgestellten Flammendaten auch
gegen Zündverzugszeiten aus der Literatur [123, 124] validiert. Das für die Simulation
benötigte Temperaturprofil der Flamme wurde nach der in Kap. 2.5 vorgestellten Methode
von Isabelle Graf in Bielefeld gemessen.

Brennstoffabbau und primäre Intermediate
Der primäre Brennstoffabbau über die im Hochtemperaturbereich typische H-Abstraktion
gefolgt von einer 𝛽-Spaltung (vgl. Kap. 2.1) ist für 2-Pentanon in Abb. 6.1 dargestellt.
Die prozentualen Anteile der Reaktionswege wurden im Bereich von einer Höhe über der
Brenneroberfläche ℎ = 0− 3.3 mm (korrespondierend zu einem Brennstoffumsatz bis 20 %)
aus dem Modell erhalten. Die zuerst erfolgende H-Abstraktion liefert vier Brennstoffra-
dikale (C5H9O). Das 2-Pentanon-1-ylradikal wird in etwa zu gleichen Teilen über eine
C-C-𝛽-Spaltung zu Keten und Propyl (42 %) und über eine Isomerisierung zum 2-Pentanon-
3-ylradikal (45 %) umgesetzt. Letzteres wird ausschließlich über C-C-𝛽-Spaltungen zum
Methylradikal und C4H6O abgebaut, wobei die Spaltung zwischen dem C4 und C5, aus
der Methylvinylketon entsteht, mit 99.9 % deutlich gegenüber der Spaltung zwischen dem
C1 und C2 zu Ethylketen (0.01 %) überwiegt. Dieses Ergebnis liegt darin begründet, dass
der Reaktionsgeschwindigkeitskoeffizient für die Spaltung auf der Alkylseite im Modell
aufgrund der höheren Aktivierungsenergie mehr als zwei Größenordnungen über dem für die
Carbonylseite liegt. Aus dem 2-Pentanon-4-ylradikal werden größtenteils Propen und Acetyl
über die C-C-𝛽-Spaltung gebildet (91.5 %), während die C-H-𝛽-Spaltung zu 3-Penten-2-on
nur mit 8.5 % vorhergesagt wird. Diese Reaktion fällt für das 2-Pentanon-5-ylradikal mit
nur 0.5 % zu 4-Penten-2-on sogar noch geringer aus. Hier überwiegt die C-C-𝛽-Spaltung
zu Ethen und Acetonyl mit 97 % stark.

Da die direkt gebildeten Brennstoffradikale mit dem verwendeten PI-MBMS-Experiment
nicht getrennt und quantifiziert werden können, wurden deren primäre Abbauprodukte
im Experiment untersucht. In Abb. 6.2 sind die Molenbruchprofile der stabilen Spaltungs-
produkte der 2-Pentanon-1-yl-, -4-yl- und -5-ylradikale, nämlich Keten (a), Propen (b)
und Ethen (c) dargestellt. Die grauen Schattierungen geben dabei einen Fehlerbereich von
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Abbildung 6.1: Reaktionsschema für 2-Pentanon aus der Reaktionsflussanalyse für die
untersuchten Flammenbedingungen im Bereich von einer Höhe über der Brenneroberfläche
ℎ = 0−3.3 mm (korrespondierend zu einem Brennstoffumsatz bis 20 %) mit den entsprechenden
prozentualen Angaben zur Wahrscheinlichkeit der Reaktionswege neben den Pfeilen. Die für
das Brennstoffmolekül 2-Pentanon angegebenen C-H- und C-C-Bindungsenergien wurden aus
den thermochemischen Daten des kinetischen Modells bestimmt. Adaptiert von [6].

einem Faktor 2 wieder, um einen übersichtlichen Vergleich mit dem Modell zu schaffen.
Keten und Propen weisen maximale Molenbrüche im Bereich von 2− 3 · 10−3 auf, während
der von Ethen mit 2.4 · 10−2 etwa eine Größenordnung darüber liegt. Die Ergebnisse der
kinetischen Modellierung stimmen für Propen und Ethen exzellent mit den experimentellen
Ergebnissen überein, während Keten mit etwas mehr als einem Faktor 2 überschätzt wird.
Dieses Phänomen wurde bereits in einer vorherigen Flammenuntersuchung für 2-Butanon
von Hemken et al. [61] beobachtet und konnte bereits dort und auch in einer weiteren
Arbeit von Minwegen et al. [123] auf die Unvollständigkeit des Aceton-Submechanismus im
verwendeten Basismechanismus zurückgeführt werden, da Keten dort vorrangig aus dem
Acetonylradikal gebildet wird. Insgesamt deutet die gute Übereinstimmung des Modells für
die primären Spezies bereits auf einen relativ gut funktionierenden Submechanismus für
2-Pentanon hin.

Die weiteren primären Spezies, die aus dem 2-Pentanon-3-yl Radikal gebildet werden,
sind neben CH3 stabile Isomere der Summenformel C4H6O. Im zuerst durchgeführten
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Abbildung 6.2: Molenbruchprofile ausgewählter primärer Intermediate nach initialer H-
Abstraktion und anschließender 𝛽-Spaltung. Symbole: Experimentelle Ergebnisse mit einem grau
schattierten experimentellen Fehler von einem Faktor 2, durchgezogene Linien: Verbindung der
experimentellen Datenpunkte mit einer Spline-Funktion zur besseren Übersicht, unterbrochene
Linien: Ergebnisse der kinetischen Modellierung. Adaptiert von [6].

EI-MBMS-Experiment konnten Methylvinylketon und Ethylketen nicht unterschieden wer-
den. Aufgrund der stark unterschiedlichen Vorhersagen für beide Isomere ist es jedoch
von besonderem Interesse, die Ergebnisse der kinetischen Modellierung mithilfe experi-
menteller Daten zu überprüfen. Mithilfe des PI-MBMS-Experiments konnten Messungen
unterschiedlicher Photonenenergien durchgeführt und so die beiden Isomere getrennt wer-
den. Für die Quantifizierung wird jedoch, wie bereits in Kap. 2.4 erläutert, für jede Spezies
ein Photoionisationsquerschnitt benötigt. Für Ethylketen ist jedoch bisher kein solcher
Wert tabelliert. Um dennoch eine erste Quantifizierung vornehmen zu können, wurde der
Photoionisationsquerschnitt für Ethylketen daher mithilfe eines gemessenen Photoelektro-
nenspektrums (PES) von Bock et al. [127] abgeschätzt. Dazu wurde das PES integriert
und in Analogie zum Photoionisationsquerschnitt von Keten von Yang et al. [88] mit einem
Wert von 24 Mb bei 10.35 eV skaliert. Für die Quantifizierung von Ethylketen ergibt
sich damit eine erhöhte Unsicherheit, die hier mit einem Faktor 5-10 abgeschätzt wurde.
Dadurch kann jedoch ein Vergleich der C4H6O Isomere erfolgen. In Abb. 6.3a sind die
quantifizierten Molenbruchprofile für Methylvinylketon und Ethylketen dargestellt. Durch
den verwendeten Faktor von 25 für die Darstellung des Molenbruchs von Ethylketen ist
bereits die stark unterschiedliche Bildung beider Spezies ersichtlich. Methylvinylketon wird
mit einem maximalen Molenbruch von 2.4 · 10−3 mehr als hundert Mal so viel gebildet
wie Ethylketen (1.6 · 10−5). Damit liegt der höhere Fehler aus der abgeschätzten Quantifi-
zierung deutlich unterhalb des Molenbruchunterschieds und ist daher gut vertretbar. Zur
eindeutigen Zuordnung der Isomere und einer weiteren Kreuzvalidierung des erhaltenen
Verhältnisses wurde zudem eine PIE-Kurve aufgenommen. Diese ist in Abb. 6.3b einmal
direkt (schwarze Quadrate) und einmal multipliziert mit einem Faktor von 25 (blaue Kreise)
dargestellt, um auch den Anstieg bei ca. 8.8 eV zu visualisieren. Zudem sind sowohl der
abgeschätzte Photoionisationsquerschnitt für Ethylketen als auch der für Methylvinyl-
keton von Yang et al. [88] sowie die entsprechenden Ionisationsenergien beider Spezies
[88, 127] eingezeichnet. Da die Anstiege im Photoionisationseffizienzsignal ausgezeichnet
mit den Querschnitten und Ionisationsenergien von Ethylketen und Methylvinylketon
übereinstimmen, kann die Existenz beider Spezies verifiziert werden. Durch die Skalierung
der Querschnitte wird ein Verhältnis von 99.4 % Methylvinylketon und 0.6 % Ethylketen
erhalten, welches sich perfekt mit dem Ergebnis der Molenbruchprofile in Abb. 6.3a (99.3 %
Methylvinylketon, 0.7 % Ethylketen) deckt. Mit diesen experimentellen Ergebnissen konnte
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zudem die stark unterschiedliche Vorhersage des kinetischen Modells für die beiden Isomere
bestätigt werden.

Abbildung 6.3: (a) Molenbruchprofile der detektierten C4H6O Isomere. Symbole: Experi-
mentelle Ergebnisse mit einem grau schattierten experimentellen Fehler von einem Faktor 2,
durchgezogene Linien: Verbindung der experimentellen Datenpunkte mit einer Spline-Funktion
zur besseren Übersicht, unterbrochene Linien: Ergebnisse der kinetischen Modellierung. Für
Ethylketen wurden sowohl experimentelle als auch modellierte Ergebnisse mit einem Faktor
von 25 multipliziert. (b) Signal der Photoionisationseffizienz (PIE) für C4H6O (Quadrate) und
erneut dargestellt und mit einem Faktor von 25 multipliziert (Kreise), um den frühen Anstieg
sichtbar zu machen. Die Photoionisationsquerschnitte (xs) von Ethylketen (abgeschätzt, s.
Text) und Methylvinylketon [88] wurden skaliert und zum Vergleich eingezeichnet. Die Ionisati-
onsenergien (IE) von Ethylketen [127] und Methylvinylketon [88] sind in Form von horizontalen
Linien dargestellt. Adaptiert von [6].

Niedertemperaturspezies
In der untersuchten Flamme konnten auch einige Spezies detektiert werden, die üblicherwei-
se als Indiz für das Vorliegen einer Niedertemperaturkinetik gewertet werden. Die Bildung
solcher Spezies in der Hochtemperaturumgebung der Flamme ist besonders interessant
und konnte auch bereits in bisherigen Flammenuntersuchungen beobachtet werden [37, 61].
In Abb. 6.4 sind das Molenbruchprofil für Formaldehyd (a) und die korrigierten Signal-
intensitäten für C5H8O (b) und C5H8O2 (c) dargestellt. Für Formaldehyd und C5H8O
kann ein Versatz des Maximums von 1-2 mm zwischen den experimentellen Daten und
der kinetischen Modellierung festgestellt werden. C5H8O2 ist nicht im Speziespool des
Modells enthalten. In diesem Zusammenhang sei daran erinnert, dass es sich bei dem
verwendeten Modell und dem neu entwickelten Submechanismus für 2-Pentanon um eine
reine Beschreibung der Hochtemperaturkinetik handelt. Typische Reaktionsklassen der
Niedertemperaturkinetik (vgl. Kap. 2.1 und Abb. 2.1b) sind nicht im kinetischen Modell
enthalten, wodurch eine Bildung der hier vorgestellten Spezies nicht korrekt modelliert
werden kann. Die experimentellen Ergebnisse zeigen, dass Niedertemperaturreaktionen
in Form von Sauerstoffadditionen in der Vorheizzone der Flamme stattfinden und für ein
vollständiges Modell der Kinetik von 2-Pentanon berücksichtigt werden müssen.

Formaldehyd (Abb. 6.4a) wird vorrangig über die Reaktion von CH3 mit O gebildet. CH3
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Abbildung 6.4: Profile ausgewählter oxygenierter Spezies zur Analyse der Niedertempe-
raturchemie. Für Formaldehyd (a) ist das Molenbruchprofil mit einem grau schattierten
experimentellen Fehler von einem Faktor 2 gezeigt, während für C5H8O (b) und C5H8O2 (c)
aufgrund mangelnder Photoionisationsquerschnitte nur die korrigierten Signale dargestellt
sind. Symbole: Experimentelle Ergebnisse, durchgezogene Linien: Verbindung der experimen-
tellen Datenpunkte mit einer Spline-Funktion zur besseren Übersicht, unterbrochene Linien:
Ergebnisse der kinetischen Modellierung. Adaptiert von [6].

kann auf vielen Wegen gebildet werden, unter anderem auch durch die C-C-𝛽-Spaltung des
2-Pentanon-3-ylradikals (vgl. Abb. 6.1) relativ zu Beginn des Brennstoffabbaus, aber auch
aus dem Abbau von Propyl-, Ethyl- und Acetonylradikalen. Spezies mit der Summenformel
C5H8O (Abb. 6.4b) können den Pentenonen zugeordnet werden. Diese können wie in
Abb. 6.1 dargestellt über eine C-H-𝛽-Spaltung aus den Brennstoffradikalen, aber auch
über eine O2-Addition an das Brennstoffmolekül und eine anschließende HO2-Eliminierung
gebildet werden. Für letztere werden deutlich niedrigere Temperaturen benötigt. Die breite
Form des Profils von C5H8O spricht für eine Kombination aus beiden Prozessen, abhängig
von der Temperatur der Flamme in den jeweiligen Zonen. Ein ebenfalls früher Anstieg des
Profils wird für C5H8O2 beobachtet, das Maximum des Signals liegt jedoch ca. 1 mm weiter
entfernt von der Brenneroberfläche als für C5H8O. Mögliche Strukturen korrespondierend
zu C5H8O2 entsprechen dem 2,4-Pentadion oder mehreren möglichen zyklischen Ethern.
2,4-Pentadion müsste über einer Radikalrekombination eines Acetyl- (C2H3O) und eines
Acetonylradikals (C3H5O) gebildet werden, welche aus kinetischer Sicht relativ unwahr-
scheinlich ist, da das Acetonylradikal mesomeriestabilisiert ist, während Acylradikale in
der Regel über eine 𝛼-Spaltung in das thermisch extrem stabile CO und ein Alkylradikal
zerfallen. Zyklische Ether werden insbesondere im Bereich der Niedertemperaturkinetik
durch eine O2-Addition an das Brennstoffmolekül und eine anschließende Isomerisierung
zum QOOH gebildet (vgl. Abb. 2.1b). Die Position des Profils spricht aber eher für eine
bereits höher liegende Temperatur zur Bildung von C5H8O2. Für die infrage kommenden
Spezies sind keine Ionisationsenergien oder Photoionisationsquerschnitte tabelliert, sodass
ein beobachteter Anstieg bei 9.1-9.3 eV in der PIE-Kurve von C5H8O2 keiner Spezies
direkt zugeordnet werden kann. Durch Einbeziehung typischer Reaktionsklassen der Nie-
dertemperaturkinetik von 2-Pentanon in das verwendete Modell könnten daher mögliche
Reaktionswege und Spezies aufgeklärt werden.

Zusammenfassung
In dieser Arbeit wurde eine brennstoffreiche laminare Niederdruckflamme des Brennstoffes
2-Pentanon mithilfe von EI- und PI-MBMS untersucht. Dabei wurden die Molenbruchprofile
einer Vielzahl bei der Verbrennung von 2-Pentanon auftretender Spezies aufgenommen und
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einige Spezies auch isomerenselektiv quantifiziert. Darüber hinaus wurde ein kinetisches
Modell zur Beschreibung der Hochtemperaturkinetik von 2-Pentanon in Kooperation mit
der RWTH Aachen entwickelt und zum Vergleich der experimentell erhaltenen Daten heran-
gezogen. Mithilfe einer aus dem Modell erhaltenen Reaktionsflussanalyse der untersuchten
Flammenbedingungen wurde die Bildung erster intermediärer Spezies analysiert. Dabei
konnte für Keten, Propen, und Ethen eine gute Übereinstimmung zwischen Experiment
und Modell gefunden werden, was die Funktionalität des neu entwickelten 2-Pentanon
Submechanismus unterstreicht. Auch das Verhältnis der primär gebildeten Isomere Methyl-
vinylketon und Ethylketen konnte mithilfe der isomerenselektiven PI-MBMS-Messungen
eindeutig bestätigt werden. Darüber hinaus wurden Spezies und Reaktionswege beobachtet,
die auf Reaktionen der Niedertemperaturkinetik hinweisen. Diese Erkenntnisse sprechen
eindeutig für die Notwendigkeit, Reaktionen der Niedertemperaturkinetik von 2-Pentanon
in das bestehende kinetische Modell zu integrieren.
Im Vergleich zum kleineren Methylketon 2-Butanon ist 2-Pentanon zwar aufgrund der
höheren Energiedichte zu bevorzugen, jedoch ergab sich bezüglich der Bildung von toxi-
schen Spezies in der Verbrennung von 2-Pentanon eine vergleichbare Konzentration von
Formaldehyd und eine um etwa einen Faktor fünf höhere Konzentration des toxischen
Methylvinylketon. Die vorliegenden experimentellen Ergebnisse können nun in erster Linie
zur weiteren Untersuchung und Entwicklung kinetischer Modelle für Methylketone und
eine Erweiterung des Modells um die Niedertemperaturkinetik verwendet werden.





KAPITEL 7
Zusammenfassung und Ausblick

In dieser Arbeit wurde die Oxidationschemie verschiedener konventioneller und alternativer
Brennstoffe und deren Gemische unter verschiedenen Bedingungen ausführlich untersucht.
Dazu wurden mit der laminaren vorgemischten Niederdruckflamme und dem laminaren
Strömungsreaktor zwei ideale Modellexperimente genutzt, die sowohl im Druck- als auch
Temperaturbereich ein großes Parameterfeld der Verbrennung abdecken. Zur Analytik der
bei der Verbrennung entstehenden Spezies wurde die Molekularstrahl-Massenspektrometrie
als bewährtes Instrument eingesetzt, da mit ihr eine Vielzahl stabiler und reaktiver Spezies
gleichzeitig identifiziert und quantifiziert werden kann. Zur optimalen Strukturaufklärung
wurde eine Kombination verschiedener Ionisationstechniken genutzt, da jede ihre individu-
ellen Stärken und Grenzen aufweist.

In dieser Arbeit konnte gezeigt werden, dass eine Kombination mehrerer experimenteller
Methoden mit einer zusätzlichen Unterstützung durch spezifische Referenzmessungen, theo-
retische Berechnungen und kinetische Modellierungen zu einem umfassenden Verständnis
der Oxidationschemie komplexer Brennstoffmoleküle beitragen kann. Dazu wurden Mes-
sungen mit zum Teil hohem apparativen Aufwand und Messzeit an Großanlagen benötigt.
So konnten in dieser Arbeit die Photoelektronenspektren von 18 in der Verbrennungs-
chemie wichtigen Intermediatspezies aufgenommen und zur Identifizierung dieser Spezies
genutzt werden. Dies ist ein besonders wichtiger Aspekt, da im Bereich der Analytik
von Oxidationsintermediaten oft wesentliche Literaturdaten fehlen, die zur Identifizierung
und Quantifizierung der auftretenden Spezies erforderlich sind. Selbstverständlich können
solche Daten auch mithilfe von theoretischen Berechnungen bestimmt werden, was im
Rahmen der hier vorgestellten Arbeiten auch zusätzlich genutzt wurde, jedoch sind solche
Berechnungen auch mit hohem Zeit- und Kostenaufwand verbunden. Um Vergleichbarkeit
mit experimentellen Daten sicherzustellen, müssen diese zudem idealerweise für die exakten
experimentellen Randbedingungen bereitgestellt werden. In dieser Arbeit wurde daher
gezeigt, dass die Messung von Referenzdaten am identischen Experiment von großem
Nutzen ist.

Die Bildung von Verbrennungsintermediaten wurde für die verschiedenen durchgeführten
Experimente zusätzlich auch mithilfe kinetischer Modellierungen simuliert, die auf die
Messung von experimentellen Daten zur Weiterentwicklung und Validierung angewiesen
sind. Mithilfe der Ergebnisse dieser Arbeit konnten wesentliche Erkenntnisse in die weitere
Modellentwicklung verschiedener kinetischer Modelle einfließen. Zum Beispiel wurde in der
Verbrennung von iso-Pentan eindeutig die Existenz einiger Spezies nachgewisen, die zuvor
nicht im Modell enthalten waren. Auch für die Verbrennung von Diethylether konnte das
vermutete Intermediat Ethylvinylether, welches erst kürzlich in ein entsprechendes Modell
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aufgenommen wurde, eindeutig identifiziert werden und so die quantitative Vorhersage der
Spezies optimiert werden. Darüber hinaus wurde jedoch auch gezeigt, dass die Entwicklung
kinetischer Modelle an einigen Stellen noch Potential zur Optimierung aufweist. Insbe-
sondere die experimentellen Ergebnisse zu Brennstoffgemischen und der Interaktion der
Reaktionswege zweier Brennstoffmoleküle zeigten eindeutig, dass die verwendeten Modelle
noch nicht vollständig in der Lage sind, solche Gemische zu modellieren.

Insgesamt wurde in dieser Arbeit an mehreren Beispielen festgestellt, dass die Brennstoff-
struktur signifikant für den Verlauf der möglichen Reaktionswege und somit die Bildung von
möglichen Schadstoffen verantwortlich ist. Dieses Kriterium wurde auch für die Addition
unterschiedlicher Komponenten festgestellt. So wurden für die Addition von potentiellen
Biokraftstoffen der gleichen Summenformel, aber unterschiedlicher Struktur (Alkohol und
Ether), sowohl im Hoch- als auch im Niedertemperaturbereich unterschiedliche Einflüsse
auf die Schadstoffbildung erhalten. Während im Hochtemperaturbereich vorrangig die Bil-
dung von höhermolekularen Spezies beeinflusst wurde, wurde im Niedertemperaturbereich
eine signifikante Auswirkung des Additivs auf die Reaktivität des Brennstoffgemisches
beobachtet.

Ausblick
Für den Hochtemperaturbereich können die ersten stabilen Zerfallsprodukte, die im Ex-
periment sehr zuverlässig bestimmt werden können, schon relativ gut von kinetischen
Modellen vorhergesagt werden. Es sind jedoch die ersten radikalischen Zerfallsprodukte, die
im Verbrennungsprozess besonders wichtig sind, da sie maßgeblich den weiteren Reaktions-
verlauf bestimmen. Diese Spezies können jedoch nur mit sehr hohem experimentellem und
theoretischem Aufwand quantifiziert werden [40, 42, 128, 129]. Gerade für Mischungen und
insbesondere im Niedertemperaturbereich führen Interaktionen dieser ersten gebildeten
radikalischen Spezies zu in Verbrennungsmodellen noch nicht enthaltenen Intermediaten
und einer veränderten Reaktivität des Mischungssystems, weshalb hier noch ein erhöhtes
Potential sowohl im experimentellen Bereich als auch in der Modellentwicklung liegt. Jedoch
ist dies nicht nur für Brennstoffgemische eine große Herausforderung. Auch ein einzelnes
Brennstoffmolekül, für das eine kinetische Modellierung über den Hochtemperaturbereich
bereits gut möglich ist, stellt Modellierer im Niedertemperaturbereich bereits vor größere
Schwierigkeiten, da in dieser Oxidationsumgebung sehr viele komplexe Reaktionen ablaufen.
Dabei können mehrere aufeinanderfolgende Sauerstoffadditionen zur Bildung von hochoxi-
dierten Spezies bis hin zu sogenannten sekundären organischen Aerosolen (SOAs) führen
[130, 131]. Zum Verständnis der Bildungswege solcher Spezies sind umfassende Experimente
mit hohem apparativem Aufwand, hoher Sensitivität und hoher Auflösung notwendig, wie
kürzlich von Wang et al. [132, 133] gezeigt wurde. Erste Ergebnisse dieser Untersuchungen
von Wang et al. zeigten auch, dass die Speziesverteilung unter motorischen Bedingungen,
d.h. unter erhöhtem Druck, näherungsweise der unter Normaldruck im Modellexperiment
entspricht. Modellexperimente wie die hier verwendeten können also durchaus hilfreiche
Ergebnisse für den Anwendungsbereich der motorischen Verbrennung liefern. Eine detail-
liertere Aufklärung der Interaktion von Reaktionswegen in Brennstoffgemischen mithilfe
solcher Methoden ist daher in Zukunft notwendig, um die Modellentwicklung für die
Vorhersage der Schadstoffbildung möglicher zukünftiger Kraftstoffadditive zu optimieren.
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Abstract
Double-imaging photoelectron/photoion coincidence (i2PEPICO) spectroscopy using a
multiplexing, time-efficient, fixed-photon-energy approach offers important opportunities
of gas-phase analysis. Building on successful applications in combustion systems that have
demonstrated the discriminative power of this technique, we attempt here to push the limits
of its application further to more chemically complex combustion examples. The present
investigation is devoted to identifying and potentially quantifying compounds featuring five
heavy atoms in laminar, premixed low-pressure flames of hydrocarbon and oxygenated fuels
and their mixtures. In these combustion examples from flames of cyclopentene, iso-pentane,
iso-pentane blended with dimethyl ether (DME), and diethyl ether (DEE), we focus on
the unambiguous assignment and quantitative detection of species with the sum formulae
C5H6, C5H7, C5H8, C5H10, and C4H8O in the respective isomer mixtures, attempting to
provide answers to specific chemical questions for each of these examples.
To analyze the obtained i2PEPICO results from these combustion situations, photoelectron
spectra (PES) from pure reference compounds, including several examples previously
unavailable in the literature, were recorded with the same experimental setup as used in
the flame measurements. In addition, PES of two species where reference spectra have not
been obtained, namely 2-methyl-1-butene (C5H10) and the 2-cyclopentenyl radical (C5H7),
were calculated on the basis of high level ab initio calculations and Franck Condon (FC)
simulations. These reference measurements and quantum chemical calculations support
the early fuel decomposition scheme in the cyclopentene flame towards 2-cyclopentenyl

1 Zu dieser Publikation ist Supplemental Material online unter https://doi.org/10.1515/zpch-2017-1009
verfügbar.

67



68 A Publikation 1

as the dominant fuel radical as well as the prevalence of branched intermediates in the
early fuel destruction reactions in the iso-pentane flame, with only minor influences from
DME addition. Furthermore, the presence of ethyl vinyl ether (EVE) in DEE flames that
was predicted by a recent DEE combustion mechanism could be confirmed unambiguously.
While combustion measurements using i2PEPICO can be readily obtained in isomer-rich
situations, we wish to highlight the crucial need for high-quality reference information to
assign and evaluate the obtained spectra.
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examples from flames of cyclopentene, iso-pentane, iso-pentane blended with 
dimethyl ether (DME), and diethyl ether (DEE), we focus on the unambiguous 
assignment and quantitative detection of species with the sum formulae C5H6, 
C5H7, C5H8, C5H10, and C4H8O in the respective isomer mixtures, attempting to 
provide answers to specific chemical questions for each of these examples. To 
analyze the obtained i2PEPICO results from these combustion situations, pho-
toelectron spectra (PES) from pure reference compounds, including several 
examples previously unavailable in the literature, were recorded with the same 
experimental setup as used in the flame measurements. In addition, PES of two 
species where reference spectra have not been obtained, namely 2-methyl-1-
butene (C5H10) and the 2-cyclopentenyl radical (C5H7), were calculated on the 
basis of high-level ab initio calculations and Franck-Condon (FC) simulations. 
These reference measurements and quantum chemical calculations support the 
early fuel decomposition scheme in the cyclopentene flame towards 2-cyclo-
pentenyl as the dominant fuel radical as well as the prevalence of branched 
intermediates in the early fuel destruction reactions in the iso-pentane flame, 
with only minor influences from DME addition. Furthermore, the presence of 
ethyl vinyl ether (EVE) in DEE flames that was predicted by a recent DEE com-
bustion mechanism could be confirmed unambiguously. While combustion 
measurements using i2PEPICO can be readily obtained in isomer-rich situa-
tions, we wish to highlight the crucial need for high-quality reference informa-
tion to assign and evaluate the obtained spectra.

Keywords: 3-buten-1-ol; 3-buten-2-ol; combustion chemistry; cyclopentadiene; 
cyclopentene; 2-cyclopentenyl radical; ethyl vinyl ether; iso-butanal; iso-butenol; 
laminar flames; 2-methoxypropene; 2-methyl-1-buten-3-yne; 2-methyl-1-butene; 
2-methyl-2-butene; 3-methyl-1-butene; methyl ethyl ketone; n-butanal; 1,3-pen-
tadiene; 1,4-pentadiene; 1-pentene; 2-pentene; PEPICO; photoelectron spectra; 
tetrahydrofuran.

1  �Introduction
Gas-phase diagnostics in reactive systems can rely on a number of established 
techniques for the characterization of species distributions in atmospheric 
chemistry [1], photochemistry [2–4], catalysis [5], pyrolysis [6, 7], and combus-
tion systems [7–10]. Especially when near-complete information on reactants, 
numerous intermediates, and products is desired in situations that may present 
hundreds of reactive compounds [11], universal techniques such as mass spectro-
metry are highly advantageous.
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A large number of studies has applied variants of molecular-beam mass 
spectrometry (MBMS) using electron impact ionization (EI) or synchrotron-based 
photoionization (PI) for quantitative species analysis in pyrolysis, photolysis, 
and oxidation reactors [7, 12–15], shock tubes [16], and laboratory flame experi-
ments [8, 17–20]. In combustion chemistry research, MBMS techniques may 
have advanced to be potentially the most often applied diagnostics for the char-
acterization of the chemical reaction pathways, since an overview can be pro-
vided of basically all stable and short-lived transient species, such as radicals, 
occurring in the process. Such information is a prerequisite for the development 
and improvement of kinetic reaction mechanisms and thus extremely valuable 
especially for alternative fuels [21] and novel operation conditions [10, 22]. Cur-
rently, it is assumed that the combustion reactions for hydrocarbon fuels with up 
to four carbon atoms (“C1–C4 chemistry”) as well as for selected types of biofuels 
including some alcohols, esters, and ethers can be quite reliably represented by 
chemical-kinetic reaction models [23–25]. In a large fraction of these mechanistic 
developments, validation with experiments using PI-MBMS with tunable vacuum 
ultraviolet (VUV) radiation from synchrotrons has played a crucial role because 
of its capability of isomer identification, making use of the improved energy 
resolution with respect to electron impact sources and separation of different 
molecular structures from photoionization efficiency (PIE) curves [7, 8, 26]. While 
immensely useful, PI-MBMS techniques are not without limitations, especially in 
situations where distinction is needed of isomers that show close-lying ionization 
energies and where vibronic structure is needed for enhanced differentiation.

Single- (iPEPICO) and double-imaging (i2PEPICO) photoelectron/photoion 
coincidence spectroscopy provides additional distinctive capability by mass-
resolved photoelectron spectra (PES) that show an individual electronic and 
vibrational fingerprint structure for each species and isomer. The advances 
of PEPICO and threshold photoelectron/photoion spectroscopy (TPEPICO) in 
isomer-selective gas-phase diagnostics [27], including developments such as 
the multi-start multi-stop configuration [28], velocity map imaging (VMI) [29] 
of threshold electrons [30], and evaluation of the full VMI for fast [31–33] and 
slow electrons [34, 35], as well as numerous applications have very recently been 
described in a seminal perspective article by Baer and Tuckett [36]. Combustion-
related applications are comparatively recent with isomer-selective analysis of 
combustion-related gas samples by Bodi et al. [37], the first demonstration of TPES 
in a flame by Oßwald et al. [38], and a very recent attempt to identify polycyclic 
aromatic hydrocarbons in a flame by Mercier et al. [39]. Highly multiplexed fixed-
photon-energy measurements in flames from the complete VMI were shown to 
reduce precious measurement time at synchrotrons considerably [40]. Felsmann 
et al. [41] recently presented a full double-imaging diagnostic by i2PEPICO where 
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they considered the separation of isomers and obtained quantified mole fraction 
profiles for several combustion-relevant species. However, the lack of reference 
PES with a resolution suitable for the identification and reliable quantification of 
(isomeric) species is one of the factors that limit the application of this technique 
to more challenging situations in combustion chemistry.

In the present study, we follow up on the strategy demonstrated in [41] with 
application to chemical targets beyond C4-fuel combustion. Our work aims at the 
unambiguous identification and the determination of quantitative amounts of 
species with 5 heavy atoms (C5H6, C5H7, C5H8, C5H10, C4H8O) in laminar, premixed 
low-pressure flames. To provide such information, the flame measurements were 
complemented with those of well-resolved reference PES of expected mixture 
components in the energy range of interest, using the same apparatus and instru-
ment parameters in both experiments as recommended by Baer and Tuckett [36]. 
Specifically, the photoelectron spectra of 18 species with the sum formulae C5H6, 
C5H8, C5H10, and C4H8O were recorded in this way. Furthermore, photoelectron 
spectra of the 2-cyclopentenyl radical (C5H7) and of 2-methyl-1-butene (C5H10) were 
computed based on high-level ab initio calculations and Franck-Condon (FC) 
simulations. The relevant PES were then used to identify contributions of differ-
ent isomers in the combustion of pure cyclopentene, of iso-pentane and its blend 
with dimethyl ether (DME), as well as of pure diethyl ether (DEE).

Cyclopentene flames offer interesting pathways of aromatic ring and – even-
tually – soot formation [26]. Generally, in combustion reactions the identity and 
relative fractions of the initial fuel radicals play an important role for the develop-
ment of reaction mechanisms, since they are at the origin of all further reactions. 
However, they are often not detected in the experiment because of low concen-
trations, high reactivity, and low binding energies. Oßwald et al. [38] have been 
the first to identify the distribution of the fuel radicals in an iso-butane flame. 
Felsmann et al. [41] have detected fuel radical signals in previous i2PEPICO exper-
iments in a cyclopentene flame, but the presence of specific structures could not 
be proven because of the lack of reference PES of the relevant species. For this 
reason, we have now performed FC simulations on the base of high-level quantum 
calculations to obtain the PES of the predominantly expected 2-cyclopentenyl 
radical with the aim of confirming that H-abstraction from the fuel molecule pref-
erentially forms this species.

iso-Pentane as a branched hydrocarbon fuel has been chosen to investi-
gate the first steps of fuel decomposition in more detail, since C4- and C5-fuels 
are being considered as smaller representatives of larger branched alkanes such 
as iso-octane as a primary reference fuel [42–44], and precise knowledge about 
their combustion reactions can thus assist in improving the prediction quality 
of kinetic models for realistic fuels. Moreover, fuel blends of conventional 
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hydrocarbons with biofuel candidates are interesting to reduce soot precursor 
formation [45], but they may increase the formation of other toxic species, includ-
ing carbonyl compounds [46, 47]. The distribution of the first stable fuel decom-
position species has therefore been analyzed for pure iso-pentane combustion 
as well as for a mixture (80:20) of iso-pentane with dimethyl ether (DME) as a 
prototypical biofuel, the oxidation reactions of which had already been analyzed 
in depth [12, 14, 48, 49]. Specifically, we have determined isomeric distributions 
from mass-resolved PES at mass-to-charge ratios (m/z) of 70 (C5H10) and 68 (C5H8), 
respectively, and predominant reaction pathways via branched intermediates 
could be identified and compared to simulations of the respective flames with a 
kinetic model from the literature [50].

Diethyl ether combustion has only recently been studied, considering DEE 
as a highly promising, rather clean-burning potential biofuel [51–53]. Recent full 
speciation measurements in flames [51] have supported the development of initial 
reaction-kinetic models for this fuel [51, 52]. These previous analyses suggested 
the presence of ethyl vinyl ether (EVE) as a primary decomposition product in the 
combustion of DEE, a hypothesis for which unambiguous evidence could now be 
obtained in the present work.

These results underline the highly useful capability of i2PEPICO spectroscopy 
to elucidate species distributions in complex gas-phase systems such as laminar, 
premixed low-pressure flames of conventional and alternative fuels with their 
significant number of reactive intermediate species. Furthermore, our study dem-
onstrates the need of reference spectra for these conditions that should be meas-
ured with the same experimental setup or calculated with an appropriate level of 
accuracy.

2  �Methods

2.1  �Experiment

All experiments were performed at the undulator-based DESIRS beamline of the 
synchrotron SOLEIL using the SAPHIRS endstation [54], equipped with the dou-
ble-imaging spectrometer DELICIOUS III, to which the combustion system was 
adapted. Setup, technique, and evaluation procedure have been described previ-
ously [33, 40, 41, 55–57] and only a short summary is therefore presented here.

Flames were stabilized at 40  mbar on a water-cooled (333  K) home-built 
porous-plug burner of 65  mm diameter. This burner is mounted on a transla-
tional stage to permit sampling from different flame positions. Fuel-rich flame 
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conditions were established from mixtures of fuel, oxygen, and diluent argon as 
summarized in Table 1. Gas flows were regulated by calibrated mass flow control-
lers (Advanced Energy AERA series, MKS Instruments), while liquid fuels were 
metered by syringe pumps (ISCO Systems D1000 and D500, 1.5 L total volume), 
evaporated by a home-built evaporation system and mixed into the gas flow 
using preheated argon as carrier gas.

Samples were extracted from the burner chamber by a quartz nozzle (opening 
diameter: 350 μm, opening angle: 25°) and expanded (~10−4 mbar) via differential 
pumping to preserve the initial gas composition of the sample. The center of the 
resulting molecular beam was then separated by a copper skimmer, expanded 
further (~10−6 mbar) and guided into the ionization chamber where it was crossed 
with the ionizing VUV beam. The beamline DESIRS [57] at the synchrotron 
SOLEIL delivers tunable VUV radiation between 5 and 40 eV with high spectral 
resolution, high photon flux, and adjustable polarization. A gas filter, filled here 
with argon or xenon, is used to block high harmonic energies from the undulator 
spectrum. After dispersion via a 6.65 m normal-incidence monochromator used 
here with the low-dispersion grating (200 grooves/mm), the VUV beam exhibits a 
typical bandwidth of 2–20 meV and a flux of 1012–1013 photons/s. It is then focused 
into the ionization chamber and intersects the molecular beam with a diameter 
of 100–200 μm.

The DELICIOUS III [33] spectrometer records photons and electrons result-
ing from the ionization process in coincidence with a multi-start/multi-stop 
technique. Electrons are analyzed by a velocity map imaging (VMI) spectrometer 
and the coincident ions are analyzed by a modified Wiley-McLaren time-of-flight 
imaging analyzer (WM-TOF) that has a typical mass resolving power of m/Δm 
<1700 (full width at half maximum, FWHM), although due to the geometrical 
constraints of the coupling of the combustion chamber to the spectrometer, the 
resolving power is degraded here down to m/Δm (FWHM) ~300. The electron 

Tab. 1: Conditions for the investigated fuel-oxygen-argon flames with equivalence ratio φ, 
featuring identical inlet gas velocity (75 cm/s), argon dilution (25%), and pressure in the burner 
chamber (40 mbar).

Fuel Sum formula xFuel xO2
xAr φ

Cyclopentene C5H8 0.15 0.60 0.25 1.70 ± 0.05
iso-Pentane C5H12 0.13 0.62 0.25 1.70 ± 0.05
iso-Pentane/dimethyl ether (80:20) C5H12/C2H6O 0.12/0.03 0.60 0.25 1.70 ± 0.05
Diethyl ether C4H10O 0.17 0.58 0.25 1.81 ± 0.05

The mixture composition of iso-pentane and dimethyl ether is given in mol-%.
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kinetic energy resolution of the VMI is not constant, but ranges from around 30% 
at the center of the detector (slow electrons) to about 3–4% on the detectors edge 
(fast electrons), resulting in a kinetic energy (KE) resolution for the correspond-
ing PES in the range of 30–140 meV for photoelectron energies of 0–3.6 eV [54]. 
The acquired composite mass-multiplexed raw photoelectron image is then fil-
tered for a given cation mass and Abel inversed via the pBasex algorithm [55] in 
order to retrieve the PES by angle integration.

In addition, preparatory speciation measurements were also performed for 
these flames under the same conditions, using the same burner chamber and 
EI-MBMS detection with a mass resolution of ~4000 in Bielefeld and procedures 
that have been described before [18, 51]. Although these measurements were not 
intended to provide full species datasets, given the different focus of this work, 
they will be used to provide complementary, supporting information wherever 
necessary, since they rely on a different physical process for species detection.

Moreover, reference photoelectron spectra were measured at the DESIRS 
beamline with the DELICIOUS III spectrometer for the following pure compounds: 
C5H6: 2-methyl-1-buten-3-yne and cyclopentadiene, C5H8: 1,4-pentadiene, cyclo-
pentene, and a mixture of cis- and trans-1,3-pentadiene, C5H10: 3-methyl-1-butene, 
1-pentene, a mixture of cis- and trans-2-pentene, and 2-methyl-2-butene, C4H8O: 
n-butanal, iso-butanal, 3-buten-2-ol, 3-buten-1-ol, methyl ethyl ketone, tetrahy-
drofuran, iso-butenol, ethyl vinyl ether, and 2-methoxypropene.

All substances were used with a purity of >98% without further purification. 
Liquid flows were metered by a syringe pump (Protea PM-1000, 10 mL syringe, 
Hamilton #1010), evaporated by a home-built evaporation system and trans-
ported by a preheated argon carrier flow. The reference gases were introduced 
through the burner into the ionization chamber in order to obtain reference PES 
that are comparable to the spectra obtained in the flame experiment. All refer-
ence PES were measured at a fixed photon energy of 10.1 eV and evaluated in the 
KE range of 8.3–10.1 eV; in addition, spectra for n-butanal and iso-butanal were 
also recorded at 12.5 eV and evaluated in the KE range of 9.0–12.5 eV.

2.2  �Theoretical PES calculations

For two species of relevance for the present work, photoelectron spectra were 
not experimentally obtained, namely the spectrum of the 2-cyclopentenyl radical 
(2CP) and that of the 2-methyl-1-butene molecule (2M1B). Therefore, these spectra 
were simulated by ab initio calculations.

The first step in simulating PES is to describe the initial and final state of 
the ionization process. In this study, the vibrational and electronic ground state 
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of the neutral molecule was used as initial state, whereas the final state, i.e. the 
electronic ground state of the cation, may be vibrationally excited. For both, 
ground and final states, the equilibrium geometries are determined first in order 
to compute the adiabatic ionization energy (IE). The accuracy of the computed IE 
depends strongly on the electron correlation treatment used. Generally, coupled-
cluster (CC) methods are considered to provide the required accuracy [58]. In this 
work, the coupled cluster method CCSD(T)-F12a was chosen for the geometry 
optimizations due to the improved basis set convergence compared to conven-
tional CCSD(T) methods [59].

To calculate the adiabatic IE, the energy difference between cation and 
neutral molecule must be corrected for the respective zero-point vibrational 
energies. These were determined from harmonic oscillator calculations with an 
in-house program, using symmetry to its full capacity yielding normal coordi-
nates and harmonic frequencies. The transition probabilities from the ground 
state to the different vibrational states of the cation were calculated by FC sim-
ulations using the algorithm of Sharp and Rosenstock [60]. The resulting stick 
spectra were convoluted with Gaussian functions with FWHM corresponding to 
the experimental resolution of 30–70 meV in the respective photoelectron energy 
range [54] in order to achieve an easier comparison between experiment and sim-
ulation. All ab initio calculations in this work were carried out using the Molpro 
suite of programs [61].

2.3  �Flame modeling

Experimentally obtained results from this work were compared to simulations 
of the analyzed low-pressure premixed iso-pentane flame using the kinetic 
model (including thermodynamic and transport data) from Bugler et al. [50]. 
The simulations were carried out using the current version of the LOGEsoft 
software package [62] for burner-stabilized premixed flames considering 
thermal diffusion and multi-component transport properties. As an input 
parameter, a “perturbed” temperature profile was determined which inher-
ently considers the influence of the sampling nozzle that perturbs the gas 
flow; it was determined from the first-stage pressure profile according to a 
previously described procedure [18, 63, 64]. The resulting relative tempera-
ture profile was calibrated with an exhaust gas temperature of (2247 ± 100) K, 
measured in the iso-pentane flame at a height above the burner h of 20 mm 
by OH planar laser-induced fluorescence as described in [65]. The full tem-
perature profile for the simulation is available in Table S1 and Figure S1 in 
Supplemental Material 1.
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3  �Results and discussion

3.1  �Reference photoelectron spectra

For the identification of intermediate species from flame measurements with the 
i2PEPICO technique, reference photoelectron spectra are essential. VMI-PES for 
18 compounds were obtained experimentally, and PES for two further species, 
namely the 2-cyclopentenyl radical and 2-methyl-1-butene, were obtained from 
high-level quantum calculations.

3.1.1  �Measured reference spectra

Internal consistency between the PES measured in the flames and from the pure 
compounds was ascertained by using the same setup with identical gas delivery 
and molecular-beam sampling. Thus all spectra possess the same spectral resolu-
tion and no shifts or corrections are needed, a significant advantage as also pro-
posed by Baer and Tuckett [36]. Figure 1 presents the experimental results, with 
structures of sum formula C5H6 (2-methyl-1-buten-3-yne and cyclopentadiene) in 
Figure 1a, C5H8 (1,4-pentadiene, cyclopentene, and a mixture of cis- and trans-
1,3-pentadiene) in Figure 1b, C5H10 (3-methyl-1-butene, 1-pentene, a mixture of cis- 
and trans-2-pentene, and 2-methyl-2-butene) in Figure 1c, and C4H8O (n-butanal, 

Fig. 1: Measured reference VMI-PES for different molecular structures of sum formulae (a) C5H6, 
(b) C5H8, (c) C5H10, and (d) C4H8O. All spectra were taken at fixed photon energy of 10.1 eV. For 
clarity, they are normalized (with highest intensity set to 1) and displayed with vertical displace-
ment (along the y-axis) as solid lines without error bars.
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iso-butanal, 3-buten-2-ol, 3-buten-1-ol, methyl ethyl ketone, tetrahydrofuran, iso-
butenol, ethyl vinyl ether, and 2-methoxypropene) in Figure 1d.

Very distinct structural features are seen in the PES of the C5H6 and C5H8 
compounds in Figure 1a and b. On the other hand, among the C5H10 isomers in 
Figure 1c, 3-methyl-1-butene and 1-pentene show nearly identical spectra which 
makes them difficult to distinguish in a mixture. For the oxygenated C4H8O species 
(Figure 1d), the spectra of n-butanal, iso-butanal, 3-buten-2-ol, and 3-buten-1-ol 
are again quite similar, while only the PES of methyl ethyl ketone and tetrahy-
drofuran show a clear vibrational structure. The tabulated data of all measured 
PES including uncertainties is available in Supplemental Material 2. For those 
compounds where PES are available in the literature these are listed in Table S2 
in Supplemental Material 1 and a graphical comparison with the PES obtained in 
this work is given in Figure S2 in Supplemental Material 1.

3.1.2  �Calculated reference spectra

3.1.2.1  2-Cyclopentenyl radical (2CP)
The 2CP system consists of an allylic C3H3 part and an aliphatic C2H4 group 
forming a 5-membered ring (see left panel of Figure 2). The well-known resonance 
stabilization effect within the allyl part implies a C2v symmetry of the equilibrium 

Fig. 2: Left: Optimized geometry for the 2-cyclopentenyl radical at CASSCF/MRCI-F12a/aug-
cc-pVTZ level of theory. The allylic part comprises C2–C1–C5. Right: FC simulation at CCSD(T)-
F12a/aug-cc-pVTZ (cation) and CASSCF/MRCI-F12a/aug-cc-pVTZ (radical) level of theory for the 
2-cyclopentenyl radical (2CP). The calculated IE is indicated and the stick spectrum has been 
convoluted (solid line) with the experimental FWHM considering its energy-dependence given 
in [54].
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geometries of both neutral radical as well as cation. Both geometries have been 
optimized at CCSD(T)-F12a/aug-cc-pVTZ level of theory, but only the cation turns 
out to have a stable C2v minimum at this level of theory. The equilibrium geometry 
of the neutral radical shows a very slight in-plane distortion of the allyl system 
lowering the symmetry to Cs. We also observed unusual instabilities during 
the numerical force constant calculations, which pointed to an artifact. Such 
problems are easily overlooked but not uncommon in open-shell systems with 
symmetry and a complicated electronic structure. The reason for the artificial 
distortion is usually referred to as “doublet instability” or “artificial symmetry-
breaking” of the electronic wave function [66–69]. One possibility to overcome 
this issue is to use multi-reference electronic structure methods. Therefore, the 
radical has been recomputed using CASSCF/MRCI-F12a/aug-cc-pVTZ [70, 71] and 
paying attention to the wave function symmetry. A stable electronic structure has 
been achieved by choosing an active space of 13 electrons in 14 active orbitals for 
a CASSCF calculation to generate the 1-electron basis (molecular orbitals). This is 
followed by a MRCI-F12a calculation with an active space of 7 electrons in 7 active 
orbitals and including all electrons in the correlation treatment except the 10 core 
electrons. This approach yields a stable C2v equilibrium geometry as expected and 
robust force constants for the harmonic frequency calculation. Final equilibrium 
geometries and harmonic frequencies are summarized in Tables S3–S6 in Sup-
plemental Material 1.

The adiabatic IE, i.e. the 0–0 ionization including zero-point energy, needs 
to be calculated before the PES can be simulated. Unfortunately, all truncated 
CI methods including MRCI-F12a are not size-extensive and thus not suitable to 
compute ionization energies. Therefore, the CCSD(T)-F12a energies are used to 
determine the IE. The energy difference between the CCSD(T)-F12a and MRCI-
F12a geometry of the radical is only 4 μeV and thus not relevant. The predicted 
adiabatic IE is IE(2CP) = 6.97 eV, which is in very good agreement with the only 
experimental value reported in the literature at 7.00 eV using energy-selected 
electron impact [72]. This IE together with the harmonic frequencies and normal 
modes of the two sets of MRCI-F12a and CCSD(T)-F12a calculations is used for the 
FC simulation.

The resulting spectrum shows the highest intensity for the 0–0-transition 
due to the relatively small change in geometry upon ionization (see right panel of 
Figure 2). The second peak at 7.09 eV is mainly caused by single excitations into 
mode 9 and 10, both a1 ring deformation modes. Mode 9 corresponds to C1, C2 and 
C5 moving to the ring center whereas mode 10 corresponds mainly to an increase 
of the angle C2–C1–C5. After these two main peaks the intensity falls rapidly with 
only a small shoulder at 7.36 eV. This corresponds mainly to a single excitation 
into mode 3, a totally symmetric C–H stretching mode basically located at C3–H2 
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and C4–H2, respectively. The tabulated data of the simulated PES can be found in 
Supplemental Material 3.

3.1.2.2  �2-Methyl-1-butene (2M1B)
In contrast to the cyclic 2CP that has a completely rigid molecular structure, 
2M1B can show internal rotations around several single bonds. These have been 
investigated with different methods (HF, MP2, KS-B3LYP, CCSD(T)-F12a) using 
the cc-pVDZ basis set. Three rotamers were found (see Figure 3), of which two 
(2M1B-B and 2M1B-C) are essentially equivalent with an energy difference of 
<0.01  meV, which can be attributed to numerical errors. However, there is an 
energy difference of about 10 meV between 2M1B-A and 2M1B-B/C. The equilib-
rium geometries have no symmetry. Together with the larger number of electrons, 
this situation limits the range of methods and basis sets that can be used due to 
the higher numerical effort compared to 2CP. Therefore, the geometry optimiza-
tions were carried out at CCSD(T)-F12a/aug-cc-pVDZ level and frequency calcula-
tions at MP2/cc-pVDZ level only. The accuracy of MP2 frequencies and normal 
coordinates are fully sufficient for the aim of the present study. The optimized 
geometries and calculated frequencies are presented in Tables S7–S11 in Supple-
mental Material 1, and the tabulated data of the simulated PES are given in Sup-
plemental Material 3.

Considering the high temperature of our flames (before the quartz nozzle) 
leading to high Boltzmann internal energy as compared to the low energy differ-
ence of only about 10 meV between 2M1B-A and 2M1B-B/C which are connected 
by low barriers, the total spectrum for 2M1B was approximated as superposition 
of two partial spectra for 2M1B-A and 2M1B-B. Every single transition is weighed 
equally, and since 2M1B-B and 2M1B-C are equivalent, the final spectrum is a 
1:2  superposition of the two partial spectra of 2M1B-A and 2M1B-B. The result-
ing total spectrum and the spectra for single transitions due to the two rotamers 

Fig. 3: Optimized geometries for different rotamers of 2-methyl-1-butene (2M1B) at CCSD(T)-
F12a/aug-cc-pVDZ level of theory.
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are shown in Figure 4. For all rotamers, the 0–0-transition is quite weak result-
ing from the large change in geometry upon ionization. Hence, the first peak 
at 9.15 eV has its maximum above the adiabatic IEs of IE(2M1B-A) = 9.11 eV and 
IE(2M1B-B/C) = 9.09 eV and is caused by transitions into low-frequency torsional 
modes for both rotamers (mainly modes 33, 35, and 38 for 2M1B-A+ and modes 35, 
37, and 38 for 2M1B-B+). 2M1B-B has its main contribution to the following peak 
at 9.24 eV, generated by multi-mode excitations into mode 31, a torsional mode 
predominantly located at C1H2 and C3H2, and the above-mentioned low-frequency 
torsional modes. By contrast, the third peak at 9.32 eV results from transitions 
of 2M1B-A, namely excitations into the C1–C2 stretching mode 11 combined with 
some low-frequency torsional modes, particularly modes 33, 35, and 38. The 
fourth peak at 9.52 eV has contributions from both rotamers and corresponds 
mostly to simultaneous excitations into one C–H stretching mode (C5–H3 stretch-
ing mode 9 for 2M1B-A+ and C3–H2 stretching mode 8 for 2M1B-B+) and different 
low-frequency torsional modes. In summary, many transitions have an influence 
on the total spectrum as a consequence of the floppy molecular structure in a hot 
environment such as our flames.

Fig. 4: FC simulations for the rotamers 2M1B-A and 2M1B-B of 2-methyl-1-butene using geom-
etries optimized at CCSD(T)-F12a/aug-cc-pVDZ and frequency calculations at MP2/cc-pVDZ level 
of theory. The stick spectra have been convoluted (dashed blue and dot-dashed red line) with 
the experimental FWHM considering its energy-dependence given in [54]. The solid black line 
shows the total spectrum weighting each rotamer equally.
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3.2  �Combustion measurements

The measured and calculated reference photoelectron spectra have been applied 
in the analysis of selected combustion examples to identify and quantify impor-
tant combustion intermediates, focusing on species with five heavy atoms. Spe-
cific chemical questions are addressed sequentially for measured signals for the 
set of compounds with the elemental composition of CxHyOz (x = 4, 5; y = 6–8, 10; 
z = 0, 1) using the reference spectra determined in this work. The first example 
will be devoted to m/z = 67 (C5H7), reporting the occurrence of the 2-cyclopentenyl 
radical in the combustion of cyclopentene. Next, we discuss the isomeric compo-
sition for m/z = 70 (C5H10) and m/z = 68 (C5H8) in flames fueled by pure iso-pentane 
and by a mixture of this fuel with dimethyl ether. Finally, the species assign-
ment will be presented for m/z = 72 (C4H8O) in the fuel decomposition reactions 
of diethyl ether.

3.2.1  �Fuel radicals: C5H7 (m/z = 67)

Radicals are of essential importance in the combustion mechanism since they 
drive the chain reactions from the fuel to the products. The initial decomposition 
products of the fuel in the high-temperature environment of a laminar premixed 
flame, i.e. fuel radicals that may be formed by hydrogen abstraction reactions 
of the fuel itself, are at the origin of the subsequent further reaction pathways, 
and therefore their identification and quantification is highly desirable for the 
development and critical inspection of predictive kinetic mechanisms. Higher 
complexity of the molecular fuel structure, such as in branched or saturated 
and unsaturated cyclic compounds with and without side chains, increases the 
number of fuel radicals that may be formed in the first reaction steps. With this 
increasing number of potential structures, the development of mechanisms for 
realistic fuels for the range of temperature and pressure in modern engines can 
profit from techniques that enable unambiguous detection of such decisive inter-
mediates [14]. Beyond the more established C1–C4 mechanisms, the combustion 
chemistry of C5-fuels has received attention because of specific pathways leading 
to aromatic compounds that are important as soot precursors [17, 26, 73]. In cyclo-
pentene flames, pathways to first aromatic ring formation may efficiently proceed 
through the resonantly stabilized cyclopentadienyl radical [26], and a number of 
important isomeric structures in these flames have been detected before.

Unambiguous identification of the structure of the initial fuel radical C5H7 
(m/z = 67) in a fuel-rich cyclopentene flame has, however, not yet been achieved, 
despite the interest in the initial branching pathways of the fuel decomposition. 
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Problematic aspects in the detection include low signal because of low con-
centration, probable fragmentation of the parent cyclopentene (fuel) molecule 
(m/z = 68), and potential interference from the 13C-isotope of the prominent C5H6 
signal (m/z = 66). Also, fuel radicals exhibit very low ionization energies, making 
it difficult to separate their signals from species with higher concentrations when 
ionizing at high photon energies for multiplexing purposes. The PES of m/z = 67 
in a fuel-rich cyclopentene flame has been recently detected [41], selectively 
using a low photon energy of 7.7 eV. However, due to a lack of reference spectra, 
the identity of the detected species could only be assumed from tabulated ioniza-
tion energies. Here, with the newly calculated PES of the 2-cyclopentenyl radical, 
a more rigorous identification at this mass is possible.

Figure 5 shows the measured PES of m/z = 67 from the fuel-rich cyclopentene 
flame (left) together with possible structures of C5H7 radicals (right) that could 
contribute to the measured signal; indicated IEs are taken from the literature [72, 
74, 75]. The preferred H-abstraction reaction at flame temperatures is expected 
to favor the formation of cyclopentenyl radicals as the first step [26]. However, 
linear or branched isomers of C5H7 should not be completely ruled out, as they 
can be produced from ring-opening reactions or from combination reactions of 
fuel decomposition products. To discriminate from build-up reactions later in 

Fig. 5: Left: Measured PES at m/z = 67 and 1.0 mm distance from the burner surface in the fuel-
rich cyclopentene flame (black line and symbols including error bars from the evaluation with 
the pBasex algorithm [55]) and the FC simulation for the 2-cyclopentenyl radical at CASSCF/
MRCI-F12a/aug-cc-pVTZ (radical) and CCSD(T)-F12a/aug-cc-pVTZ level of theory (red stick 
spectrum and envelope from convolution). The simulated spectrum has been shifted by 20 meV 
towards the maximum of the experimental spectrum for comparison. Right: Structures and 
ionization energies (IEs) [72, 74, 75] of selected isomers with m/z = 67.
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the flame and ascertain that only initial H-abstraction products are observed, the 
measurement was performed at a distance from the burner surface of h = 1 mm 
early in the reaction progress. Furthermore, the low, fixed photon energy of 7.7 eV 
was chosen to ionize only radicals and to obtain signals only from these species 
without contributions from fragments of higher-mass species.

The first peak in the measured PES in Figure 5 at 6.95 eV lies within 0.05 eV 
of the tabulated IE of the 2-cyclopentenyl radical obtained by energy-selected 
electron impact (7.00 eV [72]), indicating the presence of this isomer, whereas all 
other isomers in Figure 5 show higher ionization energies. More information is 
available from the complete PES that is compared to the calculated spectrum of 
the 2-cyclopentenyl radical, convoluted with the experimental energy resolution 
following [54].

The calculated ionization energy of 6.97 eV matches the position of the first 
measured peak at 6.95 eV remarkably well within a range of 20 meV, and the cal-
culated PES thus further supports the presence of the 2-cyclopentenyl radical. 
The intensity of the second peak does not fit the measured spectrum equally well 
and might suggest contributions of a further molecule to this signal, although 
there are no tabulated IEs of further isomers fitting this peak. The three follow-
ing peaks also suggest that they correspond to a different species whose spec-
trum is superimposed with the long structureless tail of the 2CP PES. A further 
explanation could be temperature-dependent contributions of vibrational modes 
of the 2-cyclopentenyl radical, with temperature differences between the experi-
ment and the calculation. In a previous study, the temperature in the molecular 
beam was estimated to be 280 K [40], while for the calculations, no excited initial 
vibrational states have been considered, corresponding to a temperature of 0 K. 
It may seem trivial to include the temperature dependence in the FC simulations, 
however, the used program which is non-commercial does not yet include this 
option.

Further possible isomers with IEs in the measured range could be the 1,4-pen-
tadien-3-yl radical for which widely different IEs of 7.25 eV [74] and 7.76 eV [75] are 
given in the literature, and the 3-methyl-1-butyn-3-yl radical with an IE of 7.44 eV 
[74]. The latter species can be ruled out since it cannot be formed directly from 
early fuel decomposition reaction because of its branched structure. The 1,4-pen-
tadien-3-yl radical might be produced from the 2-cyclopentenyl radical via ring 
opening and subsequent stabilization. Slight contributions of 1,4-pentadien-3-yl 
in the range of 7.25–7.4 eV to the measured PES might thus be possible but cannot 
be verified without a reference PES. A measurement for this radical would require 
a clean, direct production process and thus presents a considerable challenge, 
but a high-level quantum calculation is similarly challenging and time demand-
ing. In summary, the calculated reference spectrum underlines the presence of 

Bereitgestellt von | Universitaetsbibliothek Bielefeld
Angemeldet | julia-pieper@web.de

Heruntergeladen am | 06.03.18 09:32



Isomer Identification in Flames with i²PEPICO      169

2-cyclopentenyl as a dominant initial fuel radical, providing useful information 
for further mechanism development.

3.2.2  �First products of fuel consumption reactions: C5H10 (m/z = 70)

The first steps in the fuel consumption mechanism are addressed here for iso-
pentane (C5H12, m/z = 72) as a branched C5-fuel as well as for an 80:20  mixture 
of iso-pentane with DME. Following upon the formation of the first fuel radicals 
(C5H11), which were not detected, the initial stable products can help to identify 
reaction sequences and branching ratios that are at the start of the overall fuel 
oxidation. The number of possible isomers leads to rather complex photoelectron 
spectra, and one of the aims here is to examine the capability to identify, sepa-
rate, and potentially quantify their contributions from such measured spectra to 
support chemical insight into the reaction processes. The isomeric distribution 
from mass-resolved PES at m/z = 70 was inspected first with an attempt to iden-
tify species that correspond to products of composition C5H10 after H-abstraction 
and a subsequent C–H-β-scission from the fuel molecule. A scheme of these 
first decomposition steps is given in Figure 6. Since the fuel molecule itself has 

Fig. 6: Initial decomposition reactions of iso-pentane by H-abstraction and C–H-β-scission. 
Other reactions (such as the more prominent C–C-β-scissions of the fuel radicals) are not shown 
here, as they are not discussed in this work.
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a branched structure, methylbutenes, namely 2-methyl-1-butene, 2-methyl-2-bu-
tene, and 3-methyl-1-butene, are most likely to be formed.

Nonetheless, linear isomers such as 1-pentene and 2-pentene (cis- and trans-
conformation) should not be ruled out completely, as they can be formed by 
build-up reactions from linear fuel destruction products. However, their contribu-
tion is expected to be small compared to the branched structures. The most plau-
sible isomers that could contribute to the signals of C5H10 are shown in Figure 7 
together with their ionization energies. Cyclopentane (IE: 10.3 eV [76]) cannot be 
detected at the fixed photon energy of 10.1 eV used in the measurements.

Regarding the comparably low mass resolution of the WM-TOF, C4H6O 
species (also at m/z = 70) could, in principle, also contribute to this signal. 
Separation of hydrocarbon and oxygenated species with the same m/z ratio 
was, however, possible with the complementary measurements in the iso-
pentane flame under identical conditions with EI-MBMS and a mass resolution 
of ~4000. These experiments reveal a mole fraction of 2.0 · 10−5 for the sum of 
C4H6O isomers (calibrated as 2-butenal), while the sum of C5H10 isomers has 
been evaluated to be 7.8 · 10−4 (calibrated as 2-methyl-2-butene), which is about 
a factor of 40 above the C4H6O contributions. The performed simulation with the 
mechanism of Bugler et al. [50] (see Section 2.3) also predicts the mole fraction 
sum of C5H10 isomers to be more than a magnitude higher than that of C4H6O 
isomers. A significant contribution of C4H6O species to the PES of m/z = 70 can 
therefore be ruled out here.

Only small contributions are again expected for the linear C5H10 isomers 
1-pentene and cis- and trans-2-pentene. They were predicted in the simulation 
to be about 4.3% of the sum of all C5H10 isomers, including 3.8% of 2-pentene 
and 0.5% of 1-pentene. Complementary information has also been obtained from 
gas chromatography (GC) measurements under identical flame conditions (see 
Section S.5 in Supplemental Material 1), which showed the presence of all three 
methylbutenes and also of 2-pentene, but no observable signal for 1-pentene (see 
Figure S3 in Supplemental Material 1). The PES of 1-pentene will thus not be con-
sidered in the evaluation procedure.

Fig. 7: Structures and ionization energies (IEs) [76–78] of expected isomers of the sum formula 
C5H10 (m/z = 70) in the combustion of iso-pentane.
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The contribution of 2-pentene could be determined, however, even though 
the PES of 2-methyl-1-butene and 2-pentene occur in the same energy range. 
Figure  8 shows the results for m/z = 70  measured at h = 3.2  mm in the iso-pen-
tane flame with a fixed photon energy of 10.1 eV. Figure 8a presents the inverted 
2D image of the electrons that coincide with the ions of m/z = 70. The angular 
integration of such an image yields the photoelectron spectrum for m/z = 70 in 
Figure 8b. To obtain the relative contributions of each isomer, measured and cal-
culated reference PES of 2-methyl-2-butene, 3-methyl-1-butene, 2-pentene, and 
2-methyl-1-butene, respectively, were considered in the evaluation; for the sake 
of clarity, they are normalized to their respective intensity maxima and are pre-
sented in Figure 8c. The contributions from these spectra versus the measured 

Fig. 8: (a) Inverted 2D electron image corresponding to ions with m/z = 70. (b) PES of 
m/z = 70 measured in the fuel-rich iso-pentane flame at h = 3.2 mm and a fixed photon energy 
of 10.1 eV. (c) Normalized reference spectra with m/z = 70 and sum formula C5H10. (d) Compari-
son of the measured PES to the weighted sum of all reference spectra following the subtraction 
procedure of Felsmann et al. [41].

Bereitgestellt von | Universitaetsbibliothek Bielefeld
Angemeldet | julia-pieper@web.de

Heruntergeladen am | 06.03.18 09:32



172      J. Pieper et al.

PES as obtained from a subtraction procedure described in [41], is evident from 
the weighted sum shown in Figure 8d together with the scaled reference spectra. 
The full step-by-step subtraction analysis is provided in Figure S4 in Supplemen-
tal Material 1.

The overall structure of the measured PES of m/z = 70 can be reproduced 
satisfactorily from the weighted contributions of the different isomers. However, 
some peaks are not captured well by the reference spectra, especially in the range 
of 9.8–10.1 eV. It should be noted that the signal in this range must be interpreted 
with care, due to the noise level of the raw image which is inherently amplified 
by the Abel transformation especially close to the chosen fixed photon energy, 
i.e. for slow electrons. Temperature differences occurring between the flame 
and reference samples might also contribute to some of the observed devia-
tions. Especially for the two signatures below 8.6 eV, no stable C5H10 isomer is 
known with such low ionization energy. Hot bands corresponding to transitions 
from excited vibrational states could be one possible explanation, resulting in 
peaks at a lower binding energy. Such bands should be found at a distance cor-
responding to reasonable vibrational wavenumbers (i.e. ~1600 cm−1 ≈0.2 eV for a 
C=C stretch vibrational mode), as indeed observed in the spectrum in Figure 8. 
Further investigation of reference samples at elevated temperatures might assist 
in the clarification.

Remaining differences are observed near 9.05 and 9.4 eV. The evaluation faces 
some challenges here since the PES of 2-methyl-1-butene and 2-pentene overlap in 
this energy region (compare also Figures 1c and 4). As stated above, the simula-
tion with the mechanism of Bugler et al. [50] predicts only a small contribution of 
linear isomers, supporting the chemically reasonable assumption that branched 
2-methyl-1-butene is more likely to be formed directly from the branched fuel 
structure of iso-pentane (compare also Figure 6). In the subtraction procedure, 
the PES of 2-methyl-1-butene has thus been subtracted before that of 2-pentene, 
which results in a smaller contribution of 2-pentene (see Figure S4 in Supplemen-
tal Material 1), in accord with the chemical-kinetic model. Baer and Tuckett [36] 
have commented on the subtraction routine of Felsmann et al. [41] and noted that 
it may lead to a higher global error. We have thus also used a minimization proce-
dure based on a Levenberg-Marquardt algorithm [79]. More detailed information 
is given in Section S.7 of Supplemental Material 1. It should be noted here that 
the measured spectrum could be analyzed with a slightly improved overall fit, but 
with the result of an unreasonably high contribution of 2-pentene. Small changes 
in the spectral structure may have important leverage in such automatic evalua-
tion procedures, and the results should be considered carefully.

For a quantitative evaluation of the measured spectrum in Figure 8, the con-
tribution of each of the four isomers was calculated by considering the area of 
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each scaled reference PES and the photoionization cross section (PICS) of the 
respective species at the fixed photon energy of 10.1 eV. From the sum mole frac-
tion of C5H10 of 7.8 · 10−4 (calibrated directly as 2-methyl-2-butene with about 30% 
uncertainty) determined in the EI-MBMS measurements, the mole fraction of 
each isomer was obtained. The results are presented in Table 2 together with the 
predicted mole fractions from the simulations (left panel); also, the values for the 
DME-doped flame are included for comparison (right panel).

As the most prominent isomer, 2-methyl-1-butene is produced in the iso-
pentane flame at h = 3.2 mm. Concerning the respective contributions of 38.8% 
vs. 34.4%, experiment and simulation show reasonable agreement. Similarly, 
measured and predicted contributions of 3-methyl-1-butene agree satisfactorily, 
with somewhat larger deviations observed for 2-methyl-2-butene. Both the latter 
isomers attain contributions of ~18–24% in the experiment and ~28–33% in the 
simulations. The experiment also confirms the contribution of 2-pentene, but 
also with a higher deviation. Overall, the sum of C5H10 isomers is predicted to be 
9.9 · 10−4, which is in quite good agreement with the result of 7.8 · 10−4 from the 
experiment.

The results for the DME-doped iso-pentane flame in Table 2 and Figure S7 
in Supplemental Material 1  show that neither the structure of the PES nor the 
occurrence of the various isomers is significantly altered by the addition of DME. 
Within the experimental uncertainty, observed trends are also consistent with the 
simulation. The overall C5H10 mole fraction is reduced slightly, corresponding to 
the replacement of the C5-fuel by DME that cannot produce C5H10 intermediates 

Tab. 2: Contributions C (in %) of isomers of m/z = 70 and their mole fractions x at h = 3.2 mm in 
the fuel-rich flames of pure iso-pentane and of iso-pentane doped with 20% DME from experiment 
and simulation.

 
 
 

iso-Pentane  
 
 

iso-Pentane/DME (80:20)

Experiment  
 

Simulation Experiment  
 

Simulation

C   x C  x C   x C  x

2-Methyl-2-butene [80]  18.6   1.5 · 10−4  32.8  3.3 · 10−4  23.1   1.0 · 10−4  32.9  3.0 · 10−4

2-Methyl-1-butene [80]  38.8   3.0 · 10−4  34.4  3.4 · 10−4  42.0   1.8 · 10−4  34.3  3.1 · 10−4

3-Methyl-1-butene [80]  24.1   1.9 · 10−4  28.5  2.8 · 10−4  19.0   8.4 · 10−5  28.5  2.6 · 10−4

2-Pentene [81]a   18.5   1.4 · 10−4  3.8  3.8 · 10−5  15.9   7.0 · 10−5  3.9  3.5 · 10−5

1-Pentene [82]   n.q.   −  0.5  4.5 · 10−6  n.q.   –  0.4  3.8 · 10−6

Sum C5H10   100   7.8 · 10−4  100  9.9 · 10−4  100   4.4 · 10−4  100  9.1 · 10−4

Photoionization cross sections were taken from the literature (references are given behind the 
species names). n.q., not quantifiable in the experiment. aMean value of cis- and trans-isomer.
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easily. These results are not unexpected since the nature of the initial iso-pentane 
destruction reactions towards the observed C5H10 isomers (compare Figure 6) 
should be similar with and without the presence of dimethyl ether in the system. 
Despite the complexity of the isomer mixture, leading to overlapping photoelec-
tron spectra in a narrow energy range, the prevalence of branched intermediates 
could be unambiguously established.

3.2.3  �Stable products from initial fuel consumption reactions: C5H8 (m/z = 68)

Following the reaction pathways towards the formation of stable products from 
the abovementioned C5H10 intermediates, species with m/z = 68 of sum formula 
C5H8 will be analyzed. Special attention will be given to isoprene (2-methyl-
1,3-butadiene), which is expected to be the most abundant isomer in the early iso-
pentane fuel consumption reactions because of its branched structure. Isoprene 
is known to participate in atmospheric reactions, as it decomposes via reactions 
with OH radicals and ozone and thus can lead to toxic aldehydes and peroxides 
that are involved in particle formation in the upper troposphere [83]. Together 
with isoprene, Figure 9 shows further isomers of m/z = 68 that are likely to occur 
in the iso-pentane flame, including 3-methyl-1,2-butadiene, cis- and trans-1,3-pen-
tadiene, 1,4-pentadiene, and cyclopentene.

Branched isomers of C5H8 will be formed primarily because of the branched 
fuel structure, of which 3-methyl-1,2-butadiene with its two vicinal C=C double 
bonds is structurally unfavorable and might undergo internal rearrangements. 
The simulation predicts isoprene to be formed almost exclusively. Because of 
the limited mass resolution of the WM-TOF (see Section 2.1), oxygenated species 
with m/z = 68 and sum formula C4H4O cannot be separated from the hydrocarbon 
signal. They can, in principle, be unambiguously detected in the complementary 
EI-MBMS measurements that did, however, not even show a quantifiable signal 
for these species. Also the simulation predicts a mole fraction of only 2.5 · 10−7 for 

Fig. 9: Structures and ionization energies (IEs) [76–78] of the expected isomers of the sum 
formula C5H8 (m/z = 68) in the combustion of iso-pentane.
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the sum of oxygenated compounds with m/z = 68, more than two orders of mag-
nitude smaller than that for the sum of the C5H8 hydrocarbon species (9.8 · 10−5).

To determine the contributions of the different C5H8 isomers, the same pro-
cedure has been applied as discussed for the C5H10 spectra above (see Section 
3.2.2). Figure 10 presents the results for m/z = 68 measured at h = 3.2 mm at a fixed 
photon energy of 10.1 eV. Figure 10a shows the inverted 2D image for the electrons 
coincident with the ions of m/z = 68 and Figure 10b the resulting PES. The meas-
ured reference PES of 1,3-pentadiene (mixture of cis- and trans-isomers), cyclo-
pentene, and 1,4-pentadiene are given in Figure 10c together with that of isoprene 
that was taken from the literature [84]; all PES have been normalized to their 
respective intensity maxima for better comparison. The resulting weighted sum 

Fig. 10: (a) Inverted 2D electron image corresponding to ions with m/z = 68. (b) PES of 
m/z = 68 measured in the fuel-rich iso-pentane flame at h = 3.2 mm and a fixed photon energy 
of 10.1 eV. (c) Normalized reference spectra with m/z = 68 and sum formula C5H8. (d) Compari-
son of the measured PES to the weighted sum of all reference spectra following the subtraction 
procedure of Felsmann et al. [41].
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from the subtraction procedure is given in Figure 10d together with the scaled 
reference spectra; the full subtraction analysis is provided in Figure S5 in Sup-
plemental Material 1.

Satisfactory agreement between the measured PES and the weighted sum 
of the reference spectra is observed. The peaks near 8.6, 8.8, and 9.0 eV are 
well matched by the respective structures of 1,3-pentadiene and isoprene, with 
contributions also from cyclopentene. Further observed peaks in this region, 
especially at 8.9, 9.2, and 9.4 eV cannot be reproduced completely with the 
considered reference PES; also, the peak intensity near 9.0 eV is somewhat 
low. However, as previously mentioned, intensities could be different as a 
function of temperature between the hot flame and the cold-gas reference 
spectra. As for the C5H10 isomers discussed before, it is more challenging to 
assign clear reference spectra to the measured spectrum above ~9.5 eV due 
to the noise level of the raw image which is inherently amplified by the Abel 
transformation in this region. The PES of 1,4-pentadiene may thus appear a bit 
more speculative, since the structure cannot be clearly identified. A full TPES 
energy scan would have been required to provide unambiguity, but time limita-
tions prevented such an attempt. Other possible C5H8 isomers near this range 
could include 2-pentyne with a calculated IE of 9.44 eV according to Hansen 
et al. [73]; however, it seems unlikely that this species would be formed from 
iso-pentane as a fuel decomposition product. No clear identification was given 
for this species in flames of allene, propyne, cyclopentene, and benzene in Ref. 
[73], and 2-pentyne was also not observed in the cyclopentene flame studied 
by Hansen et al. [26] where the observed C5H8 signal was predominantly due 
to the fuel itself. We have not considered 2-pentyne here for these reasons, but 
we would like to mention that reference PES for this species are also lacking in 
the literature. Finally, similar to the discussion for m/z = 70, structures at 8.3–
8.4 eV were noted that cannot be assigned to further species and that might be 
hot bands.

The contribution of each of the four analyzed isomers was calculated consid-
ering the respective photoionization cross sections at the fixed photon energy of 
10.1 eV. The resulting mole fractions for each isomer, obtained from these percent-
ages and the sum mole fraction of 9.8 · 10−5 for C5H8 from the EI-MBMS measure-
ments are reported in Table  3 together with the results of the simulations (left 
panel); for comparison, the respective information is also included for the DME-
doped flame (right panel).

It is not easy to compare experiment and simulation quantitatively in this 
case since the mechanism of Bugler et  al. [50] does not include cyclopentene 
and 1,4-pentadiene. The presence of cyclopentene has been demonstrated by 
the present i2PEPICO measurement and this species should thus be included in 
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kinetic reaction mechanisms for iso-pentane combustion. Also, the measurements 
suggest consideration of 1,4-pentadiene in the mechanism to examine pathways 
for its formation. From their analysis of PIE curves for flame-sampled C5H8 species 
in fuel-rich flames of several fuels, Hansen et al. [73] also discussed the presence 
of 1,4-pentadiene. Both experiment and model agree in that isoprene is the most 
abundant isomer. Isoprene contributes to m/z = 68 with ~37% in the experiment, 
while 1,3-pentadiene, cyclopentene and 1,4-pentadiene show a similar content 
of ~15–20% each. In the simulations, isoprene contributes with 94.8% and only 
small contributions of 1,3-pentadiene of 3.6% and 3-methyl-1,2-butadiene of 1.6% 
are predicted. Isoprene’s mole fraction is with 3.7 · 10−5 comparatively small, 
about an order of magnitude lower than predicted by the model with 4.8 · 10−4. 
Given the still sparse information on fuel-specific C5-reactions, results such as 
those presented here, with the detection of several isomers from their photoelec-
tron spectra, may provide clues for the further development of kinetic reaction 
mechanisms.

As already shown for the distribution of the C5H10 isomers (see Section 3.2.2), 
the PES of m/z = 68 was also determined for the DME-doped iso-pentane flame 
and evaluated as for the pure iso-pentane flame. Results are shown in Figure S8 in 
Supplemental Material 1 and included in Table 3 (right panel). Again, the iso-pen-
tane/DME mixture leads to lower mole fractions of C5-species, as expected, with 
consistent trends in experiment and simulation, but only moderate changes in 
the isomer composition. These results also support the previous conclusion that 
the presence of DME in the iso-pentane flame does not affect the C5-fuel destruc-
tion steps significantly under the investigated conditions. Again, the measured 

Tab. 3: Contributions C (in %) of isomers of m/z = 68 and their mole fractions x at h = 3.2 mm in 
the fuel-rich flames of pure iso-pentane and of iso-pentane doped with 20% DME from experi-
ment and simulation.

 
 
 

iso-Pentane  
 
 

iso-Pentane/DME (80:20)

Experiment  
 

Simulation Experiment  
 

Simulation

C   x C   x C   x C   x

1,3-Pentadiene [80]   21.7   2.1 · 10−5  3.6   1.8 · 10−5  20.4   1.5 · 10−5  3.7   1.6 · 10−5

Isoprene [85]   37.4   3.7 · 10−5  94.8   4.8 · 10−4  30.9   2.2 · 10−5  94.8   4.3 · 10−4

Cyclopentene [81]   25.2   2.5 · 10−5  n.a.   –  30.6   2.2 · 10−5  n.a.   –
1,4-Pentadiene [80]   15.7   1.5 · 10−5  n.a.   –  18.1   1.3 · 10−5  n.a.   –
3-Methyl-1,2-butadiene [80]  n.q.   −  1.6   7.8 · 10−6  n.q.   –  1.5   7.0 · 10−6

Sum C5H8   100   9.8 · 10−5  100   5.1 · 10−4  100   7.2 · 10−5  100   4.5 · 10−4

Photoionization cross sections were taken from the literature (references are given behind the 
species names). n.q., Not quantifiable in the experiment; n.a., not available in the kinetic model.
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photoelectron spectra demonstrate the prominent formation of branched isomers 
in the fuel-specific reaction pathways.

3.2.4  �Oxygenated intermediates: C4H8O (m/z = 72)

Flames of biomass-derived fuels feature numerous intermediates that contain 
heteroatoms such as oxygen or nitrogen [12, 86, 87], rendering the analysis at a 
given m/z ratio more challenging. The i2PEPICO technique presents useful oppor-
tunities to identify the isomeric distribution and structures of such combustion 
intermediates due to their individual fingerprint photoelectron spectra. Here we 
will place special emphasis on the separation of intermediates with elemental 
composition C4H8O at m/z = 72 in a fuel-rich diethyl ether flame that has been pre-
viously investigated with EI- and VUV-PI-MBMS [51]. In the previous study, Tran 
et al. [51] reported the detection of ethyl vinyl ether (EVE, m/z = 72) for the first 
time as intermediate in their DEE flame and suggested that this species should 
be included in the respective kinetic mechanism where it had not yet been con-
sidered [52]. Figure 11 illustrates the first two steps in the DEE fuel consumption 
pathway including EVE formation via H-abstraction and C–H-β-scission.

Relying on the high mass resolution of their EI-MBMS instrument, Tran et al. 
[51] could separate the species of interest with sum formula C4H8O (m/z = 72) 

Fig. 11: First decomposition steps of diethyl ether by H-abstraction and C–H- and C–O-β-
scission reactions forming ethyl vinyl ether and other products.
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clearly from hydrocarbon species with the same nominal mass (C5H12, also 
m/z = 72). They had assigned their C4H8O signal as EVE and determined a mole 
fraction of ~1.0 · 10−5 from direct calibration. The photoionization efficiency spec-
trum at m/z = 72 from their complementary VUV-PI-MBMS experiment [51] exhib-
its a noticeable onset near the tabulated IE of EVE of 8.98 eV [88].

As a prerequisite to analyze the isomer composition in the DEE flame for 
species with the elemental composition C4H8O further, fixed-photon-energy 
measurements at 10.1 eV were performed with the i2PEPICO technique to record 
the PES of nine reference compounds with the sum formula C4H8O; these refer-
ence spectra are given in Figure 12.

Measurements in the DEE flame were performed at h = 2.3 mm, the distance 
from the burner where the previous study [51] showed the maximum concentra-
tion of C4H8O species. The energy was scanned in the flame experiment to record 
the threshold photoelectron spectrum (TPES) with a higher resolution of 10 meV, 
because according to the reference spectra in Figure 12, several species with 
very similar PES might contribute to this signal. Results are given in Figure 13a 
together with the measured TPES (black lines and symbols) and the three refer-
ence PES in the scanned energy range of 8.35–9.35 eV, i.e. those of 2-methoxy-
propene (blue dotted line), ethyl vinyl ether (red line), and iso-butenol (green 
dashed line). Please remember for the comparison that the reference spectra were 

Fig. 12: Left: Measured reference PES at 10.1 eV of selected oxygenated species with the sum 
formula C4H8O. Right: Corresponding structures and tabulated IEs [88–93] of these compounds.
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recorded at fixed photon energy with lower energy resolution (about 30–70 meV 
in the respective KE range) as that for the flame scan.

The observed signal from the flame in Figure 13a starts to rise near 8.55 eV 
and shows a more substantial increase at 8.70 eV, corresponding well to the onset 
of the photoelectron signal in the reference PES of EVE at 8.55 eV. The TPES can 
be used to evaluate the ionization onset, potentially with higher precision than 
currently available in the literature. However, here, the low density of the DEE 
flame and the limited synchrotron beamtime lead to the low signal-to-noise 
observed in the recorded TPES. For this reason, the TPES measured in the DEE 
flame and the three presented reference spectra of 2-methoxypropene, ethyl 
vinyl ether, and iso-butenol have been integrated to yield the PIE curves. These 
are presented in Figure 13b together with the PIE curves measured by PI-MBMS 
from Ref. [51]. Excellent agreement between the integrated TPES measured in the 
flame and the integrated reference PES of ethyl vinyl ether is seen, with a result-
ing onset near 8.75 eV. A shift between the PEPICO and PI-MBMS measurements 
of ~0.1 eV is noted, with very good reproducibility for each technique, however. 
This shift again shows the necessity of measuring reference spectra with the same 
apparatus. Please also note the quite high quality of the PIE curve (open circles 

Fig. 13: (a) TPES of m/z = 72 measured in the fuel-rich DEE flame at h = 2.3 mm in the energy 
range of 8.35–9.35 eV (ΔE = 10 meV; black lines and open circles), together with the PES of 
2-methoxypropene (blue dotted line), ethyl vinyl ether (red line), and iso-butenol (green dashed 
line) measured at a fixed photon energy of 10.1 eV (the latter are presented as lines without 
error bars for clarity). (b) Integrated TPES and reference PES based on the data of (a): flame 
TPES for m/z = 72 (black open circles), PES of 2-methoxypropene (blue dotted line), ethyl vinyl 
ether (red line), and iso-butenol (green dashed line). For comparison, the PIE curves from two 
identical measurements obtained by Tran et al. [51] are included (gray lines and symbols, with 
permission of Elsevier/The Combustion Institute). The tabulated IE for ethyl vinyl ether is taken 
from [88].
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in Figure 13b) as the integration result of the noisy TPES (black lines and open 
circles in Figure 13a), demonstrating the advantages of the PEPICO technique 
even at low signal levels. As a recommendation from both the present measure-
ments as well as those with PI-MBMS from Tran et al. [51], the IE for ethyl vinyl 
ether should be ~8.75 eV rather than the tabulated value of 8.98 eV [88].

The presence of EVE in the combustion of DEE can be clearly confirmed from 
the comparison of position and shape of the measured TPES and the reference 
PES of EVE. The six further reference compounds are not ionized below 9.35 eV 
(compare Figure 12) and can thus not contribute to the flame signal. Also, an 
increase of the signal for 2-methoxypropene at 8.40 eV is not observed in the 
flame TPES. Contributions of iso-butenol in this energy range seem possible but 
hard to quantify.

Measurements to identify or exclude isomers with higher IEs, e.g. to determine 
the contribution of n-butanal, would be interesting for a comparison of experi-
ment and simulation with a kinetic model. They are hard to perform, however, 
since the C4H8O signal is quite low and therefore noisy (see Figure 13a); ionization 
with higher photon energy would also lead to contributions from the fuel DEE 
itself (IE = 9.51 eV [94]) that is present in high concentrations, making it challeng-
ing to separate with the available experimental mass resolution. From the fuel 
decomposition analysis as well as the experimental and simulation results in Ref. 
[51], it seems, however, quite unlikely that further C4H8O isomers can contribute 
substantially in the fuel consumption reactions of diethyl ether, because they 
would have to be formed by combination from smaller molecular building blocks.

4  �Summary and conclusions
With the analysis of combustion intermediates featuring five heavy atoms in 
flames of different fuels, the discriminative capacity of double-imaging photo-
electron/photoion coincidence spectroscopy has been examined under isomer-
rich, chemically complex conditions. The i2PEPICO approach that profits from the 
unambiguous fingerprint PES of each species was applied to flames of cyclopen-
tene, pure iso-pentane and its blend with dimethyl ether, and diethyl ether to 
provide specific information about the chemical composition at a given mass. 
The technique had already been proven advantageous over more widely used 
photoionization MBMS measurements that can only identify the contribution of 
several isomers if their ionization energies are not too close and the corresponding 
slopes of the photoionization efficiency curves can each be assigned to a single 
species. The multiplexing capability of fixed-photon-energy measurements was 
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applied since it offers a much superior acquisition efficiency and requires only 
the photoionization cross section at a single fixed energy for a quantitative inter-
pretation of the i2PEPICO experiments.

To analyze the flame-sampled spectra, reference photoelectron spectra of 18 
C4- and C5-species with the sum formulae of C5H6, C5H8, C5H10, and C4H8O were 
determined, including several compounds for which such spectra are reported 
for the first time. Measurements of these reference spectra were performed since 
these species were expected to be produced in the combustion reactions of the 
investigated fuels. Reference spectra were recorded in the range of 8–12 eV with 
the same experimental setup as for the flame measurements. In addition, the 
photoelectron spectra of the 2-cyclopentenyl radical and the 2-methyl-1-butene 
molecule were obtained from Franck-Condon simulations on the basis of high-
level quantum chemistry calculations.

At low photon energies, the detection of the initial radicals produced in a 
cyclopentene flame was possible and the 2-cyclopentenyl radical could be unam-
biguously identified with the aid of the calculated reference spectrum. Informa-
tion on such species immediately involved in the fuel destruction reactions is of 
significant importance for mechanism development since they are at the origin of 
subsequent fuel conversion reactions.

In the combustion of iso-pentane (m/z = 72), the isomers of C5H10 (m/z = 70) 
and of C5H8 (m/z = 68) were identified and quantified based on the measured 
and calculated reference spectra and complementary EI-MBMS measurements. 
The results show a preference to form branched methylbutenes and only a small 
contribution of the linear isomer 2-pentene that is unlikely to be formed in the 
fuel decomposition. The experiment shows the dominant isomer to be 2-methyl-
1-butene and to a lesser extent the presence of 2-methyl-2-butene and 3-methyl-
1-butene, while a simulation with a recent kinetic model from the literature [50], 
developed specifically to describe the combustion of the pentane isomers, pre-
dicts the three methylbutenes in similar amounts. The present experiments thus 
provide interesting information for a deeper analysis of the early fuel consump-
tion reactions. For C5H8 species with m/z = 68, the experiments revealed signifi-
cant contributions of cyclopentene and pentadienes, while the simulations with 
the model of Bugler et al. [50] predict almost exclusively isoprene. It should be 
noted that cyclopentene and 1,4-pentadiene have not yet been included in their 
kinetic model, and the present results can thus support further development to 
improve the prediction capability of the model.

The same i2PEPICO approach has been successfully applied to a fuel mixture 
of the previously analyzed fuel-rich iso-pentane flame, doped with 20% DME. The 
results confirm the expectations that DME does not affect the first fuel-specific 
reactions significantly under the present pressure and temperature conditions – a 
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result that should, however be put to further examination in the low-temperature 
auto-ignition regime where the peroxide-forming early oxidation chemistry of 
both fuels could lead to interactive effects.

Furthermore, the present measurements have been successful to unambigu-
ously identify ethyl vinyl ether as an intermediate in a DEE flame, relying on the 
scanned photoelectron spectrum in the flame and the obtained reference spectra 
for several C4H8O isomers taken at fixed photon energy. In spite of the small and 
quite noisy signal, the present TPES result offers superior spectral information 
over recent PI-MBMS measurements that reported the PIE curve of this species in 
a DEE flame at similar conditions [51]. From these measurements, the IE for EVE 
can be recommended as ~8.75 eV. Again, the present results may serve for the 
improvement of the very recent, newly developed kinetic model for the alterna-
tive fuel diethyl ether [51].

It may be concluded that photoelectron spectra measured in flames with 
fixed-photon-energy i2PEPICO spectroscopy can support isomer identification in 
combustion systems featuring chemically complex mixtures beyond the reason-
ably well understood C1–C4 reactions. Several aspects have been instrumental for 
successful results. Reference spectra of the pure compounds recorded with the 
same setup under identical conditions as recommended by Baer and Tuckett [36] 
have proven a valuable prerequisite to remove any ambiguities such as poten-
tial resolution effects or shifts in the assignment of isomer contributions in the 
flame spectra. For species such as the fuel radicals in the combustion of C4 and C5 
fuels for which reference measurements for the different isomer structures would 
be extremely challenging or impossible, high-level quantum calculations seem 
inevitable to provide the necessary reference spectra. Similarly, theoretical cal-
culations can be a useful complement to measured reference PES for molecular 
structures in complex isomer mixtures. It should be noted that to obtain reliable 
results, these may need examination of different conformers and calculations 
on different levels so that they can be quite time-consuming. In further develop-
ments it may be useful to compare measured and calculated PES for several cases 
to assess the quality of both. Problems in resolving all contributions from flame 
spectra may arise from vibronic contributions and potentially hot bands, which 
would possibly be remedied by providing reference spectra at different tempera-
tures. In any case, the flames can serve as moderately elevated temperature reac-
tors to access PES of interesting radicals. In situations where several isomers 
contribute to the combustion reactions, a stand-alone analysis with i2PEPICO 
measurements is, in principle, possible as demonstrated in previous work [38, 40, 
41], but the value of supporting, complementary and independent measurements 
using PI-MBMS or gas chromatography whenever useful has been demonstrated 
here to exclude certain isomers or to compare PIE curves and PES. Furthermore, 
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assignment of quantitative concentrations from the analysis of the same combus-
tion situation with electron-ionization molecular-beam mass spectrometry was of 
significant value since oxygenated and hydrocarbon isomers could be separated 
by their exact mass and since sum concentrations at a given mass signal were 
available from an independent physical process. While photoelectron/photoion 
coincidence techniques have meanwhile proven themselves as invaluable diag-
nostic tools for gas-phase combustion analysis, we recommend to see them as 
one building block in a full analysis of specific combustion problems that should 
rely on the combination of cutting-edge experiments, theory, and kinetic analysis 
with the potential to further improve dedicated reaction mechanisms developed 
for this purpose.
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Abstract
Photoelectron photoion coincidence (PEPICO) spectroscopy as an attractive new techni-
que for combustion analysis was used in a fixed-photon-energy configuration to provide
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conventionally performed with molecular-beam mass spectrometry (MBMS) using electron
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diation, these techniques have some limitations. The possibility to record photoelectron
spectra (PES) simultaneously with photoionization data, providing fingerprint information
for reliable species identification, presents a significant advantage of PEPICO spectroscopy
especially in complex reactive mixtures. The multiplex approach presented here, enhanced
by the imaging capabilities of the electron and ion detection in the so-called double-imaging
PEPICO scheme (i2PEPICO), provides, in different experimental situations, an unpreceden-
tedly detailed combustion analysis regarding both species identification and quantification.
Problems and perspectives of the present fixed-photon-energy PEPICO approach will be
discussed.
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1 Introduction
Complex diagnostic problems in the gas phase, concerning chemical dynamics
and reaction kinetics, species identification, and quantification have been in-
creasingly addressed in recent years using advanced mass spectrometric tech-
niques [1–5]. Such applications are reported within fields as diverse as atmo-
spheric chemistry [3], organometallic catalysis [2], interstellar chemistry [6–10],
aerosol formation [1], photochemistry [1, 11], biomass pyrolysis [12], and combus-
tion chemistry [5, 12–14]. These reactive systems may involve dozens to hundreds
of species, some of unknown structure [15–17], in amounts that may reach from
the sub-ppm to the percent level. Reliable detection and identification of com-
ponents in the reacting mixture, including isomers, is a prerequisite for the de-
velopment of detailed reaction mechanisms. Molecular-beam mass spectrometry
(MBMS) as a universal, yet invasive, technique [1, 4, 13, 18, 19] is being employed
to study reactive processes in photolysis, pyrolysis, and oxidation reactors [12–
14, 17, 20], shock tubes [21], and laboratory flames [4, 5, 12, 13].

While laboratory variants of MBMS usually rely on electron ionization (EI),
the use of tunable vacuum ultraviolet (VUV) radiation from synchrotron sources
for photoionization (PI) has becomemore common to identify species not only by
their exact mass, but also by their ionization energy (IE). Such PI-MBMS studies
have beenwidely used in combustion research to analyze chemically sensitive as-
pects such as low-temperature oxidation [17, 20] and high-molecular-weight soot
precursor formation [22]. Especially the introduction of alternative fuels [23, 24]
and novel combustion regimes [14, 17] demand detailed information to build re-
liable reaction mechanisms of predictive quality [15, 16]. In comparison to the
less involved EI-MBMS technique that offers analysis of the reaction system by
mass/charge (𝑚/𝑧) ratio and reaction time (or height above the burner ℎ in a lam-
inar flame), VUV-PI-MBMSat synchrotrons provides a third discriminativedimen-
sion in terms of the finely tunable photoionization energy. The high energy resolu-
tion of PI-MBMS is instrumental for species and structure identification. To obtain
quantitative species profiles, PI-MBMS relies onphotoionization cross sections for
stable and radical species that are often measured at the same beamlines [25–29].

Evenmore information, however, can be gainedwith photoelectron photoion
coincidence (PEPICO) spectroscopy, a technique that has been known and ap-
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plied to the detailed study of photoionization processes for nearly five decades
([30, 31] and references therein), and that has recently found popularity for com-
plex mixture analysis in synchrotron facilities [32–35], since it offers a fourth
discriminative dimension originating from the detection of the associated elec-
trons. Indeed, in addition to the detection of the ion, the information carried
by the electron from the same ionization event can be analyzed in PEPICO com-
bustion diagnostics via highly specific fingerprint photoelectron spectra (PES) of
the reactive species. Quite recently, Oßwald et al. [33] have – for the first time in
a burning flame – demonstrated detection of reactant, product, and intermedi-
ate species. In their study, performed at the Swiss Light Source (SLS), they could
detect and partially quantify several chemical species in a C

2
H
4
/O
2
/Ar flame.

Also they were able, for the example of an iso-butane flame, to distinguish be-
tween the first four isomeric fuel radicals formed by H-abstraction from the fuel
molecule. In their threshold (T)-PEPICO approach, they have scanned the ioniz-
ing photon energy to generate threshold photoelectron spectra (TPES). Scanning
the photon energy with appropriate resolution can be quite time-consuming, and
Krüger et al. [35] have thusdemonstratedmore recently ahighlymultiplexedfixed-
photon-energy PEPICO method. With this fixed-photon-energy technique, they
have recorded PES to provide isomer separation for some carefully selected con-
ditions in flames. Felsmann et al. [36] have performed a comparison of both the
scanning TPEPICO [33] and fixed-photon-energy PEPICO [35] approaches. Their
study has combined the results from fourMBMS instruments to study almost iden-
tical premixedC

2
H
4
/O
2
/Arflames, using synchrotron-based PI-MBMS at the Ad-

vanced Light Source (ALS) in Berkeley, TPEPICO at the SLS, PEPICO at SOLEIL as
well as laboratory-based EI-MBMS in Bielefeld. The comparison clearly demon-
strated the detailed information that canbe obtainedwith significant time savings
by using the fixed-photon-energy PES approachwith the double-imaging PEPICO
spectrometer at SOLEIL [37–39].

While results from allmeasurements in the chosen ethene flamewere in good
general agreement, the fixed-photon-energy PEPICO approach in [35, 36] can be
considered as a first proof of principle, while a demonstration of a more general
applicability of this technique to combustion analysis in more complex isomer-
rich situations has not yet been reported. The present articlewill therefore discuss
the potential of the fixed-photon-energy PEPICO method to obtain quantitative
species profiles in flames and to distinguish the contributions of different chemi-
cal species to a given𝑚/𝑧 signal. The analysis relies on intense post-treatment of
signals obtained within typically 5–60min, using the double-imaging capacity
of the spectrometer and the pBasex image inversion algorithm [40]. Several fuels
were chosen for these experiments, namely dimethyl ether (DME), cyclopentene
(CP), and methyl propanoate (MP). DME is discussed as a promising alternative
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fuel and fuel additive that can be produced from biomass, natural gas, and coal;
it exhibits pronounced low-temperature chemistry and its combustion has been
extensively studied both experimentally andwith kinetic mechanisms [17, 21, 41–
45]. Cyclopentene as a cyclic hydrocarbon fuel was chosen because of the es-
tablished wealth of soot precursors produced in its combustion [46–48]. Methyl
propanoate as a small-chainmethyl ester gives insight into the combustion prop-
erties that arise from the ester function of a fuel, important for biodiesel combus-
tion [49, 50]. For these fuels, detailed quantitative species analysis and kinetic
models are largely available for comparison.

In these chemically quite different situations, we have further investigated
the suitability of fixed-photon-energy PEPICOmeasurements to elucidate specific
aspects of the flame structure, efficiently using allocated beam time to investi-
gate these increasingly complex systems. From the electron signal, quantitative
species profiles could be derived here for the first time using the fixed-photon-
energy approach. The obtained results are discussed in terms of necessary post-
treatment routines. Furthermore, suitable measurement procedures, necessary
signal-to-noise (S/N) considerations, and strategies for data evaluation have been
investigated to provide time-efficient isomer-selective flame measurements.

2 Experiments
For the PEPICO experiments, a transportable burner chamber was adapted to
the SAPHIRS endstation, equipped with the DELICIOUS III [39] double-imaging
spectrometer, located at the undulator-based DESIRS beamline [37] of the syn-
chrotron SOLEIL. DESIRS delivers tunable VUV radiation between 5–40 eV with
high spectral resolution, high flux, and adjustable polarization. For the present
experiments, energies between 7–16 eV in linear horizontal polarization mode
were chosen. A windowless gas filter [51] that was used to block higher har-
monics from the undulator was filled with Ar for energies in the 8–15.76 eV
range and with Xe for energies below 8 eV. After dispersion via a 6.65 m normal-
incidence monochromator with a low dispersion grating (200 grooves/mm), the
VUV beam exhibited a typical bandwidth of 2–20meV and a flux of the order of
10
12–1013 photons/s and was focused into the ionization chamber. At the inter-

section with the molecular beam extracted from the flame experiment, the VUV
spot had a diameter of about 100–200 μm, depending on the used monochroma-
tor exit slit size.

The analyzed flames were stabilized in a burner chamber at low pressure (33
and 40mbar) on awater-cooled (333 K) home-built porous-plug burner of 65mm
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Table 1: Flame conditions for the low-pressure flames stabilized on a 65 mm burner. Flow rates
are given in standard liter per minute (slm) along with their uncertainties; DME: dimethyl ether,
CP: cyclopentene, MP: methyl propanoate.

𝜙 Pressure/ Argon dilution/ Gas flow rate/slm
mbar % Fuel Oxygen Argon

DME 1.40± 0.05 33.3± 0.3 25 1.12± 0.02 2.39± 0.05 1.17± 0.02
CP 1.70± 0.06 40.0± 0.4 25 0.69± 0.01 2.82± 0.06 1.17± 0.02
MP 1.50± 0.05 40.0± 0.4 50 0.54± 0.01 1.81± 0.04 2.35± 0.05

diameter. The burner was mounted on a translation stage, allowing sampling at
different positions above the burner to measure spatially resolved species pro-
files. The gas flows were regulated with calibrated mass flow controllers (MKS In-
struments and Aera, ±2%), and the liquid fuels were metered by two combined
syringe pumps (ISCO Systems D1000 and D500) with a total volume of 1.5 L to
minimize downtime of the system due to refilling. The liquid fuels were injected
into a home-built evaporation system, evaporated and transported into the burner
withAr as the carrier gas. Flame conditions, gas flows, and evaporation tempera-
tures are provided in Table 1. The DME and the MP flame conditions were chosen
to be identical to those reported by Wang et al. [41] and Felsmann et al. [49], re-
spectively. TheCPflameconditionswere somewhatdifferent from those ofHansen
et al. [46], who studied aCP/O

2
/Ar flamewith PI-MBMS at 50mbar and 25%Ar

dilution for a stoichiometry of𝜙 = 2.0, but very similar to those reported in [47, 48]
for earlier EI-MBMS studies.

Flame samples were extracted from the flame by a quartz cone (300 μm
diameter at the tip, 25∘ angle) and expanded into the first-stage chamber at
∼10
−4
mbar. This first-stage chamber was pumped by three turbo-molecular

pumps (Edwards nEXT 300D) to maintain the low pressure even with high load
from the flame chamber (at ∼40mbar). A copper skimmer with an orifice of
1.5 mm separated the center part of themolecular beamandguided it into the ion-
ization chamber (∼10−6mbar) where it was crossed with the ionizing VUV beam.

The DELICIOUS III spectrometer recorded the electrons and ions generated
from the ionization of the sampled molecules in coincidence, using a multi-
start/multi-stop detection method. The electrons were detected via a velocity
map imaging detector (VMI) and the cations were analyzed by a modified Wiley-
McLaren time-of-flight imaging analyzer (WM-TOF) with a mass resolution of
𝑚/Δ𝑚 < 300 (full width at half maximum, FWHM). The ultimate electron ki-
netic energy resolution is about 4% on the detector edge. The resulting energy
resolution in the presented PES is of the order of 100–200meV. The modes of
operation, set-up, and data analysis procedures were presented and discussed
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in the literature [38–40]. In particular, we used the filtering advantage of the
i2PEPICO, namely the region-of-interest (ROI) selection in the ion image to en-
hance the signal-to-noise ratio and selectivity, following the procedures described
in [34, 35].

As a reference for these PEPICO measurements, the premixed low-pressure
flames of cyclopentene andmethyl propanoate have also been investigated in this
work with the EI-MBMS instrument in Bielefeld described previously [52, 53]. The
flames were stabilized at low pressures with the same conditions as documented
in Table 1. Gas flows were regulated by calibrated mass flow controllers (<2% un-
certainty); liquid fuels were metered by a syringe pump (ISCO Systems D1000),
evaporated, and added to the gas stream. The EI-MBMS setup consists of a two-
stageWiley-McLaren time-of-flight spectrometer equippedwith a reflectron detec-
tion unit with high mass resolution (𝑚/Δ𝑚 = 4000), enabling determination of
the elementalC/H/O composition of themeasured species [52, 53]. Samples from
the flame zone were extracted with a quartz cone (350 μm diameter at the tip, 25∘

angle) and ionized with five different ionization energies (between 10 and 18 eV)
to analyze the flame and minimize fragmentation.

The evaluation of this EI-MBMS experiment followed routines previously re-
ported in [52, 53]. Briefly, mole fractions of major species were determined based
on the elemental balances of C,H, andO, using an internal calibration method.
At the highest distance from the burner, only CO, CO

2
, H
2
, andH

2
O were thus

considered as products, and the determined CO/CO
2
ratio enabled their quan-

tification. The uncertainty inmajor species mole fractions is∼15%, except forH
2

where it is estimated to be ∼20% [53]. For intermediate species, a calibration fac-
tor𝑘
𝑖
relative toArwasused todetermine themole fraction. This calibration factor

was either determined by direct calibration with cold-gas mixtures, or estimated
using the relative-ionization-cross-section method (RICS) [54] or the convolution
of the literature ionization cross sections with the known energy distribution of
the ionizing electrons [55]. These methods are explained in more detail in [53].
The lattermethods (RICS and convolution) lead to uncertainties of factors2–4, de-
pending on the nature of the species and the quality of the available cross section,
while direct calibration leads to an uncertainty of ∼30%. An in-depth discussion
of experimental uncertainties associatedwith quantitative speciesmeasurements
in flame experiments usingMBMS is included in the recent reviewof Egolfopoulos
et al. [56].
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3 Results and discussion
In light of the focus of this study to demonstrate the time-efficient application of
the i2PEPICO technique with fixed photon energies for combustion analysis, we
first address species quantification. Such information is of high importance for
kinetic mechanism development in combustion, but it is often time-consuming
to obtain with the established photoionization techniques because of the need to
scan the photon energy. Additionally, information is typically lost due to the inte-
gration over all electron energies. Here, we demonstrate the use of the electron-
related signal for the quantification of main species and some unambiguously
identifiable intermediates. This approach was applied to well-studied flames of
DME and CP, using comparatively short measurement times of 3.5–5min. Subse-
quently, we demonstrate the application of the fixed-photon-energy PEPICO ap-
proach to more complex situations in the MP and CP flames, using measurement
times of up to 1 h. Wediscuss separation of oxygenated andhydrocarbon isomeric
structures and the use of fingerprint PES for this purpose, including application
of such procedures to radical and higher-mass species.

3.1 Quantitative flame analysis with time-efficient
fixed-photon-energy PEPICO measurements

In our earlier PEPICOmeasurements [35, 36],we reported aproof of principlewith-
out an attempt to provide quantitative speciesmole fractions. For the first time,we
nowdetermine absolute species concentrations in flames as a function of position
(or reaction time) from fixed-photon-energy PEPICO experiments.

3.1.1 Major species profiles

In both EI-MBMS andPI-MBMSmeasurements [52, 53, 57, 58], quantitative species
concentrations are derived from the ion signals, whereas in this study, the coinci-
dent electron signal is used for quantification. For the flames studied here, major
species (fuel,O

2
, Ar,H

2
, CO,H

2
O, CO

2
) mole fraction profiles were measured

as a function of height ℎ above the burner. At eachposition, signals were acquired
at fixed photon energy of 16 eVwith 200 s integration time. At this energy, all neu-
tral species can be ionized so that all𝑚/𝑧 signals are recorded simultaneously in
coincidence with all corresponding electrons, demonstrating the high multiplex-
ing capacity of the experiment.
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Figure 1:Major species mole fractions 𝑥
𝑖
as a function of height ℎ above the burner. Left: DME

flame, filled symbols: PEPICO experiment, open symbols: reference flame of Wang et al. [41],
lines: simulation with Burke et al. [45] model. Right: CP flame, filled symbols: PEPICO
experiment, open symbols: EI-MBMS, lines: simulation with Gueniche et al. [60] model.

The DME and CP flames were analyzed to examine the applicability of the
present species quantification procedure, and results from the PEPICO exper-
iment were then compared to reference PI-MBMS (DME) or EI-MBMS (DME,
CP) measurements and simulations with flame models using the CHEMKIN
II/PREMIX code [59]. Similarly to the EI-MBMS evaluation discussed before (Sec-
tion 2), the mole fractions of major species were calculated here from the C/H/O
element balance. A cold-gas calibration with a CO/CO

2
/Ar mixture served to

determine the CO/CO
2
ratio in the exhaust region at ℎ = 30mm. The inlet con-

ditions were calculated from the C andO element balance. To consider potential
early reactions at the burner surface andback-diffusion, themole fractions ofCO,
CO
2
,H
2
, andH

2
O at ℎ = 0mm were taken into account.

Resulting major species profiles are presented in Figure 1, in the left panel for
the DME flame and the right panel for the CP flame. DME results are compared to
previous experimental values by Wang et al. [41], and to predictions of the model
by Burke et al. [45], using the temperature profile reported in [41]. No fragmenta-
tion correction of the fuel was applied to the present dataset, since fragmentation
from the fuel is not likely to contribute to any of the major species signals. Given
the two independent experimental setups, the agreement between the results by
Wang et al. [41] and the present PEPICO measurements is quite good. The model
simulation represents the overall flame structure well, with the present dataset
in slightly better agreement, especially for the initial rise of theH

2
mole fraction

profile.
Major species profiles measured by fixed-photon-energy PEPICO for the CP

flame are compared in the right panel of Figure 1 with the EI-MBMS results; also,
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simulations performed with the model by Gueniche et al. [60] are included. The
temperature profile used in the simulation was measured in the EI-MBMS setup
using the first-stage pressure [18], calibrated with an exhaust-gas temperature of
2200 K, as also reported by Kamphus et al. [47] for a similar CP flame. Similar
good agreement as for the DME flame is observed between the two datasets and
the simulation, with the exception of slightly larger deviations at ℎ ∼2–6mm
between the model prediction and the PEPICOmeasurements forH

2
andArmole

fractions.
The overall good agreement in Figure 1 thus demonstrates that quantitative

major species mole fraction profiles can be obtained from the total electron yield
(TEY) at a given mass. With longer measurement time intervals, the PEPICO ap-
proach would permit a potential advantage over PI-MBMS in that fragmentation
contributions could become directly evident in the fingerprint PE spectra.

3.1.2 Intermediate species profiles

Intermediate species profiles are quantitatively evaluated with a formalism sim-
ilar to that usually taken for the evaluation of PI-MBMS experiments [41, 46, 61,
62]. Equation (1) describes the total electron signal 𝑆

𝑖
corresponding to a given

species 𝑖,

𝑆
𝑖
= 𝑥
𝑖
(ℎ) ⋅ 𝑡

𝑖𝑛𝑡
⋅ 𝐷
𝑖
(𝑀
𝑖
) ⋅ 𝐹𝐾𝑇(𝑇, 𝑀̄) ⋅ 𝑐(𝐸) ⋅ 𝜎(𝐸). (1)

Here, 𝑥
𝑖
is the mole fraction at height ℎ; 𝑡

𝑖𝑛𝑡
is the data acquisition time;𝑀 is the

molar mass,𝐷 is the mass discrimination factor; FKT is a sampling function that
depends on the temperature𝑇 and themeanmolarmass 𝑀̄; 𝑐(𝐸) is an instrument
factor that includes the photon flux at a given energy and 𝜎(𝐸) the photoioniza-
tion cross section, also depending on the photon energy 𝐸. Here,𝐷 has been as-
sumed to be equal to 1 for allmasses; 𝑐must be determined for each specific scan,
assuming a constant photon flux.

The fixed-photon-energy PEPICOapproach offers the advantage that only one
value of the cross section is needed for the evaluation. The electron signal in a PES
is highly state-selective and Equation (1) would have to be evaluated for each en-
ergy if the measurements were performed in scanning mode. Here, the fixed pho-
ton energy with a distribution of ∼5meV (FWHM) permits to use Equation (1) at
each given energy, and a single carefully selected energy is sufficient to determine
a full species set using tabulated photoionization cross sections. An involved pro-
cedure is typically necessary in PI-MBMS to determine quantitative intermediate
species concentrations in a cascading sequence, as explained by Cool et al. [61].
Since the fixed-photon-energy PEPICO technique reduces the experimental error
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by avoiding this cascading procedure, it can present a significant advantage over
regular PI-MBMS measurements. In contrast, scanned threshold PEPICO mea-
surements, cannot, in principle, use normal tabulated absolute cross sections for
a quantitative analysis for two reasons: first, the ionization cross sections depend
on the electron kinetic energy and here only threshold electrons are used; sec-
ond, the likely presence of resonant autoionization will distort the measured in-
tensities. Therefore, a separate TPEPICOdatabase would have to be built to deter-
mine accurate species concentrations. Oßwald et al. [33] discussed the necessity
of state-selective cross sections for the data evaluation of their scanning 𝑖PEPICO
experiment. In their data evaluation, they also had to take an energy-dependent
factor𝛼 into account to consider the finite size of their electron detector [33]. Here,
due to the larger energy span covered by the present VMI detector [39], such cor-
rections are not necessary, reducing the uncertainty.

Figure 2 shows the mole fraction profiles of selected intermediates including
CH
3
,C
2
H
4
, andCH

2
O for the DME flame (left panel) andC

3
H
3
,C
3
H
5
, andC

6
H
6

for the CP flame (right panel). A data acquisition time of 300 s was used for each
height ℎ. For the DME flame, 10.9 eV was chosen as the fixed photon energy, be-
cause this value includes the ionization energy ofCH

2
O as an important interme-

diate in this flame. For the CP flame, 10.4 eVwas chosen to include numerousC
3
,

C
4
, andC

5
intermediates. The present results from the electron signal evaluation

in the DME flame in Figure 2 are compared with those by Wang et al. [41], show-
ing very good agreement of the different experimental datasets. Overall shapes
and peak values differ slightly, potentially due to the different experimental se-
tups, and maximum mole fractions deviate by less than 20%. For the CP flame,
shown in the right panel of Figure 2, the fixed-photon-energy experiment is com-
pared to our present EI-MBMS measurements, the PI-MBMS results from Hansen
et al. [46], and to simulationswith theGueniche et al.model [60]. Very good agree-
ment is seen between both independent measurements from the present study.
Also, the earlier PI-MBMS [46] and the PEPICO results for C

3
H
3
and C

6
H
6
are

in good quantitative agreement. The only exception is seen for C
3
H
5
, where the

PI-MBMS experiment by Hansen et al. [46] results in a factor of five lower max-
imum mole fraction than derived by the two other methods. The reason for this
discrepancy is unclear, especially since the same photoionization cross sections
were used in the PI-MBMS and PEPICO evaluation. The simulation slightly under-
predicts the mole fractions of C

3
H
3
and C

3
H
5
by about a factor of two. The mole

fraction of C
6
H
6
, however, is severely under-predicted, but the good agreement

of the experimental datasets suggests that an improvement of the model for this
species is desirable.
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Figure 2: Selected intermediate species mole fractions 𝑥
𝑖
as a function of height ℎ evaluated

from PEPICOmeasurements at fixed photon energy 𝐸 with an integration time of 300 s (black
squares). Left: DME flame, 𝐸 = 10.9 eV, blue circles: Wang et al. [41], lines: simulation with
Burke et al. [45] model. Right: CP flame, 𝐸 = 10.4 eV, red triangles: EI-MBMS, blue circles:
PI-MBMSmeasurements of Hansen et al. [46], lines: simulation with Gueniche et al. [60] model.

3.1.3 Distinction of species at the same nominal mass

With the limited mass resolution of the WM-TOF in the double-imaging DELI-
CIOUS III spectrometer [39], species separation must rely on ionization energies
as well as photoelectron spectra. It is thus interesting to analyze how species at
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Figure 3: PES of𝑚/𝑧 = 42 at ℎ = 2.5mmmeasured with an acquisition time of 300 s at 10.4 eV in
the CP flame (black line and symbols) including error bars from the evaluation with the pBasex
algorithm [40]; green dashed line: PES of ketene [63]; blue dash-dotted line: PES of
propene [64]; red line: sum of weighted ketene and propene contributions.

the same nominal mass that exhibit similar ionization energies could potentially
be resolved in the fixed-photon-energy PEPICOapproachused here and to investi-
gate whether such species separation could lead to quantitative mole fraction re-
sults. To this endwe demonstrate species separation for the example of𝑚/𝑧 = 42
from the same fixed-photon-energy measurement at 10.4 eV as before in the CP
flame; this signal typically represents ketene (C

2
H
2
O) and propene (C

3
H
6
). Our

earlier studies [35, 36] have shown that an identificationof both species via thresh-
old PES is possible, but no attempt of quantification was made. Figure 3 shows
the PES of𝑚/𝑧 = 42measured here atℎ = 2.5 mmwheremost of the intermediate
species are at their peakmole fractions. This PESwas derived from the 2D electron
image via the pBasex algorithm [40]. Five distinct peaks at 9.59, 9.73, 9.89, 10.05,
and 10.22 eV are observed, corresponding to specific energy-dependent ioniza-
tion processes.

The observed features in Figure 3 agree well with the literature spectra of
ketene [63] and propene [64]. The first peak at 9.59 eV corresponds quite well to
the literature IE of ketene of 9.617 eV [65] and the second, measured at 9.73 eV,
excellently to that of propene of 9.73 eV [65], but it also includes contributions
from the vibrational modes of ketene. The third and fourth peaks arise mostly
from vibrational modes of propene. A third vibrational mode of propene may
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Figure 4: Top: PES of𝑚/𝑧 = 42
measured with an acquisition time
of 300 s at 10.4 eV in the CP flame
at different heights ℎ; the spectra
have been vertically displaced for
clarity. Bottom: literature PES of
ketene [63] and propene [64].

contribute to the signal at 10.22 eV. A shift in position and intensity compared
to the literature PES [64] is observed here that may result from the rather poor
signal-to-noise ratio in this region. Indeed, for very low S/N at these high ener-
gies which are detected near the center of the VMI, the pBasex conversion may
lead to somewhat distorted signals. It should be noted that a complete VMI im-
age corresponds to only ∼104 coincident electrons in the time-efficient measure-
ments here, with a small fraction of these electrons detected at the center. This
distortion effect above 10.2 eV becomesmore pronouncedwith decreasing signals
at heights above or below the concentration maximum, as evident from Figure 4,
which shows selected PES as a function of height ℎ in comparison to the literature
PES of ketene [63] and propene [64].

All five peaks in the PES (marked by dashed lines in Figure 4) are observed
at all heights above the burner. The ratio between the first and second peak is
a good indicator for the change inmole fractions of ketene and propene. This ratio
increases from 0.4 : 1 at ℎ = 1.5 mm to 0.7 : 1 at ℎ = 3.0 mm, corresponding to
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Figure 5:Mole fractions 𝑥
𝑖
as a function of height ℎ for propene (left) and for ketene (right,

multiplied by a factor of 5) evaluated from PEPICOmeasurements at fixed photon energy
𝐸 = 10.4 eV with an integration time of 300 s in the CP flame (black squares); red triangles:
EI-MBMS, blue circles: PI-MBMS measurements of Hansen et al. [46], lines: simulation with
Gueniche et al. [60] model.

an increase in ketene contribution. It can thus be assumed that the ketene profile
peaks later in the flame.

Mole fractions for both species at different heights were determined from the
electron signal using Equation (1). First, the literature spectra were convoluted
to fit the same nominal resolution as the measured PES and simulated point-by-
point. These convoluted spectra were weighted with appropriate factors to fit the
measured PES and integrated in the electron binding energy range of 0–10.4 eV.
The measured TEY was then weighted by the ratio of areas from the convoluted
spectra for each species. The quantification was performed using cross sections
for 10.4 eV from Yang et al. [27] for ketene and Cool et al. [66] for propene. The in-
strument factor 𝑐was calculated from the fuel signal. Figure 5 shows the resulting
mole fraction profiles.

The PEPICO and the EI-MBMS measurements of the present study are seen to
be in remarkable agreement. The PI-MBMS measurements of Hansen et al. [46]
show a deviation of ∼25%. These authors did not separate the two species, how-
ever, and their profile represents the sum of ketene and propene, evaluated with
an estimated cross section. They suggested ketene to be present in higher concen-
trations [46]. In contrast to this assumption, our measurements show propene
to be the dominant species with a maximum mole fraction of 3.2× 10−3, ap-
proximately five times higher than the ketene mole fraction. The dominance
of propene kinetically results from a combination of an H-atom with the allyl
radical (C

3
H
5
), detected with very high mole fraction (∼5.0× 10−3) in the CP
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flame (see Figure 2). Allyl can result from a dominant consumption pathway of
CP, initiated by H-addition on the double bond, ring opening, and 𝛽-scission
(CP+H→ cyC

5
H
9
→CH

2
CHCH

2
CH
2
CH
2
→C
3
H
5
+C
2
H
4
) [60].

The overall good agreement between the present experiment – perform-
ing quantitative species evaluation from the electron signal in the fixed-photo-
electron PEPICO approach – and reference measurements by more established
MBMS techniques in combustion analysis is encouraging, especially regarding
the multiplex capacity of the present approach, the relatively straight-forward
evaluationwithout additional correction factors or cascadingprocedures, and the
capability to evaluate species with the same nominal mass and similar ioniza-
tion energies. Note that the EI-MBMS approach uses the higher mass resolution to
separate ketene and propene, which would not be possible for structural isomers
where PEPICO techniques have a unique advantage.

3.2 Identification of intermediate species in chemically
complex situations

With the preceding examples, we have shown species identification, separation,
and quantification from fixed-photon-energy PEPICO in rather unambiguous an-
alytical situations. Previous investigations [33, 35, 36] have provided examples
for species identification mainly for pairs and triplets of isomers that exhibit sig-
nificantly different IEs, typically by ≥ 0.5 eV. In that case, the different species-
specific fingerprint PES are spread over considerable energy ranges with lim-
ited overlap and can thus be distinguished quite well. Such examples include al-
lene (IE: 9.691 eV) and propyne (IE: 10.37 eV) at 𝑚/𝑧 = 40; 1,3-butadiene (IE:
9.072 eV), 2-butyne (IE: 9.58 eV), and 1-butyne (IE: 10.18 eV) at 𝑚/𝑧 = 54; and
ethenol (IE: 9.33 eV) and acetaldehyde (IE: 10.22 eV) at𝑚/𝑧 = 44 [33, 35, 36]. In
the following section we will analyze some more complex situations, where very
close IEs lead to overlapping vibrational features of the fingerprint PES. This anal-
ysis was performed from fixed-photon-energy PEPICO measurements with data
acquisition times up to 1 h.

3.2.1 Separation of numerous species atm/z = 56 in the methyl propanoate
flame

As a first example we demonstrate the identification of species in a methyl
propanoate flame studied before [49]. Figure 6 shows the fixed-photon-energy
PES of 𝑚/𝑧 = 56 measured in this MP flame at ℎ = 2.25mm with a data acqui-
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Figure 6: Left: fixed-photon-energy PES of𝑚/𝑧 = 56 in the MP flame at ℎ = 2.25 mm recorded at
9.94 eV photon energy (top), 2D image from the pBasex [40] inversion procedure (bottom).
Right: structures and IEs of species potentially contributing to the signal at𝑚/𝑧 = 56.

sition time of 3600 s (top) along with the result from the pBasex [40] inversion
procedure (bottom). Here, a photon energy of 9.94 eV, lower than the IE of MP
(IE: 10.15 eV), was chosen to avoid fragmentation processes from the fuel. The
spectrum shows six distinguishable peaks between 8.90 and 9.58 eV. Contribu-
tions by several species are expected and some plausible structures are given in
the right panel of Figure 6.

Because of the limited mass resolution, this measured spectrum can be due
to a mixture of species with the sum formulae C

3
H
4
O or C

4
H
8
. In our recent

study of thisMP flameby EI-MBMS, the signatures ofC
3
H
4
O (56.026 u) andC

4
H
8

(56.063 u) were resolved clearly by mass.C
3
H
4
Owas predominantly assigned to

methylketene as the expected isomerwith a peakmole fraction of 2.65 × 10−4 , and
C
4
H
8
isomers could not be resolved but their sum mole fraction was of the order

of 5×10−5. In a slightly different MP flame, Yang et al. [50], in a PI-MBMS exper-
iment with limited mass resolution of 𝑚/Δ𝑚 = 400, have not separated C

3
H
4
O

and C
4
H
8
; they have identified methylketene by its IE, but did not rule out con-

tributions from otherC
4
H
8
isomers. Their photoionization efficiency (PIE) curves

were difficult to interpret, because individual contributionswith small differences
in IE could not clearly be identified by changes of the slopes in the PIE curve. It
should be noted also that the separation procedure becomes more cumbersome
when the species with the smallest IE contributes with the largest mole fraction.
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Figure 7: PES of𝑚/𝑧 = 56 at
ℎ = 2.25mmmeasured with an
acquisition time of 3600 s at
9.94 eV in the MP flame (black line
and symbols) including error bars
from the evaluation with the
pBasex algorithm [40]; compared
to PES of methylketene (red
squares) [67], 2-butene (blue
triangles) [68], iso-butene (green
circles, this work),
methoxyacetylene (purple
stars) [69], and 1-butene (orange
diamonds) [70].

Realizing this complex situation, it will be attempted here to resolve the dif-
ferent contributions to the signal at𝑚/𝑧 = 56 by a consecutive subtraction pro-
cedure. As a starting point, the PES in Figure 6 is shown inmore detail in Figure 7
(black line) and compared with the respective literature PES for all possible iso-
mers [67–70] (colored lines).

Methylketene (IE: 8.95 eV) is identified by the peak detected at 8.90 eV. This
feature and the following two peaks can be assigned to methylketene as evi-
dent from the literature spectrum [67]. The signatures above ∼9.3 eV are not pro-
nounced in the methylketene literature spectrum, indicating that butenes (C

4
H
8
)

might also contribute to the signal. The PES of the cis- and trans-2-butenes are
found to be almost similar and exhibit three pronounced features at 9.11, 9.31,
and 9.47 eV [68]; the two peaks in the measured PES near 9.33 eV and 9.45 eV
should thus mostly correspond to the 2-butene isomers. Contributions of iso-
butene, 1-butene, and methoxyacetylene cannot be ruled out at this point. The
iso-butene PES shown in Figure 7 has been extracted here from an iso-butene
flame measurement at ℎ = 1mm and a fixed photon energy of 11 eV. Unfortu-
nately, the literature spectra given in Figure 7 of methoxyacetylene [69] and 1-
butene [70] are only available in unsatisfactory resolution.

With the detailed background given in Figure 7, we can now start to identify
the contributing species by subtraction. For this procedure, the measured and lit-
erature spectra were all compared with the same resolution, i. e. measured and
more highly resolved spectra were convoluted to fit the literature spectra with the
lowest resolution. Figure 8 shows the process in detailed steps.

The first step, shown in Figure 8a, presents the subtraction of the weighted
literature spectrum of methylketene from the measured PES. The resulting resid-
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Figure8:Measured PES for𝑚/𝑧 = 56, convoluted to a resolution of ∼ 0.12 eV (FWHM) to enable
subtraction of literature spectra for the identification of contributing species. Sequential
subtraction a) of the methylketene spectrum [67]; b) of the 2-butene spectrum [68]; c) of the
iso-butene spectrum.

ual PES, here termed subtraction result 1 (orange), is also shown in Figure 8b
and used for the subsequent subtraction procedure. It shows six features at 8.95,
9.08, 9.22, 9.34, 9.47, and 9.59 eV. The shoulder at 8.95 eV mainly results from
the slight differences between literature andmeasured PES for methylketene and
is therefore not discussed further. The peak at 9.08 eV may be due from a small
amount of 2-butene isomers; the slight deviation to the IEs of the 2-butene iso-
mers (IE(trans): 9.10 eV, IE(cis): 9.11 eV) [65] might arise from the convolution
and subtraction procedure, as well as from the digitalization of the literature
spectrum that exhibits limited resolution within our region of interest. Subtract-
ing the weighted cis-2-butene spectrum (blue) provides subtraction result 2 (pur-
ple). For clarity this spectrum is also displayed in Figure 8c. The sharp peak at
9.22 eV in Figure 8c shows an excellent match with the spectrum of iso-butene.
The remaining spectrum, i. e. subtraction result 3, exhibits three further some-
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what poorly pronounced peaks at 9.48, 9.61, and 9.78 eV. These peaks could
either be assigned to methoxyacetylene (IE: 9.48 eV) [69] and/or 1-butene (IE:
9.55 eV) [70].While some residues from the specieswith lower ionization energies
might also contribute; the subtraction routine has clearly supported identification
of methylketene, 2-butene, and iso-butene.

The example shows that the PEPICO technique is in principle capable to sepa-
rate species in situations where previous experiments have faced difficulties. This
has been achieved here using ionization with fixed photon energy and compara-
tively short acquisition time. The approach can obviously be improved by extend-
ing themeasurement time to enhance the signal-to-noise ratio. Furthermore, rele-
vant literature PES spectra, mostly measured in the past with fixed photon energy
from He(I) sources at 21.22 eV, are often available only with insufficient resolu-
tion. Therefore it is highly recommended to extend the database of photoelectron
spectra of combustion-relevant intermediates that could be used as reference in
species identification, if possible with a common constant resolution.

3.2.2 Interpretation of fingerprint PES in the cyclopentene flame

As a second example, we present the analysis of 𝑚/𝑧 = 66, measured at ℎ =
2.5 mm in the CP flamewith a fixed photon energy of 9.70 eV. SelectedC

5
H
6
iso-

mers that have been discussed in previous flame studies [46–48, 71, 72] are shown
in Scheme 1.

Scheme 1: Selected C
5
H

6
isomers (𝑚/𝑧 = 66).

From the CP fuel decomposition pathway, 1,3-cyclopentadiene (IE:
8.57 eV) [65] should predominantly be formed, as found in PI-MBMS stud-
ies of Hansen et al. [46, 71]. The signal detected at 𝑚/𝑧 = 66 in our EI-MBMS
measurement in the CP flame was therefore calibrated as 1,3-cyclopentadiene
and resulted in a maximum mole fraction of 3.6 × 10−3, which is in very good
agreement to that of 4.2× 10−3 measured by EI-MBMS by Lamprecht et al. [48].
Hansen et al. [71] have attempted to investigate the C

5
H
6
isomer composition
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for a number of fuels including allene, propyne, and CP. In their allene and
propyne flames, they found evidence of 1-pentene-3-yne (IE: 9.00 eV) [65] and
4-pentene-1-yne (IE: 9.87 eV (calculated), 9.95 eV (measured)) [71]; also they have
suggested potential contributions by the E- and Z-isomers of 3-pentene-1-yne
(IE(E): 9.05 eV, IE(Z): 9.11 eV) [73]. Their analysis was based on subtraction of
the PIE for the CP flame, assumed to correspond to 1,3-cyclopentadiene, from
the respective PIE curves in the allene and propyne flames, and subsequent
comparison with Franck–Condon simulations for the possible isomers. Using es-
timated cross sections, they have provided approximate concentration ratios for
these isomers. In a further study of allene and propyne flames, Hansen et al. [72]
have used estimated cross sections (20Mb at 10.25 eV) to determine the sum
of the mole fractions of different isomers quantitatively. They obtained a value
of ∼4×10−5 for the linear isomers and a peak mole fraction of ∼1.5 × 10−4 for
1,3-cyclopentadiene in both fuels. From this result it could thus be expected that
linear isomers might also have to be considered for CP combustion. The complex-
ity of the situation that impedes quantitative concentration measurements of all
contributing isomers was noted in these publications [46, 71, 72].

In our fixed-photon-energy PEPICO experiment, we have now tried to inves-
tigate the contributions of cyclic and linear isomers to the 𝑚/𝑧 = 66 signal in
more detail. The measured PES in our CP flame is shown in Figure 9. Following
the discussion above, several isomers should potentially be considered, of which
1,3-cyclopentadiene is expected to be the dominant one. As seen in Figure 9a,
the first two peaks at 8.55 and 8.71 eV correspond remarkably well to the liter-
ature spectra of 1,3-cyclopentadiene [74], whereas the signatures at 8.99, 9.16,
and 9.27 eVmay correspond to 1-pentene-3-yne [73]. The isomers of 3-pentene-1-
yne might contribute to the small feature at 9.10 eV. Unfortunately, PES for these
species are not available in the literature so that they could not be considered in
the present evaluation. The fourth isomer, 4-pentene-1-yne, is not detected since
its IE is above the used ionizing photon energy. Figure 9b shows themeasured PES
in comparison with literature spectra of 1,3-cyclopentadiene [74] and 1-pentene-
3-yne [73] that were convoluted to the lesser resolution of the measured spectrum
and weighted to fit the experimental result. The measured spectrum is very well
reproduced by the sum of the two convoluted literature spectra (green line in Fig-
ure 9b). This good fit is illustrated by the subtraction result (grey line); however,
small remaining peaks are seen at 9.10 eV and above 9.40 eV which might be at-
tributed to some contribution of 3-pentene-1-yne.

To quantify the two reliably detected isomers, the total electron yield
from 𝑚/𝑧 = 66 was weighted by the integrated areas of the convoluted 1,3-
cyclopentadiene and 1-pentene-3-yne literature spectra between 0 and 9.7 eV and
evaluated using Equation (1). The instrument factor 𝑐 was determined directly
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Figure 9: Panels a) and b)
show the PES of𝑚/𝑧 = 66 at
ℎ = 2.5mmmeasured with an
acquisition time of 900 s at
9.70 eV in the CP flame (black
line and symbols) including
error bars from the evaluation
with the pBasex algorithm [40]
in comparison to: a) literature
spectra of
1,3-cyclopentadiene [74] and
1-pentene-3-yne [73];
b) convoluted literature
spectra and subtraction result.
Panel c) shows the PIE curve
from Hansen et al. [71]
compared to weighted sum of
integrated PES for
1,3-cyclopentadiene [74] and
1-pentene-3-yne [73].
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from the cyclopentene (fuel) signal. With a recent cross section of 10.15 Mb for
1,3-cyclopentadiene [75], itsmaximummole fractionwas evaluated as 7.1× 10−3,
while a mole fraction of 1.3 × 10−3 was determined for 1-pentene-3-yne using the
same cross section of 18.19Mb as in Hansen et al.’s work [71]. These results could
now, for the first time, identify a quantitative contribution of a linear isomer to
𝑚/𝑧 = 66 in the CP flame, and its mole fraction is shown to be quite substantial,
with a ratio of 1,3-cyclopentadiene to 1-pentene-3-yne at ℎ = 2.5 mm of 5.5 : 1.

It is interesting upon the unambiguous identification of 1-pentene-3-yne
in the present i2PEPICO measurement to re-analyze the measured PIE curve of
Hansen et al. [71], presented in Figure 9c. We have attempted to represent their
result by a weighted sum of the PES for 1,3-cyclopentadiene and 1-pentene-3-yne
that were integrated to yield PIE curves. The resulting PIE spectra are given in
Figure 9c, and show a clear contribution of the linear isomer. It would have been
very difficult to infer and even more to quantify the presence of 1-pentene-3-yne
directly from the PIE curve since the differentiation of such a curve leads in gen-
eral to a very noisy PES.

3.2.3 Detection of radicals at low photon energies

After providing some examples for the application of the fixed-photon-energy
PEPICO approach to major and stable intermediate species, we now apply this
technique to detect and identify radical species. Radicals are of essential impor-
tance in combustion since they drive the chain reactions from the fuel to the prod-
ucts. MBMS techniques allow radical detection in the flame environment in spite
of difficulties arising from their high reactivity, fragmentation potential, limited
mole fractions, and low ionization energies. Of particular interest are radicals that
are formed directly from the fuel decomposition. Their detection needs low pho-
toionization energies to avoid interference of species with high concentrations,
as demonstrated in the TPEPICO measurements of [33]. For the CP flame studied
here, we have used a fixed photon energy of 7.7 eV and amoderate sampling time
of 1800 s. Indeed, it was possible to detect fuel radical species of the sum for-
mula C

5
H
7
at𝑚/𝑧 = 67. Also, signals corresponding to C

4
H
7
at𝑚/𝑧 = 55 were

detected for the first time in CP flames. Figure 10 shows the measured spectra in
comparison with literature data [76–78].

The signal at𝑚/𝑧 = 67 (Figure 10a) corresponds to isomers that are formedby
H-abstraction of the fuel. The identification of these species is highly desirable,
as they provide evidence for the initial branching pathways, one of the clues for
the development of predictive mechanisms. The positions of the seven peaks ob-
served in Figure 10a are given in Table 2.
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Figure 10: PES at ℎ = 1.0 mmmeasured with an acquisition time of 1800 s at 7.70 eV in the CP
flame (black line and symbols in a and b) including error bars from the evaluation with the
pBasex algorithm [40]; a)𝑚/𝑧 = 67 with literature IE of 2-cyclopentenyl [76] and
3-cyclopentenyl [77]; b)𝑚/𝑧 = 55 with measured literature spectra (green line), Franck–Condon
(FC) simulations (red and blue sticks), and convolution of FC simulations (red solid and blue
dashed lines, FWHM=25meV) of (E)-1-methylallyl and (Z)-1-methylallyl by Lang et al. [78].

Table 2: Peak energies in the PES of𝑚/𝑧 = 67, recorded at 7.7 eV.

Peak No. 1 2 3 4 5 6 7

Energy/ eV 6.95 7.07 7.21 7.27 7.33 7.43 7.55

The fuel radicals 2-cyclopentenyl and 3-cyclopentenyl are most likely to be
present. Unfortunately their PES have not yet been reported, so that the identifi-
cation of these two species must rely on their ionization energies, 7.00 eV for 2-
cyclopentenyl [76] and 7.54 eV for 3-cyclopentenyl [77]. The measured PES shows
the first peak at6.95 eV, within 0.05 eVof the tabulated IE of 2-cyclopentenyl, pro-
viding evidence for the presence of this species. Peaks 2–5 originate most likely
from the vibrational transitions of the 2-cyclopentenyl radical since they decrease
in signal strength. The increased signal strength of the sixth peak at 7.43 eV in-
dicates the presence of a second isomer, within 0.11 eV of the literature IE of 3-
cyclopentenyl. The detection of the two cyclic C

5
H
7
isomers may indicate the

prevalence of the cyclic structure in the first radical attack (byH,OH, orO) at the
fuel. However, linear isomers cannot be ruled out at this point, since the 7.55 eV
peak could also indicate contributions of the mesomer-stabilized linear isomer
pent-1-yn-3yl with a tabulated IE of 7.6 eV [65]. In this context, it must be noted
that the determination of the ionization potentials of highly unstable radicals is
not easy and literature data is scarce. Since the samplewas taken atℎ = 1mmdis-
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tinctly upstream of the flame front, the detected radical species should predomi-
nantly be formed directly from the fuel. To enhance the reliability of the identifi-
cation of such highly reactive species, a critical examination and renewed deter-
mination of the IE of possible isomers would be advisable. Also, information on
PES and cross sections would permit to determine themole fraction ratio between
these isomers and thus give insight into the first branching ratio and subsequent
reaction pathways in CP combustion.

TheC
4
H
7
radical hasbeendetected in fuel-richflamesof several fuels [53, 62].

Possible isomers are the 1-methylallyl radical (IE(E): 7.48 eV, IE(Z): 7.59 eV) and
2-methylallyl radical (IE: 7.88 eV). Figure 10b shows the obtained fixed-photon-
energy PES in comparison to the data measured (green line) and computed with
Franck–Condon simulations (red and blue sticks and lines) by Lang et al [78]. Be-
cause of the lowphoton energy of 7.7 eV, only the two 1-methylallyl constitutional
isomersmay contribute to the recorded signal, since 2-methylallyl is not ionized at
this energy. The excellent agreement between the two independent datasets con-
firms that both isomers participate in the combustion reactions of cyclopentene.

3.2.4 Detection of species withm/z > 100

Understanding the formation of polycyclic aromatic hydrocarbons (PAH) and soot
is one of the remaining challenges in combustion. While details of the formation
of the so-called “first aromatic ring” [13, 46, 79] seem quite well known, the reac-
tions to higher-molecular intermediates are an active field of research [13, 16, 80].
We have thus, as a further example, examined the suitability of the fixed-photon-
energy PEPICO approach for the detection of selected two-ring aromatics. By
the EI-MBMS measurements in this work, indene, C

9
H
8
(𝑚/𝑧 = 116) and naph-

thalene, C
10
H
8
(𝑚/𝑧 = 128), were detected with peak mole fractions of the or-

der of 1.0× 10−5–2.0× 10−5, compared to 4.2× 10−6 and 9.5 × 10−6, respectively,
by Lamprecht et al. [48], while Kamphus et al. [47] detected only naphthalene
(1.2× 10−4). Here, an attempt was made to detect and identify these species from
their PES, in reasonable data acquisition time, although they are at the detection
limit of our PEPICO setup. A photon energy of 8.75 eV was chosen to exclude
species at higher IEs that might produce interfering signals due to substantial
mole fractions. With a data acquisition time of 5800 s, relatively small signals of
∼10
4 electrons that represent a complete PES were detected in coincidence with

a given mass, corresponding to ∼40 counts at the peak in the related mass spec-
trum. Figure 11 presents the measured PES along with literature spectra [81–83]
for some possible species.
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Figure 11: PES (black lines and symbols) of𝑚/𝑧 = 116 (a) and𝑚/𝑧 = 126/128 (b), taken in the
fuel-rich CP flame at ℎ = 4mm, compared to the respective literature spectra by West et al. [81],
Clark et al. [82], and Brogli et al. [83]; weighted sums of different species are indicated in light
grey.

The PES at𝑚/𝑧 = 116 (Figure 11a) shows an onset at 8.01 eV and a first peak
at 8.16 eV, corresponding to the TPES of indene [81]. In spite of the relatively low
resolution, a second species is seen to contribute to the signal above ∼8.35 eV.
The peak at 8.39 eV agrees well with the IE of 1-propynylbenzene of 8.40 eV, re-
cently reported by West et al. [81]. The TPES from their study shows good agree-
ment with our measurements. The first vibrational structure, assigned to a pro-
gression of a ring deformation [81] at 8.45 eV, was observed at a slightly different
energy of 8.48 eV. This slight shift may result from the limited resolution in our
measured PES. Evident from the sum spectrum in Figure 11a, the contributions
of indene and 1-propynylbenzene approximate the measured PES in this energy
range quite well.

Figure 11b shows the measured spectrum of the combined signals at 𝑚/𝑧 =
126 and 𝑚/𝑧 = 128, since these signals could not be separated due to their
low intensities and limited mass resolution for 𝑚/𝑧 ≥ 120. Nonetheless, a com-
parison with literature spectra of the most abundant respective isomers, 1,4-
diethynylbenzene (𝑚/𝑧 = 126), and naphthalene (𝑚/𝑧 = 128) demonstrates the
presence of both species. From the energy region between 8.0–8.50 eV, naph-
thalene is identified by its IE of 8.12 eV and two vibrational signatures that are
in satisfactory agreement with the spectrum recorded by Clark et al. [82]. The
present measurements show two features at 8.30 and 8.37 eV where the litera-
ture spectrum indicates only one broad peak at 8.32 eV. This may be a conse-
quence of the slightly better resolution in the present experiment that reveals an
additional vibrationalmode. Besides naphthalene, 1,4-diethynylbenzene is iden-
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tified by the signal at 8.56 eV that fits to the tabulated IE of 8.58 eV [65] and the
PES recorded by Brogli et al. (blue dashed line) [83]. Again, the weighted sum of
these two species (Figure 11b, grey line) agrees quite well with the measured spec-
trum. While indene and naphthalene have been determined in the cyclopentene
flames by Lamprecht et al. [48] and Kamphus et al. [47], 1,4-propynylbenzene and
1,4-diethynylbenzene have been identified here for the first time. Their presence
could underline the importance of aromatic species with side chains that may be
involved in the PAH formation mechanism.

4 Summary and conclusions
The present study has shown examples for the application of a time-efficientmul-
tiplexing i2PEPICO technique to combustion chemistry analysis, using carefully
selected fixed photon energies. The aim was not to analyze a particular flame
structure in detail, but to explore the present limits of the fixed-photon-energy
PEPICO technique, a relatively new approach in combustion diagnostics. To this
end, challenging analytic problems were chosen that might demonstrate some of
the beneficial aspects of this experimentally involved but highly selective method
to reveal interesting aspects in combustion chemistry. In addition to the most
advanced photoionization mass spectrometric techniques that use VUV radia-
tion from synchrotrons, the PEPICO technique exhibits evenhigher discriminative
power by using the information of the coincident electron. The double-imaging
DELICIOUS III spectrometer [39] provides, in combination with the pBasex inver-
sion algorithm [40] for post-treatment, unique features that make fixed-photon-
energy measurements in complex gas-phase diagnostics comparatively short in
duration while still meaningful and carrying much more information than a sim-
ple PIE curve.

We have successfully demonstrated quantification of major and selected in-
termediate species from the electron signal for the first time using this approach.
From a single measurement, multiple species were evaluated quantitatively in
dimethyl ether and cyclopentene flames, and species profiles were obtained in
very good agreement with EI-MBMS measurements or PI-MBMS experiments in
previous work. Because of the fingerprint nature of the photoelectron spectra, of-
ten spread out over a large energy range, species with significantly different ion-
ization energies can readily be quantified as long as PES and cross sections are
available in sufficient resolution and precision. As a further advantage, fragmen-
tation contributions might be resolved in situations with well-resolved PES. In
comparison to scanned, TPEPICO, measurements it is beneficial that the narrow
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energy distribution of only a fewmeV in fixed-photon-energy PEPICO permits the
use of a singlewell-defined cross section at that given energy for quantification, in
contrast to TPES which would need a specific database to account for autoioniza-
tion resonances and the dependence of the partial cross sections on the electron
kinetic energy to be used quantitatively. Furthermore, the large area of the VMI
in the DELICIOUS III spectrometer [39] allows for the detection of a large kinetic
energy range of electrons so that corrections for their imaging [33] are not neces-
sary, again facilitating quantitative interpretation. Evidently, the same approach
canbeused todeterminePESwithhighenergy resolution for combustion-relevant
species [32].

In further examples in this study, more complex fixed-photon-energy PEPICO
spectra were analyzed in situations with multiple species contributing to the sig-
nal at a given mass and/or with very close-lying ionization energies. In a methyl
propanoate flame, five species with highly overlapping PES and ionization ener-
gies in a 0.8 eV energy range were successfully separated at 𝑚/𝑧 = 56. For the
first time, the contributions of linear isomers to𝑚/𝑧 = 66 in a cyclopentene flame
were analyzed, with unambiguous identification of 1-pentene-3-yne by its finger-
print PES in competition to amuch larger signal of1,3-cyclopentadiene, until now
assumed to be the only contributing isomer in this flame. In comparison to the
synchrotron-based photoionization MBMS technique that is being used as one
of the most advanced approaches in combustion diagnostics, the fingerprint PES
provides convincing advantages because several vibrational signatures are typi-
cally recorded that facilitate species identification.

Using low photon energies, fuel-derived radicals, formed upon the first rad-
ical attack on the fuel molecule, have been identified in the cyclopentene flame,
hinting at the conservation of the ring structure in the early fuel decomposition.
Such information is extremely helpful in guiding the development of detailed re-
actionmechanisms.Also, further radicals couldbe identifiedwithout interference
from stronger signals of species with higher concentrations at such low photon
energies. For example, at𝑚/𝑧 = 55 the 1-methylallyl radical was detected, with
clear identification of two different constitutional isomers.

At higher masses, the fixed-photon-energy PEPICOmeasurements, in spite of
limited sensitivity, have proven valuable to identify aromatic species with side
chains, namely 1,4-propynylbenzene at 𝑚/𝑧 = 116, next to indene, and 1,4-
diethynylbenzene at 𝑚/𝑧 = 126, both detected for the first time in fuel-rich cy-
clopentene combustion. Their detectionwouldprovideuseful information regard-
ing the formation pathways of higher-molecular aromatics.

All examples demonstrated here have used limited and competitive amounts
of valuable measurement time at large-scale facilities, suggesting that fixed-
photon-energy multiplexing i2PEPICO could become a more common addition
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to the arsenal of combustion diagnostics, as well as for other gas-phase reac-
tion systems showing significant complexity. This is even more relevant since the
scheme presented here could also be used with fixed-photon-energy VUV labora-
tory sources, such as high-repetition-rate lasers or continuous discharge lamps,
alleviating the need for large facility access and/or the need for fully tunable light
sources. To prove evenmore valuable in the future, high-resolution PES and cross
sections should be a target for themany intermediate species involved, either from
theoretical or experimental studies.
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number 20140050. We would like to thank the general SOLEIL staff for smoothly
running the facility and for ongoing support during our measurements. In partic-
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List of Abbreviations
Abbreviation Translation
(T)PEPICO (threshold) photoelectron/photoion coincidence spectroscopy
i2PEPICO (double) imaging PEPICO
EI/PI – MBMS electron ionization/photoionization molecular-beam mass

spectrometry
VUV vacuum ultraviolet
(T)PES (threshold) photoelectron spectrum
IE ionization energy
DME/CP/MP dimethyl ether/cyclopentene/methyl propanoate
VMI velocity map imaging
WM-TOF Wiley-McLaren time-of-flight
FWHM full width at half maximum
PIE photoionization efficiency
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Abstract
Diethyl ether (DEE, C4H10O) is being considered as a promising biofuel. However, its
combustion chemistry has not been well studied. Particularly lacking are quantitative
intermediate species profiles in flames that provide a stringent test for kinetic models,
and flame speed data at elevated pressures. In the present paper, we obtain species
distributions in low-pressure flames and measure flame speeds at elevated pressure to
gain insights into high-temperature combustion chemistry of DEE. Specifically, a fuel-
rich DEE flame (𝜑=1.8) with 25% argon dilution at 4 kPa was investigated by using
a dedicated combination of electron ionization (EI) molecular-beam mass spectrometry
(MBMS) with gas chromatography (GC) and tunable synchrotron vacuum ultraviolet
(VUV) photoionization (PI) MBMS. High-pressure flame speeds of DEE were measured in
a constant-volume cylindrical chamber at an initial temperature of 298 K at an equivalence
ratio of 𝜑=1.4 and pressures up to 507 kPa. Moreover, a new detailed kinetic model for
DEE combustion was developed, with the most noticeable advances over the solely existing
model by Yasunaga et al. [J. Phys. Chem. A 114 (2010) 9098–9109] being a more complete
description of the reactions of DEE radicals and the use of accurate theoretical methods,
i.e. CBS-QB3, to determine the rate constants for important primary reactions. In contrast
to the previously published one, the present model includes reactions of DEE radicals
that directly involve the formation of ethyl vinyl ether (EVE), an addition supported by
identification and quantification of EVE by PI-MBMS in the flame experiment. Finally,
the results showed that DEE flames yield low concentrations of aromatic species. However,
high acetaldehyde emission was observed, originating from the dominant pathways of DEE
consumption via H-abstractions from C-𝛼 positions followed by 𝛽-scissions.
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Abstract 

Diethyl ether (DEE, C 4 H 10 O) is being considered as a promising biofuel. However, its combustion chem- 
istry has not been well studied. Particularly lacking are quantitative intermediate species profiles in flames that 
provide a stringent test for kinetic models, and flame speed data at elevated pressures. In the present paper, 
we obtain species distributions in low-pressure flames and measure flame speeds at elevated pressure to gain 

insights into high-temperature combustion chemistry of DEE. Specifically, a fuel-rich DEE flame ( φ ∼ 1.8) 
with 25% argon dilution at 4 kPa was investigated by using a dedicated combination of electron ionization 

(EI) molecular-beam mass spectrometry (MBMS) with gas chromatography (GC) and tunable synchrotron 

vacuum ultraviolet (VUV) photoionization (PI) MBMS. High-pressure flame speeds of DEE were measured 

in a constant-volume cylindrical chamber at an initial temperature of 298 K at an equivalence ratio of φ = 1.4 
and pressure up to 507 kPa. Moreover, a new detailed kinetic model for DEE combustion was developed, with 

the most noticeable advances over the solely existing model by Yasunaga et al., 2010 being a more complete 
description of the reactions of DEE radicals and the use of accurate theoretical methods, i.e. CBS-QB3, to 

determine the rate constants for important primary reactions. In contrast to the previously published one, 
the present model includes reactions of DEE radicals that directly involve the formation of ethyl vinyl ether 
(EVE), an addition supported by identification and quantification of EVE by PI-MBMS in the flame exper- 
iment. Finally, the results showed that DEE flames yield low concentrations of aromatic species. However, 
high acetaldehyde emission was observed, originating from the dominant pathways of DEE consumption 

via H-abstractions from C - α positions followed by β-scissions. 
© 2016 by The Combustion Institute. Published by Elsevier Inc. 

Keywords: Biofuel; Diethyl ether; Laminar premixed flame; Molecular-beam mass spectrometry; Detailed kinetic model 

∗ Corresponding author. 
E-mail addresses: luc-sy.tran@uni-bielefeld.de , 

tran.luc.sy.iutdn@gmail.com (L.-S. Tran). 

1. Introduction 

Increasing energy demand in the transport sec- 
tor, coupled with the need to reduce greenhouse gas 

http://dx.doi.org/10.1016/j.proci.2016.06.087 
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emissions, continues to motivate research directed 

toward renewable fuels. Biofuels such as ethers, es- 
ters, and alcohols are discussed as additives or re- 
placement fuels [1] . Diethyl ether (DEE), available 
via dehydration of ethanol over solid acid catalysts, 
is considered as a promising biofuel [2,3] . DEE has 
several favorable properties for diesel engine com- 
bustion including a high cetane number ( > 125) and 

energy density (33.9 MJ/kg), more favorable than 

that of dimethyl ether (28.6 MJ/kg), broad flamma- 
bility limits, and high miscibility with diesel fuel 
[3] . Unfortunately, only limited investigations on 

the combustion chemistry of DEE have been per- 
formed, including measurements of ignition delay 
times [4,5] , species profiles from pyrolysis and a 
non-premixed flame [5,6] , and flame speeds [7–9] . 
Data are particularly scarce regarding species pro- 
files in DEE combustion. Especially intermediate 
species profiles in laminar flames are known to pro- 
vide a stringent test for kinetic models that may 
then be used for the prediction of pollutant emis- 
sions. To the best of our knowledge, quantitative 
sets of species profiles in premixed DEE flames are 
not yet available. We have thus studied the combus- 
tion chemistry of DEE in a fuel-rich low-pressure 
laminar premixed flame by investigating a full set 
of species profiles with a combination of advanced 

analytic techniques. To broaden the available pa- 
rameter range, we also measured the laminar flame 
speeds of DEE in a constant-volume chamber at 
elevated pressure. A new detailed kinetic model re- 
lying on a systematic analysis of DEE radical re- 
actions is proposed to describe the combustion of 
DEE, in particular with respect to intermediates 
and pollutant formation. 

2. Experiments and Modeling 

2.1. Flame experiments 

A fuel-rich ( φ ∼ 1.8, C/O ∼ 0.52) premixed 

flame of DEE/oxygen/argon (17.3%/57.7%/25%) 
was stabilized on a home-made flat burner 
(McKenna type) of 64 mm diameter (Biele- 
feld) at 4 kPa, with a cold gas velocity (333 K, 
4 kPa) of 73 cm/s and an overall mass flow rate 
of 4.35 × 10 −3 g/(cm 

2 s). Adapted conditions to 

provide the same mass flow rate were applied with a 
McKenna burner of 60 mm diameter at the Taiwan 

Light Source. An EI-MBMS-GC setup (Bielefeld) 
was used, complemented with a VUV-PI-MBMS 

system (Taiwan), to provide a detailed chemical 
analysis of stable and reactive species together with 

isomer identification. 

2.2. EI-MBMS-GC experiment 

A detailed description of the experimental setup 

is given elsewhere [10] . In brief, gas samples were 
extracted from the flame by a quartz cone (300 μm 

orifice, 25 ° opening angle) and transferred into a 
molecular beam, then directed through a copper 
skimmer to the ion source of the mass spectrome- 
ter. The two-stage Wiley-McLaren ion source with 

a reflectron time-of-flight (TOF) detection unit pro- 
vides a mass resolution of m/ �m ∼ 4000, enabling 
the determination of the exact elemental compo- 
sition of C/H/O species. Soft ionization energies 
(10.0, 11.5, 13.0 eV for intermediates, 16 and 18 eV 

for main species) were used to minimize undesired 

fragmentation. Ions were detected using a multi- 
channel plate (MCP) with a multichannel scaler for 
data recording. The mole fraction evaluation fol- 
lowed previously reported procedures [10] . Com- 
bined with a gas chromatograph equipped with an 

Alumina BOND/Na 2 SO 4 column, the setup was 
able to distinguish stable hydrocarbon isomers to 

provide supplemental information for the evalua- 
tion of the EI-MBMS data, which was done us- 
ing the cross section of the dominant isomer. The 
same MCP of the EI-MBMS setup was used to de- 
tect species of the GC effluent. Generally, in the 
EI-MBMS experiment the error is < 30% for di- 
rectly calibrated species, and below a factor of 2 for 
species calibrated with the convolution procedure 
[10] . For radicals for which the relative ionization 

cross section (RICS) procedure [11] was used, the 
error is estimated to be in the range of factors of 
2–4. The flame temperature was derived from the 
pressure in the first pumping stage and calibrated 

at 20 mm above the burner by OH planar laser- 
induced fluorescence without the sampling nozzle 
present [12] . 

2.3. VUV-PI-MBMS experiment 

Information regarding the identification of oxy- 
genated isomers that could not be separated by the 
present GC setup was obtained using a VUV-PI- 
MBMS instrument. A detailed description can be 
found elsewhere [13] . In brief, this system includes 
modules devoted to sampling and ionization; ion 

transfer and storage; and ion detection, the lat- 
ter housing the TOF-MS with a mass resolution 

of m/ �m ∼ 3500 and a detection limit of < 1 ppm. 
Samples were withdrawn from the flame by a quartz 
nozzle (400 μm orifice, 25 ° included angle) to form 

a molecular beam which was then intersected and 

ionized by the tunable VUV synchrotron radiation 

with energy resolution of E / �E ∼ 1000 and average 
photon flux of ∼10 12 photons/s. 

2.4. Flame speed experiments 

Laminar flame speeds of DEE were measured 

in a heated high-pressure, constant-volume cylin- 
drical chamber. Mixtures of DEE/oxygen/nitrogen 

(4.43%/18.99%/76.58%) at φ = 1.4 were studied 

with an initial gas temperature of 298 K for pres- 
sures of 101, 203, 304, 405, and 507 kPa, respec- 
tively. Details of the apparatus and procedures 
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were described elsewhere [14] . In brief, the cylin- 
drical chamber was housed in an oven and filled 

with a quiescent combustible mixture and then cen- 
trally ignited. The unsteady flame front time history 
was measured directly using high-speed Schlieren 

imaging. The time-dependent flame front location 

data were analyzed by using an automated flame- 
edge detection and circle-fitting program. The un- 
stretched flame speed relative to the burned gas 
( S b,0 ) was calculated using the extrapolation proce- 
dure described in [14] , and this extrapolated flame 
velocity was converted to the unstretched propaga- 
tion speed relative to the unburned gas ( S u,0 ) us- 
ing the density ratio calculated by CHEMKIN [15] . 
The uncertainty of the measured flame speed is be- 
low 10%. 

2.5. Model development and simulations 

A preliminary analysis with the solely available 
model by Yasunaga et al. [5] showed that the de- 
composition of the DEE radicals is an essential 
part of its flame chemistry, hence good kinetic data 
for these reactions are needed. However, the Ya- 
sunaga model was largely constructed using es- 
timated rate constants for the primary reactions. 
We have therefore used a more accurate quantum 

chemistry computation method, i.e. CBS-QB3, to 

determine rate constants for several important re- 
action classes and thermochemical data of related 

species. Note that while several low-temperature- 
chemistry studies were reported for the reaction 

schemes or reaction rate constants of DEE and 

its radicals [16–18] , only very scarce kinetic data is 
available for the high-temperature oxidation of this 
fuel. 

Thermochemical data for DEE, DEE radicals, 
and species in the oxidation pathways were ob- 
tained from quantum chemistry calculations in 

the present work or relied on recent results of 
[19] ; these results are provided in Section S.I.1 
in Supplemental Material 1. The formation en- 
thalpies for DEE and the C 2 H 5 OCHCH 3 radical 
calculated in the present work are in good agree- 
ment (within 1 kcal/mol) with values in the liter- 
ature [5,20,21] . A slightly higher discrepancy of 
1.54 kcal/mol is noted between the formation en- 
thalpy of the C 2 H 5 OCH 2 CH 2 radical from Ya- 
sunaga et al . [5] and the value in the present work, 
which is, however, in good agreement with that in 

Burcat’s database [20] . 
The new DEE sub-mechanism contains the 

following major classes of elementary reactions: 
(i) unimolecular decomposition, (ii) H-atom ab- 
stractions, (iii) fuel radical isomerization, (iv) fuel 
radical decomposition by C–O and C–H bond 

β-scissions, (v) fuel radical oxidation, (vi) fuel 
radical–radical disproportionation forming ethyl 
vinyl ether (EVE, C 4 H 8 O), and (vii) consump- 
tion reactions of primary products. These reac- 
tion classes have been thoroughly discussed for sev- 

eral fuels in previous studies [22,23] . Some of these 
classes, i.e. (iii), (vi), and C–H bond β-scissions 
yielding EVE were not included in the Yasunaga 
mechanism [5] . Important pathways of DEE com- 
bustion are summarized in Fig. 1 . Rate constants 
for C–O and C–H bond β-scissions (channels Ia, 
Ic, IIa, and IIc in Fig. 1 ) and isomerization (chan- 
nel "iso") were calculated here using the CBS-QB3 
method; details of the used CBS-QB3 approach are 
given in [24] . The present model has used high- 
pressure limiting rate constants for the unimolec- 
ular decomposition reactions of the fuel radicals. 
This is justified by the very low decomposition 

barriers which are rapidly overcome at the high 

temperatures of the flame. More information is 
available in Section S.I. of Supplemental Mate- 
rial 1. The rate constant for C–O bond β-scission 

of C 2 H 5 OCHCH 3 calculated here is ∼700 times 
slower at 1200 K than that in the Yasunaga model. 
The DEE radical oxidation by O 2 (Ib, IIb) can lead 

to the formation of EVE via ethoxyethylperoxy 
radicals. The role of this reaction class has recently 
been identified in the low- and high-temperature 
oxidation of alcohols [23,25] . Rate constants for re- 
actions in these oxidation routes recently calculated 

by Sakai et al. [19] for the temperature range 500–
2500 K are adopted in the present model. 

Together with the reactions of the DEE radi- 
cals described above, H-abstractions from DEE by 
H and OH play an important role in DEE com- 
bustion. H-abstractions by H-atom have also been 

investigated here for both α and β positions (see 
definitions in Fig. 1 ) to obtain reliable rate con- 
stants and branching ratios, while those for H- 
abstractions by OH are based on theoretical work 

by Zhou et al . [26] . Note that the Yasunaga model 
[5] also used the kinetic data from [26] , but with an 

erroneous sign for the activation energy of chan- 
nel I (4040 cal/mol instead of –4040 cal/mol). Rate 
constants of H-abstractions by H-atom calculated 

here are about two times slower at 1200 K than 

those in the Yasunaga model [5] . Additional infor- 
mation on the thermochemical data and rate con- 
stants calculated in the present work is available in 

Supplemental Material 1. 
Pressure-dependent rate constants for the uni- 

molecular decompositions of DEE were taken 

from Yasunaga et al. [5] . Missing C–H bond scis- 
sions were added with estimated rate constants 
of 1 × 10 14 cm 

3 /mol s for the recombination of 
H-atoms with the DEE radicals. The DEE sub- 
mechanism has been added to the recently updated 

NUIG database [27] without any changes to en- 
sure internal consistency. Reactions of most of the 
primary products (ethylene, acetaldehyde, ethanol, 
formaldehyde, etc.) are already included in the re- 
action base and decomposition reactions of ethyl 
vinyl ether have been taken from [24] . Reactions of 
some products involved in low-temperature oxida- 
tion were newly added, and high-pressure limiting 
rate constants were used for unimolecular initiation 
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Fig. 1. Important DEE reaction pathways. Percentages given are relative rates of consumption of a species in the present 
low-pressure flame, analyzed in the region of 0–100% fuel conversion. Pathways indicated by dashed lines were not con- 
sidered in the Yasunaga model [5] . 

reactions. However, previous work [24] demon- 
strated that the latter reaction class has minor im- 
portance under premixed flame conditions. More- 
over, successions of H-abstractions/ β-scissions of 
low-temperature oxidation products were written 

as irreversible since the reverse rate constants can- 
not be calculated from the global equilibrium con- 
stants. Transport properties of species for which 

no data is available in the literature were estimated 

based on the correlations proposed by Wang and 

Frenklach [28] . The complete reaction mechanism 

for DEE combustion includes 2385 elementary re- 
actions among 380 chemical species and is avail- 
able in CHEMKIN format together with thermo- 
dynamic and transport properties in Supplemental 
Material 2. 

Prior to applying the newly developed kinetic 
model to simulate the current experimental data, 
it was tested against several datasets published in 

the literature, measured in non-premixed flames 
[6] , pyrolysis experiments [5] , and including igni- 
tion delay times [4,5] and flame speeds [7] , with 

encouraging results (see Supplemental Material 1, 
Section S.I.2.). Simulations were performed us- 
ing CHEMKIN [15] for premixed flames and 

OpenSMOKE ++ [29] for other configurations. 

3. Results and discussion 

3.1. Species profiles in premixed low-pressure flame 

In this study, more than 40 species, including 
reactants, products, stable intermediates, and 

radical species, were identified and quantified. 

Temperature and mole fraction profiles of the 
main species (DEE, O 2 , Ar, CO, CO 2 , H 2 O, and 

H 2 ) as a function of the distance above the burner 
( h ) as well as species mole fractions with the re- 
spective calibration method, electron energy, and 

literature ionization threshold for each intermedi- 
ate are available in Supplemental Material 1, Fig. 
S12 and Table S4. Isomer identification is provided 

in Section S.II.2. Fig. S12 shows that DEE is fully 
consumed at h > 3.5 mm. The mole fractions of the 
main species at h = 30 mm are close to equilibrium 

values. 
In the following, we discuss selected intermedi- 

ate species, with a special focus on primary species, 
defined as those produced directly from the fuel 
or from its radicals. The discussion includes the 
comparison of experiments and predictions by the 
present kinetic model and that of Yasunaga et 
al . [5] and analyzes the degradation pathways of 
DEE together with the formation of intermediates. 
Figs. 2 –4 display mole fraction profiles of selected 

labile and stable intermediates in the range of C 1 –
C 6 . Overall, they show reasonable agreement, espe- 
cially with respect to the peak locations and pro- 
file shapes, between experiment and predictions by 
both models. Note that the present model predicts 
also well the pyrolysis and ignition delay time data 
of Yasunaga et al. [5] as mentioned earlier. 

The performance of the present model can be 
further analyzed regarding the degradation path- 
ways of DEE. Fig. 1 includes a rate-of-production 

(ROP) analysis with this model for DEE con- 
sumption, globally performed in the region of 0–
100% fuel conversion. Under these conditions, H- 
abstraction reactions are responsible for ∼95% of 
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Fig. 2. Mole fraction profiles of “direct” primary species: C 2 H 5 , C 2 H 4 O, C 2 H 4 , C 2 H 5 O, C 4 H 8 O. Symbols: experiment, 
thick lines: present model, thin lines: Yasunaga model [5] . For clarity, the indicated multiplication factors have been used 
(for experiments and both models) for C 2 H 5 and C 2 H 5 O. 

total DEE consumption. H-abstractions by flame- 
propagating radicals mainly ( ∼76%) occur at the 
C - α position of DEE (see Fig. 1 ) because of its 
lowest C–H bond energy (96 kcal/mol), yielding the 
C 2 H 5 OCHCH 3 radical. H-abstractions from the 
C - β positions (C–H bond energy of 103 kcal/mol) 
producing the C 2 H 5 OCH 2 CH 2 radical account for 
∼19% of total DEE consumption. Both fuel radi- 
cals, i.e. C 2 H 5 OCHCH 3 and C 2 H 5 OCH 2 CH 2 , re- 
act largely by C–O bond β-scission leading to 

the formation of acetaldehyde (CH 3 CHO) + ethyl 
(C 2 H 5 ) and ethylene (C 2 H 4 ) + ethoxy (C 2 H 5 O), re- 
spectively. Another fraction of these two fuel rad- 
icals is consumed by oxidation, disproportiona- 
tion, and C–H bond β-scissions producing EVE, 
which is consumed by H-abstraction and retro-ene 
reactions. Note that the four-centered elimination 

DEE( + M) → C 2 H 5 OH + C 2 H 4 ( + M) (not shown in 

Fig. 1 ) plays only a minor role ( < 2%) in DEE con- 
sumption in the present low-pressure flame. 

Species produced directly from the two DEE 

radicals via β-scissions (here called “direct” pri- 
mary intermediates) are presented in Fig. 2 . C 2 H 4 O 

and C 2 H 4 were measured with very high mole frac- 
tions of 1.05 × 10 −2 and 3.53 × 10 −2 , respectively. 
By VUV-PI-MBMS, C 2 H 4 O was identified as ac- 
etaldehyde ( ∼95%) and vinyl alcohol ( ∼5%), see 
Fig. S14. C 4 H 8 O ( Fig. 2 c) was evaluated as EVE 

and is present at lower concentration than C 2 H 4 O 

and C 2 H 4 . It is important to note that the pho- 
toionization efficiency (PIE) spectra of m / z = 72 
from VUV-PI-MBMS show a clear onset near the 
IP of EVE (8.98 eV [21] , see Fig. S14). Although 

the formation of EVE accounts for only ∼5% of 
the consumption of the fuel radicals, this interme- 
diate species is important because it is a primary 
fuel destruction product that was unambiguously 
identified for the first time in DEE combustion. 
C 2 H 5 and C 2 H 5 O were detected at much lower con- 
centrations (see Fig. 2 ) because of their high re- 

activity. However, their subsequent reactions con- 
tribute significantly to the formation of further im- 
portant intermediates. C 2 H 5 reacts with H to pro- 
duce CH 3 that in turn reacts with H or HCO, con- 
tributing with ∼55% to the formation of CH 4 . The 
latter species was measured with a high mole frac- 
tion of 1.9 × 10 −2 . Other reactions of C 2 H 5 par- 
tially contribute to the formation of C 2 H 4 (by C–
H bond β-scission, oxidation, or disproportiona- 
tion), C 2 H 6 (by recombining with H-atom), C 3 H 8 
(by recombining with CH 3 ), and C 4 H 10 (by self- 
recombination). These species, which are presented 

in Fig. 3 , are overall reasonably predicted by the 
present model. C 4 H 10 was identified by GC to be 
exclusively n -butane. C 2 H 5 O in turn decomposes 
mainly into formaldehyde (CH 2 O) and CH 3 by C–
O bond β-scission. The C 2 H 5 O radical also recom- 
bines with an H-atom to produce ethanol (C 2 H 6 O). 
Under the present flame conditions, these two path- 
ways contribute significantly to the formation of 
formaldehyde ( ∼60%) and ethanol (20%), respec- 
tively. Formaldehyde was detected with a high mole 
fraction of 1.2 × 10 −2 (see Fig. 3 e). 

The mole fractions of several other C 1 –C 6 prod- 
ucts including radical and stable species are pre- 
sented in Fig. 4 . These species are produced mainly 
by secondary reactions, as supported by the ROP 

analysis from the kinetic model. The correspond- 
ing reactions are part of the base mechanism and 

not the focus of this work. Since acetaldehyde 
is a dominant primary species of DEE combus- 
tion, its decomposition contributes to the forma- 
tion of several species, detected in the present flame, 
as discussed hereafter. Methanol (CH 4 O) with a 
measured mole fraction of 7.9 × 10 −4 ( Fig. 4 a) is 
mainly produced by the disproportionation reac- 
tion of two CH 3 O, and by H-abstractions from ac- 
etaldehyde by CH 3 O. The profile of C 3 H 6 O is also 

shown in Fig. 4 a as a sum of propanal and acetone; 
both isomers were identified by VUV-PI-MBMS. 
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Fig. 3. Mole fraction profiles of further important species: CH 3 , CH 4 , C 2 H 6 , C 3 H 8 , C 4 H 10 , CH 2 O, C 2 H 6 O. Symbols: 
experiment, thick lines: present model, thin lines: Yasunaga model [5] . For clarity, a multiplication factor of 2 has been 
used (for experiments and both models) for C 3 H 8 . 

Fig. 4. Mole fraction profiles of other labile and stable intermediates in the C 1 –C 6 range. Symbols: experiment, thick 
lines: present model, thin lines: Yasunaga model [5] . For clarity, the indicated multiplication factors have been used (for 
experiments and both models) for some species, with the exception of C 3 H 3 and C 6 H 6 for which only the simulation with 
the present model was multiplied by 0.2 and 20 respectively. 
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Fig. 5. (a) Flame speeds of DEE and related maximum flame temperature. Symbols: experiment, lines: present model. (b) 
Relative consumption rates of DEE at 101 and 507 kPa. 

According to the model, the formation of propanal 
and acetone mainly results from combination of 
CH 3 with the acetaldehyde radicals CH 2 CHO 

and CH 3 CO ( i.e. CH 3 + CH 2 CHO �C 2 H 5 CHO, 
CH 3 + CH 3 CO �C 2 H 6 CO). The profile for the 
sum of these acetaldehyde radicals (C 2 H 3 O) is 
presented in Fig. 4 b, together with that for 
ketene (C 2 H 2 O) which is produced mainly from 

CH 3 CO + CH 3 �C 2 H 2 O + CH 4 . The prediction for 
ketene is clearly better in the present model. Small 
C 2 –C 6 soot precursors are also presented in Fig. 4 . 
C 5 H 6 (1,3-cylopentadiene), C 5 H 5 (cylopentadienyl 
radical), and C 6 H 6 (benzene), known as impor- 
tant cyclic soot precursors, were detected at low 

mole fractions ( < 10 −5 ), while smaller species in- 
cluding C 2 H 2 ( Fig. 4 c), C 3 H 4 , and C 3 H 6 ( Fig. 4 d) 
are present in the 10 −2 –10 −4 range. According to 

the GC analysis, allene and propyne are identified 

for C 3 H 4 isomers with propyne as the most abun- 
dant one. C 4 H 6 is for a large part 1,3-butadiene, 
and C 4 H 8 is predominantly 1-butene. The present 
model also predicts these trends (see Table S5), 
while the Yasunaga model [5] does not include re- 
actions for the formation of hydrocarbon species 
from C 4 . Fig. 4 f shows the peak location of C 6 H 6 to 

be closer to the burner than that of C 3 H 3 (propar- 
gyl). Although an under-prediction is noted for 
benzene, the model represents this trend in peak 

locations, indicating that the main route of ben- 
zene formation is likely not propargyl recombina- 
tion. Benzene is predicted to be largely produced 

by the recombination of an H-atom and the C 6 H 5 
radical or C 3 H 3 and C 3 H 5 radicals. Because of its 
very low mole fraction ( < 10 −5 ), benzene was dif- 
ficult to be well predicted by the present model 
(under-prediction by a factor of ∼20), however, 
with higher concentrations, e.g. in sooting flames, 
its prediction could be expected to be improved. 

3.2. Flame speeds at elevated pressure 

To study the DEE high-temperature reaction 

chemistry at elevated pressures, flame speeds of 

DEE were measured at an initial temperature of 
298 K for φ ∼ 1.4 at pressures of 101, 203, 304, 
405, and 507 kPa. The results are presented in 

Fig. 5 a along with predictions by the present ki- 
netic model. The flame speed decreases with in- 
creasing pressure, a trend well captured by the 
present model which, however, under-predicts the 
absolute flame speeds by ∼16%. The predicted 

flame temperature rises only slightly with increas- 
ing pressure. Sensitivity analyses (not shown) in- 
dicate that the kinetics of small species control 
the flame speed at all studied conditions. The 
chain-branching reaction of O 2 with H, produc- 
ing OH and O (O 2 + H �OH + O) promotes the re- 
activity significantly, while the three-body termi- 
nation reaction H + CH 3 ( + M) �CH 4 ( + M) has the 
largest effect on the reduction of flame propaga- 
tion, especially at high pressures, since this reac- 
tion reduces the H-atom concentration and com- 
petes with the former. No large sensitivity was seen 

for the primary reactions involving DEE decom- 
position and oxidation. Hence, the observed de- 
viations between model and experiment could re- 
sult from uncertainties in the small-species kinetics 
in the base mechanism and/or in the experiment. 
Note that the present model well predicts the flame 
speed data by Gillespie et al . [7] (Fig. S11). Dif- 
ferent uncertainties of the two setups and differ- 
ent sensitivities of the model under the two differ- 
ent inlet conditions could contribute to the noted 

discrepancies. 
The ROP analysis in Fig. 5 b indicates that a 

large part of DEE is consumed by H-abstractions 
by flame-propagating radicals, especially with H 

and OH. This trend is similar to that observed in 

the low-pressure flame described earlier. Note that 
the contribution of the four-centered elimination 

DEE( + M) → C 2 H 4 + C 2 H 5 OH( + M) and the C–
O bond scission DEE( + M) → C 2 H 5 + C 2 H 5 O( + M) 
to the DEE consumption increases with in- 
creasing pressure, suggesting that the distribution 

of ethanol and acetaldehyde will change with 

pressure. 
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4. Summary 

The high-temperature combustion chemistry of 
DEE was investigated experimentally with a focus 
on obtaining quantitative species profiles at flame 
conditions. More than 40 species were identified 

and quantified in a low-pressure fuel-rich ( φ ∼ 1.8) 
premixed flame using EI-MBMS-GC, comple- 
mented with VUV-PI-MBMS. The data provides a 
good basis for model development and examina- 
tion. Furthermore, high-pressure flame speeds of 
DEE were determined at an initial gas temperature 
of 298 K, at φ = 1.4, from 101 to 507 kPa. The ob- 
tained experimental results were compared to pre- 
dictions with a newly developed detailed kinetic 
model that contains systematically updated ther- 
mochemical and kinetic data from dedicated CBS- 
QB3 calculations. Reasonable agreement between 

experiment and predictions by the proposed mech- 
anism was observed. Acetaldehyde, known as car- 
cinogen for humans, was detected at high amounts, 
in agreement with the model prediction. It is seen 

to be largely produced from the dominant pathway 
of DEE consumption via H-abstractions followed 

by β-scissions. However, cyclopentadiene and ben- 
zene, known as important soot precursors, were 
measured at low mole fractions ( < 10 −5 ). The DEE 

flame speed was observed to decrease with increas- 
ing pressure, and it is affected strongly by the ki- 
netic of small species. The present study demon- 
strates that at all pressures investigated, DEE con- 
sumption is mainly controlled by H-abstractions 
by H and OH and subsequent decomposition of 
the fuel radicals. Theoretical calculations were used 

in particular to determine reliable rate constants 
and branching ratios for these reactions. Among 
the unimolecular pathways, only the four-centered 

elimination and the C–O bond scission contributed 

to a minor degree to DEE consumption, and this 
contribution increases with pressure. 
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Abstract
Diethyl ether (DEE) and its isomer n-butanol are both considered as promising fuel
additives or neat biofuels. While some effects of their addition to hydrocarbon fuels under
engine conditions have been reported, fundamental studies that aim at understanding the
joint reaction pathways of such fuel mixtures remain quite scarce. Here, we have chosen
n-butane as a well-studied hydrocarbon base fuel, and we have added these oxygenated
isomers individually under identical conditions in premixed low-pressure flames. Different
combustion behavior of the respective alkane-biofuel mixtures must then be related to the
fuel structure. Analyses were performed in five fuel-rich flames including flames of n-butane,
DEE, and n-butanol as well as two flames of n-butane doped with 50% DEE or 50% n-
butanol. In this series, the carbon-to-oxygen ratio, argon dilution, pressure, and gas velocity
were kept constant. More than 40 species in the range of C0-C8 were identified and quantified
in each flame by electron ionization (EI) molecular-beam mass spectrometry (MBMS)
coupled with gas chromatography (GC). The experiments were partially complemented by
tunable synchrotron vacuum ultraviolet (SVUV) photoionization (PI)-MBMS. To assist
in the interpretation of the data, a kinetic model was established by combining different
sub-mechanisms for these fuels available in the literature. As expected, the formation
of toxic carbonyls, such as formaldehyde and acetaldehyde, increased significantly upon
addition of both oxygenated fuels to n-butane. Blending n-butane with DEE noticeably
reduces the formation of soot precursors, because primary reactions of DEE mainly release
C1-C2 hydrocarbon species to the system. n-Butanol addition, however, shows no significant
reduction effects or even higher formation of soot precursors. These trends were observed
both in the experiments and model predictions, and the higher ability of n-butanol to form

1 Zu dieser Publikation ist Supplemental Material online unter
http://doi.org/10.1016/j.combustflame.2016.06.031 verfügbar.
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soot precursors compared to DEE indeed results mainly from the differences in the fuel
structure.
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a b s t r a c t 

Diethyl ether (DEE) and its isomer n -butanol are both considered as promising fuel additives or neat bio- 

fuels. While some effects of their addition to hydrocarbon fuels under engine conditions have been re- 

ported, fundamental studies that aim at understanding the joint reaction pathways of such fuel mixtures 

remain quite scarce. Here, we have chosen n -butane as a well-studied hydrocarbon base fuel, and we 

have added these oxygenated isomers individually under identical conditions in premixed low-pressure 

flames. Different combustion behavior of the respective alkane-biofuel mixtures must then be related to 

the fuel structure. Analyses were performed in five fuel-rich flames including flames of n -butane, DEE, 

and n -butanol as well as two flames of n -butane doped with 50% DEE or 50% n -butanol. In this series, 

the carbon-to-oxygen ratio, argon dilution, pressure, and gas velocity were kept constant. More than 40 

species in the range of C 0 –C 8 were identified and quantified in each flame by electron ionization (EI) 

molecular-beam mass spectrometry (MBMS) coupled with gas chromatography (GC). The experiments 

were partially complemented by tunable synchrotron vacuum ultraviolet (SVUV) photoionization (PI)- 

MBMS. To assist in the interpretation of the data, a kinetic model was established by combining different 

sub-mechanisms for these fuels available in the literature. As expected, the formation of toxic carbonyls, 

such as formaldehyde and acetaldehyde, increased significantly upon addition of both oxygenated fuels to 

n -butane. Blending n -butane with DEE noticeably reduces the formation of soot precursors, because pri- 

mary reactions of DEE mainly release C 1 –C 2 hydrocarbon species to the system. n -Butanol addition, how- 

ever, shows no significant reduction effects or even higher formation of soot precursors. These trends 

were observed both in the experiments and model predictions, and the higher ability of n -butanol to 

form soot precursors compared to DEE indeed results mainly from the differences in the fuel structure. 

© 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

More than 90% of fuels consumed world-wide today are 

petroleum-based. The demand for transportation energy is rising, 

and most of this increase comes from heavy-duty-diesel vehicles 

[1] . As is well known, soot emissions are an important problem of 

diesel engines. Soot from fuel combustion has been demonstrated 

to contribute to respiratory dysfunction, heart diseases, and lung 

cancer [2–4] . Effort s are made to understand the formation process 

of soot and its precursors and to develop new combustion tech- 

nologies to reduce soot emissions. At the same time, the need to 

∗ Corresponding author. 
∗∗ Corresponding author. Fax: + 49 521 106 6027. 

E-mail addresses: fqi@sjtu.edu.cn (F. Qi), kkh@uni-bielefeld.de (K. Kohse- 

Höinghaus). 

reduce greenhouse gas emissions continues to motivate research 

towards renewable fuels such as alcohols, esters, and ethers [5–7] . 

It has been shown that the addition of oxygenated compounds rep- 

resented in biofuels to petroleum fuels is also a promising way to 

reduce soot emissions [8–10] . 

Diethyl ether (DEE, C 4 H 10 O) can be produced via dehydration 

of ethanol over solid acid catalysts and is being proposed as a 

promising biofuel [11–13] . Because of several favorable properties 

for diesel engines, including a high cetane number ( ∼125), a more 

favorable lower heating value (LHV) of 33.9 MJ kg −1 than that of 

dimethyl ether (28.6 MJ kg −1 ), broad flammability limits, and high 

miscibility with diesel fuel, DEE has recently been examined as an 

additive to diesel fuel [11–13] . Moreover, DEE is being considered 

as an excellent ignition improver for homogeneous charge com- 

pression ignition (HCCI) engines operated with biogas or liquefied 

petroleum gas (LPG) [14,15] . In view of these interesting properties, 

http://dx.doi.org/10.1016/j.combustflame.2016.06.031 

0010-2180/© 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 



48 L.-S. Tran et al. / Combustion and Flame 175 (2017) 47–59 

the combustion chemistry of DEE in fundamental experimental se- 

tups has been increasingly investigated, including analysis of igni- 

tion delay times [16,17] , flames [18,19] , and flame speeds [19,20] . 

n -Butanol, an alcohol and isomer of DEE, can be produced via 

fermentation processes [21,22] and has been proposed as an alter- 

native to conventional fuels [23] , with a high LHV ( ∼33.1 MJ kg −1 ) 

and research octane number ( ∼96) [7] . n -Butanol was studied as 

a fuel or as a blending agent for use in spark ignition engines 

[24,25] as well as in diesel and HCCI engines [26–29] . A large 

number of fundamental studies on the combustion chemistry of n - 

butanol have reported ignition delay times [30–32] , species profiles 

in premixed [33,34] and non-premixed flames [18,35] , and flame 

speeds [35,36] , to name only some. A very detailed compilation of 

previous studies on this fuel can be found in the review article on 

alcohol combustion chemistry by Sarathy et al. [37] . 

Only a few comparative studies have recently become available 

that evaluated the influence of DEE and n -butanol addition on the 

performance and combustion characteristics of engines [13,38,39] . 

Rakopoulos [39] pointed out that with increasing percentage (up 

to 24 vol%) of DEE and n -butanol in blends with diesel, smoke 

opacity, NO x , and CO were reduced, whereas unburned hydrocar- 

bon emissions increased. Trends regarding DEE and n -butanol ad- 

dition were quite similar, with n -butanol showing a slightly bet- 

ter smoke reduction. Opposite effects were noted under the con- 

ditions of [38] where DEE showed a more efficient smoke reduc- 

tion, similar to the results by Imtenan et al. [13] for diesel and ja- 

tropha biodiesel upon DEE or n -butanol addition, with a reduction 

of smoke opacity of up to 27% by 10% addition of n -butanol and up 

to 38.5% when adding the same amount of DEE. 

To the best of our knowledge, fundamental studies that aim to 

understand the cooperative combustion pathways in hydrocarbon 

fuel mixtures blended with these two isomeric oxygenated fuels 

are not yet available in the literature. We have thus studied the 

influence of the addition of DEE and n- butanol to n -butane on the 

reaction pathways and species pool under premixed low-pressure 

flame conditions to enhance the understanding of such systems. 

2. Experiments 

The experiments were performed in laminar premixed flat 

low-pressure flames using a combination of electron ionization 

molecular-beam mass spectrometry coupled with a gas chro- 

matograph (EI-MBMS-GC) in Bielefeld as described in [40–42] , 

complemented with synchrotron vacuum ultraviolet photoioniza- 

tion molecular-beam mass spectrometry (SVUV-PI-MBMS) mea- 

surements in Hefei following the procedures in [43–46] , to provide 

a detailed chemical analysis of stable and reactive species together 

with isomer identification. The use of two different analysis tech- 

niques is particularly useful since it allows an independent confir- 

mation of the species concentrations quantified in both studies. 

2.1. Flame conditions 

Five fuel-rich flames, i.e. n -butane/oxygen/argon ( φ = 

1.7), n -butane/DEE/oxygen/argon ( φ = 1.75), n -butane/ n - 

butanol/oxygen/argon ( φ = 1.75), DEE/oxygen/argon ( φ = 1.8), 

and n -butanol/oxygen/argon ( φ = 1.8) were investigated. Fuel- 

rich conditions were chosen to obtain quantifiable amounts of 

higher-mass soot precursor species to analyze potential interaction 

effects from the species pools generated by the two different fuel 

classes in flames of fuel mixtures. These flames were stabilized 

on a home-made flat burner of 64 mm diameter (Bielefeld) at 

identical pressure (4 kPa), argon dilution (25%), cold gas velocity 

(73 cm s −1 at 333 K and 4 kPa), and C/O ratio (0.52), resulting in 

slightly different equivalence ratios φ. Note that data obtained 

in the DEE/oxygen/argon flame was partially included in our 

previous study to test a newly-developed DEE model [19] . Because 

experimental data for flames containing DEE is still scarce, the 

DEE/oxygen/argon and n -butane/DEE/oxygen/argon flames were 

also analyzed under similar conditions at the National Synchrotron 

Radiation Laboratory in Hefei using SVUV-PI-MBMS to enhance the 

reliability of the data. There, flames were stabilized on a commer- 

cial stainless steel McKenna burner of 60 mm diameter. In both 

experiments, calibrated mass-flow controllers established the gas 

flows; liquid fuels were metered by a syringe pump, evaporated at 

343–433 K, and added to the gas stream. Flow rates were adapted 

to obtain near-identical mass flux. Both burners were cooled with 

water at a constant temperature of 333 K. Table 1 summarizes all 

flame conditions, and it also introduces abbreviated names for 

all flames that will be used in the following sections. Centerline 

species profiles were measured as a function of height above the 

burner h using the two MBMS setups described in the following 

section. 

2.2. Measurement procedures 

2.2.1. EI-MBMS-GC experiment 

A detailed description of the EI-MBMS-GC system can be found 

elsewhere [40–42] . In brief, gas samples were extracted from the 

flame by a quartz cone (0.3 mm orifice, 25 ° included angle) which 

leads to an immediate quenching of the reaction due to the 

expansion of the sample into the first pumping stage chamber 

(10 −5 kPa). This preserves the gas composition of the sample and 

enables the detection of reactive species such as radicals. The so- 

formed molecular beam is then skimmed by a home-made cop- 

per skimmer and passed into the ionization chamber (10 −7 kPa). 

Here the sample is crossed with a pulsed electron beam (10 9 elec- 

trons/pulse) emitted by a tungsten filament of a two-stage Wiley- 

McLaren ion source. The generated ions were extracted into a 

time-of-flight mass analyzer, energetically focused by a reflectron, 

then detected with a multichannel plate and counted with a multi- 

channel scaler. This setup (Kaesdorf) enables high mass resolution 

of m/ �m ∼40 0 0 so that the exact elemental composition of C/H/O 

can be determined for each species. Soft ionization energies (10.0, 

11.5, 13.0 eV for intermediates, 16.0 and 18.0 eV for major species) 

were used to minimize undesired fragmentation. Measured ion 

signals were integrated by fitting Gaussian-shaped curves to the 

signal peaks. Integrated signals were corrected for fragment ions 

originating from the fuel itself and from intermediate species for 

which a fragmentation pattern was obtained from cold-gas mea- 

surements. Isotope corrections of 13 C and 

18 O contributions were 

also performed when necessary. 

The coupled gas chromatograph enabled the identification of 

stable isomers. To ensure direct compatibility of pure MBMS mea- 

surements and GC-MBMS measurements, sampling was performed 

directly from the flame environment. A low-pressure sampling in- 

terface allowed transfer of a gas sample from the first pump- 

ing stage into the high-pressure environment of the GC (130 kPa). 

Here a temporal separation was performed with an Alumina 

BOND/Na 2 SO 4 column (Restek GmbH) and an appropriate temper- 

ature program (323 K hold for 2.5 min, heating rate 293 K min 

−1 to 

473 K, hold for 10 min), leading to a reasonable separation of hy- 

drocarbons in the C 1 –C 6 range. The outlet of the column was con- 

nected to the ionization chamber so that full mass spectra could 

be recorded as a function of the retention time. This simplifies the 

assignment of occurring signals as chromatograms can be obtained 

for each specific nominal mass. This procedure therefore presents 

a significant advantage here over classical FID detection. Spectra 

were averaged for 3.2 s (0.05 min) to improve the signal-to-noise 

ratio but keep a maximum of time resolution. A resolving power 

of 1.00 was achieved for trans -2-butene and 1-butene, which cor- 

responds to a FWHM (full width at half maximum) of 0.05 min 
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Table 1 

Flame conditions. SLM: standard liter per minute, ṁ: inlet mass flux. 

Flame (abbreviated name) Gas flow rate (SLM) ṁ (g cm 

−2 s −1 ) Ratio φ

Ar O 2 DEE n -Butanol n -Butane C/H C/O 

n -Butane (Bu) 1.14 2.71 0.00 0.00 0.71 0.004013 0.40 0.52 1.70 

n -Butane/DEE (Bu/DEE) a 1.14 2.67 0.37 0.00 0.37 0.004174 0.40 0.52 1.75 

1.00 2.35 0.33 0.00 0.33 0.004174 0.40 0.52 1.75 

DEE (DEE) a 1.14 2.63 0.79 0.00 0.00 0.004355 0.40 0.52 1.80 

1.00 2.31 0.70 0.00 0.00 0.004355 0.40 0.52 1.80 

n -Butane/ n -Butanol (Bu/BuOH) 1.14 2.67 0.00 0.37 0.37 0.004174 0.40 0.52 1.75 

n -Butanol (BuOH) 1.14 2.63 0.00 0.79 0.00 0.004355 0.40 0.52 1.80 

a Slightly different conditions with an Ar flow of 1.00 SLM were used in the PI-MBMS experiment. 

for both signals. Retention times were measured with a precision 

of ± 0.10 min. The GC data evaluation followed routines previously 

described in [42] . Stable species were identified based on their in- 

dividual retention times. Peak areas were integrated and normal- 

ized by the individual ionization cross sections of the isomers to 

obtain quantitative ratios. 

2.2.2. SVUV-PI-MBMS experiment 

Detailed descriptions of the apparatus can be found elsewhere 

[43–46] . In brief, this MBMS system includes modules devoted 

to sampling, ionization, ion transfer and detection. Flame species 

were sampled from the flame by a quartz nozzle (0.4 mm ori- 

fice, 30 ° included angle) to form a molecular beam. The molec- 

ular beam was then intersected and ionized by the tunable VUV 

synchrotron radiation with an energy-resolving power ( E / �E ) of 

∼40 0 0 and an average photon flux of ∼1.5 × 10 13 photons s −1 . 

The ions were transferred by an ion guide to a home-made reflec- 

tron time-of-flight mass spectrometer with a mass-resolving power 

( m / �m ) of ∼2500. Ion detection and spectra recording system are 

similar to those in the EI-MBMS setup. Since all species of a nomi- 

nal mass occur as a single peak, signals are integrated numerically. 

Corrections for contributions of 13 C and 

18 O isotopes from other 

species are applied afterwards when necessary. 

The methodology of species identification was previously re- 

ported in [44–46] . Structural isomers were distinguished by mea- 

suring photoionization efficiency (PIE) spectra, with uncertainties 

in the determination of ionization energies of ± 0.05 and ± 0.10 eV 

for strong and poor signal-to-noise ratio, respectively. 

Isomer identification by SVUV-PI-MBMS together with that by 

GC described above have provided useful information for the eval- 

uation of the EI-MBMS data, which was done using the cross sec- 

tion of the most dominant isomer. 

2.2.3. EI- and PI-MBMS data evaluation 

The evaluation of the molecular-beam experiment follows rou- 

tines previously reported in [41–46] . For both experiments, ion sig- 

nals were recorded as a function of their flight time and assigned 

to their exact mass by a second-order polynomial mass calibration. 

The integrated ion signal S i of a species i is directly proportional to 

its mole fraction x i , as described by Eq. (1). 

S i = x i · c · SW · D i · ϕ · F KT ( h ) ·
∫ 

σi ( E ) · f ( E − τ ) d τ (1) 

Here c is an instrument factor, SW is the number of sum- 

marized spectra (sweeps), D i is the mass discrimination factor of 

species i, ϕ is the number of ionizing particles (electrons or pho- 

tons), FKT is a temperature- and thus position-dependent sampling 

function, σ i (E) is the electron ionization or photoionization cross 

section of species i at the energy E , and f(E- τ ) is the energy distri- 

bution of the ionizing particles with τ being the integration vari- 

able. Note that for the photoionization approach, due to a narrow 

energy distribution, the integral simplifies to σ i (E) . 

Eq. (1) can be simplified if the signal can be referenced to an- 

other species R (usually argon) of known mole fraction in the same 

measurement: 

S i 
S R 

= 

x i 
x R 

· D i 

D R 

·
∫ 

σi ( E ) · f ( E − τ ) d τ∫ 
σi ( E ) · f ( E − τ ) d τ

= 

x i 
x R 

· k i / R ( E ) (2) 

Here the species-related terms can be condensed into a cali- 

bration factor k . For major species (namely, fuels, O 2 , Ar, H 2 , H 2 O, 

CO, and CO 2 ), their mole fractions were determined in both exper- 

iments based on the elemental C, H, and O balances derived from 

the exhaust gas, also considering early reactant consumption at the 

burner surface from the inlet conditions. Associated errors in mole 

fractions of these major species are typically < 30%. 

For intermediate species, as a consequence of the characteristics 

of the two ionization methods, different approaches were used for 

quantification of these species as described below. 

The broad energy distribution of the electrons in the EI-MBMS 

experiment allows the detection of argon even at very low nominal 

ionization energies. Thus Eq. (2) can be used once the calibration 

factor for the specific, nominal electron energy is known. Calibra- 

tion factors for intermediate species with argon as the reference 

( k i /Ar ) were obtained by direct cold-gas calibration measurements 

whenever stable gaseous cold-gas mixtures are feasible. In all other 

cases, calibration factors were estimated using either the relative 

ionization cross section method (RICS) [47] , assuming the similar- 

ity of the shape of the electron ionization cross sections of struc- 

turally similar species, or the convolution of the literature ioniza- 

tion cross sections with the known energy distribution of the ion- 

izing electrons [42] . Generally, the error is < 30% for directly cali- 

brated species, and below a factor of 2 for species calibrated with 

the convolution procedure. For radicals for which the RICS method 

was used, the error is estimated to be in the range of factors of 

2–4. Each species is associated with an individual absolute uncer- 

tainty. However, this uncertainty for a given species is identical for 

all measured flames and therefore, relative comparison of trends 

between the flames can be performed with significantly higher 

precision. Indeed, from four-fold repetition of flame measurements, 

the relative error between raw signal profiles was determined to 

be < 5%; however, when fuels are different, fragmentation correc- 

tion processes could increase this value. 

In the PI-MBMS experiment, SVUV-PI provides a very narrow 

and accurate ionization energy distribution. However, the refer- 

ence species argon has a very high threshold (15.759 eV), its sig- 

nal is not present in every scan, and thus a different quantification 

approach must be applied. Therefore, mole fractions were calcu- 

lated from Eq. (1) . For this calculation, the species-specific vari- 

ables including cross section and mass discrimination factor as 

well as the sampling function, photon flux, and instrument fac- 

tor must be known. Mass discrimination factors were determined 

experimentally. The product c ·FKT (h ) was obtained from the ar- 

gon signal (measured at 16.64 eV) and mole fraction profiles from 

the major species calculation. When all necessary parameters of 
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Eq. (1) are known, the relationship is used to calculate the inter- 

mediate species mole fraction based on literature photoionization 

cross sections. The lowest available photon energy above the ion- 

ization threshold is used to determine the mole fraction profile 

to minimize undesired fragmentation. If more than one species is 

measured at a nominal mass, Eq. (1) is used in reverse to calculate 

and subtract signal contributions from species with lower ioniza- 

tion threshold. Typically the uncertainties are within 10% for major 

species, within 25% for intermediates with known photoionization 

cross sections (PICSs), many of which are available in the online 

database [48] , and a factor of 2 for those with estimated PICSs. 

The respective calibration method, electron/photon energy, ion- 

ization threshold, and references for the electron ionization and/or 

photoionization cross section for each intermediate species are 

summarized in Tables S1 and S2 (EI-MBMS experiment) and Table 

S3 (PI-MBMS experiment, compared to EI-MBMS) of Supplemental 

material 1. All experimentally obtained data is also presented in 

Supplemental material 3. 

2.2.4. Flame temperature measurement 

The temperature profiles of the flames in Bielefeld were deter- 

mined based on the temperature dependence of the sampling rate 

through the probe orifice accounting for the distortion caused by 

the sampling cone. Assuming a constant pumping speed, the gas 

flow rate through the sampling orifice can be expressed by the 

pressure of the first-stage chamber ( p 1st ) [49] . This dependence is 

given by 

p 1 st = C ·
√ 

γ

M̄ T 
·
(

2 

γ + 1 

)Z 

(3) 

with Z = ( γ + 1)/2( γ – 1). M is the mean molar mass, γ is the adi- 

abaticity coefficient ( C p / C v ), close to unity and therefore set equal 

to 1, and C is a temperature-independent device-specific constant. 

The latter parameter was determined by solving Eq. (3) using the 

exhaust gas temperature measured without the sampling cone by 

OH planar laser-induced fluorescence described previously [50] . 

The method used for flame temperature measurement in Hefei 

was previously described in [51] . Briefly, the temperature profiles 

were measured by a Pt-6%Rh/Pt-30%Rh thermocouple of 0.1 mm in 

diameter, coated with Y 2 O 3 –BeO anti-catalytic ceramic, and were 

corrected for the radiative heat loss and the cooling effects of sam- 

pling nozzle. 

The uncertainty of the measured temperature is estimated to be 

± 5%. The temperature profiles are used as input parameters in the 

flame model simulations without any shift between measurement 

and computation. Temperature profiles are available together with 

the experimental data sets in Supplemental material 3. 

3. Kinetic model 

To facilitate interpretation of the obtained experimental results 

and to elucidate potential interaction between the species pools 

from the different fuels in the mixtures, a kinetic model has been 

established by combining different sub-mechanisms available in 

the literature. The complete version of the model includes 2385 

elementary reactions among 380 chemical species; it is available 

in CHEMKIN format together with thermodynamic and transport 

properties in Supplemental material 2. 

The reaction database of the NUI-Galway group, recently given 

in [52,53] , was used as a core model . This database has been gen- 

erated in a hierarchical way, based on AramcoMech1.3 [54] , and 

contains already reactions of C 0 –C 6 species, including also the bu- 

tane isomers. For those it has been validated against a lot of ref- 

erences [55–58] . Reactions of toluene and ethylbenzene [59] were 

additionally taken from the same group to keep consistency with 

the core model. To represent the combustion reactions of n -butanol 

and DEE, the sub-mechanism (136 reactions) of n -butanol pro- 

posed by Sarathy et al. [60] , and that (142 reactions) for DEE re- 

cently developed by Tran et al. [19] were combined with the core 

model as such sub-mechanisms have not been included in the core 

model before. Rate constants as well as thermodynamic and trans- 

port properties in the original sub-mechanisms were used without 

any change to ensure internal consistency. Decomposition reactions 

of the fuel radicals of n -butane, DEE, and n -butanol produce some 

common primary species, such as CH 3 , C 2 H 4 , C 2 H 5 (for all three fu- 

els), C 3 H 6 , and C 4 H 8 (for n -butane and n -butanol), and their ther- 

modynamic properties from the core model were used, noting that 

they are fortunately consistent between the three databases; pri- 

mary species are defined here as those produced directly from the 

fuel or from fuel radicals. While it may already be challenging to 

assess uncertainties for a given simulation for one fuel with a well- 

described and validated model from the literature, we would like 

to point out here that different sources of the sub-mechanisms and 

the core model make it harder to quantify the uncertainty of the 

combined model. 

The n -butanol [60] and DEE [19] mechanisms have been pre- 

viously examined against several experimental results such as ig- 

nition delay times [16,17,30–32] , data from premixed [33,34] and 

non-premixed flames [18,35] , and flame speeds [20,36] . Note that 

before adding the sub-mechanisms of DEE and n -butanol, the core 

model described above has been tested against species profiles ob- 

tained in the present premixed n -butane flame with good agree- 

ment between simulations and experiments. As – to the best of 

our knowledge – there are no experimental data on the mixtures 

of n -butane with either DEE or n -butanol available in the litera- 

ture, it was not possible to validate the combined model against 

other experimental data. In order to check influences of individ- 

ual sub-mechanisms on each other, simulations were performed 

for the pure n -butane, DEE, and n -butanol flames using both the 

combined model and the respective individual model. In general, 

both simulations provided similar results (not shown in the paper). 

An exception is the formation of ethanol and its related radicals in 

the n -butanol simulations, for which increases of a factor of 3 and 

30%, respectively, were noted when the DEE sub-mechanism was 

added. n -Butanal produced from n -butanol radicals isomerizes par- 

tially at high temperature to ethyl vinyl ether which decomposes 

into ethanol and acetylene by retro-ene reactions. The latter re- 

action was not included in the original n -butanol sub-mechanism, 

but it is present in the DEE sub-mechanism. Therefore, the addi- 

tion of the DEE sub-mechanism affects the formation of ethanol 

in n -butanol simulations by the combined model. However, ac- 

cording to the model, ethanol is present with low mole fractions 

( < 3 × 10 −5 ) in flames containing n -butanol, and does not occur as 

primary species in the rate of production analysis of fuel decom- 

position; therefore it does not significantly affect the overall per- 

formance of the model. 

It is important to note that this work does not attempt to 

propose a new comprehensive model, but it uses rather a sin- 

gle model version (in the following called the present model ) to 

analyze the combustion of the studied C 4 fuels, including mix- 

tures, in the present flame situation. Simulated results presented 

in following sections are obtained from this model. Simulations 

were performed using the PREMIX module of the CHEMKIN pack- 

age [61] supplied with the inlet mass flux and composition, 

combustion-chamber pressure, and the measured temperature pro- 

file. 

4. Results and discussion 

In the following, flame temperatures and mole fraction profiles 

of major species will be presented ( Section 4.1 ). Then, reaction 
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Fig. 1. (a) Flame temperatures (Bielefeld), (b) mole fraction x i profiles of major species as a function of height above burner h in the DEE flame, (c) major species in the 

early stage ( h = 0–8 mm) of the n- butane/DEE flame, (d–f) comparison of CO, H 2 , reactants, H 2 O, CO 2 , and Ar profiles in the five flames. Open symbols in (b-f): EI-MBMS 

experiment, close symbols in (b,c): PI-MBMS experiment, lines in (b,c): present model simulation (using the temperature profiles measured in Bielefeld); open symbols with 

crosses indicated at h = 32 mm in (b) are equilibrium values. 

pathways involved in flames of fuel mixtures and selected inter- 

mediates species profiles will be analyzed ( Section 4.2 ). Finally, the 

influence of DEE and n -butanol addition on the formation of pol- 

lutants will be discussed in detail ( Section 4.3 ). 

4.1. Temperatures and major species 

Figure 1 displays the temperature profiles measured in Biele- 

feld for the EI-MBMS experiment for the five flames as well as 

the mole fraction profiles of major species including reactants ( n - 

butane, DEE, n -butanol, and O 2 ), diluent (Ar), and main products 

(CO, CO 2 , H 2 O, and H 2 ) as a function of height h . As seen in Fig. 1 a, 

the stand-off distance of the flames increases in the order n -butane 

< mixtures < oxygenated fuels, reflecting the differences in flame 

speed. The maximum flame temperature slightly decreases in the 

order n -butane (2485 K) > mixtures (2420–2460 K) > oxygenated 

fuels (2420–2440 K). This trend is in good agreement with the se- 

quence of their adiabatic temperatures (2600 K for the n -butane 

flame, 2566–2571 K for the mixture flames, and 2528–2540 K for 

the flames of the oxygenated fuels). 

Synchrotron-based PI-MBMS measurements were performed 

in Hefei for some conditions to support the EI-MBMS analysis. 

Both experimental setups were completely independent, present- 

ing slight differences in the flame stabilization and stand-off dis- 

tances. The maximum temperatures measured in Bielefeld for the 

DEE and n -butane/DEE flames were found to be ∼180 K higher 

than those measured in Hefei (available in Supplemental material 

3). This deviation is a result mainly from the difference of the two 

flame setups and includes the experimental uncertainties of the 

two temperature measurement methods. Data from PI-MBMS ex- 

periments for DEE and n -butane/DEE flames are therefore added 

for comparison in Fig. 1 b,c (filled symbols). It can be noted that 

the flames are established at a slightly larger distance from the 

burner in the PI-MBMS experiment, as a result from the above- 

mentioned differences of the two setups, especially regarding the 

sizes of the burners and sampling probes. 

Good agreement within experimental uncertainties is found be- 

tween PI-MBMS and EI-MBMS data and the simulation for the ma- 

jor species. It should be noted in addition that simulations for the 

PI-MBMS experiment using the respective Hefei temperature pro- 

file (see Supplemental material 4) present similarly good agree- 

ment to the Hefei experimental data, both with regard to the pro- 

file position and mole fraction value. This behavior indicates that 

the quality of the agreement between experiments and simulations 

does not vary with the differences of the two used setups, show- 

ing that the effects of the different probes and burners are mainly 

thermal and that catalytic effects, wall reactions, or residual reac- 

tions in the probe should be of minor importance. 

The mole fractions of major species at h = 30 mm shown in 

Fig. 1 b are very close to equilibrium values (open symbols with 

cross) calculated using Gaseq [62] for the respective flame temper- 

ature. A comparison of the structure of all five flames is given in 

Fig. 1 d–f, demonstrating that the trends of these major species 

profiles are generally similar as a result of using an identical C/O 

ratio for all flames. Differences in mole fraction profiles of re- 

actants (fuels and O 2 ) in Fig. 1 e reflect respective differences in 
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Fig. 2. Rate of production analysis for the consumption of n -butane (NC 4 H 10 ), DEE, and n- butanol (NC 4 H 9 OH) in the mixture flames ( φ = 1.75) for a distance h ∼2.1–2.2 mm 

corresponding to a temperature of ∼1100 K and ∼78% of fuel conversion. Percentages are relative rates of consumption of a given species. Species bordered by triple, double, 

or single lines are primary species of all three fuels, of two fuels ( n- butane and either oxygenated fuel), or of one fuel, respectively. Line thicknesses indicate specific reaction 

steps (thick: H-abstractions from fuels, intermediate: β-scissions from fuel radicals, thin: further reactions from primary species). While isomerization reactions of fuel 

radicals occur, these are not indicated for clarity. Respective bond energies are shown for DEE [19] , n -butane (calculated from the thermodynamic data used in the present 

model), and n -butanol [60] . 

initial inlet composition, necessary to match the identical C/O ra- 

tio (compare Table 1 ). 

4.2. Composition of the intermediate species pools 

More than 40 intermediates, including stable and radical 

species as well as different isomers, were identified and quanti- 

fied in each flame. The peak mole fractions for important inter- 

mediate species are summarized in Tables S1–S3 of Supplemental 

material 1. The full datasets are available in Supplemental material 

3. In the following, we concentrate on reporting important exam- 

ples of species involved during the combustion/co-combustion of 

n- butane, DEE, and n- butanol in the present flame situation. 

4.2.1. Fuel destruction and primary species 

To gain insight into the decomposition pathways of the stud- 

ied C 4 fuels in the mixture flames and to elucidate differences and 

similarities in the composition of primary species when adding 

the different oxygenated isomers to n- butane, rate of production 

analyses (ROP) are presented in Fig. 2 . These analyses were per- 

formed using the present model to simulate the n -butane/DEE and 

n -butane/ n -butanol flames at h ∼2.1–2.2 mm, corresponding to a 

temperature of ∼1100 K and ∼78% of fuel conversion. 

To emphasize common features as well as differences between 

the mixture components and their decomposition products, Fig. 

2 uses differently coded boxes to highlight primary species shared 

by all three fuels (triple line), by the base fuel and one oxygenated 

additive (double line), and those highlighted with a single line are 

not shared between the base fuel and either oxygenated additive. 

As can be seen, H-abstractions by flame-propagating radicals 

(R) are responsible for approximately 99% of the total consump- 

tion of n -butane, DEE, and n -butanol under these flame condi- 

tions. Unimolecular initiation reactions including the dehydration 

of n -butanol (i.e. four-center elimination of water) play only mi- 

nor roles ( < 1%) at the ROP analysis conditions and are therefore 

not shown in Fig. 2 . However, at locations further from the burner 

where temperatures are higher, the dehydration of n -butanol be- 

comes important and contributes partly to the formation of 1- 

butene as discussed below. In the case of n -butane and DEE, H- 

abstraction reactions mainly occur at C2 positions followed by 

those from C1 positions ( Fig. 2 ), which is consistent with the dif- 

ference in the dissociation energies of C–H bonds between C2 

(95.7–97.9 kcal mol −1 ) and C1 (101.2–103.2 kcal mol –1 ) positions 

(see Fig. 2 ). In the case of n -butanol, given its asymmetry, H- 

abstractions can produce five different fuel radicals (C 4 H 8 OH-1, 

C 4 H 8 OH-2, C 4 H 8 OH-3, C 4 H 8 OH-4, PC 4 H 9 O), with the most impor- 

tant H-abstraction occurring at C1 position because of its lowest 

C-H bond energy (95.5 kcal mol −1 [60] ). Subsequent decomposition 

of butyl radicals (PC 4 H 9 , SC 4 H 9 ) releases only hydrocarbon species, 

i.e. predominantly C 1 –C 3 species including methyl (CH 3 ), ethylene 

(C 2 H 4 ), ethyl (C 2 H 5 ), and propene (C 3 H 6 ). C 4 hydrocarbon species 

including 1-butene (C 4 H 8 -1) and 2-butene (not shown in Fig. 2 ) 

are also primary species but are formed by very minor channels 

( < 1%) of the n- butane radical consumption. When adding DEE to 

n- butane, the composition of primary species will be modified be- 

cause the decomposition of the DEE radicals (DEE-YL-1, DEE-YL-2) 

leads to the simultaneous formation of both hydrocarbon and oxy- 

genated species. Specifically, C-C β-scission of the DEE-YL-1 radical 

yields C 2 H 4 and the ethoxy radical (C 2 H 5 O) which in turn decom- 

poses into formaldehyde (CH 2 O) and CH 3 , while decomposition of 

the DEE-YL-2 radical produces C 2 H 5 and acetaldehyde (CH 3 CHO). 

DEE reactions mainly yield species smaller than C 3 , while C 3 hy- 

drocarbons are dominant primary species of n- butane decompo- 

sition. Therefore, DEE addition will decrease hydrocarbon species 

with three and more carbon atoms but increase C 1 and C 2 carbonyl 

components. 
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Fig. 3. Mole fraction profiles of selected primary species. Left: n -butane, middle: n -butane/DEE and DEE flames, right: n -butane/ n -butanol and n -butanol flames. Open sym- 

bols: EI-MBMS experiment, closed symbols: PI-MBMS experiment (only DEE and n- butane/DEE flames), thick lines: present model (using the temperature profiles measured 

in Bielefeld). Note that experimental results have been connected by a spline function (thin lines) to guide the eye. 

In the case of n- butanol addition, the fuel radicals again de- 

compose simultaneously into hydrocarbon and oxygenated primary 

species. However, in contrast to DEE, n -butanol reactions release 

not only small hydrocarbon species in the C 1 –C 2 range (CH 3 , C 2 H 4 , 

C 2 H 5 ), but also C 3 and C 4 species (C 3 H 6 , C 3 H 7 , C 4 H 8 -1). Further- 

more, the nature of oxygenated species is different ( Fig. 2 ). The 

pool of primary hydrocarbon species from n- butanol decomposi- 

tion seems to be analogous to that of n- butane, but n- butanol 

additionally contributes numerous oxygenated intermediates such 

as unsaturated alcohols (e.g., vinyl alcohol C 2 H 3 OH and propenol 

C 3 H 5 OH) and radicals of saturated alcohols (e.g., hydroxyethyl rad- 

icals C 2 H 4 OH and hydroxymethyl radicals CH 2 OH). 

All species given in the boxes in Fig. 2 were detected in the 

present experiments. Some important examples will be presented 

below; further species mole fractions are available in Supplemental 

materials 1 and 3. Figure 3 shows mole fraction profiles of C 2 H 4 

(a primary species produced by all three fuels), C 3 H 6 and C 4 H 8 

(two shared primary species in the n- butane/ n- butanol flame that 

result only from n -butane in the n- butane/DEE flame, however), 

and C 2 H 4 O (the different isomers of which are formed as primary 

species only by the respective oxygenated fuels and not from n - 

butane). Examples for isomer identification by GC and PI-MBMS 

are given in Table 2 and Fig. 4. 

C 2 H 4 can be produced in several ways from both primary and 

secondary reactions, and therefore its experimentally determined 

peak mole fraction seems to be only slightly affected by the fuel 

change ( Fig. 3 a–c). Similar observations can also be made for sev- 

eral other small hydrocarbons given in Tables S1 and S2. A very 

good agreement between EI- and PI-MBMS data is found for the 

DEE and n- butane/DEE flames where both experiments were com- 

pared. C 3 H 6 and C 4 H 8 mole fractions are affected differently when 

n- butane is replaced by n- butanol, with a decrease of C 3 H 6 and 

an increase of C 4 H 8 . These trends are well predicted by the model 

( Fig. 3 ). The rate of production analysis in Fig. 2 shows that a large 

part of n- butane is consumed leading to the formation of C 3 H 6 , 

while this species can be formed from n- butanol only by a channel 

of lesser importance. Therefore, the formation of C 3 H 6 should be 

correlated with the amount of n- butane in the flame. Since C 4 H 8 

formation is promoted from n- butanol, an opposite trend is noted. 

Both GC and PI-MBMS analyses show that 1-butene is the most 

abundant C 4 H 8 isomer in all five flames; this was also confirmed 

by the present model predictions ( Table 2 ). The EI-MBMS signal 

of C 4 H 8 was thus calibrated as 1-butene. A similar trend favoring 

1-butene was also noted for a fuel-rich n- butanol flame studied 

previously [34] , but in a similar n- butane flame, 2-butene (sum of 

cis/trans isomers) was found to be slightly more abundant [63] . In 

the present PI-MBMS experiment, cis and trans isomers of 2-butene 

also cannot be separated because of their close ionization thresh- 

olds. These two isomers are also not distinguished in the present 

model. In the n- butane/DEE flame, both C 3 H 6 and C 4 H 8 cannot be 

produced by the primary reactions of DEE. Therefore, mole frac- 

tions of both species decrease significantly when DEE is used as 

additive or as neat fuel, compared to neat n- butane and n- butanol 

where C 3 H 6 and C 4 H 8 are primary products. These trends were 

observed by both MBMS experiments and model predictions ( Fig. 

3 ). According to the PI-MBMS analysis, the two isomers of C 2 H 4 O, 

acetaldehyde (CH 3 CHO) and vinyl alcohol (C 2 H 3 OH), are formed 

in the DEE and n- butane/DEE flames, with acetaldehyde as the 
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Table 2 

C 4 H 8 isomer identification by EI-MBMS-GC (“GC”) and PI-MBMS (“PI”), compared to present model predictions (“Sim.”) 

using the flame temperatures measured in Bielefeld. Simulations with the flame temperatures obtained in Hefei are 

added for the DEE and n -Butane/DEE flames for comparison (right column). Numbers given are fractions (in %) of the 

peak mole fraction of detected species, and those in bold font correspond to the most abundant isomers. 

Detected species Flame 

Bu DEE Bu/DEE BuOH Bu/BuOH 

GC Sim. GC PI Sim. GC PI Sim. GC Sim. GC Sim. 

1-Butene 61 76 72 57 69 90 59 55 77 87 75 95 89 90 

trans -2-Butene 27 21 28 42 6 2 21 45 19 11 14 4 6 8 

cis -2-Butene 7 – 15 11 3 

iso -Butene 5 3 – – 25 8 5 – 4 2 – 1 2 1 

Fig. 4. C 2 H 4 O isomers (acetaldehyde and vinyl alcohol) in the DEE (left) and n- butane/DEE (right) flames; comparison of mole fraction profiles obtained in the EI- and 

PI-MBMS experiment (symbols). The model predictions (thick lines) using the flame temperatures measured in Bielefeld (for EI data) and in Hefei (for PI data) are presented 

for comparison. Note that experimental results have been connected by a spline function (thin lines) to guide the eye. 

most abundant one in both flames ( Fig. 4 ). This trend is well pre- 

dicted by the present model. A similar dominance of acetaldehyde 

was also noted for a fuel-rich n- butanol flame studied previously 

[34] even though vinyl alcohol is a primary species of n- butanol 

reactions ( Fig. 2 ), since vinyl alcohol can tautomerize quickly to 

acetaldehyde. In the EI-MBMS measurements, C 2 H 4 O ( Fig. 3 ) was 

thus calibrated as acetaldehyde for all five flames. The resulting ac- 

etaldehyde mole fractions by EI-MBMS are in good agreement with 

the isomer sums measured by PI-MBMS for the flames containing 

DEE ( Fig. 4 ). It can be noted that C 2 H 4 O (predominantly acetalde- 

hyde) was observed to increase significantly in flames containing 

the oxygenated fuels ( Fig. 3 ). This trend is also well predicted by 

the present model. 

4.2.2. Soot precursors 

One of the advantages of the use of oxygenated fuels as ad- 

ditives is their potential to reduce soot emissions [8–10] . In the 

present section we focus on describing soot precursors detected 

in the five flames with EI-MBMS. Among approximately 30 de- 

tected hydrocarbon intermediates with masses from 15 (CH 3 ) to 

106 (C 8 H 10 ), particularly unsaturated and cyclic species are con- 

sidered as important soot precursors in the present paper. These 

hydrocarbons may result from fuel decomposition steps (some of 

them are already presented above such as C 2 H 4 , C 3 H 6 , and C 4 H 8 ), 

but they may also be products of build-up reactions that may yield 

unsaturated cyclic compounds known to play a very important role 

in the formation of polycyclic aromatic hydrocarbons (PAH). In all 

five studied flames, small stable hydrocarbon species with one and 

two carbon atoms were detected with high mole fractions, espe- 

cially ethylene and acetylene ( ∼3–4 × 10 −2 ), see Fig. 3 and Tables 

S1,S2, because they are decomposition products of several species. 

Peak mole fractions of these species are quite close to those ob- 

tained by Oßwald et al . [63] in a pure n- butane flame under similar 

conditions. In flames containing n- butanol or n- butane (pure or in 

mixture), C 3 H 6 is the most abundant C 3 hydrocarbon species with 

mole fractions of ∼4–8 × 10 −3 , whereas in the flame of pure DEE, 

allene and propyne (C 3 H 4 ) are present at a slightly higher mole 

fraction ( ∼6 × 10 −4 ) than C 3 H 6 ( ∼4 × 10 −4 ), compare Fig. 3 and 

Tables S1 and S2. Among C 4 hydrocarbon species in the pure n- 

butane flames and in those containing DEE, diacetylene (C 4 H 2 ) is 

the most abundant one with mole fractions of ∼1.0–1.4 × 10 −3 (Ta- 

bles S1,S2). However, when n- butanol is used as pure fuel, C 4 H 8 

becomes more abundant ( ∼2.2 × 10 −3 ) ( Fig. 3 and Tables S1,S2). 

The data obtained with EI-MBMS by Oßwald et al. [34] for an n- 

butanol flame at φ = 1.7 exhibit the same trend. The consump- 

tion of C 4 H 8 leads to the formation of C 4 H 6 that is noted to im- 

portantly contribute to the formation of unsaturated cyclic species 

as discussed below. According to the GC analysis, 1,3-butadiene 

is the dominant C 4 H 6 isomer in all five flames with some con- 

tributions of 1,2-butadiene, and 1- or 2-butyne. This trend was 

also observed in fuel-rich flames of pure n- butane and pure n- 

butanol [34,63] . Figure 5 exemplarily shows mole fraction profiles 

of the sums of C 5 H 6 and C 6 H 6 isomers as some important cyclic 

soot precursors; further species are reported in Tables S1 and S3. 

The most important formation pathways of these species will be 

presented in the detailed analysis of the pollutant formation in 

Section 4.3 . PI-MBMS results are again included for the pure DEE 

and n- butane/DEE flames. From the PI-MBMS analysis in the flames 

containing DEE, C 5 H 5 (not shown) and C 5 H 6 are almost exclu- 

sively cyclopentadienyl and 1,3-cyclopentadiene, respectively (Table 

S3), and C 6 H 6 is predominantly benzene, with minor contribution 

of fulvene ( Fig. 5 ). Isomer identification for the n -butane and n - 

butanol flames is based on the previous work in [34,63] . The EI- 

MBMS signals of C 4 H 6 , C 5 H 5 , C 5 H 6 , and C 6 H 6 were thus calibrated 

as the respective most abundant isomer. Results from both MBMS 

experiments are in reasonable agreement although the flame posi- 

tion in the PI-MBMS experiment is slightly shifted away from the 

burner surface as mentioned earlier. Larger species, such as C 7 H 8 

(toluene) and C 8 H 10 (ethylbenzene), were also measured, but with 

low amounts ( < 5 × 10 −6 ) (Tables S1–S3). 
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Fig. 5. Mole fraction profiles of some soot precursors. Left: n -butane flame, middle: n -butane/DEE and DEE flames, right: n -butane/ n -butanol and n -butanol flames. Open 

symbols: EI-MBMS experiment, closed symbols: PI-MBMS experiment (only DEE and n- butane/DEE flames), thick lines: present model (using the temperature profiles mea- 

sured in Bielefeld). Note that experimental results have been connected by a spline function (thin lines) to guide the eye. 

Fig. 6. Comparison of maximum mole fractions of selected soot precursors and aldehydes formed in the flame series of (a,c) n -butane, DEE-containing mixture, and DEE 

and of (b,d) n -butane, n -butanol-containing mixture and n -butanol. Top: experiment, bottom: simulation (lighter shading). For clarity, normalization by the highest value is 

performed, and mole fraction scales are inverted for the simulations. 

4.3. Influence of DEE and n-butanol addition on pollutant formation 

In previous sections, some trends were noted regarding the in- 

fluence of DEE and n- butanol addition on the species pools. In 

this section we will discuss these effects more deeply with spe- 

cial emphasis on soot precursors and on aldehydes that may limit 

the use of these biofuels in terms of air quality improvement. 

Figure 6 presents comparisons between the n -butane, mixture, and 

oxygenated fuel flames, specifically comparing the measured and 

simulated peak mole fractions of toxic carbonyls including CH 2 O 

(formaldehyde) and C 2 H 4 O (sum of acetaldehyde and vinyl alco- 

hol), and of selected hydrocarbon species potentially involved in 

soot precursor formation including C 2 H 2 (acetylene), C 3 H 4 (sum 

of propyne and allene), C 3 H 6 (propene), C 4 H 2 (diacetylene), C 4 H 6 

(sum of 1,3-butadiene, 1,2-butadiene, and butyne), C 4 H 8 (sum of 

1-butene, 2-butene, and iso -butene), C 5 H 6 (1,3-cyclopentadiene), 

C 6 H 6 (sum of benzene and fulvene), C 7 H 8 (toluene), and C 8 H 10 

(ethylbenzene). To facilitate the identification of trends upon oxy- 

genated fuel addition in both experiment and simulation, we have 

normalized the peak mole fractions by the respective highest val- 

ues. Thus, Fig. 6 a provides trends in the experimental mole frac- 

tions for sequential change from pure n -butane fuel via their 1:1 

mixture to pure DEE, while Fig. 6 b shows such trends in the ex- 

periment for the sequence from n -butane via their 1:1 mixture to 

n -butanol. Bars for n -butane are distinguished by vertical line pat- 

terns, those for the oxygenated fuels by horizontal-line patterns, 

and mixtures are coded in plain grey. The respective trends from 

the simulations (in lighter shades) are given in Fig. 6 c and d be- 

low; mole fraction scales are inverted (“mirror image”) to facilitate 

recognition of trends. 

The formation of formaldehyde and acetaldehyde is observed 

to increase significantly upon the addition of both oxygenated fu- 

els. This undesirable trend has been considered as common con- 

cern for the use of oxygenated biofuels [6] . As mentioned ear- 

lier, formaldehyde and acetaldehyde are specific species of DEE 

or n -butanol decomposition and can be produced from these 

fuels via a few steps. In the case of DEE, large parts of ac- 

etaldehyde are formed via the reaction pathway DEE → DEE-YL- 

2 → CH 3 CHO + C 2 H 5 ( Fig. 2 ), while formaldehyde mainly rises from 

the decomposition of the C 2 H 5 O radical formed via the reac- 

tion route DEE → DEE-YL-1 → C 2 H 5 O + C 2 H 4 . In the case of n -butanol, 

acetaldehyde is mainly produced via tautomerization from vinyl 
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Fig. 7. Comparison of simulated peak mole fractions of C 4 –C 8 hydrocarbons in the 

flames of n -butane, n -butane/ n -butanol, and n -butanol. Simulations were performed 

using an identical equivalence ratio of φ = 1.7 and the same temperature profile as 

in the n -butane flame. For clarity, normalization by the highest value is performed. 

alcohol (C 2 H 3 OH). The formation of the latter species is pre- 

dominantly via the most important consumption pathway of n - 

butanol (NC 4 H 9 OH → C 4 H 8 OH-1 → C 2 H 3 OH + C 2 H 5 ). The second im- 

portant consumption pathway of n -butanol (NC 4 H 9 OH → C 4 H 8 OH- 

3 → C 3 H 6 + CH 2 OH) contributes to a large part of formaldehyde via 

the reaction CH 2 OH + O 2 → CH 2 O + HO 2 ( Fig. 2 ). 

Regarding hydrocarbon species involved in soot precursor for- 

mation, it is important to note that their peak mole fractions de- 

crease significantly with DEE as neat fuel or additive ( Fig. 6 a), 

whereas n -butanol surprisingly shows no significant reduction ef- 

fects or even higher formation of hydrocarbon species, especially 

in the C 4 –C 8 range ( Fig. 6 b). Remember that the C/O and C/H ra- 

tios are the same for all flames. These tendencies have been ex- 

perimentally observed and are also well predicted by the present 

model ( Fig. 6 c,d). While the decrease of soot precursor species in 

flames containing DEE is expected, because primary reactions of 

DEE mainly release small hydrocarbon species with one and two 

carbon atoms ( Fig. 2 ), their increase upon adding n- butanol is un- 

desirable and merits further explanations that will be presented in 

the next paragraph. 

The formation of larger amounts of higher hydrocarbons in the 

flames containing n -butanol compared to the n -butane flame could 

result from several effects. To examine whether a higher equiva- 

lence ratio used for the n- butanol flame ( φ = 1.8 vs. φ = 1.7 in 

the n- butane flame) is the reason for the noted trend, we per- 

formed additional simulations for the n -butane/ n -butanol and n - 

butanol flames at an identical equivalence ratio of φ = 1.7, using 

the same temperature profile as in the n- butane flame. Figure 7 

displays the results of these simulations, with a focus on the C 4 -C 8 

species. These results again show no significant reduction effect or 

even higher mole fractions of these species in the flames contain- 

ing n -butanol versus the n -butane flame. 

The higher ability to form higher hydrocarbon species typically 

regarded as soot precursors in the flames containing n -butanol is 

most likely a result of the fuel structure, in which chemical groups 

and carbon-chain length are different from those of DEE. To exam- 

ine this potential influence, an additional rate-of-production anal- 

ysis was performed for the formation of selected soot precursors 

in the n -butane/ n -butanol flame ( φ = 1.75) at h ∼2.5 mm (near the 

peak mole fraction of unsaturated cyclic species), corresponding to 

a temperature of 1480 K, and presented in Fig. 8 . The formation of 

benzene and fulvene (C 6 H 6 ) is influenced by the n -butanol decom- 

position via the formation of propene (C 3 H 6 ). The latter species 

can be produced partially from n -butanol via the C 4 H 8 OH-3 radi- 

cal ( Fig. 2 ), and reacts to form allyl (C 3 H 5 -A) by H-abstractions ( Fig. 

8 ). Recombination of C 3 H 5 -A and propargyl radicals (C 3 H 3 ) is the 

main source of benzene formation. The formation of further un- 

saturated cyclic/aromatic soot precursors including cyclopentadi- 

enyl (C 5 H 5 ), 1,3-cyclopentadiene (C 5 H 6 ), toluene (C 7 H 8 ), and ethyl 

Fig. 8. Reaction-pathway analysis for the formation of selected soot precursor 

species in the n -butane/ n -butanol flame ( φ = 1.75) for h ∼2.5 mm corresponding to 

a temperature of ∼1480 K. Percentages are relative rates of production of the given 

species. Dashed arrows represent a series of reactions in the present mechanism 

(details can be found in Fig. 2 ). 

benzene (C 8 H 10 ) is significantly affected by the formation of 1- 

butene (C 4 H 8 -1) ( Fig. 8 ). The latter species is mainly formed from 

n -butanol via H-abstractions followed by C-O β-scission, and via a 

complex fission involving four-center elimination of water. When 

flames contain n -butanol, the formation of 1-butene is enhanced, 

and this induces an increase of those species with four or more 

carbon atoms including unsaturated cyclic species ( Fig. 6 b). Con- 

trary to the case of n -butanol, this water elimination reaction can- 

not occur in the decomposition of DEE, and all important pri- 

mary reactions of DEE lead to the formation of small hydrocar- 

bon species with one or two carbon atoms as discussed previously 

( Fig. 2 ); therefore flames containing DEE produce significantly 

lower amounts of soot precursors in comparison to those blended 

with similar amounts of n -butanol. This difference in soot precur- 

sor formation between DEE and n -butanol results simultaneously 

from the difference of their chemical groups as well as in their 

carbon-chain length. 

As a further interesting aspect regarding to the flames with hy- 

drocarbon/oxygenated fuel mixtures, it may be essential to know 

whether interactions occur between the intermediate pools of both 

fuels. To analyze the situation for both experiment and simula- 

tion, we compare the peak mole fractions x i ,mix of intermediates 

in the mixture flames ( n -butane/DEE or n -butane/ n -butanol) with 

those calculated as mean values x i ,mean from the contributions of 

the pure fuels by Eq. (4) . 

x i, mean = x i, Bu · 0 . 5 + x i, O x · 0 . 5 (4) 

where, x i ,Bu is the maximum mole fraction of species i in the pure 

n -butane flame and x i, O x is the maximum mole fraction of species 

i in the pure DEE (or n -butanol) flame. We assume that whenever 

x i ,mix deviates noticeably from x i ,mean , the formation of species i 

may be influenced by the interaction of the intermediate pools and 

is not simply formed by both formation pathways of the two fuels 

individually. These deviations are shown in Fig. 9. 
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Fig. 9. Deviation of the peak mole fractions of selected hydrocarbon and carbonyl 

species of the mixture flames from those calculated by the mean value of the pure 

flames using Eq. (4) . Positive values indicate a higher formation of the species in 

the mixture than what has been calculated by Eq. (4) and vice versa. Top: Mix- 

ture of n -butane and DEE, bottom: Mixture of n -butane and n -butanol. Results for 

the simulations are shown with different core models (NUIG or Cottbus). Note that 

ethylbenzene is not included in the Cottbus model. 

It can be noted that although a good agreement between the 

experiment (squares in Fig. 9 ) and the simulations with the NUIG 

core model (circles in Fig. 9 ) for the relative trends is observed for 

several species, a conclusion regarding interactive effects on the 

formation of intermediates does not seem easy to give, because 

the deviation of x i, mean and x i ,mix in the experiments is mostly 

quite close to the order of the estimated relative experimental er- 

ror ( ∼5%); moreover, the difference is more pronounced in the 

simulations for some species and vice versa. Note that relative er- 

rors in the model predictions are unknown. In the following, we 

thus only discuss species for which the difference between x i ,mean 

and x i ,mix in both experiment and the simulation with the used 

NUIG core model is higher than 5%. This criterion applies only to a 

few larger hydrocarbon species, including C 5 H 6 , C 6 H 6 , and C 7 H 8 in 

the flames containing DEE, and C 7 H 8 and C 8 H 10 in the flames con- 

taining n -butanol. These species are known as important soot pre- 

cursors. Figure 9 shows that x i, mix of these species in the mixture 

flames is lower than x i, mean . This trend, which is observed in both 

experiments and model predictions, could result from several ef- 

fects including thermal, transport, and/or chemical effects. The lat- 

ter influences could involve synergies between reaction pathways 

of both fuels, and more detailed modeling efforts will be needed 

for their analysis, especially in view of experimental uncertainties 

and unknown predictive quality of the kinetic models for these 

heavy species. 

As one initial test, we have replaced the core model of the 

NUI-Galway group by another systematically constructed model 

recently reported by the Cottbus group in [64] . That reaction 

database contains species from C 0 to large polycyclic aromatic hy- 

drocarbons such as naphthalene and 3-ring species, and it was val- 

idated against extensive experimental data as described in [64] . 

Results (triangles in Fig. 9 ) using the Cottbus core model indi- 

cated very limited deviations ( ≤5%) of x i, mix from x i, mean for all 

species presented in Fig. 9 , with the exception of C 5 H 6 in the 

flames containing DEE, for which the difference between x i ,mix 

and x i ,mean was ∼10% with an opposite trend to that obtained ex- 

perimentally and with the NUIG core model. Moreover, for larger 

species such as benzene and toluene, simulation using the NUIG 

core model predicts higher deviations of x i, mix from x i ,mean (as 

mentioned earlier), while simulation using the Cottbus core model 

shows almost no deviation. Because of these differences noted 

with two established core models used to represent the chemistry 

of the n -butane base flame, such comparisons, while they might 

seem interesting, should be interpreted with utmost care. A rig- 

orous analysis regarding the predictive capabilities of respective 

core models for such questions as well as high-quality experimen- 

tal data, particularly for higher equivalence ratios where interac- 

tive reactions could be expected to be stronger, will be needed 

to answer the delicate question of interaction between fuel- 

specific species pools in prototypical hydrocarbon/oxygenated fuel 

mixtures. 

5. Summary and conclusions 

The influence of the addition of DEE and its isomer n -butanol 

to n -butane on the flame structure, intermediate species compo- 

sition, and pollutant formation has been investigated by examin- 

ing mole fraction profiles of species in five different fuel-rich n - 

butane flames ( φ = 1.7–1.8) containing 0%, 50%, and 100% each 

of these oxygenated fuels, with keeping the same C/O ratio (0.52), 

argon dilution (25%), pressure (4 kPa), and gas velocity (73 cm s −1 

at 333 K, 4 kPa). EI-MBMS-GC and SVUV-PI-MBMS were used to 

identify and quantify more than 40 stable and radical species in 

the range of C 0 –C 8 in each flame. A kinetic model has been es- 

tablished to interpret the obtained results, by combining differ- 

ent sub-mechanisms available in the literature. The results demon- 

strate that the formation of toxic carbonyls, such as formaldehyde 

and acetaldehyde, is enhanced significantly in flames containing 

the oxygenated fuels. Mole fractions of hydrocarbon species in- 

volved in soot precursor formation are significantly reduced in 

flames containing DEE, while n -butanol shows no significant re- 

duction effects or even higher formation of soot precursor species. 

This trend was observed in both experiment and model predic- 

tion and it remained valid when identical temperature profile and 

equivalence ratio were assumed in the simulation. The higher abil- 

ity to form soot precursors could thus mainly be a consequence 

of the molecular structure of n -butanol and its associated com- 

bustion reactions. Particularly, H-abstractions followed by C-O β- 

scission or a complex fission involving four-center elimination of 

water lead to the formation of 1-butene which can play an im- 

portant role in the formation of soot precursors including un- 

saturated cyclic species. Diethyl ether, which is mainly decom- 

posed under formation of smaller hydrocarbon species with one or 

two carbon atoms, does not contribute similarly to such reactions 

and might thus be regarded as the potentially preferable biofuel 

isomer. 
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Abstract
With the aim to study potential cooperative effects in the low-temperature oxidation of dual-
fuel combinations, we have investigated prototypical hydrocarbon (C5H12) / oxygenated
(C2H6O) fuel mixtures by doping n-pentane with either dimethyl ether (DME) or ethanol
(EtOH). Species measurements were performed in a flow reactor at an equivalence ratio of
𝜑=0.7, at a pressure of p=970 mbar, and in the temperature range of 450–930 K using
electron ionization molecular-beam mass spectrometry (EI-MBMS). Series of different
blending ratios were studied including the three pure fuels and mixtures of n-pentane
containing 25% and 50% of C2H6O. Mole fractions and signals of a significant number of
species with elemental composition CnH2n+xOy (n=1–5, x=0–(n+2), y=0–3) were analyzed
to characterize the behavior of the mixtures in comparison to that of the individual
components. Not unexpectedly, the overall reactivity of n-pentane is decreased when
doping with ethanol, while it is promoted by the addition of DME. Interestingly, the
present experiments reveal synergistic interactions between n-pentane and DME, showing a
stronger effect on the negative temperature coefficient (NTC) for the mixture than for each
of the individual components. Reasons for this behavior were investigated and show several
oxygenated intermediates to be involved in enhanced OH radical production. Conversely,
ethanol is activated by the addition of n-pentane, again involving key OH radical reactions.
Although the main focus here is on the experimental results, we have attempted, in a
first approximation, to complement the experimental observations by simulations with
recent kinetic models. Interesting differences were observed in this comparison for both,
fuel consumption and intermediate species production. The inhibition effect of ethanol is
not predicted fully, and the synergistic effect of DME is not captured satisfactorily. The
exploratory analysis of the experimental results with current models suggests that deeper
knowledge of the reaction chemistry in the low-temperature regime would be useful and
might contribute to improved prediction of the low-temperature oxidation behavior for
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Abstract: With the aim to study potential cooperative effects in the low-temperature oxidation of dual-

fuel combinations, we have investigated prototypical hydrocarbon (C5H12) / oxygenated (C2H6O) fuel 

mixtures by doping n-pentane with either dimethyl ether (DME) or ethanol (EtOH). Species 

measurements were performed in a flow reactor at an equivalence ratio of ϕ=0.7, at a pressure of 

p=970 mbar, and in the temperature range of 450–930 K using electron ionization molecular-beam 

mass spectrometry (EI-MBMS). Series of different blending ratios were studied including the three 

pure fuels and mixtures of n-pentane containing 25% and 50% of C2H6O. Mole fractions and signals 

of a significant number of species with elemental composition CnH2n+xOy (n=1–5, x=0–(n+2), y=0–3) 

were analyzed to characterize the behavior of the mixtures in comparison to that of the individual 

components. Not unexpectedly, the overall reactivity of n-pentane is decreased when doping with 

ethanol, while it is promoted by the addition of DME. Interestingly, the present experiments reveal 

synergistic interactions between n-pentane and DME, showing a stronger effect on the negative 
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temperature coefficient (NTC) for the mixture than for each of the individual components. Reasons 

for this behavior were investigated and show several oxygenated intermediates to be involved in 

enhanced OH radical production. Conversely, ethanol is activated by the addition of n-pentane, again 

involving key OH radical reactions. Although the main focus here is on the experimental results, we 

have attempted, in a first approximation, to complement the experimental observations by simulations 

with recent kinetic models. Interesting differences were observed in this comparison for both, fuel 

consumption and intermediate species production. The inhibition effect of ethanol is not predicted fully, 

and the synergistic effect of DME is not captured satisfactorily. The exploratory analysis of the 

experimental results with current models suggests that deeper knowledge of the reaction chemistry in 

the low-temperature regime would be useful and might contribute to improved prediction of the low-

temperature oxidation behavior for such fuel mixtures. 

 

Keywords: Dual-fuel strategy, low-temperature oxidation, chemical interaction, n-pentane, dimethyl 

ether, ethanol, EI-MBMS, flow reactor 
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1. Introduction 

Adverse effects on the environment and climate caused by the combustion of fossil fuels in 

conventional engines underline the need for more efficient and cleaner engine–fuel combinations [1,2]. 

Fuel additives as a component of intelligent fuel design can serve to control the ignition timing in 

advanced engine concepts using homogeneous charge compression ignition (HCCI), reactivity-

controlled compression ignition (RCCI), and stratified-charge compression ignition (SCCI), with the 

prospect of cleaner burning processes and higher thermal efficiencies [3,4]. However, the operation of 

such engine–fuel combinations must rely on the fundamental knowledge of the combustion chemistry 

that drives the low-temperature auto-ignition of fuel mixtures. Such low-temperature combustion (LTC) 

strategies can involve mixtures of high-cetane and high-octane fuels with their synergistic combustion 

characteristics to achieve high thermal efficiencies, and several approaches have been demonstrated, 

e.g. using primary reference fuels with additives to achieve efficient engine control and ignition timing 

[5,6]. High-cetane fuels usually auto-ignite early, showing typical low-temperature heat release (LTHR) 

and high-temperature heat release (HTHR) characteristics. The addition of high-octane fuels 

suppresses the early LTHR, shifting more of the heat release from high-cetane fuels closer to the top 

dead center of engines, thereby improving the combustion efficiency in internal combustion engines. 

Dual-fuel mixtures are a good basis to understand the chemistry of multi-component mixtures. In 

spite of its importance for practical applications in engines, however, detailed information regarding 

potential interactions between different fuel components in the LTC regime remains scarce. The auto-

ignition of mixtures with simple molecular structures was investigated recently [7,8], including 

methane/dimethyl ether (DME) and propane/DME blends. These studies have profited from the 

numerous low-temperature oxidation investigations of light C3–C4 alkanes [8–18] as a substantial basis 

to examine dual-fuel interactions. Regarding heavier alkanes, n-heptane/ethanol (EtOH) blends were 

investigated by Saisirirat et al. [19,20] under HCCI and jet-stirred reactor (JSR) conditions, with a 

noted impact of n-heptane on ethanol consumption between 600 and 700 K. Their work mainly focused 

on ignition delay times, however, and only a few intermediates were observed which could not 
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illustrate the nature of the interaction between n-heptane and ethanol [19,20]. A challenge to fully 

understand such interactive effects for fuels of the size of n-heptane or iso-octane is the large number 

of isomeric structures that are formed in the low-temperature oxidation reactions via alkyl (R), 

peroxyalkyl (ROO), and hydroperoxyalkyl (QOOH) radicals. The identification and quantification of 

these radicals and their subsequent reaction products are often beyond the capability of commonly 

used diagnostic techniques. Furthermore, significant uncertainties exist in the pressure-dependent 

kinetic parameters of these reactions [21–25] which limit the further development of accurate kinetic 

models. As a reasonable compromise, we have therefore chosen n-pentane (C5H12), an alkane 

component in gasoline, as the primary fuel in this work to explore its interaction with fuel additives of 

different ignition reactivity.  

As for lighter or heavier alkanes [8–18,21–25], a number of studies have been performed of the 

low-temperature oxidation of n-pentane, using rapid compression machine (RCM) [26–35], shock tube 

(ST) [34–36], and JSR [37–40] experiments. Most of the previous experimental work focused on the 

macroscopic auto-ignition behavior of n-pentane, with detailed speciation reported only in recent 

publications of Bugler et al. [39] and Rodriguez et al. [40]. Bugler et al. [39] have also developed a 

mechanism for the auto-ignition of pentane isomers which they examined against JSR data (500–

1100 K, 1 and 10 atm) obtained by gas chromatography (GC), cavity ring-down spectroscopy (CRDS), 

and Fourier transform infrared spectroscopy (FTIR). Rodriguez et al. [40] complemented the 

atmospheric-pressure JSR experiments in the temperature range of Bugler et al. [39] with 

measurements using synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-

PIMS). Their experiment successfully identified and separated contributions of different isomers, 

especially of saturated, unsaturated, and carbonyl hydroperoxides. These recent investigations support 

the choice of n-pentane as base fuel for the present work. 

DME and ethanol have been selected as isomeric fuel additives of different reactivity in this study. 

They are considered as potential or widely applied biofuels that could reduce the emission of air 

pollutants [1,41,42]. DME has been used as a fuel additive or alternative fuel in compression ignition 
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engines because of its excellent auto-ignition characteristics [43]. It has a high cetane number (CN=55) 

and was found to be an excellent ignition improver for HCCI engines [44,45]. The present knowledge 

on these two isomeric fuels' low-temperature oxidation reactions is more detailed for DME than for 

ethanol. Experimental investigations, including ignition delay [7,46] and speciation [41,47–54] 

measurements in JSRs and flow reactors have laid an extensive foundation for DME's reaction kinetics. 

Quantum chemical calculations were performed for both the first and second O2 addition reactions, as 

well as the further reactions of the CH3OCH2O2 (ROO) and CH2OCH2OOH (QOOH) intermediates 

[55]. The pressure-dependent description for these reactions is sensitive to the low-temperature 

oxidation of DME [56], which was well considered in the recently published DME models of Burke 

et al. [7] and Rodriguez et al. [57]. Very recently, Jiang et al. [58] determined ignition delay times of 

n-pentane/DME mixtures and their experimental results compared favorably to the pentane isomer 

model by Bugler et al. [35]. The situation for a detailed study including reactive intermediates of 

n-pentane/DME interactive mixture effects in the LTC regime attempted here should thus be 

considered favorable.  

Ethanol is a commonly used additive to fossil transportation fuels. Different from DME, ethanol 

has a high research octane number (RON=109 [59]) and displays single-stage ignition. Compared to 

ample studies on the high-temperature combustion of ethanol, its low-temperature oxidation chemistry 

has attracted lesser attention [51,60–63]. Haas et al. [61] and Herrmann et al. [51] studied the oxidation 

of pure ethanol in flow reactor conditions with somewhat different results. Very weak negative 

temperature coefficient (NTC) behavior might have been observed for the rich ethanol/O2/Ar mixture 

by Herrmann et al. [51] as evident from their figure 3a, but not in the work of Haas et al. [61]. The 

model of Cancino et al. [60] also showed a slight NTC behavior in the reproduction of Herrmann et 

al.’s data [51], but no further studies confirmed these results. Recognizing these difficulties, ethanol 

auto-ignition has been investigated very recently for ST and RCM conditions by adding DME as a 

radical initiator [64]. 

Regarding this background, it is to be expected that n-pentane will exhibit different global NTC 
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behavior when blended with either isomer of C2H6O, namely DME or ethanol. However, there is a 

lack of prior information on the detailed oxidation reactions and intermediate species mole fractions 

or on any potential interactions between the two fuels in such mixtures. We therefore provide 

speciation experiments in a flow reactor for both, the dual-fuel mixtures of n-pentane/DME and 

n-pentane/EtOH, at near-atmospheric pressure and in the temperature range of 450 to 930 K. The 

species composition along the reaction progress was analyzed using electron ionization 

molecular-beam mass spectrometry (EI-MBMS). The results for the mixtures were compared to the 

behavior of each individual fuel component. Temperature-resolved, extensive species information has 

thus been obtained systematically regarding synergistic or antagonistic effects between these fuels of 

different reactivity, and combined with an analysis of the detailed chemical oxidation pathways.  

 Although the main emphasis in the present work is on the experimental results, we have 

complemented the measured species data with initial simulations by two recent kinetic models. 

Specifically, we have used the model for pentanes of the Galway group [39] and the recent update of 

the Polimi mechanism [17]. Discrepancies between experiment and simulation were noted and are 

discussed in an attempt to improve the understanding of the low-temperature oxidation mechanisms 

for these mixtures including interactive effects. 

 

2. Experimental and numerical approaches 

2.1 Flow reactor experiment 

The low-temperature oxidation reactions of n-pentane, DME, ethanol, and the respective dual-fuel 

mixtures were investigated in a flow reactor in the temperature regime of 450–930 K (step size 

ΔT=5 K), keeping several important parameters constant. The experiments were consistently 

performed at ϕ=0.7, 970 mbar, a total cold gas flow rate of 300 sccm (standard cubic centimeters per 

minute at 1 atm and 273.15 K), and an argon dilution of 90%. A lean stoichiometry was chosen due to 

the importance of lean and efficient burning and of the influences of high amounts of oxygen for the 

formation of oxygenated species. Electron ionization molecular-beam mass spectrometry was 
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employed to identify the species composition. A detailed description of the experimental set-up, 

including both the reactor and mass spectrometry technique, has been reported earlier [41,51,52] so 

that only some details of importance for the present experiment are given here. 

The reactor is a fused silica tube with an inner diameter of 8 mm. Its total length is 1.4 m, with a 

heating area of 1.3 m that is divided into 8 independently regulated zones [65]. These are heated using 

an electrical furnace and are controlled by Ni-Cr/Ni thermocouples at the outside wall of the reactor. 

The exhaust gas from the reactor is extracted with a quartz nozzle (50 μm orifice) at the reactor exit 

and guided via a copper skimmer and a two-stage differential pumping system into the ionization 

chamber of the mass spectrometer. Molecules are then ionized by a 17 eV electron beam and detected 

by their time of flight with a resolution of m/Δm ≈ 2200, enabling the separation of hydrocarbon and 

oxygenated species of the same nominal mass. 

The inlet conditions for the oxidation experiments are listed in Table 1 and address the three 

individual fuels as well as two sets each of n-pentane mixtures with DME or EtOH. n-Pentane (≥99%) 

was supplied by ChemSolute, and ethanol (≥99.96%) was provided by VWR Chemicals. Gases were 

obtained from Linde AG, including dimethyl ether (≥99.9%), O2 (≥99.5%), and Ar (≥99.996%). The 

fraction of n-pentane in the mixture is expressed as γ in Table 1. The delivery of n-pentane and ethanol 

relied on a dialysis pump (Protea PM-1000) providing flow rates in the μl/min range with uncertainties 

of 1%. To prepare the respective mixtures, gases were metered by calibrated mass flow controllers 

(MKS Instruments, uncertainty ~5%), and liquid fuels were vaporized, mixed with the gases, and then 

preheated to 423 K prior to the reactor inlet. 
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Table 1. Experimental conditions; γ is the fraction of n-pentane in the mixture: γ=xC5H12/(xC5H12+xd), 

d: DME or EtOH. 

Fuel Name P (bar) ϕ γ 
Gas flow rate (sccm), std. 273.15 K, 1 atm 

Total Ar O2 C5H12 DME EtOH 

n-Pentane (C5H12) P100 0.97 0.7  300.0 270.0 27.59 2.414   

Dimethyl ether (DME) D100 0.97 0.7  300.0 270.0 24.32  5.676  

Ethanol (EtOH) E100 0.97 0.7  300.0 270.0 24.32   5.676 

C5H12/DME mixtures 
PD75 0.97 0.7 0.75 300.0 270.0 27.18 2.114 0.705  

PD50 0.97 0.7 0.50 300.0 270.0 26.61 1.694 1.694  

C5H12/EtOH mixtures 
PE75 0.97 0.7 0.75 300.0 270.0 27.18 2.114  0.705 

PE50 0.97 0.7 0.50 300.0 270.0 26.61 1.694  1.694 

 

Quantitative species mole fractions were determined whenever possible according to the procedure 

by Schenk et al. [66] using Ar as the reference. Following that work, the ratio of the integrated ion 

signal of a species to a reference signal is proportional to the ratio of their mole fractions, weighted by 

an energy-dependent calibration factor that includes a number of relevant experimental parameters. 

Here, the calibration factors for major species (C5H12, DME, EtOH, O2, H2O, CO, and CO2) were 

determined from calibration with cold-gas samples and using the C, H, and O element balances at 

high-temperature equilibrium conditions. Intermediates were calibrated by simulating the signal 

("convolution" method in [66]). The resulting uncertainties of mole fractions for major species are 

typically within 15%, and those for intermediate species are within a factor of 2, depending on the 

available cross section information from the literature. In cases where electron ionization cross sections 

or calibration information was not available as for some of the detected oxygenated species, relative 

species profiles are reported in terms of signal intensities normalized by the respective fuel inlet mole 

fraction to facilitate the analysis of trends between the behavior of individual mixture components and 

the mixtures. All experimental data reported in this work are provided in Supplementary Material 1 

(SM1). 
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2.2 Numerical simulation 

Simulations of the oxidation process in a laminar flow reactor have typically assumed a constant gas 

temperature or have relied on measured gas temperature profiles along the reactor, determined in non-

reactive flows at identical reactor wall temperature [41,49,67]. Heat release in such reacting systems, 

typically approximated as negligible for highly diluted mixtures, is thus not considered, and 

consequently, negligible heat transfer between the reacting gas and the reactor wall is assumed, as no 

highly diluted conditions have been used here (10% reactive mixture). This limit may not be applicable 

for less diluted conditions, especially since temperature is a very sensitive parameter in the low-

temperature oxidation process. An accurate physical model of a laminar flow reactor should consider 

mass convection, mass diffusion, heat release of the reacting gas, thermal conductivity, and thermal 

exchange with the wall of the reactor.  

 Since this work is mainly focused on reporting experimental results, we provide only a first 

approximation of model predictions for the investigated conditions. The simulation of the flow reactor 

using the OpenSMOKE++ package [68] follows procedures by Refs. [51,65]. A multi-zone approach 

was used, dividing the reactor into a pre-heating zone (14 cm), a reaction zone (111 cm), and a cooling 

zone (5 cm). A time-resolved non-isothermal solution was applied. The temperature profile of the non-

reacting argon flow was measured along the reactor at different heating temperatures, and the heat 

transfer coefficient k for transfer between the heating furnace and the reacting gas through the flow 

reactor wall was evaluated by simulating a pure (non-reactive) argon flow. As a result, a coefficient of 

k=10 W m-2 K-1 was assigned for all reaction conditions. Details for the evaluation of k are provided 

together with the measured and simulated gas temperature profiles (Fig. S1) in Supplementary 

Material 2 (SM2). We acknowledge that this approach may reach its limits for the reactive mixtures 

with very temperature-sensitive chemistry, and suggest that the assumptions made here should be 

tested with more refined models in the future that might consider two-dimensional effects and 

changing heat transfer depending on reaction conditions.  

 For the initial simulation, two recent mechanisms were chosen to explore the interaction between 
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n-pentane and dimethyl ether or ethanol. The mechanism by Bugler et al. [39], here called the NUIG 

model, provides a low-temperature oxidation pentane sub-mechanism, which was improved based on 

their previous model [35] and examined against ignition delay times and JSR experimental data. The 

DME and ethanol sub-mechanisms in the NUIG model were also comprehensively investigated in 

their former kinetic studies [7,49,62]. Also, we have chosen the long-term developing and regularly 

updated model by Ranzi et al. [17], here called Polimi model. Their recent improvements in the low-

temperature oxidation chemistry were focused on the reaction of carbonyl-hydroperoxides and peroxy 

radicals [17,21]. In any case, comparisons of our experimental data reported here with model 

simulations should be regarded as an initial exploration focused mainly on the trends observed for the 

mixtures, with the aim to detect substantial deviations between experiment and model that may serve 

to guide further model development. 

 

3. Results and discussion 

In this section, experimental results are presented for the dual-fuel mixtures and analyzed in 

consideration of those for the individual fuels. The main aim is to detect and contribute to 

understanding differences in reactivity and species formation in the low-temperature regime with n-

pentane as the base fuel upon addition of each of the two oxygenated isomers. In addition, initial 

modeling is performed for the three individual fuels and the mixtures to examine, in particular, their 

capability to reproduce the trends in the low-temperature oxidation behavior. Generally, we will limit 

the model analysis to the NUIG model [39], with some additional results given for the Polimi model 

[17], especially to illustrate differences in the prediction for the fuel mixtures. A species list of the 

NUIG model with all species discussed in this work can be found in Table S1 in SM2 with formula, 

model name, nomenclature and structure.  

  Section 3.1 will present the conversion of the individual fuels and the dual-fuel combinations. 

Section 3.2 will provide more detailed insight into the reaction pathways for the different fuel 

components by reporting temperature-dependent profiles of intermediate species with an emphasis on 
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the behavior of the fuel mixtures. Section 3.3 will conclude with selected aspects of the low-

temperature chemistry of these dual-fuel combinations. 

 

3.1 Reactivity of dual-fuel mixtures 

Selected experimental results for the low-temperature oxidation of all individual fuels and fuel 

combinations listed in Table 1 are given in Fig. 1. It shows the consumption of fuel and O2 as well as 

the formation of H2O and permits a first inspection of the temperature-dependent oxidation behavior. 

All major species profiles are presented in Figs. S2–S8 in SM2 together with simulations with the 

NUIG and Polimi models. The profiles in Fig. 1 are presented with the same scale, and a thin broken 

line at 616 K, the temperature for the low-temperature minimum of n-pentane consumption, is included 

to facilitate comparison. 

As expected, both n-pentane and DME show a two-stage oxidation behavior (n-pentane: 616 K and 

830 K, DME: 550 K and additional ignition at 750 K not in the focus here), while the consumption of 

ethanol starts only above 750 K. The low-temperature minimum of the fuel mole fraction near 550 K 

for DME is significantly lower than for n-pentane at 616 K. These temperatures compare quite well 

with the results of Herrmann et al. [51] for DME and ethanol (see also the Supplemental Material of 

that paper), and of Bugler et al. [39] for n-pentane, considering the slightly different conditions in 

those studies. Increasing addition of DME to n-pentane increases the reactivity and shifts the minimum 

to temperatures below that for pure n-pentane. Ethanol/n-pentane mixtures show some low-

temperature reaction already for PE50 as particularly evident from the H2O mole fraction with a peak 

near 625 K, and further increasing reactivity for PE75, with minima shifted to higher temperatures 

than for pure n-pentane.  

  In Fig. 2, the interaction effects are visualized in more detail, showing only the fuel consumption 

curves including predictions with both models. The four panels (a-d) consider these effects with 

n-pentane as the base fuel to which increasing amounts of DME (a,c) and ethanol (b,d) are added. 

Every profile is normalized by the inlet mole fraction of n-pentane in the specific mixture to ensure 
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comparability between the measurements. The bottom two panels (e,f) take an inverse perspective, 

with DME and ethanol as the respective basis and a corresponding normalization. Because of the 

normalization, identical profiles would be expected if no mixture effects occurred. 

  The enhancement of the reactivity of n-pentane by DME in panels (a,c) in Fig. 2 is quite well 

reproduced by both models. The experimental profiles are slightly shifted towards lower temperatures 

and may indicate a small trend of increasing low-temperature fuel conversion (conversion = 1 – 

consumption) that is, however, within the experimental uncertainty. In the NTC region, some 

differences are seen in the shape of the experimental profiles with increasing DME addition, and the 

recovery of the fuel mole fraction towards the initial value near 750 K is less pronounced for the PD50 

mixture. The NUIG model reproduces the shape of the profile excellently for the pure n-pentane 

condition and catches the trends for all conditions quite well. With shifts to lower temperatures by 

about 12 K for PD75 and 22 K for PD50 and an increase in low-temperature fuel conversion, it slightly 

over-predicts the effect of DME on the reactivity. With the Polimi model, the predictions are closer to 

the experimental results, with shifts by about 8 K and 16 K to lower temperatures and almost identical 

fuel consumption in this regime, and a slightly better representation of the profiles also at higher 

temperatures. A tendency towards predicting two peaks can be noted in the NTC region for both the 

PD75 and PD50 mixtures. This effect is seen also in the major species curves in Figs. S5 and S6 in 

SM2. The reason for this behavior seems to be related to the representation of heat transfer in the 

numerical simulation (see Section 2.2), since exploratory modeling results for these two neat fuels and 

their mixtures without considering the heat release of the reacting gases (Figs. S9–S12 in SM2) do not 

show this two-peak behavior. As explained above in Section 2.2, the present modeling results should 

be considered as a first approximation, awaiting a more full description of two-dimensional effects and 

changing heat release that is, however, beyond the present study with a mainly experimental focus. 

  As seen in Fig. 2b,d, the addition of ethanol significantly inhibits the consumption of n-pentane in 

contrast to the effect of DME. It shifts the consumption temperature to a higher region, narrows the 

temperature window of the NTC zone, and significantly reduces the maximum fuel conversion. Both 
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models can well reproduce the n-pentane profile for the PE75 mixture but fail for PE50. The measured 

maximum conversion of n-pentane in PE50 is near 40%, while the NUIG model predicts only about 

20% and the Polimi model shows only very weak low-temperature reaction.  

  Instead of focusing on n-pentane as the base fuel to which DME or ethanol is added, the opposite 

perspective is assumed in Fig. 2e,f which reports the consumption profiles for the oxygenated fuels. 

From this perspective, the addition of n-pentane inhibits the low-temperature behavior of DME but 

promotes that of ethanol. The strong effect evident from the experiments upon n-pentane addition to 

DME (Fig. 2e) is also reflected in the model predictions. The measured low-temperature consumption 

profiles are shifted to higher temperatures by 35 K for PD50 and 49 K for PD75. Both NUIG and 

Polimi models overestimate the reactivity of DME in the mixture conditions, and the NUIG model 

presents a wider temperature shift than the Polimi model. Also, differences are noted between 

experiment and model in the consumption around 725 K as a function of n-pentane addition, not well 

reflected in the NUIG model that apparently considers only weak interaction between both fuels and 

thus leads to negligible deviations between the PD75 and PD50 cases. The Polimi model results in a 

slightly better match with the experimental consumption curve in this region. A synergistic effect 

between DME and n-pentane is observed in the experiment, detecting somewhat higher conversion of 

these two active fuels in their mixtures than for each fuel individually. Trends in the two models differ 

in this respect.  

  The addition of n-pentane to ethanol enhances the ethanol reactivity in the low-temperature region 

(Fig. 2f). While inhibition of n-pentane consumption in this regime was already visible upon 50% 

ethanol addition (PE50, Fig. 2b,d), ethanol conversion in the PE50 mixture is negligible within the 

experimental uncertainty (therefore not included in Fig. 2f). A strong promotion tendency of n-pentane 

is seen for the PE75 mixture that shows a maximum low-temperature ethanol conversion of 35%. One 

reason why the ethanol mole fraction could decrease would be a dilution effect by n-pentane; the total 

moles of the reacting gas can expand due to the oxidation of n-pentane, leading to a reduction of the 

ethanol mole fraction. To confirm the reaction of ethanol near 650 K, the result of a simulation with 
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an assumed non-reactive ethanol species is provided in Fig. S13 in SM2 that shows the dilution effect 

to be negligible compared to the chemical reaction. The experimental observations for n-pentane 

addition to ethanol are reasonably well predicted by both models (Fig. 2f). 

  For a deeper understanding of the low-temperature reaction behavior of the fuel mixtures in 

consideration of the detailed reactions of the individual components, intermediate species formation 

along the fuel decomposition and oxidation reaction pathways will be presented with a focus on the 

experimental data, including discussion of simulation trends with the NUIG model. 

 

3.2 Intermediate species formation 

In the following, we will discuss the formation of key intermediate species observed in the low-

temperature oxidation of the dual-fuel mixtures in view of the reaction pathways of the individual fuel 

components. Although the general structure of these LTC pathways is quite well known, schematic 

diagrams for the fuel-specific reactions in this study are presented for n-pentane in Fig. 3 and for the 

two oxygenated fuels in Fig. 4. They are intended to facilitate identification of intermediate species 

discussed in the text by their mass and molecular structure (compare also Table S1 in SM2) as well as 

by an assigned code number. 

  The following discussion is organized along the reaction pathways of n-pentane and will present 

the experimentally observed species profiles for this base fuel and the dual-fuel mixtures regarding 

important classes of low-temperature intermediates and changes upon DME and ethanol addition. 

Simulation results with the NUIG model are included for orientation. 

  Starting with the fuel n-pentane (RH, P1), H-abstraction forms the fuel radicals (R, P2) and the 

subsequent first oxygen addition yields pentylperoxy radicals (ROO, P3), not detectable in the present 

experiment, however. ROO can either form hydroperoxypentanes (P4) by H-addition or alkenes (P5) 

by HO2-elimination or isomerize to QOOH radicals (P6). Along the reaction progress, the first stable, 

and thus detectable species are hydroperoxypentanes (P4) and alkenes (P5), discussed in Section 3.2.1. 

After isomerization of ROO (P3) ↔ QOOH (P6), a second O2-addition step can occur leading to 
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O2QOOH (P7) species. By OH-elimination the ketohydroperoxide (KHP, P8) is formed, which is the 

next stable and detectable intermediate, presented in Section 3.2.2, with consideration also of the 

ketohydroperoxide in the DME oxidation, hydroperoxymethyl formate (HPMF, D8). In Section 3.2.3, 

selected small oxygenated intermediates are provided including hydroperoxyalkanes, acids, and 

carbonyl compounds, accessible through further decomposition of the ketohydroperoxide, and Section 

3.2.4 reports information on some further detected intermediates. 

 

3.2.1 Hydroperoxypentanes (P4) and pentenes (P5) 

Hydroperoxypentanes (C5H12O2, P4) 

Hydroperoxyalkanes are the products of ROO radicals via chain termination reactions, recognized as 

a competing channel to the ROO ↔ QOOH isomerization [12]. The signal of the stable species 

detected at a mass-to-charge ratio of m/z=104 with formula C5H12O2 is therefore assigned here to 

hydroperoxypentanes (P4), without a possibility to discriminate between the P4-1, P4-2, and P4-3 

isomers in Fig. 3, however. Temperature-dependent C5H12O2 profiles for the different conditions are 

provided in Fig. 5. The experimental profiles present the maximum for the base fuel n-pentane near 

585 K in close agreement with the start of the fuel conversion. Small temperature shifts are observed 

when adding DME or ethanol to n-pentane. Modeling results, however, predict more important shifts, 

similarly to those observed for the n-pentane consumption profiles in Fig. 2. Quantification of 

hydroperoxypentanes (P4) was not possible because of lacking electron ionization cross sections, but 

the relative trends, namely higher conversion of C5H12 → C5H12O2 in the mixtures, are evident from 

the observed signal intensities, normalized to the inlet n-pentane mole fraction. As an indication for 

the probable concentration range, a mole fraction of about 3×10-5 has been observed by Rodriguez et 

al. [40] for the sum of hydroperoxypentanes in pure n-pentane oxidation under their lean JSR 

conditions. Hydroperoxypentane isomers (P4) are formed via the reaction of hydroperoxypentyl 

radicals (C5H11O2, ROO, P3) and HO2. Thus, the formation of hydroperoxypentane (P4) is determined 

by the efficiency of the pentyl (P2) production in the reacting system. DME oxidation provides an 
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enhanced amount of OH radicals already at lower temperatures, shifting hydroperoxypentane (P4) 

formation to lower temperatures and slightly increasing the amount. In contrast, ethanol reduces the 

production of hydroperoxypentanes (P4) and increases their formation temperature slightly. 

Particularly for the PE50 mixture, the signal is too weak to be detected in the experiment, thus only 

the modeling result is provided in Fig. 5. The NUIG model predictions show a slight tendency to 

overestimate the intensity of the influence of the oxygenated additive.  

 

Pentenes (C5H10, P5) 

Temperature-dependent profiles for C5H10 (P5) are given in Fig. 6; the mole fraction represents the 

sum of 1-pentene and 2-pentene, with the C5H10 signal calibrated as 1-pentene (with calibration based 

on 2-pentene, the total mole fraction would be 4.9% higher). The profiles reveal both low-temperature 

reactions as well as high-temperature formation from the fuel radicals (R, P2). Temperature shifts in 

both regimes are negligible for DME addition and minor upon ethanol addition, a trend that is also 

well captured by the model. Mixtures containing 75% n-pentane (PD75 and PE75) present similar 

pentene maxima to that in pure n-pentane (P100) oxidation, and reduction effects are only visible for 

the 50:50 mixtures (PD50 und PE50). Simulation results have been divided by a factor of 2 to fit the 

scale in Fig. 6 since the model over-predicts the mole fractions in all cases. For pure n-pentane 

oxidation, Bugler et al. [39] also show a tendency to over-predict especially 2-pentene concentrations 

under lean conditions at ϕ = 0.5 and 1 atm.  

 

3.2.2 Ketohydroperoxides (P8, D8) 

Pentane ketohydroperoxide (C5H10O3, P8) 

Figure 7 presents the signal intensity for C5H10O3 (P8), normalized by the different n-pentane inlet 

conditions. Note again that all profiles should be identical because of this normalization if no mixture 

effects would occur. The observed signal can be ascribed to the sum of C5-ketohydroperoxide (P8), 

the three isomers of which have been identified by Rodriguez et al. [40]; from their SVUV-PIMS study 
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they reported a somewhat preferential formation of 3-hydroperoxy-pentanal (P8-1) and 1-

hydroperoxy-3-pentanone (P8-3) over that of 2-hydroperoxy-4-pentanone (P8-2), which is kinetically 

favored, however, and provided mole fraction values of the order of 10-5 for the sum of the C5-

ketohydroperoxides for pure n-pentane oxidation under lean JSR conditions. Quantification is not 

possible here because electron ionization cross sections are lacking. The addition of DME (Fig. 7a) 

reduces the formation temperature, in agreement with the observed tendencies for n-pentane 

consumption and hydroperoxypentane formation (see above). The model represents the relative profile 

shape reasonably well for the pure n-pentane (P100) case. For the mixtures investigated here, the model 

overestimates the influence of DME. The reason may be lacking low-temperature-related reactions of 

the mixtures, as e.g., RO2 + R'O2 → RO + R'O + O2 and H-abstraction of the RO2 species of both fuels. 

With the addition of ethanol, the reactivity of the system is significantly reduced (Fig. 7b), and the 

profiles for the n-pentane/ethanol blends are shifted to higher temperature. The maximum signals 

decrease, in agreement with the lower consumption of n-pentane in Fig. 2b. The NUIG model can 

reproduce the tendencies for different conditions reasonably well, with the somewhat larger differences 

in the NTC region that were already evident in the fuel consumption profiles (Fig. 2b). For all five 

conditions, the experimental peak positions agree well with those for the hydroperoxypentanes (P4), 

as might be expected from the close relation of these species along the reaction pathway (Fig. 3), and 

those from the model again exhibit a larger spread in temperature. 

 

DME ketohydroperoxide (C2H4O4, HPMF, D8) 

The general formation path of the ketohydroperoxide of DME proceeds similar to that of the pentane 

ketohydroperoxide (compare Fig. 4). In their experiments focused on low-temperature oxidation of 

DME in a JSR, Moshammer et al. [53,54] have identified the signal at m/z=92 corresponding to the 

sum formula of C2H4O4 as hydroperoxymethyl formate (HPMF, D8). In the present work, HPMF (D8) 

was only detected for pure DME conditions due to its significant fragmentation and correspondingly, 
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low signal. CH4O3 at m/z=64 was confirmed by Moshammer et al. [53] to be a dominant fragment of 

HPMF (D8) by CO loss. They also performed theoretical calculations and assigned its structure as 

hydroxymethyl hydroperoxide (HOOCH2OH, D9), clarifying earlier results of Wang et al. [41], who 

had also reported strong signals at this mass but assumed the species to be either hydroxymethyl 

hydroperoxide (D9) or trihydroxymethane. For the PD75 and PD50 mixtures, we thus consider the 

signal at m/z=64 to be representative of HPMF (D8) in light of the results of [53]. Figure 8 reports the 

results for m/z=92 (HPMF, D8) in the pure DME case (see insert top left) and m/z=64 (CH4O3, D9) for 

pure DME and the PD75 and PD50 mixtures. The temperatures of the maxima for both signals agree, 

supporting the assumption that the signal at m/z=64 can be used as an indicator for HPMF. 

 

 With the addition of a large amount of n-pentane, the concentration of HPMF (D8) decreases 

significantly, e.g., a reduction of 90% for PD50 which can be partly due to diluting and chemical 

effects. Further reasons can include the shift towards higher temperatures that could enhance the 

decomposition of such labile species. Higher temperatures would also favor the reverse reaction of 

R+O2, leading to a lower formation of ketohydroperoxide species and ultimately to reduced OH 

concentrations involved in forming fuel radicals. Nevertheless, the change seems more significant than 

that for the C5-ketohydroperoxides (P8) in Fig. 7, and it may reveal information about the competition 

of the DME radical (CH3OCH2, D2) with the pentyl radical (P2) in the combination with O2 molecules. 

Concerning the profile shapes, the NUIG model (D8) predicts a narrower temperature distribution of 

HPMF than the experiment for all conditions, with a width of only ~20 K versus ~50 K in the 

experiment, and it also provides smaller temperature shifts than the experiments with increasing 

n-pentane addition. 

 

3.2.3 Selected small oxygenated intermediates 

Hydroperoxymethane (CH4O2, P9-1) and hydroperoxyethane (C2H6O2, P9-2) 

Unlike hydroperoxypentanes (P4) that were discussed before, smaller hydroperoxyalkanes are 
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secondary oxidation products. Within the detection limit of the experiment of a few ppm, no 

quantifiable signals could be observed for hydroperoxybutane (C4H10O2) and hydroperoxypropane 

(C3H8O2). However, the smaller species hydroperoxymethane (CH4O2, P9-1) and hydroperoxyethane 

(C2H6O2, P9-2) could be found. Methyl and ethyl radicals are derived from the decomposition of 

C5-ketohydroperoxides (P8) and pentylperoxy radicals (ROO, P3), and their reactions with O2 or HO2 

can lead to the formation of these smaller hydroperoxyalkanes. The profiles of CH4O2 (P9-1) and 

C2H6O2 (P9-2) in Fig. 9 are normalized (in the n-pentane-containing mixtures) by the inlet mole 

fractions of n-pentane, and for the pure fuels, P100 shows higher conversion to these small 

hydroperoxyalkanes (P9) than DME. 

Since doping with DME promotes the reactivity of the system and consequently, the formation of 

pentyl radicals (R, P2) and of typical intermediates derived from the fuel decomposition, it also 

enhances the formation of the hydroperoxyalkanes in Fig. 9a,c in the PD75 mixture. No significant 

further increase is observed with increased DME content for PD50, however. This behavior is different 

in the model for both, hydroperoxymethane (Fig. 9a,b) and hydroperoxyethane (Fig. 9c,d), especially 

for the formation of the latter in PD50. In the oxidation of DME, hydroperoxymethane (P9-1) is 

proposed to be formed along a sequence from the CH3OCH2OO radical (the ROO of DME, D3) via 

methyl formate (D4) and methyl radicals [54,69]. For pure DME (D100), hydroperoxymethane (P9-1) 

is indeed experimentally observed as shown in Fig. 9a, but the NUIG model predicts only insignificant 

amounts. Similar observations were noted by Moshammer et al. [54], who report a mole fraction for 

hydroperoxymethane of the order of 10-5 and point out large discrepancies between their DME JSR 

experiment and several models including the NUIG DME mechanism [7]. Ethanol can form neither of 

these hydroperoxyalkanes in its low-temperature reactions, so that in mixtures of n-pentane and 

ethanol they must be produced only from n-pentane. Their formation tendencies in P100, PE75, and 

PE50 (Fig. 9b,d) are similar to those of the hydroperoxypentanes (P4) (see Fig. 5b). The shift with 

ethanol to higher temperature is expected because of the decrease of the system in reactivity. The wider 

spread of the peak temperatures in the modeling results is similar to that shown before for the 
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C5-ketohydroperoxides (P8). The NUIG model represents the observed tendencies for these mixtures 

reasonably well. 

 

Formic acid (FAC) 

Acids are important intermediates in the fuel oxidation process and lead to the formation of CO, CO2, 

and esters. For the mixtures of n-pentane and DME, pentanoic, acetic, and formic acid are the most 

favorable products. Possible acid mass peaks, at m/z=102, 60, and 46 respectively, were detected in 

this work by EI-MBMS. However, in their investigation of n-pentane oxidation with SVUV-PIMS, 

Rodriguez et al. [40] identified the peak of m/z=102 as pentenylhydroperoxide, and their PIE curve 

did not indicate a slope at the ionization energy of pentanoic acid. The species of m/z=60 was identified 

as acetic acid by GC in the n-pentane oxidation study of Bugler et al. [39]. Here, we would need to 

consider not only acetic acid for m/z=60 but also methyl formate, since it dominates in the oxidation 

of DME [51]. With the used electron ionization, however, isomer identification was not possible. The 

signal at m/z=46 (CH2O2) is likely to be formic acid (FAC) as there are no other reasonable isomers, 

and is therefore calibrated as formic acid in this experiment. It is a typical DME-derived intermediate. 

n-Pentane also forms formic acid (FAC), but not in a similar amount as DME. Thus, FAC is selected 

as a typical species here to represent the interaction of n-pentane and DME. Figure 10a shows the 

experimental results for pure n-pentane, DME, and their mixtures, together with model simulations, 

while the complementary mixtures with ethanol, for which no significant interaction is noted, are 

presented in Fig. 10b.  

Large temperature shifts are seen along the replacement of n-pentane with DME that are quite well 

matched by the model and correspond approximately to the consumption maxima in Fig. 2. Trends for 

the mixtures in the low-temperature region are quite well captured by the NUIG model that over-

predicts FAC for P100, however, and under-predicts it for D100. This could be explained by the 
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lacking importance of a reaction producing formic acid as suggested by Wang et al. [70]. They showed 

that the isomerization reaction of OCH2OCHO → HOCH2OCO is predicted to be more dominant in 

most models than its reaction to form formic acid (OCH2OCHO → HCOOH + HCO) which has; 

however, a much lower energy barrier and should therefore be more dominant (see figure 3 of Ref. 

[70]). For the n-pentane/DME mixtures, the NUIG model reveals two formation pathways of formic 

acid to yield major contributions as shown in the rate of production (ROP) analysis in Fig. 11, where 

the reaction suggested in Ref. [70] is not considered.  

From the ROP in Fig. 11 it can be seen that the pathway involving acetaldehyde (CH3CHO, AAL) 

is important in the n-pentane oxidation, while the HOCH2O radical (D12) channel contributes for both 

fuels, but to a larger extent for DME oxidation. Over this channel, FAC is formed via the 

decomposition of HPMF (D8) for D100 (see Fig. 4), or the combination of OH and CH2O via the 

intermediate radical of HOCH2O for P100 (see Fig. 3). The formaldehyde pathway becomes more 

important with the addition of DME. However, the rate constant of this channel estimated in the NUIG 

model is much faster than that from the theoretical investigation of Xu et al. [71], and its influence 

might thus be overestimated.  

 

Carbonyl compounds 

Formaldehyde (FAL), acetaldehyde (AAL), and butanone are important intermediates in n-pentane 

oxidation [39]. AAL is mainly formed via the decomposition of 2-hydroperoxy-4-pentanone (P8-2), 

which is, however, not the major ketohydroperoxide isomer in the n-pentane oxidation according to 

Rodriguez et al. [40], who measured only P8-1 and P8-3 in their experiment. However, P8-2 is quite 

important in the formation of methyl radicals and impacts the formation of hydroperoxymethane 

(P9-1), formaldehyde (FAL) and even OH radicals via its subsequent reactions. The mole fractions of 

acetaldehyde and formaldehyde, normalized (in the n-pentane-containing mixtures) by the inlet mole 



22 

fraction of n-pentane, are given in Fig. 12; as stated before, changes observed are thus due to 

interactive effects in the mixtures.  

As seen in Fig. 12a, the AAL mole fraction is not changed significantly upon blending with 25% 

DME, but it is notably reduced with 50% DME, while the model predicts a constant AAL mole fraction. 

With increasing ethanol addition (Fig. 12b), the pathway forming acetaldehyde from ethanol (compare 

Fig. 4) gains importance, as also seen in the ROP analysis in Fig. 13. Ethanol is activated by OH 

provided by the n-pentane oxidation. The ethanol radical (sC2H4OH, E2-3) that consumes ~70% of 

ethanol is the precursor of acetaldehyde. 

Formaldehyde (FAL) as a typical oxidation intermediate is formed by different reactions for the 

three investigated fuels. CH3 radical reactions provide major contributions to FAL for n-pentane, while 

the decomposition of CH3OCH2OO (ROO, D3) and CH2OCH2OOH (QOOH, D6) radicals are the 

main formation reactions of formaldehyde (FAL) in the oxidation of DME. For ethanol, the formation 

of FAL involves pathways via the methyl and the O2C2H4OH (E3-1) radicals. Figure 12c,d shows the 

normalized mole fractions of formaldehyde for all mixtures. Opposite tendencies are observed. With 

DME addition, the mole fraction increases compared to P100, but PD75 and PD50 show nearly the 

same amount. With the addition of ethanol, the mole fraction is similar for P100 and PE75, but lower 

for PE50. 

The behavior of acetaldehyde (AAL) and formaldehyde (FAL) could be roughly explained by the 

enhanced H-abstraction of C5-ketohydroperoxides (P8) according to the work of Ranzi et al. [17]. The 

common reaction pathway for the decomposition of ketohydroperoxide species is described as O-O 

scission and subsequent β-scission. Here, this reaction sequence would lead to the formation of 

acetaldehyde. However, the decomposition pathway by H-abstraction of the C5-ketohydroperoxide and 

subsequent β-scission proposed by Ranzi et al. [17] would lead to pentadione and ketene. These 

recently proposed reaction classes are not included in the NUIG kinetic model, and their 

implementation could lead to a better prediction of acetaldehyde especially for PD50 compared to 

PD75 (see Fig. 12a). The ROP analysis for acetaldehyde (AAL) in Fig. 13 shows that NC5KET24O 
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(P10-2) is the main pathway, with the caveat, however, that the used model does not include the 

competing channels. The ROP analysis for formaldehyde (FAL) in Fig. 13 shows another important 

formation channel from the CH3COCH2O radical (via the acetonyl radical) in the blends with ethanol. 

It is a product of the unimolecular decomposition of 2-hydroperoxy-4-pentanone (P8-2). Because of 

the reduced amount of OH by ethanol, it reduces the general efficiency of formaldehyde formation but 

favors the unimolecular decomposition of P8-2. The production of formaldehyde in the ethanol-

containing blends is therefore altered to the reaction sequence 2-hydroperoxy-4-pentanone (C5H10O3, 

P8-2) → 2-pentanoxide-4-one (C5H9O2, P10-2) → CH3COCH2 (C3H5O, acetonyl) → CH3COCH2O 

(C3H5O2) → CH2O (FAL), compare also Fig. 3.  

 

3.2.4 Further intermediates 

While the previous analysis has focused on the fuel decomposition schemes and small oxygenated 

species, a number of further intermediates has also been detected, and selected species are presented 

in Fig. 14, with experimental results in panels (a,d) and predictions with the NUIG and Polimi models 

in panels (b,e and c,f). Again, all mole fractions (in the n-pentane-containing mixtures) have been 

normalized by the inlet mole fraction of n-pentane for the respective conditions. The maximum values 

of all species in the NTC zone are grouped in order to illustrate the selectivity of n-pentane reaction 

pathways impacted by the addition of DME or ethanol. Please note that full temperature-dependent 

mole fraction profiles over the entire range from 450–900 K are provided, together with simulations 

with the NUIG model, in Figs. S14–S21 in SM2. In general, the shapes of these profiles are reasonably 

well predicted. However, with an emphasis on the experiment and on the low-temperature reactions in 

the dual-fuel mixtures, we will limit the discussion here to some aspects in the LTC region. Due to the 

normalization, mole fraction values should agree if there were no interactive effects. Inspection of the 

patterns in Fig. 14 reveals some important differences between experimental and modeling results. 

Figure 14a-c compares experiment and model predictions for selected oxygenated intermediates. 

Since acetic acid is the major acid produced in the oxidation of n-pentane [39], it is identified as the 
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dominant isomer of C2H4O2 in P100, PE75, and PE50. However, methyl formate is the oxidation 

product of DME with the formula of C2H4O2 [51,54], which is also observed in this experiment. 

Therefore, with the addition of DME, methyl formate becomes the major isomer of C2H4O2. However, 

due to lacking EI cross sections of methyl formate, C2H4O2 has been calibrated as acetic acid in all 

experiments. Hydroxyacetaldehyde would be another isomer, but there is no known pathway how it 

could be formed and it seems kinetically unlikely. Compared to the modeling results, this species is 

well-predicted by the Polimi model but highly under-predicted by NUIG model. Bugler et al. [39] also 

reported the under-prediction of their measurement of C2H4O2 in the oxidation of n-pentane in a JSR.  

The further species in Fig. 14a-c are single oxygenated species of the sum formula CnH2nO that can 

be assigned to cyclic ethers, aldehydes, and ketones, and CnH2n-2O that are probably ketenes. CH2O 

can only be formaldehyde, C2H2O obviously is ketene, and C3H4O has been calibrated as methyl ketene. 

According to previous analysis with GC, CRDS, and FTIR [39], C2H4O was separated for oxirane and 

acetaldehyde, but is here calibrated only as acetaldehyde due to missing distinction of isomers. In Ref. 

[39], C3H6O was identified as propanal, acetone, 2-methyloxirane, and oxetane, here it is calibrated as 

acetone. In general, aldehyde compounds could be produced from the decomposition of the 

C5-hydroperoxides or ketohydroperoxides by breaking the O-OH bond in the hydroperoxy group. 

Cyclic ethers are usually formed via the reactions of QOOH radicals. Looking at the tendencies in 

Fig. 14a-c in both experimental and modeling results, identical selectivity is observed in both 

experiment and Polimi model predictions among different CnH2nO and CnH2n-2O species under 

different inlet condition except for PE50. The NUIG model predictions for CH2O, C2H4O and C3H6O 

are closer to the experimental values than those for the other shown species, with substantial deviations 

especially for C2H2O (ketene) and C2H4O2 (acetic acid), see also Figs. S14 and S17 in SM2. 

Figure 14d-f presents the experimental and modeling results for selected alkanes and alkenes. 

Pentene (C5H10, calibrated as 1-pentene), propene (C3H6), and ethene (C2H4) are major intermediates. 

Both models well predict the formation of pentene and ethene, but under-predict the formation of 

butene (C4H8, here calibrated as 1-butene) and propene. A uniform selectivity can be found among 
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these species in different conditions in Fig. 14d-f, except for ethane (C2H6), for which experiment and 

model reveal opposite tendencies with the addition of DME and ethanol. As observed in the formation 

of hydroperoxymethane (Fig. 9), the methyl radical formed in the decomposition of DME undergoes 

the recombination to ethane, but not the reaction with O2. Since ethane is under-predicted by a factor 

of 100 in P100, a significant difference can be observed by the addition of DME for the modeling 

result, but not in the experiment. 

 

3.3 Selected aspects influencing the reactivity 

To inspect the reactivity of the dual-fuel mixtures further, the known major low-temperature oxidation 

cycles for the three individual fuels are shown schematically in Fig. 15. For all cycles, the solid thick 

arrows show reactions that produce OH radicals, while the solid thin arrows indicate OH-consumption. 

To obtain the maximum of OH being produced from one complete cycle, the solid thick arrows after 

the second O2 addition (behind O2QOOH) need to be considered as all other reactions producing OH 

before this step lead to a termination of the cycle.  

As seen in Fig. 15a for n-pentane, the two-step O2 addition reaction sequence from the fuel could yield 

three OH radicals (solid thick arrows after O2QOOH), while it consumes only one OH radical in its 

pentyl radical production process via H-abstraction reactions (solid thin arrow). The α-step is the most 

important n-pentane consumption reaction, which may be in strong competition in the fuel blends or 

with other primary intermediates during the reaction process. 

OH is the dominant initial radical for the recurrence of the branching process of DME. As shown 

in Fig. 15b, a maximum of two OH radicals could be produced through one cycle (solid thick arrows 

after O2QOOH), while also only one OH is consumed by the DME radical formation (solid thin arrow). 

However, in the α-step, a strong competition from n-pentane impacts the consumption of OH radicals. 

When the more reactive fuel DME is added to n-pentane, OH radicals could be produced at lower 

temperatures, thus promoting the system's reactivity. However, the maximum conversion of n-pentane 

keeps almost the same with the addition of DME (compare Fig. 2a), which means that the consumption 
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of OH radicals by n-pentane does not significantly increase. This may be due to the similar 

concentration of OH radicals at identical equivalence ratio, or n-pentane taking advantage over DME 

in the competition of OH radical reactions. 

Figure 15c shows the reactions of ethanol in the low-temperature region. The light-grey arrows 

indicate a fictitious second O2 addition that cannot happen because of ethanol's molecular structure. 

Therefore, ethanol consumes one OH radical (solid thin arrow), and produces almost none in its 

reaction recurrence, as the ROO is very unlikely to be formed. Since ethanol plays the role of an OH 

radical consumer in n-pentane/ethanol mixtures, it sufficiently reduces the pool of active radicals and 

inhibits the general reactivity of the whole system. 

 As discussed above, the OH radical plays an important role in the H-abstraction of n-pentane, DME, 

and ethanol during the ignition progress in the low-temperature regime. H-abstraction reactions, 

especially with OH, are the first step turning RH (C5H12, DME, or EtOH) into the R radical. It is 

interesting to view the balance of OH and HO2, another prominent radical associated with low-

temperature reactions. Fig. 16 shows the simulated mole fraction ratio of OH/HO2 for all fuel 

conditions. It is the ratio between the maxima of OH and HO2 radicals along the flow reactor at each 

temperature point in the range of 475–750 K. 

 According to both, NUIG and Polimi models, the mole fraction of the OH radical is ~10-8 in the NTC 

zone, and that of the HO2 radical is ~10-5 in that zone, corresponding to the high reactivity of OH in 

the H-abstraction reactions. For the neat fuels, the xOH/xHO2 ratio is highest for DME at very low 

temperatures of 480–580 K. After a slow but steady rise in this region, a steep increase occurs around 

540 K, coincident with the DME low-temperature consumption maximum (see Fig. 2e). With rising 

temperature, the low-temperature kinetics slows down and chain-terminating reactions become of 

increasing importance. After a steep increase in OH production at about 560 K for n-pentane, 

approximately in the zone where low-temperature fuel consumption accelerates (see Fig. 2a), a plateau 

is reached that represents the competing reactions in the NTC region. Similar approximately constant 

values of the xOH/xHO2 ratio are also evident in the intermediate temperature range of about 570–670 K 
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for DME and the n-pentane/DME mixtures in Fig. 16b. As discussed before, ethanol shows a much 

lower relative OH production in the low-temperature regime, with a rise of the xOH/xHO2 ratio only 

noted above 650 K with much lower values than for the other two fuels, and it should be remembered 

that no significant low-temperature fuel consumption was noted in this case (see Fig. 2f). Ethanol-

containing mixtures with n-pentane exhibit a significantly increased OH production around 580 K for 

PE75 and 600 K for PE50, approximately near the respective start of fuel consumption; a plateau at 

higher temperatures up to 650 K can also be noted for these mixtures (Fig. 16c). The formation and 

consumption of OH radicals based on the reaction cycles in Fig. 15 can contribute to the understanding 

of the low-temperature system reactivity; more details on the efficiency of OH production following a 

similar analysis of Dames et al. [8] and Merchant et al. [18] for propane and propane/DME mixtures 

are also provided in Section S6 of SM2. They support the strong decrease in low-temperature reactivity 

for ethanol addition to n-pentane and show a small tendency of higher OH yield in the n-pentane/DME 

mixtures. It must be noted, however, that an assessment of the total OH production in the system may 

explain some features of the dual-fuel behavior, especially when systems with quite different low-

temperature reactivity are considered. For the n-pentane/DME mixtures that show synergistic effects, 

these cannot be understood in terms of the OH balance alone but need to consider the formed fuel 

radicals and other early intermediates and their secondary reactions. For this reason, sensitivity 

analyses of OH were performed with the NUIG model for P100, PD75, and PD50 at 25% n-pentane 

conversion and are provided in Fig. 17.  

 The results also show the interaction of n-pentane and DME via the competition of the OH radical. 

In general, H-abstraction of n-pentane at the γ-site shows the highest negative coefficient, since for 

this radical it is most difficult to form new OH radicals in its further reactions. Upon DME addition, 

the abstraction reactions at the other two sites of n-pentane by OH radicals reduce their positive 

sensitivity or even turn to negative values. Second O2-addition reactions have stronger sensitivities 

than the first O2-addition step. The unimolecular decomposition reaction of the C5-ketohydroperoxide 

(P8), forming one OH radical, becomes slightly less important with the doping of DME, whilst the 
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H-abstraction reaction of DME and the decomposition of HPMF (D8) become very sensitive reactions 

for the mixture conditions, of increasing importance with higher DME fraction. Especially the 

formation and decomposition reactions of the ketohydroperoxide of the respective fuel are thus 

important pathways in the formation of OH radicals influencing the overall reactivity of the system. 

 

4. Summary and perspectives 

The low-temperature oxidation of mixtures of n-pentane with the oxygenated C2H6O fuel isomers 

dimethyl ether and ethanol, including that of the three individual fuels, was experimentally 

investigated in a flow reactor at an equivalence ratio of 0.7 and atmospheric pressure, covering the 

temperature range of 450–930 K. Electron ionization molecular-beam mass spectrometry was used to 

provide a detailed species overview under all conditions, with quantitative evaluation as mole fraction 

profiles whenever possible. In cases where only relative signal intensities could be provided, trends 

between the individual fuels and the mixtures could be identified. The overall reactivity of the fuels 

and their mixtures was discussed, considering the very different low-temperature behavior of the three 

individual fuels. To emphasize interactive effects of the C2H6O isomers in the blends with n-pentane, 

normalization on the n-pentane inlet mole fractions was performed. Ethanol, as a fuel that exhibits 

only marginal low-temperature reactivity, is a significant consumer of active free radicals and thus 

inhibits the oxidation process in the mixtures, whilst the mixture of two reactive fuels, n-pentane and 

DME, presents noticeable synergistic effects where the maximum conversion of both n-pentane and 

DME is improved in the mixtures compared to the pure fuels.  

For a deeper albeit preliminary understanding of the effects in the LTC of the dual-fuel mixtures, 

two current models, namely the NUIG and the Polimi models that can both be considered well 

examined for the individual fuels were adopted in simulations for all conditions. Both models were 

seen to perform reasonably well regarding the fuel consumption and major species formation for the 

individual fuels, but the predictions of temperature shifts and synergistic effects, especially in the 

oxidation behavior of the mixtures leave room for improvement. Such further developments can in 
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part be considered for the simulation of two-dimensional effects and heat transfer in the flow reactor 

with more refined models than used in these preliminary predictions, especially in zones with very 

temperature-sensitive reactions.  

The oxidation chemistry in the fuel mixtures was analyzed in more detail on the basis of the reaction 

pathways of the individual fuel components by following the sequence of initial fuel decomposition 

products and their further reactions by means of intermediate species profiles. Mole fractions of 

oxygenated intermediates as well as selected hydrocarbon species were presented with an emphasis on 

the zone of the initial fuel conversion and NTC region in the mixtures, and trends between experiment 

and model were compared, resulting in an overall somewhat diverse picture. While many trends seen 

in the experiments upon blending of n-pentane with either one of the two isomers are quite well 

reproduced by these preliminary simulations, the magnitude of the effects is not always correctly 

predicted, and large discrepancies are seen for some intermediates. 

Regarding the reactivity of the system, the OH balance as well as the ratio of OH and HO2, both 

important intermediates in the low-temperature oxidation zone, were inspected to assist understanding 

of some aspects of the interactions for the dual-fuel mixtures. The OH competition between n-pentane 

and ethanol, two fuels with very different low-temperature reactivity, seems simpler than between 

n-pentane and DME that both show low-temperature reactions with different production cycles of OH. 

Secondary products such as alkyl radicals could participate in this OH competition by enhancement of 

O2 addition reactions that in turn can contribute to OH radical production. Because they are involved 

in the formation of OH radicals, acetaldehyde, hydroperoxyethane, and especially 

hydroperoxymethane, could also be considered as indicative species of the reactivity of the fuel 

mixture. Interactive effects between the reactive species provided in the fuel mixtures may result in a 

higher maximum conversion of both fuels than found for each of them individually.  

The work presented here suggests several areas for further work. As seen in some cases, the nature 

of the isomer composition might change for the fuel blends, with C2H4O2 as one example that should 

be predominantly acetic acid for n-pentane and methyl formate for DME oxidation. Isomer-resolved, 
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quantitative species analysis over the critical temperature range between about 500 and 650 K for these 

dual-fuel mixtures is thus recommended as a further continuation of this work. It would be especially 

useful if it provided detailed data on first fuel decomposition products and highly oxygenated species. 

Furthermore, in spite of recent model development and ample knowledge on the oxidation of the three 

individual fuels in the literature, it seems that interactive effects cannot be fully captured and might 

need more accurate determination of critical reaction parameters in the low-temperature zone where 

the initial fuel consumption accelerates. Temperature dependences may need to be inspected with care. 

As one indicator for such needs, it is interesting to note that the rate expressions for the H-abstraction 

reactions by OH for the three individual fuels exhibit important differences in both tested models. 

Since reliable predictions for the oxidation behavior of mixtures of alkane fuels with ethanol or DME 

– or more generally of hydrocarbon with oxygenated fuels – are highly desirable, we hope that the 

presented experimental dataset will contribute to the further improvement of models for such dual-fuel 

mixtures. 
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Figures 

 
Fig. 1: Temperature-dependent species mole fraction profiles for Ar, fuel, O2, and H2O for pure DME (D100), 

n-pentane (P100), and ethanol (E100) as well as for mixtures of either oxygenated fuel with 75% (PD75, PE75) 

and 50% (PD50, PE50) of n-pentane. The broken line at 616 K is drawn to guide the eye. The temperature 

plotted on the x-axis is the set temperature at the outside wall of the reactor. 
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Fig. 2: Reactivity for neat fuels and dual-fuel mixtures. Experimental fuel consumption mole fraction profiles 

(symbols) are given as a function of temperature, together with model simulations (lines). Panels (a-d): 

n-Pentane consumption profiles for pure n-pentane fuel and for mixtures containing 75% and 50% n-pentane 

with DME (a,c) or EtOH (b,d); each profile is normalized by the inlet mole fraction of n-pentane. Simulation 

results for (a,b) were obtained with the NUIG model [39] and for (c,d) with the Polimi model [17]. Panels (e,f): 

Consumption profiles for DME (e) and EtOH (f) for different inlet conditions; each profile is normalized by the 

respective inlet fuel mole fraction. Solid line: NUIG model, dashed line: Polimi model. The profile for PE50 is 

not shown in (f) because of negligible low-temperature chemistry behavior.  
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Fig. 3: Reaction pathway diagram for n-pentane. Species code starts with P, the first figure denotes the step 

along the reaction progress, and isomers are distinguished by the second figure (e.g., P2-3 identifies one of the 

three isomers of the fuel radical in the n-pentane oxidation). FAC: formic acid, AAL: acetaldehyde, FAL: 

formaldehyde. 
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Fig. 4: Reaction pathway diagram for DME and ethanol. Species codes follow the same rules as in Fig. 3. FAC: 

formic acid, AAL: acetaldehyde, FAL: formaldehyde. 
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Fig. 5: Signal intensities (left axis, arbitrary units) of C5H12O2, assigned to hydroperoxypentanes (P4), 

normalized by the different inlet mole fractions of n-pentane (symbols) and quantitative mole fractions (right 

axis) from NUIG model predictions (lines). (a) n-Pentane/DME, (b) n-pentane/EtOH. No experimental data of 

C5H12O2 is observed in PE50 due to its low concentration, thus only the modeling result is provided. 

 

 

 

 

 

Fig. 6: Experimental mole fractions (left axis) of pentenes (sum of C5H10, P5, symbols), normalized (in the n-

pentane-containing mixtures) by the different n-pentane inlet mole fractions, and NUIG model predictions (right 

axis) for the sum of 1-pentene and 2-pentene (lines). (a) n-Pentane/DME, (b) n-pentane/EtOH. Please note that 

all simulation results have been divided by a factor of 2. 
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Fig. 7: Signal intensities (left axis, arbitrary units) for C5H10O3 assigned to C5-ketohydroperoxides (P8), 

normalized by the different inlet mole fractions of n-pentane (symbols), and quantitative mole fractions (right 

axis) from NUIG model prediction (lines). (a) n-Pentane/DME, (b) n-pentane/EtOH. 

 

 

 

 

 

 

 

Fig. 8: Signal intensities (symbols, left axis, arbitrary units) of m/z=64 (CH4O3, D9) and (insert top left) of 

m/z=92 (HPMF, D8) for D100, together with quantitative mole fractions from NUIG model predictions for 

HPMF (lines, right axis). For D100 and m/z=64, both measured and modeled results are divided by a factor of 

5. Profiles have been normalized by the different inlet mole fractions for DME. 

  



44 

 

Fig. 9: Signal intensities (symbols, left axes, arbitrary units) of CH4O2 and C2H6O2 assigned to 

hydroperoxymethane (P9-1) and hydroperoxyethane (P9-2), respectively, normalized (in the n-pentane-

containing mixtures) by the different inlet mole fractions of n-pentane, and quantitative mole fractions from 

NUIG model predictions (lines, right axes). (a,c) n-Pentane/DME, (b,d) n-pentane/EtOH. 

 

 

 

 

 

Fig. 10: Quantitative mole fractions of CH2O2, calibrated as formic acid (HCOOH, FAC), normalized (in the 

n-pentane-containing mixtures) by the different n-pentane inlet mole fractions. Symbols: experiment (left axes); 

lines: NUIG model predictions (right axes). (a) n-Pentane/DME, (b) n-pentane/EtOH. 

  



45 

 

Fig. 11: Rate of production analysis of formic acid (HCOOH) for different inlet conditions modeled by the 

NUIG model at the temperatures of the respective maximum mole fraction (±5 K) in the NTC zone. 

 

 

 

 

 

 

Fig. 12: Quantitative mole fractions of (a,b) acetaldehyde (AAL) and (c,d) formaldehyde (FAL), normalized 

(in the n-pentane-containing mixtures) by the different n-pentane inlet mole fractions. Symbols: experimental 

measurements (left axes); lines: NUIG model predictions (right axes). (a,c) n-Pentane/DME, (b,d) n-

pentane/EtOH. 
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Fig. 13: Contributions of the main pathways in the formation of acetaldehyde (CH3CHO, AAL) and 

formaldehyde (CH2O, FAL) for the different inlet conditions. The results were obtained with the NUIG model 

at the respective maximum AAL and FAL mole fractions (±5 K) in the NTC zone. Abbreviations: C5H9O1-

2OOH-4 is 2-hydroperoxy-4-methyltetrahydrofuran, O2C5H10OH23 the pentan-3-ol-2-peroxy radical, 

NC5KET24O (P10-2) the 2-pentanoxide-4-one radical, and sC2H4OH (E2-3) the α-ethanol radical. (Compare 

also nomenclature and structures in Table S1 in SM2). 
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Fig. 14: Mole fractions of selected oxygenated and hydrocarbon intermediates at their respective maxima in the 

low-temperature regime (logarithmic scale); the mole fraction of each species is normalized by the inlet mole 

fraction of n-pentane for the respective condition. (a,d): experimental results; (b,e) predictions with the NUIG 

model; (c,f) predictions with the Polimi model. 
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Fig. 15: Schematic diagram of the major reaction cycles of (a) n-pentane, (b) DME, and (c) ethanol in the low-

temperature oxidation of fuel blends. Solid thick arrows: reactions that produce OH radicals; solid thin arrows: 

H-abstraction reactions of the respective fuel; thick dashed arrows: reactions that promote the chain branching 

cycle; solid light-grey arrows: fictitious chain branching pathways of ethanol; thin dashed arrows: other 

products during the oxidation procedure. Abbreviations: KHP: ketohydroperoxide of n-pentane, HPMF: 

hydroperoxymethyl formate. 

 

 

 

 

 

 

 

Fig. 16: Ratio of maximum mole fractions of OH and HO2 radicals 𝑥𝑂𝐻 𝑥𝐻𝑂2⁄  along the flow reactor at each 

temperature point, predicted by the NUIG model for (a) the pure fuels, (b) the mixtures of n-pentane and DME, 

and (c) the mixtures of n-pentane and ethanol. 
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Fig. 17: Sensitivity coefficient for OH to reaction rate pre-exponential factors at 25% n-pentane conversion 

(NUIG model). Abbreviations: NC5KET24 is 2-hydroperoxy-4-pentanone (P8-2), NC5KET24O is the 2-

pentanoxide-4-one radical (P10-2), C5H10OOH2-4 is the 2-hydroperoxy-4-pentyl radical, C5H10OOH2-4O2 is 

the 2-hydroperoxy-4-pentylperoxy radical, C5H10OOH3-1 is the 3-hydroperoxy-1-pentyl radical, C5H10OOH3-

1O2 is the 3-hydroperoxy-1-pentylperoxy radical, C5H11O2-2 is the 2-pentylperoxy radical (P3-2), and C5H10-2 

is 2-pentene (P5-2); compare also nomenclature and structures in Table S1 in SM2. 
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Abstract 

Small methyl ketones are known to have high octane numbers, impressive knock resistance, and show 

low emissions of soot, NOx, and unburnt hydrocarbons. However, previous studies have focused on 

the analysis of smaller ketones and 3-pentanone, while the asymmetric 2-pentanone (methyl propyl 

ketone) has not gained much attention before. Considering ketones as possible fuels or additives, it is 

of particular importance to fully understand the combustion kinetics and the effect of the functional 

carbonyl group. Due to the higher energy density in a C5-ketone compared to the potential biofuel 

2-butanone, the flame structure and the mole fraction profiles of species formed in 2-pentanone 

combustion are of high interest, especially to evaluate harmful species formations. In this study, a 

laminar premixed low-pressure (p = 40 mbar) fuel-rich (ϕ = 1.6) flat flame of 2-pentanone has been 

analyzed by vacuum-ultraviolet photoionization molecular-beam mass-spectrometry 

(VUV-PI-MBMS) enabling isomer separation. Quantitative mole fraction profiles of 47 species were 
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obtained and compared to a model consisting of an existing base mechanism and a newly developed 

high-temperature sub-mechanism for 2-pentanone. High-temperature reactions for 2-pentanone were 

adapted in analogy to 2-butanone and n-pentane, and the thermochemistry for 2-pentanone and the 

respective fuel radicals was derived by ab initio calculations. Good agreement was found between 

experiment and simulation for the first decomposition products, supporting the initial branching 

reactions of the 2-pentanone sub-mechanism. Also, species indicating low-temperature chemistry in 

the preheating zone of the flame have been observed. The present measurements of a 2-pentanone 

flame provide useful validation targets for further kinetic model development. 

 

Keywords: 2-pentanone, laminar premixed flame, photoionization molecular-beam 

mass-spectrometry, kinetic modeling, thermochemistry 
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1. Introduction 

With a rising energy demand and the objective to reduce global warming, a transition from the 

combustion of fossil fuels in the transport sector to second-generation biofuels is desired, because it 

may eventually contribute to a reduced net carbon emission. As representatives of this category of 

fuels, small methyl ketones like acetone (RON = 110-117 [1,2]) and 2-butanone (RON=117 [3]) show 

impressive knock resistance. 2-butanone, for example, was tested in a SI engine as neat fuel and 

showed low emissions of soot, NOx, and unburnt hydrocarbons compared to a RON 95 fuel blend, 

ethanol, and 2-methylfuran [3]. Nonetheless, studies investigating the combustion behavior and 

properties of 2-pentanone (methyl propyl ketone, MPK) are scarce, while the symmetric conformer 

3-pentanone (diethyl ketone, DEK) gained more attention [4–6]. Compared to 2-butanone and 

3-pentanone with one or two ethyl side chains, respectively, 2-pentanone has a propyl side chain, which 

could lead to changes in the underlying kinetics and to a lower effect of the carbonyl group. With a 

higher energy density, C5-ketones could be preferred in engine applications, while the formation of 

toxic and harmful species is unknown. In a premixed flame study [7], it was shown that 2-butanone 

exhibits very low emissions of oxygenated intermediates and soot precursors. With a linear alkyl chain 

of three carbon atoms in 2-pentanone, the formation of soot precursors like C3H3 could be increased. 

Minwegen et al. [8] measured the ignition delay times of a series of small linear ketones, including 

2-pentanone, at 20 and 40 bar in a shock tube. High temperature measurements of reactions of small 

linear ketones with OH were performed at 1-2 atm by Lam et al. [9]. Furthermore, Badra et al. [10] 

experimentally investigated the H-abstraction by OH of a series of larger ketones. In theoretical work 

by Hudzik and Bozzelli [11], the thermochemistry and bond dissociation energies of ketones were 

calculated.  

In this study, a laminar premixed low-pressure (40 mbar) fuel-rich (ϕ = 1.6) flat flame of 2-pentanone 

was quantitatively analyzed by vacuum-ultraviolet photoionization molecular-beam 

mass-spectrometry (VUV-PI-MBMS). For the first time, 47 species were measured, quantified and 

isomers were separated whenever possible. Complementing the experimental data set, a kinetic model, 

representing the high-temperature chemistry, is presented here. For this kinetic model, the 
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thermochemistry (heat of formation, entropy, and heat capacity) of the fuel and the corresponding fuel 

radicals was determined by ab initio quantum mechanical calculations. 

 

2. Experiments 

A laminar premixed fuel-rich flame of 2-pentanone/oxygen/argon (0.093/0.407/0.500) was 

investigated at 40 mbar, equivalence ratio of 1.6 and cold gas velocity of 73.85 cm/s (at inlet conditions 

of 333 K and 40 mbar, 2.574 cm/s at 298 K and 1 atm ) by VUV-PI-MBMS [12,13] at the Advanced 

Light Source (ALS) in Berkeley. Gas flow rates of oxygen and argon were metered by calibrated 

mass-flow controllers with a precision of 5%, while liquid 2-pentanone was injected into a heated 

vaporizer system (~400 K) by a syringe pump (0.5% precision) and transported by an argon flow. The 

components were mixed and transferred into a McKenna burner (60 mm diameter), and flame gases 

were sampled via a two-stage expansion (~10-4 mbar, ~10-6 mbar) by a quartz nozzle (500 μm orifice, 

40° opening angle) and a nickel skimmer forming the molecular beam that was then crossed with the 

tunable VUV beam. This setup features a mass resolution of m/Δm~4000 combined with an energy 

resolution of E ~ 0.05 eV, enabling the separation of C/H/O composition and isomeric species by their 

ionization energy (IE). Species profiles were recorded at different positions of the sampling nozzle 

using 16 fixed soft ionization energies between 8.7 and 16.65 eV for low fragmentation and separation 

of isomeric species. Furthermore, photoionization efficiency (PIE) curves were obtained at a distance 

from the burner of h = 4 mm tuning the photon energy between 8 and 11.5 eV (ΔE = 0.05 eV). For 

quantification, routines described previously [14,15] were applied using photoionization cross sections 

(PICS); errors were 30-40% if measured and a factor 2-4 if estimated cross sections were used [16]. 

More details on the experimental setup and procedures can be found in Refs. [12,13]. 

The temperature profile was determined as described in [17] using the recorded first-stage pressure 

profile of the flame. Calibration was performed in the exhaust gas at h = 20 mm with a temperature of 

2290 ± 50 K obtained by planar laser-induced fluorescence of OH, using the setup and procedure 

described in [18]. Due to pressure uncertainties, the measured temperature profile was slightly 
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smoothed (4pt moving average) to achieve a faster convergence and remove non-physical temperature 

discontinuities in the modeling. 

The data of all evaluated mole fraction profiles and the temperature profile are provided in 

Supplemental Material 1. 

 

3. Kinetic model and flame simulations 

The presented kinetic model is based on the latest AramcoMech 2.0 [19] updated with the high-

temperature sub-mechanism of 2-butanone by Hemken et al. [20] and a small-aromatic sub-mechanism 

by Zhang et al. [21]. This model represents the high-temperature kinetics of 2-pentanone, consists of 

520 species and 2960 reactions and is provided in Chemkin format in Supplemental Material 2. The 

high-temperature reactions include the unimolecular decomposition of the fuel, H-atom abstraction, 

and fuel radical decomposition, which are adapted in analogy to 2-butanone and n-pentane. 

Unimolecular decompositions were included from calculations for 2-butanone of Thion et al. [22] and 

from Bugler et al. [23] for the alkyl rest (MPK↔CH3+CH2CH2COCH3). The most important 

decomposition takes place adjacent to the carbonyl group (MPK↔CH3CO+C3H7), and its rate 

coefficient was increased by a factor of four to match the ignition delay times of Refs. [8,24]. While 

such a modification of the coefficient is outside the uncertainty of the quantum mechanical 

calculations, a higher rate coefficient can be expected due to the larger molecule size of 2-pentanone 

and thus the collision probability is increased. Consistently, the other decomposition rate coefficients 

were increased, too. The methyl group at the propyl side chain, which is not close to the carbonyl 

group, is treated as in n-pentane [23] for all reaction classes. H-atom abstraction reactions as well as 

the following β-scission reactions are included by the rates of Thion et al. [22] for 2-butanone and 

Bugler et al. [23] for n-pentane. Detailed information on reactions, applied factors, and sources are 

given in the mechanism files in Supplemental Material 2.  

The thermochemistry for 2-pentanone as well as for the four fuel radicals was derived by ab initio 

calculations. The method is described in detail by Burke et al. [25]. G4 model chemistry [26] as 

implemented in Gaussian09 package [27] was used to calculate the enthalpies of formation. 
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Temperature dependencies of heat capacities, enthalpies, and entropies were determined using 

TAMkin [28] with correction of 1D hindrance potentials. Accuracy in the entropies of formation and 

heat capacity data was increased by one-dimensional hindered rotor treatment for all single bonds 

connecting nonlinear molecular groups. All calculations have been performed at B3LYP/6-31G(2df,p) 

level that was also used for geometry optimization in the G4 method. C-H and C-C bond strengths are 

shown in Fig. 1 and compared to those of Hudzik and Bozzelli [11]. They agree within 

0.5-1.1 kcal/mol, which fits the uncertainty of the method. Transport data was estimated by group 

additivity with RMG [29]. 

 

Figure 1: Calculated C-H and C-C bond strengths in kcal/mol for 2-pentanone; black: this work, grey: work by Hudzik 

and Bozzelli [11]. 

 

Simulations in this work were performed using the LOGEsoft [30] premixed burner-stabilized module, 

including the experimentally determined temperature profile. The kinetic model was also validated 

against high-temperature shock tube data by Minwegen et al. [8] at elevated pressures of 20 and 40 bar, 

as well as against highly diluted shock tube data of Lam et al. [24], and the results are presented in 

Supplemental Material 3 (see Figs. S1-S2).  

  

4. Results and discussion 

The following section provides the results of the measurements and the comparison with the 

simulations using the present model. First, the main species occurring during the combustion of 

2-pentanone will be discussed and then the primary intermediates will be presented along with the fuel 

decomposition scheme. Finally, some species indicating low-temperature chemistry will be discussed 
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which normally are not observable in the hot flame. Because only selected mole fraction profiles are 

shown here, several further profiles are available in Supplemental Material 3 (see Figs. S3-S5). 

 

4.1 Main species 

Figure 2 presents the mole fractions of the main species (H2, H2O, CO, O2, Ar, CO2, 2-pentanone) 

during the combustion of 2-pentanone together with the measured temperature profile. Mole fractions 

in the exhaust gas agree well with the calculated equilibrium values shown as open symbols at 32 mm. 

Good agreement can be noted between the experimental results and the simulated mole fractions with 

only slight deviations for H2 due to high noise in the H2-signal. 

 

 

Figure 2: Main species profiles in a rich premixed low-pressure 2-pentanone flame. Filled symbols: experimental results, 

open symbols: calculated equilibrium values, lines: simulation, dashed line: measured temperature profile. 

 

4.2 Fuel decomposition and primary intermediates 

Figure 3 shows a flux analysis for 2-pentanone with the present model. The respective net percentage 

consumptions (h = 0-3.3 mm, corresponding to a fuel consumption of 0-20%) are shown next to the 

arrows. In the first step, 2-pentanone is consumed via H-abstraction reactions by H and OH forming 

the respective four fuel radicals (C5H9O). 2-pentanon-1-yl is consumed almost equally via C-C 

β-scission forming ketene and the propyl radical (42%) and radical isomerization to the 

2-pentanon-3-yl radical (45%). This radical is almost completely decomposed by C-C β-scission 

between C4 and C5 resulting in CH3 and methyl vinyl ketone (99.9%). The other β-scission between 

C1 and C2 forming ethylketene and CH3 is only predicted with 0.01%. The reaction rate coeffecient 
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of the β-scission reaction at the alkyl side is more than 2 orders of magnitude higher than the respective 

one at the carbonyl site as a result of a much lower activation energy for the latter. The 2-pentanon-4-yl 

radical mostly forms propene and the acetyl radical (91.5%), while further H-abstraction forming 

3-penten-2-one is predicted with only 8.5%. This reaction is predicted to be even less important for 

the 2-pentanon-5-yl radical leading to 4-penten-2-on (0.5%). The preferred reaction here is also the 

β-scission forming ethene and the acetonyl radical (97%). 

 

Figure 3: Reaction flux analysis for the 2-pentanone flame conditions with the net consumption from the simulation in the 

range of h = 0-3.3 mm (representing up to 20% fuel consumption) shown as percentages next to the arrows. 

 

As the first H-abstraction products cannot be detected and quantified with the present PI-MBMS 

experiment, the primary decomposition products from the subsequent β-scissions are analyzed in the 

experiment. Figure 4 shows the stable products from the 2-pentanon-1-yl, -4-yl, and -5-yl radicals, 

namely ketene (a), propene (b), and ethene (c). Ketene and propene show mole fractions in the range 

of 2-3∙10-3, while that of ethene is about one order of magnitude higher (2.4∙10-2). The simulation 

agrees excellently with the profiles of propene and ethene, while ketene is overestimated by a factor 
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of 2. The prediction shows the same trends as for the 2-butanone flame [7]. Ketene is mainly formed 

by the decomposition of the acetonyl radical (CH3COCH2) that is a decomposition product of 

2-pentanone-5-yl, and by the direct decomposition of 2-pentanon-1-yl. However, the results indicate 

that the acetone chemistry in the base mechanism might require further development, which can also 

be seen by the underprediction and the shift of acetone in Fig. S5. Similarily Minwegen et al. [8] 

recommended a revision of the acetone submechansim as a result from their study. However, the good 

prediction of ethene and propene (s. Fig. 4b,c) indicates that the branching of the fuel radicals is 

reasonable and that the underlying sub-mechanisms are working.  

 

 

Figure 4: Mole fraction profiles of selected primary intermediates after H-abstraction and β-scission. Symbols: 

experimental results (an error range of factor 2 is indicated in grey), solid lines: spline to guide the eye, dashed lines: 

simulation.  
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Looking at the 2-pentanon-3-yl radical, it seems interesting whether the simulation can predict the 

drastic ratio between the two pathways leading to methyl vinyl ketone (MVK) and ethylketene (EK) 

correctly. Unfortunately, for the evaluation of EK no photoionization cross sections (PICS) could be 

found in the literature. However, a photoelectron spectrum of this species, measured by Bock et al. 

[31], could be integrated and scaled with a value of 24 Mb at 10.35 eV in analogy to the PICS of ketene 

from Yang et al. [32]. Clearly, a higher uncertainty is therefore connected to the evaluation of the mole 

fraction of EK, probably in the range of a factor of 5-10. Nevertheless, this estimate enables a 

comparison of the C4H6O isomers. Figure 5a shows the evaluated mole fractions for MVK and EK, 

the latter multiplied by a factor of 25 as it is about a factor of 100 lower (1.6∙10-5) than that of MVK 

(2.4∙10-3). Therefore, the higher error in the quantification of EK is still much lower than the difference 

between both species. This ratio can also be validated by the PIE curve, which is shown in Fig. 5b 

(squares). The circles show the same PIE curve for C4H6O, but multiplied by a factor of 25 to 

emphasize the slope at lower energies, most likely belonging to EK with an ionization energy (IE) of 

8.80 eV [31]. The change of the slope can be assigned to MVK with an IE of 9.64 eV [32]. In addition, 

the PICS of EK and MVK are shown in comparison to the experimental data. Both PICS excellently 

fit the slopes in the PIE curves and lead to a ratio of 99.4% of MVK and 0.6% EK, which correlates 

perfectly to the mole fraction ratio from Fig. 5b (99.3% MVK, 0.7% EK). These experimental results 

excellently confirm the prediction from the simulation. 



12 

 

 

Figure 5: a) Mole fraction profiles of the detected C4H6O isomers, symbols: experimental results (an error range of factor 

2 is indicated in grey), solid lines: spline to guide the eye, dashed/dotted lines: simulation; note that experimental results 

and simulation are multiplied by a factor of 25 for ethylketene. b) PIE signal of C4H6O (squares) and again shown, but 

multiplied by a factor of 25 (circles), to emphasize the slope for lower energies. The PICS of ethylketene (estimated) and 

methyl vinyl ketone [32] are scaled and shown for comparison. The IEs of ethylketene [31] and methyl vinyl ketone [32] 

are shown as vertical lines. 

 

 

4.3 Low-temperature species 

Several species that are connected to low-temperature chemistry were detected in the present flame. 

Figure 6a shows formaldehyde, a typical oxygenated species that is also related to low-temperature 

reactions. A shift towards later reaction times is seen in the simulation in Fig. 6a, which could be one 

aspect to indicate that oxygen addition reactions could occur in the preheating zone of the flame. 

Formaldehyde is mainly produced by the reaction of CH3 with O, while CH3 is formed via several 

reactions, including the decomposition of 2-pentanone-3-yl in the early phase of the flame as well as 

through the decomposition of propyl, ethyl, and acetonyl radicals. Further indications of 

low-temperature reactions are presented by the detection of C5H8O (Fig. 6b) and the signal of 

m/z = 100.052, which is identified as C5H8O2 (Fig. 6c) with the high mass resolution of the setup. This 
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sum formula can be assigned to a dione or a cyclic ether structure that is typically formed via O2 

addition and isomerization to QOOH. No PICS or IEs are tabulated for these species, but the PIE curve 

shows a slope corresponding to an IE in the range of 9.1-9.3 eV for C5H8O2. That O2 addition reactions 

can take place in the early flame at lower temperatures has been shown by Seidel et al. [33] and 

Hemken et al. [7]. Nonetheless, due to the rather low flux of these species into low-temperature 

pathways, the general performance of this high-temperature model is very satisfying.  

Figure 6b shows the fragment-corrected signal profile of C5H8O, which can be assigned to 3-pentene-

2-one and 4-pentene-2-one, for which no PICS were found in the literature. These species can either 

be formed by C-H β-scission from 2-pentanone-3yl, -4yl, and -5yl or by O2 addition to the fuel and 

concerted HO2 elimination reactions. The comparison of the qualitative signal profile and the model 

predictions indicates that such reactions already happen early in the flame, with a maximum earlier 

than that of the C5H8O2 signal (compare Fig.6c). Shape and peak position can obviously not yet be 

correctly predicted by the present kinetic model, maybe due to the neglected low-temperature 

reactions. Thus, a complete implementation of the low-temperature chemistry could also slightly 

influence the branching ratio of the fuel radicals due to a change in the available radical pool. However, 

the profile position of 4-pentene-2-one indicates that probably not only low-temperature-related 

reactions are needed to improve the prediction. Here, further experimental and theoretical work is 

encouraged to enlighten these pathways.  
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Figure 6: Profiles of selected oxygenated species related to low-temperature chemistry. For formaldehyde (a) the mole 

fraction profile is shown (an error range of factor 2 is indicated in grey), while for C5H8O (b) and C5H8O2 (c) only the 

corrected signals are presented due to missing PICS for quantification. Symbols: experimental results, solid lines: spline 

to guide the eye, dashed, dotted, and dash-dotted lines: simulation. 

 

5. Summary and conclusions 

Mole fraction profiles for 47 species from a laminar premixed low-pressure flame fueled by 

2-pentanone were obtained by VUV-PI-MBMS including isomer separation. A new high-temperature 

sub-mechanism has been developed for 2-pentanone and has been coupled to an existing base 

mechanism. High-temperature reactions for 2-pentanone were adapted in analogy to 2-butanone and 

n-pentane, and the thermochemistry for 2-pentanone and the fuel radicals was derived by ab initio 

calculations. 

A flux analysis has been performed for the 2-pentanone flame conditions, showing the first 

decomposition reactions of the fuel by H-abstractions and β-scissions and their respective probabilities. 

For the first β-scission products ketene, propene, ethene, methyl vinyl ketone, and ethylketene, good 
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agreement between experiment and simulation was found permitting the conclusion that the initial 

branching reactions are reasonably captured in the model. With the isomer distinction enabled by the 

PI-MBMS experiment, it was possible to confirm that more than 99% of the 2-pentanon-3-yl radical 

is decomposed by C-C β-scission between C4 and C5 forming CH3 and methyl vinyl ketone, while the 

β-scission between C1 and C2 forming CH3 and ethylketene is about a factor of 100 lower in both the 

experiment and the simulation. 

Furthermore, some species assigned to low-temperature reactions were observed in the flame. 

Especially the detection of a C5H8O2 signal, here potentially assigned to cyclic ethers formed by O2 

addition to the fuel and subsequent isomerization to the QOOH species, supports the assumption of 

low-temperature reactions taking place in the preheating zone of the flame. Further confirmation of 

this observation might be the mole fraction profile of formaldehyde that rises earlier than the 

simulation predicts, potentially due to missing reactions of fuel radicals with HO2 forming the related 

alkoxy (RO) species [7]. This reaction path could additionally be enhanced by the concerted HO2 

elimination reactions of RO2 species, forming 3- and 4-pentene-2-one, which is supported by the early 

rise of the C5H8O profile. Except for these low-temperature reactions in the early flame zone that are 

not yet included in the model, most profile shapes and positions were captured quite well by the 

simulations. 

In comparison to the smaller ketone 2-butanone, 2-pentanone might be preferred in applications 

because of its higher energy density; however, a similar amount of toxic species and pollutants was 

found to be formed in its combustion. For the particularly toxic species methyl vinyl ketone the mole 

fraction was observed to be even five times higher in 2-pentanone combustion compared to 2-butanone 

[7]. 

The present data, providing quantitative and isomer-separated mole fraction profiles whenever 

possible with good agreement with the high-temperature model, may be helpful in further critical 

examination of the related reaction chemistry. In the next steps, additional calculations should be 

performed to integrate a low-temperature sub-mechanism into the model. 
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