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Abstract

It is well known that emissions from combustion processes are harmful and dangerous for
climate, air quality, environment and health. However, a significant increase of anthro-
pogenic CO,, particulate matter, and soot has been measured over the past years. Since
more than 80 % of the global primary energy is still covered by fossil energy sources, an
immediate substitution by renewable energy is not yet possible and efficient and cleaner
alternatives are needed for the transition period in the next 10-20 years.

To achieve such cleaner combustion goals, several changes in different fields should be
considered, while in engine combustion two main approaches are pursued. These suggested
developments include the technical approach of a homogeneous low-temperature combustion,
which is supposed to lead to a lower emission of pollutants, as well as the use of alternative
fuels (e.g. alcohols, ethers, esters) with a proposed cleaner emission than prototypical fuels.
However, due to their different molecular structures including heteroatoms, they often
exhibit a very different species distribution in their combustion. The respective chemical
composition can lead to the emission of toxic species or pollutants that can have negative
influences on human health and the atmosphere by photochemical reactions. Therefore,
the combustion behavior of these types of fuels needs to be analyzed in more detail to gain
understanding of their complex reaction pathways, especially in the low-temperature regime.

Technical studies often analyze global parameters of combustion as e.g. ignition delay times,
flame speeds or the concentration of unburnt hydrocarbons at the tailpipe. However, from
the chemical point-of-view, the combustion process is highly complex. Therefore, the aim of
this work was to achieve detailed knowledge about specific reaction pathways in the combus-
tion process of different fuels and fuel mixtures to help evaluating the potential of possible
alternative fuels and fuel additives. For this purpose, laminar premixed low-pressure flames
and a laminar flow reactor were used as model experiments on a laboratory scale to cover a
broad range of the relevant phase space including temperature, pressure and stoichiometry.
The species distributions in different oxidation processes were analyzed by molecular-beam
mass spectrometry serving as a universal technique to measure a multitude of species at
the same time. A combination of different ionization techniques covering electron impact
ionization, photoionization and photoelectron/photoion coincidence spectroscopy has been
used to cross-validate the obtained data and to gain complementary information for a
detailed structure analysis of species occuring in the oxidation processes. Therefore measu-
rements at Bielefeld University were combined with several measurements at large-scale
setups using synchrotron-generated vacuum-ultraviolet radiation from the Advanced Light
Source in Berkeley, USA, the National Synchrotron Radiation Laboratory in Hefei, China



and the SOLFEIL Synchrotron in Gif-sur-Yvette, France. Furthermore, the experimental
data has been complemented by specific and internally consistent reference measurements,
theoretical calculations and kinetic modeling as a connection between laboratory-scale
experiments and technical processes.

The main focus of this work was the investigation of alternative fuels and their influ-
ences on the combustion process of mixtures, as these are already used on the road (e.g.
E10, biodiesel). Adding alternative fuels to prototypical compounds can have a significant
impact on the reacitivity and the reaction pathways of the oxidation leading to interaction
between species rising from the oxidation process. Currently, only little information is
available on these mixing effects. Therefore, several pure fuels as well as mixtures of prototy-
pical and alternative fuel candidates have been analyzed in the low- and high-temperature
environment to investigate the influence of fuel additives and interactive effects in mixtures.
As a fundamental result of this work it could be confirmed that a combination of several
experimental techniques together with theoretical calculations and kinetic modeling is very
important and necessary to obtain the complex information needed on the combustion
process of fuels. The results revealed that the molecular structure of the fuel molecules as
well as the oxidation environment are of significant influence for the reaction pathways
and therefore the formation of possible pollutants. For the addition of alcohols and ethers
very strong and partially contrary influences on the fuels reactivity and the resulting
species distribution could be observed for the low- and high-temperature regime. While
in a high-temperature environment only small effects and mainly on the formation of
soot precursors were found, the reactivity of the mixtures was dramatically influenced in
a low-temperature environment leading to a different species distribution, enabling the
possibility to influence the combustion process by changing the oxidation environment and
a selective addition of specific components. Furthermore, the experimental results of this
work have contributed to the further development and validation of several kinetic models
by detecting new species and possible reaction pathways that have not been included in
simulations before, but can be used to improve the predictability of such mechanisms in
the future.
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Die Ergebnisse dieser Arbeit sind bereits in den Publikationen [1-4] vero6ffentlicht, bzw.
in Form der Manuskripte [5, 6] eingereicht und bereits akzeptiert bzw. positiv begut-
achtet. Im Folgenden werden daher die publizierten Ergebnisse zusammengefasst. Die
Verdffentlichungen sowie die eingereichten Manuskripte sind im Anhang dieser Arbeit zu
finden.

KAPITEL 1

Einleitung

Die aus Verbrennungsprozessen entstehenden Emissionen haben nachweislich einen schadli-
chen Einfluss auf das Klima, die Luftqualitit, die Umwelt und die Gesundheit [7, 8]. Die
globale Emission von CO, ist von 1990 bis 2015 um mehr als 60 % gestiegen, wobei 2015
der anthropogene CO,-Anteil bereits bei 94 % lag [9]. Jedoch ist nicht nur der CO,-AusstoB
relevant, auch die Emission von Feinstaub und Ruf} hat einen signifikanten Einfluss auf das
Klima [10], zdhlt zu den grofiten globalen Gesundheitsbedrohungen und fithrt nachweislich
zu schweren Atemwegs- und Herz-Kreislauf-Erkrankungen [11-17]. Im Hinblick auf all
diese Aspekte ist vor allem ein kritisches Uberdenken der Strategien im Transportsektor
notwendig, jedoch sind auch viele andere Bereiche fiir diese Entwicklung verantwortlich.
Eine reine Umstellung auf Elektromobilitét reicht somit nicht aus, da nicht zuletzt auch die
Elektroenergie zum groften Teil aus fossilen Energietragern produziert wird [18]. Heutzuta-
ge wird insgesamt immer noch mehr als 80 % des globalen Primérenergiebedarfs aus fossilen
Energiequellen abgedeckt [7, 8, 19]. Eine vollstdndige Substitution durch erneuerbare Ener-
gie (z.B. aus Wind, Sonne, Wasser) ist zwar rein technisch moglich [20], jedoch aufgrund
der starken Fluktuation im Hinblick auf die Verfiigbarkeit solch natiirlicher Ressourcen
schwierig. Mit dem weiterhin steigenden Energiebedarf ist fiir die ndhere Zukunft keine
Prognose fiir eine vollstindige Substitution fossiler Brennstoffe méglich [7, 8, 21]. Die
Ubergangszeit mit komplementérer Nutzung fossiler und erneuerbarer Energien wird daher
noch mindestens die niachsten 10-20 Jahre andauern. Daher ist es besonders wichtig, auch
im Flissigbrennstoffbereich Alternativen zu erforschen, die iiber eine sauberere Verbren-
nung im Vergleich zu momentan genutzten Kraftstoffen verfiigen. Dazu existieren bereits
vielversprechende Anséitze und Konzepte, welche jedoch ein interdisziplindres Wissen tiber
Brennstoffe, Energieumsétze, technische Infrastruktur und die motorische Verbrennung
kombinieren miissen [22].

Im Bereich der motorischen Verbrennung gibt es zwei wesentliche Ansatzmoglichkeiten,
diese Ziele zu erreichen. Eine CO5-Reduktion kann durch effizientere Verbrennungsstrategi-
en sowie durch Brennstoffe mit verringerter Kohlenstoffsignatur ermdéglicht werden. Zum
einen ist die technisch relevante homogenisierte Niedertemperaturverbrennung zu nennen,



2 1 Einleitung

bei der durch eine moglichst gleichméflige Vormischung von Brennstoff und Oxidator sowie
einer Reduktion der Verbrennungstemperatur eine effiziente Verbrennung erreicht sowie
der Ausstofl von Schadstoffen signifikant verringert werden soll. Dasselbe Ziel kann mithilfe
der Nutzung alternativer Kraftstoffe verfolgt werden, die aufgrund von unterschiedlichen
Molekiilstrukturen ein verédndertes Emissionsverhalten im Vergleich zu herkémmlichen
Kraftstoffen aufweisen.

Im technischen Bereich werden dazu vorrangig Messungen von globalen Parametern der
Verbrennung, wie z.B. Ziindverzugszeiten, Flammengeschwindigkeiten oder der Konzen-
tration von Kohlenwasserstoffgemischen am Auspuff unter verschiedenen Bedingungen
durchgefiihrt, um wesentliche Erkenntnisse fiir eine technische Andwendbarkeit und Nutz-
barkeit von alternativen Kraftstoffen zu erhalten. Der Verbrennungsprozess ist jedoch
aus chemischer Sicht sehr komplex. Daher wurden in dieser Arbeit spezifische Details
der Verbrennung in Umgebungen untersucht, die auch tatséchlich chemisch analysiert
werden konnen. Dazu wurden Modellexperimente eingesetzt, die dazu dienen, ein um-
fassendes chemisches Verstidndnis komplexer Verbrennungsprozesse und Reaktionswege
zu erhalten. Dies ist insbesondere im Hinblick auf das noch nicht ausreichend erforschte
Schadstoffbildungspotential alternativer Kraftstoffe und Kraftstoffzusétze wichtig, da diese
oftmals ein sehr unterschiedliches Emissionsverhalten im Vergleich zu momentan genutzten
Kraftstoffen aufweisen und auch Schadstoffe emittieren, die ebenfalls kritisch im Bezug
auf Klima, Atmosphére und Gesundheit betrachtet werden miissen und unter Umsténden
bisher gesetzlich nicht reguliert sind [23].

Im Rahmen dieser Arbeit wurden mit der laminaren vorgemischten Niederdruckflam-
me und dem laminaren Stromungsreaktor zwei verschiedene Modellexperimente verwendet,
die einen grofleren Bereich des relevanten Phasenraums aus Druck, Temperatur und Sto-
chiometrie abdecken. Als Bindeglied zwischen Laborexperimenten und technisch relevanten
Prozessen werden iiblicherweise kinetische Modelle verwendet. Solche Modelle kénnen
mithilfe experimenteller Ergebnisse, wie sie in dieser Arbeit vorgestellt werden, weiterent-
wickelt werden. Bisher sind solche Modelle vorrangig fiir den Bereich von Molekiilen mit
ein bis vier Kohlenstoffatomen gut entwickelt und erprobt [23-25], fiir groflere Molekiile
und Mischungen verschiedener Brennstoffmolekiile sind jedoch weiterhin eine Vielzahl
experimenteller Daten zur Entwicklung und Validierung notwendig.

In dieser Arbeit wurde die Molekularstrahl-Massenspektrometrie (Molecular-beam mass
spectrometry, MBMS) als universelle Detektionsmethode eingesetzt, da sie durch die gleich-
zeitige Analyse einer Vielzahl an Spezies eine wertvolle und etablierte Methode in vielen
Bereichen, wie z.B. Pyrolyse, Photolyse und Oxidation darstellt [26-34]. Damit kénnen
auch im Verbrennungsbereich niitzliche Informationen fiir die Modellentwicklung und die
Erprobung neuer Betriebsbedingungen gewonnen werden [35, 36]. Die Nutzung verschiede-
ner lonisationstechniken ist dabei sowohl im Hinblick auf die Kombination unterschiedlicher
Erkenntnisse als auch eine Kreuzvalidierung verschiedener Experimente sinnvoll. Daher
wurden zunéchst quantitative Messungen an der Universitdat Bielefeld mit der relativ einfach
anwendbaren Elektronenstofionisation (EI) [37, 38] durchgefiihrt, die jedoch aufgrund einer
breiten Elektronenverteilung keine scharf definierte Ionisationsenergie liefert und damit
iiber die reine Detektion der Masse keine Isomere voneinander getrennt werden koénnen.
Dies ist hingegen mithilfe der Photoionisation (PI) moglich [26, 27, 39], da dabei mittels
synchrotrongenerierter Vakuumultravioletstrahlung Photonen mit einer sehr schmalen



Energieverteilung erzeugt werden und somit eine zusétzliche Identifizierung und Separation
von Isomeren ermdéglicht wird. Solche Messungen wurden an der Advanced Light Source
(ALS), Berkeley, USA und dem National Synchrotron Radiation Laboratory, Hefei, China
durchgefithrt und ebenfalls fiir die Ergebnisse dieser Arbeit genutzt. Auch eine Quantifizie-
rung der beobachteten Spezies mittels PI ist moglich, jedoch gelangt auch diese Methode
bei Spezies mit nah beieinanderliegenden lonisationsenergien an ihre Grenzen. Eine zusétz-
liche Kombination mit Messungen der doppelt abbildenden Photoelektronen-Photoionen
Koinzidenz-Spektroskopie (i2PEPICO), die am Synchrotron SOLEIL, Gif-sur-Yvette, Frank-
reich durchgefiihrt wurden, liefert eine weitere Identifizierungsmoglichkeit iiber die Messung
individueller Photoelektronenspektren (PES) [40]. Die Nutzung dieser Methode ist erst
kiirzlich in den Fokus der Verbrennungsdiagnostik geriickt und die aktuelle Forschung
liefert vielversprechende Ergebnisse [2, 41-43]. All diese Methoden liefern eine Vielzahl
von Informationen zur Analyse von Verbrennungsprozessen, sowohl qualitativ als auch
quantitativ, und eine Kombination mehrerer Analysemethoden ist im Bereich komplexer
Prozesse nicht nur sinnvoll, sondern unbedingt notwendig. Dariiber hinaus gilt zu beachten,
dass zur Identifizierung und Quantifizierung von in der Verbrennung relevanten Spezies
komplexe Informationen sowie Literaturdaten in Form von Ionisationsquerschnitten oder
Photoelektronenspektren bekannt sein miissen, die oft bisher nicht gemessen wurden. Eine
theoretische Berechnung solcher Parameter ist zwar ebenfalls moglich, aber nicht weniger
zeitintensiv.

In dieser Arbeit wurde daher eine Kombination aus EI-MBMS-, PI-MBMS-Experimenten
und PEPICO-Messungen zur zusétzlichen Identifizierung spezifischer Isomere genutzt.
Dazu wurden die Photoelektronenspektren einer Vielzahl von moéglichen Referenzsubstan-
zen gemessen und teilweise auch theoretisch berechnet. Die Ergebnisse dieser Arbeiten
dienen insbesondere dem detaillierten Versténdnis der wihrend der Verbrennung ablaufen
Reaktionsmechanismen und konnten fiir die Verbrennung von Cyclopenten, iso-Pentan
und Diethylether wertvolle Erkenntnisse fiir die weitere Modellentwicklung liefern. In Kap.
3 sind einige der in [1] veroffentlichten Ergebnisse zusammengefasst.

Ein zentraler Fokus dieser Arbeit lag auf der Analyse alternativer Kraftstoffe. In die-
sem Bereich sind besonders Stoffklassen wie Alkohole, Ether und Ester im Gespréich
[23, 35, 44], da sie zum Teil aus Biomasse produziert werden kénnen und nachweislich weni-
ger Schadstoffe emittieren als herkémmliche Kraftstoffe [23, 45-47]. Durch ihre verdnderte
molekulare Struktur werden jedoch auch signifikante Unterschiede in der Verbrennung
erhalten, welche insbesondere durch enthaltene Sauerstoffatome zu einem erhéhten Ausstofl
von toxischen Carbonylverbindungen fiihren [48-50] und einen signifikanten Einfluss auf
photochemische Reaktionen in der Atmosphére haben kénnen [51]. Im Fokus dieser Arbeit
standen insbesondere Mischungen alternativer und prototypischer Kraftstoffe, da selbige
schon in Form von E10 und Biodiesel im Alltag relevant sind. Ein interessanter Kraftstoff
mit technisch relevanten Eigenschaften ist Diethylether. Dieser wurde zunéchst individuell
und anschlieffend auch in Mischungen in laminaren vorgemischten Niederdruckflammen
untersucht. Im Hinblick auf die Auswirkung der Brennstoffstruktur auf die Schadstoftbil-
dung wurden dann die Isomere Diethylether und n-Butanol - ebenso ein vielversprechender
Kraftstoff - in Mischungen mit n-Butan analysiert. Die in [3, 4] veroffentlichten Ergebnisse
sind in Kap. 4 zusammengefasst.
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Im Anschluss an die im Hochtemperaturbereich analysierten Niederdruckflammen wurden
die Auswirkungen von Kraftstoffadditiven ebenfalls im Niedertemperaturbereich untersucht.
Viele motorische Anwendungen beruhen auf dem Konzept der homogenisierten Niedertem-
peraturverbrennung [52, 53]. Durch eine niedrigere Temperatur kann eine Reduktion der
RufBbildung sowie der NOy-Emission erzielt werden [54, 55], wobei durch die langsamer
ablaufenden Reaktionen vorrangig die Reaktionen der Brennstoffradikale mit Sauerstoff
zu Peroxylradikalen dominieren [56-58]. Durch diese Einfliisse ergeben sich deutlich ver-
dnderte Reaktionswege iiber sogenannte Niedertemperaturspezies, deren Strukturen und
Bildungswege detaillierter erforscht werden miissen. In Gemischen sind zudem in diesem
Temperaturbereich komplexe Interaktionen der Verbrennungsreaktionen méoglich, die die
Zindung beeinflussen und die bisher nur sehr wenig erforscht wurden. Brennstoffstruktur-
spezifische, nicht regulierte Schadstoffe sind moéglicherweise die Konsequenz der langsamen
Reaktionszeiten. In dieser Arbeit wurde detalliert die Auswirkung der Addition zweier
potentieller Biokraftstoffe, ndmlich Dimethylether und Ethanol, auf die Niedertemperatur-
oxidation eines Kohlenwasserstoffes untersucht. Die Ergebnisse wurde bereits in Form des
Manuskripts [5] zur Verdffentlichung akzeptiert und sind in Kap. 5 zusammengefasst.

Die Entwicklung moglichst schadstoffarmer Biokraftstoffe ist ein sehr aktuelles Thema.
Die Verbrennung von kleinen Methylketonen ist kiirzlich in den Fokus der Diskussionen
geriickt, da diese eine hohe Klopffestigkeit aufweisen und oft mikrobiologisch herstellbar
sind [59, 60]. So wurde z.B. 2-Butanon vom Exzellenzcluster "Mafigeschneiderte Kraftstoffe
aus Biomasse"( Tailor-Made Fuels from Biomass, TMFB) der RWTH Aachen als moglicher
Zukunftsbrennstoff vorgestellt. Bisherige Untersuchungen zu diesem Brennstoff [61-63]
zeigten vielversprechende Ergebnisse im Hinblick auf eine niedrige Schadstoffbildung wie
z.B. die Reduktion von Ruf}; NOx und unverbrannten Kohlenwasserstoffen [46, 61]. Auf-
grund seiner hoheren Energiedichte ist 2-Pentanon interessant, obwohl es bisher nicht aus
Biomasse herstellbar ist. Daher wurde in dieser Arbeit die Hochtemperaturkinetik von
2-Pentanon in einer laminaren vorgemischten Niederdruckflamme besonders im Hinblick auf
mogliche Unterschiede in der Verbrennungskinetik zu 2-Butanon untersucht. Die Ergebnisse
sind zur Veroffentlichung eingereicht [6] und in Kap. 6 zusammengefasst.



KAPITEL 2

Theoretische und experimentelle Grundlagen

In diesem Kapitel werden die zum Verstédndnis der Arbeit bendtigten theoretischen Grund-
lagen zu den untersuchten Verbrennungsprozessen sowohl im Hochtemperatur- als auch im
Niedertemperaturbereich erlautert sowie die experimentellen Untersuchungsobjekte und
die verwendete Molekularstrahl-Massenspektrometrie kurz vorgestellt. Auflerdem wird eine
kurze Ubersicht iiber die Datenauswertung und die Quantifizierung fiir die verschiedenen
Experimente gegeben. Da viele der experimentellen Ergebnisse mit kinetischen Model-
lierungen verglichen werden, werden abschlieflend die verwendeten Simulationsmethoden
beschrieben.

2.1 Verbrennungsprozesse

Bei einer Verbrennung wird ein Brennstoff mit einem Oxidator in einer schnell ablaufenden
Folge exothermer, meist radikalischer Kettenreaktionen zu den Verbrennungsprodukten
umgesetzt [64]. Je nach Verhéltnis von Brennstoff und Oxidator wird die Verbrennung
brennstoffreich oder brennstoffarm genannt, wahrend die stochiometrische Verbrennung
den Fall beschreibt, in dem Brennstoff und Oxidator stéchiometrisch zueinander vorliegen
und bei der Verbrennung eines Kohlenwasserstoffes damit vollstandig zu Kohlendioxid und
Wasser reagieren [56]. Eine bespielhafte verallgemeinerte Reaktionsgleichung dieser Art
zeigt Gl. 2.1. Die daraus resultierende Stéchiometrie ¢ der Oxidation gibt das Verhéltnis
von Brennstoff zu Oxidator normiert auf den stochiometrischen Fall an (s. Gl. 2.2).

mit 5=24+025-y—0.5-2

NBrennstoff ng &
NOxi rennsto. .
¢ = proxidator - mit n: Stoffmenge (2:2)
MBrennstoff,stéch. NOxidator
X1

NOxidator,stéch.

Die ablaufenden Kettenreaktionen bei der Verbrennung unterscheiden sich im Allgemei-
nen stark in Abhéngigkeit von den vorliegenden Umgebungsbedingungen (Druck und
insbesondere Temperatur). Dies fithrt zu sehr unterschiedlichen Reaktionsmechanismen
in verschiedenen Temperaturbereichen. Die sich dabei hauptséchlich unterscheidenden
Reaktionswege sind in Abb. 2.1 nach [65, 66] schematisch und verallgemeinert dargestellt.
Typische Reaktionsklassen fiir beide Bereiche werden im Folgenden kurz erldutert.
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(a) Hochtemperaturbereich (b) Niedertemperaturbereich

T>>900 K T ~500-900 K
Brennstoff » R’
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Zerfall ROz Olefine + HOy
! l / Klische Ether + OH"
. zyklische Ether +
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Olefine v
C-C-B- . ' .
Spaltung OzQOOH —> Olefine + H02
| \
[B—Spaltungsprodukte P(OOH); — > Ketohydroperoxide + OH

Abbildung 2.1: Reaktionswege fiir den (a) Hochtemperatur- und (b) Niedertemperaturbereich,
Reaktionsklassen adaptiert aus [65, 66].

Im Hochtemperaturbereich, der fiir die hier untersuchten Systeme deutlich oberhalb von
900 K beginnt, findet zunéchst eine H-Abstraktion vom Brennstoffmolekiil vorrangig durch
H- und OH-Radikale statt. Durch anschliefende C-H- bzw. C-C-5-Spaltung werden dann
entweder Olefine oder andere Spaltungsprodukte (stabile Spezies + Radikal) gebildet. Im
Niedertemperaturbereich (hier ca. 500-900 K) findet die erste H-Abstraktion hauptséchlich
durch OH- und HO,-Radikale statt. Fiir eine anschliefende -Spaltung ist bei niedrigerer
Temperatur jedoch nicht geniigend Energie vorhanden, weshalb es hier vorrangig zu einer
Anlagerung eines Sauerstoffmolekiils kommt. Das daraus gebildete Peroxylradikal RO,
kann dann tiber mehrere in Abb. 2.1 dargestellte Reaktionswege weiter reagieren, die die
Gesamtreaktivitit des Systems steigern oder verringern kénnen, je nachdem ob und wie viele
weitere Radikale dabei gebildet werden. Zum Beispiel werden durch die Reaktion {iber das
Isomerisierungsprodukt QOOH zum Ketohydroperoxid und dessen anschlielende Spaltung
der Peroxidgruppe mehr OH-Radikale produziert, als fiir die initiale H-Abstraktion vom
Brennstoff benotigt werden, was zu einer erheblichen Steigerung der Gesamtreaktivitit des
Systems fithrt. Die Stabilitat solcher peroxidischen Spezies ist jedoch sehr gering und wird
durch eine Erhéhung der Temperatur stark reduziert. In diesem Fall kommt es vermehrt
zu Kettenabbruchreaktionen wie der Bildung von Olefinen sowie zu weniger reaktiveren
HO,-Radikalen. Im Bereich von ca. 800-1200 K spricht man von einem Ubergangsbereich,
da hier sowohl die Reaktionsklassen der Hoch- als auch der Niedertemperaturkinetik auf-
treten konnen. Die Auswirkungen dieser unterschiedlichen Reaktionswege sind in Abb. 2.2
dargestellt.
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Abbildung 2.2: Typische Edukt-, Produkt- und Intermediatverldufe fiir die Oxidation eines
Brennstoffs (a) ohne und (b) mit Niedertemperaturkinetik.

Ziindunwillige Brennstoffe mit einer hohen Oktanzahl!' zeigen erst bei hoheren Temperatu-
ren eine Reaktivitdt und somit einen Brennstoffumsatz (Abb. 2.2a), wahrend Brennstoffe
mit einer niedrigen Oktanzahl bereits eine ausgeprigte Kinetik im Niedertemperaturbereich
aufweisen und einen sogenannten NTC-Bereich (NTC: Negative Temperature Coefficient)
zeigen konnen. Dies bedeutet, dass mit steigender Temperatur der Brennstoffabbau zu-
néchst zuriickgeht und die Reaktivitidt des Systems abnimmt (s. Abb. 2.2b).

Aufgrund der hier vorgestellten unterschiedlichen Reaktionsablédufe ist es wichtig, den
Brennstoffabbau unter verschiedenen Konditionen (Druck, Temperatur, Stochiometrie) zu
untersuchen, um ein moglichst breites Parameterfeld abzudecken.

2.2 Modellexperimente

In dieser Arbeit wurden zwei verschiedene Modellexperimente verwendet, die jeweils stark
unterschiedliche Randbedingungen darstellen. Die vorgemischte laminare Niederdruckflam-
me wird bei niedrigem Druck p (hier 40 mbar) untersucht und spiegelt vorrangig Reaktionen
des Hochtemperaturbereichs wider, da die vorliegende Flammentemperatur 7' im Bereich
von 1000-2000 K liegt. Um hingegen die Niedertemperaturchemie zu untersuchen, wurde
ein laminarer Stromungsreaktor verwendet, der bei einem Umgebungsdruck von 970 mbar
und in einem Temperaturbereich von 450-1100 K betrieben wird. Im Folgenden werden die
verwendeten Systeme und ihre Spezifikationen kurz vorgestellt.

2.2.1 Vorgemischte laminare Niederdruckflamme

Die vorgemischte laminare Niederdruckflamme eignet sich fiir die Untersuchung von Ver-
brennungsprozessen im Hochtemperaturbereich besonders gut, da sie parallel zur Austritts-
Offnung eine konstante Intermediatkonzentration gewéhrleistet. Idealerweise ist durch diese

1 Klassifizierung der Ziindunwilligkeit von Brennstoffen, meist Angabe als RON (Research Octane Number).
Definitionsgemé$ ist die RON fur 2,2,4-Trimethylpentan (”Isooktan”) mit einem Wert von 100 maximal
und liegt fiir n-Heptan bei 0. Die RON gibt an, wieviel Isooktan in einer Mischung mit n-Heptan
vorliegen muss, um die gleiche Klopffestigkeit wie der zu priifende Kraftstoff aufzuweisen [67].
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Geometrie der Ausstromung die Flussgeschwindigkeit des Reaktionsgemisches an jeder
Stelle der Flamme identisch und die Konzentration von Edukten, Produkten und Ver-
brennungsintermediaten daher nur eine Funktion der Reaktionszeit. Die Position h (Hohe
oberhalb der Brenneroberfliche) innerhalb der Flamme korreliert somit direkt mit dem
Reaktionsfortschritt, wodurch quasi-eindimensionale Molenbruchprofile erhalten werden
kénnen. Ein solches Beispiel ist in Abb. 2.3 dargestellt.

Vor- | Reaktions- ! Rekombinations-
heiz-i  zone : zone (b)
zone | '

< Temperatur
Rekombinations- g
[
zone o .
- ! c :
- % Edukt @ Intermediat
S .
Produkt
Vorheiz- —4{ B S s |
zone Reaktions- 0 2 4 6 8 10 12 14

zone

h/ mm

Abbildung 2.3: (a) Foto einer brennstoffreichen vorgemischten Niederdruckflamme und
schematische Darstellung der darin vorliegenden Zonen. (b) Typische Konzentrationsprofile
von Edukten, Intermediaten und Produkten und der Verlauf der Flammentemperatur in
Abhéngigkeit von der Hohe iiber der Brenneroberfliche h (horizontal dargestellt).

Die laminare Vormischflamme kann grob in die drei Zonen aus Abb. 2.3a unterteilt werden.
In der Vorheizzone direkt oberhalb der Brenneroberflache liegen Brennstoff und Oxidator
vor. In der sich anschliefenden Reaktionszone finden die eigentlichen chemischen Reaktio-
nen {iber die Bildung von Intermediaten statt. Im weiteren Reaktionsverlauf finden in der
Rekombinationszone Kettenabbruchreaktionen statt und stabile Produkte werden gebildet.
In der vergleichsweise heiflen und druckarmen Umgebung dieser Flammen werden in der
Regel Hochtemperaturspezies iiber die Reaktionswege in Abb. 2.1a gebildet. Die Detektion
von typischen Niedertemperaturspezies (vgl. Abb. 2.1b) ist aufgrund der rasch ansteigen-
den Temperatur eher nicht zu erwarten, jedoch wurden oxygenierte Spezies, die z.B. den
zyklischen Ethern zugeordnet wurden, auch in der Vorheizzone der Flamme (die mit einer
niedrigeren Temperatur korreliert, vgl. Temperaturprofil in Abb. 2.3b) gefunden [37, 61].
Solche Spezies konnen zwar detektiert werden, dominieren die Flammenchemie jedoch nicht.

Messungen in laminaren vorgemischten Niederdruckflammen wurden im Rahmen die-
ser Arbeit sowohl an der Universitdt Bielefeld als auch an der Advanced Light Source
(ALS) in Berkeley, USA und dem National Synchrotron Radiation Laboratory in Hefei,
China durchgefiihrt. Alle drei Systeme folgen einem sehr dhnlichen Aufbau, sodass die
erhaltenen Ergebnisse aller Apparaturen gut miteinander vergleichbar sind. Die Flamme
wird dabei jeweils auf einer Brennermatrix innerhalb einer Brennerkammer stabilisiert,
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wobei ein konstanter Druck vorgegeben wird. Brennstoff und Oxidator werden unterhalb
der Brennerkammer partiell vorgemischt und stromen anschliefend gleichméfig durch die
Brennermatrix in die Brennerkammer. Gasférmige Brennstoffe werden dazu iiber Mas-
seflussregler mit einer Ungenauigkeit von ca. 5% des eingestellten Masseflusses direkt
eingeleitet, wiahrend fliissige Brennstoffe zunéchst {iber ein Verdampfungssystem konstant
in die Gasphase tberfithrt werden. Um die in Abb. 2.3b gezeigten Speziesprofile iiber den
entsprechenden Hohenbereich iiber der Brenneroberfliche zu erhalten, kann der Brenner
mit einem Schrittmotor verfahren werden. Dadurch kann die Probenahme an verschiedenen
Orten in der Flamme erfolgen und die Zusammensetzung der Spezies in Abhéngigkeit vom
Reaktionsfortschritt analysiert werden.

2.2.2 Laminarer Stromungsreaktor

Im Rahmen dieser Arbeit wurden Messungen am laminaren Stromungsreaktor an der Uni-
versitdt Bielefeld durchgefithrt. Ein solches System eignet sich besonders gut fiir die gezielte
Untersuchung von einigen der in Abb. 2.1b vorgestellten Niedertemperaturspezies und
bietet aufgrund seiner einfachen Geometrie eine vergleichsweise einfach zu beschreibende
Stromungsdynamik, was insbesondere fiir die Modellierbarkeit von grofier Bedeutung ist.
FEine schematische Darstellung des in dieser Arbeit verwendeten laminaren Stromungsre-
aktors kann Abb. 2.4a entnommen werden. Der eigentliche Reaktor besteht aus einem
Quarzglasrohr mit einer Lange von 1.30 m, einem Innendurchmesser von 8 mm und einem
AuBendurchmesser von 10 mm, welches durch acht unabhéngig voneinander regelbare
Ni-Cr/Ni-Thermoelemente an der Auflenseite auf Temperaturen im Bereich von 448-1173 K
(175-900 °C) geheizt werden kann. Die Thermoelemente sind mit einem Fehler von 0.4 %
behaftet, jedoch haben interne Kalibrationsmessungen und Vergleiche mit Modellierungen
ergeben, dass die Temperatur im Reaktor aufgrund von Inhomogenitédten eher mit einer
Ungenauigkeit von +£15 K angenommen werden muss. Das in Abb. 2.4b gezeigte Tempe-
raturprofil iiber die Lange des gesamten Reaktors zeigt aulerdem, dass der Reaktor im
Wesentlichen in drei Zonen unterteilt werden kann (Vorheizzone 0-0.14 m, Reaktionszone
0.14-1.25 m, Abkiihlzone 1.25-1.30 m). Dies ist besonders fiir die Beriicksichtigung des
Wiérmetransfers bei der Modellierung des Reaktors wichtig (s. Kap. 2.5).

Um die Konzentrationen der durch Oxidationsreaktionen entstehenden Spezies messen zu
koénnen, werden Brennstoff und Sauerstoff, wie in Abb. 2.4a dargestellt, jeweils unabhén-
gig voneinander mit dem Verdiinnungsgas Argon vorgemischt und anschlielend tiiber ein
Y-Konnektorstiick zusammengefithrt. Im Reaktor wird das Gemisch auf die von auflen
eingestellte Temperatur erhitzt und durch den kontinuierlich nachstrémenden Fluss durch
das Quarzglasrohr hindurchgeleitet. Fiir dieses System ist bei einer Flussrate von bis zu
0.5 slm (Standard Liter pro Minute, bei 273.15 K und 1 atm) von einer sogenannten
Plug-Flow-Stréomung auszugehen. Das bedeutet, dass sich das Gemisch wie eine Schei-
be durch den Reaktor bewegt und Reibung an der Reaktorwand vernachléssigt werden
kann. Durch die zusétzliche Vernachldssigung von Riickdiffusionsprozessen kann so eine
homogene Konzentrationsverteilung an jeder Position des Reaktors angenommen werden,
was zu einer deutlich vereinfachten Modellierung des Reaktorsystems fithrt. Am Ende
des Quarzglasrohrs erfolgt dann die Probenahme und die anschlieBende Detektion und
Analyse der Spezieszusammensetzung bei der jeweils eingestellten Temperatur, sodass
Temperatur-Konzentrations-Profile wie in Abb. 2.2 erhalten werden.
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Abbildung 2.4: (a) Schematische Darstellung des laminaren Stromungsreaktors. (b) Tempe-
raturprofil von Argon iiber die Reaktorldnge mit Vorheizzone (Zone 1), Reaktionszone (Zone
2) und Abkiihlzone (Zone 3).

2.3 Molekularstrahl-Massenspektrometrie

In dieser Arbeit wurde zur Probenahme und Detektion der bei der Oxidation entstehenden
Spezies die Molekularstrahl-Massenspektrometrie (Molecular-beam mass spectrometry,
MBMS) eingesetzt. Dabei wird zunichst eine Quarzglasdiise mit einer sehr kleinen Offnung
(hier 50-500 pm; Offnungswinkel Bielefeld: 25°, ALS: 40°, Hefei: 30°) an den Ort der
Probenahme gebracht. Mithilfe einer zweistufigen Expansion iiber einen Druckgradienten
bildet sich ein sogenannter Molekularstrahl aus, was bedeutet, dass die mittlere freie
Weglange der Teilchen so stark zunimmt, dass Stofle untereinander stark reduziert werden
und somit ndherungsweise eine Konservierung der Speziesverteilung am Probenahmeort
gewahrleistet wird. Dies trifft auch auf Radikale zu, die mithilfe dieser Technik identifiziert
werden konnen. Die Uberfiihrung aus der ersten in die zweite Druckstufe erfolgt dabei
iiber einen Skimmer (Bielefeld: Kupfer, ALS: Nickel, Hefei: keine zweite Druckstufe) mit
einer Offnung von ca. 1-2 mm, um ausschlieflich den zentralen Teil des Molekularstrahls
auszuschneiden. Eine schematische Darstellung dieses Verfahrens ist in Abb. 2.5 gegeben.

Der gebildete Molekularstrahl wird anschliefend mit einem Elektronen- oder Photonenstrahl
gekreuzt und die Molekiille werden dadurch ionisiert. Nach der Beschleunigung in ein
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Abbildung 2.5: Schematische Darstellung des Molekularstrahl-Probenahmeverfahrens.

angrenzendes Flugzeit-Massenspektrometer und der Detektion iiber eine Multichannel
Plate (MCP) kann ein Massenspektrum der Speziesverteilung am Probenahmeort erhalten
werden. Zur Ionisation kdnnen unterschiedliche Techniken genutzt werden, wozu die in dieser
Arbeit verwendeten Methoden der Elektronenstofionisation (EI) und Photoionisation (PI)
sowie die Photoelektronen-Photoionen Koinzidenz-Spektroskopie (PEPICO) als spezielle
Form der Photoionisation gehéren. Die drei Methoden werden im Folgenden kurz vorgestellt.

ElektronenstoBionisation

Bei der ElektronenstoBionisation (EI) werden Elektronen durch Anlegen eines Stroms aus
einem Filament (hier Wolframdraht) erzeugt. Dies bietet den grofien Vorteil einer besonders
einfachen und kostengiinstigen Ionisation, fithrt jedoch zu einer sehr breiten Energievertei-
lung der erzeugten Elektronen (Full Width at Half Maximum (FWHM) ca. 1 eV). Daraus
resultiert die gleichzeitige lonisation vieler Spezies, auch mit Ionisationsenergien oberhalb
der eingestellten Elektronenenergie, wodurch keine Trennung von Isomeren erfolgen kann.
In dieser Arbeit wurden EI-MBMS-Messungen an zwei Massenspektrometern in Biele-
feld durchgefiihrt, die jeweils mit dem laminaren Stromungsreaktor und der laminaren
Niederdruckflamme kombiniert sind. Beide Massenspektrometer bieten mit Massenauflo-
sungen — von ca. 2000 (Stromungsreaktor-MS) bzw. 4000 (Niederdruckflammen-MS)
die Moglichkeit, nicht nur die Nominalmasse, sondern im untersuchten Massebereich von
2-120 amu auch die exakte C/H/O-Zusammensetzung einer Spezies zu bestimmen. Weitere
Details zu den verwendeten EI-MBMS-Systemen kénnen der Literatur entnommen werden
[37, 38, 62, 68].

Photoionisation

Die Photoionisation (PI) bietet gegeniiber der ElektronenstoBionisation den Vorteil einer
extrem schmalen Energieverteilung. Daher werden nur Spezies ionisiert, deren lonisations-
energie unterhalb der verwendeten Photonenenergie liegt, was eine Separation von Isomeren
ermoglicht, sofern sich die Ionisationsenergien der Isomere ausreichend unterscheiden. Ein
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wesentlicher Nachteil besteht jedoch in der aufwéndigen Zugénglichkeit, da die dazu be-
notigten, iiber einen weiten Energiebereich durchstimmbaren Strahlungsquellen wie z.B.
Synchrotrons als Groflanlagen nur mit begrenzter Messzeit zur Verfiigung stehen.

Im Rahmen dieser Arbeit konnten Messungen in einer laminaren Niederdruckflamme am
PI-MBMS unter Verwendung von Synchrotronstrahlung der Advanced Light Source (ALS)
in den Lawrence Berkeley Laboratories (Berkeley, Kalifornien, USA) durchgefithrt werden.
Das verwendete Massenspektrometer erlaubt mit einer Massenauflésung von - > 4000
ebenfalls eine eindeutige Bestimmung der Summenformel (C/H/O-Zusammensetzung).
Die Energieauflésung der durch die Synchrotronstrahlung generierten Photonen ist mit
AFE = 1+0.05 eV angegeben. Weitere Details zum urspriinglichen Aufbau des verwendeten
PI-MBMS-System konnen der Literatur entnommen werden [69]. Es sei jedoch darauf
hingewiesen, dass nach Verdffentlichung der angegebenen Publikation durch die Integration
eines Reflektrons die Massenaufllésung des Systems von damals 400 auf >4000 erhoht
wurde.

Weiterhin wurden Messungen am PI-MBMS am National Synchrotron Radiation Laboratory
(NSRL) der University of Science and Technology of China in Hefei, China durchgefiihrt.
Das dort verwendete Massenspektrometer weist eine Massenauflosung von ca. 2500 auf,
wahrend die verwendete Synchrotronstrahlung eine Energieauflésung TEE von etwa 4000 be-
sitzt. Weitere Informationen zum Aufbau des Systems sowie der Speziesidentifizierung und
Quantifizierung der erhaltenen Daten konnen der Literatur entnommen werden [27, 70-72].

Photoelektronen-Photoionen Koinzidenz-Spektroskopie

Fir die Photoelektronen-Photoionen Koinzidenz-Spektroskopie (PEPICO) werden eben-
falls am Synchrotron generierte Photonen zur Ionisation genutzt. Bei dieser Methode
werden jedoch zusétzlich zur Detektion der Ionen in Form des Massenspektrums auch
die aus dem Ionisationsprozess entstehenden Elektronen in Koinzidenz detektiert, sodass
die zur Ionisation benétigte Energie und daraus resultierend zusétzlich ein Photoelek-
tronenspektrum (PES) erhalten werden kann. Damit kénnen Isomere zusétzlich durch
ihre charakteristischen Photoelektronenspektren identifiziert werden. Im Rahmen dieser
Arbeit wurden Messungen in laminaren Niederdruckflammen an der Beamline DESIRS am
Synchrotron SOLEIL (Gif-sur-Yvette, Frankreich) durchgefithrt. Dazu wurde eine wie oben
beschriebene Brennerkammer mit zweistufiger Expansion und Molekularstrahl-Probenahme
an das vor Ort vorhandene DELICIOUSIII Spektrometer gekoppelt. Dieses bietet die
Moglichkeit, detektierte Ionen und Elektronen aus einem Ionisationsprozess mithilfe einer
Multi-Start /Multi-Stop-Technik miteinander in Koinzidenz zu bringen. Die Elektronen
werden von einem zweidimensionalen Velocity Map Imaging (VMI) Spektrometer mit einer
Energieauflosung von ca. 30 % in der Detektormitte (langsame Elektronen) und ca. 3-4%
am Detektorrand (schnelle Elektronen) aufgenommen, was bei einer kinetischen Uber-
schussenergie der Elektronen (eingestellte Photoelektronenenergie abziiglich der fiir den
Ionisationsprozess bendtigten Energie) im Bereich von 0-3.6 €V zu einer Energieauflosung
von 30-140 meV in den daraus resultierenden Photoelektronenspektren fithrt. Fir die hier
vorgestellten Messungen wurde dabei grofitenteils der sogenannte Fized-Photon-Energy
Mode verwendet, bei dem bei einer fest eingestellten Photonenenergie gemessen wird und
durch den zweidimensionalen Detektor Elektronen unterschiedlicher kinetischer Energie
anhand ihres Aufschlagortes unterschieden werden koénnen, sodass aus einer einzelnen
festfrequenten Messung ein Photoelektronenspektrum in einem Energiebereich von der
eingestellten Photonenenergie bis ca. 3-4 eV darunter erhalten wird. Wird hingegen ein
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sogenanntes Threshold Photoelectron Spectrum (TPES) aufgenommen, werden mehrere
Messungen variierender Photonenenergie durchgefiithrt und fiir jede Messung jeweils die
Elektronen ohne kinetische Uberschussenergie (Zero Kinetic Electrons, ZKE) ausgewertet.
Aufgrund der Abfolge mehrerer Messungen wird hierfiir jedoch mehr Zeit benétigt (ca.
12 h ws. ca. 1 h fiir eine festfrequente Messung, vgl. [43]). Die Ionen werden mithilfe eines
Wiley-McLaren-Flugzeit-Massenspektrometers mit einer Massenauflésung von -~ < 1700
detektiert. Durch die angekoppelte Brennerkammer und die Molekularstrahl-Probenahme
wird diese jedoch auf ca. 300 reduziert. Ausfiihrliche Informationen zur Ankopplung der
Brennerkammer [1, 2, 43], der DESIRS-Beamline [73] und dem DELICIOUSIII Spektro-

meter [74, 75] konnen der jeweiligen Literatur entnommen werden.

2.4 Datenauswertung und Quantifizierung

Da die Auswertung und Quantifizierung der erhaltenen Daten fiir die verschiedenen Experi-
mente generell einer vergleichbaren Prozedur folgt und sich fiir die verwendeten Experimente
lediglich in wenigen Aspekten unterscheidet, wird im Folgenden zunéchst die allgemeine
Vorgehensweise erlautert. Im Anschluss daran werden die Besonderheiten fiir die einzelnen
Experimente zusammengefasst.

Zur Quantifizierung der detektierten Signale im Massenspektrum wird zunéchst die erhalte-
ne Flugzeit der Ionen mithilfe einer quadratischen Anpassung von Kalibrationsmessungen
in das Masse-zu-Ladungsverhéltnis umgerechnet. Eine anschliefende Integration tber
die gauliformigen Signale liefert die zugehorige Signalintensitéit S;. Diese ist jedoch nicht
nur vom Molenbruch z; der entsprechenden Spezies, sondern auch von einigen weiteren
Parametern abhéngig. Dieser Zusammenhang ist in Gl. 2.3 gegeben.

Si— ;- D(M,)- SW - - FKT(T) - /dE oi(E) - F(E) (2.3)

Dabei ist ¢ eine Gerédtekonstante, D(M,) der Massendiskriminierungsfaktor, SW (sweeps)
die Anzahl der jeweils aufsummierten Spektren, ¢ die Zahl der Elektronen bzw. Photonen,
FKT(T) eine temperaturabhéngige Geratefunktion, o;(F) der Ionisationsquerschnitt der
Spezies bei der Energie E und f(F) die Energieverteilung der Elektronen bzw. Photonen.
Die Quantifizierung der Molenbriiche basiert anschlieend auf unterschiedlichen Methoden
je nach Art der Ionisation.

Auswertung der EI-MBMS-Daten

Da bei der Elektronenstoflionisation Elektronen mit einer breiten Energieverteilung erzeugt
werden, wird auch das Verdiinnungsgas Argon bei jeder Messung ionisiert, sodass es als
Referenz zur Kalibration und Quantifizierung genutzt werden kann. Da somit jede Spezies
und Argon aus derselben Messung verwendet werden, konnen die energieabhéngigen und
geratespezifischen Faktoren in einem Kalibrationsfaktor ki, Ar(F) zusammengefasst werden
und Gl. 2.3 vereinfacht sich wie folgt:

S o
SAr TAr

“kijar(E) (2.4)

Zu den sogenannten Hauptspezies zéhlen alle Spezies mit einem Molenbruch von mindestens
0.01 (Brennstoff, Sauerstoff, Argon, Kohlenstoffmonoxid, Wasserstoff, Kohlenstoffdioxid
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und Wasser). Fiir ihre Quantifizierung werden Bilanzgleichungen aufgestellt, fiir die an-
genommen wird, dass zu Beginn der Oxidation ausschlielich Brennstoff, Sauerstoff und
Argon und nach vollstdndiger Oxidation nur noch die Produkte Kohlenstoffdioxid, Koh-
lenstoffmonoxid, Wasserstoff und Wasser und das Verdiinnungsgas Argon vorliegen. Als
zusatzliche GroBe zur Losung dieses Gleichungssystems wird das CO/CO,-Signalverhéltnis
aus einer Kalibrationsmessung bestimmt. Somit konnen die Kalibrationsfaktoren k;, 4, aller
Hauptspezies und daraus letztendlich deren Molenbriiche fiir jede Spezieszusammensetzung
bestimmt werden.

Zur Quantifizierung der in geringeren Mengen vorliegenden Intermediate der Oxidation
werden die erhaltenen Rohsignale zunédchst fragment- und isotopenkorrigiert. Anschlieflend
wird der entsprechende Kalibrationsfaktor entweder direkt aus einer Referenzmessung der
entsprechenden Spezies mit Argon oder {iber theoretische Abschitzungen bestimmt. Zu
letzteren zéhlen zum Beispiel die Signalsimulation basierend auf der Faltung des Ionisations-
querschnitts mit der Energieverteilung der Elektronenenergie (Convolution-Methode) oder
der Vergleich und die entsprechende Skalierung des Ionisationsquerschnitts mit strukturell
sehr &hnlichen Spezies (Relative Ionisation Cross Section, RICS-Methode). Wahrend der
Molenbruchfehler bei den Hauptspezies auf ca. 10-15 % geschétzt wird, ist er fiir die
Intermediate von der Art der gewédhlten Kalibrationsmethode abhéangig. Fur die direkte
Kalibration liegt er in etwa bei einem Faktor von 2, wihrend die Conwvolution- und die
RICS-Methode je nach Verfiigbarkeit und Qualitdt der verwendeten lonisationsquerschnitte
einen Fehler bis zu einem Faktor von 4 aufweisen kénnen.

Eine detailliertere Beschreibung der vollstandigen Quantifizierung und der unterschiedlichen
Kalibrationsmethoden kann den Referenzen [37, 38] entnommen werden.

Auswertung der PI-MBMS-Daten

Aufgrund der schmalen Energieverteilung bei der Photoionisation wird Argon mit einer
Ionisationsenergie von 15.763 eV [76] bei Messungen mit niedrigerer Photonenenergie
nicht ionisiert und kann daher nicht als Referenz verwendet werden. Die Quantifizierung
erfolgt somit nach GI. 2.3, welche sich aufgrund der als Delta-Distribution angenédherten
Energieverteilung wie folgt vereinfacht:

Si=xi-c-DOL) - SW - - FKT(T) - 03(E) (2.5)

Dabei werden die Anzahl der zur Ionisation verwendeten Photonen ¢ mithilfe einer kali-
brierten Photodiode und die Massendiskriminierungsfaktoren D(M;) durch Messungen von
definierten Kalibrationsmischungen iiber einen groffen Massebereich bestimmt. Das Produkt
¢ - FKT(T) wird nach der Quantifizierung der Hauptspezies aus dem Argonmolenbruch
bestimmt. Um gerdteabhingige Schwankungen zwischen den Messungen bei unterschiedli-
chen Photonenenergien auszugleichen, werden Messungen aufeinanderfolgender Energien
mithilfe eines sogenannten Scanfaktors korrigiert. Aus Gl. 2.5 folgt, dass ausschliefilich
Spezies quantifiziert werden konnen, fiir die ein Ionisitationquerschnitt oj(E) bekannt ist.
Die Quantifizierung der Hauptspezies erfolgt analog der Elektronenstoflionisation iiber
die bereits genannten Bilanzgleichungen. Im Wesentlichen unterscheidet sich die Methode
dadurch, dass fiir jede Spezies eine Messung mit einer oberhalb der Ionisationsenergie
liegenden Photonenenergie und der entsprechende Ionisationsquerschnitt der Spezies ver-
wendet werden miissen. Dies gilt auch fiir die Quantifizierung der Intermediate. Der Fehler
des Molenbruchs ist hier somit insbesondere von der Qualitdt der verwendeten Ionisations-
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querschnitte abhéngig und liegt ebenfalls im Bereich von einem Faktor 2-4.

Zur Quantifizierung von Isomeren kénnen Messungen bei unterschiedlichen Photonenener-
gien (jeweils knapp oberhalb der Ionisationsenergie der entsprechenden Isomere) verwendet
werden. Dabei wird zunéchst eine Energie verwendet, bei der nur ein Isomer vorliegen kann
und dieses quantifiziert. Durch Subtraktion des von diesem Isomer rithrenden Signals in der
Messung bei einer hoheren Photonenenergie kann der Beitrag eines weiteren Isomers zum
Gesamtsignal ermittelt und dieses quantifiziert werden. Um eine eindeutige Zuordnung
der Isomere zu erhalten, kénnen auBerdem sogenannte Photoionisationseffizienzkurven
(PIE-Kurven) aufgenommen werden, bei denen mit zunehmender Photonenenergie ein
Signalanstieg gemessen wird. Durch Anpassung der bekannten lonisationsquerschnitte an
diese Signale kann eine Identifizierung und relative Quantifizierung (Isomerenverhéltnis)
erfolgen.

Auswertung der PEPICO-Daten

Wie bei den EI- und PI-MBMS-Messungen werden bei den PEPICO-Messungen eben-
falls Massenspektren der Spezieszusammensetzung am Probenahmeort gemessen. Dariiber
hinaus kann auch fiir jede Masse ein zweidimensionales Bild der mit diesen Ionen koin-
zidenten Elektronen erhalten werden. Durch eine inverse Abel-Transformation [77] kann
die urspriingliche Kugelverteilung der Elektronen berechnet und daraus ein Photoelek-
tronenspektrum generiert werden. Felsmann et al. [2] konnten bereits zeigen, dass mit
einem vergleichbaren Prinzip wie dem der PI-MBMS-Auswertung auch eine Quantifizierung
der Spezies aus den Massenspektren erfolgen kann. In dieser Arbeit wurden jedoch keine
absoluten Quantifizierungen vorgenommen, vielmehr wurden die erhaltenen Photoelek-
tronenspektren zur Identifizierung von bis zu vier auftretenden Isomeren bei einer Masse
genutzt. Durch die zusétzliche Aufnahme von Referenz-Photoelektronenspektren der reinen
Komponenten kann sowohl eine Speziesidentifizierung als auch eine relative Quantifizierung
(Isomerenverhéltnis) durch Anpassung der Referenzspektren erfolgen. Dies ist insbesondere
in Ergdnzung zu bereits vorliegenden und quantifizierten EI-MBMS-Messungen hilfreich,
da so der Molenbruch einer Summenformel in die Anteile der entsprechenden auftretenden
Isomere zerlegt werden kann und zusétzliche Informationen gewonnen werden.

2.5 Kinetische Modellierungen

Die im Rahmen dieser Arbeit gemessenen Daten wurden jeweils mit den Ergebnissen kine-
tischer Modellierungen® verglichen. Diese wurden fiir die laminaren Niederdruckflammen
unter Verwendung eines gemessenen Temperaturprofils mithilfe von sogenannten Burner
Stabilized Premized Flame Modulen geeigneter Software (LOGEsoft [78], CHEMKIN-PRO
[79] und OPENSMOKE++ [80]) durchgefiihrt. Das Modellexperiment der laminaren Nie-
derdruckflamme ist in diesen Modulen bereits unter Beriicksichtigung von thermischer
Diffusion und Mehrkomponenten-Transporteigenschaften hinterlegt und nur die Flussbe-
dingungen der Flamme und ein gestortes Temperaturprofil miissen als Eingabeparameter
verwendet werden. Letzteres wird aus dem Druckprofil in der ersten Expansionsstufe
der Molekularstrahl-Probenahme tiber den gesamten Flammenbereich unter Kalibration
auf eine gemessene Abgastemperatur erhalten [4, 37, 81], welche mithilfe von OH-pLIF-

1 Modellierungen fiir die untersuchten Systeme erfolgten in Kooperation mit den jeweiligen in den
Originalpublikationen genannten Partnern.
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Messungen® (pLIF: planare laserinduzierte Fluoreszenz) bestimmt wird [82].

Da fiir die Simulation des laminaren Stromungsreaktors kein Modul zur Verfiigung steht, das
die Eingabe eines Temperaturprofils erlaubt, wurde die von Hemken et al. [62] vorgestellte
Prozedur verwendet, in der die Zerlegung der Modellierung in die drei Zonen des Reaktors
(Vorheizzone, Reaktionszone und Abkiihlzone, vgl. Kap. 2.2.2) erfolgt und mithilfe eines
gemessenen, dem nicht reaktiven Zustand entsprechenden Temperaturprofils von Argon
(s. Abb. 2.4b) ein Warmetransferkoeffizient vorgegeben wird. Diese Prozedur nutzt die
Simulationssoftware LOGEsoft [78] und kombiniert die modellierten Temperaturprofile fiir
die drei Reaktorzonen.

Fiir die Modellierungen der durchgefiithrten Experimente wurden jeweils brennstoffspezi-
fische kinetische Modelle aus der Literatur verwendet (Reaktionsmechanismen, thermo-
chemische Eigenschaften und Transporteigenschaften) oder aufbauend auf der Literatur
in Kooperation mit verschiedenen Arbeitsgruppen mit neu entwickelten Submechanismen
kombiniert. Die Details dazu sind in den jeweiligen Abschnitten zu den entsprechenden
Experimenten angegeben.

Obwohl es sich bei den Ergebnissen der Simulationen um theoretische Berechnungen han-
delt, die in jedem Fall ebenso wie experimentelle Daten mit einem Fehler behaftet sind,
ist es schwierig, diesen fiir die erhaltenen Molenbriiche zu quantifizieren. Dies stellt beim
Vergleich mit experimentellen Daten immer wieder ein Problem dar, jedoch konnte bisher
noch keine einheitliche Moglichkeit zur Fehlerquantifizierung solcher Modellierungen eta-
bliert werden. Ein vielversprechender Ansatz dazu wurde bereits von Wang und Sheen [83]
vorgestellt, ist jedoch noch nicht vollstdndig fiir die Verwendung in kinetischen Modellen
etabliert.

1 Die Messungen der Abgastemperatur wurden von Isabelle Graf an der Universitdt Bielefeld durchgefiihrt.



KAPITEL 3

Identizierung von Isomeren in Flammen mittels
Photoelektronen-Photoionen Koinzidenz-Spektroskopie

Die Photoelektronen-Photoionen Koinzidenz-Spektroskopie (PEPICO) bietet in der Gas-
phasenanalytik eine besonders wertvolle Methode der Speziesidentifizierung. Die haufig
verwendeten Methoden der Elektronenstoflionisation und Photoionisation sind bei zuneh-
mender Komplexitdt der untersuchten Brennstoffe und der hohen Anzahl mdéglicher bei
ihrer Oxidation auftretender Isomere schnell an ihren Grenzen angelangt. Eine zusétzliche
Moglichkeit der Zuordnung und gleichzeitige Kreuzvalidierung vorhergehender Experimente
durch die fiir jede Spezies spezifischen Photoelektronenspektren (PES) ist daher besonders
niitzlich. FEine eindeutige Identifizierung von Spezies kann dabei nur unter Kenntnis der
entsprechenden Referenzspektren auftretender Spezies erfolgen, die jedoch in der Literatur
oft fehlen. Im Rahmen der Veréffentlichung [1] wurden laminare Niederdruckflammen, die
vorher mittels EI- und PI-MBMS untersucht wurden, im Hinblick auf spezielle Probleme
der Isomerentrennung untersucht. Zur Zuordnung der erwarteten Spezies wurden dazu die
PES von 18 Referenzsubstanzen gemessen und von zwei nicht verfiigbaren Spezies mithilfe
von theoretischen Berechnungen! bestimmt. Im Folgenden sollen exemplarisch Teile der
verdffentlichten Ergebnisse kurz zusammengefasst werden.

Messung von Referenzspektren

Zur Identifizierung der Isomere bestimmter Masse-zu-Ladungsverhéltnisse, die in dieser
Arbeit untersucht wurden, ist die Kenntnis der entsprechenden Photoelektronenspektren
unumgénglich. Um fehlende Referenzspektren zu erhalten und dariiber hinaus eine gute
Vergleichbarkeit der einzelnen Komponenten mit den Ergebnissen aus Flammenmessungen
zu erreichen, wurden die PES von 18 Reinsubstanzen mit dem gleichen experimentellen
Aufbau wie die Flammenmessungen aufgenommen. Somit haben die Spektren der puren
Substanzen die gleiche spektrale Auflésung wie die Spektren aus den Flammen und es
muss keine Verschiebung der Energieskala vorgenommen werden, um die experimentellen
Ungenauigkeiten anderer Systeme auszugleichen. Dieser Ansatz wurde in einem kiirzlich
erschienen Review-Artikel von Baer und Tuckett [40] als signifikanter Vorteil herausge-
stellt. Die gemessenen PES umfassen Spezies der Summenformeln CsHg, CsHg, CsH; und
C,4HgO und sind in Abb. 3.1 dargestellt.

Fiir die in Abb. 3.1a,b gezeigten Komponenten sind die gemessenen PES relativ unter-
schiedlich und daher in Isomerenmischungen gut unterscheidbar. Fir C;H;, (Abb. 3.1c)

1 Diese Berechnungen erfolgten durch Steffen Schmitt und Wolfgang Eisfeld in Kooperation mit der
Arbeitsgruppe Theoretische Chemie der Universitit Bielefeld.
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sehen sich die Spektren von 3-Methyl-1-buten und 1-Penten jedoch sehr dhnlich und liegen
zusétzlich im gleichen Energiebereich, sodass hier eine Unterscheidung der Spezies in einer
Mischung schlecht moglich ist. Selbiges gilt fiir die Spektren der oxygenierten C,HgO
Isomere n-Butanal, iso-Butanal, 3-Buten-2-ol, 3-Buten-1-ol und iso-Butenol (Abb. 3.1d),
welche zudem auch kaum eine Vibrationsstruktur aufweisen.
m/z=172 d
C4H80 n-Butanal J\“

3-Buten-2-ol / J

3-Buten-1-ol

m/z = 66 allm/z =68 bllm/z=70
CSHG CSH8 C5H10

2-Methyl-1-buten-3-yn

3-Methyl-1-buten

1,4-Pentadien

1-Penten

Methylethylketon

2-Penten

Cyclopenten

Tetrahydrofuran

iso-Butenol
Cyclopentadien
Ethylvinylether

1,3-Pentadien
2-Methyl-2-buten 2-Methoxypropen

8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.810.0 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.810.0 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.810.0 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.810.0
Bindungsenergie / eV  Bindungsenergie / eV  Bindungsenergie / eV  Bindungsenergie / eV

Abbildung 3.1: Gemessene Photoelektronenspektren fiir verschiedene molekulare Strukturen
der Summenformeln (a) C;Hg, (b) C;Hg, (¢) C;H;p und (d) C,HgO. Alle Spektren wurden
bei einer festen Photonenenergie von 10.1 eV gemessen. Zur besseren Ubersicht wurden alle
Spektren normiert und als Linien ohne Fehlerbalken iibereinander dargestellt. Adaptiert von

[1].

CsH;p-Isomere in der Verbrennung von iso-Pentan

Eine brennstoffreiche iso-Pentanflamme (¢ = 1.7) wurde im Hinblick auf die ersten stabilen
Intermediate aus dem Brennstoffabbau untersucht. Besonderes Augenmerk wurde dabei
auf die Trennung der Isomere mit der Summenformel C5;H;, (m/z = 70) gelegt, da diese
durch H-Abstraktion und direkt anschliefende C-H-3-Spaltung aus dem Brennstoffmole-
kiil entstehen und somit kritisch fiir die Modellentwicklung und -validierung sind. Durch
vorhergehende Messungen der Flamme mittels EI-MBMS konnten bereits Molenbriiche
fiir die jeweiligen Summenformeln erhalten werden, jedoch war eine Quantifizierung der
Isomere nicht moéglich. Die Verteilung der durch erneute Abfolge dieser Reaktionen ge-
bildeten CsHg-Isomere (m/z = 68) wurde ebenfalls untersucht; die Ergebnisse werden
hier nicht gezeigt, konnen aber in [1] nachgelesen werden. Gleiches gilt fiir die Ergebnisse
vergleichbarer Messungen fiir eine iso-Pentanflamme mit einer Dimethyletherdotierung von

20 %.

In Abb. 3.2 sind die Strukturen und Ionisationsenergien einiger relevanter C5H;,-Isomere
zusammengefasst. Aus der bereits verzweigten Struktur des Brennstoffmolekiils iso-Pentan
werden hauptséchlich die ebenfalls verzweigten Spezies 2-Methyl-2-buten, 2-Methyl-1-buten
und 3-Methyl-1-buten erwartet. Hier ist insbesondere das Verhéltnis der drei Isomere
interessant. Lineare Molekiile wie 1- und 2-Penten kénnen nicht direkt aus dem Brenn-
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CsHyy
2-Methyl-2-buten ~ 2-Methyl-1-buten ~ 3-Methyl-1-buten 1-Penten 2-Penten Cyclopentan
IE 8.69 IE 9.10 IE 9.5 IE 9.50 IE 9.04/9.04 (cis/trans) IE 10.3

Abbildung 3.2: Strukturen und Ionisationsenergien [84-86] einiger fiir die Verbrennung von
iso-Pentan relevanter CzH,-Isomere. Adaptiert von [1].

stoffabbau, sondern erst durch Rekombination kleinerer Abbauspezies entstehen, weshalb
es ebenfalls interessant ist, ihre Existenz nachweisen oder ausschliefen zu kénnen. Die
Bildung des zyklischen Molekiils Cyclopentan ist aufgrund seiner Ringstruktur kinetisch
sowie thermodynamisch eher nicht favorisiert.

Zur Identifizierung der infrage kommenden Isomere wurde eine festfrequente Messung bei
einer Photonenenergie von 10.1 eV in einer brennstoffreichen iso-Pentanflamme bei einer
Hohe von 3.2 mm oberhalb der Brenneroberfliche (korrespondierend zum Maximum des
Molenbruchs fiir CsH;, aus den vorangegangenen EI-MBMS-Messungen) durchgefiihrt. In
Abb. 3.3a ist das invertierte 2D-Elektronenbild fiir m/z = 70 dargestellt, woraus mithilfe
der zuvor beschriebenen Auswerteroutine das zugehorige PES (Abb. 3.3b) erhalten wird.
Zur Identifizierung der vorliegenden Isomere wurden ebenfalls die PES der erwarteten
Spezies (2-Methyl-2-buten, 3-Methyl-1-buten, 1-Penten, 2-Penten) als Referenzsubstanzen
gemessen (s. Abb. 3.1c). Das PES von 2-Methyl-1-buten wurde im Rahmen der Publikation
[1] von Steffen Schmitt und Wolfgang Eisfeld mithilfe von Franck-Condon-Simulationen
berechnet (vgl. Abb. 3.3¢c). Aufgrund von zuvor durchgefithrten Simulationen mit dem
kinetischen Modell fiir Pentane von Bugler et al. [87] und Gaschromatographie-Messungen
(s. Supplementary Material 1 zu [1]) konnte die Présenz von 1-Penten ausgeschlossen
werden. Weiterhin kann aufgrund der Messung bei einer Photonenenergie von 10.1 €V kein
Cyclopentan (IE 10.3 €V) detektiert werden. Deshalb wurden zur Anpassung der Referenz-
spektren ausschlieBlich die drei Methylbutene und 2-Penten beriicksichtigt (vgl. Abb. 3.3c).
Mithilfe einer Subtraktionsmethode [1, 2] konnten die Referenzspektren gewichtet und somit
ihr Anteil am gesamten PES bestimmt werden. Die einzeln gewichteten Referenzspektren
und das daraus resultierende Gesamtspektrum sind in Abb. 3.3d dargestellt. Mithilfe des
zuvor aus EI-MBMS-Messungen bekannten Molenbruchs von C5H;, konnten die Anteile
somit in zugehorige Molenbriiche umgewandelt werden. Die Ergebnisse der Experimente
und Simulation sind in Tab. 3.1 zusammengefasst. Als Hauptisomer kann 2-Methyl-1-buten
mit einer guten Ubereinstimmung zwischen Experiment (38.8 %) und Simulation (34.4 %)
bestimmt werden. Die beiden weiteren Methylbutene wurden mit ca. 18-24 % im Expe-
riment zu dhnlichen Teilen, aber mit groferer Abweichung zur Simulation (ca. 28-33 %)
erhalten. Die Messung bestétigt ebenfalls die Priasenz von 2-Penten (18.5 %), allerdings
mit einer noch gréfleren Abweichung zur Simulation (3.8 %), was auf Ungenauigkeiten
bei der verwendeten Subtraktionsmethode sowie die starke Uberlappung der PES von
2-Penten und 2-Methyl-1-buten zuriickzufithren sein kann. Letztendlich sind aber auch
die Ergebnisse der Modellierung nicht fehlerfrei und stark von den im Modell enthaltenen
Reaktionen und Reaktionsraten abhéngig, sodass hier auch Unterschiede zum Experiment
auf Probleme im Modell hinweisen kénnen.
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Abbildung 3.3: (a) Invertiertes 2D-Elektronenbild korrespondierend zu Ionen mit m/z = 70.
(b) PES fiir m/z = 70 gemessen in einer brennstoffreichen iso-Pentanflamme mit einer Photonen-
energie von 10.1 €V bei einer Hohe von 3.2 mm oberhalb der Brenneroberfliche. (¢) Normierte
Referenzspektren von 2-Methyl-2-buten, 3-Methyl-1-buten und 2-Penten (gemessen bei 10.1 €V)
und 2-Methyl-1-buten (Franck-Condon-Simulation von Steffen Schmitt und Wolfgang Eisfeld,
Geometrie-Optimierung auf CCSD(T)-F12a/aug-cc-pVDZ-Basis und Frequenzrechnung auf
MP2/cc-pVDZ-Basis). (d) Vergleich des gemessenen PES mit der gewichteten Summe aller
betrachteten Referenzspektren. Adaptiert von [1].
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Tabelle 3.1: Anteile C (in %) und Molenbriiche = bei einer Hohe {iber der Brenneroberfléche
von 3.2 mm in einer brennstoffreichen iso-Pentanflamme aus dem Experiment und der Simula-
tion. n.q.: nicht quantifiziert. Die Referenzen der verwendeten Photoionisationsquerschnitte
sind jeweils mit dem Speziesnamen gegeben (fiir 2-Penten wurde der Mittelwert des cis- und
trans-Isomers verwendet).

Experiment Simulation

Spezies C T C T

2-Methyl-2-buten [88] 18.6 1.5-10%* 32.8 3.3-10%
2-Methyl-1-buten [88] 38.8 3.0-10* 344 3.4-10*
3-Methyl-1-buten [88] 24.1 1.9-10* 285 2.8-10%
[89]
]

2-Penten [89] 185 1.4-10* 3.8 3.8-10°
1-Penten [90] n.q. - 0.5 4.5-10

Summe CzH,, 100 7.8-10%4 100 9.9-10%

Identifizierung von Ethylvinylether in einer brennstoffreichen
Diethylether-Flamme

In einer vorherigen Untersuchung von Tran et al. [3] wurde bereits eine brennstoffreiche
Diethyletherflamme mithilfe von EI- und PI-MBMS-Experimenten untersucht. Aufgrund
der hohen Massenauflésung der verwendeten Spektrometer konnte dabei eindeutig das
C,HgO-Signal von dem der gleichen Nominalmasse entsprechenden CsH;,-Signal separiert
und auf einen Molenbruch von ca. 1.0-10" quantifiziert werden. Aus der Messung einer
Photoionisationseffizienzkurve (PIE-Kurve) konnte zudem ein deutlicher Anstieg im Bereich
der von Ethylvinylether liegenden Ionisationsenergie (8.98 eV [91]) vermerkt werden. Auf-
grund dieser Messungen wurde Ethylvinylether in den Diethylether-Submechanismus des
kinetischen Modells integriert. Eine eindeutige Identifizierung dieser Spezies wére dariiber
hinaus jedoch wiinschenswert.

Im Rahmen dieser Arbeit wurden daher die Photoelektronenspektren von neun Refe-
renzsubstanzen der Summenformel C,HgO mithilfe von festfrequenten PEPICO-Messungen
aufgenommen (vgl. Abb. 3.1d). Dariiber hinaus wurde in der brennstoffreichen Diethyle-
therflamme identischer Bedingungen ein Threshold Photoelectron Spectrum (TPES, vgl.
Kap. 2.3) bei einer Hohe von 2.3 mm aufgenommen, da dort in den vorangegangenen
Messungen die hochste Konzentration an C,HgO gemessen wurde. Dabei wurde nicht
bei einer fest eingestellten Energie gemessen, sondern die Energie in einem Bereich von
8.35-9.35 eV variiert. Dadurch konnte eine erhéhte Energieauflosung von etwa 10 meV
im Vergleich zu den festfrequenten Messungen (30-70 meV im untersuchten kinetischen
Uberschussenergiebereich von 0-1.75 eV) erzielt werden, was in diesem Fall aufgrund der
nahe beieinanderliegenden PES der Referenzsubstanzen eine {ibersichtlichere Trennung
ermoglichen sollte. Das gemessene TPES ist in Abb. 3.4a zusammen mit den PES der
Referenzsubstanzen 2-Methoxypropen, Ethylvinylether und iso-Butenol dargestellt. Die
weiteren gemessenen Referenzspektren liegen auflerhalb des hier untersuchten Energie-
bereichs und tragen daher nicht zum gemessenen Signal im TPES bei. Der erste leichte
Anstieg des TPES bei ca. 8.55 ¢V und die bei 8.70 eV stérker steigende Tendenz stimmt
sehr gut mit dem Verlauf des PES von Ethylvinylether {iberein, wihrend die Présenz von
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2-Methoxypropen durch einen fehlenden Anstieg bei 8.40 eV ausgeschlossen werden kann.
Beitrége von iso-Butenol konnen nicht explizit ausgeschlossen werden, sind im Rahmen die-
ser Messung aber auch nicht quantifizierbar. Dazu, und auch zum Nachweis oder Ausschluss
weiterer Isomere der Summenformel C,HgO mit jeweils hoherer Ionisationsenergie, miissten
zusétzliche Messungen bei hoheren Photonenenergien durchgefithrt werden. Dies gestaltet
sich jedoch schwierig, da ab einer Energie von 9.51 eV [92] auch das Brennstoffmolekiil
Diethylether ionisiert wird und aufgrund seiner hohen Konzentration im Massenspektrum
zu einem Uberlappen der Signale der Masse-zu-Ladungsverhéltnisse von 72 (C,HgO) und
74 (C4H;(O, Diethylether) fithren wiirde. Es sei jedoch darauf hingewiesen, dass weitere
Strukturen mit C,HgO nicht direkt aus dem Brennstoffabbau gebildet werden kénnen,
sondern zunéchst aus kleineren Abbauprodukten tiber Rekombinationsreaktionen entstehen
miissen. Dies findet meist jedoch nur in sehr kleinen (schwer nachweisbaren) Mengen statt,
weshalb die bevorzugte Bildung von Ethylvinylether naheliegt.

—
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Abbildung 3.4: (a) Gemessenes TPES im Bereich von 8.35-9.35 eV (AE = 10 meV) fiir
m/z = T2 bei einer Hohe von 2.3 mm in einer brennstoffreichen Diethyletherflamme zusammen
mit den PES von 2-Methoxypropen, Ethylvinylether und iso-Butenol, gemessen bei einer festen
Photonenenergie von 10.1 V. (b) Integriertes TPES und integrierte PES aus (a) zusammen
mit den PIE-Kurven identischer Flammenmessungen von Tran et al. [3], zweifache Messung
(1,2). Zum Vergleich ist die tabellierte Ionisationsenergie von Ethylvinylether als vertikale Linie
eingezeichnet [91]. Adaptiert von [1].

Da das TPES in Abb. 3.4a aufgrund einer geringen C,HgO-Konzentration und knapper
Messzeit nur ein geringes Signal-zu-Rausch-Verhéltnis aufweist, wurde mittels Integration
die entsprechende PIE-Kurve bestimmt. Diese ist fiir das in der Flamme gemessene TPES
und die PES der Referenzsubstanzen in Abb. 3.4b zusammen mit den PIE-Kurven aus den
vorherigen PI-MBMS-Messungen von Tran et al. [3] dargestellt. Es kann eine exzellente
Ubereinstimmung zwischen dem integrierten TPES und dem intergrierten PES von Ethylvi-
nylether mit einem Anstieg bei ca. 8.75 eV festgestellt werden. Die besonders hohe Qualitéit
des integrierten TPES aus dem geringen Signal-zu-Rausch-Verhéltnis unterstreicht erneut
den Vorteil der PEPICO-Technik, auch in kurzer Messzeit qualitativ hochwertige Daten zu
erhalten. Beim Vergleich mit den PIE-Kurven von Tran et al. [3] kann eine Verschiebung



23

von ca. 0.1 eV festgestellt werden. Dies spricht insbesondere dafiir, Referenzspektren zur
eindeutigen Identifizierung immer zusammen mit den eigentlichen Messungen wie in dieser
Arbeit am selben experimentellen Aufbau durchzufithren. Trotz des minimalen Versat-
zes kann jedoch fiir jede Methode an sich eine hohe Reproduzierbarkeit erreicht werden.
Insgesamt konnte mit diesen Ergebnissen eindeutig Ethylvinylether als Hauptisomer der
Summenformel C,HgO in der Verbrennung von Diethylether identifiziert werden.

Zusammenfassung

Mithilfe der in diesem Abschnitt vorgestellten Ergebnisse aus [1] konnte die enorme Fahig-
keit der Photoelektronen-Photoionen Koinzidenz-Spektroskopie als wertvolle Methode zur
Trennung spezifischer komplexer Isomerensituationen in der Gasphasenanalytik von Brenn-
stoffen mit fiinf schweren Atomen gezeigt werden. Der Ansatz der eindeutig unterscheidbaren
individuellen Photoelektronenspektren wurde in [1] auf laminare Niederdruckflammen der
Brennstoffe Cyclopenten, Diethylether und iso-Pentan (pur und mit Dimethylether dotiert)
fiir spezielle, nicht mit anderen Methoden zugéngliche Informationen einzelner Massen
angewendet. Dazu wurden in [1] zur Identifizierung einzelner Spezies die Referenzspektren
von 18 Strukturen der Summenformeln C;Hg, CsHg, CsH;j und C,HgO am gleichen ex-
perimentellen Aufbau unter identischen Messbedingungen aufgenommen, sowie von zwei
Molekiilen mittels Franck-Condon-Simulationen berechnet. Einige wichtige Beispiele aus
[1] wurden in dieser Arbeit vorgestellt.

Bei der Untersuchung des Brennstoffes iso-Pentan konnten die Anteile der bei einem
Masse-zu-Ladungsverhéltnis von m/z = 70 (C5H;y) und m/z = 68 (C;Hg) auftretenden
Isomere quantifiziert und mithilfe vorangegangener Messungen mittels Elektronenstofio-
nisation auch die entsprechenden Molenbriiche bestimmt werden. Fiir C5H;, konnte eine
bevorzugte Bildung verzweigter Strukturen (Methylbutene) festgestellt werden, was mit
der verzweigten Struktur des Brennstoffmolekiils in Einklang steht. Jedoch wurde auch ein
Beitrag des linearen Isomers 2-Penten eindeutig identifiziert. Wahrend das kinetische Modell
nur geringfiigige Mengen an 2-Penten und die Methylbutene in vergleichbaren Anteilen
vorhergesagt hat, konnten in der Messung ein hoherer Anteil an 2-Penten gemessen werden
und 2-Methyl-1-buten eindeutig als Hauptisomer identifiziert werden. Fiir C5Hg wurde, wie
aus der ebenfalls verzweigten Struktur erwartet, Isopren als dominantes Isomer gefunden,
jedoch wurden auch Beitrdge von Cyclopenten und Pentadienen quantifiziert. Einige dieser
Spezies waren zuvor nicht im kinetischen Modell enthalten und sollten daher auf der
experimentellen Grundlage dieser Ergebnisse in Zukunft im verwendeten Reaktionsmecha-
nismus berticksichtigt werden. Insgesamt konnten die Ergebnisse somit einen wertvollen
Beitrag fiir die Optimierung des Modells liefern. Zusétzliche Messungen des Brennstoffes
iso-Pentan mit einer Dotierung von 20 % Dimethylether als oxygeniertem Brennstoff mit
stark unterschiedlichen Verbrennungseigenschaften konnten zeigen, dass die Zugabe von
geringen Mengen unter den analysierten Bedingungen von hoher Temperatur und niedrigem
Druck kaum Einfluss auf die ersten brennstoffspezifischen Abbauwege des iso-Pentans
haben. In einem niedrigeren Temperaturbereich wird jedoch fiir beide Brennstoffe eine
frithe peroxidbildende Oxidation erwartet, dessen Auswirkung im Mischungsfall besonders
interessant ausfallen kénnte.
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In der Verbrennung von Diethylether konnte mithilfe der hier vorgestellten Messungen
und Ergebnisse die dominante Bildung von Ethylvinylether eindeutig beobachtet werden.
Mithilfe eines prazise aufgenommenen Photoelektronenspektrums und entsprechenden Refe-
renzspektren vieler méglicher Strukturen konnte die Bildung anderer Isomere weitestgehend
ausgeschlossen und vorherige Messungen mittels Elektronenstoflionisation und Photoionisa-
tion bestétigt und um eindeutig identifizierende Photoelektronenspektren ergénzt werden.
Die eindeutige Identifizierung von Ethylvinylether ist fiir einen neu entwickelten Subme-
chanismus von Diethylether besonders fiir die kinetische Modellierung interessant, da diese
Spezies zuvor nicht in bereits existierenden Modellen enthalten war.

Abschlielend lésst sich festhalten, dass insgesamt mehrere experimentelle Methoden mit ent-
sprechenden Referenzmessungen zusammen mit theoretischen Berechnungen und kinetischen
Modellierungen nur in Kombination Aufschluss iiber komplexe Probleme in der Verbren-
nungsanalytik bieten. Die Photoelektronen-Photoionen Koinzidenz-Spektroskopie konnte
dabei als wertvoller Baustein zur spezifischen Isomerentrennung fiir die Weiterentwick-
lung und Validierung kinetischer Modelle zur Vorhersage von Verbrennungseigenschaften
unterschiedlichster Brennstoffe genutzt und vorgestellt werden.



KAPITEL 4

Einfluss der Addition von Biokraftstoffen auf die Flammenstruktur und
Schadstoffbildung in vorgemischten Niederdruckflammen

Wiéhrend der Energiebedarf insbesondere im Transportsektor stark ansteigt, ist gleichzeitig
eine Strategie zur Reduktion von Treibhausgasen notwendig, weshalb sich die Verbren-
nungsforschung zunehmend in die Richtung von erneuerbaren Kraftstoffen wie Alkoholen,
Ethern und Estern orientiert [23, 35, 44]. Die Addition oxygenierter Biokraftstoffe zu
erdélbasierten Kraftstoffen konnte bereits als vielversprechender Ansatz zur Reduktion von
Ruflemissionen charakterisiert werden [45, 93, 94]. Sowohl n-Butanol [95-97] als auch sein
Isomer Diethylether [98-100] (beide C,H;,0) wurden aufgrund ihrer positiven physiko-
chemischen Eigenschaften im Hinblick auf die motorische Verbrennung sowie die Moglichkeit
der Produktion aus Fermentationsprozessen bzw. Bioethanol bereits als mogliche Alter-
nativen zu herkdmmlichen Kraftstoffen diskutiert. Daher wurden in dieser Arbeit die
Auswirkungen der Addition von n-Butanol und Diethylether auf die Verbrennung eines
einfachen Kohlenwasserstoffes im Hinblick auf die Schadstoffbildung untersucht. Als mog-
lichst einfaches Untersuchungsobjekt wurde dazu eine bereits gut bekannte vorgemischte
Niederdruckflamme des Brennstoffes n-Butan herangezogen. Diese Untersuchungen, die
auf ersten orientierenden Vorarbeiten aus meiner Masterarbeit [101] aufbauen und in den
Publikationen [3] und [4] veréffentlicht sind, werden im Folgenden kurz zusammengefasst.

Flammenmessungen

Brennstoffreiche vorgemischte laminare Niederdruckflammen der Brennstoffe n-Butan (Bu),
n-Butanol (BuOH) und Diethylether (DEE), sowie 50:50-Mischungen von n-Butan mit
n-Butanol oder Diethylether, wurden unter identischen Bedingungen (Druck 40 mbar,
Argonverdiinnung 25 %, Kaltgasgeschwindigkeit 73 cm/s bei 333 K und 40 mbar, C/O-
Verhéltnis 0.52) mittels Molekularstrahl-Massenspektrometrie (MBMS) unter Verwendung
von Elektronenstofionisation (EI) untersucht. Dariiber hinaus wurden fiir alle fiinf Flammen
einige stabile Isomere mithilfe eines an das System gekoppelten Gaschromatographen (GC-
MS) getrennt. Die reine DEE-Flamme sowie die Bu/DEE Mischung wurden von Luc-Sy
Tran zusétzlich mittels PI-MBMS am National Synchrotron Radiation Laboratory der
University of Science and Technology of China in Hefei, China untersucht. Der Ubersicht
halber sind alle Flammen in Tab. 4.1 zusammengefasst.
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Tabelle 4.1: Flammenbedingungen der untersuchten laminaren Niederdruckflammen. slm:
Standard Liter pro Minute (bei 273.15 K und 1 atm), rii: Massefluss bei Einlass. * Leicht andere
Bedingungen mit einem Argonfluss von 1.00 slm wurden im PI-MBMS-Experiment verwendet.

Flamme (Abkiirzung) Gasflussrate (slm) m Verhéltnis ¢
Ar 0, DEE n-Butanol n-Butan (g/cm?/s) C/H Cc/O

n-Butan (Bu) 114 2.71 0.71 0.004013 0.40  0.52  1.70

1.14 2,67  0.37 0.37 0.004174 0.40 0.52 1.75
n-Butan/DEE (Bu/DEE)* 1.00 235  0.33 0.33 0.004174 0.40 0.52 1.75

1.14 263  0.79 0.004355 0.40 052  1.80
DEE (DEE)* 1.00 2.31  0.70 0.004355 0.40  0.52  1.80
n-Butan/n-Butanol (Bu/BuOH) 1.14 2.67 0.37 0.37 0.004174 0.40 0.52 1.75
n-Butanol (BuOH) 1.14  2.63 0.79 0.004355 0.40 052  1.80

Kinetische Modellierung

In der Publikation [3] wurde zunéchst nur auf Basis der Daten der DEE-Flamme in Zusam-
menarbeit mit dem Laboratory for Chemical Technology der Ghent University, Belgien ein
neuer Submechanismus fiir die kinetische Modellierung des Brennstoffes DEE entwickelt.
Dabei wurden im Vergleich zu einem vorherigen DEE-Mechanismus [102] zusétzliche Reak-
tionen der direkt aus dem Brennstoff entstehenden Radikale beriicksichtigt, sowie neue
Ratenkonstanten fiir die priméren Reaktionen unter Verwendung genauerer theoretischer
Berechnungen auf CBS-(QB3-Basis bestimmt. Das optimierte DEE-Modell wurde mithilfe
der gemessenen Flammendaten sowie Messungen von laminaren Flammengeschwindigkeiten
unter hohem Druck validiert und konnte die gemessenen Daten gut wiedergeben.

Das entwickelte und validierte DEE-Modell konnte anschliefend in der Publikation [4]
genutzt werden, um ein kombiniertes Modell fiir die Beschreibung aller drei untersuchten
Brennstoffe und deren Mischungen zu erstellen. Dazu wurde zunéchst die Reaktionsda-
tenbank des Combustion Chemistry Center der National University of Ireland Galway
(NUIG) [103, 104] als Basismodell verwendet. Hierarchisch gewachsen, baut diese auf den
AramcoMech 1.3 [105] auf und beinhaltet bereits einen Grofiteil der in der Verbrennung
relevanten Reaktionen und Spezies im Bereich von C; bis Cg, unter anderem auch die
brennstoffspezifischen Reaktionen fiir n-Butan. Um auch die potentiellen Ruflvorldufermo-
lekiile Toluol und Ethylbenzol vorhersagen zu kénnen, wurden die brennstoffspezifischen
Reaktionen dieser Spezies zur Konsistenz ebenfalls von dieser Gruppe iibernommen [106].
Einen Submechanismus fiir n-Butanol und Diethylether gibt es dort bisher jedoch nicht,
weshalb diese von Sarathy et al. [107] fiir n-Butanol und, wie oben beschrieben, von Tran
et al. [3] fiir Diethylether verwendet wurden. Dabei wurde auf interne Konsistenz der
Ratenkonstanten, Thermo- und Transporteigenschaften von Spezies aus mehreren dieser
Mechanismen geachtet und diese, wann immer méglich, aus dem Basismodell verwendet.
Alle verwendeten Reaktionsmechanismen sind bereits zuvor durch zahlreiche Experimente
iiber ein weites Parameterfeld validiert worden.

Brennstoffabbau und primare Zerfallsprodukte

Um einen genaueren Uberblick iiber die Abbauwege der verschiedenen Brennstoffe zu er-
halten und mogliche Gemeinsamkeiten und Unterschiede zu ermitteln, wurden sogenannte
Rate of Production Analyses (ROP) fiir alle analysierten Brennstoffe bei einer Hoéhe iiber
der Brenneroberfliache von 2.1-2.2 mm (korrespondierend zu einer Temperatur von 1100 K
und einem Brennstoffumsatz von 78 %) durchgefiihrt. Diese sind in Kombination fiir alle
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drei Brennstoffe in Abb. 4.1 dargestellt. Um Gemeinsamkeiten besonders herauszuarbeiten,
wurden die auftretenden Spezies mit verschiedenen Boxen umrahmt; primére Abbauspezies,
die von allen drei Brennstoffen gebildet werden, sind mit einer dreifachen Linie (rot) um-
randet, wihrend Spezies, die aus dem Basisbrennstoff n-Butan und einem der oxygenierten
Brennstoffe gebildet werden, mit einer zweifachen Linie (griin) und Spezies, die nur aus
einem Brennstoff entstehen, mit nur noch einer Linie (blau) umrahmt sind. Zusétzlich
wurden die C-H-Bindungsenergien fiir alle drei Brennstoffe aus den thermodynamischen
Daten des kinetischen Modells berechnet und sind jeweils unterhalb des Brennstoffmolekiils
angegeben.
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Abbildung 4.1: Rate of Production Analyses (ROP) fiir den Brennstoffabbau von n-Butan
(NC,H,4, Bu), Diethylether (DEE) und n-Butanol (NC,HyOH, BuOH) fiir eine Héhe tiber der
Brenneroberfliche von 2.1-2.2 mm, korrespondierend zu einer Flammentemperatur von 1100 K
und einem Brennstoffumsatz von 78 %. Die prozentualen Angaben sind relative Verbrauchsraten
der entsprechenden Spezies. Die Intensitéit der Pfeile charakterisiert spezifische Reaktionsschrit-
te (dick: H-Abstraktion vom Brennstoffmolekiil, mittel: S-Spaltung der Brennstoffradikale,
diinn: andere Reaktionen primérer Spezies). Isomerisierungen der Brennstoffradikale treten
auf, sind jedoch der Ubersicht halber nicht eingezeichnet. Dargestellte Bindungsenergien der
Brennstoffmolekiile wurden mithilfe der thermodynamischen Daten aus dem in [4] verwendeten
kombinierten Modell berechnet. Adaptiert von [4].

Aus der ROP in Abb. 4.1 kann entnommen werden, dass fiir alle drei Brennstoffmolekiile
mindestens 97 % des initialen Brennstoffabbaus nur durch H-Abstraktion erfolgen. Fiir
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die symmetrischen Molekiile n-Butan und DEE findet diese bevorzugt am C2 statt und
weniger am C1, was entsprechend konsistent mit der niedrigeren C-H-Bindungsenergie
am C2 ist. Beim unsymmetrischen n-Butanolmolekiil kann die H-Abstraktion zu fiinf
Brennstoffradikalen fiihren, wobei die Abstraktion am C1 aufgrund der niedrigsten C-
H-Bindungsenergie bevorzugt wird. Die sich in der Hochtemperaturkinetik tiblicherweise
an die H-Abstraktion anschliefende g-Spaltung liefert fiir n-Butan ausschliefflich Kohlen-
wasserstoffe, hauptséchlich Spezies mit drei Kohlenstoffatomen (Cj), aber auch C;- und
Cqy-Spezies. C,-Spezies, wie 1- und 2-Buten werden ebenfalls gebildet, jedoch zu weniger
als 1 %. Wird nun DEE zu n-Butan addiert, wird der Speziespool durch zuséitzliche
Kohlenwasserstoffe, aber auch oxygenierte Spezies erweitert. Dies umfasst vor allem C,-
aber auch C;-Spezies, die grofitenteils aus dem Abbau von DEE entstehen. Erwartet
wird somit eine Reduktion der Cs-Spezies bei einer gleichzeitigen Erhéhung der C;- und
C,-Spezies. Wird hingegen n-Butanol zu n-Butan addiert, wird der Speziespool zwar auch
durch Kohlenwasserstoffe und oxygenierte Spezies erweitert, jedoch im Gegensatz zu DEE
nicht nur durch C;- und C,-Spezies, sondern vorrangig durch Cs- und C,-Spezies. Um
diese theoretischen Uberlegungen experimentell zu bestéitigen, werden in Abb. 4.2 die
Molenbruchprofile einiger wichtiger erster auftretender Intermediate aus dem Diagramm in
Abb. 4.1 fir die verschiedenen untersuchten Flammen verglichen.

In Abb. 4.2a-c wird zunéchst Ethen als Vertreter aus allen drei Brennstoffen verglichen.
Dabei fallt auf, dass die Bildung von CyH, fiir die Mischungen im Wesentlichen kaum von
der Zugabe der oxygenierten Brennstoffe beeinflusst wird. Alle fiinf Flammen sowohl der
drei reinen Brennstoffe als auch der beiden Mischungen weisen vergleichbare Molenbriiche
an Ethen auf. Dies liegt zum einen daran, dass es aus allen Brennstoffen auf direktem
Weg gebildet werden kann, zum anderen aber auch fiir alle Brennstoffe als sekundéres
Produkt aus dem weiteren Zerfall auftretender gréSerer Intermediate entsteht. Ahnliche
Beobachtungen konnten auch fiir weitere kleine Spezies, die hier nicht gezeigt sind, gemacht
werden. Zusétzlich kann festgehalten werden, dass fiir die DEE-Flamme und die Bu/DEE-
Flamme eine sehr gute Ubereinstimmung der Daten aus dem EI- und dem PI-Experiment
zu beobachten ist, was fiir eine gute Kreuzvalidierung beider Experimente spricht.

Beispiele fiir Spezies, die sowohl aus dem Basisbrennstoff n-Butan und einem oxygenierten
Brennstoff gebildet werden kénnen, sind mit Propen (C3Hg, Abb. 4.2d-f) und Buten (C,Hg,
Abb. 4.2g-1) gegeben. Beide Spezies weisen im Experiment fiir die Zugabe von n-Butanol
entgegengesetzte Trends auf, welche auch vom kinetischen Modell sehr gut wiedergegeben
werden. C3Hg bildet einen grofien Anteil am Abbau von n-Butan, wéhrend der entsprechen-
de Weg auf der Seite von n-Butanol nur einen kleineren Anteil ausmacht. Im Gegensatz
dazu wird C,Hg nur in sehr geringen Mengen aus n-Butan erhalten, wahrend der Weg aus
n-Butanol deutlicher starker ausgepragt ist. Dadurch kénnen die gegensatzlichen Trends
im Experiment erklart werden. Wird hingegen DEE zu n-Butan addiert, welches weder
C3Hg noch C,Hg durch direkten Brennstoffabbau bilden kann, sinken die experimentell
bestimmten Molenbriiche beider Spezies stark. Dies stimmt auch mit den Modellierungen
iiberein.

Eine weitere interessante Spezies ist CoH,O (Abb. 4.2j-1), obwohl es keine Uberlappung aus
dem Zerfall der oxygenierten Brennstoffe mit dem Basisbrennstoff n-Butan gibt. Jedoch
wird aus DEE das C,H,O-Isomer Acetaldehyd gebildet, wihrend aus n-Butanol Vinylalko-
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Abbildung 4.2: Molenbruchprofile ausgewéhlter Intermediate aus den ersten Stufen des
Brennstoffabbaus. Links: n-Butanflamme, Mitte: n-Butan/Diethylether- und Diethylether-
flamme, Rechts: n-Butan/n-Butanol- und n-Butanolflamme. Unausgefiillte Symbole: EI-
MBMS-Experiment Bielefeld, Ausgefiillte Symbole: PI-MBMS-Experiment Hefei (nur fiir
n-Butan/Diethylether- und Diethyletherflamme), Dicke Linien: Ergebnisse der kinetischen
Modellierung mit dem kombinierten Modell, Diinne Linien: Verbindung der Messpunkte mit
einer Spline-Funktion zur besseren Ubersicht. Adaptiert von [4].
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hol entsteht. Im fiir alle Flammen verwendeten EI-MBMS-Experiment kénnen diese nicht
unterschieden werden, wahrend ihre Identifizierung durch das PI-MBMS-Experiment jedoch
moglich war [4]. Beide Spezies werden in grolen Mengen gebildet und der Vergleich der
Summen zeigt daher fiir die Zugabe von DEE sowie fiir n-Butanol einen hohen Anstieg. Dies
kann als eher negativer Aspekt der Biokraftstoffaddition festgestellt werden, da Aldehyde
sowohl als gesundheitsgefahrdend fiir den Menschen als auch als schadlich fir die Umwelt
und die Atmosphére charakterisiert werden.

Einfluss der Addition von DEE und n-Butanol auf die Schadstoffbildung

Um die Trends und Effekte der Biokraftstoffaddition genauer zu untersuchen, werden im
Folgenden ausschliefllich die maximalen Molenbriiche einzelner Spezies in Abhangigkeit
vom Zusatz des Additivs analysiert (0% Additiv: pure n-Butanflamme, 50% Additiv:
50:50-Mischungen von n-Butan und DEE oder n-Butanol, 100% Additiv: pure DEE- bzw.
n-Butanolflamme). Dabei werden einige generelle Trends gefunden. Allgemein kann bei der
Addition von DEE und n-Butanol ein starker Anstieg fiir toxische Carbonylverbindungen,
insbesondere Aldehyde (hier vorrangig Formaldehyd und Acetaldehyd) beobachtet werden.
Diese Tendenz potentieller Biokraftstoffe zur vermehrten Bildung von Aldehyden wurde be-
reits von Kohse-Hoinghaus et al. [23] als bedenklich erwdhnt und ist im Wesentlichen auf die
vergleichsweise schnelle Bildung in wenigen Reaktionsschritten aus den meist oxygenierten
Biokraftstoffmolekiilen zuriickzufithren. Werden hingegen die potentiellen Ruflvorlauferspe-
zies analysiert, konnen gegenldufige Tendenzen fiir die Addition von DEE und n-Butanol
identifiziert werden. Mit der Zugabe von DEE wird ein signifikanter Riickgang der Bildung
von Rufvorlduferspezies festgestellt, wihrend fiir die Zugabe von n-Butanol nahezu keine
Reduktionseffekte, fiir manche Spezies sogar ein deutlicher Anstieg gemessen wird. Diese
beiden gegenldufigen Trends kénnen auch mithilfe der kinetischen Modellierung erhalten
werden und bestéitigen die Erwartungen aus Abb. 4.1, da fiir die Bildung der als Ruflvor-
lauferspezies genannten Strukturen grofitenteils Cs- und C,-Bausteine bendtigt werden, die
aufgrund der maximalen Kohlenstoffkette von zwei Atomen im Diethylethermolekiil nicht
aus dem direktem Brennstoffabbau entstehen kénnen. Das Molekiil n-Butanol hingegen
weist mit einer C,-Kette schon die entsprechenden Voraussetzungen auf, was somit zu einer
moglichen Bildung von Strukturen im Bereich von C, bis Cg fiihrt. Zum Beispiel konnte
mittels einer Rate of Production Analysis fiir Benzol die Radikalrekombination von CsHjy
(Allyl) und C3H; (Propargyl) als entscheidender Bildungsweg identifiziert werden (vgl. Tran
et al. [4]). Beide Spezies werden aus den direkten -Spaltungsprodukten C;Hg und C,Hg
des n-Butanolabbaus (vgl. Abb. 4.1) gebildet und sind daher in grolen Mengen verfiighar.
Eine anschlieBende H-Abstraktion am Benzol liefert das Benzylradikal (C4Hg), welches
im weiteren Verlauf schnell mit anderen Radikalen wie z.B. CoHy (Ethyl) zu Ethylbenzol
oder CH3 (Methyl) zu Toluol, aber auch mit weiteren gréfieren Radikalen rekombiniert
und somit groflere Strukturen aufbaut, die letztendlich zu Ruflpartikeln fithren kénnen.

Zusatzlich zu den analysierten Trends sollte ebenfalls untersucht werden, ob die Bil-
dung der betrachteten Intermediate ein rein kombinatorischer Effekt ist oder ob es zwischen
den Speziespools zweier Brennstoffe zu Interaktionen kommt. Dazu wurde fiir jede Spezies
der Mittelwert des detektierten Molenbruchs in der n-Butanflamme und der entpspre-
chenden Flamme des Biokraftstoffes berechnet und dann mit dem tatséchlich gemessenen
Molenbruch in der Mischung verglichen. Die Auftragung der Abweichung des tatsichlich
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gemessenen Wertes zum berechneten Mittelwert ist in Abb. 4.3 fiir einige relevante Spezies
dargestellt. Unter der Annahme, dass eine tatséchliche Interaktion vorliegt, wenn diese
Abweichung existiert, bzw. hoher ist als der entsprechend zu beriicksichtigende Fehler
der Molenbriiche, kénnen die Ergebnisse interpretiert werden. Dazu wurde der Fehler im
Experiment mit 5 % angenommen (rote gestrichelte Linie in Abb. 4.3), da in diesem Fall
alle Messungen unter identischen Bedingungen durchgefiihrt wurden und daher nicht der
absolute Molenbruchfehler, sondern der relative Fehler innerhalb der Reproduzierbarkeit
des Experiments entscheidend ist. Dieser wurde durch Wiederholung identischer Messungen
auf unter 5 % bestimmt.
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Abbildung 4.3: Abweichungen der maximalen Molenbriiche ausgewéhlter Kohlenwasserstoff-
spezies und Carbonylverbindungen in den Mischungsflammen vom berechneten Mittelwert der
jeweils beiden puren Flammen in Prozent. Positive Werte zeigen an, dass die Spezies in der Mi-
schung mehr gebildet wird als der Mittelwert der beiden puren Komponenten und andersherum.
Oben: Mischung von n-Butan und Diethylether, unten: Mischung von n-Butan und n-Butanol.
Die gleichen Berechnungen wurden fiir die Ergebnisse der Simulation mit zwei verschiedenen
Basismechanismen durchgefithrt (NUIG und Cottbus, Details zu den Mechanismen s. Text und
[4]). Im Cottbus-Modell ist kein Ethylbenzol (CgH;,) enthalten. Adaptiert von [4].

Die in Abb. 4.3 dargestellten Spezies der Klassen Rufivorlaufer und Aldehyde wurden
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besonders im Hinblick auf die moégliche Beschrankung der Nutzung der Biokraftstoffe
aufgrund von Auswirkungen auf die Gesundheit sowie die Luftqualitdt und Atmosphé-
renchemie ausgewéhlt. Weiterhin sind in der Abbildung auch die Berechnungen fiir die
Molenbriiche aus dem kinetischen Modell eingetragen, um einen direkten Vergleich zu
ermoglichen. Dabei wurde sowohl das kombinierte Modell dieser Arbeit (basierend auf
dem NUIG Basismechanismus) als auch zum Vergleich ein weiteres kombiniertes Modell
mit einem anderen Basismechanismus des Lehrstuhl Thermodynamik und Thermische
Verfahrenstechnik der Brandenburgisch Technischen Universitit Cottbus-Senftenberg [37]
verwendet.

Bei der Analyse der Abweichungen fallt auf, dass diese fiir viele der gezeigten Spezies,
insbesondere kleinere Spezies bis in den C,-Bereich, innerhalb oder um die Fehlergrenze
liegen. Diskutable Abweichungen sind in der n-Butan/DEE-Mischung nur fir C,Hg (nur
im Experiment), CsHg und C,Hg und in der n-Butan/n-Butanol-Mischung nur fiir Spezies
tiber Cy (C;Hg und CgH;()) zu finden. Da aber gerade diese C;-Cg-Spezies wichtige Schliis-
selintermediate fiir die Rufibildung sind, ist es besonders interessant, dass die wenigen
gefunden Interaktionen offensichtlich vorrangig diesen Bereich betreffen. Es fillt ebenso
auf, dass alle diskutablen Abweichungen jeweils negativ sind, d.h. eine Interaktion fiihrt
zu einer Reduktion der Spezies im Vergleich zum theoretischen Mittelwert. Ein solcher
Effekt kann jedoch sowohl auf thermische, als auch Transport- oder chemische Eigenschaf-
ten zuriickzufiihren sein. Letztere weisen dabei insbesondere auf Synergien zwischen den
Reaktionswegen zweier Brennstoffe hin, welche detaillierter im Hinblick auf Unsicherheiten
im Experiment, vor allem aber auch in den kinetischen Modellierungen analysiert werden
miissen. Die zum Teil stark unterschiedlichen Abweichungen der zwei hier vorgestellten
Modelle deuten darauf hin, dass die Ergebnisse solcher Simulationen stark abhingig vom
verwendeten Mechanismus und folglich mit Vorsicht zu interpretieren sind.

Zusammenfassung

Der Einfluss der potentiellen Biokraftstoffe Diethylether und n-Butanol auf die Flammen-
struktur einer laminaren Niederdruckflamme des Brennstoffes n-Butan wurde im Hinblick
auf die Bildung erster Intermediatspezies als auch von Schadstoffen untersucht. Dazu
wurden insgesamt mehr als 40 stabile und radikalische Spezies im Bereich von C, bis Cg in
fiinf brennstoffreichen Flammen (n-Butan, Diethylether, n-Butanol und 50:50-Mischungen
von n-Butan mit Diethylether oder n-Butanol) unter gleichbleibenden Flammenbedingun-
gen aufgenommen und mithilfe von EI-MBMS und zum Teil auch PI-MBMS identifiziert
und quantifiziert. Um die Ergebnisse entsprechend interpretieren zu kénnen, wurde ein
kinetisches Modell aus einem hinreichend validierten Basismechanismus und den Subme-
chanismen der Additive Diethylether und n-Butanol kombiniert. Der Submechanismus
fir Diethylether wurde dabei auf Grundlage von theoretischen Berechnungen und den
gemessenen Speziesprofilen in der laminaren Niderdruckflamme sowie gemessenen Flam-
mengeschwindigkeiten neu aufgebaut.

Die Ergebnisse zeigen, dass die Bildung toxischer Carbonylverbindungen, insbesonde-
re von Aldehyden, durch die Addition der Biokraftstoffe stark ansteigt. Die Analyse der
untersuchten Rufivorlauferspezies fiel dahingegen unterschiedlich aus. Fiir die Addition von
Diethylether zu n-Butan konnte eine signifikante Reduktion der Bildung von spezifischen
RuBvorlduferspezies gefunden werden, wahrend diese durch die Addition von n-Butanol zu
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n-Butan kaum sinken, in einigen Féllen sogar ansteigen. Dies konnte sowohl im Experiment,
als auch in den Ergebnissen der kinetischen Modellierung beobachtet werden. Der Effekt
konnte im Wesentlichen auf die molekulare Brennstoffstruktur zurtickgefithrt werden, da die
langste Kohlenstoffkette im Diethylethermolekiil aus zwei Atomen besteht, wihrend sie im
n-Butanolmolekiil vieratomig ist und dadurch wesentlich die entsprechenden brennstoffspe-
zifischen Verbrennungsreaktionen beeinflusst. Die Analyse interaktiver Effekte zwischen den
Verbrennungsabldufen zweier Brennstoffe ergab, dass diese im untersuchten Temperatur-
und Druckbereich nur eingeschrankt vorliegen. Dies kann sowohl an Unsicherheiten im
Experiment oder auch insbesondere in den kinetischen Modellen liegen, weshalb beides in
Zukunft detaillierter analysiert werden sollte. Auch die Untersuchung solch interaktiver
Effekte in einem niedrigeren Temperaturbereich scheint vielversprechend fiir weitere Expe-
rimente, da dort hochreaktive Spezies wie Peroxide gebildet werden, die die Ziindwilligkeit
und Reaktivitdt beeinflussen und somit eine starke Auswirkung auf interaktive Effekte
haben koénnen.






KAPITEL 5

Chemische Interaktion und synergistische Effekte in
Brennstoffmischungen im Bereich der Niedertemperaturoxidation

In diesem Kapitel werden die Ergebnisse zu Untersuchungen von chemischen Interaktionen
zwischen zwei Brennstoffen im Niedertemperaturbereich vorgestellt. Diese Arbeiten sind
bisher nicht verdffentlicht, sind jedoch bereits in Form des Manuskripts [5] zur Veroffentli-
chung akzeptiert.

Ziel der Untersuchungen war die Analyse eines moglichen interaktiven Effekts in der
Niedertemperaturoxidation von Brennstoffgemischen. In Kapitel 4 wurde bereits gezeigt,
dass solche Interaktionen im Hochtemperaturbereich unter den hier untersuchten Rand-
bedingungen nur wenig auftreten. Brennstoffadditive finden jedoch besonders im Bereich
des intelligenten Fuel Designs Anwendung zur Kontrolle der Ziindzeiten in zukiinftigen
Motorenkonzepten, immer mit dem Ziel einer saubereren Verbrennung und einer héheren
thermischen Effizienz [52, 108]. Dazu fehlen jedoch bisher essentielle Informationen tiber
mogliche synergistische Effekte und chemische Interaktionen der Brennstoffkomponenten im
dabei relevanten Bereich der Niedertemperatur, in welchem die Selbstziindung stattfindet
und beeinflusst werden kann. In solchen Low-Temperature Combustion Engines werden
zum Beispiel Mischungen aus einem Brennstoff mit hoher Cetanzahl' und einem Brennstoff
mit hoher Oktanzahl eingesetzt, um tliber eine interaktive Verbrennung die gewiinschte
héhere thermische Effizienz zu erreichen. Eine gute Ubersicht iiber mégliche Strategien zur
effizienteren Kontrolle von Motoren und Ziindzeiten wurde von Saxena und Bedoya [53]
zusammengestellt.

In dieser Arbeit wurden daher Untersuchungen zu méglichen Interaktionen prototypischer
konventioneller und biobasierter Brennstoffe am laminaren Stromungsreaktor durchgefiihrt.
Temperaturabhéangige Speziesprofile wurden im Hinblick auf interaktive Effekte wahrend
des Oxidationsprozesses analysiert. Als Basis wurde hier das C5-Alkan n-Pentan gewahlt,
da seine Oxidation vergleichsweise einfacher modelliert werden kann als die der technisch
relevanteren Molekiile, wie z.B. das Primary Reference Fuel n-Heptan. Zur ersten Analyse
iiberhaupt moglicher interaktiver Effekte ist es wichtig, die ablaufenden Reaktionen gut
zu verstehen und entsprechend modellieren zu kénnen. Mit groBer werdenden Brennstoff-
molekiilen ist dies aber bisher aufgrund der exponentiell ansteigenden Zahl auftretender
Spezies und ablaufenden Reaktionen noch nicht vollstdndig etabliert. n-Pentan ist daher
ein guter Kompromiss zwischen Anwendbarkeit und Komplexitét, da es eine bekannte

1 Die Cetanzahl beschreibt die Ziindwilligkeit von Dieselkraftstoffen und -surrogaten und gibt an, dass
sich ein Kraftstoff so verhélt wie ein Gemisch aus dem als Cetanzahl angegebenen Volumentanteil
des ziindwilligen n-Hexadecan und dem ziindtragen Methylnaphthalin. Je héher die Cetanzahl, desto
ziindwilliger das Gemisch, handelsiibliche Dieselkraftstoffe weisen eine Cetanzahl von 51-56 auf [67].
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Niedertemperaturoxidation

Niedertemperaturkinetik aufweist, die durch Additive beeinflusst werden kann und seine
Oxidationsreaktionen mithilfe aktueller kinetischer Modelle gut beschrieben werden kénnen
[109]. Als Additive wurden Dimethylether und Ethanol (beide CoHgO) gewéhlt, welche
sich sowohl strukturell als auch in ihren Oxidationseigenschaften sehr stark unterschei-
den. Fiir Dimethylether ist eine hohe Reaktivitat im Niedertemperaturbereich bekannt,
und ablaufende Reaktionen und auftretende Spezies sind bereits ausfiihrlich untersucht
worden [68, 110-114]. Dariiber hinaus hat es eine hohe Cetanzahl und ist seit lingerem
als potentieller Biokraftstoff im Gespréach [23, 44]. Ethanol hat im Gegensatz eine hohe
Oktanzahl und wird bereits als Kraftstoffadditiv verwendet (z.B. E10). Bisher konnte im
Niedertemperaturbereich kaum Reaktivitiat gezeigt werden [111, 115]. Demzufolge werden
unterschiedliche Effekte fiir die Addition von Dimethylether und Ethanol zu n-Pentan
erwartet.

Reaktormessungen

Die Niedertemperaturoxidation von n-Pentan, Dimethylether (DME), Ethanol (EtOH)
und entsprechenden Mischungen mit 25 bzw. 50 % der oxygenierten Komponente wurde
im laminaren Stromungsreaktor (s. Kap. 2.2.2) in einem Temperaturbereich von 450-930 K
unter konstanten Bedingungen untersucht. Dabei wurden fiir jede Messung eine Stéchiome-
trie von ¢ = 0.7, ein Reaktordruck von 970 mbar, ein Gesamtfluss von 300 sccm (standard
cubic centimeters per minute bei 273.15 K und 1 atm) und eine Argonverdiinnung von
90 % verwendet. Alle Bedingungen sind in Tab. 5.1 zusammengefasst.
Temperaturabhéngige Speziesprofile wurden mithilfe von EI-MBMS (vgl. Kap. 2.3) aufge-
nommen und wenn moglich quantifiziert. Interessante Spezies fiir die keine entsprechenden
Literaturdaten zur Quantifizierung vorlagen wurden mithilfe einer Normierung auf die je-
weiligen Eingangsbedingungen relativ untereinander verglichen, um Trends und interaktive
Effekte zu visualisieren.

Tabelle 5.1: Experimentelle Bedingungen und Benennungen der Messungen am lami-
naren Stromungsreaktor. v wird als Anteil von n-Pentan in den Mischungen definiert:
v =xosm12/(TosH12 + To2meo ). scem: standard cubic centimeters per minute bei 273.15 K
und 1 atm.

Gasfluss / sccm

Brennstoff Name p / bar @ ~y Gesamt Ar O, CgHyo DME EtOH
n-Pentan (C5H;,) P100 0.97 0.7 300.0 270.0 27.59 2.414
Dimethylether (DME) D100 0.97 0.7 300.0 270.0 24.32 5.676
Ethanol (EtOH) E100 0.97 0.7 300.0 270.0 24.32 5.676
C5H12/DME PD75 0.97 0.7 0.75 300.0 270.0 27.18 2.114 0.705
Mischungen PD50 0.97 0.7 0.50 300.0 270.0 26.61 1.694 1.694
C5H12/EtOH PET75 0.97 0.7 0.75 300.0 270.0 27.18 2.114 0.705
Mischungen PE50 0.97 0.7 0.50 300.0 270.0 26.61 1.694 1.694

Kinetische Modellierung

Obwohl die experimentellen Ergebnisse in dieser Arbeit im Vordergrund stehen, wurden
unterstiitzend Simulationen der Speziesprofile mithilfe kinetischer Modelle durchgefiihrt.
Dazu wurde die in Kap. 2.5 vorgestellte Methode nach Hemken et al. [62] zur Beschreibung
des laminaren Stromungsreaktors verwendet und der Warmetransferkoeffizient des Systems
mithilfe von Messungen fiir reines Argon (nicht reaktive Bedingungen) auf 10 W-m=2. K~}
bestimmt. Als kinetische Modelle wurden die Mechanismen von Bugler et al. [109] (hier:
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NUIG-Modell) und Ranzi et al. [116] (hier: Polimi-Modell) gewéhlt, da sie beide bereits
alle drei untersuchten Brennstoffe und ihre jeweilige Kinetik enthalten. Im Folgenden
werden die experimentellen Ergebnisse jedoch nur mit dem NUIG-Modell verglichen, fiir
Vergleiche mit dem Polimi-Modell sei auf [5] verwiesen. Die kinetischen Modellierungen
dienen hier vorerst der Unterstiitzung des Verstandnisses moglicher interaktiver Effekte
der Oxidationsprozesse zweier Brennstoffe. Es konnte festgestellt werden, dass weitere
Parameter bei der Modellierung des laminaren Stromungsreaktors (Massenkonvektion,
Diffusionsprozesse, Warmefreisetzung des reagierenden Gases, thermische Leitfdhigkeit,
thermischer Austausch mit der Reaktorwand) berticksichtigt werden miissen und die
Auswirkung der nicht detaillierten Berticksichtigung dieser Effekte konnte bisher noch nicht
abschlieBend geklirt werden. Diese Uberlegungen sind Gegenstand der aktuellen Forschung.

Reaktivitat der Brennstoffgemische

Um mogliche Interaktionen der Oxidationsprozesse zweier Brennstoffe zu visualisieren,
sind in Abb. 5.1 die Temperaturprofile fiir die jeweiligen Brennstoffumsétze gezeigt. Daran
lasst sich erkennen, wie effizient und bei welchen Temperaturen der jeweilige Brennstoff
umgesetzt wird und ob die Addition eines anderen Brennstoffes dieses Verhalten beeinflusst.
In Abb. 5.1a ist der Umsatz von n-Pentan unter Zugabe von DME gezeigt (P100, PD75,
PD50), wiahrend in Abb. 5.1b der Einfluss der Ethanoladdition dargestellt ist (P100, PE75,
PE50). Um auch den Umsatz des jeweiligen Additivs auf Beeinflussung durch das n-Pentan
zu analysieren, sind in Abb. 5.1c,d die Temperaturprofile fiir DME und Ethanol gezeigt
(D100, PD50, PD75 bzw. E100 und PET75, PE50 ist nicht gezeigt, da dort noch keine
Interaktion gemessen wurde und das Profil dem von E100 gleicht). Damit die jeweili-
gen Profile iberhaupt miteinander verglichen werden kénnen, wurden die quantifizierten
Molenbriiche jedes Profils auf den jeweiligen Brennstoffmolenbruch der Gasmischung bei
FEinlassbedingungen normiert. Somit miissten alle Profile gleich aussehen, wenn keine Inter-
aktion stattfinden wiirde. Jegliche Unterschiede in Form und Position sind demzufolge auf
Mischungseffekte zurtickzufihren.

In Abb. 5.1a kann fiir die Addition von DME zu n-Pentan ein geringfiigiger Trend hin zu
niedrigeren Temperaturen festgestellt werden. Auflerdem ist ein stérkerer Brennstoffumsatz
im Bereich zwischen 600 und 625 K zu sehen, der Unterschied ist jedoch sehr gering und
liegt damit im Fehlerbereich des Experiments. Das Modell gibt den Brennstoffverbrauch
fiir pures n-Pentan (P100) sowie die Trends unter DME-Addition sehr gut wieder, lediglich
der Temperaturversatz wird etwas starker vorhergesagt. Fiir die Addition von Ethanol in
Abb. 5.1b wird ein gegenldufiger Trend erhalten. Der Brennstoffverbrauch von n-Pentan
wird reduziert, zu leicht hoheren Temperaturen verschoben und das NTC-Fenster (vgl. auch
Abb. 2.2) wird schmaler. Auch dieses Verhalten kann vom Modell in Ubereinstimmung
mit dem experimentellen Befund dargestellt werden, lediglich fiir PE50 wird etwas weniger
Inhibierung des Brennstoffumsatzes vorhergesagt als experimentell gemessen wurde.

Wird der Brennstoffumsatz aus Sicht des DME betrachtet (Abb. 5.1c), fllt auf, dass die Zu-
gabe von n-Pentan den Umsatz von DME stark beeinflusst. Zwar ist ebenfalls nur ein kleiner
steigernder Effekt auf den Umsatz zu erkennen, der Temperaturbereich ist jedoch mit 35 K
bzw. 49 K fiir PD50 bzw. PD75 stark verschoben. Im Modell ist dieser Temperatureffekt
etwas geringer. Fiir pures Ethanol (E100) ist in Abb. 5.1d kein messbarer Umsatz im Bereich
von 600-650 K zu sehen. Durch Addition von n-Pentan kann jedoch auch fiir Ethanol eine
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Abbildung 5.1: Reaktivitdt der reinen Brennstoffe und Brennstoffgemische anhand der
Brennstoffumsétze. Experimentell erhaltene Molenbruchprofile (Symbole) und Ergebnisse der
Modellierung (Linien), jeweils normiert auf den Anteil des jeweiligen Brennstoffes in der
Mischung als Funktion der Temperatur. Adaptiert von [5].

verstirkte Reaktivitdt in diesem Bereich gemessen werden. Dieser Effekt ist jedoch erst bei
75 % n-Pentan signifikant genug und kann auch vom Modell sehr gut wiedergegeben werden.

Insgesamt kann fiir die Mischung von n-Pentan und DME ein interaktiver Effekt festgestellt
werden. Dies ldsst sich durch den intensiveren Umsatz beider Brennstoffe im Vergleich zum
jeweils puren Fall bestédtigen. In der Mischung von n-Pentan mit Ethanol wirkt Ethanol
eher hemmend auf den n-Pentanumsatz, wihrend umgekehrt n-Pentan die Reaktivitit
von Ethanol erhoht. Um diese Effekte zu verstehen, ist es notig, die ablaufenden Reak-
tionen im Niedertemperaturbereich fiir die jeweiligen Brennstoffstrukturen miteinander
zu vergleichen. Ein entscheidender Parameter fiir die Reaktivitéit eines Brennstoffes im
Niedertemperaturbereich ist die OH-Bilanz, also die Differenz zwischen gebildeten und
konsumierten OH-Radikalen. In Abb. 5.2 sind die Reaktionszyklen der drei untersuchten
Brennstoffe im Hinblick auf die Bildung und den Verbrauch von OH dargestellt. Die dabei
betrachteten hauptséchlich ablaufenden Reaktionen wurden bereits in Abb. 2.1b in Kap. 2.1
vorgestellt. Die beim Ablauf eines solchen Reaktionszyklus entstehenden OH-Radikale sind
durch die durchgezogenen dicken Pfeile (tiirkis) hervorgehoben, wihrend der Verbrauch
von OH-Radikalen durch die H-Abstraktion am Brennstoffmolekiil mit durchgezogenen
diinnen Pfeilen (blau) dargestellt ist. Um die maximale OH-Bilanz zu bestimmen, diirfen
jedoch nur die gebildeten OH-Radikale nach der zweiten O,-Addition betrachtet werden,
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da es sich nur dann um einen vollstdndigen Zyklus handelt und die vorherige Bildung von
OH zu einem Kettenabbruch fithren kann.
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Abbildung 5.2: Schematische Darstellung der Hauptreaktionszyklen in der Niedertemperatur-
oxidation der untersuchten Brennstoffe n-Pentan (a), DME (b) und Ethanol (c). Durchgezogene
dicke Pfeile: Reaktionen, die OH produzieren, durchgezogene diinne Pfeile: H-Abstraktion
am Brennstoffmolekiil, wodurch OH verbraucht wird, gestrichelte dicke Pfeile: Reaktionen,
die den Reaktionszyklus begiinstigen, gestrichelte diinne Pfeile: andere Produkte wéhrend
des Oxidationsprozesses, durchgezogene hellgraue Pfeile: fiktiver Zyklus fiir Ethanol, der auf-
grund der Struktur von Ethanol nicht stattfinden kann. KHP: Ketohydroperoxid, HPMF:
Hydroperoxymethylformat (Ketohydroperoxid bei der Oxidation von DME). Adaptiert von [5].

Aus Abb. 5.2a kann ermittelt werden, dass die zweistufige Oxidation von n-Pentan maximal
drei OH-Radikale produziert, wiahrend fiir den initialen Reaktionsschritt der Produktion
von Pentylradikalen nur eins benétigt wird. Dieser sogenannte a-Schritt ist besonders
wichtig, da er den gesamten Zyklus einleitet. Die fiir diesen Schritt zur Verfiigung stehenden
OH-Radikale sind das mafigebliche Kriterium fiir den Brennstoffumsatz jedes Brennstoffes.
Wird ein weiterer Brennstoff addiert, kommt es an dieser Stelle zu Konkurrenz um die
vorhandenen OH-Radikale. Ebenso ist die H-Abstraktion durch OH der dominanteste
Prozess fiir die Verzweigung im DME. In Abb. 5.2b ist dies ebenfalls der einzige OH-
Verbrauchsschritt, wahrend aus dem weiter ablaufenden Zyklus wiederum maximal zwei
OH-Radikale entstehen. Durch die Addition von DME zu n-Pentan kénnen OH-Radikale
aufgrund der hoheren Niedertemperaturaktivitdt von DME schon bei niedrigerer Tempera-
tur gebildet werden und somit auch fiir die Initialisierung des n-Pentanzyklus verwendet
werden. Dadurch wird die Gesamtreaktivitdt im System erhéht. In Abb. 5.1a konnte jedoch
gezeigt werden, dass der maximale Umsatz von n-Pentan durch die Zugabe von DME kaum
erhoht wird. Dies deutet moglicherweise darauf hin, dass bei gleicher Stochiometrie der
Brennstoffe eine vergleichbare Konzentration der OH-Radikale vorliegt oder n-Pentan im
Konkurrenzkampf um OH-Radikale die Oberhand gewinnt. Ebenso kénnen méglicherweise
weitere Radikale involviert sein oder es sich ausschliefflich um einen Temperatureffekt
handeln.

Bei Betrachtung von Abb. 5.2¢ wird schnell klar, warum Ethanol die Reaktivitdt von
n-Pentan in der Mischung senkt. Die grauen Pfeile zeigen eine fiktive zweite O,-Addition,
die aufgrund der Molekiilstruktur von Ethanol jedoch nicht stattfinden kann. Auch die
erste Oy-Addition findet aufgrund von bevorzugt ablaufenden Konkurrenzreaktionen so
gut wie nicht statt. Demzufolge wird fiir die initiale Erzeugung von Ethanolradikalen ein
OH-Radikal benétigt, im weiteren Reaktionsverlauf des Brennstoffes jedoch keins erzeugt.
Dies bedeutet, dass Ethanol dem Gesamtsystem nicht nur kein OH zur Verfiigung stellt,
sondern aktiv OH-Radikale verbraucht und sie aus dem Reaktionssystem entfernt. Dadurch
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wird die Reaktivitdt im System stark verringert, was die experimentellen Befunde in
Abb. 5.1b,d bestatigt und erklart.

Fiir einen intensiveren Einblick in das Reaktionsverhalten der Brennstoffgemische im
Niedertemperaturbereich werden im Folgenden ausgewéhlte Intermediate aus dem Oxidati-
onsprozess im Hinblick auf eben diese Interaktion analysiert.

Interaktive Einfliisse auf die Intermediatbildung

Zur Analyse brennstoffspezifischer Intermediate im Niedertemperaturbereich ist in Abb. 5.3
und 5.4 eine stark eingeschrénkte Auswahl der in Ref. [5] vorgestellten Spezies gezeigt. In
Abb. 5.3 sind die fir die Niedertemperaturoxidation von n-Pentan spezifischen Spezies
C;H,5,05 (ROOH) und C;H,,05 (Ketohydroperoxid) als Vertreter stabiler Intermediate
dargestellt. Die jeweiligen Reaktionsdiagramme der untersuchten Brennstoffe sind im Detail
in [5] abgebildet und folgen dem Schema aus Abb. 2.1 in Kap. 2.1. Die Abb. 5.4 zeigt
Acetaldehyd (CyH,O) und Formaldehyd (CH,0) als Vertreter wichtiger Schliisselspezies
bei der Analyse der Niedertemperaturoxidation, da ihr Auftreten aufgrund ihrer hohen
Toxizitdt und Umweltschéadlichkeit bei der Betrachtung alternativer Kraftstoffe besonders
beriicksichtigt werden sollte. Da beide Spezies jeweils aus vielen Brennstoffen entstehen
kénnen und typische Niedertemperaturspezies sind, ist ihre Herkunft aus unterschiedlichs-
ten Reaktionen oft schwer zu beschreiben und ihr Verhalten in den Kraftstoffgemischen
daher besonders interessant.

Hydroperoxyalkane entstehen durch eine Kettenabbruchreaktion aus den vorhergehenden
ROO-Radikalen. Die Bildung von Hydroperoxypentanen (CsH;50,) steht damit in direkter
Konkurrenz zur Isomerisierung ROO +— QOOH [31]. Aus dem ROO-Radikal des
n-Pentan konnen drei isomere Hydroperoxypentane gebildet werden, eine Isomerentren-
nung war in dem hier verwendeten EI-MBMS-Experiment jedoch nicht méglich. Aufgrund
mangelnder StoBquerschnitte konnte ebenso keine Quantifizierung der erhaltenen Signale
erfolgen, in Abb. 5.3a,b sind daher relative Temperaturprofile, normiert auf die entsprechen-
den Einlassbedingungen des n-Pentan, dargestellt, um Trends und interaktive Effekte zu
visualisieren. Fir pures n-Pentan (P100) kann ein Maximum bei 585 K detektiert werden,
welches gut mit dem Beginn des Brennstoffumsatzes in Abb. 5.1a iibereinstimmt. Durch
Zugabe von DME (Abb. 5.3a) wird das Maximum bei einer hoheren Temperatur detektiert
und die Bildung von C5H,5,0, aus C5H;, steigt leicht an. Das Modell bestétigt diese Trends,
iiberschétzt jedoch sowohl den Temperatureffekt, als auch die Umsatzsteigerung, wie bereits
fiir den Brennstoffumsatz bemerkt wurde. Wird hingegen Ethanol zugesetzt (Abb. 5.3b),
wird das Maximum zu hoherer Temperatur verschoben und die Intensitdt nimmt stark ab.
Fir PES0 konnte bereits kein Signal mehr gemessen werden. Da C5H,5,0, ausschliellich
aus n-Pentan gebildet wird, kann ein Anstieg oder eine Abnahme nicht aufgrund zusétz-
licher Molekiile aus den Additiven erfolgen. Ein Einfluss durch Addition von DME und
Ethanol auf die Reaktivitdt des n-Pentan kann damit klar bestéitigt werden. Die Bildung
von CsH;,0, ist mafigeblich durch die initiale Produktion von Pentylradikalen gegeben.
Da durch die Zugabe von DME mehr OH-Radikale ins System gelangen und somit die
Produktion von Pentylradikalen gesteigert werden kann (vgl. Abb. 5.2 und entsprechende
Diskussion im vorangegangenen Abschnitt) kann im Gegensatz zur Addition von Ethanol,
welches OH-Radikale aus dem System entfernt, mehr C;H,5,0, gebildet werden.

Ein dhnliches Verhalten wird auch fir die Bildung des Ketohydroperoxids (CsH;,O3)
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Abbildung 5.3: Signalintensititen (Symbole, linke Achse, normiert auf den Anteil n-Pentan
in der Mischung) und quantitative Molenbriiche aus der Modellierung (Linien, rechte Achse,
ebenfalls normiert auf den Anteil n-Pentan in der Mischung) fiir C;H;,0, (zugeordnet zu
Hydroperoxypentanen, ROOH) und CzH,,0O4 (zugeordnet zu Ketohydroperoxiden aus der
n-Pentanoxidation) jeweils fiir die n-Pentan/DME-Mischungen (a,c) und n-Pentan/EtOH-
Mischungen (b,d). Adaptiert von [5].

erwartet, da die Bildung mit dem gleichen Reaktionsablauf verkniipft ist und zunéchst
Pentylradikale zur Verfiigung stehen miissen. Die Profile fiir C5H;,O5 sind in Abb. 5.3 fiir
die Zugabe von DME (c) und Ethanol (d) dargestellt. Da auch hier nicht isomerenspezifisch
gemessen werden konnte und keine StoB3querschnitte verfiigbar waren, ist ebenfalls ein
relativer Vergleich tiber die Normierung auf die Einlassbedingungen gezeigt. Laut Rod-
riguez et al. [117] handelt es sich vorrangig um die Isomere 3-Hydroperoxypentanal und
1-Hydroperoxy-3-pentanon, wohingegen nach Messungen von Rodriguez et al. [117] das
dritte mogliche Isomer 2-Hydroperoxy-4-pentanon eher weniger vertreten sein soll, obwohl
es das chemisch stabilere und kinetisch wahrscheinlichste ist. Die Positionen der Maxima
stimmen mit denen von CsH,;5,0, iiberein und der Einfluss der Zugabe von DME und
Ethanol auf die Temperatur ist vergleichbar. Allerdings kann kein deutlicher Anstieg der
Intensitdt mit DME-Addition gefunden werden, wéhrend die Ethanoladdition trotzdem
zu einer Reduktion fithrt. Im Rahmen der Fehlertoleranz sind die Intensitéaten fiir P100,
PD75 und PD50 in etwa gleich, das Modell sagt jedoch einen klaren Anstieg vorher. Eine
mogliche Begriindung fiir diesen Unterschied kann in den im Modell fehlenden Reaktionen
liegen. Gerade fiir die Mischungen sind Niedertemperaturreaktionen zwischen beiden Reak-
tionswegen wie z.B. ROy + R’0Oy — RO + R’0 + O, oder die H-Abstraktion durch die
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RO,y-Radikale beider Brennstoffe besonders wichtig, jedoch nicht im Modell enthalten, da
es sich hier nicht um ein Modell zur Simulation der Reaktionen von Brennstoffgemischen
handelt. Eine Implementierung solcher Reaktionen kénnte zur besseren Beschreibung der
experimentellen Resultate fiithren.
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Abbildung 5.4: Quantitative Molenbriiche aus Experiment (Symbole) und Modellierung
(Linien), jeweils normiert auf den Anteil n-Pentan in der Mischung fiir Acetaldehyd (C,H,O)
und Formaldehyd (CH,0) fiir die n-Pentan/DME-Mischungen (a,c) und n-Pentan/EtOH-
Mischungen (b,d). Adaptiert von [5].

In Abb. 5.4 sind die Temperaturprofile von Acetaldehyd (CoH,O) und Formaldehyd (CH50)
gezeigt. Fiir diese beiden Spezies kann eine Quantifizierung erfolgen, weshalb die Molen-
briiche der Spezies bestimmt wurden. Damit trotzdem eine Vergleichbarkeit innerhalb der
durchgefithrten Messungen erfolgen kann, wurden diese anschliefend ebenfalls mithilfe des
jeweiligen n-Pentan Einlassmolenbruchs normiert, um aus Unterschieden der Profile aus-
schliellich interaktive Effekte zu erhalten. Fir Acetaldehyd kann festgestellt werden, dass
eine 25 %ige Addition beider oxygenierter Komponenten keinen Einfluss hat, wihrend eine
50 %ige Addition fiir beide Fille zu einer signifikanten Reduktion des Molenbruchs fiihrt.
Die Ergebnisse der kinetischen Modellierung sagen fiir die DME-Addition jedoch keinen
und fiir die Ethanoladdition nur einen kleinen Effekt voraus. In diesem Fall ist es besonders
interessant, auf welchen Wegen Acetaldehyd fiir die jeweiligen Brennstoffe und Brennstoft-
gemische vorrangig gebildet wird. Laut dem Modell wird Acetaldehyd im Oxidationsprozess
von n-Pentan bevorzugt aus dem Ketohydroperoxid 2-Hydroxy-4-pentanon (CsH;;05)
gebildet, welches aber, wie bereits beschrieben, laut Rodriguez et al. [117] das am wenigsten
gebildete Ketohydroperoxid ist. Auch fiir die Mischungen von n-Pentan und DME ist dies
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der vorrangige Bildungsweg von Acetaldehyd, weshalb das Modell keine Unterschiede im
Molenbruch vorhersagt. Moglicherweise fehlen im Modell entsprechende Reaktionen zur
Beschreibung der Mischungen, da iiblicherweise der Abbau der Ketohydroperoxide iiber
eine O-O-Spaltung und anschliefende S-Spaltung direkt Acetaldehyd produziert. Laut
Ranzi et al. [116] ist jedoch auch ein Abbauweg iiber eine H-Abstraktion und anschlieflende
B-Spaltung zu Pentadion und Keten moglich. Durch die Addition des reaktiven DME wird
der Beitrag dieser Reaktion moglicherweise erhoht, wodurch fiir PD50 weniger Acetaldehyd
gebildet werden wiirde. Da dieser Reaktionsweg jedoch nicht im Modell enthalten ist,
kann in der Simulation kein Effekt beobachtet werden. Aufgrund der experimentellen
Ergebnisse konnen an dieser Stelle also Verbesserungen im Modell vorgenommen werden.
Die Effekte der Ethanoladdition auf den Molenbruch von Acetaldehyd kénnen iiber die
bevorzugte Bildung von Acetaldehyd aus dem sekundiren Ethanolradikal, welches zu 70 %
aus Ethanol gebildet wird, erkldrt werden. Durch die Anwesenheit von n-Pentan und zur
Verfiigung stehende OH-Radikale wird die Reaktivitdt von Ethanol erhéht, es konnen mehr
Brennstoffradikale gebildet werden, weshalb ebenfalls zusétzlich Acetaldehyd gebildet wird.

Im Gegensatz zum Acetaldehyd wird fir Formaldehyd ein gegenldufiger Trend fiir die
Addition von DME (Abb. 5.4c) und Ethanol (Abb. 5.4d) erhalten. Bei der DME-Addition
kommt es zu einem Anstieg des Molenbruchs, der jedoch fiir PD75 und PD50 etwa gleich
grof} ist. Da Formaldehyd ein typisches Oxidationsintermediat ist, welches bei der Oxidation
aller drei untersuchten Brennstoffe in vielen Reaktionen gebildet wird, wurden mithilfe
des kinetischen Modells die wichtigsten Reaktionen zur Bildung von Formaldehyd fiir die
Brennstoffe und die Mischungen mithilfe einer Rate of Production Analysis (s. Abb. 13
in Ref. [5]) analysiert. Bei der Oxidation von n-Pentan sind hauptséchlich Reaktionen
von entstehenden Methylradikalen fiir die Bildung von Formaldehyd verantwortlich. Wird
nun DME zugegeben, kommen die Bildungswege aus CH;OCH,0, (ROO von DME) und
CH,0OCH,0,H (QOOH von DME) hinzu. Da wie bereits gezeigt, die Mischung beider
Brennstoffe den Umsatz beider Komponenten verstirkt und insgesamt mehr OH-Radikale
zur Verfiigung stehen, werden auch diese Bildungswege mehr hervorgehoben und somit
mehr Formaldehyd gebildet.

Wird hingegen Ethanol zu n-Pentan addiert, kann fiir PE75 zunéchst kein Effekt festge-
stellt werden, mit 50 % Ethanol wird jedoch eine Reduktion von Formaldehyd beobachtet.
Durch die zuvor analysierte Verringerung der Reaktivitit des Gesamtsystems wiirde jedoch
fiir beide Mischungen insgesamt eine stirkere Reduktion erwartet werden. Die Bildung
von Formaldehyd erfolgt bei der Oxidation von Ethanol vorrangig iiber Methoxyradikale
und ebenfalls aus dem ROO-Radikal von Ethanol (hier OCyH,OH). Aufgrund des Ver-
brauchs von OH-Radikalen durch Ethanol gewinnt jedoch ein anderer Weg zur Bildung von
Formaldehyd aus n-Pentan an Bedeutung. Das Ketohydroperoxid von n-Pentan wird nun
zunehmend iiber einen unimolekularen Zerfall abgebaut. Daraus entsteht 2-Pentanoxid-4-on
(C5HgO,), welches durch eine S-Spaltung in Acetaldehyd und Acetonyl zerféllt. Durch eine
0O-Addition an das Acetonylradikal und anschlieflende g-Spaltung entstehen Formaldehyd
und ein Acylradikal, wodurch die Formaldehydbildung gesteigert wird. Diese Erklarung ist
nur ein moéglicher Vorschlag und basiert zunéchst vorrangig auf der Analyse des Modells.
Es ist jedoch bekannt, dass gerade die Acetonreaktionen, und damit auch die Acetonyl-
reaktionen, in dem verwendeten Mechanismus noch nicht vollstdndig sind und aktuell
iiberarbeitet werden.
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Niedertemperaturoxidation

Zusammenfassung

Im Rahmen dieser Arbeit wurde die Niedertemperaturoxidation von Mischungen aus
n-Pentan und den oxygenierten Isomeren Dimethylether oder Ethanol bei einer Stéchio-
metrie von 0.7 und einem Druck von 970 mbar im Temperaturbereich von 450-930 K in
einem laminaren Strémungsreaktor mittels Molekularstrahl-Massenspektrometrie unter
Verwendung von Elektronenstofionisation untersucht. Fiir eine Vielzahl von Spezies wurden
quantitative Molenbruchprofile in Abhéngigkeit von der Temperatur erhalten. Spezies fiir
die eine Quantifizierung aufgrund fehlender Referenzdaten nicht erfolgen konnte wurden
mithilfe einer Normierung vergleichbar gemacht, um relative Trends und Effekte zwischen
den Mischungen visualisieren zu kénnen.

Durch die Analyse der Reaktivitit der drei unterschiedlichen Brennstoffe und ihrer Mi-
schungen wurde festgestellt, dass Ethanol aufgrund seiner Struktur keine fiir die Nieder-
temperaturoxidation wichtigen OH-Radikale produziert, sondern selbige aktiv verbraucht
und damit die Reaktivitdt des Gesamtsystems mit n-Pentan reduziert. Fiir Dimethylether,
der als sehr reaktiver Brennstoff im Niedertemperaturbereich bekannt ist, konnten hin-
gegen starke synergistische Effekte mit dem Oxidationsverhalten des ebenfalls aktiven
n-Pentans gefunden werden. Mithilfe der temperaturabhéngigen Brennstoffumséitze und
der Betrachtung der Hauptreaktionszyklen fiir die Niedertemperaturoxidation konnten
diese Beobachtungen erklart werden. Ein zur Unterstiitzung der Ergebnisse herangezogenes
kinetisches Modell konnte diese Trends ebenfalls gut wiedergeben. Bei der Betrachtung
einiger relevanter Intermediatspezies konnten die experimentellen Befunde ebenfalls gut
iiber die Reaktivitdt und Interaktion der Brennstoffe erklart werden, hier liefen die Ergeb-
nisse der kinetischen Modellierung aber oft noch Raum fiir Verbesserungen. Insbesondere
einige relevante fehlende Reaktionswege miissen fiir die Weiterentwicklung des Modells in
Betracht gezogen werden.



KAPITEL 6

Untersuchung der Hochtemperaturoxidation von 2-Pentanon

Kleine Methylketone sind als Vertreter der sogenannten Biokraftstoffe der zweiten Generati-
on interessant, da sie eine hohe Oktanzahl und somit eine sehr hohe Klopffestigkeit aufweisen.
Fiir Brennstoffe wie Aceton (RON=110-117 [118, 119]) und 2-Butanon (RON=117 [46])
wurden bereits niedrige Emissionen von Rufl, NOy und unverbrannten Kohlenwasserstoffen
im Vergleich zu anderen Biokraftstoffkandidaten wie Ethanol und 2-Methylfuran gemessen
[46]. In einer vorgemischten laminaren Niederdruckflamme wurde fiir 2-Butanon sogar
bereits gezeigt, dass vergleichsweise wenig Rufivorlauferspezies und toxische oxygenierte
Spezies gebildet werden [61]. Pentanon weist aufgrund seiner gréfieren Atomanzahl eine
hohere Energiedichte auf, weshalb es interessant ist, ob ein &hnlich positives Emissions-
verhalten vorliegt. Bisher wurden jedoch vorrangig Untersuchungen zum symmetrischen
3-Pentanon durchgefiihrt [120-122], wohingegen das asymmetrische 2-Pentanon bisher
kaum Aufmerksamkeit erhielt. Die lineare, dreiatomige Kohlenstoffkette kann jedoch zu
Veranderungen in der Kinetik beitragen, was sich zum einen in Form eines verringerten
Effekts der Carbonylgruppe duflern kénnte, zum anderen aber auch eine erhéhte Bildung
von Rufivorlauferspezies wie C3H3 bedingen kann. Bisher wurden fiir 2-Pentanon vorran-
gig Zundverzugszeiten im Temperaturbereich von 1000-1500 K und fiir Driicke von 2.65,
20 und 40 bar gemessen [123, 124]. Eine vollstandige Analyse der Kinetik mithilfe von
Speziesprofilen liegt bisher nicht vor. Daher wurden im Rahmen dieser Arbeit Messun-
gen in einer brennstoffreichen laminaren vorgemischten 2-Pentanon-Niederdruckflamme
durchgefithrt und 47 Spezies mithilfe von EI- und PI-MBMS quantifiziert. Dariiber hinaus
wurden die experimentell erhaltenen Daten durch die Modellierung mit einem kinetischen
Modell aus der Arbeitsgruppe Physical Chemical Fundamentals of Combustion der RWTH
Aachen zur Beschreibung der Hochtemperaturkinetik unterstiitzt, welches aus einem bereits
existierenden Basismechanismus und neuen Berechnungen fiir den Submechanismus von
2-Pentanon besteht. Die erhaltenen Ergebnisse wurden in Form des Manuskripts [6] zur
Verdffentlichung in Proceedings of the Combustion Institute eingereicht und sind bereits
positiv begutachtet worden.

Flammenmessungen und kinetische Modellierung

Eine laminare vorgemischte Niederdruckflamme (p = 40 mbar) des Brennstoffes 2-Pentanon
(C5H(O/0O4/Ar: 0.093/0.407/0.500) mit einer Stochiometrie von ¢ = 1.6 und einer Kalt-
gasgeschwindigkeit von 73.85 cm/s (bei den Einlassbedingungen von 333 K und 40 mbar;
2.574 cm/s bei 298 K und 1 atm) wurde mithilfe von EI-MBMS in Bielefeld und PI-MBMS
an der Advanced Light Source in Berkeley, USA untersucht. Fiir die Ergebnisse beider
Apparaturen wurden gute Ubereinstimmungen gefunden; diese Kreuzvalidierung reduziert
die Ungenauigkeiten in der Quantifizierung der Molenbruchprofile erheblich. Mithilfe der
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schmalen Energieverteilung der Photoionisation wurden Messungen bei unterschiedlichen
Photonenenergien durchgefithrt, um spezifische Isomerengruppen voneinander trennen zu
konnen. Auflerdem wurden Photoionisationseffizienzkurven (PIE-Kurven) aufgenommen,
um die entsprechend auftretenden Isomere identifizieren zu kénnen. Im Folgenden werden
daher nur die Ergebnisse der PI-MBMS-Messungen vorgestellt.

Zum Vergleich der experimentell erhaltenen Daten und zur Analyse der Kinetik in der
Verbrennung von 2-Pentanon wurde dariiber hinaus ein kinetisches Modell verwendet.
Dazu wurde der aktuelle AramcoMech 2.0 [125] zusammen mit einem Submechanismus
fiir 2-Butanon von Hemken et al. [62] und einem Submechanismus fir kleine aromatische
Spezies von Zhang et al. [126] als Basismechanismus verwendet und um einen neuen
Submechanismus fiir die Hochtemperaturkinetik von 2-Pentanon ergénzt. Dieser wurde in
Analogie zu den Reaktionen von 2-Butanon [63] und n-Pentan [87] von Kooperationspart-
nern des Instituts fiir Physical Chemical Fundamentals of Combustion der RWTH Aachen
entwickelt. Aulerdem wurden dort die Thermochemie sowie die Transporteigenschaften fiir
2-Pentanon und die entsprechenden Brennstoffradikale berechnet und in den Mechanismus
integriert. Das Modell wurde zuséatzlich zu den hier vorgestellten Flammendaten auch
gegen Ziindverzugszeiten aus der Literatur [123, 124] validiert. Das fiir die Simulation
benétigte Temperaturprofil der Flamme wurde nach der in Kap. 2.5 vorgestellten Methode
von Isabelle Graf in Bielefeld gemessen.

Brennstoffabbau und primare Intermediate

Der primére Brennstoffabbau tiber die im Hochtemperaturbereich typische H-Abstraktion
gefolgt von einer B-Spaltung (vgl. Kap. 2.1) ist fiir 2-Pentanon in Abb. 6.1 dargestellt.
Die prozentualen Anteile der Reaktionswege wurden im Bereich von einer Héhe iiber der
Brenneroberfliche h = 0 — 3.3 mm (korrespondierend zu einem Brennstoffumsatz bis 20 %)
aus dem Modell erhalten. Die zuerst erfolgende H-Abstraktion liefert vier Brennstoffra-
dikale (C5H4O). Das 2-Pentanon-1-ylradikal wird in etwa zu gleichen Teilen iiber eine
C-C-B-Spaltung zu Keten und Propyl (42 %) und iiber eine Isomerisierung zum 2-Pentanon-
3-ylradikal (45 %) umgesetzt. Letzteres wird ausschlieflich tiber C-C-g-Spaltungen zum
Methylradikal und C,HgzO abgebaut, wobei die Spaltung zwischen dem C4 und C5, aus
der Methylvinylketon entsteht, mit 99.9 % deutlich gegeniiber der Spaltung zwischen dem
C1 und C2 zu Ethylketen (0.01 %) iiberwiegt. Dieses Ergebnis liegt darin begriindet, dass
der Reaktionsgeschwindigkeitskoeffizient fiir die Spaltung auf der Alkylseite im Modell
aufgrund der héheren Aktivierungsenergie mehr als zwei Groflenordnungen tiber dem fiir die
Carbonylseite liegt. Aus dem 2-Pentanon-4-ylradikal werden grofitenteils Propen und Acetyl
iiber die C-C-g-Spaltung gebildet (91.5 %), wéhrend die C-H-3-Spaltung zu 3-Penten-2-on
nur mit 8.5 % vorhergesagt wird. Diese Reaktion fallt fiir das 2-Pentanon-5-ylradikal mit
nur 0.5 % zu 4-Penten-2-on sogar noch geringer aus. Hier iiberwiegt die C-C-3-Spaltung
zu Ethen und Acetonyl mit 97 % stark.

Da die direkt gebildeten Brennstoffradikale mit dem verwendeten PI-MBMS-Experiment
nicht getrennt und quantifiziert werden kénnen, wurden deren primére Abbauprodukte
im Experiment untersucht. In Abb. 6.2 sind die Molenbruchprofile der stabilen Spaltungs-
produkte der 2-Pentanon-1-yl-, -4-yl- und -5-ylradikale, namlich Keten (a), Propen (b)
und Ethen (c¢) dargestellt. Die grauen Schattierungen geben dabei einen Fehlerbereich von
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Abbildung 6.1: Reaktionsschema fiir 2-Pentanon aus der Reaktionsflussanalyse fiir die
untersuchten Flammenbedingungen im Bereich von einer Hohe tiber der Brenneroberflache
h = 0—3.3 mm (korrespondierend zu einem Brennstoffumsatz bis 20 %) mit den entsprechenden
prozentualen Angaben zur Wahrscheinlichkeit der Reaktionswege neben den Pfeilen. Die fiir
das Brennstoffmolekiil 2-Pentanon angegebenen C-H- und C-C-Bindungsenergien wurden aus
den thermochemischen Daten des kinetischen Modells bestimmt. Adaptiert von [6].

einem Faktor 2 wieder, um einen {ibersichtlichen Vergleich mit dem Modell zu schaffen.
Keten und Propen weisen maximale Molenbriiche im Bereich von 2 — 3 - 1072 auf, wihrend
der von Ethen mit 2.4 - 1072 etwa eine GréBenordnung dariiber liegt. Die Ergebnisse der
kinetischen Modellierung stimmen fiir Propen und Ethen exzellent mit den experimentellen
Ergebnissen iiberein, wihrend Keten mit etwas mehr als einem Faktor 2 iiberschétzt wird.
Dieses Phanomen wurde bereits in einer vorherigen Flammenuntersuchung fiir 2-Butanon
von Hemken et al. [61] beobachtet und konnte bereits dort und auch in einer weiteren
Arbeit von Minwegen et al. [123] auf die Unvollstandigkeit des Aceton-Submechanismus im
verwendeten Basismechanismus zuriickgefiihrt werden, da Keten dort vorrangig aus dem
Acetonylradikal gebildet wird. Insgesamt deutet die gute Ubereinstimmung des Modells fiir
die priméaren Spezies bereits auf einen relativ gut funktionierenden Submechanismus fiir
2-Pentanon hin.

Die weiteren priméren Spezies, die aus dem 2-Pentanon-3-yl Radikal gebildet werden,
sind neben CHj stabile Isomere der Summenformel C,;HgO. Im zuerst durchgefiihrten
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Abbildung 6.2: Molenbruchprofile ausgewihlter primérer Intermediate nach initialer H-
Abstraktion und anschlieSender 5-Spaltung. Symbole: Experimentelle Ergebnisse mit einem grau
schattierten experimentellen Fehler von einem Faktor 2, durchgezogene Linien: Verbindung der
experimentellen Datenpunkte mit einer Spline-Funktion zur besseren Ubersicht, unterbrochene
Linien: Ergebnisse der kinetischen Modellierung. Adaptiert von [6].

EI-MBMS-Experiment konnten Methylvinylketon und Ethylketen nicht unterschieden wer-
den. Aufgrund der stark unterschiedlichen Vorhersagen fiir beide Isomere ist es jedoch
von besonderem Interesse, die Ergebnisse der kinetischen Modellierung mithilfe experi-
menteller Daten zu iiberpriifen. Mithilfe des PI-MBMS-Experiments konnten Messungen
unterschiedlicher Photonenenergien durchgefithrt und so die beiden Isomere getrennt wer-
den. Fiir die Quantifizierung wird jedoch, wie bereits in Kap. 2.4 erlautert, fiir jede Spezies
ein Photoionisationsquerschnitt benotigt. Fiir Ethylketen ist jedoch bisher kein solcher
Wert tabelliert. Um dennoch eine erste Quantifizierung vornehmen zu kénnen, wurde der
Photoionisationsquerschnitt fiir Ethylketen daher mithilfe eines gemessenen Photoelektro-
nenspektrums (PES) von Bock et al. [127] abgeschétzt. Dazu wurde das PES integriert
und in Analogie zum Photoionisationsquerschnitt von Keten von Yang et al. [88] mit einem
Wert von 24 Mb bei 10.35 €V skaliert. Fiir die Quantifizierung von Ethylketen ergibt
sich damit eine erhéhte Unsicherheit, die hier mit einem Faktor 5-10 abgeschétzt wurde.
Dadurch kann jedoch ein Vergleich der C,HgO Isomere erfolgen. In Abb. 6.3a sind die
quantifizierten Molenbruchprofile fiir Methylvinylketon und Ethylketen dargestellt. Durch
den verwendeten Faktor von 25 fiir die Darstellung des Molenbruchs von Ethylketen ist
bereits die stark unterschiedliche Bildung beider Spezies ersichtlich. Methylvinylketon wird
mit einem maximalen Molenbruch von 2.4 - 10~3 mehr als hundert Mal so viel gebildet
wie Ethylketen (1.6 - 107°). Damit liegt der hohere Fehler aus der abgeschiitzten Quantifi-
zierung deutlich unterhalb des Molenbruchunterschieds und ist daher gut vertretbar. Zur
eindeutigen Zuordnung der Isomere und einer weiteren Kreuzvalidierung des erhaltenen
Verhéltnisses wurde zudem eine PIE-Kurve aufgenommen. Diese ist in Abb. 6.3b einmal
direkt (schwarze Quadrate) und einmal multipliziert mit einem Faktor von 25 (blaue Kreise)
dargestellt, um auch den Anstieg bei ca. 8.8 eV zu visualisieren. Zudem sind sowohl der
abgeschéitzte Photoionisationsquerschnitt fiir Ethylketen als auch der fiir Methylvinyl-
keton von Yang et al. [88] sowie die entsprechenden Ionisationsenergien beider Spezies
[88, 127] eingezeichnet. Da die Anstiege im Photoionisationseffizienzsignal ausgezeichnet
mit den Querschnitten und Ionisationsenergien von Ethylketen und Methylvinylketon
iibereinstimmen, kann die Existenz beider Spezies verifiziert werden. Durch die Skalierung
der Querschnitte wird ein Verhéltnis von 99.4 % Methylvinylketon und 0.6 % Ethylketen
erhalten, welches sich perfekt mit dem Ergebnis der Molenbruchprofile in Abb. 6.3a (99.3 %
Methylvinylketon, 0.7 % Ethylketen) deckt. Mit diesen experimentellen Ergebnissen konnte
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zudem die stark unterschiedliche Vorhersage des kinetischen Modells fiir die beiden Isomere

bestétigt werden.
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Abbildung 6.3: (a) Molenbruchprofile der detektierten C,H;O Isomere. Symbole: Experi-
mentelle Ergebnisse mit einem grau schattierten experimentellen Fehler von einem Faktor 2,
durchgezogene Linien: Verbindung der experimentellen Datenpunkte mit einer Spline-Funktion
zur besseren Ubersicht, unterbrochene Linien: Ergebnisse der kinetischen Modellierung. Fiir
Ethylketen wurden sowohl experimentelle als auch modellierte Ergebnisse mit einem Faktor
von 25 multipliziert. (b) Signal der Photoionisationseffizienz (PIE) fiir C,HsO (Quadrate) und
erneut dargestellt und mit einem Faktor von 25 multipliziert (Kreise), um den frithen Anstieg
sichtbar zu machen. Die Photoionisationsquerschnitte (xs) von Ethylketen (abgeschétzt, s.
Text) und Methylvinylketon [88] wurden skaliert und zum Vergleich eingezeichnet. Die Ionisati-
onsenergien (IE) von Ethylketen [127] und Methylvinylketon [88] sind in Form von horizontalen
Linien dargestellt. Adaptiert von [6].

Niedertemperaturspezies

In der untersuchten Flamme konnten auch einige Spezies detektiert werden, die iiblicherwei-
se als Indiz fiir das Vorliegen einer Niedertemperaturkinetik gewertet werden. Die Bildung
solcher Spezies in der Hochtemperaturumgebung der Flamme ist besonders interessant
und konnte auch bereits in bisherigen Flammenuntersuchungen beobachtet werden [37, 61].
In Abb. 6.4 sind das Molenbruchprofil fiir Formaldehyd (a) und die korrigierten Signal-
intensitdten fiir C;HgO (b) und C;HgO, (c) dargestellt. Fiir Formaldehyd und C;HgO
kann ein Versatz des Maximums von 1-2 mm zwischen den experimentellen Daten und
der kinetischen Modellierung festgestellt werden. C;HgO, ist nicht im Speziespool des
Modells enthalten. In diesem Zusammenhang sei daran erinnert, dass es sich bei dem
verwendeten Modell und dem neu entwickelten Submechanismus fiir 2-Pentanon um eine
reine Beschreibung der Hochtemperaturkinetik handelt. Typische Reaktionsklassen der
Niedertemperaturkinetik (vgl. Kap. 2.1 und Abb. 2.1b) sind nicht im kinetischen Modell
enthalten, wodurch eine Bildung der hier vorgestellten Spezies nicht korrekt modelliert
werden kann. Die experimentellen Ergebnisse zeigen, dass Niedertemperaturreaktionen
in Form von Sauerstoffadditionen in der Vorheizzone der Flamme stattfinden und fiir ein
vollstandiges Modell der Kinetik von 2-Pentanon beriicksichtigt werden miissen.

Formaldehyd (Abb. 6.4a) wird vorrangig iiber die Reaktion von CH; mit O gebildet. CH;
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Abbildung 6.4: Profile ausgewéhlter oxygenierter Spezies zur Analyse der Niedertempe-
raturchemie. Fiir Formaldehyd (a) ist das Molenbruchprofil mit einem grau schattierten
experimentellen Fehler von einem Faktor 2 gezeigt, wéhrend fiir C;HgO (b) und C;HgO, (c)
aufgrund mangelnder Photoionisationsquerschnitte nur die korrigierten Signale dargestellt
sind. Symbole: Experimentelle Ergebnisse, durchgezogene Linien: Verbindung der experimen-
tellen Datenpunkte mit einer Spline-Funktion zur besseren Ubersicht, unterbrochene Linien:
Ergebnisse der kinetischen Modellierung. Adaptiert von [6].

kann auf vielen Wegen gebildet werden, unter anderem auch durch die C-C-3-Spaltung des
2-Pentanon-3-ylradikals (vgl. Abb. 6.1) relativ zu Beginn des Brennstoffabbaus, aber auch
aus dem Abbau von Propyl-, Ethyl- und Acetonylradikalen. Spezies mit der Summenformel
C;HgO (Abb. 6.4b) konnen den Pentenonen zugeordnet werden. Diese kénnen wie in
Abb. 6.1 dargestellt {iber eine C-H-3-Spaltung aus den Brennstoffradikalen, aber auch
iiber eine Oy-Addition an das Brennstoffmolekiil und eine anschlieBende HO,-Eliminierung
gebildet werden. Fiir letztere werden deutlich niedrigere Temperaturen benétigt. Die breite
Form des Profils von C5;HgO spricht fiir eine Kombination aus beiden Prozessen, abhingig
von der Temperatur der Flamme in den jeweiligen Zonen. Ein ebenfalls frither Anstieg des
Profils wird fiir C5HgO, beobachtet, das Maximum des Signals liegt jedoch ca. 1 mm weiter
entfernt von der Brenneroberfliche als fiir CsHgO. Mogliche Strukturen korrespondierend
zu C;HgO4 entsprechen dem 2,4-Pentadion oder mehreren méglichen zyklischen Ethern.
2,4-Pentadion miisste iiber einer Radikalrekombination eines Acetyl- (C;H30) und eines
Acetonylradikals (C3H;0) gebildet werden, welche aus kinetischer Sicht relativ unwahr-
scheinlich ist, da das Acetonylradikal mesomeriestabilisiert ist, wiahrend Acylradikale in
der Regel tiber eine a-Spaltung in das thermisch extrem stabile CO und ein Alkylradikal
zerfallen. Zyklische Ether werden insbesondere im Bereich der Niedertemperaturkinetik
durch eine O,-Addition an das Brennstoffmolekiil und eine anschliefende Isomerisierung
zum QOOH gebildet (vgl. Abb. 2.1b). Die Position des Profils spricht aber eher fiir eine
bereits hoher liegende Temperatur zur Bildung von C5HgO,. Fiir die infrage kommenden
Spezies sind keine Ionisationsenergien oder Photoionisationsquerschnitte tabelliert, sodass
ein beobachteter Anstieg bei 9.1-9.3 eV in der PIE-Kurve von CsHgO, keiner Spezies
direkt zugeordnet werden kann. Durch Einbeziehung typischer Reaktionsklassen der Nie-
dertemperaturkinetik von 2-Pentanon in das verwendete Modell konnten daher mogliche
Reaktionswege und Spezies aufgeklart werden.

Zusammenfassung

In dieser Arbeit wurde eine brennstoffreiche laminare Niederdruckflamme des Brennstoffes
2-Pentanon mithilfe von EI- und PI-MBMS untersucht. Dabei wurden die Molenbruchprofile
einer Vielzahl bei der Verbrennung von 2-Pentanon auftretender Spezies aufgenommen und
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einige Spezies auch isomerenselektiv quantifiziert. Dartiber hinaus wurde ein kinetisches
Modell zur Beschreibung der Hochtemperaturkinetik von 2-Pentanon in Kooperation mit
der RWTH Aachen entwickelt und zum Vergleich der experimentell erhaltenen Daten heran-
gezogen. Mithilfe einer aus dem Modell erhaltenen Reaktionsflussanalyse der untersuchten
Flammenbedingungen wurde die Bildung erster intermedidrer Spezies analysiert. Dabei
konnte fiir Keten, Propen, und Ethen eine gute Ubereinstimmung zwischen Experiment
und Modell gefunden werden, was die Funktionalitdt des neu entwickelten 2-Pentanon
Submechanismus unterstreicht. Auch das Verhéltnis der primér gebildeten Isomere Methyl-
vinylketon und Ethylketen konnte mithilfe der isomerenselektiven PI-MBMS-Messungen
eindeutig bestétigt werden. Dartiber hinaus wurden Spezies und Reaktionswege beobachtet,
die auf Reaktionen der Niedertemperaturkinetik hinweisen. Diese Erkenntnisse sprechen
eindeutig fiir die Notwendigkeit, Reaktionen der Niedertemperaturkinetik von 2-Pentanon
in das bestehende kinetische Modell zu integrieren.

Im Vergleich zum kleineren Methylketon 2-Butanon ist 2-Pentanon zwar aufgrund der
hoéheren Energiedichte zu bevorzugen, jedoch ergab sich beziiglich der Bildung von toxi-
schen Spezies in der Verbrennung von 2-Pentanon eine vergleichbare Konzentration von
Formaldehyd und eine um etwa einen Faktor fiinf hohere Konzentration des toxischen
Methylvinylketon. Die vorliegenden experimentellen Ergebnisse kénnen nun in erster Linie
zur weiteren Untersuchung und Entwicklung kinetischer Modelle fir Methylketone und
eine Erweiterung des Modells um die Niedertemperaturkinetik verwendet werden.
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Zusammenfassung und Ausblick

In dieser Arbeit wurde die Oxidationschemie verschiedener konventioneller und alternativer
Brennstoffe und deren Gemische unter verschiedenen Bedingungen ausfiihrlich untersucht.
Dazu wurden mit der laminaren vorgemischten Niederdruckflamme und dem laminaren
Stromungsreaktor zwei ideale Modellexperimente genutzt, die sowohl im Druck- als auch
Temperaturbereich ein grofies Parameterfeld der Verbrennung abdecken. Zur Analytik der
bei der Verbrennung entstehenden Spezies wurde die Molekularstrahl-Massenspektrometrie
als bewéhrtes Instrument eingesetzt, da mit ihr eine Vielzahl stabiler und reaktiver Spezies
gleichzeitig identifiziert und quantifiziert werden kann. Zur optimalen Strukturaufklirung
wurde eine Kombination verschiedener Ionisationstechniken genutzt, da jede ihre individu-
ellen Starken und Grenzen aufweist.

In dieser Arbeit konnte gezeigt werden, dass eine Kombination mehrerer experimenteller
Methoden mit einer zusédtzlichen Unterstiitzung durch spezifische Referenzmessungen, theo-
retische Berechnungen und kinetische Modellierungen zu einem umfassenden Verstdndnis
der Oxidationschemie komplexer Brennstoffmolekiile beitragen kann. Dazu wurden Mes-
sungen mit zum Teil hohem apparativen Aufwand und Messzeit an Groflanlagen benétigt.
So konnten in dieser Arbeit die Photoelektronenspektren von 18 in der Verbrennungs-
chemie wichtigen Intermediatspezies aufgenommen und zur Identifizierung dieser Spezies
genutzt werden. Dies ist ein besonders wichtiger Aspekt, da im Bereich der Analytik
von Oxidationsintermediaten oft wesentliche Literaturdaten fehlen, die zur Identifizierung
und Quantifizierung der auftretenden Spezies erforderlich sind. Selbstverstiandlich kénnen
solche Daten auch mithilfe von theoretischen Berechnungen bestimmt werden, was im
Rahmen der hier vorgestellten Arbeiten auch zusétzlich genutzt wurde, jedoch sind solche
Berechnungen auch mit hohem Zeit- und Kostenaufwand verbunden. Um Vergleichbarkeit
mit experimentellen Daten sicherzustellen, miissen diese zudem idealerweise fiir die exakten
experimentellen Randbedingungen bereitgestellt werden. In dieser Arbeit wurde daher
gezeigt, dass die Messung von Referenzdaten am identischen Experiment von groflem
Nutzen ist.

Die Bildung von Verbrennungsintermediaten wurde fiir die verschiedenen durchgefiihrten
Experimente zusétzlich auch mithilfe kinetischer Modellierungen simuliert, die auf die
Messung von experimentellen Daten zur Weiterentwicklung und Validierung angewiesen
sind. Mithilfe der Ergebnisse dieser Arbeit konnten wesentliche Erkenntnisse in die weitere
Modellentwicklung verschiedener kinetischer Modelle einflielen. Zum Beispiel wurde in der
Verbrennung von iso-Pentan eindeutig die Existenz einiger Spezies nachgewisen, die zuvor
nicht im Modell enthalten waren. Auch fiir die Verbrennung von Diethylether konnte das
vermutete Intermediat Ethylvinylether, welches erst kiirzlich in ein entsprechendes Modell
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aufgenommen wurde, eindeutig identifiziert werden und so die quantitative Vorhersage der
Spezies optimiert werden. Dariiber hinaus wurde jedoch auch gezeigt, dass die Entwicklung
kinetischer Modelle an einigen Stellen noch Potential zur Optimierung aufweist. Insbe-
sondere die experimentellen Ergebnisse zu Brennstoffgemischen und der Interaktion der
Reaktionswege zweier Brennstoffmolekiile zeigten eindeutig, dass die verwendeten Modelle
noch nicht vollstdndig in der Lage sind, solche Gemische zu modellieren.

Insgesamt wurde in dieser Arbeit an mehreren Beispielen festgestellt, dass die Brennstoft-
struktur signifikant fiir den Verlauf der moglichen Reaktionswege und somit die Bildung von
moglichen Schadstoffen verantwortlich ist. Dieses Kriterium wurde auch fiir die Addition
unterschiedlicher Komponenten festgestellt. So wurden fiir die Addition von potentiellen
Biokraftstoffen der gleichen Summenformel, aber unterschiedlicher Struktur (Alkohol und
Ether), sowohl im Hoch- als auch im Niedertemperaturbereich unterschiedliche Einfliisse
auf die Schadstoffbildung erhalten. Wahrend im Hochtemperaturbereich vorrangig die Bil-
dung von hohermolekularen Spezies beeinflusst wurde, wurde im Niedertemperaturbereich
eine signifikante Auswirkung des Additivs auf die Reaktivitdt des Brennstoffgemisches
beobachtet.

Ausblick

Fiir den Hochtemperaturbereich kénnen die ersten stabilen Zerfallsprodukte, die im Ex-
periment sehr zuverlissig bestimmt werden koénnen, schon relativ gut von kinetischen
Modellen vorhergesagt werden. Es sind jedoch die ersten radikalischen Zerfallsprodukte, die
im Verbrennungsprozess besonders wichtig sind, da sie mafigeblich den weiteren Reaktions-
verlauf bestimmen. Diese Spezies kénnen jedoch nur mit sehr hohem experimentellem und
theoretischem Aufwand quantifiziert werden [40, 42, 128, 129]. Gerade fiir Mischungen und
insbesondere im Niedertemperaturbereich fithren Interaktionen dieser ersten gebildeten
radikalischen Spezies zu in Verbrennungsmodellen noch nicht enthaltenen Intermediaten
und einer verdnderten Reaktivitdt des Mischungssystems, weshalb hier noch ein erhéhtes
Potential sowohl im experimentellen Bereich als auch in der Modellentwicklung liegt. Jedoch
ist dies nicht nur fiir Brennstoffgemische eine grofie Herausforderung. Auch ein einzelnes
Brennstoffmolekiil, fiir das eine kinetische Modellierung iiber den Hochtemperaturbereich
bereits gut moglich ist, stellt Modellierer im Niedertemperaturbereich bereits vor grofliere
Schwierigkeiten, da in dieser Oxidationsumgebung sehr viele komplexe Reaktionen ablaufen.
Dabei kénnen mehrere aufeinanderfolgende Sauerstoffadditionen zur Bildung von hochoxi-
dierten Spezies bis hin zu sogenannten sekundéren organischen Aerosolen (SOAs) fithren
[130, 131]. Zum Verstidndnis der Bildungswege solcher Spezies sind umfassende Experimente
mit hohem apparativem Aufwand, hoher Sensitivitdt und hoher Auflésung notwendig, wie
kiirzlich von Wang et al. [132, 133] gezeigt wurde. Erste Ergebnisse dieser Untersuchungen
von Wang et al. zeigten auch, dass die Speziesverteilung unter motorischen Bedingungen,
d.h. unter erh6htem Druck, ndherungsweise der unter Normaldruck im Modellexperiment
entspricht. Modellexperimente wie die hier verwendeten kénnen also durchaus hilfreiche
Ergebnisse fiir den Anwendungsbereich der motorischen Verbrennung liefern. Eine detail-
liertere Aufklarung der Interaktion von Reaktionswegen in Brennstoffgemischen mithilfe
solcher Methoden ist daher in Zukunft notwendig, um die Modellentwicklung fiir die
Vorhersage der Schadstoffbildung moglicher zukiinftiger Kraftstoffadditive zu optimieren.
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Abstract

Double-imaging photoelectron/photoion coincidence (iPEPICO) spectroscopy using a
multiplexing, time-efficient, fixed-photon-energy approach offers important opportunities
of gas-phase analysis. Building on successful applications in combustion systems that have
demonstrated the discriminative power of this technique, we attempt here to push the limits
of its application further to more chemically complex combustion examples. The present
investigation is devoted to identifying and potentially quantifying compounds featuring five
heavy atoms in laminar, premixed low-pressure flames of hydrocarbon and oxygenated fuels
and their mixtures. In these combustion examples from flames of cyclopentene, iso-pentane,
iso-pentane blended with dimethyl ether (DME), and diethyl ether (DEE), we focus on
the unambiguous assignment and quantitative detection of species with the sum formulae
CsHg, CsHy, C5Hg, CsHy, and C,HgO in the respective isomer mixtures, attempting to
provide answers to specific chemical questions for each of these examples.

To analyze the obtained i?PEPICO results from these combustion situations, photoelectron
spectra (PES) from pure reference compounds, including several examples previously
unavailable in the literature, were recorded with the same experimental setup as used in
the flame measurements. In addition, PES of two species where reference spectra have not
been obtained, namely 2-methyl-1-butene (CsH;,) and the 2-cyclopentenyl radical (C5H-),
were calculated on the basis of high level ab initio calculations and Franck Condon (FC)
simulations. These reference measurements and quantum chemical calculations support
the early fuel decomposition scheme in the cyclopentene flame towards 2-cyclopentenyl

1 Zu dieser Publikation ist Supplemental Material online unter https://doi.org/10.1515/zpch-2017-1009
verfiigbar.
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as the dominant fuel radical as well as the prevalence of branched intermediates in the
early fuel destruction reactions in the iso-pentane flame, with only minor influences from
DME addition. Furthermore, the presence of ethyl vinyl ether (EVE) in DEE flames that
was predicted by a recent DEE combustion mechanism could be confirmed unambiguously.
While combustion measurements using i?’PEPICO can be readily obtained in isomer-rich
situations, we wish to highlight the crucial need for high-quality reference information to
assign and evaluate the obtained spectra.
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spectroscopy using a multiplexing, time-efficient, fixed-photon-energy
approach offers important opportunities of gas-phase analysis. Building on
successful applications in combustion systems that have demonstrated the
discriminative power of this technique, we attempt here to push the limits of
its application further to more chemically complex combustion examples. The
present investigation is devoted to identifying and potentially quantifying com-
pounds featuring five heavy atoms in laminar, premixed low-pressure flames
of hydrocarbon and oxygenated fuels and their mixtures. In these combustion

*Corresponding authors: Julia Pieper and Katharina Kohse-H6inghaus, Physical Chemistry |,
Bielefeld University, Universitatsstrafie 25, 33615 Bielefeld, Germany,

Phone: +49 521106 6308 (J. Pieper); +49 521106 2052 (K. Kohse-Héinghaus),

Fax: +49 521106 15 6887, e-mail: julia.pieper@uni-bielefeld.de (). Pieper);
kkh@uni-bielefeld.de (K. Kohse-Hoinghaus)

Steffen Schmitt, Emma Davies, Julia Wullenkord and Andreas Brockhinke: Physical Chemistry |,
Bielefeld University, Universitatsstrafie 25, 33615 Bielefeld, Germany

Christian Hemken: Physical Chemistry I, Bielefeld University, Universitdtsstrafie 25, 33615
Bielefeld, Germany; and Physico Chemical Fundamentals of Combustion (PCFC), RWTH Aachen
University, Schinkelstrafie 8, 52062 Aachen, Germany

Julia Kriiger: Synchrotron SOLEIL, 'Orme des Merisiers, St. Aubin, B.P. 48, 91192 Gif-sur-Yvette,
France; and Continental AG, Vahrenwalder Strafle 9, 30165 Hannover, Germany

Gustavo A. Garcia and Laurent Nahon: Synchrotron SOLEIL, L’'Orme des Merisiers, St. Aubin,
B.P. 48, 91192 Gif-sur-Yvette, France

Arnas Lucassen: Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig,
Germany

Wolfgang Eisfeld: Theoretical Chemistry, Bielefeld University, UniversitdtsstraBe 25,

33615 Bielefeld, Germany

Bereitgestellt von | Universitaetsbibliothek Bielefeld
Angemeldet | julia-pieper@web.de
Heruntergeladen am | 06.03.18 09:32



154 — |.Pieperetal. DE GRUYTER

examples from flames of cyclopentene, iso-pentane, iso-pentane blended with
dimethyl ether (DME), and diethyl ether (DEE), we focus on the unambiguous
assignment and quantitative detection of species with the sum formulae C.H,,
CH, CH,, CH,, and CH,O in the respective isomer mixtures, attempting to
provide answers to specific chemical questions for each of these examples. To
analyze the obtained i*PEPICO results from these combustion situations, pho-
toelectron spectra (PES) from pure reference compounds, including several
examples previously unavailable in the literature, were recorded with the same
experimental setup as used in the flame measurements. In addition, PES of two
species where reference spectra have not been obtained, namely 2-methyl-1-
butene (C.H, ) and the 2-cyclopentenyl radical (C.H.), were calculated on the
basis of high-level ab initio calculations and Franck-Condon (FC) simulations.
These reference measurements and quantum chemical calculations support the
early fuel decomposition scheme in the cyclopentene flame towards 2-cyclo-
pentenyl as the dominant fuel radical as well as the prevalence of branched
intermediates in the early fuel destruction reactions in the iso-pentane flame,
with only minor influences from DME addition. Furthermore, the presence of
ethyl vinyl ether (EVE) in DEE flames that was predicted by a recent DEE com-
bustion mechanism could be confirmed unambiguously. While combustion
measurements using i’PEPICO can be readily obtained in isomer-rich situa-
tions, we wish to highlight the crucial need for high-quality reference informa-

tion to assign and evaluate the obtained spectra.

Keywords: 3-buten-1-ol; 3-buten-2-ol; combustion chemistry; cyclopentadiene;
cyclopentene; 2-cyclopentenyl radical; ethyl vinyl ether; iso-butanal; iso-butenol;
laminar flames; 2-methoxypropene; 2-methyl-1-buten-3-yne; 2-methyl-1-butene;
2-methyl-2-butene; 3-methyl-1-butene; methyl ethyl ketone; n-butanal; 1,3-pen-
tadiene; 1,4-pentadiene; 1-pentene; 2-pentene; PEPICO; photoelectron spectra;
tetrahydrofuran.

1 Introduction

Gas-phase diagnostics in reactive systems can rely on a number of established
techniques for the characterization of species distributions in atmospheric
chemistry [1], photochemistry [2-4], catalysis [5], pyrolysis [6, 7], and combus-
tion systems [7-10]. Especially when near-complete information on reactants,
numerous intermediates, and products is desired in situations that may present
hundreds of reactive compounds [11], universal techniques such as mass spectro-
metry are highly advantageous.
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A large number of studies has applied variants of molecular-beam mass
spectrometry (MBMS) using electron impact ionization (EI) or synchrotron-based
photoionization (PI) for quantitative species analysis in pyrolysis, photolysis,
and oxidation reactors [7, 12-15], shock tubes [16], and laboratory flame experi-
ments [8, 17-20]. In combustion chemistry research, MBMS techniques may
have advanced to be potentially the most often applied diagnostics for the char-
acterization of the chemical reaction pathways, since an overview can be pro-
vided of basically all stable and short-lived transient species, such as radicals,
occurring in the process. Such information is a prerequisite for the development
and improvement of kinetic reaction mechanisms and thus extremely valuable
especially for alternative fuels [21] and novel operation conditions [10, 22]. Cur-
rently, it is assumed that the combustion reactions for hydrocarbon fuels with up
to four carbon atoms (“C~C, chemistry”) as well as for selected types of biofuels
including some alcohols, esters, and ethers can be quite reliably represented by
chemical-kinetic reaction models [23-25]. In a large fraction of these mechanistic
developments, validation with experiments using PI-MBMS with tunable vacuum
ultraviolet (VUV) radiation from synchrotrons has played a crucial role because
of its capability of isomer identification, making use of the improved energy
resolution with respect to electron impact sources and separation of different
molecular structures from photoionization efficiency (PIE) curves [7, 8, 26]. While
immensely useful, PI-MBMS techniques are not without limitations, especially in
situations where distinction is needed of isomers that show close-lying ionization
energies and where vibronic structure is needed for enhanced differentiation.

Single- (iPEPICO) and double-imaging (i’PEPICO) photoelectron/photoion
coincidence spectroscopy provides additional distinctive capability by mass-
resolved photoelectron spectra (PES) that show an individual electronic and
vibrational fingerprint structure for each species and isomer. The advances
of PEPICO and threshold photoelectron/photoion spectroscopy (TPEPICO) in
isomer-selective gas-phase diagnostics [27], including developments such as
the multi-start multi-stop configuration [28], velocity map imaging (VMI) [29]
of threshold electrons [30], and evaluation of the full VMI for fast [31-33] and
slow electrons [34, 35], as well as numerous applications have very recently been
described in a seminal perspective article by Baer and Tuckett [36]. Combustion-
related applications are comparatively recent with isomer-selective analysis of
combustion-related gas samples by Bodi et al. [37], the first demonstration of TPES
in a flame by Ofiwald et al. [38], and a very recent attempt to identify polycyclic
aromatic hydrocarbons in a flame by Mercier et al. [39]. Highly multiplexed fixed-
photon-energy measurements in flames from the complete VMI were shown to
reduce precious measurement time at synchrotrons considerably [40]. Felsmann
et al. [41] recently presented a full double-imaging diagnostic by i’PEPICO where
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they considered the separation of isomers and obtained quantified mole fraction
profiles for several combustion-relevant species. However, the lack of reference
PES with a resolution suitable for the identification and reliable quantification of
(isomeric) species is one of the factors that limit the application of this technique
to more challenging situations in combustion chemistry.

In the present study, we follow up on the strategy demonstrated in [41] with
application to chemical targets beyond C,-fuel combustion. Our work aims at the
unambiguous identification and the determination of quantitative amounts of
species with 5 heavy atoms (C.H,, CH, C.H,, CH, , C,H,0) in laminar, premixed
low-pressure flames. To provide such information, the flame measurements were
complemented with those of well-resolved reference PES of expected mixture
components in the energy range of interest, using the same apparatus and instru-
ment parameters in both experiments as recommended by Baer and Tuckett [36].
Specifically, the photoelectron spectra of 18 species with the sum formulae C.H,,
CH,, CH,, and C H,O were recorded in this way. Furthermore, photoelectron

spectra of the 2-cyclopentenyl radical (C.H,) and of 2-methyl-I-butene (C.H, ) were
computed based on high-level ab initio calculations and Franck-Condon (FC)
simulations. The relevant PES were then used to identify contributions of differ-
ent isomers in the combustion of pure cyclopentene, of iso-pentane and its blend
with dimethyl ether (DME), as well as of pure diethyl ether (DEE).

Cyclopentene flames offer interesting pathways of aromatic ring and — even-
tually — soot formation [26]. Generally, in combustion reactions the identity and
relative fractions of the initial fuel radicals play an important role for the develop-
ment of reaction mechanisms, since they are at the origin of all further reactions.
However, they are often not detected in the experiment because of low concen-
trations, high reactivity, and low binding energies. Ofwald et al. [38] have been
the first to identify the distribution of the fuel radicals in an iso-butane flame.
Felsmann et al. [41] have detected fuel radical signals in previous i?PEPICO exper-
iments in a cyclopentene flame, but the presence of specific structures could not
be proven because of the lack of reference PES of the relevant species. For this
reason, we have now performed FC simulations on the base of high-level quantum
calculations to obtain the PES of the predominantly expected 2-cyclopentenyl
radical with the aim of confirming that H-abstraction from the fuel molecule pref-
erentially forms this species.

iso-Pentane as a branched hydrocarbon fuel has been chosen to investi-
gate the first steps of fuel decomposition in more detail, since C,- and C.-fuels
are being considered as smaller representatives of larger branched alkanes such
as iso-octane as a primary reference fuel [42-44], and precise knowledge about
their combustion reactions can thus assist in improving the prediction quality
of kinetic models for realistic fuels. Moreover, fuel blends of conventional

Bereitgestellt von | Universitaetsbibliothek Bielefeld
Angemeldet | julia-pieper@web.de
Heruntergeladen am | 06.03.18 09:32



DE GRUYTER Isomer Identification in Flames with i2PEPICO =— 157

hydrocarbons with biofuel candidates are interesting to reduce soot precursor
formation [45], but they may increase the formation of other toxic species, includ-
ing carbonyl compounds [46, 47]. The distribution of the first stable fuel decom-
position species has therefore been analyzed for pure iso-pentane combustion
as well as for a mixture (80:20) of iso-pentane with dimethyl ether (DME) as a
prototypical biofuel, the oxidation reactions of which had already been analyzed
in depth [12, 14, 48, 49]. Specifically, we have determined isomeric distributions
from mass-resolved PES at mass-to-charge ratios (m/z) of 70 (C.H, ) and 68 (C.H,),
respectively, and predominant reaction pathways via branched intermediates
could be identified and compared to simulations of the respective flames with a
kinetic model from the literature [50].

Diethyl ether combustion has only recently been studied, considering DEE
as a highly promising, rather clean-burning potential biofuel [51-53]. Recent full
speciation measurements in flames [51] have supported the development of initial
reaction-kinetic models for this fuel [51, 52]. These previous analyses suggested
the presence of ethyl vinyl ether (EVE) as a primary decomposition product in the
combustion of DEE, a hypothesis for which unambiguous evidence could now be
obtained in the present work.

These results underline the highly useful capability of i’PEPICO spectroscopy
to elucidate species distributions in complex gas-phase systems such as laminar,
premixed low-pressure flames of conventional and alternative fuels with their
significant number of reactive intermediate species. Furthermore, our study dem-
onstrates the need of reference spectra for these conditions that should be meas-
ured with the same experimental setup or calculated with an appropriate level of
accuracy.

2 Methods

2.1 Experiment

All experiments were performed at the undulator-based DESIRS beamline of the
synchrotron SOLEIL using the SAPHIRS endstation [54], equipped with the dou-
ble-imaging spectrometer DELICIOUS III, to which the combustion system was
adapted. Setup, technique, and evaluation procedure have been described previ-
ously [33, 40, 41, 55-57] and only a short summary is therefore presented here.
Flames were stabilized at 40 mbar on a water-cooled (333 K) home-built
porous-plug burner of 65 mm diameter. This burner is mounted on a transla-
tional stage to permit sampling from different flame positions. Fuel-rich flame
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conditions were established from mixtures of fuel, oxygen, and diluent argon as
summarized in Table 1. Gas flows were regulated by calibrated mass flow control-
lers (Advanced Energy AERA series, MKS Instruments), while liquid fuels were
metered by syringe pumps (ISCO Systems D1000 and D500, 1.5 L total volume),
evaporated by a home-built evaporation system and mixed into the gas flow
using preheated argon as carrier gas.

Samples were extracted from the burner chamber by a quartz nozzle (opening
diameter: 350 um, opening angle: 25°) and expanded (~10~* mbar) via differential
pumping to preserve the initial gas composition of the sample. The center of the
resulting molecular beam was then separated by a copper skimmer, expanded
further (~10-® mbar) and guided into the ionization chamber where it was crossed
with the ionizing VUV beam. The beamline DESIRS [57] at the synchrotron
SOLEIL delivers tunable VUV radiation between 5 and 40 eV with high spectral
resolution, high photon flux, and adjustable polarization. A gas filter, filled here
with argon or xenon, is used to block high harmonic energies from the undulator
spectrum. After dispersion via a 6.65 m normal-incidence monochromator used
here with the low-dispersion grating (200 grooves/mm), the VUV beam exhibits a
typical bandwidth of 2-20 meV and a flux of 10?-10" photons/s. It is then focused
into the ionization chamber and intersects the molecular beam with a diameter
of 100200 pm.

The DELICIOUS III [33] spectrometer records photons and electrons result-
ing from the ionization process in coincidence with a multi-start/multi-stop
technique. Electrons are analyzed by a velocity map imaging (VMI) spectrometer
and the coincident ions are analyzed by a modified Wiley-McLaren time-of-flight
imaging analyzer (WM-TOF) that has a typical mass resolving power of m/Am
<1700 (full width at half maximum, FWHM), although due to the geometrical
constraints of the coupling of the combustion chamber to the spectrometer, the
resolving power is degraded here down to m/Am (FWHM) ~300. The electron

Tab. 1: Conditions for the investigated fuel-oxygen-argon flames with equivalence ratio ¢,
featuring identical inlet gas velocity (75 cm/s), argon dilution (25%), and pressure in the burner
chamber (40 mbar).

Fuel Sum formula Xeol X,, X, ¢
Cyclopentene CH, 0.15 0.60 0.25 1.70x0.05
iso-Pentane CH, 0.13 0.62 0.25 1.70£0.05
iso-Pentane/dimethyl ether (80:20) CH ,/C,H.O 0.12/0.03 0.60 0.25 1.70%+0.05
Diethyl ether CH,0 0.17 0.58 0.25 1.81£0.05

The mixture composition of iso-pentane and dimethyl ether is given in mol-%.
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kinetic energy resolution of the VMI is not constant, but ranges from around 30%
at the center of the detector (slow electrons) to about 3-4% on the detectors edge
(fast electrons), resulting in a kinetic energy (KE) resolution for the correspond-
ing PES in the range of 30-140 meV for photoelectron energies of 0-3.6 eV [54].
The acquired composite mass-multiplexed raw photoelectron image is then fil-
tered for a given cation mass and Abel inversed via the pBasex algorithm [55] in
order to retrieve the PES by angle integration.

In addition, preparatory speciation measurements were also performed for
these flames under the same conditions, using the same burner chamber and
EI-MBMS detection with a mass resolution of ~4000 in Bielefeld and procedures
that have been described before [18, 51]. Although these measurements were not
intended to provide full species datasets, given the different focus of this work,
they will be used to provide complementary, supporting information wherever
necessary, since they rely on a different physical process for species detection.

Moreover, reference photoelectron spectra were measured at the DESIRS
beamline with the DELICIOUS III spectrometer for the following pure compounds:
C.H,: 2-methyl-l-buten-3-yne and cyclopentadiene, C.H,: 1,4-pentadiene, cyclo-
pentene, and a mixture of cis- and trans-1,3-pentadiene, C_H, : 3-methyl-I-butene,
I-pentene, a mixture of cis- and trans-2-pentene, and 2-methyl-2-butene, C H,O:
n-butanal, iso-butanal, 3-buten-2-ol, 3-buten-1-ol, methyl ethyl ketone, tetrahy-
drofuran, iso-butenol, ethyl vinyl ether, and 2-methoxypropene.

All substances were used with a purity of >98% without further purification.
Liquid flows were metered by a syringe pump (Protea PM-1000, 10 mL syringe,
Hamilton #1010), evaporated by a home-built evaporation system and trans-
ported by a preheated argon carrier flow. The reference gases were introduced
through the burner into the ionization chamber in order to obtain reference PES
that are comparable to the spectra obtained in the flame experiment. All refer-
ence PES were measured at a fixed photon energy of 10.1 eV and evaluated in the
KE range of 8.3-10.1 eV; in addition, spectra for n-butanal and iso-butanal were
also recorded at 12.5 eV and evaluated in the KE range of 9.0-12.5 eV.

2.2 Theoretical PES calculations

For two species of relevance for the present work, photoelectron spectra were
not experimentally obtained, namely the spectrum of the 2-cyclopentenyl radical
(2CP) and that of the 2-methyl-1-butene molecule (2M1B). Therefore, these spectra
were simulated by ab initio calculations.

The first step in simulating PES is to describe the initial and final state of
the ionization process. In this study, the vibrational and electronic ground state
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of the neutral molecule was used as initial state, whereas the final state, i.e. the
electronic ground state of the cation, may be vibrationally excited. For both,
ground and final states, the equilibrium geometries are determined first in order
to compute the adiabatic ionization energy (IE). The accuracy of the computed IE
depends strongly on the electron correlation treatment used. Generally, coupled-
cluster (CC) methods are considered to provide the required accuracy [58]. In this
work, the coupled cluster method CCSD(T)-F12a was chosen for the geometry
optimizations due to the improved basis set convergence compared to conven-
tional CCSD(T) methods [59].

To calculate the adiabatic IE, the energy difference between cation and
neutral molecule must be corrected for the respective zero-point vibrational
energies. These were determined from harmonic oscillator calculations with an
in-house program, using symmetry to its full capacity yielding normal coordi-
nates and harmonic frequencies. The transition probabilities from the ground
state to the different vibrational states of the cation were calculated by FC sim-
ulations using the algorithm of Sharp and Rosenstock [60]. The resulting stick
spectra were convoluted with Gaussian functions with FWHM corresponding to
the experimental resolution of 30-70 meV in the respective photoelectron energy
range [54] in order to achieve an easier comparison between experiment and sim-
ulation. All ab initio calculations in this work were carried out using the Molpro
suite of programs [61].

2.3 Flame modeling

Experimentally obtained results from this work were compared to simulations
of the analyzed low-pressure premixed iso-pentane flame using the kinetic
model (including thermodynamic and transport data) from Bugler et al. [50].
The simulations were carried out using the current version of the LOGEsoft
software package [62] for burner-stabilized premixed flames considering
thermal diffusion and multi-component transport properties. As an input
parameter, a “perturbed” temperature profile was determined which inher-
ently considers the influence of the sampling nozzle that perturbs the gas
flow; it was determined from the first-stage pressure profile according to a
previously described procedure [18, 63, 64]. The resulting relative tempera-
ture profile was calibrated with an exhaust gas temperature of (2247 +£100) K,
measured in the iso-pentane flame at a height above the burner h of 20 mm
by OH planar laser-induced fluorescence as described in [65]. The full tem-
perature profile for the simulation is available in Table S1 and Figure S1 in
Supplemental Material 1.
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3 Results and discussion

3.1 Reference photoelectron spectra

For the identification of intermediate species from flame measurements with the
i’PEPICO technique, reference photoelectron spectra are essential. VMI-PES for
18 compounds were obtained experimentally, and PES for two further species,
namely the 2-cyclopentenyl radical and 2-methyl-1-butene, were obtained from
high-level quantum calculations.

3.1.1 Measured reference spectra

Internal consistency between the PES measured in the flames and from the pure
compounds was ascertained by using the same setup with identical gas delivery
and molecular-beam sampling. Thus all spectra possess the same spectral resolu-
tion and no shifts or corrections are needed, a significant advantage as also pro-
posed by Baer and Tuckett [36]. Figure 1 presents the experimental results, with
structures of sum formula C.H, (2-methyl-l-buten-3-yne and cyclopentadiene) in
Figure 1a, C.H, (1,4-pentadiene, cyclopentene, and a mixture of cis- and trans-
1,3-pentadiene) in Figure 1b, CH, (3-methyl-1-butene, 1-pentene, a mixture of cis-
and trans-2-pentene, and 2-methyl-2-butene) in Figure 1c, and C,H,O (n-butanal,

m/z = 66 allm/z =68 b{|m/z=70
C5HE c5H5 CEH‘IB

2-Mothyl-1-buten-J-yne

miz=72 d
c4HBO n-Butanal j\

3Buten-2-o|

I-Methyl-1-butene

1,4-Pentadiene
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Methyl éthyl ketone
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Cyclopentens Tetrahydrofuran

tso-Bubenal

Cyclopentadiens

Ethiyl wiryl ethe

2-Methyl-2-butens 2-Mathoxypropene

8.4 B.6 8.8 5.0 9.2 9.4 9.6 9.810.0 8.4 5.6 8.8 9.0 5.2 9.4 9.6 9.810.0 5.4 8.6 8.8 9.0 5.2 9.4 95 9.810.0 8.4 5.6 8.8 9.0 9.2 9.4 95 98100
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Fig. 1: Measured reference VMI-PES for different molecular structures of sum formulae (a) CH
(b) C,H,, (c) C.H,,, and (d) C,H,O. All spectra were taken at fixed photon energy of 10.1 eV. For
clarity, they are normalized (with highest intensity set to 1) and displayed with vertical displace-

ment (along the y-axis) as solid lines without error bars.
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iso-butanal, 3-buten-2-ol, 3-buten-1-ol, methyl ethyl ketone, tetrahydrofuran, iso-
butenol, ethyl vinyl ether, and 2-methoxypropene) in Figure 1d.

Very distinct structural features are seen in the PES of the C.H, and C.H,
compounds in Figure 1a and b. On the other hand, among the C.H, isomers in
Figure 1c, 3-methyl-1-butene and 1-pentene show nearly identical spectra which
makes them difficult to distinguish in a mixture. For the oxygenated C H O species
(Figure 1d), the spectra of n-butanal, iso-butanal, 3-buten-2-ol, and 3-buten-1-ol
are again quite similar, while only the PES of methyl ethyl ketone and tetrahy-
drofuran show a clear vibrational structure. The tabulated data of all measured
PES including uncertainties is available in Supplemental Material 2. For those
compounds where PES are available in the literature these are listed in Table S2
in Supplemental Material 1 and a graphical comparison with the PES obtained in
this work is given in Figure S2 in Supplemental Material 1.

3.1.2 Calculated reference spectra

3.1.2.1 2-Cyclopentenyl radical (2CP)

The 2CP system consists of an allylic CH, part and an aliphatic C,H, group
forming a 5-membered ring (see left panel of Figure 2). The well-known resonance
stabilization effect within the allyl part implies a C,, symmetry of the equilibrium

L ot L) b
1 Calculated IE

2CP |

6.97 eV

. " |IJ
6.8 7.0 7.2 7.4 76

binding energy / eV

Fig. 2: Left: Optimized geometry for the 2-cyclopentenyl radical at CASSCF/MRCI-F12a/aug-
cc-pVTZ level of theory. The allylic part comprises C>-~C!-C®. Right: FC simulation at CCSD(T)-
F12a/aug-cc-pVTZ (cation) and CASSCF/MRCI-F12a/aug-cc-pVTZ (radical) level of theory for the
2-cyclopentenyl radical (2CP). The calculated IE is indicated and the stick spectrum has been
convoluted (solid line) with the experimental FWHM considering its energy-dependence given
in [54].
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geometries of both neutral radical as well as cation. Both geometries have been
optimized at CCSD(T)-F12a/aug-cc-pVTZ level of theory, but only the cation turns
out to have a stable C, minimum at this level of theory. The equilibrium geometry
of the neutral radical shows a very slight in-plane distortion of the allyl system
lowering the symmetry to C. We also observed unusual instabilities during
the numerical force constant calculations, which pointed to an artifact. Such
problems are easily overlooked but not uncommon in open-shell systems with
symmetry and a complicated electronic structure. The reason for the artificial
distortion is usually referred to as “doublet instability” or “artificial symmetry-
breaking” of the electronic wave function [66-69]. One possibility to overcome
this issue is to use multi-reference electronic structure methods. Therefore, the
radical has been recomputed using CASSCF/MRCI-F12a/aug-cc-pVTZ [70, 71] and
paying attention to the wave function symmetry. A stable electronic structure has
been achieved by choosing an active space of 13 electrons in 14 active orbitals for
a CASSCF calculation to generate the 1-electron basis (molecular orbitals). This is
followed by a MRCI-F12a calculation with an active space of 7 electrons in 7 active
orbitals and including all electrons in the correlation treatment except the 10 core
electrons. This approach yields a stable C, equilibrium geometry as expected and
robust force constants for the harmonic frequency calculation. Final equilibrium
geometries and harmonic frequencies are summarized in Tables S3-S6 in Sup-
plemental Material 1.

The adiabatic IE, i.e. the 0—0 ionization including zero-point energy, needs
to be calculated before the PES can be simulated. Unfortunately, all truncated
CI methods including MRCI-F12a are not size-extensive and thus not suitable to
compute ionization energies. Therefore, the CCSD(T)-F12a energies are used to
determine the IE. The energy difference between the CCSD(T)-F12a and MRCI-
F12a geometry of the radical is only 4 ueV and thus not relevant. The predicted
adiabatic IE is IE(2CP)=6.97 eV, which is in very good agreement with the only
experimental value reported in the literature at 7.00 eV using energy-selected
electron impact [72]. This IE together with the harmonic frequencies and normal
modes of the two sets of MRCI-F12a and CCSD(T)-F12a calculations is used for the
FC simulation.

The resulting spectrum shows the highest intensity for the 0-0-transition
due to the relatively small change in geometry upon ionization (see right panel of
Figure 2). The second peak at 7.09 eV is mainly caused by single excitations into
mode 9 and 10, both a, ring deformation modes. Mode 9 corresponds to C', C> and
C> moving to the ring center whereas mode 10 corresponds mainly to an increase
of the angle C>-C!-(C°. After these two main peaks the intensity falls rapidly with
only a small shoulder at 7.36 eV. This corresponds mainly to a single excitation
into mode 3, a totally symmetric C-H stretching mode basically located at C*~H,
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and C'-H,, respectively. The tabulated data of the simulated PES can be found in
Supplemental Material 3.

3.1.2.2 2-Methyl-1-butene (2M1B)

In contrast to the cyclic 2CP that has a completely rigid molecular structure,
2M1B can show internal rotations around several single bonds. These have been
investigated with different methods (HF, MP2, KS-B3LYP, CCSD(T)-F12a) using
the cc-pVDZ basis set. Three rotamers were found (see Figure 3), of which two
(2M1B-B and 2M1B-C) are essentially equivalent with an energy difference of
<0.01 meV, which can be attributed to numerical errors. However, there is an
energy difference of about 10 meV between 2M1B-A and 2M1B-B/C. The equilib-
rium geometries have no symmetry. Together with the larger number of electrons,
this situation limits the range of methods and basis sets that can be used due to
the higher numerical effort compared to 2CP. Therefore, the geometry optimiza-
tions were carried out at CCSD(T)-F12a/aug-cc-pVDZ level and frequency calcula-
tions at MP2/cc-pVDZ level only. The accuracy of MP2 frequencies and normal
coordinates are fully sufficient for the aim of the present study. The optimized
geometries and calculated frequencies are presented in Tables S7-S11 in Supple-
mental Material 1, and the tabulated data of the simulated PES are given in Sup-
plemental Material 3.

Considering the high temperature of our flames (before the quartz nozzle)
leading to high Boltzmann internal energy as compared to the low energy differ-
ence of only about 10 meV between 2M1B-A and 2M1B-B/C which are connected
by low barriers, the total spectrum for 2M1B was approximated as superposition
of two partial spectra for 2M1B-A and 2M1B-B. Every single transition is weighed
equally, and since 2M1B-B and 2M1B-C are equivalent, the final spectrum is a
1:2 superposition of the two partial spectra of 2M1B-A and 2M1B-B. The result-
ing total spectrum and the spectra for single transitions due to the two rotamers

L 2M1B-A 9 2M1B-B 2M1B-C

o]

Fig. 3: Optimized geometries for different rotamers of 2-methyl-1-butene (2M1B) at CCSD(T)-
F12a/aug-cc-pVDZ level of theory.
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are shown in Figure 4. For all rotamers, the 0—0-transition is quite weak result-
ing from the large change in geometry upon ionization. Hence, the first peak
at 9.15 eV has its maximum above the adiabatic IEs of IE(2M1B-A)=9.11 eV and
IE(2M1B-B/C)=9.09 eV and is caused by transitions into low-frequency torsional
modes for both rotamers (mainly modes 33, 35, and 38 for 2M1B-A* and modes 35,
37, and 38 for 2M1B-B*). 2M1B-B has its main contribution to the following peak
at 9.24 eV, generated by multi-mode excitations into mode 31, a torsional mode
predominantly located at C'H, and C°’H,, and the above-mentioned low-frequency
torsional modes. By contrast, the third peak at 9.32 eV results from transitions
of 2M1B-A, namely excitations into the C'-C? stretching mode 11 combined with
some low-frequency torsional modes, particularly modes 33, 35, and 38. The
fourth peak at 9.52 eV has contributions from both rotamers and corresponds
mostly to simultaneous excitations into one C-H stretching mode (C°-H, stretch-
ing mode 9 for 2M1B-A* and C*-H, stretching mode 8 for 2M1B-B*) and different
low-frequency torsional modes. In summary, many transitions have an influence
on the total spectrum as a consequence of the floppy molecular structure in a hot
environment such as our flames.

1.0 - - — 2M1B-A| -
—-—2M1B-B
total

binding energy / eV

Fig. 4: FCsimulations for the rotamers 2M1B-A and 2M1B-B of 2-methyl-1-butene using geom-
etries optimized at CCSD(T)-F12a/aug-cc-pVDZ and frequency calculations at MP2/cc-pVDZ level
of theory. The stick spectra have been convoluted (dashed blue and dot-dashed red line) with
the experimental FWHM considering its energy-dependence given in [54]. The solid black line
shows the total spectrum weighting each rotamer equally.
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3.2 Combustion measurements

The measured and calculated reference photoelectron spectra have been applied
in the analysis of selected combustion examples to identify and quantify impor-
tant combustion intermediates, focusing on species with five heavy atoms. Spe-
cific chemical questions are addressed sequentially for measured signals for the
set of compounds with the elemental composition of CXHVOZ (x=4, 5; y=6-8, 10;
z=0, 1) using the reference spectra determined in this work. The first example
will be devoted to m/z=67 (C.H.), reporting the occurrence of the 2-cyclopentenyl
radical in the combustion of cyclopentene. Next, we discuss the isomeric compo-
sition for m/z=70 (C.H, ) and m/z=68 (C.H,) in flames fueled by pure iso-pentane
and by a mixture of this fuel with dimethyl ether. Finally, the species assign-
ment will be presented for m/z=72 (C,H,0) in the fuel decomposition reactions

of diethyl ether.

3.2.1 Fuelradicals: CH, (m/z=67)

Radicals are of essential importance in the combustion mechanism since they
drive the chain reactions from the fuel to the products. The initial decomposition
products of the fuel in the high-temperature environment of a laminar premixed
flame, i.e. fuel radicals that may be formed by hydrogen abstraction reactions
of the fuel itself, are at the origin of the subsequent further reaction pathways,
and therefore their identification and quantification is highly desirable for the
development and critical inspection of predictive kinetic mechanisms. Higher
complexity of the molecular fuel structure, such as in branched or saturated
and unsaturated cyclic compounds with and without side chains, increases the
number of fuel radicals that may be formed in the first reaction steps. With this
increasing number of potential structures, the development of mechanisms for
realistic fuels for the range of temperature and pressure in modern engines can
profit from techniques that enable unambiguous detection of such decisive inter-
mediates [14]. Beyond the more established C ~C, mechanisms, the combustion
chemistry of C_-fuels has received attention because of specific pathways leading
to aromatic compounds that are important as soot precursors [17, 26, 73]. In cyclo-
pentene flames, pathways to first aromatic ring formation may efficiently proceed
through the resonantly stabilized cyclopentadienyl radical [26], and a number of
important isomeric structures in these flames have been detected before.
Unambiguous identification of the structure of the initial fuel radical C.H,
(m/z=67) in a fuel-rich cyclopentene flame has, however, not yet been achieved,
despite the interest in the initial branching pathways of the fuel decomposition.
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Problematic aspects in the detection include low signal because of low con-
centration, probable fragmentation of the parent cyclopentene (fuel) molecule
(m/z=68), and potential interference from the *C-isotope of the prominent CH,
signal (m/z=66). Also, fuel radicals exhibit very low ionization energies, making
it difficult to separate their signals from species with higher concentrations when
ionizing at high photon energies for multiplexing purposes. The PES of m/z=67
in a fuel-rich cyclopentene flame has been recently detected [41], selectively
using a low photon energy of 7.7 eV. However, due to a lack of reference spectra,
the identity of the detected species could only be assumed from tabulated ioniza-
tion energies. Here, with the newly calculated PES of the 2-cyclopentenyl radical,
a more rigorous identification at this mass is possible.

Figure 5 shows the measured PES of m/z= 67 from the fuel-rich cyclopentene
flame (left) together with possible structures of C.H, radicals (right) that could
contribute to the measured signal; indicated IEs are taken from the literature [72,
74, 75]. The preferred H-abstraction reaction at flame temperatures is expected
to favor the formation of cyclopentenyl radicals as the first step [26]. However,
linear or branched isomers of C.H, should not be completely ruled out, as they
can be produced from ring-opening reactions or from combination reactions of
fuel decomposition products. To discriminate from build-up reactions later in

1.2 4 m&=$7 —8— Maasured PES at miz=67 L
— Simulation 2-Cyclopentenyl o

. I-Cyclopenieny] 2-Cyclopentenyl 3-Cyclopentenyl
= syn-3o| | radical (IE unknown)  radical (IE 7.00 eV)  radical (IE 7.54 eV]
]

Sy 0.8 4
g; 0.6+ 1, 4-Pentadien-3-y| I -Penten-3-y1
— radical (IE 7.25/7.76 eV) racical {(1E 7.6 &V)
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Fig.5: Left: Measured PES at m/z=67 and 1.0 mm distance from the burner surface in the fuel-
rich cyclopentene flame (black line and symbols including error bars from the evaluation with
the pBasex algorithm [55]) and the FC simulation for the 2-cyclopentenyl radical at CASSCF/
MRCI-F12a/aug-cc-pVTZ (radical) and CCSD(T)-F12a/aug-cc-pVTZ level of theory (red stick
spectrum and envelope from convolution). The simulated spectrum has been shifted by 20 meV
towards the maximum of the experimental spectrum for comparison. Right: Structures and
ionization energies (IEs) [72, 74, 75] of selected isomers with m/z=67.
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the flame and ascertain that only initial H-abstraction products are observed, the
measurement was performed at a distance from the burner surface of h=1 mm
early in the reaction progress. Furthermore, the low, fixed photon energy of 7.7 eV
was chosen to ionize only radicals and to obtain signals only from these species
without contributions from fragments of higher-mass species.

The first peak in the measured PES in Figure 5 at 6.95 eV lies within 0.05 eV
of the tabulated IE of the 2-cyclopentenyl radical obtained by energy-selected
electron impact (7.00 eV [72]), indicating the presence of this isomer, whereas all
other isomers in Figure 5 show higher ionization energies. More information is
available from the complete PES that is compared to the calculated spectrum of
the 2-cyclopentenyl radical, convoluted with the experimental energy resolution
following [54].

The calculated ionization energy of 6.97 eV matches the position of the first
measured peak at 6.95 eV remarkably well within a range of 20 meV, and the cal-
culated PES thus further supports the presence of the 2-cyclopentenyl radical.
The intensity of the second peak does not fit the measured spectrum equally well
and might suggest contributions of a further molecule to this signal, although
there are no tabulated IEs of further isomers fitting this peak. The three follow-
ing peaks also suggest that they correspond to a different species whose spec-
trum is superimposed with the long structureless tail of the 2CP PES. A further
explanation could be temperature-dependent contributions of vibrational modes
of the 2-cyclopentenyl radical, with temperature differences between the experi-
ment and the calculation. In a previous study, the temperature in the molecular
beam was estimated to be 280 K [40], while for the calculations, no excited initial
vibrational states have been considered, corresponding to a temperature of O K.
It may seem trivial to include the temperature dependence in the FC simulations,
however, the used program which is non-commercial does not yet include this
option.

Further possible isomers with IEs in the measured range could be the 1,4-pen-
tadien-3-yl radical for which widely different IEs of 7.25 eV [74] and 7.76 eV [75] are
given in the literature, and the 3-methyl-1-butyn-3-yl radical with an IE of 7.44 eV
[74]. The latter species can be ruled out since it cannot be formed directly from
early fuel decomposition reaction because of its branched structure. The 1,4-pen-
tadien-3-yl radical might be produced from the 2-cyclopentenyl radical via ring
opening and subsequent stabilization. Slight contributions of 1,4-pentadien-3-yl
in the range of 7.25-7.4 eV to the measured PES might thus be possible but cannot
be verified without a reference PES. A measurement for this radical would require
a clean, direct production process and thus presents a considerable challenge,
but a high-level quantum calculation is similarly challenging and time demand-
ing. In summary, the calculated reference spectrum underlines the presence of
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2-cyclopentenyl as a dominant initial fuel radical, providing useful information
for further mechanism development.

3.2.2 First products of fuel consumption reactions: CH  (m/z=70)

The first steps in the fuel consumption mechanism are addressed here for iso-
pentane (Csle’ m/z=72) as a branched C.-fuel as well as for an 80:20 mixture
of iso-pentane with DME. Following upon the formation of the first fuel radicals
(CEHH), which were not detected, the initial stable products can help to identify
reaction sequences and branching ratios that are at the start of the overall fuel
oxidation. The number of possible isomers leads to rather complex photoelectron
spectra, and one of the aims here is to examine the capability to identify, sepa-
rate, and potentially quantify their contributions from such measured spectra to
support chemical insight into the reaction processes. The isomeric distribution
from mass-resolved PES at m/z=70 was inspected first with an attempt to iden-
tify species that correspond to products of composition C.H, after H-abstraction
and a subsequent C-H-B-scission from the fuel molecule. A scheme of these

first decomposition steps is given in Figure 6. Since the fuel molecule itself has

N

iso-Pentane

2-Methyl-1-butyl 2-Methyl-2-butyl 3-Methyl-2-butyl 3-Methyl-1-butyl
l I | |

R | R

Ao I o

2-Methyl-1-butene 2-Methyl-2-butene 3-Methyl-1-butene

m/z=70

Fig. 6: Initial decomposition reactions of iso-pentane by H-abstraction and C-H-B-scission.
Other reactions (such as the more prominent C-C-B-scissions of the fuel radicals) are not shown
here, as they are not discussed in this work.
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a branched structure, methylbutenes, namely 2-methyl-1-butene, 2-methyl-2-bu-
tene, and 3-methyl-1-butene, are most likely to be formed.

Nonetheless, linear isomers such as 1-pentene and 2-pentene (cis- and trans-
conformation) should not be ruled out completely, as they can be formed by
build-up reactions from linear fuel destruction products. However, their contribu-
tion is expected to be small compared to the branched structures. The most plau-
sible isomers that could contribute to the signals of C.H,  are shown in Figure 7
together with their ionization energies. Cyclopentane (IE: 10.3 eV [76]) cannot be
detected at the fixed photon energy of 10.1 eV used in the measurements.

Regarding the comparably low mass resolution of the WM-TOF, C,HO
species (also at m/z=70) could, in principle, also contribute to this signal.
Separation of hydrocarbon and oxygenated species with the same m/z ratio
was, however, possible with the complementary measurements in the iso-
pentane flame under identical conditions with EI-MBMS and a mass resolution
of ~4000. These experiments reveal a mole fraction of 2.0 - 10~ for the sum of
C,H,O isomers (calibrated as 2-butenal), while the sum of C.H, isomers has

57710

been evaluated to be 7.8 - 10~ (calibrated as 2-methyl-2-butene), which is about
a factor of 40 above the C H O contributions. The performed simulation with the
mechanism of Bugler et al. [50] (see Section 2.3) also predicts the mole fraction
sum of C.H,  isomers to be more than a magnitude higher than that of C,H,O
isomers. A significant contribution of C,H O species to the PES of m/z=70 can
therefore be ruled out here.

Only small contributions are again expected for the linear C.H,, isomers
1-pentene and cis- and trans-2-pentene. They were predicted in the simulation
to be about 4.3% of the sum of all C.H,  isomers, including 3.8% of 2-pentene
and 0.5% of 1-pentene. Complementary information has also been obtained from
gas chromatography (GC) measurements under identical flame conditions (see
Section S.5 in Supplemental Material 1), which showed the presence of all three
methylbutenes and also of 2-pentene, but no observable signal for 1-pentene (see
Figure S3 in Supplemental Material 1). The PES of 1-pentene will thus not be con-

sidered in the evaluation procedure.

CsHy
2-Methyl-2-butene  2-Methyl-1-butene  3-Methyl- 1-butene 1-Pentene 2-Pentene Cyclopentane
IE 8.69 IE9.10 IE95 IE 9.50 1E 9.04/9.04 (cis/trans) IE 103

Fig. 7: Structures and ionization energies (IEs) [76—78] of expected isomers of the sum formula

CH,, (m/z=70) in the combustion of iso-pentane.
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The contribution of 2-pentene could be determined, however, even though
the PES of 2-methyl-l-butene and 2-pentene occur in the same energy range.
Figure 8 shows the results for m/z=70 measured at h=3.2 mm in the iso-pen-
tane flame with a fixed photon energy of 10.1 eV. Figure 8a presents the inverted
2D image of the electrons that coincide with the ions of m/z=70. The angular
integration of such an image yields the photoelectron spectrum for m/z=70 in
Figure 8b. To obtain the relative contributions of each isomer, measured and cal-
culated reference PES of 2-methyl-2-butene, 3-methyl-1-butene, 2-pentene, and
2-methyl-1-butene, respectively, were considered in the evaluation; for the sake
of clarity, they are normalized to their respective intensity maxima and are pre-
sented in Figure 8c. The contributions from these spectra versus the measured
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Fig. 8: (a) Inverted 2D electron image corresponding to ions with m/z=70. (b) PES of

m/z=70 measured in the fuel-rich iso-pentane flame at h=3.2 mm and a fixed photon energy
of 10.1 eV. (c) Normalized reference spectra with m/z=70 and sum formula C.H, . (d) Compari-
son of the measured PES to the weighted sum of all reference spectra following the subtraction
procedure of Felsmann et al. [41].
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PES as obtained from a subtraction procedure described in [41], is evident from
the weighted sum shown in Figure 8d together with the scaled reference spectra.
The full step-by-step subtraction analysis is provided in Figure S4 in Supplemen-
tal Material 1.

The overall structure of the measured PES of m/z=70 can be reproduced
satisfactorily from the weighted contributions of the different isomers. However,
some peaks are not captured well by the reference spectra, especially in the range
of 9.8-10.1 eV. It should be noted that the signal in this range must be interpreted
with care, due to the noise level of the raw image which is inherently amplified
by the Abel transformation especially close to the chosen fixed photon energy,
i.e. for slow electrons. Temperature differences occurring between the flame
and reference samples might also contribute to some of the observed devia-
tions. Especially for the two signatures below 8.6 eV, no stable C.H, isomer is
known with such low ionization energy. Hot bands corresponding to transitions
from excited vibrational states could be one possible explanation, resulting in
peaks at a lower binding energy. Such bands should be found at a distance cor-
responding to reasonable vibrational wavenumbers (i.e. ~1600 cm™ =0.2 eV for a
C=C stretch vibrational mode), as indeed observed in the spectrum in Figure 8.
Further investigation of reference samples at elevated temperatures might assist
in the clarification.

Remaining differences are observed near 9.05 and 9.4 eV. The evaluation faces
some challenges here since the PES of 2-methyl-1-butene and 2-pentene overlap in
this energy region (compare also Figures 1c and 4). As stated above, the simula-
tion with the mechanism of Bugler et al. [50] predicts only a small contribution of
linear isomers, supporting the chemically reasonable assumption that branched
2-methyl-1-butene is more likely to be formed directly from the branched fuel
structure of iso-pentane (compare also Figure 6). In the subtraction procedure,
the PES of 2-methyl-1-butene has thus been subtracted before that of 2-pentene,
which results in a smaller contribution of 2-pentene (see Figure S4 in Supplemen-
tal Material 1), in accord with the chemical-kinetic model. Baer and Tuckett [36]
have commented on the subtraction routine of Felsmann et al. [41] and noted that
it may lead to a higher global error. We have thus also used a minimization proce-
dure based on a Levenberg-Marquardt algorithm [79]. More detailed information
is given in Section S.7 of Supplemental Material 1. It should be noted here that
the measured spectrum could be analyzed with a slightly improved overall fit, but
with the result of an unreasonably high contribution of 2-pentene. Small changes
in the spectral structure may have important leverage in such automatic evalua-
tion procedures, and the results should be considered carefully.

For a quantitative evaluation of the measured spectrum in Figure 8, the con-
tribution of each of the four isomers was calculated by considering the area of
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each scaled reference PES and the photoionization cross section (PICS) of the
respective species at the fixed photon energy of 10.1 eV. From the sum mole frac-
tion of C,H,, of 7.8 - 10 (calibrated directly as 2-methyl-2-butene with about 30%
uncertainty) determined in the EI-MBMS measurements, the mole fraction of
each isomer was obtained. The results are presented in Table 2 together with the
predicted mole fractions from the simulations (left panel); also, the values for the
DME-doped flame are included for comparison (right panel).

As the most prominent isomer, 2-methyl-l-butene is produced in the iso-
pentane flame at h=3.2 mm. Concerning the respective contributions of 38.8%
vS. 34.4%, experiment and simulation show reasonable agreement. Similarly,
measured and predicted contributions of 3-methyl-1-butene agree satisfactorily,
with somewhat larger deviations observed for 2-methyl-2-butene. Both the latter
isomers attain contributions of ~18-24% in the experiment and ~28-33% in the
simulations. The experiment also confirms the contribution of 2-pentene, but
also with a higher deviation. Overall, the sum of C.H, isomers is predicted to be
9.9 -107%, which is in quite good agreement with the result of 7.8 -10™* from the
experiment.

The results for the DME-doped iso-pentane flame in Table 2 and Figure S7
in Supplemental Material 1 show that neither the structure of the PES nor the
occurrence of the various isomers is significantly altered by the addition of DME.
Within the experimental uncertainty, observed trends are also consistent with the
simulation. The overall C_H, mole fraction is reduced slightly, corresponding to

57710
the replacement of the C.-fuel by DME that cannot produce C.H,  intermediates

Tab. 2: Contributions C (in %) of isomers of m/z=70 and their mole fractions xat h=3.2 mm in
the fuel-rich flames of pure iso-pentane and of iso-pentane doped with 20% DME from experiment
and simulation.

iso-Pentane iso-Pentane/DME (80:20)
Experiment Simulation Experiment Simulation
c X c x C X c X

2-Methyl-2-butene [80] 18.6 1.5-10% 32.8 3.3-10* 23.1 1.0-10* 32.9 3.0-10*
2-Methyl-1-butene [80] 38.8 3.0-10* 34.4 3.4-10* 42.0 1.8-10* 34.3 3.1-10*
3-Methyl-1-butene [80] 24.1 1.9-10* 28.5 2.8-10* 19.0 8.4-10> 28.5 2.6-10™*

2-Pentene [81]° 18.5 1.4-10* 3.8 3.8:-10° 159 7.0-10° 3.9 3.5-10°
1-Pentene [82] n.qg. - 0.5 4.5-10"° n.q. - 0.4 3.8-10°
Sum CH, 100 7.8-10% 100 9.9-10% 100 4.4-10“% 100 9.1-10*

Photoionization cross sections were taken from the literature (references are given behind the
species names). n.q., not quantifiable in the experiment. 2Mean value of cis- and trans-isomer.
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easily. These results are not unexpected since the nature of the initial iso-pentane
destruction reactions towards the observed C.H,  isomers (compare Figure 6)
should be similar with and without the presence of dimethyl ether in the system.
Despite the complexity of the isomer mixture, leading to overlapping photoelec-
tron spectra in a narrow energy range, the prevalence of branched intermediates

could be unambiguously established.

3.2.3 Stable products from initial fuel consumption reactions: C.H, (m/z=68)

Following the reaction pathways towards the formation of stable products from
the abovementioned C.H,, intermediates, species with m/z=68 of sum formula
CH, will be analyzed. Special attention will be given to isoprene (2-methyl-
1,3-butadiene), which is expected to be the most abundant isomer in the early iso-
pentane fuel consumption reactions because of its branched structure. Isoprene
is known to participate in atmospheric reactions, as it decomposes via reactions
with OH radicals and ozone and thus can lead to toxic aldehydes and peroxides
that are involved in particle formation in the upper troposphere [83]. Together
with isoprene, Figure 9 shows further isomers of m/z=68 that are likely to occur
in the iso-pentane flame, including 3-methyl-1,2-butadiene, cis- and trans-1,3-pen-
tadiene, 1,4-pentadiene, and cyclopentene.

Branched isomers of C_.H, will be formed primarily because of the branched
fuel structure, of which 3-methyl-1,2-butadiene with its two vicinal C=C double
bonds is structurally unfavorable and might undergo internal rearrangements.
The simulation predicts isoprene to be formed almost exclusively. Because of
the limited mass resolution of the WM-TOF (see Section 2.1), oxygenated species
with m/z=68 and sum formula C,H,O cannot be separated from the hydrocarbon
signal. They can, in principle, be unambiguously detected in the complementary
EI-MBMS measurements that did, however, not even show a quantifiable signal
for these species. Also the simulation predicts a mole fraction of only 2.5 - 10~ for

C<Hg
Isoprene 3-Methyl-1,2-butadiene 1,3-Pentadiene 1,4-Pentadiene Cyclopentene
IE 8.85 IE 8.95 IE 8.63/8.59 (cis/trans) IE 9 62 IE 9.01

Fig. 9: Structures and ionization energies (IEs) [76-78] of the expected isomers of the sum
formula C,H, (m/z=68) in the combustion of iso-pentane.
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the sum of oxygenated compounds with m/z=68, more than two orders of mag-
nitude smaller than that for the sum of the C.H, hydrocarbon species (9.8-107).
To determine the contributions of the different C_H, isomers, the same pro-
cedure has been applied as discussed for the C.H spectra above (see Section
3.2.2). Figure 10 presents the results for m/z=68 measured at h=3.2 mm at a fixed
photon energy of 10.1 eV. Figure 10a shows the inverted 2D image for the electrons
coincident with the ions of m/z=68 and Figure 10b the resulting PES. The meas-
ured reference PES of 1,3-pentadiene (mixture of cis- and trans-isomers), cyclo-
pentene, and 1,4-pentadiene are given in Figure 10c together with that of isoprene
that was taken from the literature [84]; all PES have been normalized to their
respective intensity maxima for better comparison. The resulting weighted sum
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Fig. 10: (a) Inverted 2D electron image corresponding to ions with m/z=68. (b) PES of
m/z=68 measured in the fuel-rich iso-pentane flame at h=3.2 mm and a fixed photon energy
of 10.1 eV. (c) Normalized reference spectra with m/z=68 and sum formula C,H,. (d) Compari-
son of the measured PES to the weighted sum of all reference spectra following the subtraction
procedure of Felsmann et al. [41].
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from the subtraction procedure is given in Figure 10d together with the scaled
reference spectra; the full subtraction analysis is provided in Figure S5 in Sup-
plemental Material 1.

Satisfactory agreement between the measured PES and the weighted sum
of the reference spectra is observed. The peaks near 8.6, 8.8, and 9.0 eV are
well matched by the respective structures of 1,3-pentadiene and isoprene, with
contributions also from cyclopentene. Further observed peaks in this region,
especially at 8.9, 9.2, and 9.4 eV cannot be reproduced completely with the
considered reference PES; also, the peak intensity near 9.0 eV is somewhat
low. However, as previously mentioned, intensities could be different as a
function of temperature between the hot flame and the cold-gas reference
spectra. As for the C.H, isomers discussed before, it is more challenging to
assign clear reference spectra to the measured spectrum above ~9.5 eV due
to the noise level of the raw image which is inherently amplified by the Abel
transformation in this region. The PES of 1,4-pentadiene may thus appear a bit
more speculative, since the structure cannot be clearly identified. A full TPES
energy scan would have been required to provide unambiguity, but time limita-
tions prevented such an attempt. Other possible C.H, isomers near this range
could include 2-pentyne with a calculated IE of 9.44 eV according to Hansen
et al. [73]; however, it seems unlikely that this species would be formed from
iso-pentane as a fuel decomposition product. No clear identification was given
for this species in flames of allene, propyne, cyclopentene, and benzene in Ref.
[73], and 2-pentyne was also not observed in the cyclopentene flame studied
by Hansen et al. [26] where the observed C.H, signal was predominantly due
to the fuel itself. We have not considered 2-pentyne here for these reasons, but
we would like to mention that reference PES for this species are also lacking in
the literature. Finally, similar to the discussion for m/z=70, structures at 8.3—
8.4 eV were noted that cannot be assigned to further species and that might be
hot bands.

The contribution of each of the four analyzed isomers was calculated consid-
ering the respective photoionization cross sections at the fixed photon energy of
10.1 eV. The resulting mole fractions for each isomer, obtained from these percent-
ages and the sum mole fraction of 9.8 - 10~ for C.H, from the EI-MBMS measure-
ments are reported in Table 3 together with the results of the simulations (left
panel); for comparison, the respective information is also included for the DME-
doped flame (right panel).

It is not easy to compare experiment and simulation quantitatively in this
case since the mechanism of Bugler et al. [50] does not include cyclopentene
and 1,4-pentadiene. The presence of cyclopentene has been demonstrated by
the present i’PEPICO measurement and this species should thus be included in
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Tab. 3: Contributions C (in %) of isomers of m/z=68 and their mole fractions xat h=3.2 mm in
the fuel-rich flames of pure iso-pentane and of iso-pentane doped with 20% DME from experi-
ment and simulation.

iso-Pentane iso-Pentane/DME (80:20)

Experiment Simulation Experiment Simulation

C x C x C x C X
1,3-Pentadiene [80] 21.7 2.1-10° 3.6 1.8-10° 20.4 1.5-10° 3.7 1.6:10°
Isoprene [85] 37.4 3.7-10° 94.8 4.8-10* 30.9 2.2-10° 94.8 4.3-10*
Cyclopentene [81] 25.2 2.5-107° n.a. - 30.6 2.2-10°° n.a. -
1,4-Pentadiene [80] 15.7 1.5-10° n.a. - 18.1 1.3:107° n.a. -
3-Methyl-1,2-butadiene [80] n.q. - 1.6 7.8-10°° n.q. - 1.5 7.0-10°
Sum CSH8 100 9.8-10° 100 5.1-10™* 100 7.2-10° 100 4.5-10*

Photoionization cross sections were taken from the literature (references are given behind the
species names). n.q., Not quantifiable in the experiment; n.a., not available in the kinetic model.

kinetic reaction mechanisms for iso-pentane combustion. Also, the measurements
suggest consideration of 1,4-pentadiene in the mechanism to examine pathways
for its formation. From their analysis of PIE curves for flame-sampled C.H, species
in fuel-rich flames of several fuels, Hansen et al. [73] also discussed the presence
of 1,4-pentadiene. Both experiment and model agree in that isoprene is the most
abundant isomer. Isoprene contributes to m/z=68 with ~37% in the experiment,
while 1,3-pentadiene, cyclopentene and 1,4-pentadiene show a similar content
of ~15-20% each. In the simulations, isoprene contributes with 94.8% and only
small contributions of 1,3-pentadiene of 3.6% and 3-methyl-1,2-butadiene of 1.6%
are predicted. Isoprene’s mole fraction is with 3.7-10~ comparatively small,
about an order of magnitude lower than predicted by the model with 4.8 -10.
Given the still sparse information on fuel-specific C.-reactions, results such as
those presented here, with the detection of several isomers from their photoelec-
tron spectra, may provide clues for the further development of kinetic reaction
mechanisms.

As already shown for the distribution of the C.H, isomers (see Section 3.2.2),
the PES of m/z=68 was also determined for the DME-doped iso-pentane flame
and evaluated as for the pure iso-pentane flame. Results are shown in Figure S8 in
Supplemental Material 1 and included in Table 3 (right panel). Again, the iso-pen-
tane/DME mixture leads to lower mole fractions of C.-species, as expected, with
consistent trends in experiment and simulation, but only moderate changes in
the isomer composition. These results also support the previous conclusion that
the presence of DME in the iso-pentane flame does not affect the C_-fuel destruc-
tion steps significantly under the investigated conditions. Again, the measured
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photoelectron spectra demonstrate the prominent formation of branched isomers
in the fuel-specific reaction pathways.

3.2.4 Oxygenated intermediates: C,H,0 (m/z=72)

Flames of biomass-derived fuels feature numerous intermediates that contain
heteroatoms such as oxygen or nitrogen [12, 86, 87], rendering the analysis at a
given m/z ratio more challenging. The i?PEPICO technique presents useful oppor-
tunities to identify the isomeric distribution and structures of such combustion
intermediates due to their individual fingerprint photoelectron spectra. Here we
will place special emphasis on the separation of intermediates with elemental
composition C,H,0 at m/z=72in a fuel-rich diethyl ether flame that has been pre-
viously investigated with EI- and VUV-PI-MBMS [51]. In the previous study, Tran
et al. [51] reported the detection of ethyl vinyl ether (EVE, m/z=72) for the first
time as intermediate in their DEE flame and suggested that this species should
be included in the respective kinetic mechanism where it had not yet been con-
sidered [52]. Figure 11 illustrates the first two steps in the DEE fuel consumption
pathway including EVE formation via H-abstraction and C—H-[3-scission.

Relying on the high mass resolution of their EI-MBMS instrument, Tran et al.
[51] could separate the species of interest with sum formula C H,O (m/z=72)

"/\O/\\
Diethyl ether m/z=74

H-abstraction | H-abstraction

| |

N NN
Secondary radical m/z=73 Primary radical m/z=73
| C-H-p-scission C-H-p-scission |

C U-[]—s::is,sic-n‘lv l 1 lC O-B-scission

o
J + . Ethyl vinyl ether miz=72 )

Acetaldehyde Ethyl radical Ethoxy radical Ethylene

Fig. 11: First decomposition steps of diethyl ether by H-abstraction and C-H- and C-0--
scission reactions forming ethyl vinyl ether and other products.
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clearly from hydrocarbon species with the same nominal mass (C.H,, also
m/z=72). They had assigned their C,H,O signal as EVE and determined a mole
fraction of ~1.0 - 10~ from direct calibration. The photoionization efficiency spec-
trum at m/z=72 from their complementary VUV-PI-MBMS experiment [51] exhib-
its a noticeable onset near the tabulated IE of EVE of 8.98 eV [88].

As a prerequisite to analyze the isomer composition in the DEE flame for
species with the elemental composition C H,O further, fixed-photon-energy
measurements at 10.1 eV were performed with the i?PEPICO technique to record
the PES of nine reference compounds with the sum formula C H,O; these refer-
ence spectra are given in Figure 12.

Measurements in the DEE flame were performed at h=2.3 mm, the distance
from the burner where the previous study [51] showed the maximum concentra-
tion of C H,O species. The energy was scanned in the flame experiment to record
the threshold photoelectron spectrum (TPES) with a higher resolution of 10 meV,
because according to the reference spectra in Figure 12, several species with
very similar PES might contribute to this signal. Results are given in Figure 13a
together with the measured TPES (black lines and symbols) and the three refer-
ence PES in the scanned energy range of 8.35-9.35 eV, i.e. those of 2-methoxy-
propene (blue dotted line), ethyl vinyl ether (red line), and iso-butenol (green
dashed line). Please remember for the comparison that the reference spectra were

C4H30 n-Butanal

;r..;,'m'}/\i )T s

3-Buten-2-ol

h\' n-Butanal

_'k_'- |§l.'.:|||-':v|_ o J IE 9.83 eV Ea72eV IE 9.53 eV
3-Buten-2-0l M o
“ OH o
3-Buten-1-ol )l\/
Methyl ethyl ketone 3-Buten-1-ol Methyl ethyl ketone Tetrahydrofuran
IE 9.56 eV IE 9.52 eV IE 9.40 eV

Tetrahydrofuran

iso-Butenol )\/ //\\‘o/\\"'\\ /DT
OH

Ethyl vinyl ether

iso-Butenol Ethyl vinyl ether 2-Methoxypropene
AR VPP et il IE 9.24 eV IE 8.98 eV IE 8.64 eV
8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.810.0
binding energy / eV

Fig.12: Left: Measured reference PES at 10.1 eV of selected oxygenated species with the sum
formula C,H,O. Right: Corresponding structures and tabulated IEs [88-93] of these compounds.
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—0—TPES m/z=72 _ Ethyl vinyl ether a —o— Integrated TPES m/z=72 b
—— Ethyl vinyl ether (integrated PES)

--------- 2-Methoxypropene (integrated PES) L]

===~ jso-Butenal (integrated PES) +

—=— PIE myz=72 Tran et al. (1) .’

—o— PIE m/z=72 Tran et al. (2) ,

2-Methoxy, plopenel_-':

tabulated IE

signal intensity / a.u.

......

binding energy / eV photon energy / eV

Fig. 13: (a) TPES of m/z=72 measured in the fuel-rich DEE flame at h=2.3 mm in the energy
range of 8.35-9.35 eV (AE=10 meV; black lines and open circles), together with the PES of
2-methoxypropene (blue dotted line), ethyl vinyl ether (red line), and iso-butenol (green dashed
line) measured at a fixed photon energy of 10.1 eV (the latter are presented as lines without
error bars for clarity). (b) Integrated TPES and reference PES based on the data of (a): flame
TPES for m/z=72 (black open circles), PES of 2-methoxypropene (blue dotted line), ethyl vinyl
ether (red line), and iso-butenol (green dashed line). For comparison, the PIE curves from two
identical measurements obtained by Tran et al. [51] are included (gray lines and symbols, with
permission of Elsevier/The Combustion Institute). The tabulated IE for ethyl vinyl ether is taken
from [88].

recorded at fixed photon energy with lower energy resolution (about 30—70 meV
in the respective KE range) as that for the flame scan.

The observed signal from the flame in Figure 13a starts to rise near 8.55 eV
and shows a more substantial increase at 8.70 eV, corresponding well to the onset
of the photoelectron signal in the reference PES of EVE at 8.55 eV. The TPES can
be used to evaluate the ionization onset, potentially with higher precision than
currently available in the literature. However, here, the low density of the DEE
flame and the limited synchrotron beamtime lead to the low signal-to-noise
observed in the recorded TPES. For this reason, the TPES measured in the DEE
flame and the three presented reference spectra of 2-methoxypropene, ethyl
vinyl ether, and iso-butenol have been integrated to yield the PIE curves. These
are presented in Figure 13b together with the PIE curves measured by PI-MBMS
from Ref. [51]. Excellent agreement between the integrated TPES measured in the
flame and the integrated reference PES of ethyl vinyl ether is seen, with a result-
ing onset near 8.75 eV. A shift between the PEPICO and PI-MBMS measurements
of ~0.1 eV is noted, with very good reproducibility for each technique, however.
This shift again shows the necessity of measuring reference spectra with the same
apparatus. Please also note the quite high quality of the PIE curve (open circles
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in Figure 13b) as the integration result of the noisy TPES (black lines and open
circles in Figure 13a), demonstrating the advantages of the PEPICO technique
even at low signal levels. As a recommendation from both the present measure-
ments as well as those with PI-MBMS from Tran et al. [51], the IE for ethyl vinyl
ether should be ~8.75 eV rather than the tabulated value of 8.98 eV [88].

The presence of EVE in the combustion of DEE can be clearly confirmed from
the comparison of position and shape of the measured TPES and the reference
PES of EVE. The six further reference compounds are not ionized below 9.35 eV
(compare Figure 12) and can thus not contribute to the flame signal. Also, an
increase of the signal for 2-methoxypropene at 8.40 eV is not observed in the
flame TPES. Contributions of iso-butenol in this energy range seem possible but
hard to quantify.

Measurements to identify or exclude isomers with higher IEs, e.g. to determine
the contribution of n-butanal, would be interesting for a comparison of experi-
ment and simulation with a kinetic model. They are hard to perform, however,
since the C,H,O signal is quite low and therefore noisy (see Figure 13a); ionization
with higher photon energy would also lead to contributions from the fuel DEE
itself (IE=9.51 eV [94]) that is present in high concentrations, making it challeng-
ing to separate with the available experimental mass resolution. From the fuel
decomposition analysis as well as the experimental and simulation results in Ref.
[51], it seems, however, quite unlikely that further C_ H,O isomers can contribute
substantially in the fuel consumption reactions of diethyl ether, because they
would have to be formed by combination from smaller molecular building blocks.

4 Summary and conclusions

With the analysis of combustion intermediates featuring five heavy atoms in
flames of different fuels, the discriminative capacity of double-imaging photo-
electron/photoion coincidence spectroscopy has been examined under isomer-
rich, chemically complex conditions. The i’PEPICO approach that profits from the
unambiguous fingerprint PES of each species was applied to flames of cyclopen-
tene, pure iso-pentane and its blend with dimethyl ether, and diethyl ether to
provide specific information about the chemical composition at a given mass.
The technique had already been proven advantageous over more widely used
photoionization MBMS measurements that can only identify the contribution of
several isomers if their ionization energies are not too close and the corresponding
slopes of the photoionization efficiency curves can each be assigned to a single
species. The multiplexing capability of fixed-photon-energy measurements was
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applied since it offers a much superior acquisition efficiency and requires only
the photoionization cross section at a single fixed energy for a quantitative inter-
pretation of the i*PEPICO experiments.

To analyze the flame-sampled spectra, reference photoelectron spectra of 18
C,- and C.-species with the sum formulae of C.H,, CH,, CH , and C H,O were
determined, including several compounds for which such spectra are reported
for the first time. Measurements of these reference spectra were performed since
these species were expected to be produced in the combustion reactions of the
investigated fuels. Reference spectra were recorded in the range of 8-12 eV with
the same experimental setup as for the flame measurements. In addition, the
photoelectron spectra of the 2-cyclopentenyl radical and the 2-methyl-1-butene
molecule were obtained from Franck-Condon simulations on the basis of high-
level quantum chemistry calculations.

At low photon energies, the detection of the initial radicals produced in a
cyclopentene flame was possible and the 2-cyclopentenyl radical could be unam-
biguously identified with the aid of the calculated reference spectrum. Informa-
tion on such species immediately involved in the fuel destruction reactions is of
significant importance for mechanism development since they are at the origin of
subsequent fuel conversion reactions.

In the combustion of iso-pentane (m/z=72), the isomers of C.H,, (m/z=70)
and of C.H, (m/z=68) were identified and quantified based on the measured
and calculated reference spectra and complementary EI-MBMS measurements.
The results show a preference to form branched methylbutenes and only a small
contribution of the linear isomer 2-pentene that is unlikely to be formed in the
fuel decomposition. The experiment shows the dominant isomer to be 2-methyl-
1-butene and to a lesser extent the presence of 2-methyl-2-butene and 3-methyl-
1-butene, while a simulation with a recent kinetic model from the literature [50],
developed specifically to describe the combustion of the pentane isomers, pre-
dicts the three methylbutenes in similar amounts. The present experiments thus
provide interesting information for a deeper analysis of the early fuel consump-
tion reactions. For C.H, species with m/z=68, the experiments revealed signifi-
cant contributions of cyclopentene and pentadienes, while the simulations with
the model of Bugler et al. [50] predict almost exclusively isoprene. It should be
noted that cyclopentene and 1,4-pentadiene have not yet been included in their
kinetic model, and the present results can thus support further development to
improve the prediction capability of the model.

The same i’PEPICO approach has been successfully applied to a fuel mixture
of the previously analyzed fuel-rich iso-pentane flame, doped with 20% DME. The
results confirm the expectations that DME does not affect the first fuel-specific
reactions significantly under the present pressure and temperature conditions — a
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result that should, however be put to further examination in the low-temperature
auto-ignition regime where the peroxide-forming early oxidation chemistry of
both fuels could lead to interactive effects.

Furthermore, the present measurements have been successful to unambigu-
ously identify ethyl vinyl ether as an intermediate in a DEE flame, relying on the
scanned photoelectron spectrum in the flame and the obtained reference spectra
for several C,H,O isomers taken at fixed photon energy. In spite of the small and
quite noisy signal, the present TPES result offers superior spectral information
over recent PI-MBMS measurements that reported the PIE curve of this species in
a DEE flame at similar conditions [51]. From these measurements, the IE for EVE
can be recommended as ~8.75 eV. Again, the present results may serve for the
improvement of the very recent, newly developed kinetic model for the alterna-
tive fuel diethyl ether [51].

It may be concluded that photoelectron spectra measured in flames with
fixed-photon-energy i’PEPICO spectroscopy can support isomer identification in
combustion systems featuring chemically complex mixtures beyond the reason-
ably well understood C—C, reactions. Several aspects have been instrumental for
successful results. Reference spectra of the pure compounds recorded with the
same setup under identical conditions as recommended by Baer and Tuckett [36]
have proven a valuable prerequisite to remove any ambiguities such as poten-
tial resolution effects or shifts in the assignment of isomer contributions in the
flame spectra. For species such as the fuel radicals in the combustion of C, and C,
fuels for which reference measurements for the different isomer structures would
be extremely challenging or impossible, high-level quantum calculations seem
inevitable to provide the necessary reference spectra. Similarly, theoretical cal-
culations can be a useful complement to measured reference PES for molecular
structures in complex isomer mixtures. It should be noted that to obtain reliable
results, these may need examination of different conformers and calculations
on different levels so that they can be quite time-consuming. In further develop-
ments it may be useful to compare measured and calculated PES for several cases
to assess the quality of both. Problems in resolving all contributions from flame
spectra may arise from vibronic contributions and potentially hot bands, which
would possibly be remedied by providing reference spectra at different tempera-
tures. In any case, the flames can serve as moderately elevated temperature reac-
tors to access PES of interesting radicals. In situations where several isomers
contribute to the combustion reactions, a stand-alone analysis with i’PEPICO
measurements is, in principle, possible as demonstrated in previous work [38, 40,
41], but the value of supporting, complementary and independent measurements
using PI-MBMS or gas chromatography whenever useful has been demonstrated
here to exclude certain isomers or to compare PIE curves and PES. Furthermore,
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assignment of quantitative concentrations from the analysis of the same combus-
tion situation with electron-ionization molecular-beam mass spectrometry was of
significant value since oxygenated and hydrocarbon isomers could be separated
by their exact mass and since sum concentrations at a given mass signal were
available from an independent physical process. While photoelectron/photoion
coincidence techniques have meanwhile proven themselves as invaluable diag-
nostic tools for gas-phase combustion analysis, we recommend to see them as
one building block in a full analysis of specific combustion problems that should
rely on the combination of cutting-edge experiments, theory, and kinetic analysis
with the potential to further improve dedicated reaction mechanisms developed
for this purpose.
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especially in complex reactive mixtures. The multiplex approach presented here, enhanced
by the imaging capabilities of the electron and ion detection in the so-called double-imaging
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1 Introduction

Complex diagnostic problems in the gas phase, concerning chemical dynamics
and reaction kinetics, species identification, and quantification have been in-
creasingly addressed in recent years using advanced mass spectrometric tech-
niques [1-5]. Such applications are reported within fields as diverse as atmo-
spheric chemistry [3], organometallic catalysis [2], interstellar chemistry [6—-10],
aerosol formation [1], photochemistry [1, 11], biomass pyrolysis [12], and combus-
tion chemistry [5, 12-14]. These reactive systems may involve dozens to hundreds
of species, some of unknown structure [15-17], in amounts that may reach from
the sub-ppm to the percent level. Reliable detection and identification of com-
ponents in the reacting mixture, including isomers, is a prerequisite for the de-
velopment of detailed reaction mechanisms. Molecular-beam mass spectrometry
(MBMS) as a universal, yet invasive, technique [1, 4, 13, 18, 19] is being employed
to study reactive processes in photolysis, pyrolysis, and oxidation reactors [12-
14, 17, 20], shock tubes [21], and laboratory flames [4, 5, 12, 13].

While laboratory variants of MBMS usually rely on electron ionization (EI),
the use of tunable vacuum ultraviolet (VUV) radiation from synchrotron sources
for photoionization (PI) has become more common to identify species not only by
their exact mass, but also by their ionization energy (IE). Such PI-MBMS studies
have been widely used in combustion research to analyze chemically sensitive as-
pects such as low-temperature oxidation [17, 20] and high-molecular-weight soot
precursor formation [22]. Especially the introduction of alternative fuels [23, 24]
and novel combustion regimes [14, 17] demand detailed information to build re-
liable reaction mechanisms of predictive quality [15, 16]. In comparison to the
less involved EI-MBMS technique that offers analysis of the reaction system by
mass/charge (m/z) ratio and reaction time (or height above the burner hin alam-
inar flame), VUV-PI-MBMS at synchrotrons provides a third discriminative dimen-
sion in terms of the finely tunable photoionization energy. The high energy resolu-
tion of PI-MBMS is instrumental for species and structure identification. To obtain
quantitative species profiles, PI-MBMS relies on photoionization cross sections for
stable and radical species that are often measured at the same beamlines [25-29].

Even more information, however, can be gained with photoelectron photoion
coincidence (PEPICO) spectroscopy, a technique that has been known and ap-
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plied to the detailed study of photoionization processes for nearly five decades
([30, 31] and references therein), and that has recently found popularity for com-
plex mixture analysis in synchrotron facilities [32-35], since it offers a fourth
discriminative dimension originating from the detection of the associated elec-
trons. Indeed, in addition to the detection of the ion, the information carried
by the electron from the same ionization event can be analyzed in PEPICO com-
bustion diagnostics via highly specific fingerprint photoelectron spectra (PES) of
the reactive species. Quite recently, Ofwald et al. [33] have — for the first time in
a burning flame — demonstrated detection of reactant, product, and intermedi-
ate species. In their study, performed at the Swiss Light Source (SLS), they could
detect and partially quantify several chemical species in a C,H,/O,/Ar flame.
Also they were able, for the example of an iso-butane flame, to distinguish be-
tween the first four isomeric fuel radicals formed by H-abstraction from the fuel
molecule. In their threshold (T)-PEPICO approach, they have scanned the ioniz-
ing photon energy to generate threshold photoelectron spectra (TPES). Scanning
the photon energy with appropriate resolution can be quite time-consuming, and
Kriiger et al. [35] have thus demonstrated more recently a highly multiplexed fixed-
photon-energy PEPICO method. With this fixed-photon-energy technique, they
have recorded PES to provide isomer separation for some carefully selected con-
ditions in flames. Felsmann et al. [36] have performed a comparison of both the
scanning TPEPICO [33] and fixed-photon-energy PEPICO [35] approaches. Their
study has combined the results from four MBMS instruments to study almost iden-
tical premixed C,H,/O,/Ar flames, using synchrotron-based PI-MBMS at the Ad-
vanced Light Source (ALS) in Berkeley, TPEPICO at the SLS, PEPICO at SOLEIL as
well as laboratory-based EI-MBMS in Bielefeld. The comparison clearly demon-
strated the detailed information that can be obtained with significant time savings
by using the fixed-photon-energy PES approach with the double-imaging PEPICO
spectrometer at SOLEIL [37-39].

While results from all measurements in the chosen ethene flame were in good
general agreement, the fixed-photon-energy PEPICO approach in [35, 36] can be
considered as a first proof of principle, while a demonstration of a more general
applicability of this technique to combustion analysis in more complex isomer-
rich situations has not yet been reported. The present article will therefore discuss
the potential of the fixed-photon-energy PEPICO method to obtain quantitative
species profiles in flames and to distinguish the contributions of different chemi-
cal species to a given m/z signal. The analysis relies on intense post-treatment of
signals obtained within typically 5-60 min, using the double-imaging capacity
of the spectrometer and the pBasex image inversion algorithm [40]. Several fuels
were chosen for these experiments, namely dimethyl ether (DME), cyclopentene
(CP), and methyl propanoate (MP). DME is discussed as a promising alternative
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fuel and fuel additive that can be produced from biomass, natural gas, and coal;
it exhibits pronounced low-temperature chemistry and its combustion has been
extensively studied both experimentally and with kinetic mechanisms [17, 21, 41-
45]. Cyclopentene as a cyclic hydrocarbon fuel was chosen because of the es-
tablished wealth of soot precursors produced in its combustion [46-48]. Methyl
propanoate as a small-chain methyl ester gives insight into the combustion prop-
erties that arise from the ester function of a fuel, important for biodiesel combus-
tion [49, 50]. For these fuels, detailed quantitative species analysis and kinetic
models are largely available for comparison.

In these chemically quite different situations, we have further investigated
the suitability of fixed-photon-energy PEPICO measurements to elucidate specific
aspects of the flame structure, efficiently using allocated beam time to investi-
gate these increasingly complex systems. From the electron signal, quantitative
species profiles could be derived here for the first time using the fixed-photon-
energy approach. The obtained results are discussed in terms of necessary post-
treatment routines. Furthermore, suitable measurement procedures, necessary
signal-to-noise (S/N) considerations, and strategies for data evaluation have been
investigated to provide time-efficient isomer-selective flame measurements.

2 Experiments

For the PEPICO experiments, a transportable burner chamber was adapted to
the SAPHIRS endstation, equipped with the DELICIOUS III [39] double-imaging
spectrometer, located at the undulator-based DESIRS beamline [37] of the syn-
chrotron SOLEIL. DESIRS delivers tunable VUV radiation between 5-40 eV with
high spectral resolution, high flux, and adjustable polarization. For the present
experiments, energies between 7—-16 €V in linear horizontal polarization mode
were chosen. A windowless gas filter [51] that was used to block higher har-
monics from the undulator was filled with Ar for energies in the 8-15.76 eV
range and with Xe for energies below 8 eV. After dispersion via a 6.65 m normal-
incidence monochromator with a low dispersion grating (200 grooves/mm), the
VUV beam exhibited a typical bandwidth of 2-20 meV and a flux of the order of
10'2-10"° photons/s and was focused into the ionization chamber. At the inter-
section with the molecular beam extracted from the flame experiment, the VUV
spot had a diameter of about 100-200 um, depending on the used monochroma-
tor exit slit size.

The analyzed flames were stabilized in a burner chamber at low pressure (33
and 40 mbar) on a water-cooled (333 K) home-built porous-plug burner of 65 mm
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Table 1: Flame conditions for the low-pressure flames stabilized on a 65 mm burner. Flow rates
are given in standard liter per minute (slm) along with their uncertainties; DME: dimethyl ether,
CP: cyclopentene, MP: methyl propanoate.

¢ Pressure/ Argon dilution/ Gas flow rate/slm
mbar % Fuel Oxygen Argon
DME 1.40+0.05 33.3+0.3 25 1.12+0.02 2.39+0.05 1.17+0.02
CP 1.70+0.06 40.0+0.4 25 0.69+0.01 2.82+0.06 1.17+0.02
MP 1.50+0.05 40.0+0.4 50 0.54+0.01 1.81+0.04 2.35+0.05

diameter. The burner was mounted on a translation stage, allowing sampling at
different positions above the burner to measure spatially resolved species pro-
files. The gas flows were regulated with calibrated mass flow controllers (MKS In-
struments and Aera, +2%), and the liquid fuels were metered by two combined
syringe pumps (ISCO Systems D1000 and D500) with a total volume of 1.5 L to
minimize downtime of the system due to refilling. The liquid fuels were injected
into a home-built evaporation system, evaporated and transported into the burner
with Ar as the carrier gas. Flame conditions, gas flows, and evaporation tempera-
tures are provided in Table 1. The DME and the MP flame conditions were chosen
to be identical to those reported by Wang et al. [41] and Felsmann et al. [49], re-
spectively. The CP flame conditions were somewhat different from those of Hansen
et al. [46], who studied a CP/O, /Ar flame with PI-MBMS at 50 mbar and 25% Ar
dilution for a stoichiometry of ¢ = 2.0, but very similar to those reported in [47, 48]
for earlier EI-MBMS studies.

Flame samples were extracted from the flame by a quartz cone (300 um
diameter at the tip, 25° angle) and expanded into the first-stage chamber at
~10"* mbar. This first-stage chamber was pumped by three turbo-molecular
pumps (Edwards nEXT 300D) to maintain the low pressure even with high load
from the flame chamber (at ~40 mbar). A copper skimmer with an orifice of
1.5 mm separated the center part of the molecular beam and guided it into theion-
ization chamber (~ 10~® mbar) where it was crossed with the ionizing VUV beam.

The DELICIOUS III spectrometer recorded the electrons and ions generated
from the ionization of the sampled molecules in coincidence, using a multi-
start/multi-stop detection method. The electrons were detected via a velocity
map imaging detector (VMI) and the cations were analyzed by a modified Wiley-
McLaren time-of-flight imaging analyzer (WM-TOF) with a mass resolution of
m/Am < 300 (full width at half maximum, FWHM). The ultimate electron ki-
netic energy resolution is about 4% on the detector edge. The resulting energy
resolution in the presented PES is of the order of 100-200 meV. The modes of
operation, set-up, and data analysis procedures were presented and discussed
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in the literature [38-40]. In particular, we used the filtering advantage of the
i*’PEPICO, namely the region-of-interest (ROI) selection in the ion image to en-
hance the signal-to-noise ratio and selectivity, following the procedures described
in [34, 35].

As a reference for these PEPICO measurements, the premixed low-pressure
flames of cyclopentene and methyl propanoate have also been investigated in this
work with the EI-MBMS instrument in Bielefeld described previously [52, 53]. The
flames were stabilized at low pressures with the same conditions as documented
in Table 1. Gas flows were regulated by calibrated mass flow controllers (<2% un-
certainty); liquid fuels were metered by a syringe pump (ISCO Systems D1000),
evaporated, and added to the gas stream. The EI-MBMS setup consists of a two-
stage Wiley-McLaren time-of-flight spectrometer equipped with a reflectron detec-
tion unit with high mass resolution (1/Am = 4000), enabling determination of
the elemental C/H/O composition of the measured species [52, 53]. Samples from
the flame zone were extracted with a quartz cone (350 um diameter at the tip, 25
angle) and ionized with five different ionization energies (between 10 and 18 €V)
to analyze the flame and minimize fragmentation.

The evaluation of this EI-MBMS experiment followed routines previously re-
ported in [52, 53]. Briefly, mole fractions of major species were determined based
on the elemental balances of C, H, and O, using an internal calibration method.
At the highest distance from the burner, only CO, CO,, H,, and H,O were thus
considered as products, and the determined CO/CO, ratio enabled their quan-
tification. The uncertainty in major species mole fractions is ~ 15%, except for H,
where it is estimated to be ~20% [53]. For intermediate species, a calibration fac-
tor k; relative to Ar was used to determine the mole fraction. This calibration factor
was either determined by direct calibration with cold-gas mixtures, or estimated
using the relative-ionization-cross-section method (RICS) [54] or the convolution
of the literature ionization cross sections with the known energy distribution of
the ionizing electrons [55]. These methods are explained in more detail in [53].
The latter methods (RICS and convolution) lead to uncertainties of factors 2—4, de-
pending on the nature of the species and the quality of the available cross section,
while direct calibration leads to an uncertainty of ~30%. An in-depth discussion
of experimental uncertainties associated with quantitative species measurements
in flame experiments using MBMS is included in the recent review of Egolfopoulos
et al. [56].
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3 Results and discussion

In light of the focus of this study to demonstrate the time-efficient application of
the i?PEPICO technique with fixed photon energies for combustion analysis, we
first address species quantification. Such information is of high importance for
kinetic mechanism development in combustion, but it is often time-consuming
to obtain with the established photoionization techniques because of the need to
scan the photon energy. Additionally, information is typically lost due to the inte-
gration over all electron energies. Here, we demonstrate the use of the electron-
related signal for the quantification of main species and some unambiguously
identifiable intermediates. This approach was applied to well-studied flames of
DME and CP, using comparatively short measurement times of 3.5—5 min. Subse-
quently, we demonstrate the application of the fixed-photon-energy PEPICO ap-
proach to more complex situations in the MP and CP flames, using measurement
times of up to 1 h. We discuss separation of oxygenated and hydrocarbon isomeric
structures and the use of fingerprint PES for this purpose, including application
of such procedures to radical and higher-mass species.

3.1 Quantitative flame analysis with time-efficient
fixed-photon-energy PEPICO measurements

In our earlier PEPICO measurements [35, 36], we reported a proof of principle with-
out an attempt to provide quantitative species mole fractions. For the first time, we
now determine absolute species concentrations in flames as a function of position
(or reaction time) from fixed-photon-energy PEPICO experiments.

3.1.1 Major species profiles

In both EI-MBMS and PI-MBMS measurements [52, 53, 57, 58], quantitative species
concentrations are derived from the ion signals, whereas in this study, the coinci-
dent electron signal is used for quantification. For the flames studied here, major
species (fuel, O,, Ar, H,, CO, H,0O, CO,) mole fraction profiles were measured
as a function of height h above the burner. At each position, signals were acquired
at fixed photon energy of 16 eV with 200 s integration time. At this energy, all neu-
tral species can be ionized so that all #1/z signals are recorded simultaneously in
coincidence with all corresponding electrons, demonstrating the high multiplex-
ing capacity of the experiment.
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Figure 1: Major species mole fractions x; as a function of height i above the burner. Left: DME
flame, filled symbols: PEPICO experiment, open symbols: reference flame of Wang et al. [41],
lines: simulation with Burke et al. [45] model. Right: CP flame, filled symbols: PEPICO
experiment, open symbols: EI-MBMS, lines: simulation with Gueniche et al. [60] model.

The DME and CP flames were analyzed to examine the applicability of the
present species quantification procedure, and results from the PEPICO exper-
iment were then compared to reference PI-MBMS (DME) or EI-MBMS (DME,
CP) measurements and simulations with flame models using the CHEMKIN
II/PREMIX code [59]. Similarly to the EI-MBMS evaluation discussed before (Sec-
tion 2), the mole fractions of major species were calculated here from the C/H/O
element balance. A cold-gas calibration with a CO/CO,/Ar mixture served to
determine the CO/CO, ratio in the exhaust region at # = 30 mm. The inlet con-
ditions were calculated from the C and O element balance. To consider potential
early reactions at the burner surface and back-diffusion, the mole fractions of CO,
CO,, H,, and H,O at h = 0 mm were taken into account.

Resulting major species profiles are presented in Figure 1, in the left panel for
the DME flame and the right panel for the CP flame. DME results are compared to
previous experimental values by Wang et al. [41], and to predictions of the model
by Burke et al. [45], using the temperature profile reported in [41]. No fragmenta-
tion correction of the fuel was applied to the present dataset, since fragmentation
from the fuel is not likely to contribute to any of the major species signals. Given
the two independent experimental setups, the agreement between the results by
Wang et al. [41] and the present PEPICO measurements is quite good. The model
simulation represents the overall flame structure well, with the present dataset
in slightly better agreement, especially for the initial rise of the H, mole fraction
profile.

Major species profiles measured by fixed-photon-energy PEPICO for the CP
flame are compared in the right panel of Figure 1 with the EI-MBMS results; also,
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simulations performed with the model by Gueniche et al. [60] are included. The
temperature profile used in the simulation was measured in the EI-MBMS setup
using the first-stage pressure [18], calibrated with an exhaust-gas temperature of
2200 K, as also reported by Kamphus et al. [47] for a similar CP flame. Similar
good agreement as for the DME flame is observed between the two datasets and
the simulation, with the exception of slightly larger deviations at h ~2—-6 mm
between the model prediction and the PEPICO measurements for H, and Ar mole
fractions.

The overall good agreement in Figure 1 thus demonstrates that quantitative
major species mole fraction profiles can be obtained from the total electron yield
(TEY) at a given mass. With longer measurement time intervals, the PEPICO ap-
proach would permit a potential advantage over PI-MBMS in that fragmentation
contributions could become directly evident in the fingerprint PE spectra.

3.1.2 Intermediate species profiles

Intermediate species profiles are quantitatively evaluated with a formalism sim-
ilar to that usually taken for the evaluation of PI-MBMS experiments [41, 46, 61,
62]. Equation (1) describes the total electron signal S; corresponding to a given
species i,

S; = x;(h) - t;, - D;(M,) - FKT(T, M) - ¢(E) - o(E). 1)

Here, x; is the mole fraction at height h; ¢, , is the data acquisition time; M is the
molar mass, D is the mass discrimination factor; FKT is a sampling function that
depends on the temperature T and the mean molar mass M; ¢(E) is an instrument
factor that includes the photon flux at a given energy and ¢(E) the photoioniza-
tion cross section, also depending on the photon energy E. Here, D has been as-
sumed to be equal to 1 for all masses; ¢ must be determined for each specific scan,
assuming a constant photon flux.

The fixed-photon-energy PEPICO approach offers the advantage that only one
value of the cross section is needed for the evaluation. The electron signal in a PES
is highly state-selective and Equation (1) would have to be evaluated for each en-
ergy if the measurements were performed in scanning mode. Here, the fixed pho-
ton energy with a distribution of ~ 5 meV (FWHM) permits to use Equation (1) at
each given energy, and a single carefully selected energy is sufficient to determine
a full species set using tabulated photoionization cross sections. An involved pro-
cedure is typically necessary in PI-MBMS to determine quantitative intermediate
species concentrations in a cascading sequence, as explained by Cool et al. [61].
Since the fixed-photon-energy PEPICO technique reduces the experimental error
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by avoiding this cascading procedure, it can present a significant advantage over
regular PI-MBMS measurements. In contrast, scanned threshold PEPICO mea-
surements, cannot, in principle, use normal tabulated absolute cross sections for
a quantitative analysis for two reasons: first, the ionization cross sections depend
on the electron kinetic energy and here only threshold electrons are used; sec-
ond, the likely presence of resonant autoionization will distort the measured in-
tensities. Therefore, a separate TPEPICO database would have to be built to deter-
mine accurate species concentrations. Of3wald et al. [33] discussed the necessity
of state-selective cross sections for the data evaluation of their scanning iPEPICO
experiment. In their data evaluation, they also had to take an energy-dependent
factor « into account to consider the finite size of their electron detector [33]. Here,
due to the larger energy span covered by the present VMI detector [39], such cor-
rections are not necessary, reducing the uncertainty.

Figure 2 shows the mole fraction profiles of selected intermediates including
CH,;, C,H,, and CH, O for the DME flame (left panel) and C;H;, C;H;, and C;H,
for the CP flame (right panel). A data acquisition time of 300 s was used for each
height h. For the DME flame, 10.9 eV was chosen as the fixed photon energy, be-
cause this value includes the ionization energy of CH, O as an important interme-
diate in this flame. For the CP flame, 10.4 €V was chosen to include numerous C;,
C,, and C; intermediates. The present results from the electron signal evaluation
in the DME flame in Figure 2 are compared with those by Wang et al. [41], show-
ing very good agreement of the different experimental datasets. Overall shapes
and peak values differ slightly, potentially due to the different experimental se-
tups, and maximum mole fractions deviate by less than 20%. For the CP flame,
shown in the right panel of Figure 2, the fixed-photon-energy experiment is com-
pared to our present EI-MBMS measurements, the PI-MBMS results from Hansen
etal. [46], and to simulations with the Gueniche et al. model [60]. Very good agree-
ment is seen between both independent measurements from the present study.
Also, the earlier PI-MBMS [46] and the PEPICO results for C;H; and C;H, are
in good quantitative agreement. The only exception is seen for C;H;, where the
PI-MBMS experiment by Hansen et al. [46] results in a factor of five lower max-
imum mole fraction than derived by the two other methods. The reason for this
discrepancy is unclear, especially since the same photoionization cross sections
were used in the PI-MBMS and PEPICO evaluation. The simulation slightly under-
predicts the mole fractions of C;H; and C,H; by about a factor of two. The mole
fraction of C;H, however, is severely under-predicted, but the good agreement
of the experimental datasets suggests that an improvement of the model for this
species is desirable.
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Figure 2: Selected intermediate species mole fractions x; as a function of height / evaluated
from PEPICO measurements at fixed photon energy E with an integration time of 300 s (black
squares). Left: DME flame, E = 10.9 €V, blue circles: Wang et al. [41], lines: simulation with
Burke et al. [45] model. Right: CP flame, E = 10.4 €V, red triangles: EI-MBMS, blue circles:
PI-MBMS measurements of Hansen et al. [46], lines: simulation with Gueniche et al. [60] model.

3.1.3 Distinction of species at the same nominal mass

With the limited mass resolution of the WM-TOF in the double-imaging DELI-
CIOUS III spectrometer [39], species separation must rely on ionization energies
as well as photoelectron spectra. It is thus interesting to analyze how species at
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Figure 3: PES of m/z = 42 at h = 2.5 mm measured with an acquisition time of 300 s at 10.4 €V in
the CP flame (black line and symbols) including error bars from the evaluation with the pBasex
algorithm [40]; green dashed line: PES of ketene [63]; blue dash-dotted line: PES of

propene [64]; red line: sum of weighted ketene and propene contributions.

the same nominal mass that exhibit similar ionization energies could potentially
be resolved in the fixed-photon-energy PEPICO approach used here and to investi-
gate whether such species separation could lead to quantitative mole fraction re-
sults. To this end we demonstrate species separation for the example of m/z = 42
from the same fixed-photon-energy measurement at 10.4 €V as before in the CP
flame; this signal typically represents ketene (C,H,O) and propene (C;Hy). Our
earlier studies [35, 36] have shown that an identification of both species via thresh-
old PES is possible, but no attempt of quantification was made. Figure 3 shows
the PES of m/z = 42 measured here at & = 2.5 mm where most of the intermediate
species are at their peak mole fractions. This PES was derived from the 2D electron
image via the pBasex algorithm [40]. Five distinct peaks at 9.59, 9.73, 9.89, 10.05,
and 10.22 eV are observed, corresponding to specific energy-dependent ioniza-
tion processes.

The observed features in Figure 3 agree well with the literature spectra of
ketene [63] and propene [64]. The first peak at 9.59 eV corresponds quite well to
the literature IE of ketene of 9.617 €V [65] and the second, measured at 9.73 €V,
excellently to that of propene of 9.73 €V [65], but it also includes contributions
from the vibrational modes of ketene. The third and fourth peaks arise mostly
from vibrational modes of propene. A third vibrational mode of propene may
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contribute to the signal at 10.22 eV. A shift in position and intensity compared
to the literature PES [64] is observed here that may result from the rather poor
signal-to-noise ratio in this region. Indeed, for very low S/N at these high ener-
gies which are detected near the center of the VMI, the pBasex conversion may
lead to somewhat distorted signals. It should be noted that a complete VMI im-
age corresponds to only ~ 10* coincident electrons in the time-efficient measure-
ments here, with a small fraction of these electrons detected at the center. This
distortion effect above 10.2 eV becomes more pronounced with decreasing signals
at heights above or below the concentration maximum, as evident from Figure 4,
which shows selected PES as a function of height /i in comparison to the literature
PES of ketene [63] and propene [64].

All five peaks in the PES (marked by dashed lines in Figure 4) are observed
at all heights above the burner. The ratio between the first and second peak is
a good indicator for the change in mole fractions of ketene and propene. This ratio
increases from 0.4 : 1ath = 1.5mm to 0.7 : 1 at h = 3.0 mm, corresponding to
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Figure 5: Mole fractions x; as a function of height h for propene (left) and for ketene (right,
multiplied by a factor of 5) evaluated from PEPICO measurements at fixed photon energy

E = 10.4 eV with an integration time of 300 s in the CP flame (black squares); red triangles:
EI-MBMS, blue circles: PI-MBMS measurements of Hansen et al. [46], lines: simulation with
Gueniche et al. [60] model.

an increase in ketene contribution. It can thus be assumed that the ketene profile
peaks later in the flame.

Mole fractions for both species at different heights were determined from the
electron signal using Equation (1). First, the literature spectra were convoluted
to fit the same nominal resolution as the measured PES and simulated point-by-
point. These convoluted spectra were weighted with appropriate factors to fit the
measured PES and integrated in the electron binding energy range of 0-10.4 €V.
The measured TEY was then weighted by the ratio of areas from the convoluted
spectra for each species. The quantification was performed using cross sections
for 10.4 eV from Yang et al. [27] for ketene and Cool et al. [66] for propene. The in-
strument factor c was calculated from the fuel signal. Figure 5 shows the resulting
mole fraction profiles.

The PEPICO and the EI-MBMS measurements of the present study are seen to
be in remarkable agreement. The PI-MBMS measurements of Hansen et al. [46]
show a deviation of ~25%. These authors did not separate the two species, how-
ever, and their profile represents the sum of ketene and propene, evaluated with
an estimated cross section. They suggested ketene to be present in higher concen-
trations [46]. In contrast to this assumption, our measurements show propene
to be the dominant species with a maximum mole fraction of 3.2x 107>, ap-
proximately five times higher than the ketene mole fraction. The dominance
of propene kinetically results from a combination of an H-atom with the allyl
radical (C;Hs), detected with very high mole fraction (~ 5.0 x 107%) in the CP
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flame (see Figure 2). Allyl can result from a dominant consumption pathway of
CP, initiated by H-addition on the double bond, ring opening, and f3-scission
(CP+H — c¢yC;H, —» CH,CHCH,CH,CH, — C;H; + C,H,) [60].

The overall good agreement between the present experiment — perform-
ing quantitative species evaluation from the electron signal in the fixed-photo-
electron PEPICO approach — and reference measurements by more established
MBMS techniques in combustion analysis is encouraging, especially regarding
the multiplex capacity of the present approach, the relatively straight-forward
evaluation without additional correction factors or cascading procedures, and the
capability to evaluate species with the same nominal mass and similar ioniza-
tion energies. Note that the EI-MBMS approach uses the higher mass resolution to
separate ketene and propene, which would not be possible for structural isomers
where PEPICO techniques have a unique advantage.

3.2 Identification of intermediate species in chemically
complex situations

With the preceding examples, we have shown species identification, separation,
and quantification from fixed-photon-energy PEPICO in rather unambiguous an-
alytical situations. Previous investigations [33, 35, 36] have provided examples
for species identification mainly for pairs and triplets of isomers that exhibit sig-
nificantly different IEs, typically by > 0.5 eV. In that case, the different species-
specific fingerprint PES are spread over considerable energy ranges with lim-
ited overlap and can thus be distinguished quite well. Such examples include al-
lene (IE: 9.691 eV) and propyne (IE: 10.37 €V) at m/z = 40; 1,3-butadiene (IE:
9.072 €V), 2-butyne (IE: 9.58 €V), and 1-butyne (IE: 10.18 €V) at m/z = 54; and
ethenol (IE: 9.33 €V) and acetaldehyde (IE: 10.22 €V) at m/z = 44 [33, 35, 36]. In
the following section we will analyze some more complex situations, where very
close IEs lead to overlapping vibrational features of the fingerprint PES. This anal-
ysis was performed from fixed-photon-energy PEPICO measurements with data
acquisition times up to 1 h.

3.2.1 Separation of numerous species at m/z = 56 in the methyl propanoate
flame

As a first example we demonstrate the identification of species in a methyl
propanoate flame studied before [49]. Figure 6 shows the fixed-photon-energy
PES of m/z = 56 measured in this MP flame at h = 2.25 mm with a data acqui-
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Figure 6: Left: fixed-photon-energy PES of m/z = 56 in the MP flame at h = 2.25 mm recorded at
9.94 eV photon energy (top), 2D image from the pBasex [40] inversion procedure (bottom).
Right: structures and IEs of species potentially contributing to the signal at m/z = 56.

sition time of 3600 s (top) along with the result from the pBasex [40] inversion
procedure (bottom). Here, a photon energy of 9.94 €V, lower than the IE of MP
(IE: 10.15 eV), was chosen to avoid fragmentation processes from the fuel. The
spectrum shows six distinguishable peaks between 8.90 and 9.58 €V. Contribu-
tions by several species are expected and some plausible structures are given in
the right panel of Figure 6.

Because of the limited mass resolution, this measured spectrum can be due
to a mixture of species with the sum formulae C;H,O or C,H;g. In our recent
study of this MP flame by EI-MBMS, the signatures of C;H,O (56.026 u) and C,Hg
(56.063 u) were resolved clearly by mass. C;H,O was predominantly assigned to
methylketene as the expected isomer with a peak mole fraction of 2.65 x 10™*, and
C,Hg isomers could not be resolved but their sum mole fraction was of the order
of 5% 107°. In a slightly different MP flame, Yang et al. [50], in a PI-MBMS exper-
iment with limited mass resolution of #/Am = 400, have not separated C;H,O
and C,Hg; they have identified methylketene by its IE, but did not rule out con-
tributions from other C,Hg isomers. Their photoionization efficiency (PIE) curves
were difficult to interpret, because individual contributions with small differences
in IE could not clearly be identified by changes of the slopes in the PIE curve. It
should be noted also that the separation procedure becomes more cumbersome
when the species with the smallest IE contributes with the largest mole fraction.
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Realizing this complex situation, it will be attempted here to resolve the dif-
ferent contributions to the signal at #1/z = 56 by a consecutive subtraction pro-
cedure. As a starting point, the PES in Figure 6 is shown in more detail in Figure 7
(black line) and compared with the respective literature PES for all possible iso-
mers [67-70] (colored lines).

Methylketene (IE: 8.95 €V) is identified by the peak detected at 8.90 eV. This
feature and the following two peaks can be assigned to methylketene as evi-
dent from the literature spectrum [67]. The signatures above ~ 9.3 €V are not pro-
nounced in the methylketene literature spectrum, indicating that butenes (C,Hy)
might also contribute to the signal. The PES of the cis- and trans-2-butenes are
found to be almost similar and exhibit three pronounced features at 9.11, 9.31,
and 9.47 eV [68]; the two peaks in the measured PES near 9.33 eV and 9.45 eV
should thus mostly correspond to the 2-butene isomers. Contributions of iso-
butene, 1-butene, and methoxyacetylene cannot be ruled out at this point. The
iso-butene PES shown in Figure 7 has been extracted here from an iso-butene
flame measurement at 4 = 1 mm and a fixed photon energy of 11 €V. Unfortu-
nately, the literature spectra given in Figure 7 of methoxyacetylene [69] and 1-
butene [70] are only available in unsatisfactory resolution.

With the detailed background given in Figure 7, we can now start to identify
the contributing species by subtraction. For this procedure, the measured and lit-
erature spectra were all compared with the same resolution, i. e. measured and
more highly resolved spectra were convoluted to fit the literature spectra with the
lowest resolution. Figure 8 shows the process in detailed steps.

The first step, shown in Figure 8a, presents the subtraction of the weighted
literature spectrum of methylketene from the measured PES. The resulting resid-

Bereitgestellt von | Universitaetsbibliothek Bielefeld
Angemeldet | julia-pieper@web.de
Heruntergeladen am | 06.03.18 09:35



1084 —— D.Felsmannetal. DE GRUYTER

Ll L] Ll L L Ll 0‘8 Ll Ll Ll Ll Ll Ll
g —_— lited PES miz 56 btract! It 1
1.2 a 8.90 eV === ﬁf:l‘l::l:etene Bn':k 1881 b - nu:::eownl:lzliﬂ?l
) 919eV subdraction result 1 - sublraction result 2 9.47 eV
1.0- 1 ' i 0,64 9.34 eV eg -
) : e

= 9.05 eV 933 eV S 922 ev/\\w/-\
T 0.8- < T
= - 0.4 9, ua e-v £
2 0.6- .
o o 8. 55 eV
w 0 ! '\- r‘: ‘
w047 ) 021
o o ;’

0.2+ .

———. EJIU-""‘,-----T;"f ]
0.0 e \‘1 ¢
- T : T T T T T T ‘r L] L) T T T
8.6 8.8 9.0 8.2 9.4 9.6 9.8 8.6 8.8 9.0 9.2 9.4 96 9.8
blndlng energy .-'eV binding energy / eV
I—whllxurm lnu!l 2 '
0.6 - C == = [go-butene PES i
1 e subtraction result 3 9.48 eV 9.78 eV

= R 9.61 &V
5 04- A
®
=
=
W 0.2
w
o

0.0+

86 88 90 92 94 96 98
binding energy / eV

Figure 8: Measured PES for m/z = 56, convoluted to a resolution of ~0.12 eV (FWHM) to enable
subtraction of literature spectra for the identification of contributing species. Sequential
subtraction a) of the methylketene spectrum [67]; b) of the 2-butene spectrum [68]; c) of the
iso-butene spectrum.

ual PES, here termed subtraction result 1 (orange), is also shown in Figure 8b
and used for the subsequent subtraction procedure. It shows six features at 8.95,
9.08, 9.22, 9.34, 9.47, and 9.59 €V. The shoulder at 8.95 eV mainly results from
the slight differences between literature and measured PES for methylketene and
is therefore not discussed further. The peak at 9.08 eV may be due from a small
amount of 2-butene isomers; the slight deviation to the IEs of the 2-butene iso-
mers (IE(trans): 9.10 eV, IE(cis): 9.11 €V) [65] might arise from the convolution
and subtraction procedure, as well as from the digitalization of the literature
spectrum that exhibits limited resolution within our region of interest. Subtract-
ing the weighted cis-2-butene spectrum (blue) provides subtraction result 2 (pur-
ple). For clarity this spectrum is also displayed in Figure 8c. The sharp peak at
9.22 €V in Figure 8c shows an excellent match with the spectrum of iso-butene.
The remaining spectrum, i.e. subtraction result 3, exhibits three further some-
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what poorly pronounced peaks at 9.48, 9.61, and 9.78 €V. These peaks could
either be assigned to methoxyacetylene (IE: 9.48 V) [69] and/or 1-butene (IE:
9.55 €V) [70]. While some residues from the species with lower ionization energies
might also contribute; the subtraction routine has clearly supported identification
of methylketene, 2-butene, and iso-butene.

The example shows that the PEPICO technique is in principle capable to sepa-
rate species in situations where previous experiments have faced difficulties. This
has been achieved here using ionization with fixed photon energy and compara-
tively short acquisition time. The approach can obviously be improved by extend-
ing the measurement time to enhance the signal-to-noise ratio. Furthermore, rele-
vant literature PES spectra, mostly measured in the past with fixed photon energy
from He(I) sources at 21.22 €V, are often available only with insufficient resolu-
tion. Therefore it is highly recommended to extend the database of photoelectron
spectra of combustion-relevant intermediates that could be used as reference in
species identification, if possible with a common constant resolution.

3.2.2 Interpretation of fingerprint PES in the cyclopentene flame

As a second example, we present the analysis of m/z = 66, measured at h =
2.5 mm in the CP flame with a fixed photon energy of 9.70 eV. Selected C;H; iso-
mers that have been discussed in previous flame studies [46-48, 71, 72] are shown
in Scheme 1.

1, 3-cyclopentadiene  1-pentene-3-yne {E-)3-pentene-1-yne (Z-)3-pentene-1-yne 4-pentene-1-yne
IE 8.57 eV IE 9.00 ¢V IE 9.05 eV IEQ.11 eV IE 9.87 ¢V (calc.)
IE 9.95 eV (exp.)

Scheme 1: Selected C;H, isomers (m/z = 66).

From the CP fuel decomposition pathway, 1,3-cyclopentadiene (IE:
8.57€V) [65] should predominantly be formed, as found in PI-MBMS stud-
ies of Hansen et al. [46, 71]. The signal detected at #/z = 66 in our EI-MBMS
measurement in the CP flame was therefore calibrated as 1,3-cyclopentadiene
and resulted in a maximum mole fraction of 3.6 x 10'3, which is in very good
agreement to that of 4.2 x 10~> measured by EI-MBMS by Lamprecht et al. [48].
Hansen et al. [71] have attempted to investigate the C;H, isomer composition
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for a number of fuels including allene, propyne, and CP. In their allene and
propyne flames, they found evidence of 1-pentene-3-yne (IE: 9.00 €V) [65] and
4-pentene-1-yne (IE: 9.87 eV (calculated), 9.95 eV (measured)) [71]; also they have
suggested potential contributions by the E- and Z-isomers of 3-pentene-1-yne
(IE(E): 9.05 €V, IE(Z): 9.11 €V) [73]. Their analysis was based on subtraction of
the PIE for the CP flame, assumed to correspond to 1,3-cyclopentadiene, from
the respective PIE curves in the allene and propyne flames, and subsequent
comparison with Franck-Condon simulations for the possible isomers. Using es-
timated cross sections, they have provided approximate concentration ratios for
these isomers. In a further study of allene and propyne flames, Hansen et al. [72]
have used estimated cross sections (20 Mb at 10.25 €V) to determine the sum
of the mole fractions of different isomers quantitatively. They obtained a value
of ~4x 107 for the linear isomers and a peak mole fraction of ~ 1.5 x 10™* for
1,3-cyclopentadiene in both fuels. From this result it could thus be expected that
linear isomers might also have to be considered for CP combustion. The complex-
ity of the situation that impedes quantitative concentration measurements of all
contributing isomers was noted in these publications [46, 71, 72].

In our fixed-photon-energy PEPICO experiment, we have now tried to inves-
tigate the contributions of cyclic and linear isomers to the m/z = 66 signal in
more detail. The measured PES in our CP flame is shown in Figure 9. Following
the discussion above, several isomers should potentially be considered, of which
1,3-cyclopentadiene is expected to be the dominant one. As seen in Figure 9a,
the first two peaks at 8.55 and 8.71 eV correspond remarkably well to the liter-
ature spectra of 1,3-cyclopentadiene [74], whereas the signatures at 8.99, 9.16,
and 9.27 eV may correspond to 1-pentene-3-yne [73]. The isomers of 3-pentene-1-
yne might contribute to the small feature at 9.10 V. Unfortunately, PES for these
species are not available in the literature so that they could not be considered in
the present evaluation. The fourth isomer, 4-pentene-1-yne, is not detected since
its IEis above the used ionizing photon energy. Figure 9b shows the measured PES
in comparison with literature spectra of 1,3-cyclopentadiene [74] and 1-pentene-
3-yne [73] that were convoluted to the lesser resolution of the measured spectrum
and weighted to fit the experimental result. The measured spectrum is very well
reproduced by the sum of the two convoluted literature spectra (green line in Fig-
ure 9b). This good fit is illustrated by the subtraction result (grey line); however,
small remaining peaks are seen at 9.10 €V and above 9.40 eV which might be at-
tributed to some contribution of 3-pentene-1-yne.

To quantify the two reliably detected isomers, the total electron yield
from m/z = 66 was weighted by the integrated areas of the convoluted 1,3-
cyclopentadiene and 1-pentene-3-yne literature spectra between 0 and 9.7 eV and
evaluated using Equation (1). The instrument factor ¢ was determined directly
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from the cyclopentene (fuel) signal. With a recent cross section of 10.15 Mb for
1,3-cyclopentadiene [75], its maximum mole fraction was evaluated as 7.1 x 1072,
while a mole fraction of 1.3 x 10~> was determined for 1-pentene-3-yne using the
same cross section of 18.19 Mb as in Hansen et al.’s work [71]. These results could
now, for the first time, identify a quantitative contribution of a linear isomer to
m/z = 66 in the CP flame, and its mole fraction is shown to be quite substantial,
with a ratio of 1,3-cyclopentadiene to 1-pentene-3-yne ath = 2.5 mm of 5.5 : 1.

It is interesting upon the unambiguous identification of 1-pentene-3-yne
in the present i’PEPICO measurement to re-analyze the measured PIE curve of
Hansen et al. [71], presented in Figure 9c. We have attempted to represent their
result by a weighted sum of the PES for 1,3-cyclopentadiene and 1-pentene-3-yne
that were integrated to yield PIE curves. The resulting PIE spectra are given in
Figure 9c, and show a clear contribution of the linear isomer. It would have been
very difficult to infer and even more to quantify the presence of 1-pentene-3-yne
directly from the PIE curve since the differentiation of such a curve leads in gen-
eral to a very noisy PES.

3.2.3 Detection of radicals at low photon energies

After providing some examples for the application of the fixed-photon-energy
PEPICO approach to major and stable intermediate species, we now apply this
technique to detect and identify radical species. Radicals are of essential impor-
tance in combustion since they drive the chain reactions from the fuel to the prod-
ucts. MBMS techniques allow radical detection in the flame environment in spite
of difficulties arising from their high reactivity, fragmentation potential, limited
mole fractions, and low ionization energies. Of particular interest are radicals that
are formed directly from the fuel decomposition. Their detection needs low pho-
toionization energies to avoid interference of species with high concentrations,
as demonstrated in the TPEPICO measurements of [33]. For the CP flame studied
here, we have used a fixed photon energy of 7.7 eV and a moderate sampling time
of 1800 s. Indeed, it was possible to detect fuel radical species of the sum for-
mula C;H, at m/z = 67. Also, signals corresponding to C,H, at m/z = 55 were
detected for the first time in CP flames. Figure 10 shows the measured spectra in
comparison with literature data [76—78].

The signal at m/z = 67 (Figure 10a) corresponds to isomers that are formed by
H-abstraction of the fuel. The identification of these species is highly desirable,
as they provide evidence for the initial branching pathways, one of the clues for
the development of predictive mechanisms. The positions of the seven peaks ob-
served in Figure 10a are given in Table 2.

Bereitgestellt von | Universitaetsbibliothek Bielefeld
Angemeldet | julia-pieper@web.de
Heruntergeladen am | 06.03.18 09:35



DE GRUYTER Fixed-Photon-Energy Double Imaging PEPICO in Flames =— 1089

12] ——PESmiZET ' C ] 4] ——PESMEZSS ' i‘?evm;uu "
Zﬂyclo?geszl radical 3-cyclopentenyl radical T.48 eV s ¥
164 a : 7.54 eV 101 b E-1-methylallyl |
1 s
. o CdHT W
T os 4 % o8- \
© © af
gu,s- . g.l:l 6 1
'a 0 K
w 0.4 - W 0.4+ 1] .t
o o . ': e
e
0.2 0.2 ! \ d
0.0-8 . S SR —y 4 oo ‘ L
6.8 7.0 T2 7.4 76 740 745 750 755 T60 7.65
binding energy / eV binding energy / eV

Figure 10: PES at & = 1.0 mm measured with an acquisition time of 1800 s at 7.70 eV in the CP
flame (black line and symbols in a and b) including error bars from the evaluation with the
pBasex algorithm [40]; a) m/z = 67 with literature IE of 2-cyclopentenyl [76] and
3-cyclopentenyl [77]; b) m/z = 55 with measured literature spectra (green line), Franck—-Condon
(FC) simulations (red and blue sticks), and convolution of FC simulations (red solid and blue
dashed lines, FWHM =25 meV) of (E)-1-methylallyl and (2)-1-methylallyl by Lang et al. [78].

Table 2: Peak energies in the PES of m/z = 67, recorded at 7.7 éV.

Peak No. 1 2 3 4 5 6 7

Energy/eV 6.95 7.07  7.21 7.27  7.33 7.43 7.55

The fuel radicals 2-cyclopentenyl and 3-cyclopentenyl are most likely to be
present. Unfortunately their PES have not yet been reported, so that the identifi-
cation of these two species must rely on their ionization energies, 7.00 eV for 2-
cyclopentenyl [76] and 7.54 €V for 3-cyclopentenyl [77]. The measured PES shows
the first peak at 6.95 €V, within 0.05 eV of the tabulated IE of 2-cyclopentenyl, pro-
viding evidence for the presence of this species. Peaks 2—-5 originate most likely
from the vibrational transitions of the 2-cyclopentenyl radical since they decrease
in signal strength. The increased signal strength of the sixth peak at 7.43 €V in-
dicates the presence of a second isomer, within 0.11 €V of the literature IE of 3-
cyclopentenyl. The detection of the two cyclic C;H, isomers may indicate the
prevalence of the cyclic structure in the first radical attack (by H, OH, or O) at the
fuel. However, linear isomers cannot be ruled out at this point, since the 7.55 eV
peak could also indicate contributions of the mesomer-stabilized linear isomer
pent-1-yn-3yl with a tabulated IE of 7.6 €V [65]. In this context, it must be noted
that the determination of the ionization potentials of highly unstable radicals is
not easy and literature data is scarce. Since the sample was taken at # = 1 mm dis-

Bereitgestellt von | Universitaetsbibliothek Bielefeld
Angemeldet | julia-pieper@web.de
Heruntergeladen am | 06.03.18 09:35



1090 —— D.Felsmannetal. DE GRUYTER

tinctly upstream of the flame front, the detected radical species should predomi-
nantly be formed directly from the fuel. To enhance the reliability of the identifi-
cation of such highly reactive species, a critical examination and renewed deter-
mination of the IE of possible isomers would be advisable. Also, information on
PES and cross sections would permit to determine the mole fraction ratio between
these isomers and thus give insight into the first branching ratio and subsequent
reaction pathways in CP combustion.

The C,H, radical has been detected in fuel-rich flames of several fuels [53, 62].
Possible isomers are the 1-methylallyl radical (IE(E): 7.48 €V, IE(Z): 7.59 €V) and
2-methylallyl radical (IE: 7.88 V). Figure 10b shows the obtained fixed-photon-
energy PES in comparison to the data measured (green line) and computed with
Franck-Condon simulations (red and blue sticks and lines) by Lang et al [78]. Be-
cause of the low photon energy of 7.7 €V, only the two 1-methylallyl constitutional
isomers may contribute to the recorded signal, since 2-methylallyl is not ionized at
this energy. The excellent agreement between the two independent datasets con-
firms that both isomers participate in the combustion reactions of cyclopentene.

3.2.4 Detection of species with m/z > 100

Understanding the formation of polycyclic aromatic hydrocarbons (PAH) and soot
is one of the remaining challenges in combustion. While details of the formation
of the so-called “first aromatic ring” [13, 46, 79] seem quite well known, the reac-
tions to higher-molecular intermediates are an active field of research [13, 16, 80].
We have thus, as a further example, examined the suitability of the fixed-photon-
energy PEPICO approach for the detection of selected two-ring aromatics. By
the EI-MBMS measurements in this work, indene, CyHg (1/z = 116) and naph-
thalene, C,,Hg (m/z = 128), were detected with peak mole fractions of the or-
der of 1.0x107°-2.0x 10>, compared to 4.2 X 107 and 9.5 x 10'6, respectively,
by Lamprecht et al. [48], while Kamphus et al. [47] detected only naphthalene
(1.2x 10™*). Here, an attempt was made to detect and identify these species from
their PES, in reasonable data acquisition time, although they are at the detection
limit of our PEPICO setup. A photon energy of 8.75 eV was chosen to exclude
species at higher IEs that might produce interfering signals due to substantial
mole fractions. With a data acquisition time of 5800 s, relatively small signals of
~10* electrons that represent a complete PES were detected in coincidence with
a given mass, corresponding to ~ 40 counts at the peak in the related mass spec-
trum. Figure 11 presents the measured PES along with literature spectra [81-83]
for some possible species.
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Figure 11: PES (black lines and symbols) of m/z = 116 (a) and m/z = 126/128 (b), taken in the
fuel-rich CP flame at h = 4 mm, compared to the respective literature spectra by West et al. [81],
Clark et al. [82], and Brogli et al. [83]; weighted sums of different species are indicated in light

grey.

The PES at m/z = 116 (Figure 11a) shows an onset at 8.01 €V and a first peak
at 8.16 eV, corresponding to the TPES of indene [81]. In spite of the relatively low
resolution, a second species is seen to contribute to the signal above ~ 8.35 V.
The peak at 8.39 €V agrees well with the IE of 1-propynylbenzene of 8.40 eV, re-
cently reported by West et al. [81]. The TPES from their study shows good agree-
ment with our measurements. The first vibrational structure, assigned to a pro-
gression of a ring deformation [81] at 8.45 €V, was observed at a slightly different
energy of 8.48 eV. This slight shift may result from the limited resolution in our
measured PES. Evident from the sum spectrum in Figure 11a, the contributions
of indene and 1-propynylbenzene approximate the measured PES in this energy
range quite well.

Figure 11b shows the measured spectrum of the combined signals at m/z =
126 and m/z = 128, since these signals could not be separated due to their
low intensities and limited mass resolution for #1/z > 120. Nonetheless, a com-
parison with literature spectra of the most abundant respective isomers, 1,4-
diethynylbenzene (1m/z = 126), and naphthalene (m1/z = 128) demonstrates the
presence of both species. From the energy region between 8.0-8.50 eV, naph-
thalene is identified by its IE of 8.12 €V and two vibrational signatures that are
in satisfactory agreement with the spectrum recorded by Clark et al. [82]. The
present measurements show two features at 8.30 and 8.37 eV where the litera-
ture spectrum indicates only one broad peak at 8.32 V. This may be a conse-
quence of the slightly better resolution in the present experiment that reveals an
additional vibrational mode. Besides naphthalene, 1,4-diethynylbenzene is iden-
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tified by the signal at 8.56 €V that fits to the tabulated IE of 8.58 €V [65] and the
PES recorded by Brogli et al. (blue dashed line) [83]. Again, the weighted sum of
these two species (Figure 11b, grey line) agrees quite well with the measured spec-
trum. While indene and naphthalene have been determined in the cyclopentene
flames by Lamprecht et al. [48] and Kamphus et al. [47], 1,4-propynylbenzene and
1,4-diethynylbenzene have been identified here for the first time. Their presence
could underline the importance of aromatic species with side chains that may be
involved in the PAH formation mechanism.

4 Summary and conclusions

The present study has shown examples for the application of a time-efficient mul-
tiplexing i’PEPICO technique to combustion chemistry analysis, using carefully
selected fixed photon energies. The aim was not to analyze a particular flame
structure in detail, but to explore the present limits of the fixed-photon-energy
PEPICO technique, a relatively new approach in combustion diagnostics. To this
end, challenging analytic problems were chosen that might demonstrate some of
the beneficial aspects of this experimentally involved but highly selective method
to reveal interesting aspects in combustion chemistry. In addition to the most
advanced photoionization mass spectrometric techniques that use VUV radia-
tion from synchrotrons, the PEPICO technique exhibits even higher discriminative
power by using the information of the coincident electron. The double-imaging
DELICIOUS III spectrometer [39] provides, in combination with the pBasex inver-
sion algorithm [40] for post-treatment, unique features that make fixed-photon-
energy measurements in complex gas-phase diagnostics comparatively short in
duration while still meaningful and carrying much more information than a sim-
ple PIE curve.

We have successfully demonstrated quantification of major and selected in-
termediate species from the electron signal for the first time using this approach.
From a single measurement, multiple species were evaluated quantitatively in
dimethyl ether and cyclopentene flames, and species profiles were obtained in
very good agreement with EI-MBMS measurements or PI-MBMS experiments in
previous work. Because of the fingerprint nature of the photoelectron spectra, of-
ten spread out over a large energy range, species with significantly different ion-
ization energies can readily be quantified as long as PES and cross sections are
available in sufficient resolution and precision. As a further advantage, fragmen-
tation contributions might be resolved in situations with well-resolved PES. In
comparison to scanned, TPEPICO, measurements it is beneficial that the narrow
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energy distribution of only a few meV in fixed-photon-energy PEPICO permits the
use of a single well-defined cross section at that given energy for quantification, in
contrast to TPES which would need a specific database to account for autoioniza-
tion resonances and the dependence of the partial cross sections on the electron
kinetic energy to be used quantitatively. Furthermore, the large area of the VMI
in the DELICIOUS III spectrometer [39] allows for the detection of a large Kkinetic
energy range of electrons so that corrections for their imaging [33] are not neces-
sary, again facilitating quantitative interpretation. Evidently, the same approach
can be used to determine PES with high energy resolution for combustion-relevant
species [32].

In further examples in this study, more complex fixed-photon-energy PEPICO
spectra were analyzed in situations with multiple species contributing to the sig-
nal at a given mass and/or with very close-lying ionization energies. In a methyl
propanoate flame, five species with highly overlapping PES and ionization ener-
gies in a 0.8 €V energy range were successfully separated at m1/z = 56. For the
first time, the contributions of linear isomers to m1/z = 66 in a cyclopentene flame
were analyzed, with unambiguous identification of 1-pentene-3-yne by its finger-
print PES in competition to a much larger signal of 1,3-cyclopentadiene, until now
assumed to be the only contributing isomer in this flame. In comparison to the
synchrotron-based photoionization MBMS technique that is being used as one
of the most advanced approaches in combustion diagnostics, the fingerprint PES
provides convincing advantages because several vibrational signatures are typi-
cally recorded that facilitate species identification.

Using low photon energies, fuel-derived radicals, formed upon the first rad-
ical attack on the fuel molecule, have been identified in the cyclopentene flame,
hinting at the conservation of the ring structure in the early fuel decomposition.
Such information is extremely helpful in guiding the development of detailed re-
action mechanisms. Also, further radicals could be identified without interference
from stronger signals of species with higher concentrations at such low photon
energies. For example, at m/z = 55 the 1-methylallyl radical was detected, with
clear identification of two different constitutional isomers.

At higher masses, the fixed-photon-energy PEPICO measurements, in spite of
limited sensitivity, have proven valuable to identify aromatic species with side
chains, namely 1,4-propynylbenzene at m/z = 116, next to indene, and 1,4-
diethynylbenzene at m/z = 126, both detected for the first time in fuel-rich cy-
clopentene combustion. Their detection would provide useful information regard-
ing the formation pathways of higher-molecular aromatics.

All examples demonstrated here have used limited and competitive amounts
of valuable measurement time at large-scale facilities, suggesting that fixed-
photon-energy multiplexing i’PEPICO could become a more common addition
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to the arsenal of combustion diagnostics, as well as for other gas-phase reac-
tion systems showing significant complexity. This is even more relevant since the
scheme presented here could also be used with fixed-photon-energy VUV labora-
tory sources, such as high-repetition-rate lasers or continuous discharge lamps,
alleviating the need for large facility access and/or the need for fully tunable light
sources. To prove even more valuable in the future, high-resolution PES and cross
sections should be a target for the many intermediate species involved, either from
theoretical or experimental studies.
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List of Abbreviations

Abbreviation Translation

(T)PEPICO (threshold) photoelectron/photoion coincidence spectroscopy

i’PEPICO (double) imaging PEPICO

EI/PI - MBMS electron ionization/photoionization molecular-beam mass
spectrometry

VUV vacuum ultraviolet

(T)PES (threshold) photoelectron spectrum

IE ionization energy

DME/CP/MP dimethyl ether/cyclopentene/methyl propanoate

VMI velocity map imaging
WM-TOF Wiley-McLaren time-of-flight
FWHM full width at half maximum
PIE photoionization efficiency
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Abstract

Diethyl ether (DEE, C,H,,0) is being considered as a promising biofuel. However, its
combustion chemistry has not been well studied. Particularly lacking are quantitative
intermediate species profiles in flames that provide a stringent test for kinetic models,
and flame speed data at elevated pressures. In the present paper, we obtain species
distributions in low-pressure flames and measure flame speeds at elevated pressure to
gain insights into high-temperature combustion chemistry of DEE. Specifically, a fuel-
rich DEE flame (¢=1.8) with 25% argon dilution at 4 kPa was investigated by using
a dedicated combination of electron ionization (EI) molecular-beam mass spectrometry
(MBMS) with gas chromatography (GC) and tunable synchrotron vacuum ultraviolet
(VUV) photoionization (PI) MBMS. High-pressure flame speeds of DEE were measured in
a constant-volume cylindrical chamber at an initial temperature of 298 K at an equivalence
ratio of ¢=1.4 and pressures up to 507 kPa. Moreover, a new detailed kinetic model for
DEE combustion was developed, with the most noticeable advances over the solely existing
model by Yasunaga et al. [J. Phys. Chem. A 114 (2010) 9098-9109] being a more complete
description of the reactions of DEE radicals and the use of accurate theoretical methods,
i.e. CBS-QBS3, to determine the rate constants for important primary reactions. In contrast
to the previously published one, the present model includes reactions of DEE radicals
that directly involve the formation of ethyl vinyl ether (EVE), an addition supported by
identification and quantification of EVE by PI-MBMS in the flame experiment. Finally,
the results showed that DEE flames yield low concentrations of aromatic species. However,
high acetaldehyde emission was observed, originating from the dominant pathways of DEE
consumption via H-abstractions from C-a positions followed by S-scissions.

1 Zu dieser Publikation ist Supplemental Material online unter http://doi.org/10.1016/j.proci.2016.06.087
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Abstract

Diethyl ether (DEE, C4H;(0) is being considered as a promising biofuel. However, its combustion chem-
istry has not been well studied. Particularly lacking are quantitative intermediate species profiles in flames that
provide a stringent test for kinetic models, and flame speed data at elevated pressures. In the present paper,
we obtain species distributions in low-pressure flames and measure flame speeds at elevated pressure to gain
insights into high-temperature combustion chemistry of DEE. Specifically, a fuel-rich DEE flame (¢ ~ 1.8)
with 25% argon dilution at 4 kPa was investigated by using a dedicated combination of electron ionization
(EI) molecular-beam mass spectrometry (MBMS) with gas chromatography (GC) and tunable synchrotron
vacuum ultraviolet (VUV) photoionization (PI) MBMS. High-pressure flame speeds of DEE were measured
in a constant-volume cylindrical chamber at an initial temperature of 298 K at an equivalence ratio of ¢ = 1.4
and pressure up to 507 kPa. Moreover, a new detailed kinetic model for DEE combustion was developed, with
the most noticeable advances over the solely existing model by Yasunaga et al., 2010 being a more complete
description of the reactions of DEE radicals and the use of accurate theoretical methods, i.e. CBS-QB3, to
determine the rate constants for important primary reactions. In contrast to the previously published one,
the present model includes reactions of DEE radicals that directly involve the formation of ethyl vinyl ether
(EVE), an addition supported by identification and quantification of EVE by PI-MBMS in the flame exper-
iment. Finally, the results showed that DEE flames yield low concentrations of aromatic species. However,
high acetaldehyde emission was observed, originating from the dominant pathways of DEE consumption
via H-abstractions from C_, positions followed by B-scissions.
© 2016 by The Combustion Institute. Published by Elsevier Inc.

Keywords: Biofuel; Diethyl ether; Laminar premixed flame; Molecular-beam mass spectrometry; Detailed kinetic model
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Increasing energy demand in the transport sec-
tor, coupled with the need to reduce greenhouse gas
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emissions, continues to motivate research directed
toward renewable fuels. Biofuels such as ethers, es-
ters, and alcohols are discussed as additives or re-
placement fuels [1]. Diethyl ether (DEE), available
via dehydration of ethanol over solid acid catalysts,
is considered as a promising biofuel [2,3]. DEE has
several favorable properties for diesel engine com-
bustion including a high cetane number (>125) and
energy density (33.9 MJ/kg), more favorable than
that of dimethyl ether (28.6 MJ/kg), broad flamma-
bility limits, and high miscibility with diesel fuel
[3]. Unfortunately, only limited investigations on
the combustion chemistry of DEE have been per-
formed, including measurements of ignition delay
times [4,5], species profiles from pyrolysis and a
non-premixed flame [5,6], and flame speeds [7-9].
Data are particularly scarce regarding species pro-
files in DEE combustion. Especially intermediate
species profiles in laminar flames are known to pro-
vide a stringent test for kinetic models that may
then be used for the prediction of pollutant emis-
sions. To the best of our knowledge, quantitative
sets of species profiles in premixed DEE flames are
not yet available. We have thus studied the combus-
tion chemistry of DEE in a fuel-rich low-pressure
laminar premixed flame by investigating a full set
of species profiles with a combination of advanced
analytic techniques. To broaden the available pa-
rameter range, we also measured the laminar flame
speeds of DEE in a constant-volume chamber at
elevated pressure. A new detailed kinetic model re-
lying on a systematic analysis of DEE radical re-
actions is proposed to describe the combustion of
DEE, in particular with respect to intermediates
and pollutant formation.

2. Experiments and Modeling
2.1. Flame experiments

A fuel-rich (¢ ~1.8, C/O~0.52) premixed
flame of DEE/oxygen/argon (17.3%/57.7%/25%)
was stabilized on a home-made flat burner
(McKenna type) of 64mm diameter (Biele-
feld) at 4kPa, with a cold gas velocity (333K,
4kPa) of 73cm/s and an overall mass flow rate
of 4.35x 1073 g/(cm? s). Adapted conditions to
provide the same mass flow rate were applied with a
McKenna burner of 60 mm diameter at the Taiwan
Light Source. An EI-MBMS-GC setup (Bielefeld)
was used, complemented with a VUV-PI-MBMS
system (Taiwan), to provide a detailed chemical
analysis of stable and reactive species together with
isomer identification.

2.2. EI-MBMS-GC experiment
A detailed description of the experimental setup

is given elsewhere [10]. In brief, gas samples were
extracted from the flame by a quartz cone (300 um

orifice, 25° opening angle) and transferred into a
molecular beam, then directed through a copper
skimmer to the ion source of the mass spectrome-
ter. The two-stage Wiley-McLaren ion source with
a reflectron time-of-flight (TOF) detection unit pro-
vides a mass resolution of m/Am ~ 4000, enabling
the determination of the exact elemental compo-
sition of C/H/O species. Soft ionization energies
(10.0, 11.5, 13.0 eV for intermediates, 16 and 18 eV
for main species) were used to minimize undesired
fragmentation. Ions were detected using a multi-
channel plate (MCP) with a multichannel scaler for
data recording. The mole fraction evaluation fol-
lowed previously reported procedures [10]. Com-
bined with a gas chromatograph equipped with an
Alumina BOND/Na,SO, column, the setup was
able to distinguish stable hydrocarbon isomers to
provide supplemental information for the evalua-
tion of the EI-MBMS data, which was done us-
ing the cross section of the dominant isomer. The
same MCP of the EI-MBMS setup was used to de-
tect species of the GC effluent. Generally, in the
EI-MBMS experiment the error is <30% for di-
rectly calibrated species, and below a factor of 2 for
species calibrated with the convolution procedure
[10]. For radicals for which the relative ionization
cross section (RICS) procedure [11] was used, the
error is estimated to be in the range of factors of
2-4. The flame temperature was derived from the
pressure in the first pumping stage and calibrated
at 20 mm above the burner by OH planar laser-
induced fluorescence without the sampling nozzle
present [12].

2.3. VUV-PI-MBMS experiment

Information regarding the identification of oxy-
genated isomers that could not be separated by the
present GC setup was obtained using a VUV-PI-
MBMS instrument. A detailed description can be
found elsewhere [13]. In brief, this system includes
modules devoted to sampling and ionization; ion
transfer and storage; and ion detection, the lat-
ter housing the TOF-MS with a mass resolution
of m/Am ~ 3500 and a detection limit of <1 ppm.
Samples were withdrawn from the flame by a quartz
nozzle (400 wm orifice, 25° included angle) to form
a molecular beam which was then intersected and
ionized by the tunable VUV synchrotron radiation
with energy resolution of E/AFE ~ 1000 and average
photon flux of ~10'? photons/s.

2.4. Flame speed experiments

Laminar flame speeds of DEE were measured
in a heated high-pressure, constant-volume cylin-
drical chamber. Mixtures of DEE/oxygen/nitrogen
(4.43%/18.99%/76.58%) at ¢ =1.4 were studied
with an initial gas temperature of 298 K for pres-
sures of 101, 203, 304, 405, and 507 kPa, respec-
tively. Details of the apparatus and procedures
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were described elsewhere [14]. In brief, the cylin-
drical chamber was housed in an oven and filled
with a quiescent combustible mixture and then cen-
trally ignited. The unsteady flame front time history
was measured directly using high-speed Schlieren
imaging. The time-dependent flame front location
data were analyzed by using an automated flame-
edge detection and circle-fitting program. The un-
stretched flame speed relative to the burned gas
(Sbo) was calculated using the extrapolation proce-
dure described in [14], and this extrapolated flame
velocity was converted to the unstretched propaga-
tion speed relative to the unburned gas (S,) us-
ing the density ratio calculated by CHEMKIN [15].
The uncertainty of the measured flame speed is be-
low 10%.

2.5. Model development and simulations

A preliminary analysis with the solely available
model by Yasunaga et al. [5] showed that the de-
composition of the DEE radicals is an essential
part of its flame chemistry, hence good kinetic data
for these reactions are needed. However, the Ya-
sunaga model was largely constructed using es-
timated rate constants for the primary reactions.
We have therefore used a more accurate quantum
chemistry computation method, i.e. CBS-QB3, to
determine rate constants for several important re-
action classes and thermochemical data of related
species. Note that while several low-temperature-
chemistry studies were reported for the reaction
schemes or reaction rate constants of DEE and
its radicals [16-18], only very scarce kinetic data is
available for the high-temperature oxidation of this
fuel.

Thermochemical data for DEE, DEE radicals,
and species in the oxidation pathways were ob-
tained from quantum chemistry calculations in
the present work or relied on recent results of
[19]; these results are provided in Section S.I.1
in Supplemental Material 1. The formation en-
thalpies for DEE and the C;H;OCHCH; radical
calculated in the present work are in good agree-
ment (within 1 kcal/mol) with values in the liter-
ature [5,20,21]. A slightly higher discrepancy of
1.54 kcal/mol is noted between the formation en-
thalpy of the C;HsOCH,CH, radical from Ya-
sunaga et al. [5] and the value in the present work,
which is, however, in good agreement with that in
Burcat’s database [20].

The new DEE sub-mechanism contains the
following major classes of elementary reactions:
(1) unimolecular decomposition, (ii) H-atom ab-
stractions, (iii) fuel radical isomerization, (iv) fuel
radical decomposition by C-O and C-H bond
B-scissions, (v) fuel radical oxidation, (vi) fuel
radical-radical disproportionation forming ethyl
vinyl ether (EVE, C4HgO), and (vii) consump-
tion reactions of primary products. These reac-
tion classes have been thoroughly discussed for sev-

eral fuels in previous studies [22,23]. Some of these
classes, ie. (iii), (vi), and C-H bond gB-scissions
yielding EVE were not included in the Yasunaga
mechanism [5]. Important pathways of DEE com-
bustion are summarized in Fig. 1. Rate constants
for C-O and C-H bond g-scissions (channels Ia,
Ic, Ila, and Ilc in Fig. 1) and isomerization (chan-
nel "iso") were calculated here using the CBS-QB3
method; details of the used CBS-QB3 approach are
given in [24]. The present model has used high-
pressure limiting rate constants for the unimolec-
ular decomposition reactions of the fuel radicals.
This is justified by the very low decomposition
barriers which are rapidly overcome at the high
temperatures of the flame. More information is
available in Section S.I. of Supplemental Mate-
rial 1. The rate constant for C-O bond g-scission
of C;HsOCHCH; calculated here is ~700 times
slower at 1200 K than that in the Yasunaga model.
The DEE radical oxidation by O, (Ib, IIb) can lead
to the formation of EVE via ethoxyethylperoxy
radicals. The role of this reaction class has recently
been identified in the low- and high-temperature
oxidation of alcohols[23,25]. Rate constants for re-
actions in these oxidation routes recently calculated
by Sakai et al. [19] for the temperature range 500
2500 K are adopted in the present model.

Together with the reactions of the DEE radi-
cals described above, H-abstractions from DEE by
H and OH play an important role in DEE com-
bustion. H-abstractions by H-atom have also been
investigated here for both o and B positions (see
definitions in Fig. 1) to obtain reliable rate con-
stants and branching ratios, while those for H-
abstractions by OH are based on theoretical work
by Zhou et al. [26]. Note that the Yasunaga model
[5] also used the kinetic data from [26], but with an
erroneous sign for the activation energy of chan-
nel I (4040 cal/mol instead of —4040 cal/mol). Rate
constants of H-abstractions by H-atom calculated
here are about two times slower at 1200 K than
those in the Yasunaga model [5]. Additional infor-
mation on the thermochemical data and rate con-
stants calculated in the present work is available in
Supplemental Material 1.

Pressure-dependent rate constants for the uni-
molecular decompositions of DEE were taken
from Yasunaga et al. [5]. Missing C—H bond scis-
sions were added with estimated rate constants
of 1 x 10" cm?/mol s for the recombination of
H-atoms with the DEE radicals. The DEE sub-
mechanism has been added to the recently updated
NUIG database [27] without any changes to en-
sure internal consistency. Reactions of most of the
primary products (ethylene, acetaldehyde, ethanol,
formaldehyde, etc.) are already included in the re-
action base and decomposition reactions of ethyl
vinyl ether have been taken from [24]. Reactions of
some products involved in low-temperature oxida-
tion were newly added, and high-pressure limiting
rate constants were used for unimolecular initiation
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Fig. 1. Important DEE reaction pathways. Percentages given are relative rates of consumption of a species in the present
low-pressure flame, analyzed in the region of 0-100% fuel conversion. Pathways indicated by dashed lines were not con-

sidered in the Yasunaga model [5].

reactions. However, previous work [24] demon-
strated that the latter reaction class has minor im-
portance under premixed flame conditions. More-
over, successions of H-abstractions/g-scissions of
low-temperature oxidation products were written
as irreversible since the reverse rate constants can-
not be calculated from the global equilibrium con-
stants. Transport properties of species for which
no data is available in the literature were estimated
based on the correlations proposed by Wang and
Frenklach [28]. The complete reaction mechanism
for DEE combustion includes 2385 elementary re-
actions among 380 chemical species and is avail-
able in CHEMKIN format together with thermo-
dynamic and transport properties in Supplemental
Material 2.

Prior to applying the newly developed kinetic
model to simulate the current experimental data,
it was tested against several datasets published in
the literature, measured in non-premixed flames
[6], pyrolysis experiments [5], and including igni-
tion delay times [4,5] and flame speeds [7], with
encouraging results (see Supplemental Material 1,
Section S.I.2.). Simulations were performed us-
ing CHEMKIN [15] for premixed flames and
OpenSMOKE++ [29] for other configurations.

3. Results and discussion
3.1. Species profiles in premixed low-pressure flame
In this study, more than 40 species, including

reactants, products, stable intermediates, and
radical species, were identified and quantified.

Temperature and mole fraction profiles of the
main species (DEE, O,, Ar, CO, CO,, H,0, and
H,) as a function of the distance above the burner
(h) as well as species mole fractions with the re-
spective calibration method, electron energy, and
literature ionization threshold for each intermedi-
ate are available in Supplemental Material 1, Fig.
S12 and Table S4. Isomer identification is provided
in Section S.II.2. Fig. S12 shows that DEE is fully
consumed at /2 > 3.5 mm. The mole fractions of the
main species at # = 30 mm are close to equilibrium
values.

In the following, we discuss selected intermedi-
ate species, with a special focus on primary species,
defined as those produced directly from the fuel
or from its radicals. The discussion includes the
comparison of experiments and predictions by the
present kinetic model and that of Yasunaga et
al. [5] and analyzes the degradation pathways of
DEE together with the formation of intermediates.
Figs. 2-4 display mole fraction profiles of selected
labile and stable intermediates in the range of C;—
Cs. Overall, they show reasonable agreement, espe-
cially with respect to the peak locations and pro-
file shapes, between experiment and predictions by
both models. Note that the present model predicts
also well the pyrolysis and ignition delay time data
of Yasunaga et al. [5] as mentioned earlier.

The performance of the present model can be
further analyzed regarding the degradation path-
ways of DEE. Fig. 1 includes a rate-of-production
(ROP) analysis with this model for DEE con-
sumption, globally performed in the region of 0-
100% fuel conversion. Under these conditions, H-
abstraction reactions are responsible for ~95% of
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Fig. 2. Mole fraction profiles of “direct” primary species: C;Hs, Co;H40, C,Hy, CoHsO, C4HgO. Symbols: experiment,
thick lines: present model, thin lines: Yasunaga model [5]. For clarity, the indicated multiplication factors have been used

(for experiments and both models) for C;Hs and C,H5O.

total DEE consumption. H-abstractions by flame-
propagating radicals mainly (~76%) occur at the
C,, position of DEE (see Fig. 1) because of its
lowest C—H bond energy (96 kcal/mol), yielding the
C,HsOCHCHj; radical. H-abstractions from the
C_s positions (C-H bond energy of 103 kcal/mol)
producing the C,HsOCH,CHj, radical account for
~19% of total DEE consumption. Both fuel radi-
cals, i.e. C HsOCHCH; and C,HsOCH,CH,, re-
act largely by C-O bond B-scission leading to
the formation of acetaldehyde (CH3;CHO)+ ethyl
(C,Hj5) and ethylene (C,Hy) + ethoxy (C,H5O), re-
spectively. Another fraction of these two fuel rad-
icals is consumed by oxidation, disproportiona-
tion, and C-H bond B-scissions producing EVE,
which is consumed by H-abstraction and retro-ene
reactions. Note that the four-centered elimination
DEE(+M)— C,HsOH+C,H4(+M) (not shown in
Fig. 1) plays only a minor role (<2%) in DEE con-
sumption in the present low-pressure flame.
Species produced directly from the two DEE
radicals via B-scissions (here called “direct” pri-
mary intermediates) are presented in Fig. 2. C;H,O
and C,H,4 were measured with very high mole frac-
tions of 1.05 x 1072 and 3.53 x 1072, respectively.
By VUV-PI-MBMS, C,H,O was identified as ac-
etaldehyde (~95%) and vinyl alcohol (~5%), see
Fig. S14. C4HgO (Fig. 2¢) was evaluated as EVE
and is present at lower concentration than C,H,O
and C,H,. It is important to note that the pho-
toionization efficiency (PIE) spectra of m/z="72
from VUV-PI-MBMS show a clear onset near the
IP of EVE (8.98 eV [21], see Fig. S14). Although
the formation of EVE accounts for only ~5% of
the consumption of the fuel radicals, this interme-
diate species is important because it is a primary
fuel destruction product that was unambiguously
identified for the first time in DEE combustion.
C,Hs and C,H;50 were detected at much lower con-
centrations (see Fig. 2) because of their high re-

activity. However, their subsequent reactions con-
tribute significantly to the formation of further im-
portant intermediates. C,Hs reacts with H to pro-
duce CHj; that in turn reacts with H or HCO, con-
tributing with ~55% to the formation of CHy4. The
latter species was measured with a high mole frac-
tion of 1.9 x 1072, Other reactions of C,Hs par-
tially contribute to the formation of C,Hy (by C-
H bond g-scission, oxidation, or disproportiona-
tion), C;Hg (by recombining with H-atom), C3Hg
(by recombining with CHj3), and C4H( (by self-
recombination). These species, which are presented
in Fig. 3, are overall reasonably predicted by the
present model. C4H;y was identified by GC to be
exclusively n-butane. C;H50 in turn decomposes
mainly into formaldehyde (CH,0O) and CH; by C—
O bond g-scission. The C,H;O radical also recom-
bines with an H-atom to produce ethanol (C,H¢O).
Under the present flame conditions, these two path-
ways contribute significantly to the formation of
formaldehyde (~60%) and ethanol (20%), respec-
tively. Formaldehyde was detected with a high mole
fraction of 1.2 x 1072 (see Fig. 3e).

The mole fractions of several other C;—Cg4 prod-
ucts including radical and stable species are pre-
sented in Fig. 4. These species are produced mainly
by secondary reactions, as supported by the ROP
analysis from the kinetic model. The correspond-
ing reactions are part of the base mechanism and
not the focus of this work. Since acetaldehyde
is a dominant primary species of DEE combus-
tion, its decomposition contributes to the forma-
tion of several species, detected in the present flame,
as discussed hereafter. Methanol (CH4O) with a
measured mole fraction of 7.9 x 10~* (Fig. 4a) is
mainly produced by the disproportionation reac-
tion of two CH;0, and by H-abstractions from ac-
etaldehyde by CH;O. The profile of C3H¢O is also
shown in Fig. 4a as a sum of propanal and acetone;
both isomers were identified by VUV-PI-MBMS.
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Fig. 3. Mole fraction profiles of further important species: CH3, CHy4, C,Hg, C3Hg, C4H o, CH,0, C;HgO. Symbols:
experiment, thick lines: present model, thin lines: Yasunaga model [5]. For clarity, a multiplication factor of 2 has been
used (for experiments and both models) for C3Hg.
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Fig. 4. Mole fraction profiles of other labile and stable intermediates in the C;—Cg range. Symbols: experiment, thick
lines: present model, thin lines: Yasunaga model [5]. For clarity, the indicated multiplication factors have been used (for
experiments and both models) for some species, with the exception of C3Hjz and C¢Hg for which only the simulation with
the present model was multiplied by 0.2 and 20 respectively.
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According to the model, the formation of propanal
and acetone mainly results from combination of
CH; with the acetaldehyde radicals CH,CHO
and CH;CO (i.e. CH3+CH,CHO<=C,HsCHO,
CH;+CH;CO=C,HgCO). The profile for the
sum of these acetaldehyde radicals (C,H;0) is
presented in Fig. 4b, together with that for
ketene (C,H,O) which is produced mainly from
CH;CO+CH;5C,H,0+CHy. The prediction for
ketene is clearly better in the present model. Small
C,—Cg soot precursors are also presented in Fig. 4.
CsHg (1,3-cylopentadiene), CsH; (cylopentadienyl
radical), and C¢Hg (benzene), known as impor-
tant cyclic soot precursors, were detected at low
mole fractions (<1073), while smaller species in-
cluding C,H, (Fig. 4¢), CsHy, and C;H¢ (Fig. 4d)
are present in the 1072-10~* range. According to
the GC analysis, allene and propyne are identified
for Cs;H, isomers with propyne as the most abun-
dant one. C4Hg is for a large part 1,3-butadiene,
and C4Hg is predominantly 1-butene. The present
model also predicts these trends (see Table S5),
while the Yasunaga model [5] does not include re-
actions for the formation of hydrocarbon species
from Cy4. Fig. 4f shows the peak location of C¢Hg to
be closer to the burner than that of C;H; (propar-
gyl). Although an under-prediction is noted for
benzene, the model represents this trend in peak
locations, indicating that the main route of ben-
zene formation is likely not propargyl recombina-
tion. Benzene is predicted to be largely produced
by the recombination of an H-atom and the C¢Hj;
radical or C3;H; and C;H;5 radicals. Because of its
very low mole fraction (<107°), benzene was dif-
ficult to be well predicted by the present model
(under-prediction by a factor of ~20), however,
with higher concentrations, e.g. in sooting flames,
its prediction could be expected to be improved.

3.2. Flame speeds at elevated pressure

To study the DEE high-temperature reaction
chemistry at elevated pressures, flame speeds of

DEE were measured at an initial temperature of
298 K for ¢ ~ 1.4 at pressures of 101, 203, 304,
405, and 507 kPa. The results are presented in
Fig. 5a along with predictions by the present ki-
netic model. The flame speed decreases with in-
creasing pressure, a trend well captured by the
present model which, however, under-predicts the
absolute flame speeds by ~16%. The predicted
flame temperature rises only slightly with increas-
ing pressure. Sensitivity analyses (not shown) in-
dicate that the kinetics of small species control
the flame speed at all studied conditions. The
chain-branching reaction of O, with H, produc-
ing OH and O (O,+HSOH+0) promotes the re-
activity significantly, while the three-body termi-
nation reaction H4+CH;3(+M)=CHy4(+M) has the
largest effect on the reduction of flame propaga-
tion, especially at high pressures, since this reac-
tion reduces the H-atom concentration and com-
petes with the former. No large sensitivity was seen
for the primary reactions involving DEE decom-
position and oxidation. Hence, the observed de-
viations between model and experiment could re-
sult from uncertainties in the small-species kinetics
in the base mechanism and/or in the experiment.
Note that the present model well predicts the flame
speed data by Gillespie et al. [7] (Fig. S11). Dif-
ferent uncertainties of the two setups and differ-
ent sensitivities of the model under the two differ-
ent inlet conditions could contribute to the noted
discrepancies.

The ROP analysis in Fig. 5b indicates that a
large part of DEE is consumed by H-abstractions
by flame-propagating radicals, especially with H
and OH. This trend is similar to that observed in
the low-pressure flame described earlier. Note that
the contribution of the four-centered elimination
DEE(+M)—C,Hs+C,HsOH(+M) and the C-
O bond scission DEE(+M)— C,Hs+C,HsO(+M)
to the DEE consumption increases with in-
creasing pressure, suggesting that the distribution
of ethanol and acetaldehyde will change with
pressure.
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4. Summary

The high-temperature combustion chemistry of
DEE was investigated experimentally with a focus
on obtaining quantitative species profiles at flame
conditions. More than 40 species were identified
and quantified in a low-pressure fuel-rich (¢ ~ 1.8)
premixed flame using EI-MBMS-GC, comple-
mented with VUV-PI-MBMS. The data provides a
good basis for model development and examina-
tion. Furthermore, high-pressure flame speeds of
DEE were determined at an initial gas temperature
of 298 K, at ¢ = 1.4, from 101 to 507 kPa. The ob-
tained experimental results were compared to pre-
dictions with a newly developed detailed kinetic
model that contains systematically updated ther-
mochemical and kinetic data from dedicated CBS-
QB3 calculations. Reasonable agreement between
experiment and predictions by the proposed mech-
anism was observed. Acetaldehyde, known as car-
cinogen for humans, was detected at high amounts,
in agreement with the model prediction. It is seen
to be largely produced from the dominant pathway
of DEE consumption via H-abstractions followed
by B-scissions. However, cyclopentadiene and ben-
zene, known as important soot precursors, were
measured at low mole fractions (<10~°). The DEE
flame speed was observed to decrease with increas-
ing pressure, and it is affected strongly by the ki-
netic of small species. The present study demon-
strates that at all pressures investigated, DEE con-
sumption is mainly controlled by H-abstractions
by H and OH and subsequent decomposition of
the fuel radicals. Theoretical calculations were used
in particular to determine reliable rate constants
and branching ratios for these reactions. Among
the unimolecular pathways, only the four-centered
elimination and the C—O bond scission contributed
to a minor degree to DEE consumption, and this
contribution increases with pressure.
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Abstract

Diethyl ether (DEE) and its isomer n-butanol are both considered as promising fuel
additives or neat biofuels. While some effects of their addition to hydrocarbon fuels under
engine conditions have been reported, fundamental studies that aim at understanding the
joint reaction pathways of such fuel mixtures remain quite scarce. Here, we have chosen
n-butane as a well-studied hydrocarbon base fuel, and we have added these oxygenated
isomers individually under identical conditions in premixed low-pressure flames. Different
combustion behavior of the respective alkane-biofuel mixtures must then be related to the
fuel structure. Analyses were performed in five fuel-rich flames including flames of n-butane,
DEE, and n-butanol as well as two flames of n-butane doped with 50% DEE or 50% n-
butanol. In this series, the carbon-to-oxygen ratio, argon dilution, pressure, and gas velocity
were kept constant. More than 40 species in the range of Cy-Cg were identified and quantified
in each flame by electron ionization (EI) molecular-beam mass spectrometry (MBMS)
coupled with gas chromatography (GC). The experiments were partially complemented by
tunable synchrotron vacuum ultraviolet (SVUV) photoionization (PI)-MBMS. To assist
in the interpretation of the data, a kinetic model was established by combining different
sub-mechanisms for these fuels available in the literature. As expected, the formation
of toxic carbonyls, such as formaldehyde and acetaldehyde, increased significantly upon
addition of both oxygenated fuels to n-butane. Blending n-butane with DEE noticeably
reduces the formation of soot precursors, because primary reactions of DEE mainly release
C;-C, hydrocarbon species to the system. n-Butanol addition, however, shows no significant
reduction effects or even higher formation of soot precursors. These trends were observed
both in the experiments and model predictions, and the higher ability of n-butanol to form

1 Zu dieser Publikation ist Supplemental Material online unter
http://doi.org/10.1016/j.combustflame.2016.06.031 verfiigbar.
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soot precursors compared to DEE indeed results mainly from the differences in the fuel
structure.
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Diethyl ether (DEE) and its isomer n-butanol are both considered as promising fuel additives or neat bio-
fuels. While some effects of their addition to hydrocarbon fuels under engine conditions have been re-
ported, fundamental studies that aim at understanding the joint reaction pathways of such fuel mixtures
remain quite scarce. Here, we have chosen n-butane as a well-studied hydrocarbon base fuel, and we
have added these oxygenated isomers individually under identical conditions in premixed low-pressure
flames. Different combustion behavior of the respective alkane-biofuel mixtures must then be related to
the fuel structure. Analyses were performed in five fuel-rich flames including flames of n-butane, DEE,
and n-butanol as well as two flames of n-butane doped with 50% DEE or 50% n-butanol. In this series,
the carbon-to-oxygen ratio, argon dilution, pressure, and gas velocity were kept constant. More than 40
species in the range of Cyo-Cg were identified and quantified in each flame by electron ionization (EI)
molecular-beam mass spectrometry (MBMS) coupled with gas chromatography (GC). The experiments
were partially complemented by tunable synchrotron vacuum ultraviolet (SVUV) photoionization (PI)-
MBMS. To assist in the interpretation of the data, a kinetic model was established by combining different
sub-mechanisms for these fuels available in the literature. As expected, the formation of toxic carbonyls,
such as formaldehyde and acetaldehyde, increased significantly upon addition of both oxygenated fuels to
n-butane. Blending n-butane with DEE noticeably reduces the formation of soot precursors, because pri-
mary reactions of DEE mainly release C;-C, hydrocarbon species to the system. n-Butanol addition, how-
ever, shows no significant reduction effects or even higher formation of soot precursors. These trends
were observed both in the experiments and model predictions, and the higher ability of n-butanol to
form soot precursors compared to DEE indeed results mainly from the differences in the fuel structure.
© 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

reduce greenhouse gas emissions continues to motivate research
towards renewable fuels such as alcohols, esters, and ethers [5-7].

More than 90% of fuels consumed world-wide today are
petroleum-based. The demand for transportation energy is rising,
and most of this increase comes from heavy-duty-diesel vehicles
[1]. As is well known, soot emissions are an important problem of
diesel engines. Soot from fuel combustion has been demonstrated
to contribute to respiratory dysfunction, heart diseases, and lung
cancer [2-4]. Efforts are made to understand the formation process
of soot and its precursors and to develop new combustion tech-
nologies to reduce soot emissions. At the same time, the need to

* Corresponding author.
* Corresponding author. Fax: +49 521 106 6027.
E-mail addresses: fqi@sjtu.edu.cn (F. Qi), kkh@uni-bielefeld.de (K. Kohse-
Hoéinghaus).

http://dx.doi.org/10.1016/j.combustflame.2016.06.031

It has been shown that the addition of oxygenated compounds rep-
resented in biofuels to petroleum fuels is also a promising way to
reduce soot emissions [8-10].

Diethyl ether (DEE, C4H100) can be produced via dehydration
of ethanol over solid acid catalysts and is being proposed as a
promising biofuel [11-13]. Because of several favorable properties
for diesel engines, including a high cetane number (~125), a more
favorable lower heating value (LHV) of 33.9MJkg~! than that of
dimethyl ether (28.6 M] kg~1), broad flammability limits, and high
miscibility with diesel fuel, DEE has recently been examined as an
additive to diesel fuel [11-13]. Moreover, DEE is being considered
as an excellent ignition improver for homogeneous charge com-
pression ignition (HCCI) engines operated with biogas or liquefied
petroleum gas (LPG) [14,15]. In view of these interesting properties,

0010-2180/© 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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the combustion chemistry of DEE in fundamental experimental se-
tups has been increasingly investigated, including analysis of igni-
tion delay times [16,17], flames [18,19], and flame speeds [19,20].

n-Butanol, an alcohol and isomer of DEE, can be produced via
fermentation processes [21,22] and has been proposed as an alter-
native to conventional fuels [23], with a high LHV (~33.1 M]J kg~!)
and research octane number (~96) [7]. n-Butanol was studied as
a fuel or as a blending agent for use in spark ignition engines
[24,25] as well as in diesel and HCCI engines [26-29]. A large
number of fundamental studies on the combustion chemistry of n-
butanol have reported ignition delay times [30-32], species profiles
in premixed [33,34] and non-premixed flames [18,35], and flame
speeds [35,36], to name only some. A very detailed compilation of
previous studies on this fuel can be found in the review article on
alcohol combustion chemistry by Sarathy et al. [37].

Only a few comparative studies have recently become available
that evaluated the influence of DEE and n-butanol addition on the
performance and combustion characteristics of engines [13,38,39].
Rakopoulos [39] pointed out that with increasing percentage (up
to 24vol%) of DEE and n-butanol in blends with diesel, smoke
opacity, NOy, and CO were reduced, whereas unburned hydrocar-
bon emissions increased. Trends regarding DEE and n-butanol ad-
dition were quite similar, with n-butanol showing a slightly bet-
ter smoke reduction. Opposite effects were noted under the con-
ditions of [38] where DEE showed a more efficient smoke reduc-
tion, similar to the results by Imtenan et al. [13] for diesel and ja-
tropha biodiesel upon DEE or n-butanol addition, with a reduction
of smoke opacity of up to 27% by 10% addition of n-butanol and up
to 38.5% when adding the same amount of DEE.

To the best of our knowledge, fundamental studies that aim to
understand the cooperative combustion pathways in hydrocarbon
fuel mixtures blended with these two isomeric oxygenated fuels
are not yet available in the literature. We have thus studied the
influence of the addition of DEE and n-butanol to n-butane on the
reaction pathways and species pool under premixed low-pressure
flame conditions to enhance the understanding of such systems.

2. Experiments

The experiments were performed in laminar premixed flat
low-pressure flames using a combination of electron ionization
molecular-beam mass spectrometry coupled with a gas chro-
matograph (EI-MBMS-GC) in Bielefeld as described in [40-42],
complemented with synchrotron vacuum ultraviolet photoioniza-
tion molecular-beam mass spectrometry (SVUV-PI-MBMS) mea-
surements in Hefei following the procedures in [43-46], to provide
a detailed chemical analysis of stable and reactive species together
with isomer identification. The use of two different analysis tech-
niques is particularly useful since it allows an independent confir-
mation of the species concentrations quantified in both studies.

2.1. Flame conditions

Five fuel-rich flames, ie. n-butane/oxygen/argon (¢ =
1.7), n-butane/DEE/oxygen/argon (¢ = 1.75), n-butane/n-
butanol/oxygen/argon (¢ = 1.75), DEE/oxygen/argon (¢ = 1.8),
and n-butanol/oxygen/argon (¢ = 1.8) were investigated. Fuel-
rich conditions were chosen to obtain quantifiable amounts of
higher-mass soot precursor species to analyze potential interaction
effects from the species pools generated by the two different fuel
classes in flames of fuel mixtures. These flames were stabilized
on a home-made flat burner of 64 mm diameter (Bielefeld) at
identical pressure (4 kPa), argon dilution (25%), cold gas velocity
(73cms~! at 333K and 4kPa), and C/O ratio (0.52), resulting in
slightly different equivalence ratios ¢. Note that data obtained
in the DEE/oxygen/argon flame was partially included in our

previous study to test a newly-developed DEE model [19]. Because
experimental data for flames containing DEE is still scarce, the
DEE/oxygen/argon and n-butane/DEE/oxygen/argon flames were
also analyzed under similar conditions at the National Synchrotron
Radiation Laboratory in Hefei using SVUV-PI-MBMS to enhance the
reliability of the data. There, flames were stabilized on a commer-
cial stainless steel McKenna burner of 60 mm diameter. In both
experiments, calibrated mass-flow controllers established the gas
flows; liquid fuels were metered by a syringe pump, evaporated at
343-433K, and added to the gas stream. Flow rates were adapted
to obtain near-identical mass flux. Both burners were cooled with
water at a constant temperature of 333 K. Table 1 summarizes all
flame conditions, and it also introduces abbreviated names for
all flames that will be used in the following sections. Centerline
species profiles were measured as a function of height above the
burner h using the two MBMS setups described in the following
section.

2.2. Measurement procedures

2.2.1. EI-MBMS-GC experiment

A detailed description of the EI-MBMS-GC system can be found
elsewhere [40-42]. In brief, gas samples were extracted from the
flame by a quartz cone (0.3 mm orifice, 25° included angle) which
leads to an immediate quenching of the reaction due to the
expansion of the sample into the first pumping stage chamber
(10~>kPa). This preserves the gas composition of the sample and
enables the detection of reactive species such as radicals. The so-
formed molecular beam is then skimmed by a home-made cop-
per skimmer and passed into the ionization chamber (10~7 kPa).
Here the sample is crossed with a pulsed electron beam (10° elec-
trons/pulse) emitted by a tungsten filament of a two-stage Wiley-
McLaren ion source. The generated ions were extracted into a
time-of-flight mass analyzer, energetically focused by a reflectron,
then detected with a multichannel plate and counted with a multi-
channel scaler. This setup (Kaesdorf) enables high mass resolution
of m/Am ~4000 so that the exact elemental composition of C/H/O
can be determined for each species. Soft ionization energies (10.0,
11.5, 13.0 eV for intermediates, 16.0 and 18.0 eV for major species)
were used to minimize undesired fragmentation. Measured ion
signals were integrated by fitting Gaussian-shaped curves to the
signal peaks. Integrated signals were corrected for fragment ions
originating from the fuel itself and from intermediate species for
which a fragmentation pattern was obtained from cold-gas mea-
surements. Isotope corrections of 3C and 80 contributions were
also performed when necessary.

The coupled gas chromatograph enabled the identification of
stable isomers. To ensure direct compatibility of pure MBMS mea-
surements and GC-MBMS measurements, sampling was performed
directly from the flame environment. A low-pressure sampling in-
terface allowed transfer of a gas sample from the first pump-
ing stage into the high-pressure environment of the GC (130 kPa).
Here a temporal separation was performed with an Alumina
BOND/Na,S0O4 column (Restek GmbH) and an appropriate temper-
ature program (323 K hold for 2.5 min, heating rate 293 Kmin~! to
473 K, hold for 10 min), leading to a reasonable separation of hy-
drocarbons in the C;-Cg range. The outlet of the column was con-
nected to the ionization chamber so that full mass spectra could
be recorded as a function of the retention time. This simplifies the
assignment of occurring signals as chromatograms can be obtained
for each specific nominal mass. This procedure therefore presents
a significant advantage here over classical FID detection. Spectra
were averaged for 3.2s (0.05min) to improve the signal-to-noise
ratio but keep a maximum of time resolution. A resolving power
of 1.00 was achieved for trans-2-butene and 1-butene, which cor-
responds to a FWHM (full width at half maximum) of 0.05 min
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Table 1
Flame conditions. SLM: standard liter per minute, m: inlet mass flux.
Flame (abbreviated name) Gas flow rate (SLM) m(gem=2s-')  Ratio )
Ar 0, DEE n-Butanol  n-Butane C/H c/O0
n-Butane (Bu) 114 271 0.00 0.00 0.71 0.004013 040 052 170
n-Butane/DEE (Bu/DEE)? 114 267 037 000 0.37 0.004174 040 052 175
1.00 235 033 0.00 0.33 0.004174 040 052 175
DEE (DEE)? 114 263 079 0.00 0.00 0.004355 040 052 180
1.00 231 0.70  0.00 0.00 0.004355 040 052 180
n-Butane/n-Butanol (Bu/BuOH)  1.14 2,67 000 037 0.37 0.004174 040 052 175
n-Butanol (BuOH) 114 263 000 079 0.00 0.004355 040 052 180

2 Slightly different conditions with an Ar flow of 1.00 SLM were used in the PI-MBMS experiment.

for both signals. Retention times were measured with a precision
of +0.10 min. The GC data evaluation followed routines previously
described in [42]. Stable species were identified based on their in-
dividual retention times. Peak areas were integrated and normal-
ized by the individual ionization cross sections of the isomers to
obtain quantitative ratios.

2.2.2. SVUV-PI-MBMS experiment

Detailed descriptions of the apparatus can be found elsewhere
[43-46]. In brief, this MBMS system includes modules devoted
to sampling, ionization, ion transfer and detection. Flame species
were sampled from the flame by a quartz nozzle (0.4 mm ori-
fice, 30° included angle) to form a molecular beam. The molec-
ular beam was then intersected and ionized by the tunable VUV
synchrotron radiation with an energy-resolving power (E/AE) of
~4000 and an average photon flux of ~1.5 x 10!3 photons s~!.
The ions were transferred by an ion guide to a home-made reflec-
tron time-of-flight mass spectrometer with a mass-resolving power
(m/Am) of ~2500. Ion detection and spectra recording system are
similar to those in the EI-MBMS setup. Since all species of a nomi-
nal mass occur as a single peak, signals are integrated numerically.
Corrections for contributions of 13C and 80 isotopes from other
species are applied afterwards when necessary.

The methodology of species identification was previously re-
ported in [44-46]. Structural isomers were distinguished by mea-
suring photoionization efficiency (PIE) spectra, with uncertainties
in the determination of ionization energies of 4-0.05 and +0.10eV
for strong and poor signal-to-noise ratio, respectively.

Isomer identification by SVUV-PI-MBMS together with that by
GC described above have provided useful information for the eval-
uation of the EI-MBMS data, which was done using the cross sec-
tion of the most dominant isomer.

2.2.3. EI- and PI-MBMS data evaluation

The evaluation of the molecular-beam experiment follows rou-
tines previously reported in [41-46]. For both experiments, ion sig-
nals were recorded as a function of their flight time and assigned
to their exact mass by a second-order polynomial mass calibration.
The integrated ion signal S; of a species i is directly proportional to
its mole fraction x;, as described by Eq. (1).

Sl-:x,--c~SW~Dl-~<p~FKT(h)~/ai(E)~f(E—r)dr (1)

Here ¢ is an instrument factor, SW is the number of sum-
marized spectra (sweeps), D; is the mass discrimination factor of
species i, ¢ is the number of ionizing particles (electrons or pho-
tons), FKT is a temperature- and thus position-dependent sampling
function, o(E) is the electron ionization or photoionization cross
section of species i at the energy E, and f(E-t) is the energy distri-
bution of the ionizing particles with 7 being the integration vari-
able. Note that for the photoionization approach, due to a narrow
energy distribution, the integral simplifies to o;(E).

Eq. (1) can be simplified if the signal can be referenced to an-
other species R (usually argon) of known mole fraction in the same
measurement:

S _xi D Joi(E) - fE-7)dT X

S "% De JoB) fE-ndr xg r® (2)

Here the species-related terms can be condensed into a cali-
bration factor k. For major species (namely, fuels, O,, Ar, Hy, H,0,
CO, and CO,), their mole fractions were determined in both exper-
iments based on the elemental C, H, and O balances derived from
the exhaust gas, also considering early reactant consumption at the
burner surface from the inlet conditions. Associated errors in mole
fractions of these major species are typically < 30%.

For intermediate species, as a consequence of the characteristics
of the two ionization methods, different approaches were used for
quantification of these species as described below.

The broad energy distribution of the electrons in the EI-MBMS
experiment allows the detection of argon even at very low nominal
ionization energies. Thus Eq. (2) can be used once the calibration
factor for the specific, nominal electron energy is known. Calibra-
tion factors for intermediate species with argon as the reference
(kijar) were obtained by direct cold-gas calibration measurements
whenever stable gaseous cold-gas mixtures are feasible. In all other
cases, calibration factors were estimated using either the relative
ionization cross section method (RICS) [47], assuming the similar-
ity of the shape of the electron ionization cross sections of struc-
turally similar species, or the convolution of the literature ioniza-
tion cross sections with the known energy distribution of the ion-
izing electrons [42]. Generally, the error is <30% for directly cali-
brated species, and below a factor of 2 for species calibrated with
the convolution procedure. For radicals for which the RICS method
was used, the error is estimated to be in the range of factors of
2-4. Each species is associated with an individual absolute uncer-
tainty. However, this uncertainty for a given species is identical for
all measured flames and therefore, relative comparison of trends
between the flames can be performed with significantly higher
precision. Indeed, from four-fold repetition of flame measurements,
the relative error between raw signal profiles was determined to
be < 5%; however, when fuels are different, fragmentation correc-
tion processes could increase this value.

In the PI-MBMS experiment, SVUV-PI provides a very narrow
and accurate ionization energy distribution. However, the refer-
ence species argon has a very high threshold (15.759 eV), its sig-
nal is not present in every scan, and thus a different quantification
approach must be applied. Therefore, mole fractions were calcu-
lated from Eq. (1). For this calculation, the species-specific vari-
ables including cross section and mass discrimination factor as
well as the sampling function, photon flux, and instrument fac-
tor must be known. Mass discrimination factors were determined
experimentally. The product ¢c-FKT(h) was obtained from the ar-
gon signal (measured at 16.64 eV) and mole fraction profiles from
the major species calculation. When all necessary parameters of
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Eq. (1) are known, the relationship is used to calculate the inter-
mediate species mole fraction based on literature photoionization
cross sections. The lowest available photon energy above the ion-
ization threshold is used to determine the mole fraction profile
to minimize undesired fragmentation. If more than one species is
measured at a nominal mass, Eq. (1) is used in reverse to calculate
and subtract signal contributions from species with lower ioniza-
tion threshold. Typically the uncertainties are within 10% for major
species, within 25% for intermediates with known photoionization
cross sections (PICSs), many of which are available in the online
database [48], and a factor of 2 for those with estimated PICSs.

The respective calibration method, electron/photon energy, ion-
ization threshold, and references for the electron ionization and/or
photoionization cross section for each intermediate species are
summarized in Tables S1 and S2 (EI-MBMS experiment) and Table
S3 (PI-MBMS experiment, compared to EI-MBMS) of Supplemental
material 1. All experimentally obtained data is also presented in
Supplemental material 3.

2.2.4. Flame temperature measurement

The temperature profiles of the flames in Bielefeld were deter-
mined based on the temperature dependence of the sampling rate
through the probe orifice accounting for the distortion caused by
the sampling cone. Assuming a constant pumping speed, the gas
flow rate through the sampling orifice can be expressed by the
pressure of the first-stage chamber (p;s) [49]. This dependence is
given by

)4 2 ‘
p1se =C- MT : ()/-i-l) (3)

with Z=(y +1)/2(y - 1). M is the mean molar mass, y is the adi-
abaticity coefficient (Cp/Cy), close to unity and therefore set equal
to 1, and C is a temperature-independent device-specific constant.
The latter parameter was determined by solving Eq. (3) using the
exhaust gas temperature measured without the sampling cone by
OH planar laser-induced fluorescence described previously [50].

The method used for flame temperature measurement in Hefei
was previously described in [51]. Briefly, the temperature profiles
were measured by a Pt-6%Rh/Pt-30%Rh thermocouple of 0.1 mm in
diameter, coated with Y,03-BeO anti-catalytic ceramic, and were
corrected for the radiative heat loss and the cooling effects of sam-
pling nozzle.

The uncertainty of the measured temperature is estimated to be
=+ 5%. The temperature profiles are used as input parameters in the
flame model simulations without any shift between measurement
and computation. Temperature profiles are available together with
the experimental data sets in Supplemental material 3.

3. Kinetic model

To facilitate interpretation of the obtained experimental results
and to elucidate potential interaction between the species pools
from the different fuels in the mixtures, a kinetic model has been
established by combining different sub-mechanisms available in
the literature. The complete version of the model includes 2385
elementary reactions among 380 chemical species; it is available
in CHEMKIN format together with thermodynamic and transport
properties in Supplemental material 2.

The reaction database of the NUI-Galway group, recently given
in [52,53], was used as a core model. This database has been gen-
erated in a hierarchical way, based on AramcoMech1.3 [54], and
contains already reactions of Cy—Cg species, including also the bu-
tane isomers. For those it has been validated against a lot of ref-
erences [55-58]. Reactions of toluene and ethylbenzene [59] were
additionally taken from the same group to keep consistency with

the core model. To represent the combustion reactions of n-butanol
and DEE, the sub-mechanism (136 reactions) of n-butanol pro-
posed by Sarathy et al. [60], and that (142 reactions) for DEE re-
cently developed by Tran et al. [19] were combined with the core
model as such sub-mechanisms have not been included in the core
model before. Rate constants as well as thermodynamic and trans-
port properties in the original sub-mechanisms were used without
any change to ensure internal consistency. Decomposition reactions
of the fuel radicals of n-butane, DEE, and n-butanol produce some
common primary species, such as CHsz, Co;Hy4, CoHs (for all three fu-
els), C3Hg, and C4Hg (for n-butane and n-butanol), and their ther-
modynamic properties from the core model were used, noting that
they are fortunately consistent between the three databases; pri-
mary species are defined here as those produced directly from the
fuel or from fuel radicals. While it may already be challenging to
assess uncertainties for a given simulation for one fuel with a well-
described and validated model from the literature, we would like
to point out here that different sources of the sub-mechanisms and
the core model make it harder to quantify the uncertainty of the
combined model.

The n-butanol [60] and DEE [19] mechanisms have been pre-
viously examined against several experimental results such as ig-
nition delay times [16,17,30-32], data from premixed [33,34]| and
non-premixed flames [18,35], and flame speeds [20,36]. Note that
before adding the sub-mechanisms of DEE and n-butanol, the core
model described above has been tested against species profiles ob-
tained in the present premixed n-butane flame with good agree-
ment between simulations and experiments. As - to the best of
our knowledge - there are no experimental data on the mixtures
of n-butane with either DEE or n-butanol available in the litera-
ture, it was not possible to validate the combined model against
other experimental data. In order to check influences of individ-
ual sub-mechanisms on each other, simulations were performed
for the pure n-butane, DEE, and n-butanol flames using both the
combined model and the respective individual model. In general,
both simulations provided similar results (not shown in the paper).
An exception is the formation of ethanol and its related radicals in
the n-butanol simulations, for which increases of a factor of 3 and
30%, respectively, were noted when the DEE sub-mechanism was
added. n-Butanal produced from n-butanol radicals isomerizes par-
tially at high temperature to ethyl vinyl ether which decomposes
into ethanol and acetylene by retro-ene reactions. The latter re-
action was not included in the original n-butanol sub-mechanism,
but it is present in the DEE sub-mechanism. Therefore, the addi-
tion of the DEE sub-mechanism affects the formation of ethanol
in n-butanol simulations by the combined model. However, ac-
cording to the model, ethanol is present with low mole fractions
(<3 x 107°) in flames containing n-butanol, and does not occur as
primary species in the rate of production analysis of fuel decom-
position; therefore it does not significantly affect the overall per-
formance of the model.

It is important to note that this work does not attempt to
propose a new comprehensive model, but it uses rather a sin-
gle model version (in the following called the present model) to
analyze the combustion of the studied C4 fuels, including mix-
tures, in the present flame situation. Simulated results presented
in following sections are obtained from this model. Simulations
were performed using the PREMIX module of the CHEMKIN pack-
age [61] supplied with the inlet mass flux and composition,
combustion-chamber pressure, and the measured temperature pro-
file.

4. Results and discussion

In the following, flame temperatures and mole fraction profiles
of major species will be presented (Section 4.1). Then, reaction
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Fig. 1. (a) Flame temperatures (Bielefeld), (b) mole fraction x; profiles of major species as a function of height above burner h in the DEE flame, (c) major species in the
early stage (h = 0-8 mm) of the n-butane/DEE flame, (d-f) comparison of CO, H,, reactants, H,0, CO,, and Ar profiles in the five flames. Open symbols in (b-f): EI-MBMS
experiment, close symbols in (b,c): PI-MBMS experiment, lines in (b,c): present model simulation (using the temperature profiles measured in Bielefeld); open symbols with

crosses indicated at h = 32 mm in (b) are equilibrium values.

pathways involved in flames of fuel mixtures and selected inter-
mediates species profiles will be analyzed (Section 4.2). Finally, the
influence of DEE and n-butanol addition on the formation of pol-
lutants will be discussed in detail (Section 4.3).

4.1. Temperatures and major species

Figure 1 displays the temperature profiles measured in Biele-
feld for the EI-MBMS experiment for the five flames as well as
the mole fraction profiles of major species including reactants (n-
butane, DEE, n-butanol, and O,), diluent (Ar), and main products
(CO, CO,, H,0, and Hy) as a function of height h. As seen in Fig. 1a,
the stand-off distance of the flames increases in the order n-butane
< mixtures < oxygenated fuels, reflecting the differences in flame
speed. The maximum flame temperature slightly decreases in the
order n-butane (2485K) > mixtures (2420-2460K) > oxygenated
fuels (2420-2440K). This trend is in good agreement with the se-
quence of their adiabatic temperatures (2600K for the n-butane
flame, 2566-2571K for the mixture flames, and 2528-2540K for
the flames of the oxygenated fuels).

Synchrotron-based PI-MBMS measurements were performed
in Hefei for some conditions to support the EI-MBMS analysis.
Both experimental setups were completely independent, present-
ing slight differences in the flame stabilization and stand-off dis-
tances. The maximum temperatures measured in Bielefeld for the
DEE and n-butane/DEE flames were found to be ~180K higher
than those measured in Hefei (available in Supplemental material
3). This deviation is a result mainly from the difference of the two

flame setups and includes the experimental uncertainties of the
two temperature measurement methods. Data from PI-MBMS ex-
periments for DEE and n-butane/DEE flames are therefore added
for comparison in Fig. 1 b,c (filled symbols). It can be noted that
the flames are established at a slightly larger distance from the
burner in the PI-MBMS experiment, as a result from the above-
mentioned differences of the two setups, especially regarding the
sizes of the burners and sampling probes.

Good agreement within experimental uncertainties is found be-
tween PI-MBMS and EI-MBMS data and the simulation for the ma-
jor species. It should be noted in addition that simulations for the
PI-MBMS experiment using the respective Hefei temperature pro-
file (see Supplemental material 4) present similarly good agree-
ment to the Hefei experimental data, both with regard to the pro-
file position and mole fraction value. This behavior indicates that
the quality of the agreement between experiments and simulations
does not vary with the differences of the two used setups, show-
ing that the effects of the different probes and burners are mainly
thermal and that catalytic effects, wall reactions, or residual reac-
tions in the probe should be of minor importance.

The mole fractions of major species at h = 30 mm shown in
Fig. 1b are very close to equilibrium values (open symbols with
cross) calculated using Gaseq [62] for the respective flame temper-
ature. A comparison of the structure of all five flames is given in
Fig. 1 d-f, demonstrating that the trends of these major species
profiles are generally similar as a result of using an identical C/O
ratio for all flames. Differences in mole fraction profiles of re-
actants (fuels and 0,) in Fig. 1le reflect respective differences in
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Fig. 2. Rate of production analysis for the consumption of n-butane (NC4H;o), DEE, and n-butanol (NC4HgOH) in the mixture flames (¢ = 1.75) for a distance h~2.1-2.2 mm
corresponding to a temperature of ~1100 K and ~78% of fuel conversion. Percentages are relative rates of consumption of a given species. Species bordered by triple, double,
or single lines are primary species of all three fuels, of two fuels (n-butane and either oxygenated fuel), or of one fuel, respectively. Line thicknesses indicate specific reaction
steps (thick: H-abstractions from fuels, intermediate: S-scissions from fuel radicals, thin: further reactions from primary species). While isomerization reactions of fuel
radicals occur, these are not indicated for clarity. Respective bond energies are shown for DEE [19], n-butane (calculated from the thermodynamic data used in the present

model), and n-butanol [60].

initial inlet composition, necessary to match the identical C/O ra-
tio (compare Table 1).

4.2. Composition of the intermediate species pools

More than 40 intermediates, including stable and radical
species as well as different isomers, were identified and quanti-
fied in each flame. The peak mole fractions for important inter-
mediate species are summarized in Tables S1-S3 of Supplemental
material 1. The full datasets are available in Supplemental material
3. In the following, we concentrate on reporting important exam-
ples of species involved during the combustion/co-combustion of
n-butane, DEE, and n-butanol in the present flame situation.

4.2.1. Fuel destruction and primary species

To gain insight into the decomposition pathways of the stud-
ied C4 fuels in the mixture flames and to elucidate differences and
similarities in the composition of primary species when adding
the different oxygenated isomers to n-butane, rate of production
analyses (ROP) are presented in Fig. 2. These analyses were per-
formed using the present model to simulate the n-butane/DEE and
n-butane/n-butanol flames at h~2.1-2.2 mm, corresponding to a
temperature of ~1100K and ~78% of fuel conversion.

To emphasize common features as well as differences between
the mixture components and their decomposition products, Fig.
2 uses differently coded boxes to highlight primary species shared
by all three fuels (triple line), by the base fuel and one oxygenated
additive (double line), and those highlighted with a single line are
not shared between the base fuel and either oxygenated additive.

As can be seen, H-abstractions by flame-propagating radicals
(R) are responsible for approximately 99% of the total consump-
tion of n-butane, DEE, and n-butanol under these flame condi-
tions. Unimolecular initiation reactions including the dehydration

of n-butanol (i.e. four-center elimination of water) play only mi-
nor roles (<1%) at the ROP analysis conditions and are therefore
not shown in Fig. 2. However, at locations further from the burner
where temperatures are higher, the dehydration of n-butanol be-
comes important and contributes partly to the formation of 1-
butene as discussed below. In the case of n-butane and DEE, H-
abstraction reactions mainly occur at C2 positions followed by
those from C1 positions (Fig. 2), which is consistent with the dif-
ference in the dissociation energies of C-H bonds between C2
(95.7-97.9 kcal mol~!) and C1 (101.2-103.2 kcal mol-!) positions
(see Fig. 2). In the case of n-butanol, given its asymmetry, H-
abstractions can produce five different fuel radicals (C4HgOH-1,
C4HgOH-2, C4HgOH-3, C4HgOH-4, PC4H90), with the most impor—
tant H-abstraction occurring at C1 position because of its lowest
C-H bond energy (95.5 kcal mol~! [60]). Subsequent decomposition
of butyl radicals (PC4Hg, SC4Hg) releases only hydrocarbon species,
i.e. predominantly C;-C3 species including methyl (CHs3), ethylene
(CyHy), ethyl (CyHs), and propene (C3Hg). C4 hydrocarbon species
including 1-butene (C4Hg-1) and 2-butene (not shown in Fig. 2)
are also primary species but are formed by very minor channels
(<1%) of the n-butane radical consumption. When adding DEE to
n-butane, the composition of primary species will be modified be-
cause the decomposition of the DEE radicals (DEE-YL-1, DEE-YL-2)
leads to the simultaneous formation of both hydrocarbon and oxy-
genated species. Specifically, C-C B-scission of the DEE-YL-1 radical
yields C;H,4 and the ethoxy radical (C;Hs0) which in turn decom-
poses into formaldehyde (CH,0) and CH3, while decomposition of
the DEE-YL-2 radical produces C,Hs and acetaldehyde (CH3CHO).
DEE reactions mainly yield species smaller than C3, while C3 hy-
drocarbons are dominant primary species of n-butane decompo-
sition. Therefore, DEE addition will decrease hydrocarbon species
with three and more carbon atoms but increase C; and C, carbonyl
components.
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Fig. 3. Mole fraction profiles of selected primary species. Left: n-butane, middle: n-butane/DEE and DEE flames, right: n-butane/n-butanol and n-butanol flames. Open sym-
bols: EI-MBMS experiment, closed symbols: PI-MBMS experiment (only DEE and n-butane/DEE flames), thick lines: present model (using the temperature profiles measured
in Bielefeld). Note that experimental results have been connected by a spline function (thin lines) to guide the eye.

In the case of n-butanol addition, the fuel radicals again de-
compose simultaneously into hydrocarbon and oxygenated primary
species. However, in contrast to DEE, n-butanol reactions release
not only small hydrocarbon species in the C;-C, range (CHs, CyHy,
CyHs), but also C3 and C4 species (C3Hg, C3Hy, C4Hg-1). Further-
more, the nature of oxygenated species is different (Fig. 2). The
pool of primary hydrocarbon species from n-butanol decomposi-
tion seems to be analogous to that of n-butane, but n-butanol
additionally contributes numerous oxygenated intermediates such
as unsaturated alcohols (e.g., vinyl alcohol C;H30H and propenol
C3H5O0H) and radicals of saturated alcohols (e.g., hydroxyethyl rad-
icals C;H4OH and hydroxymethyl radicals CH,OH).

All species given in the boxes in Fig. 2 were detected in the
present experiments. Some important examples will be presented
below; further species mole fractions are available in Supplemental
materials 1 and 3. Figure 3 shows mole fraction profiles of C;Hy
(a primary species produced by all three fuels), C3Hg and C4Hg
(two shared primary species in the n-butane/n-butanol flame that
result only from n-butane in the n-butane/DEE flame, however),
and C,H,40 (the different isomers of which are formed as primary
species only by the respective oxygenated fuels and not from n-
butane). Examples for isomer identification by GC and PI-MBMS
are given in Table 2 and Fig. 4.

CyHy4 can be produced in several ways from both primary and
secondary reactions, and therefore its experimentally determined
peak mole fraction seems to be only slightly affected by the fuel
change (Fig. 3a-c). Similar observations can also be made for sev-
eral other small hydrocarbons given in Tables S1 and S2. A very
good agreement between EI- and PI-MBMS data is found for the

DEE and n-butane/DEE flames where both experiments were com-
pared. C3Hg and C4Hg mole fractions are affected differently when
n-butane is replaced by n-butanol, with a decrease of C3Hg and
an increase of C4Hg. These trends are well predicted by the model
(Fig. 3). The rate of production analysis in Fig. 2 shows that a large
part of n-butane is consumed leading to the formation of C3Hg,
while this species can be formed from n-butanol only by a channel
of lesser importance. Therefore, the formation of C3Hg should be
correlated with the amount of n-butane in the flame. Since C4Hg
formation is promoted from n-butanol, an opposite trend is noted.

Both GC and PI-MBMS analyses show that 1-butene is the most
abundant C4Hg isomer in all five flames; this was also confirmed
by the present model predictions (Table 2). The EI-MBMS signal
of C4Hg was thus calibrated as 1-butene. A similar trend favoring
1-butene was also noted for a fuel-rich n-butanol flame studied
previously [34], but in a similar n-butane flame, 2-butene (sum of
cis/trans isomers) was found to be slightly more abundant [63]. In
the present PI-MBMS experiment, cis and trans isomers of 2-butene
also cannot be separated because of their close ionization thresh-
olds. These two isomers are also not distinguished in the present
model. In the n-butane/DEE flame, both C3Hg and C4Hg cannot be
produced by the primary reactions of DEE. Therefore, mole frac-
tions of both species decrease significantly when DEE is used as
additive or as neat fuel, compared to neat n-butane and n-butanol
where C3Hg and C4Hg are primary products. These trends were
observed by both MBMS experiments and model predictions (Fig.
3). According to the PI-MBMS analysis, the two isomers of C;H40,
acetaldehyde (CH3CHO) and vinyl alcohol (C;H30H), are formed
in the DEE and n-butane/DEE flames, with acetaldehyde as the
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Table 2
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C4Hg isomer identification by EI-MBMS-GC (“GC”) and PI-MBMS (“PI”), compared to present model predictions (“Sim.”)
using the flame temperatures measured in Bielefeld. Simulations with the flame temperatures obtained in Hefei are
added for the DEE and n-Butane/DEE flames for comparison (right column). Numbers given are fractions (in %) of the
peak mole fraction of detected species, and those in bold font correspond to the most abundant isomers.

Detected species  Flame
Bu DEE Bu/DEE BuOH Bu/BuOH
GC Sim. GC PI Sim. GC PI Sim. GC Sim. GC Sim.
1-Butene 61 76 72 57 69 90 59 55 77 87 75 95 89 90
trans-2-Butene 27 21 28 42 6 2 21 45 19 1 14 4 6 8
cis-2-Butene 7 - 15 1 3
iso-Butene 5 3 - - 25 8 5 - 4 2 - 1 2 1
Bu/DEE
"(b) C2H4O 4120
—o— El sum = Sim. sum (Bielefeld T) 16
& e Plsum —-=-Sim. sum (Hefei T) | '
o o—PI yde - - - Sim Idehyd
: 4 —&— Pl vinyl alcohol — = Sim. vinyl alcohol 41.2
=
3
0

h/ mm

Fig. 4. C;H40 isomers (acetaldehyde and vinyl alcohol) in the DEE (left) and n-butane/DEE (right) flames; comparison of mole fraction profiles obtained in the EI- and
PI-MBMS experiment (symbols). The model predictions (thick lines) using the flame temperatures measured in Bielefeld (for EI data) and in Hefei (for PI data) are presented
for comparison. Note that experimental results have been connected by a spline function (thin lines) to guide the eye.

most abundant one in both flames (Fig. 4). This trend is well pre-
dicted by the present model. A similar dominance of acetaldehyde
was also noted for a fuel-rich n-butanol flame studied previously
[34] even though vinyl alcohol is a primary species of n-butanol
reactions (Fig. 2), since vinyl alcohol can tautomerize quickly to
acetaldehyde. In the EI-MBMS measurements, C;H40 (Fig. 3) was
thus calibrated as acetaldehyde for all five flames. The resulting ac-
etaldehyde mole fractions by EI-MBMS are in good agreement with
the isomer sums measured by PI-MBMS for the flames containing
DEE (Fig. 4). It can be noted that C;H40 (predominantly acetalde-
hyde) was observed to increase significantly in flames containing
the oxygenated fuels (Fig. 3). This trend is also well predicted by
the present model.

4.2.2. Soot precursors

One of the advantages of the use of oxygenated fuels as ad-
ditives is their potential to reduce soot emissions [8-10]. In the
present section we focus on describing soot precursors detected
in the five flames with EI-MBMS. Among approximately 30 de-
tected hydrocarbon intermediates with masses from 15 (CH3) to
106 (CgHyp), particularly unsaturated and cyclic species are con-
sidered as important soot precursors in the present paper. These
hydrocarbons may result from fuel decomposition steps (some of
them are already presented above such as C;Hy4, C3Hg, and C4Hg),
but they may also be products of build-up reactions that may yield
unsaturated cyclic compounds known to play a very important role
in the formation of polycyclic aromatic hydrocarbons (PAH). In all
five studied flames, small stable hydrocarbon species with one and
two carbon atoms were detected with high mole fractions, espe-
cially ethylene and acetylene (~3-4 x 102), see Fig. 3 and Tables
$1,S2, because they are decomposition products of several species.
Peak mole fractions of these species are quite close to those ob-
tained by ORwald et al. [63] in a pure n-butane flame under similar
conditions. In flames containing n-butanol or n-butane (pure or in
mixture), C3Hg is the most abundant C3 hydrocarbon species with

mole fractions of ~4-8 x 103, whereas in the flame of pure DEE,
allene and propyne (C3Hy) are present at a slightly higher mole
fraction (~6 x 10~4) than C3Hg (~4 x 10~4), compare Fig. 3 and
Tables S1 and S2. Among C4; hydrocarbon species in the pure n-
butane flames and in those containing DEE, diacetylene (C4H;) is
the most abundant one with mole fractions of ~1.0-1.4 x 10~3 (Ta-
bles S1,52). However, when n-butanol is used as pure fuel, C4Hg
becomes more abundant (~2.2 x 10-3) (Fig. 3 and Tables S1,52).
The data obtained with EI-MBMS by ORwald et al. [34] for an n-
butanol flame at ¢ = 1.7 exhibit the same trend. The consump-
tion of C4Hg leads to the formation of C4Hg that is noted to im-
portantly contribute to the formation of unsaturated cyclic species
as discussed below. According to the GC analysis, 1,3-butadiene
is the dominant C4Hg isomer in all five flames with some con-
tributions of 1,2-butadiene, and 1- or 2-butyne. This trend was
also observed in fuel-rich flames of pure n-butane and pure n-
butanol [34,63]. Figure 5 exemplarily shows mole fraction profiles
of the sums of CsHg and CgHg isomers as some important cyclic
soot precursors; further species are reported in Tables S1 and S3.
The most important formation pathways of these species will be
presented in the detailed analysis of the pollutant formation in
Section 4.3. PI-MBMS results are again included for the pure DEE
and n-butane/DEE flames. From the PI-MBMS analysis in the flames
containing DEE, CsHs (not shown) and CsHg are almost exclu-
sively cyclopentadienyl and 1,3-cyclopentadiene, respectively (Table
S3), and CgHg is predominantly benzene, with minor contribution
of fulvene (Fig. 5). Isomer identification for the n-butane and n-
butanol flames is based on the previous work in [34,63]. The EI-
MBMS signals of C4Hg, CsHs, CsHg, and CgHg were thus calibrated
as the respective most abundant isomer. Results from both MBMS
experiments are in reasonable agreement although the flame posi-
tion in the PI-MBMS experiment is slightly shifted away from the
burner surface as mentioned earlier. Larger species, such as C;Hg
(toluene) and CgHyq (ethylbenzene), were also measured, but with
low amounts (< 5 x 10-6) (Tables S1-S3).
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Fig. 5. Mole fraction profiles of some soot precursors. Left: n-butane flame, middle: n-butane/DEE and DEE flames, right: n-butane/n-butanol and n-butanol flames. Open
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Fig. 6. Comparison of maximum mole fractions of selected soot precursors and aldehydes formed in the flame series of (a,c) n-butane, DEE-containing mixture, and DEE
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performed, and mole fraction scales are inverted for the simulations.

4.3. Influence of DEE and n-butanol addition on pollutant formation

In previous sections, some trends were noted regarding the in-
fluence of DEE and n-butanol addition on the species pools. In
this section we will discuss these effects more deeply with spe-
cial emphasis on soot precursors and on aldehydes that may limit
the use of these biofuels in terms of air quality improvement.
Figure 6 presents comparisons between the n-butane, mixture, and
oxygenated fuel flames, specifically comparing the measured and
simulated peak mole fractions of toxic carbonyls including CH,0
(formaldehyde) and C,H40 (sum of acetaldehyde and vinyl alco-
hol), and of selected hydrocarbon species potentially involved in
soot precursor formation including CoH, (acetylene), C3Hy (sum
of propyne and allene), C3Hg (propene), C4H, (diacetylene), C4Hg
(sum of 1,3-butadiene, 1,2-butadiene, and butyne), C4Hg (sum of
1-butene, 2-butene, and iso-butene), CsHg (1,3-cyclopentadiene),
CgHg (sum of benzene and fulvene), C;Hg (toluene), and CgHqg
(ethylbenzene). To facilitate the identification of trends upon oxy-
genated fuel addition in both experiment and simulation, we have
normalized the peak mole fractions by the respective highest val-
ues. Thus, Fig. 6a provides trends in the experimental mole frac-

tions for sequential change from pure n-butane fuel via their 1:1
mixture to pure DEE, while Fig. 6b shows such trends in the ex-
periment for the sequence from n-butane via their 1:1 mixture to
n-butanol. Bars for n-butane are distinguished by vertical line pat-
terns, those for the oxygenated fuels by horizontal-line patterns,
and mixtures are coded in plain grey. The respective trends from
the simulations (in lighter shades) are given in Fig. 6¢ and d be-
low; mole fraction scales are inverted (“mirror image”) to facilitate
recognition of trends.

The formation of formaldehyde and acetaldehyde is observed
to increase significantly upon the addition of both oxygenated fu-
els. This undesirable trend has been considered as common con-
cern for the use of oxygenated biofuels [6]. As mentioned ear-
lier, formaldehyde and acetaldehyde are specific species of DEE
or n-butanol decomposition and can be produced from these
fuels via a few steps. In the case of DEE, large parts of ac-
etaldehyde are formed via the reaction pathway DEE—DEE-YL-
2—CH3CHO+C,H5 (Fig. 2), while formaldehyde mainly rises from
the decomposition of the C,Hs0 radical formed via the reac-
tion route DEE—DEE-YL-1—C,H50+C;Hy. In the case of n-butanol,
acetaldehyde is mainly produced via tautomerization from vinyl
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Fig. 7. Comparison of simulated peak mole fractions of C4~Cg hydrocarbons in the
flames of n-butane, n-butane/n-butanol, and n-butanol. Simulations were performed
using an identical equivalence ratio of ¢ = 1.7 and the same temperature profile as
in the n-butane flame. For clarity, normalization by the highest value is performed.

alcohol (C,H30H). The formation of the latter species is pre-
dominantly via the most important consumption pathway of n-
butanol (NC4HgOH—C4HgOH-1—C,H30H+C,Hs). The second im-
portant consumption pathway of n-butanol (NC4HgOH—C4HgOH-
3—C3Hg+CH,0H) contributes to a large part of formaldehyde via
the reaction CH,OH+0,—CH,0+HO, (Fig. 2).

Regarding hydrocarbon species involved in soot precursor for-
mation, it is important to note that their peak mole fractions de-
crease significantly with DEE as neat fuel or additive (Fig. 6a),
whereas n-butanol surprisingly shows no significant reduction ef-
fects or even higher formation of hydrocarbon species, especially
in the C4—Cg range (Fig. 6b). Remember that the C/O and C/H ra-
tios are the same for all flames. These tendencies have been ex-
perimentally observed and are also well predicted by the present
model (Fig. 6¢,d). While the decrease of soot precursor species in
flames containing DEE is expected, because primary reactions of
DEE mainly release small hydrocarbon species with one and two
carbon atoms (Fig. 2), their increase upon adding n-butanol is un-
desirable and merits further explanations that will be presented in
the next paragraph.

The formation of larger amounts of higher hydrocarbons in the
flames containing n-butanol compared to the n-butane flame could
result from several effects. To examine whether a higher equiva-
lence ratio used for the n-butanol flame (¢ = 1.8vs. ¢ = 1.7 in
the n-butane flame) is the reason for the noted trend, we per-
formed additional simulations for the n-butane/n-butanol and n-
butanol flames at an identical equivalence ratio of ¢ = 1.7, using
the same temperature profile as in the n-butane flame. Figure 7
displays the results of these simulations, with a focus on the C4-Cg
species. These results again show no significant reduction effect or
even higher mole fractions of these species in the flames contain-
ing n-butanol versus the n-butane flame.

The higher ability to form higher hydrocarbon species typically
regarded as soot precursors in the flames containing n-butanol is
most likely a result of the fuel structure, in which chemical groups
and carbon-chain length are different from those of DEE. To exam-
ine this potential influence, an additional rate-of-production anal-
ysis was performed for the formation of selected soot precursors
in the n-butane/n-butanol flame (¢ = 1.75) at h~2.5 mm (near the
peak mole fraction of unsaturated cyclic species), corresponding to
a temperature of 1480K, and presented in Fig. 8. The formation of
benzene and fulvene (CgHg) is influenced by the n-butanol decom-
position via the formation of propene (C3Hg). The latter species
can be produced partially from n-butanol via the C4HgOH-3 radi-
cal (Fig. 2), and reacts to form allyl (C3H5-A) by H-abstractions (Fig.
8). Recombination of C3Hs-A and propargyl radicals (C3Hs) is the
main source of benzene formation. The formation of further un-
saturated cyclic/aromatic soot precursors including cyclopentadi-
enyl (CsHs), 1,3-cyclopentadiene (C5Hg), toluene (C;Hg), and ethyl

NN "0H
(NC,H,) (NC,H,0OH)
i52/ e i7em |0
| 52% // 6 179% %
V. v 20%
7= e e
(C3He) (C,Hg-1) o9% (C4 7H- )
T,
\ o 5% Lz -H P> +R (‘RHN'
/\. /\/—>70°/ /\/ 95%
(CHA) (C,H,1-8) 0% 1(C H,) (C,HsN)
5 2C,H, — +OH(H)| 90%
+(2:;:-'3 s & o . AN
§5%) ~ G @ (C H )
L 20% L 57
-H
), (Cefls) e, WG 63%
\/( +C,H.\_34% +CzH2l GRED ’
x o5 o o
83% lzz%\ \ 50% o

-

ol
©/\ ©/ 40%
(C8H10) (C7H8) (C7H7)
A +CH, 46% |

@

(CsHg)

>

(CeHg)

Fig. 8. Reaction-pathway analysis for the formation of selected soot precursor
species in the n-butane/n-butanol flame (¢ = 1.75) for h~2.5 mm corresponding to
a temperature of ~1480 K. Percentages are relative rates of production of the given
species. Dashed arrows represent a series of reactions in the present mechanism
(details can be found in Fig. 2).

benzene (CgHyg) is significantly affected by the formation of 1-
butene (C4Hg-1) (Fig. 8). The latter species is mainly formed from
n-butanol via H-abstractions followed by C-O B-scission, and via a
complex fission involving four-center elimination of water. When
flames contain n-butanol, the formation of 1-butene is enhanced,
and this induces an increase of those species with four or more
carbon atoms including unsaturated cyclic species (Fig. 6b). Con-
trary to the case of n-butanol, this water elimination reaction can-
not occur in the decomposition of DEE, and all important pri-
mary reactions of DEE lead to the formation of small hydrocar-
bon species with one or two carbon atoms as discussed previously
(Fig. 2); therefore flames containing DEE produce significantly
lower amounts of soot precursors in comparison to those blended
with similar amounts of n-butanol. This difference in soot precur-
sor formation between DEE and n-butanol results simultaneously
from the difference of their chemical groups as well as in their
carbon-chain length.

As a further interesting aspect regarding to the flames with hy-
drocarbon/oxygenated fuel mixtures, it may be essential to know
whether interactions occur between the intermediate pools of both
fuels. To analyze the situation for both experiment and simula-
tion, we compare the peak mole fractions x; ,x of intermediates
in the mixture flames (n-butane/DEE or n-butane/n-butanol) with
those calculated as mean values X; mean from the contributions of
the pure fuels by Eq. (4).

Xi,mean = Xi Bu 0.5+ Xi,0x * 0.5 (4)

where, X; g, is the maximum mole fraction of species i in the pure
n-butane flame and x; ox is the maximum mole fraction of species
i in the pure DEE (or n-butanol) flame. We assume that whenever
Xi mix deviates noticeably from X;mean, the formation of species i
may be influenced by the interaction of the intermediate pools and
is not simply formed by both formation pathways of the two fuels
individually. These deviations are shown in Fig. 9.
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It can be noted that although a good agreement between the
experiment (squares in Fig. 9) and the simulations with the NUIG
core model (circles in Fig. 9) for the relative trends is observed for
several species, a conclusion regarding interactive effects on the
formation of intermediates does not seem easy to give, because
the deviation of X;mean and x;px in the experiments is mostly
quite close to the order of the estimated relative experimental er-
ror (~5%); moreover, the difference is more pronounced in the
simulations for some species and vice versa. Note that relative er-
rors in the model predictions are unknown. In the following, we
thus only discuss species for which the difference between x; mean
and X; mix in both experiment and the simulation with the used
NUIG core model is higher than 5%. This criterion applies only to a
few larger hydrocarbon species, including CsHg, CgHg, and C;Hg in
the flames containing DEE, and C;Hg and CgH;g in the flames con-
taining n-butanol. These species are known as important soot pre-
cursors. Figure 9 shows that x; .., of these species in the mixture
flames is lower than X; mean. This trend, which is observed in both
experiments and model predictions, could result from several ef-
fects including thermal, transport, and/or chemical effects. The lat-
ter influences could involve synergies between reaction pathways
of both fuels, and more detailed modeling efforts will be needed
for their analysis, especially in view of experimental uncertainties
and unknown predictive quality of the kinetic models for these
heavy species.

As one initial test, we have replaced the core model of the
NUI-Galway group by another systematically constructed model
recently reported by the Cottbus group in [64]. That reaction
database contains species from Cy to large polycyclic aromatic hy-
drocarbons such as naphthalene and 3-ring species, and it was val-
idated against extensive experimental data as described in [64].
Results (triangles in Fig. 9) using the Cottbus core model indi-

cated very limited deviations (<5%) of X; nix from X;mean for all
species presented in Fig. 9, with the exception of CsHg in the
flames containing DEE, for which the difference between x; iy
and X; mean Was ~10% with an opposite trend to that obtained ex-
perimentally and with the NUIG core model. Moreover, for larger
species such as benzene and toluene, simulation using the NUIG
core model predicts higher deviations of X; nix from X;mean (as
mentioned earlier), while simulation using the Cottbus core model
shows almost no deviation. Because of these differences noted
with two established core models used to represent the chemistry
of the n-butane base flame, such comparisons, while they might
seem interesting, should be interpreted with utmost care. A rig-
orous analysis regarding the predictive capabilities of respective
core models for such questions as well as high-quality experimen-
tal data, particularly for higher equivalence ratios where interac-
tive reactions could be expected to be stronger, will be needed
to answer the delicate question of interaction between fuel-
specific species pools in prototypical hydrocarbon/oxygenated fuel
mixtures.

5. Summary and conclusions

The influence of the addition of DEE and its isomer n-butanol
to n-butane on the flame structure, intermediate species compo-
sition, and pollutant formation has been investigated by examin-
ing mole fraction profiles of species in five different fuel-rich n-
butane flames (¢ = 1.7-1.8) containing 0%, 50%, and 100% each
of these oxygenated fuels, with keeping the same C/O ratio (0.52),
argon dilution (25%), pressure (4 kPa), and gas velocity (73 cms—!
at 333K, 4kPa). EI-MBMS-GC and SVUV-PI-MBMS were used to
identify and quantify more than 40 stable and radical species in
the range of Cy-Cg in each flame. A kinetic model has been es-
tablished to interpret the obtained results, by combining differ-
ent sub-mechanisms available in the literature. The results demon-
strate that the formation of toxic carbonyls, such as formaldehyde
and acetaldehyde, is enhanced significantly in flames containing
the oxygenated fuels. Mole fractions of hydrocarbon species in-
volved in soot precursor formation are significantly reduced in
flames containing DEE, while n-butanol shows no significant re-
duction effects or even higher formation of soot precursor species.
This trend was observed in both experiment and model predic-
tion and it remained valid when identical temperature profile and
equivalence ratio were assumed in the simulation. The higher abil-
ity to form soot precursors could thus mainly be a consequence
of the molecular structure of n-butanol and its associated com-
bustion reactions. Particularly, H-abstractions followed by C-O f-
scission or a complex fission involving four-center elimination of
water lead to the formation of 1-butene which can play an im-
portant role in the formation of soot precursors including un-
saturated cyclic species. Diethyl ether, which is mainly decom-
posed under formation of smaller hydrocarbon species with one or
two carbon atoms, does not contribute similarly to such reactions
and might thus be regarded as the potentially preferable biofuel
isomer.
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Abstract

With the aim to study potential cooperative effects in the low-temperature oxidation of dual-
fuel combinations, we have investigated prototypical hydrocarbon (CsH;,) / oxygenated
(CyHgO) fuel mixtures by doping n-pentane with either dimethyl ether (DME) or ethanol
(EtOH). Species measurements were performed in a flow reactor at an equivalence ratio of
¢=0.7, at a pressure of p=970 mbar, and in the temperature range of 450-930 K using
electron ionization molecular-beam mass spectrometry (EI-MBMS). Series of different
blending ratios were studied including the three pure fuels and mixtures of n-pentane
containing 25% and 50% of C,HzO. Mole fractions and signals of a significant number of
species with elemental composition Cp,Han <Oy (n=1-5, x=0-(n+2), y=0-3) were analyzed
to characterize the behavior of the mixtures in comparison to that of the individual
components. Not unexpectedly, the overall reactivity of n-pentane is decreased when
doping with ethanol, while it is promoted by the addition of DME. Interestingly, the
present experiments reveal synergistic interactions between n-pentane and DME, showing a
stronger effect on the negative temperature coefficient (NTC) for the mixture than for each
of the individual components. Reasons for this behavior were investigated and show several
oxygenated intermediates to be involved in enhanced OH radical production. Conversely,
ethanol is activated by the addition of n-pentane, again involving key OH radical reactions.
Although the main focus here is on the experimental results, we have attempted, in a
first approximation, to complement the experimental observations by simulations with
recent kinetic models. Interesting differences were observed in this comparison for both,
fuel consumption and intermediate species production. The inhibition effect of ethanol is
not predicted fully, and the synergistic effect of DME is not captured satisfactorily. The
exploratory analysis of the experimental results with current models suggests that deeper
knowledge of the reaction chemistry in the low-temperature regime would be useful and
might contribute to improved prediction of the low-temperature oxidation behavior for
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Abstract: With the aim to study potential cooperative effects in the low-temperature oxidation of dual-
fuel combinations, we have investigated prototypical hydrocarbon (CsHi2) / oxygenated (C2HsO) fuel
mixtures by doping n-pentane with either dimethyl ether (DME) or ethanol (EtOH). Species
measurements were performed in a flow reactor at an equivalence ratio of ¢=0.7, at a pressure of
p=970 mbar, and in the temperature range of 450-930 K using electron ionization molecular-beam
mass spectrometry (EI-MBMS). Series of different blending ratios were studied including the three
pure fuels and mixtures of n-pentane containing 25% and 50% of C2HsO. Mole fractions and signals
of a significant number of species with elemental composition C,H2n+xOy (n=1-5, x=0—(n+2), y=0-3)
were analyzed to characterize the behavior of the mixtures in comparison to that of the individual
components. Not unexpectedly, the overall reactivity of n-pentane is decreased when doping with
ethanol, while it is promoted by the addition of DME. Interestingly, the present experiments reveal
synergistic interactions between n-pentane and DME, showing a stronger effect on the negative
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temperature coefficient (NTC) for the mixture than for each of the individual components. Reasons
for this behavior were investigated and show several oxygenated intermediates to be involved in
enhanced OH radical production. Conversely, ethanol is activated by the addition of n-pentane, again
involving key OH radical reactions. Although the main focus here is on the experimental results, we
have attempted, in a first approximation, to complement the experimental observations by simulations
with recent kinetic models. Interesting differences were observed in this comparison for both, fuel
consumption and intermediate species production. The inhibition effect of ethanol is not predicted fully,
and the synergistic effect of DME is not captured satisfactorily. The exploratory analysis of the
experimental results with current models suggests that deeper knowledge of the reaction chemistry in
the low-temperature regime would be useful and might contribute to improved prediction of the low-

temperature oxidation behavior for such fuel mixtures.

Keywords: Dual-fuel strategy, low-temperature oxidation, chemical interaction, n-pentane, dimethyl

ether, ethanol, EI-MBMS, flow reactor



1. Introduction

Adverse effects on the environment and climate caused by the combustion of fossil fuels in
conventional engines underline the need for more efficient and cleaner engine—fuel combinations [1,2].
Fuel additives as a component of intelligent fuel design can serve to control the ignition timing in
advanced engine concepts using homogeneous charge compression ignition (HCCI), reactivity-
controlled compression ignition (RCCI), and stratified-charge compression ignition (SCCI), with the
prospect of cleaner burning processes and higher thermal efficiencies [3,4]. However, the operation of
such engine—fuel combinations must rely on the fundamental knowledge of the combustion chemistry
that drives the low-temperature auto-ignition of fuel mixtures. Such low-temperature combustion (LTC)
strategies can involve mixtures of high-cetane and high-octane fuels with their synergistic combustion
characteristics to achieve high thermal efficiencies, and several approaches have been demonstrated,
e.g. using primary reference fuels with additives to achieve efficient engine control and ignition timing
[5,6]. High-cetane fuels usually auto-ignite early, showing typical low-temperature heat release (LTHR)
and high-temperature heat release (HTHR) characteristics. The addition of high-octane fuels
suppresses the early LTHR, shifting more of the heat release from high-cetane fuels closer to the top
dead center of engines, thereby improving the combustion efficiency in internal combustion engines.
Dual-fuel mixtures are a good basis to understand the chemistry of multi-component mixtures. In
spite of its importance for practical applications in engines, however, detailed information regarding
potential interactions between different fuel components in the LTC regime remains scarce. The auto-
ignition of mixtures with simple molecular structures was investigated recently [7,8], including
methane/dimethyl ether (DME) and propane/DME blends. These studies have profited from the
numerous low-temperature oxidation investigations of light C3—Cj alkanes [8—18] as a substantial basis
to examine dual-fuel interactions. Regarding heavier alkanes, n-heptane/ethanol (EtOH) blends were
investigated by Saisirirat et al. [19,20] under HCCI and jet-stirred reactor (JSR) conditions, with a
noted impact of n-heptane on ethanol consumption between 600 and 700 K. Their work mainly focused

on ignition delay times, however, and only a few intermediates were observed which could not



illustrate the nature of the interaction between n-heptane and ethanol [19,20]. A challenge to fully
understand such interactive effects for fuels of the size of n-heptane or iso-octane is the large number
of isomeric structures that are formed in the low-temperature oxidation reactions via alkyl (R),
peroxyalkyl (ROO), and hydroperoxyalkyl (QOOH) radicals. The identification and quantification of
these radicals and their subsequent reaction products are often beyond the capability of commonly
used diagnostic techniques. Furthermore, significant uncertainties exist in the pressure-dependent
kinetic parameters of these reactions [21-25] which limit the further development of accurate kinetic
models. As a reasonable compromise, we have therefore chosen n-pentane (CsHi2), an alkane
component in gasoline, as the primary fuel in this work to explore its interaction with fuel additives of
different ignition reactivity.

As for lighter or heavier alkanes [8—18,21-25], a number of studies have been performed of the
low-temperature oxidation of n-pentane, using rapid compression machine (RCM) [26—-35], shock tube
(ST) [34-36], and JSR [37—40] experiments. Most of the previous experimental work focused on the
macroscopic auto-ignition behavior of n-pentane, with detailed speciation reported only in recent
publications of Bugler ef al. [39] and Rodriguez et al. [40]. Bugler et al. [39] have also developed a
mechanism for the auto-ignition of pentane isomers which they examined against JSR data (500—
1100 K, 1 and 10 atm) obtained by gas chromatography (GC), cavity ring-down spectroscopy (CRDS),
and Fourier transform infrared spectroscopy (FTIR). Rodriguez et al. [40] complemented the
atmospheric-pressure JSR experiments in the temperature range of Bugler er al. [39] with
measurements using synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-
PIMS). Their experiment successfully identified and separated contributions of different isomers,
especially of saturated, unsaturated, and carbonyl hydroperoxides. These recent investigations support
the choice of n-pentane as base fuel for the present work.

DME and ethanol have been selected as isomeric fuel additives of different reactivity in this study.
They are considered as potential or widely applied biofuels that could reduce the emission of air

pollutants [1,41,42]. DME has been used as a fuel additive or alternative fuel in compression ignition



engines because of its excellent auto-ignition characteristics [43]. It has a high cetane number (CN=55)
and was found to be an excellent ignition improver for HCCI engines [44,45]. The present knowledge
on these two isomeric fuels' low-temperature oxidation reactions is more detailed for DME than for
ethanol. Experimental investigations, including ignition delay [7,46] and speciation [41,47-54]
measurements in JSRs and flow reactors have laid an extensive foundation for DME's reaction kinetics.
Quantum chemical calculations were performed for both the first and second O» addition reactions, as
well as the further reactions of the CH;0CH>02 (ROO) and CH,OCH20O0H (QOOH) intermediates
[55]. The pressure-dependent description for these reactions is sensitive to the low-temperature
oxidation of DME [56], which was well considered in the recently published DME models of Burke
et al. [7] and Rodriguez et al. [57]. Very recently, Jiang et al. [58] determined ignition delay times of
n-pentane/DME mixtures and their experimental results compared favorably to the pentane isomer
model by Bugler et al. [35]. The situation for a detailed study including reactive intermediates of
n-pentane/DME interactive mixture effects in the LTC regime attempted here should thus be
considered favorable.

Ethanol is a commonly used additive to fossil transportation fuels. Different from DME, ethanol
has a high research octane number (RON=109 [59]) and displays single-stage ignition. Compared to
ample studies on the high-temperature combustion of ethanol, its low-temperature oxidation chemistry
has attracted lesser attention [51,60—63]. Haas et al. [61] and Herrmann et al. [51] studied the oxidation
of pure ethanol in flow reactor conditions with somewhat different results. Very weak negative
temperature coefficient (NTC) behavior might have been observed for the rich ethanol/O2/Ar mixture
by Herrmann et al. [51] as evident from their figure 3a, but not in the work of Haas et al. [61]. The
model of Cancino et al. [60] also showed a slight NTC behavior in the reproduction of Herrmann et
al.’s data [51], but no further studies confirmed these results. Recognizing these difficulties, ethanol
auto-ignition has been investigated very recently for ST and RCM conditions by adding DME as a
radical initiator [64].

Regarding this background, it is to be expected that n-pentane will exhibit different global NTC



behavior when blended with either isomer of C2HsO, namely DME or ethanol. However, there is a
lack of prior information on the detailed oxidation reactions and intermediate species mole fractions
or on any potential interactions between the two fuels in such mixtures. We therefore provide
speciation experiments in a flow reactor for both, the dual-fuel mixtures of n-pentane/DME and
n-pentane/EtOH, at near-atmospheric pressure and in the temperature range of 450 to 930 K. The
species composition along the reaction progress was analyzed using electron ionization
molecular-beam mass spectrometry (EI-MBMS). The results for the mixtures were compared to the
behavior of each individual fuel component. Temperature-resolved, extensive species information has
thus been obtained systematically regarding synergistic or antagonistic effects between these fuels of
different reactivity, and combined with an analysis of the detailed chemical oxidation pathways.
Although the main emphasis in the present work is on the experimental results, we have
complemented the measured species data with initial simulations by two recent kinetic models.
Specifically, we have used the model for pentanes of the Galway group [39] and the recent update of
the Polimi mechanism [17]. Discrepancies between experiment and simulation were noted and are
discussed in an attempt to improve the understanding of the low-temperature oxidation mechanisms

for these mixtures including interactive effects.

2. Experimental and numerical approaches

2.1 Flow reactor experiment

The low-temperature oxidation reactions of n-pentane, DME, ethanol, and the respective dual-fuel
mixtures were investigated in a flow reactor in the temperature regime of 450-930 K (step size
AT=5K), keeping several important parameters constant. The experiments were consistently
performed at $=0.7, 970 mbar, a total cold gas flow rate of 300 sccm (standard cubic centimeters per
minute at 1 atm and 273.15 K), and an argon dilution 0of 90%. A lean stoichiometry was chosen due to
the importance of lean and efficient burning and of the influences of high amounts of oxygen for the

formation of oxygenated species. Electron ionization molecular-beam mass spectrometry was
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employed to identify the species composition. A detailed description of the experimental set-up,
including both the reactor and mass spectrometry technique, has been reported earlier [41,51,52] so
that only some details of importance for the present experiment are given here.

The reactor is a fused silica tube with an inner diameter of 8 mm. Its total length is 1.4 m, with a
heating area of 1.3 m that is divided into 8 independently regulated zones [65]. These are heated using
an electrical furnace and are controlled by Ni-Cr/Ni thermocouples at the outside wall of the reactor.
The exhaust gas from the reactor is extracted with a quartz nozzle (50 um orifice) at the reactor exit
and guided via a copper skimmer and a two-stage differential pumping system into the ionization
chamber of the mass spectrometer. Molecules are then ionized by a 17 eV electron beam and detected
by their time of flight with a resolution of m/Am = 2200, enabling the separation of hydrocarbon and
oxygenated species of the same nominal mass.

The inlet conditions for the oxidation experiments are listed in Table 1 and address the three
individual fuels as well as two sets each of n-pentane mixtures with DME or EtOH. n-Pentane (=99%)
was supplied by ChemSolute, and ethanol (>99.96%) was provided by VWR Chemicals. Gases were
obtained from Linde AG, including dimethyl ether (=99.9%), Oz (=99.5%), and Ar (=99.996%). The
fraction of n-pentane in the mixture is expressed as y in Table 1. The delivery of n-pentane and ethanol
relied on a dialysis pump (Protea PM-1000) providing flow rates in the pl/min range with uncertainties
of 1%. To prepare the respective mixtures, gases were metered by calibrated mass flow controllers
(MKS Instruments, uncertainty ~5%), and liquid fuels were vaporized, mixed with the gases, and then

preheated to 423 K prior to the reactor inlet.



Table 1. Experimental conditions; y is the fraction of n-pentane in the mixture: y=xcsu12/(Xcsu12xa),
d: DME or EtOH.

Gas flow rate (sccm), std. 273.15 K, 1 atm

Fuel Name | P(bar) | ¢ Y
Total Ar (o)) CsHy» DME EtOH
n-Pentane (CsHi2) P100 097 |07 300.0 | 270.0 | 27.59 | 2.414
Dimethyl ether (DME) | D100 097 |07 300.0 | 270.0 | 24.32 5.676
Ethanol (EtOH) E100 097 | 0.7 300.0 | 270.0 | 24.32 5.676

PD75 0.97 0.7 | 0.75 | 300.0 | 270.0 | 27.18 | 2.114 | 0.705
PD50 0.97 0.7 | 0.50 | 300.0 | 270.0 | 26.61 | 1.694 | 1.694
PE75 0.97 0.7 | 0.75 | 300.0 | 270.0 | 27.18 | 2.114 0.705
PE50 0.97 0.7 | 0.50 | 300.0 | 270.0 | 26.61 | 1.694 1.694

CsH2/DME mixtures

CsH2/EtOH mixtures

Quantitative species mole fractions were determined whenever possible according to the procedure
by Schenk et al. [66] using Ar as the reference. Following that work, the ratio of the integrated ion
signal of a species to a reference signal is proportional to the ratio of their mole fractions, weighted by
an energy-dependent calibration factor that includes a number of relevant experimental parameters.
Here, the calibration factors for major species (CsHi, DME, EtOH, O,, H,O, CO, and CO,) were
determined from calibration with cold-gas samples and using the C, H, and O element balances at
high-temperature equilibrium conditions. Intermediates were calibrated by simulating the signal
("convolution" method in [66]). The resulting uncertainties of mole fractions for major species are
typically within 15%, and those for intermediate species are within a factor of 2, depending on the
available cross section information from the literature. In cases where electron ionization cross sections
or calibration information was not available as for some of the detected oxygenated species, relative
species profiles are reported in terms of signal intensities normalized by the respective fuel inlet mole
fraction to facilitate the analysis of trends between the behavior of individual mixture components and
the mixtures. All experimental data reported in this work are provided in Supplementary Material 1

(SM1).



2.2 Numerical simulation

Simulations of the oxidation process in a laminar flow reactor have typically assumed a constant gas
temperature or have relied on measured gas temperature profiles along the reactor, determined in non-
reactive flows at identical reactor wall temperature [41,49,67]. Heat release in such reacting systems,
typically approximated as negligible for highly diluted mixtures, is thus not considered, and
consequently, negligible heat transfer between the reacting gas and the reactor wall is assumed, as no
highly diluted conditions have been used here (10% reactive mixture). This limit may not be applicable
for less diluted conditions, especially since temperature is a very sensitive parameter in the low-
temperature oxidation process. An accurate physical model of a laminar flow reactor should consider
mass convection, mass diffusion, heat release of the reacting gas, thermal conductivity, and thermal
exchange with the wall of the reactor.

Since this work is mainly focused on reporting experimental results, we provide only a first
approximation of model predictions for the investigated conditions. The simulation of the flow reactor
using the OpenSMOKE++ package [68] follows procedures by Refs. [51,65]. A multi-zone approach
was used, dividing the reactor into a pre-heating zone (14 cm), a reaction zone (111 cm), and a cooling
zone (5 cm). A time-resolved non-isothermal solution was applied. The temperature profile of the non-
reacting argon flow was measured along the reactor at different heating temperatures, and the heat
transfer coefficient k for transfer between the heating furnace and the reacting gas through the flow
reactor wall was evaluated by simulating a pure (non-reactive) argon flow. As a result, a coefficient of
k=10 W m? K! was assigned for all reaction conditions. Details for the evaluation of k are provided
together with the measured and simulated gas temperature profiles (Fig. S1) in Supplementary
Material 2 (SM2). We acknowledge that this approach may reach its limits for the reactive mixtures
with very temperature-sensitive chemistry, and suggest that the assumptions made here should be
tested with more refined models in the future that might consider two-dimensional effects and
changing heat transfer depending on reaction conditions.

For the initial simulation, two recent mechanisms were chosen to explore the interaction between



n-pentane and dimethyl ether or ethanol. The mechanism by Bugler et al. [39], here called the NUIG
model, provides a low-temperature oxidation pentane sub-mechanism, which was improved based on
their previous model [35] and examined against ignition delay times and JSR experimental data. The
DME and ethanol sub-mechanisms in the NUIG model were also comprehensively investigated in
their former kinetic studies [7,49,62]. Also, we have chosen the long-term developing and regularly
updated model by Ranzi et al. [17], here called Polimi model. Their recent improvements in the low-
temperature oxidation chemistry were focused on the reaction of carbonyl-hydroperoxides and peroxy
radicals [17,21]. In any case, comparisons of our experimental data reported here with model
simulations should be regarded as an initial exploration focused mainly on the trends observed for the
mixtures, with the aim to detect substantial deviations between experiment and model that may serve

to guide further model development.

3. Results and discussion

In this section, experimental results are presented for the dual-fuel mixtures and analyzed in
consideration of those for the individual fuels. The main aim is to detect and contribute to
understanding differences in reactivity and species formation in the low-temperature regime with n-
pentane as the base fuel upon addition of each of the two oxygenated isomers. In addition, initial
modeling is performed for the three individual fuels and the mixtures to examine, in particular, their
capability to reproduce the trends in the low-temperature oxidation behavior. Generally, we will limit
the model analysis to the NUIG model [39], with some additional results given for the Polimi model
[17], especially to illustrate differences in the prediction for the fuel mixtures. A species list of the
NUIG model with all species discussed in this work can be found in Table S1 in SM2 with formula,
model name, nomenclature and structure.

Section 3.1 will present the conversion of the individual fuels and the dual-fuel combinations.
Section 3.2 will provide more detailed insight into the reaction pathways for the different fuel

components by reporting temperature-dependent profiles of intermediate species with an emphasis on
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the behavior of the fuel mixtures. Section 3.3 will conclude with selected aspects of the low-

temperature chemistry of these dual-fuel combinations.

3.1 Reactivity of dual-fuel mixtures
Selected experimental results for the low-temperature oxidation of all individual fuels and fuel
combinations listed in Table 1 are given in Fig. 1. It shows the consumption of fuel and O as well as
the formation of H>O and permits a first inspection of the temperature-dependent oxidation behavior.
All major species profiles are presented in Figs. S2—-S8 in SM2 together with simulations with the
NUIG and Polimi models. The profiles in Fig. 1 are presented with the same scale, and a thin broken
line at 616 K, the temperature for the low-temperature minimum of n-pentane consumption, is included
to facilitate comparison.
As expected, both n-pentane and DME show a two-stage oxidation behavior (n-pentane: 616 K and
830 K, DME: 550 K and additional ignition at 750 K not in the focus here), while the consumption of
ethanol starts only above 750 K. The low-temperature minimum of the fuel mole fraction near 550 K
for DME is significantly lower than for n-pentane at 616 K. These temperatures compare quite well
with the results of Herrmann et al. [51] for DME and ethanol (see also the Supplemental Material of
that paper), and of Bugler et al. [39] for n-pentane, considering the slightly different conditions in
those studies. Increasing addition of DME to n-pentane increases the reactivity and shifts the minimum
to temperatures below that for pure n-pentane. Ethanol/n-pentane mixtures show some low-
temperature reaction already for PE50 as particularly evident from the H>O mole fraction with a peak
near 625 K, and further increasing reactivity for PE75, with minima shifted to higher temperatures
than for pure n-pentane.

In Fig. 2, the interaction effects are visualized in more detail, showing only the fuel consumption
curves including predictions with both models. The four panels (a-d) consider these effects with
n-pentane as the base fuel to which increasing amounts of DME (a,c) and ethanol (b,d) are added.

Every profile is normalized by the inlet mole fraction of n-pentane in the specific mixture to ensure
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comparability between the measurements. The bottom two panels (e,f) take an inverse perspective,
with DME and ethanol as the respective basis and a corresponding normalization. Because of the
normalization, identical profiles would be expected if no mixture effects occurred.

The enhancement of the reactivity of n-pentane by DME in panels (a,c) in Fig. 2 is quite well
reproduced by both models. The experimental profiles are slightly shifted towards lower temperatures
and may indicate a small trend of increasing low-temperature fuel conversion (conversion = 1 —
consumption) that is, however, within the experimental uncertainty. In the NTC region, some
differences are seen in the shape of the experimental profiles with increasing DME addition, and the
recovery of the fuel mole fraction towards the initial value near 750 K is less pronounced for the PD50
mixture. The NUIG model reproduces the shape of the profile excellently for the pure n-pentane
condition and catches the trends for all conditions quite well. With shifts to lower temperatures by
about 12 K for PD75 and 22 K for PD50 and an increase in low-temperature fuel conversion, it slightly
over-predicts the effect of DME on the reactivity. With the Polimi model, the predictions are closer to
the experimental results, with shifts by about 8 K and 16 K to lower temperatures and almost identical
fuel consumption in this regime, and a slightly better representation of the profiles also at higher
temperatures. A tendency towards predicting two peaks can be noted in the NTC region for both the
PD75 and PD50 mixtures. This effect is seen also in the major species curves in Figs. S5 and S6 in
SM2. The reason for this behavior seems to be related to the representation of heat transfer in the
numerical simulation (see Section 2.2), since exploratory modeling results for these two neat fuels and
their mixtures without considering the heat release of the reacting gases (Figs. S9-S12 in SM2) do not
show this two-peak behavior. As explained above in Section 2.2, the present modeling results should
be considered as a first approximation, awaiting a more full description of two-dimensional effects and
changing heat release that is, however, beyond the present study with a mainly experimental focus.

As seen in Fig. 2b,d, the addition of ethanol significantly inhibits the consumption of n-pentane in
contrast to the effect of DME. It shifts the consumption temperature to a higher region, narrows the

temperature window of the NTC zone, and significantly reduces the maximum fuel conversion. Both
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models can well reproduce the n-pentane profile for the PE75 mixture but fail for PE5S0. The measured
maximum conversion of n-pentane in PE50 is near 40%, while the NUIG model predicts only about
20% and the Polimi model shows only very weak low-temperature reaction.

Instead of focusing on n-pentane as the base fuel to which DME or ethanol is added, the opposite
perspective is assumed in Fig. 2e,f which reports the consumption profiles for the oxygenated fuels.
From this perspective, the addition of n-pentane inhibits the low-temperature behavior of DME but
promotes that of ethanol. The strong effect evident from the experiments upon n-pentane addition to
DME (Fig. 2e) is also reflected in the model predictions. The measured low-temperature consumption
profiles are shifted to higher temperatures by 35 K for PD50 and 49 K for PD75. Both NUIG and
Polimi models overestimate the reactivity of DME in the mixture conditions, and the NUIG model
presents a wider temperature shift than the Polimi model. Also, differences are noted between
experiment and model in the consumption around 725 K as a function of n-pentane addition, not well
reflected in the NUIG model that apparently considers only weak interaction between both fuels and
thus leads to negligible deviations between the PD75 and PD50 cases. The Polimi model results in a
slightly better match with the experimental consumption curve in this region. A synergistic effect
between DME and n-pentane is observed in the experiment, detecting somewhat higher conversion of
these two active fuels in their mixtures than for each fuel individually. Trends in the two models differ
in this respect.

The addition of n-pentane to ethanol enhances the ethanol reactivity in the low-temperature region
(Fig. 2f). While inhibition of n-pentane consumption in this regime was already visible upon 50%
ethanol addition (PE5S0, Fig. 2b,d), ethanol conversion in the PE5S0 mixture is negligible within the
experimental uncertainty (therefore not included in Fig. 2f). A strong promotion tendency of n-pentane
is seen for the PE75 mixture that shows a maximum low-temperature ethanol conversion of 35%. One
reason why the ethanol mole fraction could decrease would be a dilution effect by n-pentane; the total
moles of the reacting gas can expand due to the oxidation of n-pentane, leading to a reduction of the

ethanol mole fraction. To confirm the reaction of ethanol near 650 K, the result of a simulation with
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an assumed non-reactive ethanol species is provided in Fig. S13 in SM2 that shows the dilution effect
to be negligible compared to the chemical reaction. The experimental observations for n-pentane
addition to ethanol are reasonably well predicted by both models (Fig. 2f).

For a deeper understanding of the low-temperature reaction behavior of the fuel mixtures in
consideration of the detailed reactions of the individual components, intermediate species formation
along the fuel decomposition and oxidation reaction pathways will be presented with a focus on the

experimental data, including discussion of simulation trends with the NUIG model.

3.2 Intermediate species formation

In the following, we will discuss the formation of key intermediate species observed in the low-
temperature oxidation of the dual-fuel mixtures in view of the reaction pathways of the individual fuel
components. Although the general structure of these LTC pathways is quite well known, schematic
diagrams for the fuel-specific reactions in this study are presented for n-pentane in Fig. 3 and for the
two oxygenated fuels in Fig. 4. They are intended to facilitate identification of intermediate species
discussed in the text by their mass and molecular structure (compare also Table S1 in SM2) as well as
by an assigned code number.

The following discussion is organized along the reaction pathways of n-pentane and will present
the experimentally observed species profiles for this base fuel and the dual-fuel mixtures regarding
important classes of low-temperature intermediates and changes upon DME and ethanol addition.
Simulation results with the NUIG model are included for orientation.

Starting with the fuel n-pentane (RH, P1), H-abstraction forms the fuel radicals (R, P2) and the
subsequent first oxygen addition yields pentylperoxy radicals (ROO, P3), not detectable in the present
experiment, however. ROO can either form hydroperoxypentanes (P4) by H-addition or alkenes (P5)
by HO»-elimination or isomerize to QOOH radicals (P6). Along the reaction progress, the first stable,
and thus detectable species are hydroperoxypentanes (P4) and alkenes (P5), discussed in Section 3.2.1.

After isomerization of ROO (P3) «» QOOH (P6), a second O-addition step can occur leading to
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02,QOO0H (P7) species. By OH-elimination the ketohydroperoxide (KHP, P8) is formed, which is the
next stable and detectable intermediate, presented in Section 3.2.2, with consideration also of the
ketohydroperoxide in the DME oxidation, hydroperoxymethyl formate (HPMF, D8). In Section 3.2.3,
selected small oxygenated intermediates are provided including hydroperoxyalkanes, acids, and
carbonyl compounds, accessible through further decomposition of the ketohydroperoxide, and Section

3.2.4 reports information on some further detected intermediates.

3.2.1 Hydroperoxypentanes (P4) and pentenes (P5)

Hydroperoxypentanes (CsH1:0;, P4)

Hydroperoxyalkanes are the products of ROO radicals via chain termination reactions, recognized as
a competing channel to the ROO <> QOOH isomerization [12]. The signal of the stable species
detected at a mass-to-charge ratio of m/z=104 with formula CsHi20, is therefore assigned here to
hydroperoxypentanes (P4), without a possibility to discriminate between the P4-1, P4-2, and P4-3
isomers in Fig. 3, however. Temperature-dependent CsHi,0» profiles for the different conditions are
provided in Fig. 5. The experimental profiles present the maximum for the base fuel n-pentane near
585 K in close agreement with the start of the fuel conversion. Small temperature shifts are observed
when adding DME or ethanol to n-pentane. Modeling results, however, predict more important shifts,
similarly to those observed for the n-pentane consumption profiles in Fig. 2. Quantification of
hydroperoxypentanes (P4) was not possible because of lacking electron ionization cross sections, but
the relative trends, namely higher conversion of CsHi2 — CsHi120; in the mixtures, are evident from
the observed signal intensities, normalized to the inlet n-pentane mole fraction. As an indication for
the probable concentration range, a mole fraction of about 3x107 has been observed by Rodriguez et
al. [40] for the sum of hydroperoxypentanes in pure n-pentane oxidation under their lean JSR
conditions. Hydroperoxypentane isomers (P4) are formed via the reaction of hydroperoxypentyl
radicals (CsH1102, ROO, P3) and HO». Thus, the formation of hydroperoxypentane (P4) is determined

by the efficiency of the pentyl (P2) production in the reacting system. DME oxidation provides an
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enhanced amount of OH radicals already at lower temperatures, shifting hydroperoxypentane (P4)
formation to lower temperatures and slightly increasing the amount. In contrast, ethanol reduces the
production of hydroperoxypentanes (P4) and increases their formation temperature slightly.
Particularly for the PE50 mixture, the signal is too weak to be detected in the experiment, thus only
the modeling result is provided in Fig. 5. The NUIG model predictions show a slight tendency to

overestimate the intensity of the influence of the oxygenated additive.

Pentenes (CsHjy, P5)

Temperature-dependent profiles for CsHio (PS) are given in Fig. 6; the mole fraction represents the
sum of 1-pentene and 2-pentene, with the CsHio signal calibrated as 1-pentene (with calibration based
on 2-pentene, the total mole fraction would be 4.9% higher). The profiles reveal both low-temperature
reactions as well as high-temperature formation from the fuel radicals (R, P2). Temperature shifts in
both regimes are negligible for DME addition and minor upon ethanol addition, a trend that is also
well captured by the model. Mixtures containing 75% n-pentane (PD75 and PE75) present similar
pentene maxima to that in pure n-pentane (P100) oxidation, and reduction effects are only visible for
the 50:50 mixtures (PD50 und PE50). Simulation results have been divided by a factor of 2 to fit the
scale in Fig. 6 since the model over-predicts the mole fractions in all cases. For pure n-pentane
oxidation, Bugler et al. [39] also show a tendency to over-predict especially 2-pentene concentrations

under lean conditions at ¢ = 0.5 and 1 atm.

3.2.2 Ketohydroperoxides (P8, D8)

Pentane ketohydroperoxide (CsH1003, P8)

Figure 7 presents the signal intensity for CsH1003 (P8), normalized by the different n-pentane inlet
conditions. Note again that all profiles should be identical because of this normalization if no mixture

effects would occur. The observed signal can be ascribed to the sum of Cs-ketohydroperoxide (P8),

the three isomers of which have been identified by Rodriguez et al. [40]; from their SVUV-PIMS study
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they reported a somewhat preferential formation of 3-hydroperoxy-pentanal (P8-1) and 1-
hydroperoxy-3-pentanone (P8-3) over that of 2-hydroperoxy-4-pentanone (P8-2), which is kinetically
favored, however, and provided mole fraction values of the order of 10~ for the sum of the Cs-
ketohydroperoxides for pure n-pentane oxidation under lean JSR conditions. Quantification is not
possible here because electron ionization cross sections are lacking. The addition of DME (Fig. 7a)
reduces the formation temperature, in agreement with the observed tendencies for n-pentane
consumption and hydroperoxypentane formation (see above). The model represents the relative profile
shape reasonably well for the pure n-pentane (P100) case. For the mixtures investigated here, the model
overestimates the influence of DME. The reason may be lacking low-temperature-related reactions of
the mixtures, as e.g., RO>+R'O, — RO +R'O + O and H-abstraction of the RO; species of both fuels.
With the addition of ethanol, the reactivity of the system is significantly reduced (Fig. 7b), and the
profiles for the n-pentane/ethanol blends are shifted to higher temperature. The maximum signals
decrease, in agreement with the lower consumption of n-pentane in Fig. 2b. The NUIG model can
reproduce the tendencies for different conditions reasonably well, with the somewhat larger differences
in the NTC region that were already evident in the fuel consumption profiles (Fig. 2b). For all five
conditions, the experimental peak positions agree well with those for the hydroperoxypentanes (P4),
as might be expected from the close relation of these species along the reaction pathway (Fig. 3), and

those from the model again exhibit a larger spread in temperature.

DME ketohydroperoxide (C2H,04, HPMF, D8)

The general formation path of the ketohydroperoxide of DME proceeds similar to that of the pentane
ketohydroperoxide (compare Fig. 4). In their experiments focused on low-temperature oxidation of
DME in a JSR, Moshammer et al. [53,54] have identified the signal at m/z=92 corresponding to the
sum formula of C;H404 as hydroperoxymethyl formate (HPMF, D8). In the present work, HPMF (D8)

was only detected for pure DME conditions due to its significant fragmentation and correspondingly,
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low signal. CH403 at m/z=64 was confirmed by Moshammer et al. [53] to be a dominant fragment of
HPMF (D8) by CO loss. They also performed theoretical calculations and assigned its structure as
hydroxymethyl hydroperoxide (HOOCH.OH, D9), clarifying earlier results of Wang et al. [41], who
had also reported strong signals at this mass but assumed the species to be either hydroxymethyl
hydroperoxide (D9) or trihydroxymethane. For the PD75 and PD50 mixtures, we thus consider the
signal at m/z=64 to be representative of HPMF (D8) in light of the results of [53]. Figure 8 reports the
results for m/z=92 (HPMF, D8) in the pure DME case (see insert top left) and m/z=64 (CH403, D9) for
pure DME and the PD75 and PD50 mixtures. The temperatures of the maxima for both signals agree,

supporting the assumption that the signal at m/z=64 can be used as an indicator for HPMF.

With the addition of a large amount of n-pentane, the concentration of HPMF (D8) decreases
significantly, e.g., a reduction of 90% for PD50 which can be partly due to diluting and chemical
effects. Further reasons can include the shift towards higher temperatures that could enhance the
decomposition of such labile species. Higher temperatures would also favor the reverse reaction of
R+0;, leading to a lower formation of ketohydroperoxide species and ultimately to reduced OH
concentrations involved in forming fuel radicals. Nevertheless, the change seems more significant than
that for the Cs-ketohydroperoxides (P8) in Fig. 7, and it may reveal information about the competition
ofthe DME radical (CH3OCH_, D2) with the pentyl radical (P2) in the combination with O> molecules.
Concerning the profile shapes, the NUIG model (D8) predicts a narrower temperature distribution of
HPMF than the experiment for all conditions, with a width of only ~20 K versus ~50 K in the
experiment, and it also provides smaller temperature shifts than the experiments with increasing

n-pentane addition.

3.2.3 Selected small oxygenated intermediates
Hydroperoxymethane (CH4QOz, P9-1) and hydroperoxyethane (C:Hs0>, P9-2)

Unlike hydroperoxypentanes (P4) that were discussed before, smaller hydroperoxyalkanes are
18



secondary oxidation products. Within the detection limit of the experiment of a few ppm, no
quantifiable signals could be observed for hydroperoxybutane (C4H10O2) and hydroperoxypropane
(C3Hg0O2). However, the smaller species hydroperoxymethane (CH402, P9-1) and hydroperoxyethane
(C2H6O2, P9-2) could be found. Methyl and ethyl radicals are derived from the decomposition of
Cs-ketohydroperoxides (P8) and pentylperoxy radicals (ROO, P3), and their reactions with O» or HO»
can lead to the formation of these smaller hydroperoxyalkanes. The profiles of CH4O, (P9-1) and
CoHsO2 (P9-2) in Fig. 9 are normalized (in the n-pentane-containing mixtures) by the inlet mole
fractions of n-pentane, and for the pure fuels, P100 shows higher conversion to these small
hydroperoxyalkanes (P9) than DME.

Since doping with DME promotes the reactivity of the system and consequently, the formation of
pentyl radicals (R, P2) and of typical intermediates derived from the fuel decomposition, it also
enhances the formation of the hydroperoxyalkanes in Fig. 9a,c in the PD75 mixture. No significant
further increase is observed with increased DME content for PD50, however. This behavior is different
in the model for both, hydroperoxymethane (Fig. 9a,b) and hydroperoxyethane (Fig. 9c,d), especially
for the formation of the latter in PD50. In the oxidation of DME, hydroperoxymethane (P9-1) is
proposed to be formed along a sequence from the CH3OCH,0OO radical (the ROO of DME, D3) via
methyl formate (D4) and methyl radicals [54,69]. For pure DME (D100), hydroperoxymethane (P9-1)
is indeed experimentally observed as shown in Fig. 9a, but the NUIG model predicts only insignificant
amounts. Similar observations were noted by Moshammer et al. [54], who report a mole fraction for
hydroperoxymethane of the order of 10~ and point out large discrepancies between their DME JSR
experiment and several models including the NUIG DME mechanism [7]. Ethanol can form neither of
these hydroperoxyalkanes in its low-temperature reactions, so that in mixtures of n-pentane and
ethanol they must be produced only from n-pentane. Their formation tendencies in P100, PE75, and
PES0 (Fig. 9b,d) are similar to those of the hydroperoxypentanes (P4) (see Fig. 5b). The shift with
ethanol to higher temperature is expected because of the decrease of the system in reactivity. The wider

spread of the peak temperatures in the modeling results is similar to that shown before for the
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Cs-ketohydroperoxides (P8). The NUIG model represents the observed tendencies for these mixtures

reasonably well.

Formic acid (FAC)

Acids are important intermediates in the fuel oxidation process and lead to the formation of CO, CO,,
and esters. For the mixtures of n-pentane and DME, pentanoic, acetic, and formic acid are the most
favorable products. Possible acid mass peaks, at m/z=102, 60, and 46 respectively, were detected in
this work by EI-MBMS. However, in their investigation of n-pentane oxidation with SVUV-PIMS,
Rodriguez et al. [40] identified the peak of m/z=102 as pentenylhydroperoxide, and their PIE curve
did not indicate a slope at the ionization energy of pentanoic acid. The species of m/z=60 was identified
as acetic acid by GC in the n-pentane oxidation study of Bugler ef al. [39]. Here, we would need to
consider not only acetic acid for m/z=60 but also methyl formate, since it dominates in the oxidation
of DME [51]. With the used electron ionization, however, isomer identification was not possible. The
signal at m/z=46 (CH20») is likely to be formic acid (FAC) as there are no other reasonable isomers,
and is therefore calibrated as formic acid in this experiment. It is a typical DME-derived intermediate.
n-Pentane also forms formic acid (FAC), but not in a similar amount as DME. Thus, FAC is selected
as a typical species here to represent the interaction of n-pentane and DME. Figure 10a shows the
experimental results for pure n-pentane, DME, and their mixtures, together with model simulations,
while the complementary mixtures with ethanol, for which no significant interaction is noted, are
presented in Fig. 10b.

Large temperature shifts are seen along the replacement of n-pentane with DME that are quite well
matched by the model and correspond approximately to the consumption maxima in Fig. 2. Trends for
the mixtures in the low-temperature region are quite well captured by the NUIG model that over-

predicts FAC for P100, however, and under-predicts it for D100. This could be explained by the
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lacking importance of a reaction producing formic acid as suggested by Wang et al. [70]. They showed
that the isomerization reaction of OCH2OCHO — HOCH>OCO is predicted to be more dominant in
most models than its reaction to form formic acid (OCH,OCHO — HCOOH + HCO) which has;
however, a much lower energy barrier and should therefore be more dominant (see figure 3 of Ref.
[70]). For the n-pentane/DME mixtures, the NUIG model reveals two formation pathways of formic
acid to yield major contributions as shown in the rate of production (ROP) analysis in Fig. 11, where
the reaction suggested in Ref. [70] is not considered.

From the ROP in Fig. 11 it can be seen that the pathway involving acetaldehyde (CH;CHO, AAL)
is important in the n-pentane oxidation, while the HOCH-O radical (D12) channel contributes for both
fuels, but to a larger extent for DME oxidation. Over this channel, FAC is formed via the
decomposition of HPMF (D8) for D100 (see Fig. 4), or the combination of OH and CH>O via the
intermediate radical of HOCH,O for P100 (see Fig. 3). The formaldehyde pathway becomes more
important with the addition of DME. However, the rate constant of this channel estimated in the NUIG
model is much faster than that from the theoretical investigation of Xu ef al. [71], and its influence

might thus be overestimated.

Carbonyl compounds

Formaldehyde (FAL), acetaldehyde (AAL), and butanone are important intermediates in n-pentane
oxidation [39]. AAL is mainly formed via the decomposition of 2-hydroperoxy-4-pentanone (P8-2),
which is, however, not the major ketohydroperoxide isomer in the n-pentane oxidation according to
Rodriguez et al. [40], who measured only P8-1 and P8-3 in their experiment. However, P8-2 is quite
important in the formation of methyl radicals and impacts the formation of hydroperoxymethane
(P9-1), formaldehyde (FAL) and even OH radicals via its subsequent reactions. The mole fractions of

acetaldehyde and formaldehyde, normalized (in the n-pentane-containing mixtures) by the inlet mole
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fraction of m-pentane, are given in Fig. 12; as stated before, changes observed are thus due to
interactive effects in the mixtures.

As seen in Fig. 12a, the AAL mole fraction is not changed significantly upon blending with 25%
DME, but it is notably reduced with 50% DME, while the model predicts a constant AAL mole fraction.
With increasing ethanol addition (Fig. 12b), the pathway forming acetaldehyde from ethanol (compare
Fig. 4) gains importance, as also seen in the ROP analysis in Fig. 13. Ethanol is activated by OH
provided by the n-pentane oxidation. The ethanol radical (sC;H4OH, E2-3) that consumes ~70% of
ethanol is the precursor of acetaldehyde.

Formaldehyde (FAL) as a typical oxidation intermediate is formed by different reactions for the
three investigated fuels. CH3 radical reactions provide major contributions to FAL for n-pentane, while
the decomposition of CH30CH>OO0O (ROO, D3) and CH,OCH>OOH (QOOH, Dé6) radicals are the
main formation reactions of formaldehyde (FAL) in the oxidation of DME. For ethanol, the formation
of FAL involves pathways via the methyl and the O.C,H4OH (E3-1) radicals. Figure 12¢,d shows the
normalized mole fractions of formaldehyde for all mixtures. Opposite tendencies are observed. With
DME addition, the mole fraction increases compared to P100, but PD75 and PD50 show nearly the
same amount. With the addition of ethanol, the mole fraction is similar for P100 and PE75, but lower
for PE50.

The behavior of acetaldehyde (AAL) and formaldehyde (FAL) could be roughly explained by the
enhanced H-abstraction of Cs-ketohydroperoxides (P8) according to the work of Ranzi e al. [17]. The
common reaction pathway for the decomposition of ketohydroperoxide species is described as O-O
scission and subsequent B-scission. Here, this reaction sequence would lead to the formation of
acetaldehyde. However, the decomposition pathway by H-abstraction of the Cs-ketohydroperoxide and
subsequent B-scission proposed by Ranzi ef al. [17] would lead to pentadione and ketene. These
recently proposed reaction classes are not included in the NUIG kinetic model, and their
implementation could lead to a better prediction of acetaldehyde especially for PD50 compared to

PD75 (see Fig. 12a). The ROP analysis for acetaldehyde (AAL) in Fig. 13 shows that NCsKET240
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(P10-2) is the main pathway, with the caveat, however, that the used model does not include the
competing channels. The ROP analysis for formaldehyde (FAL) in Fig. 13 shows another important
formation channel from the CH3COCH:O radical (via the acetonyl radical) in the blends with ethanol.
It is a product of the unimolecular decomposition of 2-hydroperoxy-4-pentanone (P8-2). Because of
the reduced amount of OH by ethanol, it reduces the general efficiency of formaldehyde formation but
favors the unimolecular decomposition of P8-2. The production of formaldehyde in the ethanol-
containing blends is therefore altered to the reaction sequence 2-hydroperoxy-4-pentanone (CsH100Os3,
P8-2) — 2-pentanoxide-4-one (CsHoO>, P10-2) — CH3COCH; (C3H50, acetonyl) - CH3COCH»O

(C3H502) — CH>0 (FAL), compare also Fig. 3.

3.2.4 Further intermediates
While the previous analysis has focused on the fuel decomposition schemes and small oxygenated
species, a number of further intermediates has also been detected, and selected species are presented
in Fig. 14, with experimental results in panels (a,d) and predictions with the NUIG and Polimi models
in panels (b,e and c,f). Again, all mole fractions (in the n-pentane-containing mixtures) have been
normalized by the inlet mole fraction of n-pentane for the respective conditions. The maximum values
of all species in the NTC zone are grouped in order to illustrate the selectivity of n-pentane reaction
pathways impacted by the addition of DME or ethanol. Please note that full temperature-dependent
mole fraction profiles over the entire range from 450-900 K are provided, together with simulations
with the NUIG model, in Figs. S14-S21 in SM2. In general, the shapes of these profiles are reasonably
well predicted. However, with an emphasis on the experiment and on the low-temperature reactions in
the dual-fuel mixtures, we will limit the discussion here to some aspects in the LTC region. Due to the
normalization, mole fraction values should agree if there were no interactive effects. Inspection of the
patterns in Fig. 14 reveals some important differences between experimental and modeling results.
Figure 14a-c compares experiment and model predictions for selected oxygenated intermediates.

Since acetic acid is the major acid produced in the oxidation of n-pentane [39], it is identified as the
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dominant isomer of C:H40; in P100, PE75, and PE50. However, methyl formate is the oxidation
product of DME with the formula of C,H4O» [51,54], which is also observed in this experiment.
Therefore, with the addition of DME, methyl formate becomes the major isomer of C:H40,. However,
due to lacking EI cross sections of methyl formate, C;H4O> has been calibrated as acetic acid in all
experiments. Hydroxyacetaldehyde would be another isomer, but there is no known pathway how it
could be formed and it seems kinetically unlikely. Compared to the modeling results, this species is
well-predicted by the Polimi model but highly under-predicted by NUIG model. Bugler et al. [39] also
reported the under-prediction of their measurement of C2H4O; in the oxidation of n-pentane in a JSR.

The further species in Fig. 14a-c are single oxygenated species of the sum formula C,H>,0 that can
be assigned to cyclic ethers, aldehydes, and ketones, and C,H2,20 that are probably ketenes. CH,O
can only be formaldehyde, C2H,O obviously is ketene, and C3H4O has been calibrated as methyl ketene.
According to previous analysis with GC, CRDS, and FTIR [39], C;H4O was separated for oxirane and
acetaldehyde, but is here calibrated only as acetaldehyde due to missing distinction of isomers. In Ref.
[39], C3HsO was identified as propanal, acetone, 2-methyloxirane, and oxetane, here it is calibrated as
acetone. In general, aldehyde compounds could be produced from the decomposition of the
Cs-hydroperoxides or ketohydroperoxides by breaking the O-OH bond in the hydroperoxy group.
Cyclic ethers are usually formed via the reactions of QOOH radicals. Looking at the tendencies in
Fig. 14a-c in both experimental and modeling results, identical selectivity is observed in both
experiment and Polimi model predictions among different C,H2,O and C,H2,2O species under
different inlet condition except for PE5S0. The NUIG model predictions for CH20, C2H4O and C3HeO
are closer to the experimental values than those for the other shown species, with substantial deviations
especially for C2H>O (ketene) and C2H4O: (acetic acid), see also Figs. S14 and S17 in SM2.

Figure 14d-f presents the experimental and modeling results for selected alkanes and alkenes.
Pentene (CsHio, calibrated as 1-pentene), propene (C3Hg), and ethene (CoHs) are major intermediates.
Both models well predict the formation of pentene and ethene, but under-predict the formation of

butene (CsHs, here calibrated as 1-butene) and propene. A uniform selectivity can be found among
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these species in different conditions in Fig. 14d-f, except for ethane (C2Hg), for which experiment and
model reveal opposite tendencies with the addition of DME and ethanol. As observed in the formation
of hydroperoxymethane (Fig. 9), the methyl radical formed in the decomposition of DME undergoes
the recombination to ethane, but not the reaction with O,. Since ethane is under-predicted by a factor
of 100 in P100, a significant difference can be observed by the addition of DME for the modeling

result, but not in the experiment.

3.3 Selected aspects influencing the reactivity

To inspect the reactivity of the dual-fuel mixtures further, the known major low-temperature oxidation
cycles for the three individual fuels are shown schematically in Fig. 15. For all cycles, the solid thick
arrows show reactions that produce OH radicals, while the solid thin arrows indicate OH-consumption.
To obtain the maximum of OH being produced from one complete cycle, the solid thick arrows after
the second O addition (behind O2,QOOH) need to be considered as all other reactions producing OH
before this step lead to a termination of the cycle.

As seen in Fig. 15a for n-pentane, the two-step O» addition reaction sequence from the fuel could yield
three OH radicals (solid thick arrows after O.QOOH), while it consumes only one OH radical in its
pentyl radical production process via H-abstraction reactions (solid thin arrow). The a-step is the most
important n-pentane consumption reaction, which may be in strong competition in the fuel blends or
with other primary intermediates during the reaction process.

OH is the dominant initial radical for the recurrence of the branching process of DME. As shown
in Fig. 15b, a maximum of two OH radicals could be produced through one cycle (solid thick arrows
after O2QOOH), while also only one OH is consumed by the DME radical formation (solid thin arrow).
However, in the a-step, a strong competition from n-pentane impacts the consumption of OH radicals.
When the more reactive fuel DME is added to n-pentane, OH radicals could be produced at lower
temperatures, thus promoting the system's reactivity. However, the maximum conversion of n-pentane

keeps almost the same with the addition of DME (compare Fig. 2a), which means that the consumption
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of OH radicals by n-pentane does not significantly increase. This may be due to the similar
concentration of OH radicals at identical equivalence ratio, or n-pentane taking advantage over DME
in the competition of OH radical reactions.

Figure 15¢ shows the reactions of ethanol in the low-temperature region. The light-grey arrows
indicate a fictitious second O, addition that cannot happen because of ethanol's molecular structure.
Therefore, ethanol consumes one OH radical (solid thin arrow), and produces almost none in its
reaction recurrence, as the ROO is very unlikely to be formed. Since ethanol plays the role of an OH
radical consumer in n-pentane/ethanol mixtures, it sufficiently reduces the pool of active radicals and
inhibits the general reactivity of the whole system.

As discussed above, the OH radical plays an important role in the H-abstraction of n-pentane, DME,
and ethanol during the ignition progress in the low-temperature regime. H-abstraction reactions,
especially with OH, are the first step turning RH (CsHi2, DME, or EtOH) into the R radical. It is
interesting to view the balance of OH and HO», another prominent radical associated with low-
temperature reactions. Fig. 16 shows the simulated mole fraction ratio of OH/HO: for all fuel
conditions. It is the ratio between the maxima of OH and HO, radicals along the flow reactor at each
temperature point in the range of 475-750 K.

According to both, NUIG and Polimi models, the mole fraction of the OH radical is ~10® in the NTC
zone, and that of the HO, radical is ~107 in that zone, corresponding to the high reactivity of OH in
the H-abstraction reactions. For the neat fuels, the xon/xno> ratio is highest for DME at very low
temperatures of 480-580 K. After a slow but steady rise in this region, a steep increase occurs around
540 K, coincident with the DME low-temperature consumption maximum (see Fig. 2e). With rising
temperature, the low-temperature kinetics slows down and chain-terminating reactions become of
increasing importance. After a steep increase in OH production at about 560 K for n-pentane,
approximately in the zone where low-temperature fuel consumption accelerates (see Fig. 2a), a plateau
is reached that represents the competing reactions in the NTC region. Similar approximately constant

values of the xon/xno> ratio are also evident in the intermediate temperature range of about 570-670 K
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for DME and the n-pentane/DME mixtures in Fig. 16b. As discussed before, ethanol shows a much
lower relative OH production in the low-temperature regime, with a rise of the xon/xno2 ratio only
noted above 650 K with much lower values than for the other two fuels, and it should be remembered
that no significant low-temperature fuel consumption was noted in this case (see Fig. 2f). Ethanol-
containing mixtures with n-pentane exhibit a significantly increased OH production around 580 K for
PE75 and 600 K for PE50, approximately near the respective start of fuel consumption; a plateau at
higher temperatures up to 650 K can also be noted for these mixtures (Fig. 16c). The formation and
consumption of OH radicals based on the reaction cycles in Fig. 15 can contribute to the understanding
of the low-temperature system reactivity; more details on the efficiency of OH production following a
similar analysis of Dames et al. [8] and Merchant et al. [18] for propane and propane/DME mixtures
are also provided in Section S6 of SM2. They support the strong decrease in low-temperature reactivity
for ethanol addition to n-pentane and show a small tendency of higher OH yield in the n-pentane/DME
mixtures. It must be noted, however, that an assessment of the total OH production in the system may
explain some features of the dual-fuel behavior, especially when systems with quite different low-
temperature reactivity are considered. For the n-pentane/DME mixtures that show synergistic effects,
these cannot be understood in terms of the OH balance alone but need to consider the formed fuel
radicals and other early intermediates and their secondary reactions. For this reason, sensitivity
analyses of OH were performed with the NUIG model for P100, PD75, and PD50 at 25% n-pentane
conversion and are provided in Fig. 17.

The results also show the interaction of n-pentane and DME via the competition of the OH radical.
In general, H-abstraction of n-pentane at the y-site shows the highest negative coefficient, since for
this radical it is most difficult to form new OH radicals in its further reactions. Upon DME addition,
the abstraction reactions at the other two sites of n-pentane by OH radicals reduce their positive
sensitivity or even turn to negative values. Second Oz-addition reactions have stronger sensitivities
than the first O»-addition step. The unimolecular decomposition reaction of the Cs-ketohydroperoxide

(P8), forming one OH radical, becomes slightly less important with the doping of DME, whilst the
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H-abstraction reaction of DME and the decomposition of HPMF (D8) become very sensitive reactions
for the mixture conditions, of increasing importance with higher DME fraction. Especially the
formation and decomposition reactions of the ketohydroperoxide of the respective fuel are thus

important pathways in the formation of OH radicals influencing the overall reactivity of the system.

4. Summary and perspectives

The low-temperature oxidation of mixtures of n-pentane with the oxygenated CoHsO fuel isomers
dimethyl ether and ethanol, including that of the three individual fuels, was experimentally
investigated in a flow reactor at an equivalence ratio of 0.7 and atmospheric pressure, covering the
temperature range of 450-930 K. Electron ionization molecular-beam mass spectrometry was used to
provide a detailed species overview under all conditions, with quantitative evaluation as mole fraction
profiles whenever possible. In cases where only relative signal intensities could be provided, trends
between the individual fuels and the mixtures could be identified. The overall reactivity of the fuels
and their mixtures was discussed, considering the very different low-temperature behavior of the three
individual fuels. To emphasize interactive effects of the CoHsO isomers in the blends with n-pentane,
normalization on the n-pentane inlet mole fractions was performed. Ethanol, as a fuel that exhibits
only marginal low-temperature reactivity, is a significant consumer of active free radicals and thus
inhibits the oxidation process in the mixtures, whilst the mixture of two reactive fuels, n-pentane and
DME, presents noticeable synergistic effects where the maximum conversion of both n-pentane and
DME is improved in the mixtures compared to the pure fuels.

For a deeper albeit preliminary understanding of the effects in the LTC of the dual-fuel mixtures,
two current models, namely the NUIG and the Polimi models that can both be considered well
examined for the individual fuels were adopted in simulations for all conditions. Both models were
seen to perform reasonably well regarding the fuel consumption and major species formation for the
individual fuels, but the predictions of temperature shifts and synergistic effects, especially in the

oxidation behavior of the mixtures leave room for improvement. Such further developments can in
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part be considered for the simulation of two-dimensional effects and heat transfer in the flow reactor
with more refined models than used in these preliminary predictions, especially in zones with very
temperature-sensitive reactions.

The oxidation chemistry in the fuel mixtures was analyzed in more detail on the basis of the reaction
pathways of the individual fuel components by following the sequence of initial fuel decomposition
products and their further reactions by means of intermediate species profiles. Mole fractions of
oxygenated intermediates as well as selected hydrocarbon species were presented with an emphasis on
the zone of the initial fuel conversion and NTC region in the mixtures, and trends between experiment
and model were compared, resulting in an overall somewhat diverse picture. While many trends seen
in the experiments upon blending of n-pentane with either one of the two isomers are quite well
reproduced by these preliminary simulations, the magnitude of the effects is not always correctly
predicted, and large discrepancies are seen for some intermediates.

Regarding the reactivity of the system, the OH balance as well as the ratio of OH and HO», both
important intermediates in the low-temperature oxidation zone, were inspected to assist understanding
of some aspects of the interactions for the dual-fuel mixtures. The OH competition between n-pentane
and ethanol, two fuels with very different low-temperature reactivity, seems simpler than between
n-pentane and DME that both show low-temperature reactions with different production cycles of OH.
Secondary products such as alkyl radicals could participate in this OH competition by enhancement of
O addition reactions that in turn can contribute to OH radical production. Because they are involved
in the formation of OH radicals, acetaldehyde, hydroperoxyethane, and especially
hydroperoxymethane, could also be considered as indicative species of the reactivity of the fuel
mixture. Interactive effects between the reactive species provided in the fuel mixtures may result in a
higher maximum conversion of both fuels than found for each of them individually.

The work presented here suggests several areas for further work. As seen in some cases, the nature
of the isomer composition might change for the fuel blends, with C2H4O» as one example that should

be predominantly acetic acid for n-pentane and methyl formate for DME oxidation. Isomer-resolved,
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quantitative species analysis over the critical temperature range between about 500 and 650 K for these
dual-fuel mixtures is thus recommended as a further continuation of this work. It would be especially
useful if it provided detailed data on first fuel decomposition products and highly oxygenated species.
Furthermore, in spite of recent model development and ample knowledge on the oxidation of the three
individual fuels in the literature, it seems that interactive effects cannot be fully captured and might
need more accurate determination of critical reaction parameters in the low-temperature zone where
the initial fuel consumption accelerates. Temperature dependences may need to be inspected with care.
As one indicator for such needs, it is interesting to note that the rate expressions for the H-abstraction
reactions by OH for the three individual fuels exhibit important differences in both tested models.
Since reliable predictions for the oxidation behavior of mixtures of alkane fuels with ethanol or DME
— or more generally of hydrocarbon with oxygenated fuels — are highly desirable, we hope that the
presented experimental dataset will contribute to the further improvement of models for such dual-fuel

mixtures.
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Fig. 1: Temperature-dependent species mole fraction profiles for Ar, fuel, O,, and H>O for pure DME (D100),
n-pentane (P100), and ethanol (E100) as well as for mixtures of either oxygenated fuel with 75% (PD75, PE75)
and 50% (PD50, PE5S0) of n-pentane. The broken line at 616 K is drawn to guide the eye. The temperature
plotted on the x-axis is the set temperature at the outside wall of the reactor.
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Fig. 2: Reactivity for neat fuels and dual-fuel mixtures. Experimental fuel consumption mole fraction profiles
(symbols) are given as a function of temperature, together with model simulations (/ines). Panels (a-d):
n-Pentane consumption profiles for pure n-pentane fuel and for mixtures containing 75% and 50% n-pentane
with DME (a,c) or EtOH (b,d); each profile is normalized by the inlet mole fraction of n-pentane. Simulation
results for (a,b) were obtained with the NUIG model [39] and for (c,d) with the Polimi model [17]. Panels (e,f):
Consumption profiles for DME (e) and EtOH (f) for different inlet conditions; each profile is normalized by the
respective inlet fuel mole fraction. Solid line: NUIG model, dashed line: Polimi model. The profile for PE5S0 is
not shown in (f) because of negligible low-temperature chemistry behavior.
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normalized by the different inlet mole fractions of n-pentane (symbols) and quantitative mole fractions (right
axis) from NUIG model predictions (/ines). (a) n-Pentane/DME, (b) n-pentane/EtOH. No experimental data of
CsH 20> is observed in PE50 due to its low concentration, thus only the modeling result is provided.
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Fig. 13: Contributions of the main pathways in the formation of acetaldehyde (CH3;CHO, AAL) and
formaldehyde (CH»O, FAL) for the different inlet conditions. The results were obtained with the NUIG model
at the respective maximum AAL and FAL mole fractions (£5 K) in the NTC zone. Abbreviations: CsHoO1-
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NCsKET240 (P10-2) the 2-pentanoxide-4-one radical, and sC,H4OH (E2-3) the a-ethanol radical. (Compare
also nomenclature and structures in Table S1 in SM2).
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\ANNANNNNNNNNNNNNNN
PRI

49






ANHANG F

Publikation 6

J. Pieper, C. Hemken, R. Biittgen, I. Graf, N. Hansen, K.A. Heufer, K. Kohse-Héinghaus

A high-temperature study of 2-pentanone oxidation: experiment and
kinetic modeling

Proceedings of the Combustion Institute, 2018
Eingereicht, positiv begutachtet.

Abstract

Small methyl ketones are known to have high octane numbers, impressive knock resistance,
and show low emissions of soot, NOy, and unburnt hydrocarbons. However, previous studies
have focused on the analysis of smaller ketones and 3-pentanone, while the asymmetric
2-pentanone (methyl propyl ketone) has not gained much attention before. Considering
ketones as possible fuels or additives, it is of particular importance to fully understand
the combustion kinetics and the effect of the functional carbonyl group. Due to the higher
energy density in a Cs-ketone compared to the potential biofuel 2-butanone, the flame
structure and the mole fraction profiles of species formed in 2-pentanone combustion are of
high interest, especially to evaluate harmful species formations. In this study, a laminar
premixed low pressure (p=40 mbar) fuel rich (¢=1.6) flat flame of 2-pentanone has been
analyzed by vacuum-ultraviolet photoionization molecular-beam mass-spectrometry (VUV-
PI-MBMS) enabling isomer separation. Quantitative mole fraction profiles of 47 species
were obtained and compared to a model consisting of an existing base mechanism and
a newly developed high-temperature sub-mechanism for 2-pentanone. High-temperature
reactions for 2-pentanone were adapted in analogy to 2-butanone and n-pentane, and the
thermochemistry for 2-pentanone and the respective fuel radicals was derived by ab initio
calculations. Good agreement was found between experiment and simulation for the first
decomposition products, supporting the initial branching reactions of the 2-pentanone
sub-mechanism. Also, species indicating low-temperature chemistry in the preheating zone
of the flame have been observed. The present measurements of a 2-pentanone flame provide
useful validation targets for further kinetic model development.
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Abstract

Small methyl ketones are known to have high octane numbers, impressive knock resistance, and show
low emissions of soot, NOx, and unburnt hydrocarbons. However, previous studies have focused on
the analysis of smaller ketones and 3-pentanone, while the asymmetric 2-pentanone (methyl propyl
ketone) has not gained much attention before. Considering ketones as possible fuels or additives, it is
of particular importance to fully understand the combustion kinetics and the effect of the functional
carbonyl group. Due to the higher energy density in a Cs-ketone compared to the potential biofuel
2-butanone, the flame structure and the mole fraction profiles of species formed in 2-pentanone
combustion are of high interest, especially to evaluate harmful species formations. In this study, a
laminar premixed low-pressure (p = 40 mbar) fuel-rich (¢ = 1.6) flat flame of 2-pentanone has been
analyzed by  vacuum-ultraviolet  photoionization = molecular-beam  mass-spectrometry

(VUV-PI-MBMS) enabling isomer separation. Quantitative mole fraction profiles of 47 species were



obtained and compared to a model consisting of an existing base mechanism and a newly developed
high-temperature sub-mechanism for 2-pentanone. High-temperature reactions for 2-pentanone were
adapted in analogy to 2-butanone and n-pentane, and the thermochemistry for 2-pentanone and the
respective fuel radicals was derived by ab initio calculations. Good agreement was found between
experiment and simulation for the first decomposition products, supporting the initial branching
reactions of the 2-pentanone sub-mechanism. Also, species indicating low-temperature chemistry in
the preheating zone of the flame have been observed. The present measurements of a 2-pentanone

flame provide useful validation targets for further kinetic model development.
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mass-spectrometry, kinetic modeling, thermochemistry



1. Introduction

With a rising energy demand and the objective to reduce global warming, a transition from the
combustion of fossil fuels in the transport sector to second-generation biofuels is desired, because it
may eventually contribute to a reduced net carbon emission. As representatives of this category of
fuels, small methyl ketones like acetone (RON = 110-117 [1,2]) and 2-butanone (RON=117 [3]) show
impressive knock resistance. 2-butanone, for example, was tested in a Sl engine as neat fuel and
showed low emissions of soot, NOyx, and unburnt hydrocarbons compared to a RON 95 fuel blend,
ethanol, and 2-methylfuran [3]. Nonetheless, studies investigating the combustion behavior and
properties of 2-pentanone (methyl propyl ketone, MPK) are scarce, while the symmetric conformer
3-pentanone (diethyl ketone, DEK) gained more attention [4-6]. Compared to 2-butanone and
3-pentanone with one or two ethyl side chains, respectively, 2-pentanone has a propyl side chain, which
could lead to changes in the underlying kinetics and to a lower effect of the carbonyl group. With a
higher energy density, Cs-ketones could be preferred in engine applications, while the formation of
toxic and harmful species is unknown. In a premixed flame study [7], it was shown that 2-butanone
exhibits very low emissions of oxygenated intermediates and soot precursors. With a linear alkyl chain
of three carbon atoms in 2-pentanone, the formation of soot precursors like CsHs could be increased.
Minwegen et al. [8] measured the ignition delay times of a series of small linear ketones, including
2-pentanone, at 20 and 40 bar in a shock tube. High temperature measurements of reactions of small
linear ketones with OH were performed at 1-2 atm by Lam et al. [9]. Furthermore, Badra et al. [10]
experimentally investigated the H-abstraction by OH of a series of larger ketones. In theoretical work
by Hudzik and Bozzelli [11], the thermochemistry and bond dissociation energies of ketones were
calculated.

In this study, a laminar premixed low-pressure (40 mbar) fuel-rich (¢ = 1.6) flat flame of 2-pentanone
was quantitatively analyzed by vacuum-ultraviolet photoionization  molecular-beam
mass-spectrometry (VUV-PI-MBMS). For the first time, 47 species were measured, quantified and
isomers were separated whenever possible. Complementing the experimental data set, a kinetic model,

representing the high-temperature chemistry, is presented here. For this kinetic model, the
4



thermochemistry (heat of formation, entropy, and heat capacity) of the fuel and the corresponding fuel

radicals was determined by ab initio quantum mechanical calculations.

2. Experiments

A laminar premixed fuel-rich flame of 2-pentanone/oxygen/argon (0.093/0.407/0.500) was
investigated at 40 mbar, equivalence ratio of 1.6 and cold gas velocity of 73.85 cm/s (at inlet conditions
of 333 K and 40 mbar, 2.574 cm/s at 298 K and 1 atm ) by VUV-PI-MBMS [12,13] at the Advanced
Light Source (ALS) in Berkeley. Gas flow rates of oxygen and argon were metered by calibrated
mass-flow controllers with a precision of 5%, while liquid 2-pentanone was injected into a heated
vaporizer system (~400 K) by a syringe pump (0.5% precision) and transported by an argon flow. The
components were mixed and transferred into a McKenna burner (60 mm diameter), and flame gases
were sampled via a two-stage expansion (~10* mbar, ~10° mbar) by a quartz nozzle (500 um orifice,
40° opening angle) and a nickel skimmer forming the molecular beam that was then crossed with the
tunable VUV beam. This setup features a mass resolution of m/Am~4000 combined with an energy
resolution of E ~ 0.05 eV, enabling the separation of C/H/O composition and isomeric species by their
ionization energy (IE). Species profiles were recorded at different positions of the sampling nozzle
using 16 fixed soft ionization energies between 8.7 and 16.65 eV for low fragmentation and separation
of isomeric species. Furthermore, photoionization efficiency (PIE) curves were obtained at a distance
from the burner of h =4 mm tuning the photon energy between 8 and 11.5 eV (AE = 0.05 eV). For
quantification, routines described previously [14,15] were applied using photoionization cross sections
(PICS); errors were 30-40% if measured and a factor 2-4 if estimated cross sections were used [16].
More details on the experimental setup and procedures can be found in Refs. [12,13].

The temperature profile was determined as described in [17] using the recorded first-stage pressure
profile of the flame. Calibration was performed in the exhaust gas at h = 20 mm with a temperature of
2290 + 50 K obtained by planar laser-induced fluorescence of OH, using the setup and procedure

described in [18]. Due to pressure uncertainties, the measured temperature profile was slightly



smoothed (4pt moving average) to achieve a faster convergence and remove non-physical temperature
discontinuities in the modeling.
The data of all evaluated mole fraction profiles and the temperature profile are provided in

Supplemental Material 1.

3. Kinetic model and flame simulations

The presented kinetic model is based on the latest AramcoMech 2.0 [19] updated with the high-
temperature sub-mechanism of 2-butanone by Hemken et al. [20] and a small-aromatic sub-mechanism
by Zhang et al. [21]. This model represents the high-temperature kinetics of 2-pentanone, consists of
520 species and 2960 reactions and is provided in Chemkin format in Supplemental Material 2. The
high-temperature reactions include the unimolecular decomposition of the fuel, H-atom abstraction,
and fuel radical decomposition, which are adapted in analogy to 2-butanone and n-pentane.
Unimolecular decompositions were included from calculations for 2-butanone of Thion et al. [22] and
from Bugler et al. [23] for the alkyl rest (MPK«—CHs+CH2CH2COCHzs). The most important
decomposition takes place adjacent to the carbonyl group (MPK«<CH3CO+CzH7), and its rate
coefficient was increased by a factor of four to match the ignition delay times of Refs. [8,24]. While
such a modification of the coefficient is outside the uncertainty of the quantum mechanical
calculations, a higher rate coefficient can be expected due to the larger molecule size of 2-pentanone
and thus the collision probability is increased. Consistently, the other decomposition rate coefficients
were increased, too. The methyl group at the propyl side chain, which is not close to the carbonyl
group, is treated as in n-pentane [23] for all reaction classes. H-atom abstraction reactions as well as
the following B-scission reactions are included by the rates of Thion et al. [22] for 2-butanone and
Bugler et al. [23] for n-pentane. Detailed information on reactions, applied factors, and sources are
given in the mechanism files in Supplemental Material 2.

The thermochemistry for 2-pentanone as well as for the four fuel radicals was derived by ab initio
calculations. The method is described in detail by Burke et al. [25]. G4 model chemistry [26] as

implemented in Gaussian09 package [27] was used to calculate the enthalpies of formation.
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Temperature dependencies of heat capacities, enthalpies, and entropies were determined using
TAMKin [28] with correction of 1D hindrance potentials. Accuracy in the entropies of formation and
heat capacity data was increased by one-dimensional hindered rotor treatment for all single bonds
connecting nonlinear molecular groups. All calculations have been performed at B3LYP/6-31G(2df,p)
level that was also used for geometry optimization in the G4 method. C-H and C-C bond strengths are
shown in Fig.1 and compared to those of Hudzik and Bozzelli [11]. They agree within
0.5-1.1 kcal/mol, which fits the uncertainty of the method. Transport data was estimated by group

additivity with RMG [29].

, 979
95.1
956

83.3 83.1
90.8 100.2
913 ,,‘.) 101.1

Figure 1: Calculated C-H and C-C bond strengths in kcal/mol for 2-pentanone; black: this work, grey: work by Hudzik
and Bozzelli [11].

Simulations in this work were performed using the LOGEsoft [30] premixed burner-stabilized module,
including the experimentally determined temperature profile. The kinetic model was also validated
against high-temperature shock tube data by Minwegen et al. [8] at elevated pressures of 20 and 40 bar,
as well as against highly diluted shock tube data of Lam et al. [24], and the results are presented in

Supplemental Material 3 (see Figs. S1-S2).

4. Results and discussion

The following section provides the results of the measurements and the comparison with the
simulations using the present model. First, the main species occurring during the combustion of
2-pentanone will be discussed and then the primary intermediates will be presented along with the fuel

decomposition scheme. Finally, some species indicating low-temperature chemistry will be discussed



which normally are not observable in the hot flame. Because only selected mole fraction profiles are

shown here, several further profiles are available in Supplemental Material 3 (see Figs. S3-S5).

4.1 Main species

Figure 2 presents the mole fractions of the main species (H2, H20, CO, O, Ar, CO2, 2-pentanone)
during the combustion of 2-pentanone together with the measured temperature profile. Mole fractions
in the exhaust gas agree well with the calculated equilibrium values shown as open symbols at 32 mm.
Good agreement can be noted between the experimental results and the simulated mole fractions with

only slight deviations for H> due to high noise in the H-signal.
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Figure 2: Main species profiles in a rich premixed low-pressure 2-pentanone flame. Filled symbols: experimental results,
open symbols: calculated equilibrium values, lines: simulation, dashed line: measured temperature profile.

4.2 Fuel decomposition and primary intermediates

Figure 3 shows a flux analysis for 2-pentanone with the present model. The respective net percentage
consumptions (h = 0-3.3 mm, corresponding to a fuel consumption of 0-20%) are shown next to the
arrows. In the first step, 2-pentanone is consumed via H-abstraction reactions by H and OH forming
the respective four fuel radicals (CsHgO). 2-pentanon-1-yl is consumed almost equally via C-C
B-scission forming ketene and the propyl radical (42%) and radical isomerization to the
2-pentanon-3-yl radical (45%). This radical is almost completely decomposed by C-C pB-scission
between C4 and C5 resulting in CH3 and methyl vinyl ketone (99.9%). The other B-scission between

C1 and C2 forming ethylketene and CHz is only predicted with 0.01%. The reaction rate coeffecient
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of the 3-scission reaction at the alkyl side is more than 2 orders of magnitude higher than the respective
one at the carbonyl site as a result of a much lower activation energy for the latter. The 2-pentanon-4-yl
radical mostly forms propene and the acetyl radical (91.5%), while further H-abstraction forming
3-penten-2-one is predicted with only 8.5%. This reaction is predicted to be even less important for
the 2-pentanon-5-yl radical leading to 4-penten-2-on (0.5%). The preferred reaction here is also the

B-scission forming ethene and the acetonyl radical (97%).
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Figure 3: Reaction flux analysis for the 2-pentanone flame conditions with the net consumption from the simulation in the
range of h = 0-3.3 mm (representing up to 20% fuel consumption) shown as percentages next to the arrows.

As the first H-abstraction products cannot be detected and quantified with the present PI-MBMS
experiment, the primary decomposition products from the subsequent (3-scissions are analyzed in the
experiment. Figure 4 shows the stable products from the 2-pentanon-1-yl, -4-yl, and -5-yl radicals,
namely ketene (a), propene (b), and ethene (c). Ketene and propene show mole fractions in the range
of 2-3-1073, while that of ethene is about one order of magnitude higher (2.4:102). The simulation
agrees excellently with the profiles of propene and ethene, while ketene is overestimated by a factor
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of 2. The prediction shows the same trends as for the 2-butanone flame [7]. Ketene is mainly formed
by the decomposition of the acetonyl radical (CH3COCH,) that is a decomposition product of
2-pentanone-5-yl, and by the direct decomposition of 2-pentanon-1-yl. However, the results indicate
that the acetone chemistry in the base mechanism might require further development, which can also
be seen by the underprediction and the shift of acetone in Fig. S5. Similarily Minwegen et al. [8]
recommended a revision of the acetone submechansim as a result from their study. However, the good
prediction of ethene and propene (s. Fig. 4b,c) indicates that the branching of the fuel radicals is

reasonable and that the underlying sub-mechanisms are working.

Propene |

Ethene

h/mm

Figure 4: Mole fraction profiles of selected primary intermediates after H-abstraction and B-scission. Symbols:
experimental results (an error range of factor 2 is indicated in grey), solid lines: spline to guide the eye, dashed lines:
simulation.
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Looking at the 2-pentanon-3-yl radical, it seems interesting whether the simulation can predict the
drastic ratio between the two pathways leading to methyl vinyl ketone (MVK) and ethylketene (EK)
correctly. Unfortunately, for the evaluation of EK no photoionization cross sections (PICS) could be
found in the literature. However, a photoelectron spectrum of this species, measured by Bock et al.
[31], could be integrated and scaled with a value of 24 Mb at 10.35 eV in analogy to the PICS of ketene
from Yang et al. [32]. Clearly, a higher uncertainty is therefore connected to the evaluation of the mole
fraction of EK, probably in the range of a factor of 5-10. Nevertheless, this estimate enables a
comparison of the C4HeO isomers. Figure 5a shows the evaluated mole fractions for MVK and EK,
the latter multiplied by a factor of 25 as it is about a factor of 100 lower (1.6:10°) than that of MVK
(2.4-10°). Therefore, the higher error in the quantification of EK is still much lower than the difference
between both species. This ratio can also be validated by the PIE curve, which is shown in Fig. 5b
(squares). The circles show the same PIE curve for CsHeO, but multiplied by a factor of 25 to
emphasize the slope at lower energies, most likely belonging to EK with an ionization energy (IE) of
8.80 eV [31]. The change of the slope can be assigned to MVK with an IE of 9.64 eV [32]. In addition,
the PICS of EK and MVK are shown in comparison to the experimental data. Both PICS excellently
fit the slopes in the PIE curves and lead to a ratio of 99.4% of MVK and 0.6% EK, which correlates
perfectly to the mole fraction ratio from Fig. 5b (99.3% MVK, 0.7% EK). These experimental results

excellently confirm the prediction from the simulation.
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Figure 5: a) Mole fraction profiles of the detected C4HsO isomers, symbols: experimental results (an error range of factor
2 is indicated in grey), solid lines: spline to guide the eye, dashed/dotted lines: simulation; note that experimental results
and simulation are multiplied by a factor of 25 for ethylketene. b) PIE signal of C4HsO (squares) and again shown, but
multiplied by a factor of 25 (circles), to emphasize the slope for lower energies. The PICS of ethylketene (estimated) and
methyl vinyl ketone [32] are scaled and shown for comparison. The IEs of ethylketene [31] and methyl vinyl ketone [32]
are shown as vertical lines.

4.3 Low-temperature species

Several species that are connected to low-temperature chemistry were detected in the present flame.
Figure 6a shows formaldehyde, a typical oxygenated species that is also related to low-temperature
reactions. A shift towards later reaction times is seen in the simulation in Fig. 6a, which could be one
aspect to indicate that oxygen addition reactions could occur in the preheating zone of the flame.
Formaldehyde is mainly produced by the reaction of CHz with O, while CHz is formed via several
reactions, including the decomposition of 2-pentanone-3-yl in the early phase of the flame as well as
through the decomposition of propyl, ethyl, and acetonyl radicals. Further indications of
low-temperature reactions are presented by the detection of CsHgO (Fig. 6b) and the signal of

m/z = 100.052, which is identified as CsHsO- (Fig. 6¢) with the high mass resolution of the setup. This
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sum formula can be assigned to a dione or a cyclic ether structure that is typically formed via O2
addition and isomerization to QOOH. No PICS or IEs are tabulated for these species, but the PIE curve
shows a slope corresponding to an IE in the range of 9.1-9.3 eV for CsHgO.. That O, addition reactions
can take place in the early flame at lower temperatures has been shown by Seidel et al. [33] and
Hemken et al. [7]. Nonetheless, due to the rather low flux of these species into low-temperature
pathways, the general performance of this high-temperature model is very satisfying.

Figure 6b shows the fragment-corrected signal profile of CsHgO, which can be assigned to 3-pentene-
2-one and 4-pentene-2-one, for which no PICS were found in the literature. These species can either
be formed by C-H B-scission from 2-pentanone-3yl, -4yl, and -5yl or by O addition to the fuel and
concerted HO elimination reactions. The comparison of the qualitative signal profile and the model
predictions indicates that such reactions already happen early in the flame, with a maximum earlier
than that of the CsHgO> signal (compare Fig.6¢). Shape and peak position can obviously not yet be
correctly predicted by the present kinetic model, maybe due to the neglected low-temperature
reactions. Thus, a complete implementation of the low-temperature chemistry could also slightly
influence the branching ratio of the fuel radicals due to a change in the available radical pool. However,
the profile position of 4-pentene-2-one indicates that probably not only low-temperature-related
reactions are needed to improve the prediction. Here, further experimental and theoretical work is

encouraged to enlighten these pathways.

13



s0{d CH,0
Formaldehyde )

4.0- —=—Exp
: ----Sim

0.0 55— t e

1.0 —-'— Exp (lsignal) '
b == ==8im (Sum C,H,0) C5H30

12.5

= {2.0

Vo oseenenne 3-Penten-2-one
—-=- 4-Penten-2-one

0.8 n

'
'
'
'
'

n
/110°

sim

110

4
J i\2 {05
3

> ' : T | + + 00
1Cc —=—Exp (signal) C.H O

exp

S

0.0 T T | S m
0 2 4 6 8 10

h/ mm

Figure 6: Profiles of selected oxygenated species related to low-temperature chemistry. For formaldehyde (a) the mole
fraction profile is shown (an error range of factor 2 is indicated in grey), while for CsHgsO (b) and CsHgO- (c) only the
corrected signals are presented due to missing PICS for quantification. Symbols: experimental results, solid lines: spline
to guide the eye, dashed, dotted, and dash-dotted lines: simulation.

5. Summary and conclusions

Mole fraction profiles for 47 species from a laminar premixed low-pressure flame fueled by
2-pentanone were obtained by VUV-PI-MBMS including isomer separation. A new high-temperature
sub-mechanism has been developed for 2-pentanone and has been coupled to an existing base
mechanism. High-temperature reactions for 2-pentanone were adapted in analogy to 2-butanone and
n-pentane, and the thermochemistry for 2-pentanone and the fuel radicals was derived by ab initio
calculations.

A flux analysis has been performed for the 2-pentanone flame conditions, showing the first
decomposition reactions of the fuel by H-abstractions and B-scissions and their respective probabilities.

For the first B-scission products ketene, propene, ethene, methyl vinyl ketone, and ethylketene, good

14



agreement between experiment and simulation was found permitting the conclusion that the initial
branching reactions are reasonably captured in the model. With the isomer distinction enabled by the
PI-MBMS experiment, it was possible to confirm that more than 99% of the 2-pentanon-3-yl radical
is decomposed by C-C B-scission between C4 and C5 forming CHs and methyl vinyl ketone, while the
B-scission between C1 and C2 forming CHs and ethylketene is about a factor of 100 lower in both the
experiment and the simulation.

Furthermore, some species assigned to low-temperature reactions were observed in the flame.
Especially the detection of a CsHgO signal, here potentially assigned to cyclic ethers formed by O>
addition to the fuel and subsequent isomerization to the QOOH species, supports the assumption of
low-temperature reactions taking place in the preheating zone of the flame. Further confirmation of
this observation might be the mole fraction profile of formaldehyde that rises earlier than the
simulation predicts, potentially due to missing reactions of fuel radicals with HO2 forming the related
alkoxy (RO) species [7]. This reaction path could additionally be enhanced by the concerted HO>
elimination reactions of RO> species, forming 3- and 4-pentene-2-one, which is supported by the early
rise of the CsHgO profile. Except for these low-temperature reactions in the early flame zone that are
not yet included in the model, most profile shapes and positions were captured quite well by the
simulations.

In comparison to the smaller ketone 2-butanone, 2-pentanone might be preferred in applications
because of its higher energy density; however, a similar amount of toxic species and pollutants was
found to be formed in its combustion. For the particularly toxic species methyl vinyl ketone the mole
fraction was observed to be even five times higher in 2-pentanone combustion compared to 2-butanone
[7]

The present data, providing quantitative and isomer-separated mole fraction profiles whenever
possible with good agreement with the high-temperature model, may be helpful in further critical
examination of the related reaction chemistry. In the next steps, additional calculations should be

performed to integrate a low-temperature sub-mechanism into the model.
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