Approximate Common Intervals Based Gene
Cluster Models

Katharina Jahn

PhD thesis submitted to the
Faculty of Technology, Bielefeld University, Germany

for the degree of Dr. rer. nat.

Referees:

Prof. Dr. Jens Stoye, Bielefeld University
Prof. Dr. Sebastian Bocker, Friedrich Schiller University Jena

Marz 2010






Thesis defended on Monday, July 19th, 2010.

Committee:

Prof. Dr. Ellen Baake (chair),

Dr. Marilia Dias Vieira Braga,

Prof. Dr. Jens Stoye (referee),

Prof. Dr. Sebastian Bocker (referee).

Gedruckt auf alterungsbestiandigem Papier nach DIN-ISO 9706
Printed on non-aging paper according to DIN-ISO 9706






Zusammenfassung

Durch die zunehmende Verfiigbarkeit von vollstdndig sequenzierten und as-
semblierten Genomen enstand in den letzten Jahren ein neues Teilgebiet
der komparativen Genomik, in dem Genome verschiedener Spezies beziiglich
der enthaltenen Gene und deren Anordnung auf den Chromosomen vergli-
chen werden. Ziel solcher Studien ist es, die Funktionen von einzelnen Genen
und Genverbiinden aufzudecken und ein besseres Versténdnis fiir die auf
Genomebene wirkenden evolutiondren Prozesse zu gewinnen. Im allgemei-
nen beobachtet man bei diesen Vergleichen eine graduelle Randomisierung
der Genanordung und des Gengehalts, die um so stérker ausgeprigt ist, je
geringer der Verwandtschaftsgrad der untersuchten Spezies ist. Einige lo-
kale Bereiche bleiben jedoch auch iiber grofe evolutionire Distanzen sehr
gut konserviert. Dieses wiederholte gemeinsame Auftreten von bestimmten
Genen ist ein zuverldssiger Indikator fiir deren funktionelle Interaktion. Die
automatisierte Aufdeckung dieser Genverbiinde, die hiufig als Gencluster
bezeichnet werden, erweist sich als anspruchsvolles Problem, da man h&ufig
mit unvollstindigen Konservierungsmustern konfrontiert ist, die durch lokale
Genumordnungen, den Verlust einzelner Genvorkommen, Unterbrechungen
durch unbeteiligte Gene oder fehlerhafte Homologie-Bestimmung entstan-
den sind. Diese Doktorarbeit beschéftigt sich mit der formalen Modellierung
solcher approximativ konservierten Gencluster, ihrer effizienten Berechnung
sowie mit sich daraus ergebenden Anwendungsgebieten in der komparativen
Genomik.

Die in dieser Doktorarbeit entwickelten Gencluster-Modelle, die unter
dem Begrift approzimate common intervals zusammengefasst werden kon-
nen, erweitern das etablierte Modell der common intervals dahingehend, dass
nicht mehr nur lokale Genumordnungen innerhalb eines Clustervorkommens
toleriert werden, sondern auch Insertionen und Deletionen von Genen. Diese
Verallgemeinerung fithrt dazu, dass ein Gencluster nicht mehr durch eine
eindeutige Menge von Genen beschrieben werden kann, die in allen Clus-
tervorkommen vollstindig und konsekutiv vorkommt. Stattdessen wird ei-
ne Konsensus-Menge definiert, die die unterschiedlichen Clustervorkommen
bestmdglich reprasentiert. Hierfiir wurden basierend auf der symmetrischen
Mengendistanz zwei Konsenus-Modelle entworfen: Die Median Gene Cluster
minimieren die Summe der paarweisen Distanzen zwischen der Konsensus-
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Menge und dem Gengehalt der approximativen Vorkommen, wihrend die
Center Gene Cluster die maximale paarweise Distanz minimieren. Von bei-
den Modellen wurde zudem eine referenzbasierte Variante entwickelt, die
statt der optimalen Konsensusmenge den bestmdglichen Repréisentanten aus-
wahlt, dessen Gene konsekutiv auf einem der untersuchten Genome vorkom-
men.

Das Verwenden einer Konsensusmenge bzw. eines Referenzvorkommens
stellt einen entscheidenden Fortschritt gegeniiber anderen Verallgemeinerun-
gen der common intervals wie z.B. den maz-gap oder r-window Genclus-
tern dar. In diesen Modellen enthélt ein Gencluster nur solche Gene, die
in allen Cluster-Vorkommen gemeinsam auftreten, was beim Vergleich einer
grofen Anzahl von Genomen durch den Verlust einzelner Genvorkommen
leicht dazu fithren kann, dass nur ein Teil der kolokalisierten Gene in ei-
nem Gencluster zusammengefasst wird und dadurch scheinbare Liicken in
den Cluster-Vorkommen auftreten. s konnte an realen Datensdtzen gezeigt
werden, dass die oben genannten Effekte nicht auftreten, wenn approzimate
common intervals basierte Gencluster-Modelle verwendet werden, und dass
dadurch komplexere Gencluster gefunden werden kénnen.

Neben der Modellierung lag der Schwerpunkt dieser Doktorarbeit auf der
Entwicklung von Algorithmen, die die effiziente Vorhersage von Genclustern
unter den neuen Modellen ermdéglichen. Zunéchst wurde fiir den bekann-
ten Connecting Intervals Algorithmus zur Berechnung von common inter-
vals eine einfache Methode beschrieben, durch die der Speicherplatzbedarf
von quadratischer auf lineare Abhéngigkeit von der Eingabegrife reduziert
werden kann. Darauf aufbauend wurden neue Algorithmen fiir die appro-
zimate common intervals basierten Gencluster-Modelle entwickelt. Fiir die
referenzbasierten Modelle wurde ein effizienter Algorithmus gefunden, der
quadratisch von der Eingabegréfe und einer vom Benutzer vorgegebenen
Distanz-Obergrenze abhingt. Fiir die Median Gene Cluster und die Center
Gene Cluster wurde durch das Verwenden einer Filter-Technik und mehre-
rer algorithmischer Optimierungen der exponentielle Suchraum soweit einge-
schrinkt, dass ein groker Parameter-Raum in angemessener Zeit abgesucht
werden kann, wahrend die worst-case Laufzeit exponentiell mit der Anzahl
verglichener Genome anwichst.

Weitere Punkte, die in dieser Doktorarbeit behandelt wurden, sind die
statistische Signifikanz-Analyse von Genclustervorhersagen, die Anwendung
der vorgestellten Methoden in der Gencluster-Vorhersage in prokaryotischen
Genomen sowie die Entwicklung einer distanzbasierten Methode zur Phyloge-
nie-Rekonstruktion.



Abstract

With the increasing availability of completely sequenced and assembled ge-
nomes, gene-order based comparisons of whole genomes have recently be-
come an important field in comparative genomics. The aim of such studies
is to reveal functional coupling between genes, and to gain a better un-
derstanding of large-scale evolutionary processes. In general, we observe in
such studies a gradual randomization of gene order and gene content that is
contrasted by a number of well-conserved segments that remain co-located
across species. Such local aberrations from genome randomization are known
to provide highly informative signals for functional analysis. However, in-
complete conservation patterns caused by micro-rearrangements, gene losses,
gene insertions, as well as errors in the homology assignment turn gene clus-
ter detection into a computationally hard problem.

This thesis is about the formal modeling of approximately conserved
gene clusters, their efficient computation and applications in comparative ge-
nomics. The gene cluster models developed in this work can be summarized
under the term approzimate common intervals. They extend the established
common intervals model to deal not only with micro-rearrangements within
cluster occurrences but also with insertions and deletions of genes. Due to
this generalization, a gene cluster is no longer determined by a specific set
of genes which occurs everywhere as a complete and consecutive block. In-
stead a consensus set is defined that best represents a set of similar cluster
occurrences. For that purpose, we defined two consensus models based on
the symmetric set distance: Median Gene Clusters choose the consensus
gene set to minimize the overall distance to the approximate occurrences,
while Center Gene Clusters minimize the largest pairwise distance between
the consensus set and any of the approximate occurrences. For both mod-
els, we developed also a reference-based version that picks the representative
directly from the set of similar cluster occurrences. Both approaches, the
optimized consensus set and the reference occurrences improve substantially
over earlier generalizations of the common intervals model, like maz-gap or
r-window gene clusters. In the latter models, only those genes belong to a
cluster that occur in each approximate occurrence. When comparing a large
number of genomes, the loss of individual genes in different cluster occur-
rences has the effect that only a part of the co-localized genes is combined
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into a gene cluster and that artificial gaps are introduced into cluster oc-
currences. Qur experimental results show that these effects do not occur
in approximate common intervals based gene cluster models and that more
complex conservation patterns can be detected.

Besides the formal modeling of gene clusters, we focused in this thesis
on the development of efficient algorithms for the prediction of gene clusters
under the novel models. We introduced a simple extension of the Connect-
ing Intervals algorithm for the computation of common intervals to reduce
its space complexity from quadratic to linear dependency on the input size.
Based on these results, we developed new algorithms for approximate com-
mon intervals computation. For the reference-based version, we devise an
efficient polynomial-time algorithm that depends quadratically on the in-
put size and a user-defined distance threshold. For median and center gene
clusters we use filter techniques and algorithmic optimizations that restrict
the exponential search space sufficiently to search a large parameter range
in reasonable time, albeit the asymptotic runtime of our approach grows
exponentially with the number of genomes compared.

Further topics of this thesis are the analysis of the statistical significance
of predicted gene clusters, the application of the developed approaches to
gene cluster prediction in prokaryotic genomes and the development of a
distance-based approach to phylogeny reconstruction.
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Chapter 1

Introduction

In the past century, a series of breakthrough discoveries provided unprece-
dented insights into the basic mechanisms of life. Important roles played the
understanding how the inheritable characteristics of a living organism are en-
coded in its genome in form of genes, the disclosure of the physical genome
representation in DNA molecules, and the discovery of the mechanisms by
which the encoded genetic information is used in the living organism.

Current genome research adds further insights into these mechanisms
as it reveals on a large scale the function of individual genes, gene prod-
ucts and non-coding regions, elucidates their interaction and compares them
across genomes. Such sequence based analyses are possible since the 1970s
when the first techniques for the sequencing of short DNA segments were
developed. Since then, advancements in the technology made sequencing
ever faster and cheaper and increased drastically the amount of available
sequence data, in the meantime not only of DNA fragments but of whole
genomes. Still, a few years ago only a small number of model organisms
were completely sequenced, but nowadays the genomes of a broad range of
species are available and their number grows rapidly as illustrated in Fig-
ure 1.1. According to the GOLD database the sequencing of 1100 genomes
is finished at present, while more than 4500 further sequencing projects are
currently under way [54].

With this abundance of data a new line of genome research opened up,
which is referred to as comparative genomics. This young discipline aims
at the analysis and comparison of whole genomes based on changes in their
large-scale structure to gain insights into the functionality of genomes as a
whole and the evolutionary processes that act on them. It has long been
known that genomes evolve not only by point mutations of the nucleotide
sequence but also by means of large-scale modifications of the genome orga-
nization. These changes are caused by rearrangement operations like inver-
sions and transpositions of chromosome segments, chromosome fusion and
fission, as well as duplication processes that can affect the whole genome,



2 CHAPTER 1. INTRODUCTION

Genome Sequencing Projects on GOLD
Septermber 2008, 5643 projects
6000
5000
4000
W Incomplete
3000 o Complete
2000
1000
0 - T T T T |
\Qti‘ oF o '19@ '190'\ & & '199 '190‘3 '19&*?’ '196‘ '19@ '19@

Figure 1.1: The number of completed and ongoing sequencing projects in
the GOLD database. Figure taken from http://genomesonline.org/
gold_statistics.htm

chromosomes, chromosome segments as well as single genes. These duplica-
tions are typically followed by gene losses and sometimes the development of
new functionalities in the duplicated genes, as selective constraints usually
act only on the maintenance of a single gene copy.

The analysis of genome rearrangement was pioneered by Dobzhansky
and Sturtevant [22] in the first half of the 20th century, long before the
first genome was sequenced or even the structure of DNA was discovered.
In modern times, genome rearrangement studies were introduced by David
Sankoff [77] and Nadeau and Taylor [57] with the objective to infer evolu-
tionary distances between species based on the amount of rearrangement
that took place between their genomes. This approach is based on the im-
plicit assumption that after speciation events the genomes of the new species
are reshuffled over time in a random process. It is then assumed that the
most parsimonious sequence of rearrangement operations that transforms
two genomes into each other is a measure for their divergence time. Genome
rearrangement studies are a highly active field of research. For a recent
overview of the field, we refer to the surveys of Li et al. [52], or Bourque and
Zhang [13], or the recent book by Fertin et al. [13].

The second major line in comparative genomics is the study of gene clus-
ters. Especially in the comparison of prokaryotic genomes, typically a pattern
of very low overall gene order conservation is observed that is contrasted by
a number of small segments with highly conserved gene order or at least gene
content. An example of such a setting is visualized in the dot plot given in
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Figure 1.2: Visualization of gene order conservation between the two ~-
proteobacteria Escherichia coli (4183 genes) and Buchnera aphidicola (564
genes). Dotted diagonals indicate local conserved gene content and order.
(Dotted horizontal lines indicate large gene families in Escherichia coli)

Figure 1.2. These conserved segments correspond usually to functionally re-
lated genes, like operons, for which joint transcription is favorable. This con-
servation pattern shows that whole genome evolution of prokaryotes is driven
by two adverse processes: on the one hand, a random drift of overall gene
order and gene content, and on the other hand, strong selective constraints
on the local organization of certain genome segments. It is therefore believed
that such local aberrations from the genome randomization provide highly
informative signals for functional analysis. The most popular objectives are
operon prediction [17, 24, 68, 74, 86, 87|, the general analysis of genome
organization in the presence of functional constraints [38, 39, 44, 58, 82, 81|
and the disclosure of horizontal gene transfer [35, 50].

For this type of studies, gene clusters are predicted automatically based
on a (more or less) formal notion what kind of conservation patterns are
interesting and which are not. The outcome of such approaches, i.e. the
conserved segments, are referred to as gene clusters in the literature. This
term is somewhat misleading, as there is per se no guarantee that these
conserved segments are indeed gene clusters in the biological sense. A specific
conservation pattern may as well occur by chance or due to lack of divergence
time of the compared species. However, as it is common practice, we stick
to this imprecise terminology in this thesis keeping in mind that a “gene
cluster” is in fact a gene cluster prediction. To verify that it is also a gene
cluster in the biological sense, experimental evaluation is necessary which is
a time and cost intensive endeavor. However, a pre-evaluation of gene cluster
predictions can be employed to identify by statistical means those candidates
for which other explanations than selective constraints are the least likely.

Gene cluster prediction focused originally on prokaryotic genomes, as
they were previously known to contain operons. However, in recent years,
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it was discovered that also in eukaryotic genomes conserved structures sim-
ilar to operons exist which are believed to build similar functional units.
Therefore, gene cluster detection is nowadays also applied to this genome
type [66].

Based on the model of genome evolution by means of rearrangement
processes, the conservation of gene clusters is also used as a measure for
the phylogenetic relationship between species. Such analyses are based on
the assumption that the amount of genome rearrangement that took place
between species is reflected in the number and size of segments that are
still conserved between the genomes such that it can be used as a measure
for their evolutionary distance. This approach works independently of a
specific model for genome rearrangement and thereby avoids the problems
that are still connected to such a modeling due to the fact that the underlying
biological processes are not yet completely understood.

We give an overview of different gene cluster models later on in Sec-
tion 1.2. As these models require the formalization of a genome model that
represents genomes at a suitable resolution for gene cluster detection, we
address this topic afore.

1.1 Genome Model

To compare genomes on a more abstract level than nucleotide sequence, the
first thing to do is to decide on the type of genomic marker that should be
used to model the studied genomes. Most typically these markers are simply
genes, but other levels of granularity can be found in the literature like syn-
tenic regions [65] or protein domains [62]|. In the following, we concentrate
on genes as markers reducing chromosomes to linear (or circular) arrange-
ments of genes. However, it should be mentioned that for the algorithmic
approaches introduced in this thesis, the specific type of the compared se-
quences is of no importance.

The next step towards a gene order based model is the identification of
the genes on the genomes under consideration. A variety of approaches for
gene detection have been developed in the past years. We give a short survey
on this topic in Section 1.1.1. Once the genes and their order on the genomes
are determined, we need to establish gene homologies to define which genes
we consider to be conserved among genomes. Also for this step one can
choose between a large number of approaches. We review the most popular
ones in Section 1.1.2.

The next step towards a gene order based genome representation is the
decision between the sequence and permutation based genome model. While
the sequence model allows for multiple occurrences of genes and differences
in the gene content of the compared genomes, the permutation model re-
quires a one-to-one mapping between the genes of the different genomes, i.e.
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every gene occurs exactly once in each of the studied genomes. This restric-
tion originates from genome rearrangement theory where it was introduced
for complexity reasons. However, from the biological side, this reduction is
questionable as multiple occurrences of genes and differences in the genome
content across species are not extraordinary. For the permutation model,
such genomes would have to be artificially transformed into one-to-one map-
pings by removing genes. Although most known gene cluster models were
originally defined on permutations, they were later on extended to the se-
quence model, as duplicate genes and differences in the gene content are of
minor importance for the computational complexity of gene cluster detec-
tion. In the following, we focus exclusively on the sequence model as we
believe that this is a more realistic genome representation.

Finally, a decision has to be made whether gene orientation should be
represented in the genome model. DNA molecules are double strands. They
consist of two anti-parallel chains of complementary nucleotides, often re-
ferred to as the plus and minus strand. Both strands encode genes that form
templates for transcription, but they are read in opposite directions. This
means that adjacent genes located on the same strand can be transcribed
together while genes on opposite strands can not. Joint transcription of
genes is often observed in operons and may therefore seem to be a reason-
able constraint in prokaryotic gene cluster prediction. However, it has been
observed that functional units can be distributed over both strands while
being located in close proximity [88, 53]. Based on this observation it is
safer to allow for changes in the gene orientation within a gene cluster and
most gene cluster models follow this idea. Conserved gene orientation can
still be established in a post-processing step, if it turns out to be relevant
for further analysis.

1.1.1 Gene finding

Besides costly gene detection in lab experiments, there are different compu-
tational approaches to determine the set of genes present on a chromosome
as well as their linear arrangement. First, it is often possible to infer gene oc-
currences based on sequence similarity by mapping the nucleotide sequences
of known genes to newly sequenced genomes. Alternatively, one can infer
from the presence of gene products in cells, mRNAs or proteins, that the cor-
responding gene has to occur in the genome and search for its location using
sequence alignment techniques. Finally, there are probabilistic approaches
that predict genes in an ab initio style from a nucleotide sequence based on
signatures that are typically associated with coding regions, like promoter
sequences in prokaryotes or CpG islands in eukaryotes. Popular tools for this
purpose are GLIMMER |76, 19] and GeneMark [9] for prokaryotic genomes,
and GENSCAN [14], geneid [61] and SNAP [46] for eukaryotic genomes. Nat-
urally, there is no guarantee that computational approaches detect all genes
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present in a genome. Also some of their predictions may be false positives.
Both types of errors affect the quality of the genome representation.

1.1.2 Partitioning genes into homology families

Once the genes and their arrangement on the studied genomes are deter-
mined, we need to establish homologies between the genes within and across
species to enable genome comparison.

Theoretically, the objective for homology assignment is clear: two genes
are homologs if they originate from a common ancestral gene. In the litera-
ture this concept is further subdivided to distinguish genes that originated
from a single gene in a speciation event (orthologs) from genes that origi-
nated from a gene duplication in a common ancestor (paralogs) [26]. For the
sequence model, this distinction is of minor importance. So we do not elab-
orate further on this topic. In practice, homology assignment alone turns
out to be challenging enough. In absence of other sources of knowledge, it is
usually based solely on sequence similarity which has proven to be a reliable
indicator for gene homology.

The process begins with an all-against-all comparison of the genes present
in the studied genomes. Pairwise similarity scores are obtained by local
sequence alignment computation using for example the BLAST [1]| software
either directly on the nucleotide sequences or on the derived amino acid
sequences.

The resulting similarity scores are the basis of a clustering process to
establish gene families. For this step, one can choose among various ap-
proaches. Typically these approaches first build families based on sequence
similarity |18, 79, 64] and then edit the clusters by merging or splitting fami-
lies, or removing/adding single genes. Other approaches start the clustering
from reciprocal best hits that are then extended to larger families. The well-
known COG database [83] and the eggNOG database [42] rely on triangles
of reciprocal best hits as starting points for the clustering process. Alterna-
tive approaches employ hierarchical clustering methods [47, 67, 89]. Many
other approaches can be found in the literature that are based for example
on Markov clustering [16, 3|, random walks [59] or tree reconciliation |72]

This abundance of approaches illustrates the importance of homology
detection but shows also that this problem is not ultimately solved. As with
gene prediction, one should be aware that any homology assignment may
contain errors which affect the quality of the genome representation.

1.2 Gene cluster models

The next step in gene cluster detection is the decision on a specific gene
cluster model for the subsequent genome comparison. At present, there is
no universally accepted model that covers all relevant gene cluster features.
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This is largely due to the fact that it is not finally concluded what exactly
these features are. Moreover, already for those features regarded as essential,
it turns out difficult to combine them into a single gene cluster model [34].

In the literature, two major lines of gene cluster detection can be dis-
tinguished. The first comprises rather pragmatic approaches that favor fast
prediction results over the use of formal cluster definitions and rigorous ob-
jective functions. The number of these approaches grew rapidly in the past
decade and we refrain from giving an exhaustive survey. An overview of the
most popular approaches can be found in [75].

The second line of gene cluster detection is characterized by a clear sepa-
ration between the model definition and the actual gene cluster computation.
Such approaches have the advantage that the properties of the predicted gene
clusters are formally defined. This simplifies the comparison between differ-
ent approaches, the statistical analysis of the predictions and to some extent
also the assessment of the chosen model against the biological reality.

In the following, we give an overview of formal gene cluster definitions.
Similar surveys are given in [6, 34| All these models have in common that
gene clusters consist of two ingredients: a set of genes that constitute the
cluster and its occurrences on the studied genomes, i.e. the genome segments
that contain all or some of the cluster elements.

1.2.1 Co-linear gene clusters

The most rigorous gene cluster definition requires gene clusters to be per-
fectly conserved in respect to both gene content and gene order. This means
that contiguous regions need to occur in the studied genomes that consist of
the same genes in the same or reversed order. While co-linear gene clusters
are very easy to detect — they correspond to conserved substrings —, many
interesting gene clusters will be overlooked due to micro-rearrangements or
small changes in the gene content by gene losses or insertions.

1.2.2 Common intervals

A slightly more relaxed gene cluster definition are common intervals. These
require still a perfectly conserved gene content but allow for changes in the
gene order. Different variants of common intervals are described in the liter-
ature that differ in the degree of gene order fixation. In the general common
intervals model any order is allowed, while framed common intervals [8] and
nested common intervals [11] restrict the inner order of cluster occurrences
to some extent.

Computing common intervals is not a difficult task. There exist a num-
ber of efficient approaches for both genome representations, permutations
and strings [85, 32, 31, 78, 21, 20]. However, this gene cluster model is still
too strict for practical purposes. Gene losses and gene insertions occur fre-
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quently even in well-conserved gene clusters. These small deviations in the
gene content prevent such clusters from being detected under the common
intervals model. In practice, post-processing techniques can be used to join
closely located small common intervals to larger approximately conserved
gene clusters [79].

1.2.3 r-window gene clusters

The most simple approach to a formal model of approximate gene clusters
are r-windows [23]. The algorithmic idea behind this model is to scan the
given genomes for windows of a fixed size r that share at least k < r genes.
For k = r this gene cluster model is equivalent to common intervals. In a dot
plot representation, an r-window gene cluster in two genomes corresponds
to a square with side length r that contains at least k dots.

The crucial point in this approach is the choice of the parameters. If the
ratio % is too big, some interesting gene clusters will be missed, and if the
ratio is chosen too small, gene clusters will be predicted that are in fact noise.
For multiple genome comparison, there is the problem that the set of genes
that constitutes a gene cluster becomes smaller and smaller. Defined as a
minimal consensus, i.e. the set of genes that occur in the respective window
of each genome, the value of k£ needs to be decreased to a disproportion-
ately low value. The computational complexity of this approach increases
exponentially with the number of compared genomes.

1.2.4 Max-gap clusters

An alternative model for approximate gene clusters are max-gap clusters |7,
30], also refered to as gene teams or homology teams. This model specifies no
fixed length of gene cluster occurrences, but uses a parameter g that limits
the maximum size of a gap that may occur between two successive occur-
rences of genes from a gene cluster. For g = 0 this model is equivalent to
common intervals. A point of criticism against this approach is the fact that
the gap size in cluster occurrences is constrained only individually for each
gap, while there is no prevention against sparse gene clusters that have a
gap of maximum size between each successive pair of gene occurrences from
the cluster. There is no biological evidence that numerous small gaps are
more likely to occur in real gene clusters than a few larger ones. Like with
r-window gene clusters, the gene set that constitutes a max-gap gene clus-
ter is a minimum consensus which can lead to undesired effects in multiple
genome comparison. While the computation of max-gap clusters is possi-
ble in polynomial time for pairwise genome comparison, the computational
complexity increases exponentially with the number of compared genomes,
as was the case for r-window gene clusters. Despite these problems, max-gap
clusters are currently the most-widely used model for approximate gene clus-
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ters. Recently, a graph-based variant of max-gap clusters was proposed [90]
that uses a parameter to constrain the amount of reshuffling that is allowed
within a gene cluster.

1.2.5 Approximate common intervals based models

The most recent models for approximate gene clusters can be summarized
under the term approrimate common intervals, as they are based on an ex-
tension of the concept of common intervals to allow for a certain amount of
differences in the gene content of similar intervals. The basic idea is to de-
fine a maximum distance between a consensus gene set and its approximate
occurrences that can be freely distributed over gene losses and insertions lo-
cated anywhere in the approximate cluster occurrences. In contrast to previ-
ous approaches, the consensus is not a minimal consensus but a set of genes
that is either close to the gene content of its approximate occurrences [15] or
optimized in the sense that the total distance to its approximate occurrences
is minimized [71, 12].

The search space of these approaches increases exponentially either with
the number of allowed deviations in the gene content or the number of com-
pared genomes. However, using efficient filter techniques, we were able to
show that such approaches are feasible for a broad range of parameter set-
tings [12|. In this thesis, we see that for a restricted type of consensus set,
approximate common intervals based gene cluster computation is even pos-
sible in polynomial time.

1.3 Thesis overview

In this thesis, we study novel approaches to approximate gene cluster compu-
tation. We extend the concept of common intervals to approximate common
intervals by allowing for incomplete conservation of character content, define
different gene cluster models based on approximate common intervals and
develop efficient computational approaches that allow for the detection of
approximate gene clusters in multiple genomes. We evaluate the presented
approaches experimentally and design a statistical framework to estimate the
significance of gene cluster predictions under approximate common intervals
based gene cluster models.

After a general introduction of the basic notation and concepts, we in-
troduce in Chapter 2 the approximate common intervals based gene cluster
models studied in this thesis. The following four chapters are dedicated to
the algorithms for gene cluster detection that were developed in the scope of
this PhD project: In Chapter 3, we revisit the problem of common interval
computation and show that the space complexity of the well-known Connect-
ing Intervals Algorithm can be reduced from quadratic to linear dependence
on the input size. Then, in Chapters 4 and 5, we show that a restricted
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type of approximate gene clusters that are based on reference occurrences
can be computed efficiently using an extension of the Connecting Intervals
Algorithm. In Chapters 6 and 7, we propose two algorithms for the general
approximate gene cluster detection problem that apply filter techniques to
narrow down the exponential search space.

In Chapter 8, we discuss the significance of gene clusters detected under
the approximate common intervals model and propose a test statistic to
assess the probability that detected gene clusters occur by chance.

In Chapter 9, we apply the presented algorithms to different genomic
datasets. First, we assess the general applicability of the presented ap-
proaches to multiple genomes and compare the different algorithms among
each other and to related approaches. Then, we analyze the predicted gene
clusters from a biological point of view. In Chapter 10, we explore a dif-
ferent field of application for approximate gene cluster detection, namely
whole genome based phylogeny reconstruction. We propose a simple dis-
tance measure based on approximate gene cluster conservation and compare
our approach to other whole genome based phylogeny reconstruction meth-
ods. We conclude the thesis in Chapter 11 with some final considerations
about approximate gene cluster detection and an outlook on future directions
of the field.

Parts of this thesis have been published in advance. The results on Ref-
erence Gene Clusters (Chapter 5) and the algorithms of Chapter 4 appeared
in [40]. The computation of Median Gene Clusters (Chapter 6) and the ba-
sic idea of Center Gene Clusters (Chapter 7) were published in [12], while
the algorithm for center computation is part of [36]. Moreover, the results
on phylogeny reconstruction appeared in [41]|. Finally, the presented algo-
rithms are integrated into a software package that is publicly available at
http://bibiserv.techfak.uni-bielefeld.de/gecko/.



Chapter 2

Approximate common intervals
based models

In the previous chapter, we became already informally acquainted to gene
cluster models based on common intervals. Before we can give an expedient
description of our approaches to gene cluster detection under these models,
we need to formalize the concepts used in Section 1.2.5 and need to define
the underlying algorithmic problems. We address these prerequisites in this
chapter: After a general introduction of definitions and notations, we for-
malize the problems of detecting perfectly conserved and different types of
approximately conserved gene clusters.

2.1 Basic notations and definitions

For the most part of this thesis, we assume that the genomes studied are lin-
ear and uni-chromosomal. This restriction is primarily introduced to simplify
notation. We will see later on that the extension of the different approaches
to cover circular and multi-chromosomal genomes is straight-forward. For
the time being, we use the terms “genome” and ‘“chromosome” interchange-
ably to refer to a uni-chromosomal linear genome.

We model a chromosome as a string, i.e. a finite, ordered sequence of
characters, over a finite alphabet X of gene family ids. Fach index position
in such a string stands for the respective gene locus on the underlying chro-
mosome, while a character occurring at a position constitutes the affiliation
of the corresponding gene to a certain homology family as assigned in the
partitioning process described in Section 1.1.2. An example string over the
alphabet ¥ = {1,2,3,4,5,6,7,8,9,10,11, 12,13} is shown in Figure 2.1.

Given such a string S, we denote its length, the number of characters
in the string, by |S|. A special case is the empty string denoted as e that
contains no elements, i.e. || = 0. We use the notation S[i|, 1 < i < |S],
to refer to the ith character of S. Accordingly, we say that character ¢ € X

11
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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S 2 5 137 1 3 5 4 6 9 8 7 3 10 4 11 12 5

Figure 2.1: String representation of a linear chromosome.

occurs at position 4 in S if and only if S[i] = ¢. To capture the character
content of S regardless of sequential arrangement and multiple character
occurrences, we define the character set of S as

CS(S) = {Sl][1<i<]S]}.

This describes the complete set of gene family ids occurring on the respective
chromosome, informally referred to as gene content. The character set of the
empty string ¢ is the empty set, CS(e) = 0.

Dealing with strings of gene family ids, it is reasonable to assume |X| €
©(]S|), as the size of these families within a genome is typically in O(1).
Additionally, we assume without loss of generality that ¥ = {1,...,|X|}.
This is feasible because such an encoding can always be constructed in an
O(|S|log(]S|)) preprocessing step which is subsumed by the complexities of
all algorithms presented in this thesis.

Among other things, this standardization of ¥ allows for a convenient
representation of all (character) sets C' C 3 based on bit strings. These are
special strings defined over a two character alphabet {0,1}. We call a bit
string of length |X| bit representation of a C' C X, if the bit at each position
i, 1 <i < |X|,is 1 if character ¢ occurs in C' and 0 otherwise.

To simplify notation in the following definitions and the algorithms de-
scribed in the next chapters, we introduce a terminal character 0 ¢ ¥ that
virtually extends a string S on both ends, i.e. S[0] = S[n+1] =0, n =|S|.
For our example string 5, this looks as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

S: ()‘251371354698731041112 5‘()

However, we do not treat these positions as proper elements of S, in the
sense that they do not count for the string length and intervals of S can
not cover either of them. Their purpose is to catch overruns of the string
boundaries.

In the following, we need to refer to the gene content of segments of a
chromosome. For that purpose, we define S[i, j] to be the substring of S
that starts with its ith and ends with its jth character, 1 < i < j < |S].
The corresponding index interval [i, j] is called a location of a character set
C C ¥ if and only if C = CS(S[i, j]). In case, it is not clear from the context
which string an index interval refers to, we extend [i, j] to [¢, j]g to indicate
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Figure 2.2: Common intervals in three strings.

that we refer to the respective interval in S. Throughout this thesis, the
terms “substring S[i,j]” and “interval [i,j]” (respectively “interval [i, j]s”)
will be used interchangeably. In particular, when writing about “characters”
or the “character set” of an interval, we refer to the respective substring.
Both terms describe the set of gene family ids occurring in the chromosome
segment defined by the interval. We say an interval [i, 7] is empty if j < i.
Every empty interval is a location of the empty character set C' = 0.

We distinguish different types of intervals in a string S. We call an
interval [i, j] with j > i left-mazimal if S[i — 1] ¢ CS(S|i, j]), right-mazimal
if S[j + 1] ¢ CS(SYi, j]) and mazimal if it is both left- and right-maximal.

Example 1 Interval [4,12] is left- but not right-mazimal in string S. A
right- but not left-mazimal interval is [5,13]. An example of a mazimal
interval is [4,13], while interval [5,12] is neither left- nor right-mazimal.

Using a comparative approach for gene cluster detection, we typically
deal with several genomes at a time. In the following, we assume that these
are given as a set of k > 2 strings denoted as S = {S1,..., Sk}. The alphabet
of § is the union of the alphabets of the individual strings. Therefore, its
size is in O(k - |Simaz|), where Spuqz is the longest of the k strings. We now
have all prerequisites to define the concept of common intervals in multiple
strings:

Definition 1 Given a set of strings S = {S1,...,Sk}, k > 2, we call a

k-tuple of mazimal intervals ([i1, j1ls,,- - -, [ik, Jk]s,) common intervals of
S if and only if there is a C C X with:
C =CS(Siliv, j1]) = ... = CS(Sklir, j])-

We refer to such a C' as a character set of common intervals. In terms of
gene cluster detection, a character set of the form of C' constitutes a perfect
gene cluster and the associated k-tuple constitutes a combination of perfect
occurrences on the input genomes.

Example 2 The set of strings S = {S1, 52,53} of Figure 2.2 contains two
k-tuples of common intervals with character set C' = {4,6,8,9}:
([8,11]s,,[1,4]s,,[7, 11]s,) and ([8,11]g,, [8,11]s,, [7,11]ss).
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We want to represent in the same style also gene clusters that are only
approximately conserved. As a first step to this end, we introduce a set
distance measure to quantify differences between a gene cluster and the gene
content of one of its approximate occurrences. In this thesis, we choose the
symmetric set distance for this purpose, which defines the distance between
two sets C' and C as the cardinality of their symmetric difference:

D(C,C") = |C\C'|+|C"\Cl.

We adopt this measure for two reasons: First, it constitutes a metric and
therefore meets all intuitive notions of a distance measure such as validity of
the triangle inequality. Second, in context of gene clusters, it corresponds to
a plain summing over the genes deleted plus the genes inserted in a cluster
occurrence. (Due to the representation of gene clusters as sets — not multi-
sets — of characters, multiple insertions, respectively deletions, of genes of
the same type count as single modifications.) In absence of a general model
of gene cluster evolution, choosing such a basic distance measure appears
to be a reasonable choice. However, we discuss alternative set distances in
Chapter 11.

Using a set distance measure, such as the symmetric set distance D,
we can extend the concept of character set locations towards approximate
conservation: Given an integer 6 > 0, we say an interval [i,j] in a string
S is a d-location of a character set C if and only if C' N CS(S[i,j]) # 0
and D(C,CS(S]i,7])) < d. For general § > 0, we call [z, j] an approzimate
location of C. For § = 0, we use the terms location, 0-location and perfect
location synonymously.

The next step to model approximate gene clusters is to constrain the max-
imal distance between a gene cluster and the gene contents of its approximate
occurrences that we allow to still speak of a conserved gene cluster. There
are two general ways to limit the distance between a character set C' and a
set of character sets C = {C1,...,Ck}. We can either introduce a distance
threshold dy, to constrain the sum of the distances between C and the Cy,
1<i<E,

k
ZD C CK suma
(=1

or a distance threshold d,, to constrain the pairwise distances between C
and each Cy, 1 </ <k, ie.

D(C,Cy) < bpy for all 1 <2 <k.

In the following, we refer to the former as sum distance constraint and to
the latter as pairwise distance constraint.

With these prerequisites it is now straight-forward to introduce the no-
tion of approximate conservation into the concept of common intervals. De-
pending on the way distances are constrained, we end up with two different
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Figure 2.3: Approximate common intervals for sum distance threshold
dsum > 8, respectively pairwise distance threshold d,,, > 3.

definitions of approzimate common intervals. Using the sum distance con-
straint, we get:

Definition 2 Given a set of k > 2 strings S = {S1,..., Sk} and a distance
threshold 0sym, we call a k-tuple of mazimal intervals ([i1, ji]s,, - - [iks Tk} Sk )
sum distance constrained approzximate common intervals in S if and
only if there is a C C X with

k
> " D(C,CS(Selie, jel)) < Ssum.
(=1
The analogous definition for the pairwise distance constraint reads as follows:

Definition 3 Given a set of k > 2 strings S = {S1,..., Sk} and a distance
threshold 6., we call a k-tuple of mazimal intervals ([i1, ji)s,, - -, ik Jk)Se)
pairwise distance constrained approximate common intervals in S
iof and only if there is o C' C X with

D(C,CS(Sylit, ji)) < Spuw for all 1 < £ < .

Sets of the form of C in the last two definitions are called close to the
respective k-tuple.

Example 3 The interval combination T = ([4,16]s,,[1,13]s,,[3,13]s,) in
Figure 2.3 forms a k-tuple of approrimate common intervals in S for any
sum distance threshold dsym > 8. A close set is C = {1,3,4,6,8,9,10,11}.
For 6y, > 3, 7 is also a k-tuple of pairwise distance constrained approzimate
common intervals. But as D(C,CS(S3[3,13])) = 4 holds, C is only a close
set for Opy > 4 under pairwise distance constraint.

We should note at this point that these basic definitions of approximate
common intervals are rather permissive: Choosing the distance threshold
high enough, any combination of maximal intervals is possible no matter
if they have any characters in common with each other or with their close
set(s). Even empty close sets are possible. To avoid the latter two effects, we
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Figure 2.4: Median and centers of the interval combination of Example 3.

can simply require that there is a close set C' for which CS(S[i¢, jo]) NC # ()
holds for all 1 < ¢ < k. We call such C' intersecting close set. To prevent the
formation of approximate common intervals with disjoint character sets, we
can require that the involved intervals have pairwise intersecting character
sets, i.e. CS(Selig, je]) N CS(Selip, jor]) # 0 holds for all 1 < £,¢/ < k. We
call such approximate common intervals patrwise set intersecting.

Remember our goal to model approximate gene clusters in a common in-
tervals style. Approximate common intervals clearly correspond to a group-
ing of approximate occurrences of a gene cluster. However, what is still
missing in this model is the notion of a consensus gene cluster in the concept
of approximate common intervals. Close sets are a first step in this direction,
but what we actually need is a true optimality criterion, i.e. the definition
of a “closest” set that minimizes its distance to the elements of a k-tuple
of approximate common intervals. Technically, this boils down to defining a
consensus set of a set of sets. We can define such a set C for any combination
of sets C = {C4,...,Ck}, k > 2, over an alphabet ¥ either by minimizing
the overall distance between C' and the C4, ..., Cg, i.e.

k k
> D(C,Cy) <> D(C,Cy) for all C' C 5,
=1 =1
or by minimizing the maximum pairwise distance:

< U !/ C )
Jnax, {D(C,Cy)} < oax, {D(C",Cy)} forall C' C %

In the former case, we name such a C' median representative of C or median
for short. In the latter case, we name C' center representative of C or center
for short. Note that a median of sets is not necessarily unique. This is due
to the fact that for even k a character occurring in the median can occur in
exactly half of the k sets. When removing this character from the median,
the total distance to the sets stays unchanged and the remaining characters
form an alternative median. The center, as well, can be multiply defined,
even for odd k. This is illustrated in the following example:
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Example 4 The median in Figure 2.4 is unique and has a total distance
of 8 to the three character sets. There are four different centers which have
each a pairwise distance of 3 to all three character sets.

In context of approximate common intervals, both types of consensus
sets are special close sets, namely the “closest” for the respective distance
constraining mode. However, they are not necessarily intersecting close sets.
If they are, we call them intersecting median, respectively intersecting center.

Before we begin with the definition of gene cluster models, we intro-
duce some further terminology to refer to approximate occurrences of gene
clusters. We distinguish additional subtypes of maximal intervals: Given a
character set C', we say a maximal interval [i, j] in S with CS(S[i, j])NC # 0
is closed with respect to C, or C-closed for short, if and only if S[i — 1] ¢ C
and S[j + 1] ¢ C. This means that extending [i,j] in either direction, a
new character is added, that is neither an element of C' nor does it occur
already in CS(S]i, j]). For the next subtype of maximal intervals, we define
the left-most essential position i* of [i,j] with respect to C' as the smallest
index 4/, i < i’ < j, such that S[i'] € C. Analogously, we define the right-
most essential position j* of [i,j] with respect to C as the largest index j/,
i < j' < j, such that S[j'] € C. Simply put, these are the outermost posi-
tions in [¢, j], that contain an occurrence of C' if such exist. Interval [i*, 5]
is called the C-essential subinterval of [i, j]. The characters at positions i*
and j* are called left-most essential character, respectively right-most es-
sential character, with respect to C'. These concepts are used to define the
second subtype of maximal intervals which comprises all intervals [¢, j| with
CS(S[i,j]) N C # O for which CS(S[i, j]) = CS(S[i*, j*]) holds. Intervals of
the form of [z, j] are called compact with respect to C, or C-compact for short.
The idea behind this definition is that such [i, j] are minimal in the sense
that there is no proper subinterval of [i,j] that is maximal and comprises
its C-essential subinterval. Or, stated in simpler terms, a compact interval
covers only “necessary” positions, i.e. occurrences of elements of C, the char-
acters between such occurrences and for the sake of interval maximality at
its boundaries additional occurrences of these in-between characters. If [4, j]
is both closed and compact with respect to C, we call it optimal with respect
to C, or C-optimal for short.

Example 5 Interval [2,13] in Sy in Figure 2.3 is mazimal but neither closed
nor compact with respect to C = {1,3,4,6,8,9,10,11}. It is not closed
because a neighboring character S1[14] = 10 occurs in C. The C-essential
subinterval of [2,13] is [5,13]. As both intervals differ in their character
set, [2,13] can not be compact. Interval [4,16] is an example of a C-optimal
interval in Sy.

The idea behind these definitions is to find in a genomic area that contains
genes from a cluster the optimal placement of approximate cluster occur-
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Figure 2.5: Construction of a corresponding C-optimal §-location via the
C-essential subinterval for C' = {1,3,4,6,8,9,10,11}.

rences. In other words, we want to introduce an optimality criterion for
approximate locations of character sets. Unlike with perfect locations, in-
terval maximality is not sufficient for this purpose, as approximate locations
can be highly overlapping:

Example 6 The list of mazimal 3-locations of C = {1,3,4,6,8,9,10,11}
in Sy reads as follows: [5,11], [8,15], [4,15], [10, 16], [8,16], [8,17], [6, 16],
[4,16], [4,18], [2,16]. The intervals printed in bold are C-optimal.

However, we observe that only a small fraction of approximate locations is
optimal with respect to C, so that the redundancy problem can be reduced
by focusing on C-optimal intervals. In doing so, no approximate location is
completely lost, as we can assign each approximate location its corresponding
C-optimal approximate location that covers its C-essential subinterval and
has the same or possibly a lower distance to C":

Observation 1 Consider an interval [i, j| in a string S and a character set
C. If [i,j] is a 6-location of C for a § > 0, then there is also a d-location
that is C-optimal and subsumes the C-essential subinterval of [i, j].

Proof: We prove this by giving a construction algorithm: First, we identify
the C-essential subinterval [i*, 7*] which exists because CS(S]i, j])NC # () in
each d-location [¢, j] of C. Then, we extend [i*, j*] on both ends to [¢, j'] until
S[i' —1] ¢ CUCS(S[i*, 7*]) and S[j' + 1] ¢ C UCS(S[i*, j*]). This happens
at the latest when the extended string boundaries are reached, i.e. 7/ = 1
respectively j* = |S|. By construction, such a [¢’, j'] is C-optimal and encloses
[i*,7*]. It is also a &-location of C: By definition, D(CS(S[i*,j*]),C) <
D(CS(S[i,j]),C), and in the following interval extension only two types
of characters are added: those already contained in CS(S[i*, j*]) which are
neutral with respect to the distance to C, and elements from C'\CS(S[i*, 7%])
which reduce the distance. Therefore, also the distance constraint is met. O

Example 7 Figure 2.5 visualizes the construction of the C-optimal interval
[4,16]s, from the interval [2,13]s, via its C-essential subinterval [5,13]g,.
The distance between C' and CS(S1[2,13]) equals 5 and decreases to 2 when
[2,13]s, is replaced by [4,16]g, .
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At this point, we have introduced all foundations necessary to define the
gene cluster discovery problems studied in this thesis.

We conclude this section with a final remark on the terminology used in
this thesis. For the sake of readability, we use some concepts defined only for
character sets also for intervals and refer by that implicitly to the correspond-
ing character set. Based on the unique relation between an interval and its
character set, we do not introduce any ambiguities in doing so. For example,
we refer to all kinds of (approximate) locations of an interval, meaning the
respective (approximate) locations of the character set of the interval. Also,
we refer by “the distance to an interval” never to the physical distance on the
string but to the set distance to the respective character set. We inherit this
abbreviating notation also to combinations of intervals. In particular the
terms “median” and “center” are used for approximate common intervals.

2.2 Perfectly conserved gene clusters

We begin our problem definitions with the most rigorous model, the perfectly
conserved gene clusters. This concept requires the character set defining a
gene cluster to have a perfect location in each of the studied genomes. Using
the concept of common intervals, this can be formalized as follows:

Problem 1 Given a set S = {Sy,...,Sk} of k > 2 strings, find all C C %
that are character sets of common intervals in S.

We call such character sets perfectly conserved gene clusters in S, or
perfect gene clusters for short. For further analyses, not only the character
set of a gene cluster but also its occurrences, namely the maximal locations
in the studied genomes, will be of interest. Hence, we augment our problem
statement in the following way:

Problem 2 Given a character set C' C ¥ that is a perfect gene cluster in
S ={S1,...,8;}, list all mazimal locations of C in S.

As every maximal location of a perfect gene cluster C' can be combined
with others to a k-tuple of common intervals, we can solve both Problems
by computing all common intervals in §. How this computation can be done
efficiently and how the perfect gene clusters and their perfect occurrences
can be extracted therefrom is the topic of Chapter 3.

2.3 Reference based approximate gene clusters

Our first approach to model approximately conserved gene clusters is based
on the concept of reference intervals. This means that we do not consider all
subsets of the alphabet of gene family ids for being approximate gene clusters,
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but only those having a perfect occurrence in at least one input genome
and approximate occurrences in the others. We formalize the respective
gene cluster discovery problem using the concepts of approximate common
intervals and close sets. Depending on the distance constraining mode, two
different problem sets can be defined.

2.3.1 Sum distance constrained reference gene clusters

Under the sum distance constraint, the approximate gene cluster discovery
problem based on reference occurrences reads as follows:

Problem 3 Given a set of strings S = {S1,...,S}, k > 2, a minimum
cluster size s and a distance threshold dsym, find all C C X with |C| > s that
have a perfect location in S and are intersecting close sets of sum distance
constrained approzimate common intervals in S.

We refer to character sets of the form of C' as reference-based approzimate
gene clusters, or as reference gene clusters for short. If the distance con-
straining mode is not clear from the context, we add the term sum distance
constrained.

As with perfect gene clusters, the (approximate) occurrences of a refer-
ence gene cluster C should be reported for further evaluation:

Problem 4 Given a set C' C X that is a sum distance constrained reference
gene cluster in & = {S1,...,S,} for distance threshold Osym, list all C-
optimal intervals in S that occur in sum distance constrained approximate
common intervals with intersecting close set C.

The restriction to C-optimal intervals reduces output redundancy. With C
being an intersecting close set, it follows from Observation 1 that the skipped
intervals are represented by corresponding C-optimal intervals.

2.3.2 Pairwise distance constrained reference gene clusters

The reference gene cluster discovery problem can be formulated analogously
using the pairwise distance constraint:

Problem 5 Given a set of strings S = {S1,...,Sk}, k > 2, a minimum
cluster size s and a distance threshold 0py, find all C C ¥ with |C| > s
that have a perfect location in S and are intersecting close sets of pairwise
distance constrained approximate common intervals in S.

We call reference gene clusters of the form of C' pairwise distance constrained.
If the distance constraining mode is clear from the context, or if we refer to
reference gene clusters in general we omit this specification.

Here, we need to define again the set of approximate locations that should
be reported alongside the approximately conserved gene cluster. Based on
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Observation 1, we are once more only interested in C-optimal approximate
locations:

Problem 6 Given a set C C X that is a pairwise distance constrained ref-
erence gene cluster in & = {S1,..., Sk} for distance threshold dpy,, list all
C-optimal intervals in S that occur in pairwise distance constrained approz-
imate common intervals with intersecting close set C.

By definition, we can solve the four problems stated in this section by com-
puting a restricted type of approximate common intervals that have an in-
tersecting close set with a perfect location in the studied genomes. How
this computation can be done efficiently and how the reference gene clus-
ters and their approximate occurrences can be extracted will be discussed in
Chapter 5.

2.4 Median based approximate gene clusters

For the general approximate gene cluster discovery problem, we drop the
constraint requiring a consensus gene cluster to have a reference occurrence
in the studied genomes. In doing so, we gain the opportunity to employ the
optimality criterion introduced in the previous section to get only gene clus-
ters that best represent the gene content of their (approximate) occurrences.
Based on the sum distance constraint this can be formalized as follows:

Problem 7 Given a set of strings S = {S1,...,Sk}, kK > 2, a minimum
cluster size s and a distance threshold dsym, find all C C ¥ with |C| > s that
are a median of sum distance constrained approzimate common intervals in
S with patrwise intersecting sets.

We refer to character sets of the form of C' as median-based approzimate gene
clusters, or median gene clusters for short.

As with the previous gene cluster models, we want to report also the ap-
proximate cluster occurrences. Since a median gene cluster is always defined
for a specific combination of approximate common intervals, we report the
respective k-tuples:

Problem 8 Given a set C C X that is a median gene cluster in S =
{S1,...,Sk} for distance threshold dsym, list all pairwise set intersecting ap-
prozimate common intervals ([i1, j1], ..., [ik, Jx]) for which C is a median.

If we limit the search to intersecting medians, we can again make use of
Observation 1 and report only C-optimal pairwise set intersecting approx-
imate common intervals. This is feasible as optimizing interval boundaries
with respect to the median of their character sets has no impact on the me-
dian itself. In Chapter 6, we show how median gene clusters can be computed
based on approximate common intervals. Ways of dealing with redundancy
in the output of Problem 8 will be discussed in Chapter 8.
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2.5 Center based approximate gene clusters

The general approximate gene cluster discovery problem can as well be de-
fined for the pairwise distance constraint:

Problem 9 Given a set of strings S = {S1,...,Sk}, kK > 2, a minimum
cluster size s and a distance threshold 8y, find all C C X with |C| > s that
are a center of pairwise distance constrained approrimate common intervals
i S with pairwise intersecting sets.

We refer to character sets of the form of C' as center-based approzimate gene
clusters, or center gene clusters for short.

Concerning the output of approximate cluster occurrences, the same ap-
plies as for median gene clusters. A center gene cluster is defined for a specific
interval combination:

Problem 10 Given a set C C X that is a center gene cluster in & =
{S1,..., Sk} for distance threshold dsym, list all pairwise set intersecting ap-
prozimate common intervals ([i1, j1ls,, - - -, ik, Jkls,) for which C is a center.

Limiting the search to intersecting centers is not a sufficient condition
for applying Observation 1 to reduce the output to C-optimal interval com-
binations. This is because optimizing interval boundaries with respect to a
set C' can change the distribution of the pairwise distances such that C is
no longer center of the modified intervals. To ensure that we report for each
center gene cluster C' at least one combination of approximate occurrences,
we can modify Problem 9 such that there has to be a k-tuple of C-optimal
approximate common intervals. In Chapter 7, we show how center gene clus-
ters can be computed based on approximate common intervals. The issue of
output redundancy will be addressed in Chapter 8.

2.6 Modeling missing gene cluster occurrences

So far, we introduced in this chapter models with varying capabilities of
coping with incomplete gene cluster conservation. What all these models
have in common is their immanent constraint that a gene cluster has to
occur in each of the input genomes, albeit these occurrences can be up to a
certain extent fragmentary under the approximate gene cluster models.

But what if a gene cluster is completely missing in one or a couple of
input genomes? From a biological point of view, there is no reason why such
a setting should be excluded from our models. From a practical point of
view, this constraint makes the outcome of the gene cluster prediction overly
dependent on the selection of input genomes. Of course, the problem of miss-
ing gene cluster occurrences can be evaded if gene clusters are also predicted
in all ©(2F) subsets of the k input genomes. However, it appears to be more
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elegant to integrate such a setting directly into the gene cluster models. For
that purpose, the notion of a quorum parameter was introduced in several
publications, e.g. [63, 78, 15, 60]. It refers to a user-defined threshold that
determines the minimum number of genomes in which a gene cluster has to
occur to be detected under a given gene cluster model. In the following,
we call a gene cluster ¢-covering if it has an (approximate) occurrence in ¢
out of k genomes, 2 < q < k. The g-covering perfect gene cluster discovery
problem reads as follows:

Problem 11 Given a set S = {Sy,...,Sk} of k > 2 strings and a quorum
parameter q, 2 < q < k, find all C C X that are a character set of common
intervals in a set 8" C S, with |S'| > q.

When it comes to approximate gene clusters, we need to distinguish be-
tween models based on the sum distance constraint and models based on
the pairwise distance constraint. In the latter case, the modification of the
respective problem formulations is straight forward. For the reference gene
cluster discovery problem we get:

Problem 12 Given a set of strings S = {S1,...,Sc}, k > 2, a minimum
cluster size s, a distance threshold 0, and a quorum parameter q, 2 <
q <k, find all C C ¥ with |C| > s that are an intersecting close set of
pairwise distance constrained approzimate common intervals in a subset S’ C
S, |S8'| = q and have a perfect location in a S'.

The integration of the quorum parameter into the center gene cluster dis-
covery problem reads as follows:

Problem 13 Given a set of strings S = {S1,...,Sc}, k > 2, a minimum
cluster size s, a distance threshold d,, and a quorum parameter q, 2 <
q <k, find all C C X with |C| > s that are center of pairwise distance
constrained approzimate common intervals in a set 8" C S, |S'| > q with
pairwise intersecting sets.

For the two sum distance constrained approximate gene cluster models,
the introduction of a quorum parameter is slightly more involved. While in
the original definitions, the sum distance threshold is given for a fixed number
of approximate locations, it needs to be defined for a range of possible tuple
sizes in the g-covering case. There are different ways of dealing with this
problem. One extreme would be to simply ignore it, and use a fixed threshold
for the whole range 2 < ¢ < k. In other words, this means that we would set
the “cost” for a missing gene cluster occurrence to zero. The other extreme
would be to charge the “complete cost” of a missing gene cluster C, i.e.
|C|, the number of genes that got lost. Both approaches have undesirable
effects. In the first, there is a tendency to use the quorum unnecessarily
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in the sense that approximate common intervals are reported that cover
less genomes than they could based on the sum distance threshold. In the
second approach, there is the problem of balancing the distance constraint
and the quorum parameter. If the distance constraint is too strict, no gene
clusters are detected that cover only a subset of the genomes. If the distance
constraint is too loose, we report gene cluster occurrences that have only
single genes in common. A third approach is to subtract for each missing
gene cluster occurrence its average share of the sum distance, i.e. % We
focus in this thesis on this intermediate approach. Therefore, we define the
g-covering sum distance constrained reference gene cluster discovery problem
as follows:

Problem 14 Given a set of strings S = {S1,...,Sk}, k > 2, a minimum
cluster size s, a distance threshold §sum and a quorum parameter q, find all
C C X with |C| > s that are intersecting close set of sum distance constrained
approzimate common intervals in a subset 8" C S, |S'| > q, for distance

threshold % - dsum and have a perfect location in S'.

The integration of the quorum parameter into the median gene cluster dis-
covery problem follows the same pattern:

Problem 15 Given a set of strings S = {S1,...,S}, k > 2, a minimum
cluster size s, a distance threshold Ssum and a quorum parameter q, find all
C C X with |C| > s that are median of sum distance constrained approrimate
common intervals in a set ' C S, |S'| > q, with pairwise intersecting sets

for distance threshold %  Osum.-



Chapter 3

Perfect gene clusters

As we have seen in Section 2.2, the search for perfect gene clusters and
their occurrences in a set of genomes can be solved by the computation of
common intervals. This problem has been studied extensively in the litera-
ture [85, 32, 31, 20, 78, 21, 5] and efficient algorithms for its solution have
been proposed. Especially to mention in this context are the Connecting
Intervals Algorithm (CI) by Schmidt and Stoye [78] and the algorithm by
Didier et al. [20, 78, 21|. Both algorithms compute all common intervals in
two strings of length at most n in O(n?) time, which is worst-case time op-
timal. For the CI Algorithm, also an extension to k > 2 strings is sketched
which runs in O(kn?) time [78]. In this chapter, we revise this algorithm
for the following reasons: Firstly, the algorithms for computing approxi-
mate gene clusters presented in the following chapters adopt its basic search
strategy. Secondly, we show in Section 3.4 how its space complexity can be
reduced from O(kn?) to O(kn). For simplicity, we study the algorithm first
for pairwise string comparison. The extension to multiple strings is shown
in Section 3.6.

3.1 The basic CI Algorithm

To compute all common intervals of two strings 51 and 52 of length at most
n, it is clearly sufficient to test each of the O(n*) combinations of maximal
intervals of S; with maximal intervals of S for having the same character
set. This observation can be translated into a search strategy that considers
explicitly only the maximal intervals of a selected reference string, in the
following 57, and finds all maximal locations of their character sets in the
other string So.

The CI algorithm implements this idea by combining a systematic traver-
sal of all maximal intervals [z, j] of S7, named reference intervals in the fol-
lowing, with a tracking and marking of maximal intervals in Sy that consist
only of characters occurring in CS(51[¢, j]). Common intervals can then be

25
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Algorithm 1 Connecting Intervals (CI)
1: fOri:1,...,|Sl| do

2 j—1

3:  while j < S| and [i, j] is left-maximal do

4 ¢ Si[j]

5 while [i, j] is not right-maximal do

6: je—j+1

7 end while

8 for each position p in Sy with Sa[p] = ¢ do
9 mark position p in Sy

10: find maximal interval [¢, 7] of marked positions that contains p
11: if |CS(S1[i,4])| = |CS(S2[¢,7])| then

12: output ([z, j], [¢,7])

13: end if

14: end for

15 jej+1

16: end while
17:  unmark all positions in So
18: end for

retrieved by comparing the character sets of [i, j] and the intervals tracked
in Sy. Pseudocode for this procedure is given in Algorithm 1. The algorithm
traverses intervals in S7 with a common start position 7 one after the other
for increasing end positions j (while loop, line 3) and tests for maximality
(lines 3 and 5). Once left-maximality is lost for an interval with start position
1, it can not be regained by shifting the end position j to the right. Hence,
the iteration through the outer while loop is stopped for a start position
¢ as soon as the first non-left-maximal interval occurs. Right-maximality
is guaranteed implicitly by extending the processed intervals instantly until
they become right-maximal (lines 5 to 7). This happens at the latest for
Jj =15l

Processed in this way, reference intervals with a common start position
1 differ in their character sets exactly by one character from the preceding
reference interval. With all reference intervals being maximal, it is easy to
see that the character ¢ in which two consecutive reference intervals differ
corresponds to the right neighbor of the preceding reference interval and
equals S1[j] before the inner while loop (line 5) is executed for the current
reference interval. This observation becomes important for the next step of
the algorithm, the tracking of maximal intervals consisting only of charac-
ters from the current CS(S1[i, j]). Instead of detecting these intervals from
scratch, one can build on the intervals detected and marked beforehand for



3.1. THE BASIC CI ALGORITHM 27

3 4

S 0f1[2]4 6 4 3

©

10 11

56 2|0 Si: 0]1[2 4]6 4 3

2 3

©

10 11

—_~
—_~

56 2|0
S: 0|5 7 3[2]4 3[2]6 5 3 6 4]0 S 0|5 7 3[2 4]3[2]6 5 3 6[4]o0
(a) (b)
S;: 0|12 4 6 4]3 15 6 2|0 Si: 0]1[2 4 6 4 3]1 5 6 2|0

9 10 11 12 13 0 1

Sy: 0|5 7 3[2 4]3[2 6]5 3[6 4]0 Sy: 0]5 7[3 2 4 3
(c) (d)

9 10 11 12 13

6]5[3 6 4]0

N~

Figure 3.1: Iterative generation of reference intervals in S for start position
2 and corresponding interval marking in Sy for the strings of Example 8.
(a) [2,2]s,, marking of two new intervals in Sa; (b) [2,3]s,, one interval ex-
tension, one new interval marking; (c) [2,4]s, not right-maximal; [2,5]s,,
two interval extensions; (d) [2,6]g, one interval merging, one interval exten-
sion; no further extension [2, j]g,, 7 > 6, is left-maximal, next start position
processed.

the previous reference interval. To update the interval marking in So, it is
sufficient to add all occurrences of ¢ in Sy (line 9). This involves for each oc-
currence either an extension of a marked interval, the merging of two marked
intervals or the generation of a new marked interval if both neighboring po-
sitions are not in CS(S1[i,j]). This process is illustrated in the following
example.

Example 8 Given two strings Sy, So over alphabet ¥ = {1,2,3,4,5,6,7}
with 1 =1246431562and So=573243260536 4, the interval
marking in So for reference intervals in S1 with start position 2 is visualized
wn Figure 3.1.

Finally, the algorithm identifies the maximal marked intervals in So, i.e.
intervals [¢, 7] with unmarked neighboring positions £ —1 and r+ 1, (line 10)
and tests whether any of them have the same character set as Si[i, j]. Here,
it is sufficient to consider only those maximal intervals of So that were ex-
tended by the latest new character of the current S1[i, j]. All other intervals
do not contain this character and therefore have a different character set.
Since, by construction, the character sets of the marked intervals are sub-
sets of CS(S1[i, j]), the test for character set equality can be replaced by a
comparison of character set sizes (line 11). Intervals having the same char-
acter set are combined with [i, j] to a pair of common intervals and reported
(line 12). Once all reference intervals with a fixed left border i have been
processed, i is shifted to the next position (outer for loop, line 1) and the
iterative generation of reference intervals starts anew. For that purpose, all
positions in Sy are unmarked (line 17). The algorithm terminates when i
reaches the end of Sj.



28 CHAPTER 3. PERFECT GENE CLUSTERS

From the previous considerations, it is clear that we do not miss any
common intervals in Algorithm 1 and that only interval combinations that
are indeed common intervals are reported. Thus, we claim the correctness
of the following theorem:

Theorem 1 Let S = {S1,S2} be a set of two strings over a finite alphabet
3. Algorithm 1 computes all common intervals in S.

3.2 Efficient data structures for the CI Algorithm

In the description of the basic CI Algorithm, we omitted details on how to
efficiently implement several non-trivial operations: Testing maximality of
intervals, enumerating character occurrences, tracking boundaries of maxi-
mal marked intervals and computing character set sizes of substrings. In [78],
Schmidt and Stoye introduced several data structures to replace these costly
operations by constant-time look-ups.

For testing maximality (lines 3 and 5), they use a dynamic bit array of
size |X| named OccC to keep track of all characters in the current reference
interval. An interval [¢, j] is maximal if the entries in Occ corresponding to
the neighboring characters Sa[i — 1] and Sa[j + 1] are zero. Maintenance of
Occ is the following: Fach time the left border of the reference interval is
shifted, the entries of OCC are set to zero. When the interval is extended to
the right, the value of the new character ¢, Occ|c], is set to one. This array
is linked with a counter |Occ| to track the number of ones in the current
Occ. This value corresponds to |CS(S1[i, j])| which is used in line 11 of the
algorithm.

For the enumeration of all occurrences of a character ¢ in Sy, a static
array of length |X| named Pos is precomputed that lists for each character
c € % all positions p where ¢ occurs in Ss. The look-up of the next position
of the for-loop in line 8 can then be done in constant time.

Efficient maintenance of the maximal marked intervals in S (lines 9, 10)
is achieved by means of another dynamic array of size |Ss|, that stores for
each maximal marked interval at its start and end positions, £ and r, the
complementary boundary positions r, respectively ¢. (This array is well-
defined, as each position in S5 can be element of at most one maximal marked
interval at a time.) Using this array, we can test in constant time whether
the neighbors of a newly marked position are themselves marked, and in case
of an interval merging, we can identify the boundaries of the new interval in
constant time.

The last crucial step in the algorithm is the determination of the value
|ICS(S2[¢,7])|. For this task, Stoye and Schmidt suggest a pre-computed
|Sa| x |S2| table called NUM, in which the entry at position [¢, 7] corresponds
to the number of different characters that occur in the substring Sa[¢, 7], i.e.
NuM[l,r] = |[CS(S2]¢,7])|. Hence, the look-up of |CS(S2[¢,r])| in line 11 of
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Figure 3.2: Data structures Pos and NUM for Sy from Example 8. Pos|c]|
lists the occurrences of character ¢ in Sy. Entry NuM[¢, r| contains the value

of |CS(S2[¢,7])].

Algorithm 1 is possible in constant time. An example of the two static data
structures Pos and NUM can be found in Figure 3.2.

3.3 Complexity analysis

In [78], Schmidt and Stoye show that the CI algorithm for pairwise string
comparison runs in O(n?) time requiring O(n?) space. We reproduce this
analysis in this section, as we build upon it later on in the complexity analysis
of our algorithms for approximate gene cluster detection:

The outer for loop in Algorithm 1 is executed |S1| times. Shifting of j in
the two while loops takes place at most |S;| times for each fixed i. Together
with the constant time test for left- and right maximality, the generation
of reference intervals is in O(n?). From the description in Section 3.2 and
from |X| € ©(n), it follows that the maintenance of data structure Occ
is also in O(n?). The crucial part in the analysis of the CI Algorithm is
the for loop in line 16. Due to the maximality constraint for reference
intervals, each character is at most |S7| times the latest new character ¢
in [i,j]. Hence, each of the |S2| positions p in Sy becomes at most |S|
times newly marked. Thus, there are at most |S;| - [S2| changes of marked
intervals and the same number of character set comparisons. Using the data
structures from Section 3.2, both operations are in O(1). The computation
of the static data structures Pos and NUM takes place only once and can
be done in time O(n), respectively O(n?). The dynamic data structures are
reset O(n) times. This results in a total asymptotic runtime of O(n?).

Concerning space complexity, table NUM is the most costly data struc-
ture. All other data structures require only linear space, such that the overall
space requirement amounts to O(n?).
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3.4 Space efficient CI Algorithm

In Section 3.2, we have seen how expensive operations of the CI Algorithm
can be replaced by constant time look-ups. However, this advantage is gained
at the expense of additional space requirements. In particular, the storage of
table NuM can be prohibiting when studying long strings or several strings
at a time, as it increases space complexity from O(n) to O(n?). In the
following, we show that the information of table NuM that is actually used in
the algorithm can be stored in two dynamic arrays of length |X| respectively
|S2| that are updated after each shift of the left border i of the reference
interval in S;.

3.4.1 Data structures replacing Num

The first array for replacing NUM is a ranking scheme similar to the one used
in [21], named RANK in the following. In this data structure, we store for
the characters of ¥ their ranks based on the order of their first occurrence
in a string S, respectively ‘oo’ for characters not occurring in S. If it is not
clear from the context which string a ranking is based on, or if we deal with
different rankings at a time, we extend the notation RANK to RANKg to
indicate that RANK is based on S.

Example 9 Character ranking based on substring S1[2,10] of Example 8:

c: 0 1 2 38 4 5 6 7
RANKsl[Q,lo} [C] e 5 1 4 2 6 3 o0
For our space efficient version of the CI Algorithm, RANK is used as a dy-
namic data structure updated such that RANK equals RANKg,;|s,) While
reference intervals with left-most position i are processed.

Before we define the second data structure, we introduce an auxiliary
construct named RANGE which is an array of size |S2|. Given a ranking
scheme RANK, we store in RANGE for each position p in Sy, 1 < p < |Ss],
its range interval, which is the largest interval around p that consists only
of characters with a rank of at most RANK[S2[p]], i.e. RANGE[p] = [a, b] for
a < p <bif and only if:

(i) RANK[S2]g]] < RANK[S2[p]] for all a < ¢ < b, and
(ii) RANK[S2[a — 1]] > RANK[S2[p]] and
(ili) RANK[S2[b+ 1]] > RANK[S2[p]].

This definition of range intervals is similar to the concept of rank intervals
used in [21]. The connection between the rank and range intervals is visu-
alized in Figure 3.3. We do not use them explicitly in our approach, but
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Figure 3.3: Connection between the character ranking based on S1[2, 10] and
range intervals and range content in Ss.

the second data structure for replacing NuM, named RANCGECONTENT, is
based upon them. We define it as an array of size |S2| that contains for each
position p in Se the range content of its range interval, namely the number
of different characters in the range interval of p for the current character
ranking, i.e. RANGECONTENT[p] = |CS(S2[a, b])| for RANGE[p] = [a,b]. If
in the course of the algorithm RANK and RANGECONTENT are updated in
regard to shifts of ¢, we claim that the following observation holds:

Observation 2 The CI Algorithm uses only values of table NUM that are
also stored in array RANGECONTENT.

To understand the correctness of this observation, let us have a closer
look at the entries in NUM that are actually used during a run of the CI
Algorithm. Table NUM is only used in line 13 of Algorithm 1 to look-up the
size of character sets CS(S2[¢,r]), where [¢,7] is a maximal marked interval
in Sy. By construction, [¢,r] has the following properties: (i) It contains
only characters from the reference interval [i,j]. (#) Among the elements
of CS(S2[¢,7]), S2[p] has the right-most first occurrence in Si[i, j]. (i11) The
neighboring characters Sa[¢ — 1] and Sa[r + 1] do not occur in CS(51], j]).

In terms of the character ranking based on the order of first occurrence
in S1[i,]S1]], this means that (%) the ranks of all characters occurring in [, |
fall into the range from 1 to |CS(S1], 7])|, (i) the character at position p has
the highest rank within this interval, and (i) the ranks of the neighboring
characters are strictly higher than RANK[S3[p]]. Hence, the interval [¢,r]
equals the range interval of position p for the current ranking. From this, it
follows immediately that the values of NUM[¢, r] and RANGECONTENT[p] are
equal. It remains to be shown that the arrays RANK and RANGECONTENT
can be computed and updated efficiently.
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) 1 2 3 4 5 6 7 8 9 10 11 0 1 2 4 5 6 7 8 9 10 11
Si: o2 4 6 4 3[1]]5 6 2|0 Si: 0|1 2 4 6 4[3] 6 2|0
c: 0 1 2 3 4 5 6 7 00 1 2 3 4 5 6 7
RANKg, 1ao)fc]: o0 1 2 5 3 6 4 oo RANKg g10)[c]: o0 2 5 1 oo 3 4 oo
RANKg, 210)[c]: o0 5 1 4 2 6 3 oo RANKg,[710)[c]: o0 1 4 o0 00 2 3 oo
)

Figure 3.4: Update of rank after shift of left border of reference intervals.
Only characters with occurrence in the grey shaded area change their rank.

3.4.2 Maintenance of RANK

Array RANK for ¢ = 1 can be computed in linear time: After initializing all
entries of RANK with oo, we iterate through S; and, for each character read,
we test if its rank is already set. If not, we assign it the next unused rank
and increment a counter to keep track of the ranks already used.

To keep array RANK up to date when shifting ¢ to 7/ = ¢ + 1, we can
simply compute it anew for Si[¢’,|S1|] which is of course possible in time
O(n). Alternatively, we can perform a selective update that changes only
the necessary positions. Although the latter approach yields no improvement
in terms of worst-case time complexity, we study it in the following to get a
deeper insight into the underlying process to simplify the understanding of
updates of range intervals described later on.

For simplicity, we denote in the following RANKq for RANKg, 5 |s,] and
RANKpew for RANKg, [75,))- Clearly, the rank of a ¢ € 3 with no occurrence
in S1[¢,|S1|] remains co. Moreover, if character c,q = Si[i] has another
occurrence right of ¢, the ranks of characters having their first occurrence
in Si[i,|S1]] right of this occurrence of ¢,q do not change. Hence, only the
ranks of ¢yq and of characters ¢ having their left-most occurrence between
i+ 1 and the next occurrence of cyq, respectively between ¢ + 1 and |S]
remain to be updated.

Example 10 In Figure 3.4, both types of rank updates are visualized: (a)
position i = 1 drops out of reference interval. The next occurrence of S1[1] =
1 is at position 7. The rank changes only for characters in interval [1,7]. (b)
position i = 6 drops out of reference interval. There is no further occurrence
of 51(6] = 3 in S1. The rank changes for characters in interval [6,10].

It is easy to see that for characters of the second type, the rank decreases
by one, as exactly one character, namely c,q, does no longer occur before
them. Moreover, for two such characters the following observation holds:

Observation 3 For any pair of characters ¢ # coq and ¢ # coq it holds
that if RANKyq[c] > RANKyq[c], then also RANKpew([c] > RANK e [C].

This is true by construction: If the rank of any of these two characters ¢ and
c needs to be updated, it is either the one with lower rank or both. And the



3.4. SPACE EFFICIENT CI ALGORITHM 33

rank can only decrease. For c,q, on the contrary, the rank either increases
by the number of different characters between its occurrences on position
and its next occurrence, or it becomes oo if no further occurrence exists.

3.4.3 Maintenance of RANGECONTENT

Next, we study the maintenance of RANGECONTENT for So. It is straight
forward to see that the initialization of RANGECONTENT for a given char-
acter ranking RANK can be done in quadratic time. We simply scan the
neighborhood left and right of each position p in Sy to identify its range
interval [a,b]. Then we count the number of different characters in [a, b]
and set RANGECONTENT[p| = |CS(S2[a, b])|. It remains to be shown, how
we can update RANGECONTENT efficiently when the start position of the
reference interval shifts from i to i’ = i + 1. To keep the total runtime of the
algorithm in O(n?), we need to accomplish this in linear time, as the update
is performed O(n) times in total.

Let us first study the impact of RANK updates on range intervals in
So: For positions that contain c,q, the range interval is likely to change
completely due to a possibly large change of RANK[c,4] when shifting i to
i’ =i+ 1in S;. For other positions, however, possible changes are very
limited: We have already seen that for two characters ¢ and ¢ # c,q with
RANKyg[c] > RANKqq[d] also RANKpew[c] > RANKpew[¢/]. Hence, it can
neither happen that an occurrence of ¢ becomes part of the range interval of
an occurrence of ¢’ only by decreasing the rank of ¢ below the rank of ¢/, nor
can an occurrence of ¢ become detached from the the range interval of an
occurrence of ¢ only by increasing its rank above the rank of ¢. This means
that positions p in So that do not contain ¢,y have no impact on changes
of the range intervals of each other. Therefore, it is sufficient to consider
only occurrences of c,q for updating range intervals of such p. Moreover,
occurrences of ¢yq can change range intervals only in one way: As their rank
always increases in the update, they can shorten other range intervals but
not extend them.

Example 11 In Figure 3.5, the impact of the rank update from RANKg, [210)
to RANKg,(3,109) on range inlervals and range contenl in Sy 1is visualized.
There are two occurrences of coq = 2 at positions 4 and 7. In the new
ranking, they disruptl the former range intervals RANGE[3] = RANGE[6] =
[3,8]. Range interval RANGE[10] = [10, 12] is not affected by the update.

With these findings, we can now formulate our update strategy for ar-
ray RANGECONTENT. It consists of two phases: First, we recompute the
value of RANGECONTENT at positions containing c¢,;q. Then, we update the
remaining positions. For updating RANGECONTENT at positions p with
Sa[p] = coid, we identify all range intervals [a,b] in Sz whose elements



34 CHAPTER 3. PERFECT GENE CLUSTERS

B RANKs, (2,10)[S2[p]]
7L 0O RANKg, (3,101 [S2[P]]
6
5k
4tk
3k
2
1k
P 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Sa: 0|5 7[3] 5136 4]0
RANGE(3] RANGE([6] RANGE[10]
ARANGECONTENT: 0 0 -3 4 -1 -2 4 -1 -1 0 0 0

Figure 3.5: Rank update from RANKg, 3 19] t0 RANKg, [310] and impact on
range intervals and range contents in S;. (For the sake of clarity, range
intervals are only drawn for occurrences of 3.)

have rank at most RANKyew[corq] and are confined by characters with ranks
higher than RANKpey[Corg]. Then we compute for each such [a,b] the size
of its character content and set for each occurrence p of cyq in this interval
RANGECONTENT[p| = |CS(S2]a,b])|. Since range intervals of two positions
p and p’ with RANK[p] = RANK[p'] are either congruent or do not intersect,
we can perform this part of the update in linear time by a simple iteration
through So that is summarized in Algorithm 2. During the iteration (for-
loop line 2), we track occurrences of ¢,y in the current interval (line 4).
Once, the right neighbor of the current interval [a, b] has a higher rank than
coig (line 6), we have reached the end of the next range interval spanning
characters with rank at most RANKyew[coiq]. Hence, we set the range con-
tent of all occurrences of ¢, in the current interval to |[CS(Sz2[a, b])| (line 8).
We get this value for free if we track the number of different characters in
the current interval during the iteration, for example using the combination
of Occ and |Occ|, as introduced in Section 3.2. For finding the next range
interval of this type, we continue the search to the immediate right of the
finished interval (line 10). We iterate only once through S in Algorithm 2
and set in the inner for loop the range content of every position p at most
once. With all other operations in the algorithm being in O(1), the total
runtime is in O(n).

For updating RANGECONTENT at positions p with Sa[p] # coq, recall
that the corresponding range interval can only be changed by occurrences
of cog- In other words: After the update, these range intervals have a
common neighboring character, namely c,;4. This observation is the key to
understanding how RANGECONTENT can be updated at positions p with
Sa[p] # coiq in linear time. All we need to do is to scan Sy for range intervals
[a,b] which are at least on one side delimited by an occurrence of ¢y, i.e.
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Algorithm 2 Update RANGECONTENT for occurrences of cyq
1: a « 1, occSet « ()
2: forb=a,...,|S| do
3:  if RANK[S2[b]] = RANK]cyq] then

4 occSet «— occSet U {b}

5. end if

6:  if RANK[S2[b + 1]] > RANK][c,4] then
7 for each p in occSet do

8 RANGECONTENT[p] < CS(S2[a, b])
9 end for

10: a+—b+1

11: occSet «— ()

12:  end if

13: end for

either Sala—1] = cpiq or So[b+1] = cyq, detect in each of them all positions
for which it constitutes the range interval and update the range content of
these positions accordingly.

In the first step, sketched in Algorithm 3, we focus on range intervals
that are delimited on the left side by an occurrence of c,y. To update the
range content in such intervals, we identify all occurrences of ¢,;q and use the
right neighbors of these occurrences as potential start positions a for range
intervals in S3. Beginning from each start position, we extend the corre-
sponding interval step by step to the right as long as only characters with
rank smaller than RANK][c,4] are added (while loop, lines 4 to 16) and test
after each interval extension whether the resulting interval [a, b] constitutes
a range interval. This can be accomplished simply by checking whether the
right neighbor of the interval has a rank higher than the maximum rank of
all characters in the current interval (line 8). If so, the range interval of each
occurrence p of the character with maximum rank in the current interval is
[a,b] and we set RANGECONTENT[p] = |CS(S2[a, b])| (lines 9 to 11). Again,
we can use for example the combination of Occ and |Occ|, as introduced in
Section 3.2, to track the character set size of the interval during the iteration.

It remains to be seen how we can track the maximum rank and the
occurrences p of characters with maximum rank. Initially, b = a holds.
Therefore, we set the maximum rank in [a,b] to the rank of Ss[a] (line 3).
This value is updated once a character with higher rank is about to be
added. For technical reasons, we do so once the character is considered
as right neighbor of the previous interval (line 12). This is feasible, as it
is done only when all rank tests for the previous interval are completed.
For tracking the occurrences of the character with maximum rank in the
current interval, we simply check whether the newly added position contains
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Algorithm 3 Update RANGECONTENT at remaining positions (Part1)

1: for each position a with Ssla—1] = ¢q do

2 b+ a, occSet «— ()

3:  mazRank — RANK[S2[a]]

4 while RANK[SQ [b]] < RANK[COld] do

5: if RANK[S2[b]] = mazRank then

6: occSet — occSet U {b}

7 end if

8 if RANK[S2[b + 1]] > mazRank then
9: for each p in occSet do

10: RANGECONTENT[p] «— |CS(S2]a, b))|
11: end for

12: mazRank «— RANK[S2[b + 1]]

13: occSet — )

14: end if

15: b—b+1

16: end while

17: end for

a character with the current maximum rank (line 5) and, if so, add it to a set
with the other occurrences (line 6). Since, at this point, the maximum rank
for the new interval is already updated, this works also for intervals with a
new maximum rank. Occurrences are removed from this set once their range
interval was found and the value of RANGECONTENT was set. This always
happens before a new maximum rank occurs in the interval so that this set
containg at any time only occurrences of the current rank maximum.

Clearly, we identify in this procedure all range intervals [a, b] for which
Sala—1] = ¢4 holds, and update the range content of all positions for which
an interval of the form [a, b] is their range interval. An analogous procedure
can be defined for range intervals that are delimited on the right side by
occurrences of cyq. It is sketched in Algorithm 4.

In both algorithms, the intervals of S starting right, respectively left,
of occurrences of ¢4 are processed such that the extension stops before the
start /end point of the next interval is reached. Also, we note that the range
content of each position in Sy is set at most twice: once in Algorithm 3 and
once in Algorithm 4. Therefore, the complete update process is possible in
O(n). Altogether, we conclude the following:

Theorem 2 Using the data structures described above, our wversion of the
CI Algorithm computes all common intervals of two strings of length at most
n in O(n?) time and O(n) space.
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Algorithm 4 Update RANGECONTENT at remaining positions (Part 2)
1: for each position b with So[b+1] = ¢yq do

2:  a<b, occSet ()

3:  mazRank — RANK[S2[b]]

4: while RANK[SQ [CLH < RANK[COld] do
5 if RANK[S2[a]] = mazRank then

6: occSet — occSet U {a}

T: end if

8: if RANK[S2[a—1]] > mazRank then
9: for each p in occSet do

10: RANGECONTENT[p] « |[CS(S2[a, b])|
11: end for

12: mazRank — RANK[S2[a—1]]

13: occSet — )

14: end if

15: a+—a—1

16: end while

17: end for

3.5 Output format

The CI Algorithm is designed to report all combinations of common intervals
of the given input strings. To solve Problems 1 and 2 formally, we need to
derive therefrom a non-redundant representation of perfect gene clusters and
its maximal locations on the input strings.

We show that this step becomes obsolete if we use a dense representation
of common intervals. For a start, we observe that the current representation
of common intervals has the potential to produce an enormous overhead:
Imagine two strings S; = (abxl)"/?’ and Sy = (abxg)"/3 with 27 # 9.
There are O(n?) combinations that form common intervals of at least two
characters, but there is only a single underlying character set. For n = 12,
such a setting is visualized in Figure 3.6. The situation becomes worse
when considering k > 2 strings, as the number of possible common interval
combinations increases exponentially with the number of studied strings. To
avoid this redundancy, it seems reasonable to represent all common intervals
of a character set C' by a k-tuple of sets, in which the set at position ¢,
1 < ¢ < k, contains all locations of C' in Sy. This reduces the output size
drastically as the following example shows:

Example 12 Common interval combinations of C = {a,b} in S = {51, Sa2}:

([1,2], 1, 21), ([1,2],[4,5)), ([1,2],[7,8]), ([1,2],[10,11]), ([4,5], [1,2]),
([4,5],[4,5]), ([4,5],[7,8]), ([4,5], [10,11]), ([7,8], [1,2]), ([7,8],[4,5]),
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p: 1 2 3 4 5 6 7 8 9 10 11 12

Si:la blzi]a blzi]a bl [a bz

p: 1 2 3 4 5 6 7 8 9 10 11 12

So:la blaa]a blasla blas]a b] x|

Figure 3.6: Example strings with redundant common interval combinations.

([7,8],17,8]), ([7,8], [10,11]), ([10,11], [10, 11]), ([10,11], 4, 5]),
([10,11],[7,8]), ([10,11], [10,11}).
Compact common intervals representation for C':

Si: [1,2],[4,5],[7,8],[10,11], S5 : [1,2],[4,5],[7,8], 10, 11].

The dense representation corresponds to the solution set of the perfect gene
cluster problems stated in Chapter 2. Thus, it is reasonable to adapt Algo-
rithm 1 such that it computes directly the compact representation without
generating the k-tuples as an intermediate step.

In [78], Schmidt and Stoye solve this problem for two strings, S; and
So, by running Algorithm 1 twice: First, they compute maximal locations
with identical character content within S; by comparing S; against itself
and flag all intervals having the same character content except for the left-
most occurrence. Then, they compare S; and Ss skipping reference intervals
flagged in the first step. This approach requires additional space in the form
of two |S1| x |S1| tables, each storing sets of intervals.

We show briefly that the compact common interval representation can be
generated while the space complexity remains in O(n). For that purpose, we
adapt the algorithm such that we do not only mark intervals in Sy but also
in the reference string S;. If, for a reference interval [¢, j|, we find no perfect
location of CS(S1[i, j]) in the substring Si[1, 4 — 1] but one or more locations
in Sa, we output CS(S1[i, j]) together with all perfect locations in S1[i, |S1]]
and S2. In case we find a perfect location of CS(S1[s, j]) in Si[l,i — 1], we
output nothing for [é, j], as common intervals for CS(S1[i, j]) were already
reported for its left-most location in S7. This approach outputs all common
intervals in the compact representation. We do not use any of the additional
O(n?) tables described in [78]. Instead, we need the data structures for
marking intervals not only for Ss but also for S;. These are in O(n) using
the space efficient approach introduced in Section 3.4.

3.6 Extension to multiple Genomes

The extension of Algorithm 1 to k > 2 strings is straight-forward. Since
Problem 1 requires a perfect location in each of the studied strings, it is
still sufficient to consider explicitly only maximal intervals of the reference
string S1. To avoid output redundancy, we adapt the trick of the previous
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Algorithm 5 Outline of parallel CI computation in multiple strings

1: for each maximal interval [i,j] in S} do

2. if CS(S1[4, j]) has no location in S1[1,|S1]] then
3 locCount « 1

4 for each S, = 5,,...5; do

5 if CS(S1[i, j]) has a location in Sy then

6: locCount «+ locCount + 1

7 end if

8 end for

9 if locCount = k then

10: output CS(S1[i, j])

11: for each S, = 51,...5; do

12: output all maximal locations [a, b] of CS(S1[i,j]) in Sy
13: end for

14: end if

15:  end if

16: end for

section and consider only reference intervals that are the left-most maximal
location of their character set in the reference string. For these, we need to
check whether they have a perfect location in each of the remaining strings
Sa,..., S We can do this in two different ways: Iteratively or in parallel.
In the iterative approach, we do a sequence of pairwise genome comparisons
between the reference string and the other strings and in doing so track
those reference intervals of S; which had a perfect location in each of the
strings already processed. Alternatively, we can test candidate intervals in
parallel for all strings So,...,S,. The advantage of the second approach is
that the decision whether a reference interval yields a combination of com-
mon intervals can be made right after it was tested such that the tracking
of intervals that are still candidates for common intervals can be omitted.
However, this comes at the cost of additional space consumption as the data
structures for tracking maximal marked intervals have to be stored for k — 1
strings at a time. However, using the space efficient approach, space require-
ments increase only to O(kn), while, in the iterative approach, up to ©(n?)
pairs of interval boundaries need to be stored to track candidate reference
intervals for common intervals. Concerning the asymptotic time complexity,
both approaches are equivalent: Using the space efficient common interval
representation, both run in time O(kn?). An outline of the parallel search
strategy for the condensed output representation is given in Algorithm 5.
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3.7 Quorum parameter

The introduction of a quorum parameter into common interval computation
to represent g-covering perfect gene clusters is straight-forward and was al-
ready briefly discussed in [78]|. To detect character sets that have a location
in at least ¢ out of k input strings, we need to adapt the search strategy such
that £ — ¢ + 1 strings are considered as reference strings. (Otherwise, we
would miss all character sets that have locations only in strings from which
no reference intervals are taken.) During the search, we simply count the
number of strings in which the character set of a reference interval has at
least one location and output in the end only those for which we get a total
of at least ¢q. To avoid redundancy in the common interval representation,
the character set of every reference interval should be checked for previous
locations not only in the current reference string but also in the previous
reference strings. If such an occurrence exists, the character set was already
processed and the reference interval can be skipped.

The runtime of the algorithm increases to O (k(k—g+1)n?) when common
intervals are computed with a quorum parameter ¢g. This is simply because
reference intervals are now taken from k — ¢ + 1 strings instead of one,
whereas the effort for processing the intervals of a single reference string
stays basically unchanged. The space requirements remain in O(kn).



Chapter 4

Computation of optimal
O0-locations

To keep the following chapters on approximate gene cluster detection con-
cise, we address at first an important subproblem which is the computation
of optimal d-locations. We will see later on which role this operation plays
in approximate gene cluster detection. For the time being, it is only impor-
tant to note that this operation is performed not for single sets but for the
character sets of all maximal intervals of a string. Therefore, we study in
this chapter the following problem:

Problem 16 Given two strings S1 and So over an alphabet 3 and a distance
threshold 6, find for each mazimal interval in Sy all optimal d-locations of
its character set in Ss.

A similar problem setting, the computation of all 4-locations of a charac-
ter set (not only optimal ones) in a set of k strings, was studied by Amir et
al. [2]. They claim to have found an O(kn? + output size) time and O(kn3)
space algorithm to solve this problem. However, it is possible to construct
a counter example for which the graph-based approach presented in [2] does
not detect all d-locations. (See the Appendix for details.)

We show in the following that the pairwise CI Algorithm can be extended
to solve Problem 16 in time O(n?(d + 1)?) using O(n?) space. The structure
of this chapter is as follows: We begin with a basic extension of the pairwise
CI Algorithm in Sections 4.1 to 4.3. Then, we show in Section 4.4 how the
worst-case time complexity of this algorithm can be reduced.

4.1 Adaptation of the CI Algorithm

We present the changes necessary to the Connecting Intervals Algorithm
along the pseudocode of the extended algorithm given in Algorithm 6. Since
we need to compute optimal d-locations for all maximal intervals in S, we

41
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Algorithm 6 Computation of optimal §-locations
1: fOri:1,...,|Sl| do

2 je—i,C—10

3:  while j < |S1] and [i, j] is left-maximal do

4 ¢ Si[j]

5 while [i, j] is not right-maximal do

6: je i+l

7 end while

8 remove all intervals [a, b] from C with ¢ € CS(S3]a, b))

9 for each interval [a,b] € C do

10: remove [a, b] from C unless it is optimal d-location of CS(S1]i, j])
11: end for

12: for each position p in Sy with Sa[p] = ¢ do

13: mark position p in Sy

14: find unmarked positions I, ...,lsq and r1,...,rsq around p

15: for each interval [I,+1,r,—1] with 1 <z,y <¢d+1 do

16: add [l;+1,r,—1] to C if it is optimal d-location of CS(S1[i, j])
17 end for

18: end for

19: je g+l

20: end while
21:  unmark all positions in S
22: end for

can adopt the iterative generation of reference intervals from the original CI
Algorithm. Also the marking of intervals in Sy that consist only of characters
from the current reference interval [i, j] in S} is useful for our purpose: Since
approximate locations need to have character sets that intersect with C =
CS(S1]i,7]), these intervals are good starting points for detecting C-optimal
d-locations. However, unlike with perfect locations, it is clearly not sufficient
to consider only recently extended maximal marked intervals. Additionally,
we need to consider intervals that are partially unmarked and/or contain no
occurrence of ¢, the character most recently added to the current reference
interval.

Example 13 Let S and Sy be two strings over ¥ = {1,...,15} with:

S1=62143945387122106 3 and
So=111471271538134711215349 115815

The interval marking in So for CS(S1(3,11]) ={1,3,4,5,7,8,9} is shown in
Figure 4.1. Recently extended marked intervals are [3,3],[5,9] and [11,13].
Ezamples of optimal d-locations for 6 > 3 are [3,14] and [16,23].
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2 3

Si: 06 2[1 4 3 9 4 5 3 7]12 2 10 6 3]0

10 11 12 13 14 15 16

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Se: 011 14[7]12[7 1 5 3 8]13[4 7 1]12 15[3 4 9 1]15[8 1 5] 0

Figure 4.1: Example of interval marking in Sy for reference interval [3, 11]g, .
To find (optimal) d-locations of CS(S1[3, 11]), also intervals that are partially
unmarked need to considered.

In our search strategy, we distinguish two types of optimal d-locations
of C', namely intervals with no occurrence of ¢ and intervals that contain
such an occurrence. To detect intervals of the first type, we make use of the
following observation:

Observation 4 Every interval [a,b] in a string S that is an optimal §-
location of a C C X is also an optimal d-location of C' = C \ {c} for every
c ¢ CS(S[a,b)).

Proof: With [a, b] being C-optimal, its neighboring characters S[a — 1] and
S[b+1] are not in C' and therefore not in C’. Moreover, lacking an occurrence
of ¢, it has the same left- and right-most essential position with respect
to both €’ and C. Therefore, [a,b] is C’-optimal. Finally, the distance
of CS(S[a,b]) to C" equals its distance to C minus 1. Therefore, also the
distance constraint is met which makes [a,b] an optimal d-location of C’. O

Customized to our problem, this means all optimal §-locations of a refer-
ence interval [z, j] with no occurrence of ¢ can be deduced from the set of op-
timal d-locations of the previous reference interval [i, j/] with CS(S1[i, j']) =
CS(S1[i,7])\{c}. Therefore, in Algorithm 6, we store the optimal d-locations
in a set C which we pass on to the next reference interval unless a shift of
the left border of the reference intervals occurred. In this case, the reference
interval generation starts anew with a single character, and we empty C as
there are no approximate locations to inherit (line 2). In all other cases, we
filter C for intervals that contain no occurrence of ¢ and test the remaining
intervals directly for being optimal d-locations of the new C (line 10). After
that, C consists exactly of the optimal d-locations of the new C with no
occurrence of c.

Unfortunately, this strategy does not work for optimal d-locations of the
second type, intervals containing an occurrence of c¢. Some of them are shared
among [4, j'] and [z, j], and some are not, as the following example illustrates:

Example 14 For the strings of Example 13, the character sets CS(S1[3,10])
and CS(51[3,11]) have the following optimal d-locations in Sy for § = 3 with
and without occurrences of c =7:
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o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Sp: 011 14[7]12[7 1 5 3 8]13[4 7 1]12 15[3 4 9 1]15[8 1 5] 0
lg i3 1}

1 13 1 Ty 3

Figure 4.2: All intervals of the form [l +1,7,—1] for p = 12, 6 = 3. For
intervals that are no optimal d-location of CS(S51[3, 11]) the missing property
is given.

optimal d-locations in S

containing 7 not containing 7
CS(51[3,10]): [5,13] [15,23], [16,19], [21, 23]
CS(S1[3,11]): [3,9], [3,13], [3,23], [5,9], [15,23],[16, 19]

[5,13], [11,23]

Therefore, we compute such intervals anew for each reference interval
[i,j] with C = CS(S1[i,j]). In order to do so, it is sufficient to identify
for each occurrence of ¢ in Sy all C-optimal intervals around this position p
that contain at most § different unmarked characters. All other C-optimal
intervals either contain no occurrence of ¢ or have a distance to C greater
than 4. To find candidates for optimal d-locations of the second type, we
compute positions to the left and right of p with increasing numbers ,y > 1
of unmarked characters (line 14):

ly=1l,(p) = max({l] S2[l, p] contains z different unmarked characters} U {0})
ry = 1y(p) = min({r| Sz [p, r] contains y different unmarked characters} U {|Sa|+1}).

By definition, the substrings Sa[l; + 1,7, — 1] contain at most z + y — 2
different characters not occurring in S1[i, j]. (The number is smaller if the
same unmarked characters occur left and right of p.) Clearly, not all of them
are C-optimal or fulfill the distance constraint, as the example in Figure 4.2
illustrates. But together, they form a superset of the C-optimal d-locations
around p. This is true because any other interval [a, b] that covers position
p falls into one of the following two categories: Fither it is contained in
the superinterval [ls11 + 1,7541 — 1], i.e. 541 < a < b < 7541, but then
it is not C-closed, or it is not contained within [l541,7r541], i€ a < ls41
and/or b > rsy1, and has therefore distance greater than § to C'. Thus,
we only need to test every interval of the form [l, + 1,r, — 1] for being
an optimal d-location for the reference interval [¢,j] and add it to C if it
passes this test (line 16). Once all occurrences of ¢ have been processed, C
contains all optimal d-locations of C'. To avoid that intervals with multiple
occurrences of ¢ are redundantly inserted, we can simply add a rule by which
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only intervals in which p is, for example, the left-most occurrence of ¢ are
added to C. From the previous considerations, it follows directly that the
presented algorithm solves Problem 16. Therefore, we claim the correctness
of the following theorem:

Theorem 3 Algorithm 6 computes for two strings S1 and Sy and a distance
threshold 0 for each maximal interval [i, j] in Sy the set of optimal §-locations

Of 68(51 [Z,]]) n SQ,

4.2 Implementation details and data structures

So far, we focused on the conceptual extension of the CI Algorithm for de-
tecting optimal d-locations. Now, we have a closer look on how the different
operations in Algorithm 6 can be implemented efficiently and which data
structures can be employed.

For the algorithm part that is shared with the original CI algorithm, we
simply adopt the data structures introduced in Section 3.2. These comprise
array OcCcC of size || for tracking the character content of the reference
interval, array Pos of size |X| for enumerating character occurrences and
the array of size | S| for tracking start/end positions of maximal marked
intervals. We also use the O(n?) table NUM to determine the character set
sizes of intervals in Ss.

A novelty in the extended algorithm is the set of candidate intervals C
for inheriting candidate d-locations from previous reference intervals. The
easiest way to implement this set is by means of a simple (unsorted) list. The
first interesting step that involves C is the removal of elements that contain
an occurrence of ¢, the new character in the current reference interval. This
test can be performed by an iteration through C in which we check for each
interval [a, b] whether it contains an occurrence of c¢. Since these occurrences
correspond to the entries in the list Pos]c], we can accomplish this simply by
iterating through this list for each [a, b] and compare the interval boundaries
with every p in Pos[c]. Once we find a combination for which p falls into [a, ],
we remove the interval from the list. The next step is to figure out which of
the remaining elements actually are optimal d-locations for the new reference
interval. For that purpose, we make use of the following observation:

Observation 5 Every interval [a,b] in a string S that is an optimal -
location of a C' C X is an optimal d-location of C = C' U {c} for ¢ ¢
C" and ¢ ¢ CS(Sla,b)) if and only if ¢ # Sla — 1], ¢ # S[b + 1] and
D(C',CS(S[a,b])) < 6.

Proof: = From [a, b] being C-closed and from ¢ € C follows directly that
Sla—1] ¢ C and S[b+ 1] ¢ C. Furthermore, we have D(C,CS(S[a,b])) < 9.

Removing a single character from C' that is not contained in CS(S[a,b])
reduces the distance by one. Therefore, D(C’,CS(S[a,b])) < ¢ holds.
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«: It follows from ¢ # S[a — 1], ¢ # S[b+ 1] and C = C" U {c} that [a, ]
is C-optimal. Furthermore, we have D(C’,CS(S[a,b])) < 6. Adding a single
character to C’ increases this distance by at most one so that it can not
exceed 0. Therefore, [a,b] is an optimal é-location of C. O

This means, we need to check every optimal d-location of C’ only for the
following two properties: Is any of its neighboring positions an occurrence
of ¢? Does its distance to C’ equal 07 If at least one of these tests turns out
positive, we remove the respective interval from C. The first test can clearly
be answered in constant time. Assuming that we store the distance to the
current reference interval for every newly added interval in C and increment
this value by one for each extension of the reference interval, also the second
test is possible in constant time.

To identify optimal d-locations that contain an occurrence of ¢, we com-
pute positions Iy,...,lsy and r1,...,751 around each occurrence p of c.
This can be achieved with a simple scan of the neighborhood to the left
and right of p until 6 + 1 different unmarked characters are found in each
direction. Once these positions are found, we test for each combination
(lz+1,7y—1] with 1 < z,y < 0+1 whether it is an optimal d-location
of C. First, we test for interval maximality which is given if and only if
NuMm([ly, 7y —1] # NuM[l+1, 7, —1] and NUM[l,+1,ry] # NuM[l,+1,7,—1]
hold. Every maximal [[,+1, 7,—1] is automatically C-closed, because neither
Sa[lz] nor Sa[ry| can be contained in C. Regarding C-compactness, remem-
ber from the previous chapter that this property is fulfilled for an interval
[a,b] if CS(S2[a,b]) = CS(S2[a*,b*]) with a*and b* being the left-most, re-
spectively the right-most essential position in respect to C. This can be
tested by comparing NuM|[a, b] and Num[a™*, b*]. It remains to be shown how
we can identify efficiently a*and b* for intervals [a,b] with a = I, +1 and
b =ry—1. Clearly, a* and b* correspond to the left-most, respectively right-
most, marked position in the interval [a,b]. It is also obvious that a* only
depends on a, while b* only depends on b. Therefore, we can get this infor-
mation almost for free, during the scan of the left and right neighborhood of
position p (line 14 of Algorithm 6). We simply track the most recently passed
marked position during the scans to the left and right of p and record it for
each [, respectively r,. In doing so, we have these values available when
intervals of the form [l +1,7,—1] are tested for C-compactness. Intervals
that pass this test are C-optimal, but not all of them are necessarily also
d-locations of C. To test the distance constraint, we compute for each of
these intervals [I;+1, ry—1] the distance D(CS (514, j]), CS(Sa[lz+1, ry—1])).
This is equal to the value of |C| — [CS(S2[lz+1,ry—1])| plus twice the num-
ber of different unmarked characters in Ss[l;+1,r,—1]. The values of |C]
and |CS(Sa[ly+ 1,7y —1])| can be directly taken from |Occ|, respectively
Num([lz+1, ry—1]. If we track the number of unmarked characters during the
generation of candidate intervals [l 4+ 1,7, — 1], we have this value available,
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so that the complete distance computation can be performed in constant
time. This tracking comes at no extra cost if we generate candidate intervals
with a fixed left border [, 41 and increase the right border r, —1 step by step
by incrementing y. In each step, at most one unmarked character is added
to the interval, namely Sa[ry_q]. If NuM[lz +1,7ry—1 —1] # NuM[lz +1,7ry_1]
holds, a new unmarked character is added, otherwise it occurred already in
the previous interval.

After this step, the test of intervals [l +1,r, —1] for being optimal o-
locations of C' is completed. Therefore, all intervals that passed this final
test are added to C.

4.3 Complexity analysis

For simplicity, we start the analysis of Algorithm 6 with those algorithm parts
that are directly adopted from the original CI Algorithm. These comprise
the generation of reference intervals in S7 and the tracking and marking of
maximal intervals in S5 that consist only of characters of the current reference
interval. We have proven in Chapter 3 that this is in O(n?). Recall that
we have also shown that every position p in Sy is at most O(n) times newly
marked, such that in total the for-loop in line 12 is executed O(n?) times.
The first interesting step within this for-loop is the detection of unmarked
positions l1,...,ls41 and r1,...,rs+1. This involves a scan of the left and
right neighborhood of p. In the worst case, we process the whole string
adding the factor n to the complexity, while the test of a single character for
being unmarked and new to the current interval is in O(1). Thus, the total
time spent on the detection of ly,...,ls41 and rq,...,rsy1 for all reference
intervals is in O(n3). The second task in the for-loop is the collection of
the candidate intervals of the form [l + 1,7, — 1]. For each occurrence p,
there are O((d 4 1)?) many of these intervals, while there are |Pos[c]| many
occurrences of each ¢ in Ss. As every position p in Sy is marked at most
n times, O(n Sy, (IPOS[C]] - (5 + 1)2)) = O(n2(6 + 1)?) intervals are
added to C during the complete run of Algorithm 6. Using the results of the
preceding scan, the generation of a single candidate takes constant time such
that the total time spent on the generation of candidate intervals is also in
O(n2(5 +1)?).

Before we continue with the analysis, we estimate how many optimal
0-locations a single reference interval [i, j] can possibly have. In general, we
observe that for any set of characters (no matter whether it is connected to
a reference interval or not) this number is bounded in the following way:

Observation 6 The number of optimal d-locations of a character set C C %
in a string S of length n is in O(n(d + 1)) for all 6 > 0.

Proof:  We count how many optimal d-locations of C' can have the same
left-most position a in S. For that purpose, we show that every two such
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intervals [a, b1] and [a, b], b1 < bz, contain a different number of characters
from ¥\ C. Clearly, we have S[b; +1] ¢ C and S[b; +1] ¢ CS(S]a, b1]), while
S[b1+1] € CS(S]a, b2]). However, it also holds that every ¢ € CS(S|a, b1])\C
is contained in CS(S]a, b2]). Therefore, the number of characters from ¥\ C
can not be the same in the two intervals. Moreover, a d-location of C' can
have only between 0 and ¢ characters from ¥\ C. Thus, there are at most
d + 1 optimal d-locations of C' with left-most position a and O(n(d + 1))
optimal d-locations of C' in the complete string. O

With this result, we can estimate the size of C which is important for
the analysis of the two algorithm steps that involve a processing of C. The
first one is the removal of elements of C that contain an occurrence of ¢,
the character most recently added to the reference interval (line 8). At this
point, |C| isin O(n(d+1)), as C consists only of the optimal d-locations of the
previous reference interval. Therefore, the nested iteration through C and
Pos described earlier is in O(n(d 4+ 1) - |Pos|c]|) for one reference interval
and in O(n3(§ + 1)) for the total algorithm. (The latter is true because
> cex, POs[c] = |S2].) The second step that involves a processing of C is the
for-loop in line 9 where the remaining intervals in C are tested for being
optimal J-locations. As we have seen in the previous section, this test can
be performed in O(1) time for each element, and therefore in O(n(d+1)) for
the complete set. In total, there are O(n?) sets C to process in Algorithm 6,
such that the complete time spent on this step is in O(n3(6 + 1)). From the
previous considerations it follows that this is also the time complexity of the
complete algorithm. The space complexity of Algorithm 6 is in ©(n?) for
the use of table NuM.

4.4 Faster computation of optimal d-locations

For practical use, it would be desirable to decrease the asymptotic time
complexity of our algorithm from cubic to quadratic dependence on n. With
0 < n, this is still true if this reduction comes at the cost of an addi-
tional factor § in the complexity term. In the following, we show that such
an improvement can be achieved with some modifications of the algorithm.
Currently, there are two obstacles to the quadratic dependence on n in Algo-
rithm 6: the scan of Sy involved in the determination of unmarked positions
li,...,ls31 and 7y,..., 7541 surrounding each position p (line 14) and the
two iterations through the interval set C to determine inheritable optimal
d-locations (lines 8 and 10).

4.4.1 Precomputation of ly,...,l541 and r1,...,7541

Concerning the first problem, we observe that for each position p in Ss
the pattern of marked and unmarked positions in its neighborhood at the
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time it gets newly marked depends only on the left border i of the current
reference interval in S;. Hence, the values ly,...,l541 and 71,...,7r541 can
be precomputed and stored for all p, each time i is shifted in Algorithm 6.
For the storage of these values, we use two tables, each of size [S2| x (0 + 1),
which we name L and R in the following. There, the values l,(p) and 7,(p)
should be stored such that L[p|[z] = l;(p) and R[p]ly] = r,(p) hold for every
position p in Sy and all 1 < z,y < § + 1 based on the current reference
interval in Sj.

Example 15 Table L for Sz, 6 = 3 and ranking RANKg, 35,15, for S1, S2
defined as in Example 13:

p 1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Llllp] 0 0 2 2 4 5 5 7 4 0 10 10 12 10 0 15 16 15 18 0 20 21 21
Li2]lp] 0 0 1 1 2 4 4 5 8 0 9 4 11 2 0 14 15 14 17 0 14 20 20
L3llp] 0 0 o 0o 1 8 8 4 2 o0 8 2 10 1 0 12 14 12 16 0 12 18 14
Li4lp] o0 o o o 0o 2 2 8 1 o0 7 1 9 0 0 10 12 10 15 0 10 17 12

This precomputation alone does not improve the time complexity of the
algorithm. However, we show that after the initial computation of L and R
for i = 1, their update after each shift ¢ — i+1 is in time O(n(d + 1)) for
both tables. To this end, we need a ranking scheme similar to the one used
in Chapter 3 for computing the range content of intervals. The difference
is that we rank the characters of ¥ not only based on their first occurrence
in S1[i,|S1|] but based on their first occurrence in the concatenated string
Sili, |S1]]S2. In doing so, we can distinguish the ranks of characters in S
with no occurrence in S;[i, [S1]]. In the following descriptions, we use the
term rank not only for characters but also for positions in So. We refer by
that to the rank of the character that occurs at this position. Since this
character is uniquely defined, we do not introduce any ambiguities by that.

For the initialization of tables L and R, we scan the left, respectively
right, neighborhood of each position p for the first § + 1 different characters
with a rank greater than RANKg, g,[S2[p]] and set the entries in L, respec-
tively R, to the corresponding positions. It is easy to see that positions with
rank higher than ¢ correspond to unmarked positions in Algorithm 6 such
that the entries in L and R equal ly,...,lsy1, respectively r1,...,rs11, for
each position p in Ss.

The interesting part is the update of L and R, when ¢ is shifted to i+1.
Recall from the description of rank updates in Chapter 3 that the rank of
characters occurring between i and the next occurrence of Si[i], respectively
the end of S1[i,|S1|]S2, decreases by one, while the rank of c,q = Si[i]
increases by the number of different characters between the two occurrences,
or becomes oo if no further occurrence exists. Therefore, we update L and R
in two separate steps, for occurrences of ¢,q and for all remaining positions.
Since the entries in L and R can change strongly for positions of the first
type, we compute them anew from scratch. For this purpose, we iterate
through S5 once from left to right and once from right to left, remembering
the last 6 + 1 non-redundant occurrences of characters with rank greater
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than the new rank of c,4. Once we reach an occurrence of cyq, we fill the
corresponding entries in L, respectively R, with the currently remembered
positions. This part of the update is in O(nd), if the remembered positions
are kept sorted (by index), a property that can be achieved with a queue-like
data structure in which the oldest element is removed once the queue is full
and a new element is to be added. We only need to watch out for duplicate
occurrences of a character. If we are about to add such an occurrence, we
need to remove the previous occurrence from the queue (although it might
not be the oldest element).

For a position p with Sa[p] # co1q the corresponding entries in L and R
can only change if RANK[S2[p]] is smaller than RANK][cyq]- Also, there is
only one way L, respectively R, can change for such a position p, namely if
an occurrence of ¢yq is located close enough to p in S to become an entry in
L, respectively R. This is a direct consequence of Observation 3 in Chapter 3
which states that the rank difference of two characters other than ¢,y can not
change its sign. To update L and R for these positions, we iterate through
So once from left to right and once from right to left remembering the latest
occurrence of c,q. Each time, we reach a position with rank smaller than
the rank of c,q, we go through its entries in L, respectively R, insert —
if necessary — the last remembered occurrence of ¢,y at the appropriate
position and shift the other entries accordingly. Clearly, this part of the
update is also in O(nd).

The initialization of L and R takes O(n?) time. Both parts of the update
are in time O(nd) and take place O(n) times. Therefore, the total time spent
on computing and maintaining tables L and R for Algorithm 6 is in time
O(n?§). The additional space consumption is in O(nd) which is subsumed
by the overall space complexity of O(n?).

4.4.2 Precomputation of left-most and right-most essential
positions

In Algorithm 6, we used the scan of the neighborhood of every position p in Sy
also to determine for the corresponding [/, and r, the left-most, respectively
right-most, essential position of intervals with left border I,+1, respectively
right border 7, —1. To precompute these values, we need two additional
tables L' and R’ that are of the same format as L and R. We study in
the following only the computation and maintenance of L’. (The operations
dealing with R’ are analogous.) L’ should be maintained such that for all
1 <p<|Syland 1 <z <4+ 1 entry L'[p][z] corresponds to the closest
position to the right of L[p][z] that contains a character with rank smaller
or equal to RANK[Sz[p]]. Clearly, we can initialize L' for ¢ = 1 at no extra
cost during the initialization of L. which involves a scan of the neighborhood
of each position in Sp. The update of L' at positions p with Sa[p] = coq is
also straight-forward: During the scan of Sy for updating L, we track not



4.4. FASTER COMPUTATION OF OPTIMAL §-LOCATIONS 51

only the last d +1 non-redundant occurrences of characters with rank greater
than RANK[cyq] but also for each of them the next position with rank at
most RANK[cyq]. We find such a position at the latest when we reach p.
Therefore, all entries L'[p][x] for S2[p] = ¢4 are set during this process.

For all other p, the entries L'[p][x] can only change if RANK[cyq] >
RANK[S2[p]]. To update L’ at these positions, we precompute for all occur-
rences of c,q the 0 + 1 next positions to the right with strictly decreasing
rank lower than RANK[cyq]. We store these positions in a list called lower
ranked neighbors in the following. Later on, we check for each p that is not an
occurrence of cyq every L'[p][z] for being an occurrence of ¢yq, and replace
each L'[p][z] for which this is the case by the first lower ranked neighbor of
L’[p][z] that has rank at most RANK[S2[p]]. We always find such a position
among the lower ranked neighbors of L'[p][x], because there can occur no
more than ¢ different characters with rank greater than § between L[p]|[z]
and p. Therefore, the update of L' is in O(nd) if we can determine the lower
ranked neighbors for all occurrences of ¢yq in time O(nd). To achieve this,
we scan Sy and remember each occurrence of ¢,;4. Each time we read a char-
acter with smaller rank at a position g, we test the most recent occurrence
of coq for having an uncompleted list of lower ranked neighbors. If this is
the case, we compare the rank of Ss[g| to the rank of the last element in the
list. If it is smaller, we add ¢ to the list and continue the testing with the
previous occurrence of c,q. Once either of the two tests fails for an occur-
rence of ¢y, it fails for all occurrences further to the left, so we can stop
testing. In total, every list is changed at most § + 1 times for each update,
and it happens only O(n) times that we fail to insert an element which we
find out in constant time. Hence, the total time for identifying lower ranked
neighbors of ¢4 is in O(nd).

Therefore, the complete computation and maintenance of L’ also takes
time O(nd). For symmetry reasons, the same is true for R'. The space
consumption of L' and R’ is in O(nd).

4.4.3 Better bounds for the total size of C

The second efficiency problem in Algorithm 6 are the two iterations through
the set C of optimal d-locations of the previous reference interval (lines 8 and
9). We have seen earlier that the size of C is in O(n(d+ 1)) for each reference
interval. To improve the upper bound of the algorithm complexity, we need
to show that the average size of C over all steps of the algorithm, is lower
than that.

To this end, we need to revisit the similarities between optimal d-locations
of successive reference intervals. So far, we reuse in Algorithm 6 only intervals
with no occurrence of ¢, the character by which the two reference intervals
differ. Now, we show that also the remaining optimal J-locations can be
partly inherited between successive reference intervals:
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Observation 7 Fvery interval [a,b] in a string S that is an optimal 0-
location of a C' C X is an optimal d-location of C = C" U {c} for every
ceCS(Sla,b)).

Proof: Since [a, b] is C'-optimal and contains an occurrence of ¢, it is also C-
optimal. Also, the distance constraint holds because of D(CS(S|a,b]),C’) >
D(CS(S]a,b]),C). O

However, we have seen already in Example 14 that the opposite is not
true. This part of the relationship between optimal d-locations of C and C’
is characterized as follows:

Observation 8 Every interval [a,b] in a string S that is an optimal -
location of a C C X is an optimal d-location of C' = C \ {c} for ¢ €
CS(S[a,b]) and ¢ € C if and only if (i) D(CS(S]a,b]),C) < & holds, and
if (1) there are positions p, py and p, in S with a < py < p < p, < b,
Slpe) € C', S[py] € C" and S[p] = c.

Proof: =: From D(CS(S]a,b]),C") < § it follows that D(CS(S|a, b]),C) < §
because ¢ € C' and ¢ € CS(S|a, b)), but ¢ ¢ C’'. Let py and p, be left-most,
respective right-most, essential position of [a, b] with respect to C’. Condition
(i) then follows from the facts that [a,b] is C'-optimal and ¢ ¢ C".

<: D(CS(S[a,b)),C") < § holds, as D(CS(S[a,b]),C") = D(CS(S]a, b)), C)+
1 and D(CS(S[a,b]),C) < 4. It follows from (i7) that c is contained in the
(’-essential subinterval of [a,b]. Since C' and C’ differ only in ¢, [a, b] has to
be C’-optimal O

We know from Observation 4 that optimal d-locations containing an oc-
currence of ¢, the latest character in the reference interval [i,j]g,, are the
only candidates for being non-inheritable from the previous reference in-
terval. Observation 8 defines the only two types of these non-inheritable
optimal d-locations: The first type are intervals having exactly distance §
to C'= CS(51]i, j]), and the second type are intervals with left-most and/or
right-most essential character ¢ that contain no “inner occurrences” of ¢, i.e.
positions that are separated from both interval boundaries by characters
from C other than c.

Non-inherited optimal d-locations of the second type are necessarily ei-
ther of the form [l + 1,71 — 1] or [l; + 1,7, — 1]. Only such intervals can
be C-optimal intervals with right-most essential position p, respectively left-
most essential position p. Since there are only § + 1 many values of both, z
and y, for every newly marked position, only O(d+1) many of these intervals
exist. Each of them can persist in C for at most O(d + 1) iterations of the
algorithm. Each time, either the new character of C' is present in the interval
which can happen at most § times, otherwise the distance would have been
above ¢ in the beginning, or the new character is not present. The latter can
also happen at most § times. Afterwards the distance is above § due to miss-
ing characters alone. With O(n?) newly marked positions, the total number
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of intervals of the second type inserted into C is bounded by O(n?(d + 1)).
With an persistence time of O(d), these intervals contribute O(n?(§+1)?) to
>i<; |Cijl, where C; j = C at the time when reference interval [i, j] is being
processed.

Of the first interval type, we have O((§ 4+ 1)?) many for each newly
marked position and each can persist O(d + 1) iterations in C. However,
every such interval needs to be re-detected at least as often in line 15 of
Algorithm 6 as it is inherited “silently”, i. e. without being generated anew.
This is because the distance to the reference character set increases by one,
each time an interval is silently inherited. Since the initial distance is §, we
have at least one re-detection for every silent inheritance. Therefore, every
optimal d-location of the second type persists in C only O(1) iterations before
it is redetected. In total, these intervals contribute like the first type with
O(n*(0+1)%) to 30,5 1Ci;l.

Therefore the total time spent on the second iteration through C to re-
move non-optimal d-locations (line 9) is in O(n?(§ +1)?). The first iteration
through C (line 8) to remove intervals containing the latest character from
the reference interval can be omitted if we test each optimal d-location de-
tected in line 16 for being already present in C. This can be done efficiently
if we first build a sorted list of the new elements and merge it to the old
C. Choosing the right order to process the intervals [ + 1,7, — 1] around a
recently marked position p (for-loop of line 15), we obtain a sorted list at no
extra cost for each p. Adding only those intervals for which p is the left-most
occurrence of ¢, we can simply append the lists of different occurrences of ¢
and gain a sorted redundancy-free list of all new optimal d-locations that can
be merged in linear time with C. Repeating this process in every iteration
of the algorithm keeps C sorted and free of redundancies. It follows that the
total time spent on merging list is bounded by ., [C; j|, the total size of
C summed over all iterations of the algorithm. Based on these findings, we
claim the correctness of the following theorem:

Theorem 4 Using the optimizations described in this section, Algorithm 6
can be improved to solve Problem 16 in time O(n?(6+1)?) using O(n?) space.
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Chapter 5

Reference gene clusters

With the algorithmic results of the previous chapter, we are now in the
position to develop efficient solutions to the problem of reference-based ap-
proximate gene cluster detection. In Section 2.3, we defined two variants
of this problem that differ in the way how distances to approximate clus-
ter occurrences are constrained, either separately for each input genome or
collectively via their sum. Neither problem has been studied before in liter-
ature. Therefore, the aim of this chapter is to show that both problems can
be solved efficiently in regard to both time and space complexity.

We formulate our search strategies for reference gene clusters and their
approximate occurrences in a set of strings S = {S1,..., Sk} separately for
the two distance constraining modes. We begin with sum distance con-
strained reference gene clusters and show later on how our approach can be
adapted to the pairwise distance constraint. Finally, we show which changes
are necessary in both modes to use the quorum parameter.

Throughout this chapter, we restrict the term “approximate occurrences
of a reference gene cluster” to the intervals in the solution set of Problem 4,
respectively Problem 6. These intervals are optimal with respect to their
reference gene cluster C' and occur in a combination of approximate common
intervals for which C' is an intersecting close set under the given distance
constraint.

5.1 Computation of sum distance constrained ref-
erence gene clusters

Obviously, we can extract all sum distance constrained reference gene clusters
in S, as well as their approximate occurrences, from the corresponding set of
approximate common interval combinations for the given distance threshold
Osum- However, the generation of these combinations is rather inefficient,
as it inherits the redundancy problem that already occurred with common
intervals as seen in Section 3.5. Considering not only perfect but also ap-
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proximate locations even increases the combinatorial overhead. We show
that the detection of reference gene clusters and its approximate occurrences
is feasible without intermediate generation of interval combinations.

5.1.1 Detection of reference gene clusters

Since a reference gene cluster has a perfect location in at least one input
string, the search space for reference gene clusters is limited to the character
sets of maximal intervals in S. There are only O(kn?) character sets of this
form, a small number compared to O(n?*) possible approximate common
interval combinations. We test each of these character sets for being a ref-
erence gene cluster. For that purpose, we compute for each candidate set C
its optimal dgym-locations in S. If there is at least one of these intervals in
each string, we take the best from each, i.e. the one with lowest distance to
C, and test if their total distance to C'is at most dgy,. If this is the case, C
is clearly a reference gene cluster. Otherwise, it is not — for the following
reasons: First, it follows from Observation 1 that there is always a C-optimal
interval among the best approximate locations of C in a string. So, we can
not build any better interval combinations using approximate locations that
are not C-optimal. Second, intervals that are not even approximate locations
of C are no alternative. Either their pairwise distance is already greater than
Osum, Or their intersection with C is empty which disqualifies them in the
first place for building interval combinations with intersecting close set C.

5.1.2 Detection of approximate cluster occurrences

To detect the approximate occurrences of a reference gene cluster C, we sim-
ply need to identify among the C-optimal §sym-locations those combinable
with others into k-tuples with a total distance to C' of at most Jgy,. For
this step, it is not necessary to actually build these combinations. We can
simply pre-compute the minimal distance between C' and the intervals in
each string and then test for each candidate interval if its combination with
the respective best approximate locations in the other £ — 1 strings meets
the distance constraint. If it does, the candidate interval is an approximate
occurrence of C'. Otherwise, it is not for the same reason as above. We
can not build a better approximate common interval combination for this
candidate interval, at least none for which C is intersecting close set.

5.1.3 Algorithmic implementation

In practice, the computation of reference gene clusters and their approximate
occurrences can be combined into a single process. Algorithm 7 contains
pseudocode of such a combined search strategy which we explain in the
following. We identify all candidate reference gene clusters one after the
other by iterating through the maximal intervals in S (for-loops in lines 1
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Algorithm 7 Sum distance constrained reference gene cluster computation
in S ={95,...,S;} for distance threshold sy

1: for each S, =51,...5; do

2. for each maximal interval [7, j] in Sy do

3: C — CS(S¢[i, 4])

4: if C has no location in Sp,...,S,_1 and Sy[1,7 — 1] then

5: for each Sy = 51,...S5; do

6: C[l'] < set of optimal dgm-locations of C in Sy

7 end for

8: if C[¢'] # 0 for all C[¢'] = C[1],...C[k] then

9: foreach /' =1,...,k do

10: minDist[ﬁ’] — min[a,b]eC[Z’] {D(C, CS(S@/ [a, b]))}

11: end for

12: minDist «— Y| p<) minDist[l']

13: if minDist < §gum then

14: for each ¢/ =1,...k do

15: mazDistShare[l'] < 0sym —minDist+minDist[l']

16: remove from C[¢'| all [a,b] with D(C,CS(Sp[a,b])) >
mazDistShare[l']

17: end for

18: output C' and C[1],...,C[k]

19: end if

20: end if

21: end if

22: end for

23: end for

and 2). To ensure that every character set C' is processed only once, we skip
those with a previous perfect location in S (line 4). For the others, we need to
detect the C-optimal dgm,-locations in S (lines 5 to 7). This can be achieved
by applying Algorithm 6 (Section 4.1) to all combinations of Sy and S to
Si. In this way, we get for every character set C all optimal §4,,-locations
in § sorted by their string of origin. This partitioning into sets, named
Cy,...,Cg in the following, simplifies the subsequent test, whether there is at
all a dgym-location in each string (line 8), as well as the identification of the
distances between C' and the best dgym-location in each string (line 10). If
this distance complies with the distance threshold (line 13), C'is a reference
gene cluster, and we identify its approximate occurrences. For this purpose,
we compute the value mazDistShare[l']| = dsum — minDist + minDist[l'] for
each Cp (line 15). It corresponds to the maximum distance an element of Cy
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Interval marking for C' = CS(S1[2,10]) in strings S = {S1, So, S3, S3}:

6 7 8 9 10 11 12 13 14 15 16 17 18 19
7 2 3 6 9]10 8 12[6 7 3 9]11]|0

0 1 2 3 8 10 11 12 13

Sp: 0]13 15 14[6 7 9 4 2 1|1413 16[1 6 9]17]0

Ot o

1 2 3 4
Si: 0 8[4 2 1

[ 9 10 11 12 17
Sz: 0 |11 12“18 19 18[3 6 9] 20 23 21 19 22 | 0
[ 1 2 3 4 5 10 11 12 13 16 17
Si: 0]18 24[4 2 1 56 9|23 16 11 19”25 26 22-|0

List of optimal d-locations of C for § = T7:

C[1]: [2,10)(0), [2.17)(3), [14,17)(4) minDist[1] =0
Cl2): [4,9)(2), [4,13](1), [4,18](3), [11,13)(5), [11,18](4), [15,18](5)  minDist[2]=1
C[3): [3,6](4), [3,12](3), [10,12](5) minDist[3] =3
C[4): [3,8](2), [3,14](5), [13,14](6), [18, 18](7) minDist[4] =2

(Distance to C'is given in parentheses after each interval)

Sum of minimum distances: 6 = C' is reference gene cluster

Maximum distance share per string and list of approximate occurrences of C'

mazDistShare[1] =1 C[1]: [2,10] (0)
mazxDistShare[2] =2 C[2]: [4,9] (2), [4,13] (1)
maxDistShare[3] =4 C[3]: [3,6] (4), [3,12] (3)
mazDistShare[4] =3 Cl4]: [3,8] (2)

Figure 5.1: Extract from the computation of sum distance constrained ref-
erence gene clusters in a set of four strings S = {51, Se, 53, 54} (as defined
in the figure): The character set of interval [2,10]g, is tested for being a
reference gene cluster for dgy,;, = 7. After computing the list C[¢'] of dsym-
locations for each string, the sum of the minimum distances of the lists is
compared to dgym.- As the sum is below the threshold, CS(S51(2,10]) is a ref-
erence gene cluster and the approximate occurrences need to be identified.
To this end, the maximum distance share for the intervals of each string is
computed and the elements in the C[¢'] are filtered, based on these values.
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can possibly have to be still combinable with elements of the other k —1 sets
to a k-tuple of approximate common intervals with intersecting close set C'
for distance threshold dg,,,. All intervals that exceed the maximal distance
share of their string of origin are removed from the respective Cp (line 16).
Therefore, the Cpr contain afterwards exactly the approximate occurrences of
C and are reported together with C. An example of this procedure is shown
in Figure 5.1.

5.1.4 Complexity analysis

Before we start with the complexity analysis of Algorithm 7, we need to
recall two central results from Chapter 4: The first one is the runtime of
Algorithm 6. We have shown that it is possible to compute for all maximal
intervals in a string of length O(n) the optimal §-locations in another string of
length O(n) in time O(n?(5+1)2). Since there are O(n?) maximal intervals in
such a string, this averages to an amortized cost of O((6+1)?) for computing
the optimal §-locations of a single maximal interval. The second result is
on the number of §-locations a character set can possibly have in a string.
We have shown that the sum of these numbers over the character sets of all
maximal intervals in a string is in O(n?(§ + 1)?). Therefore, we can apply
again the amortization argument and say that the (amortized) number of
S-locations of a single character set is in O((6 + 1)?).

We now come to the actual complexity analysis of Algorithm 7: The
iteration through all maximal intervals in Si,... Sy is in time O(kn?). For
each maximal interval, we compute O-locations (line 4) and Jsym,-locations
(lines 5 to 7) in S which is in time O(k(8sym+1)?) according to the amortized
analysis above. In terms of complexity analysis, the remaining operations of
the algorithm (lines 8 to 18) can be categorized into two types. For operations
of the first type, we iterate through the elements of the C[¢'] either to access
the pairwise distance to C associated with each interval (lines 10 and 14) or
to remove, respectively output, elements (lines 16 and 18). If the distances
to C are stored for each interval in the C[¢/] (which is possible without extra
cost as these values are computed anyway during Algorithm 6), the distance
comparison takes time O(1). Clearly, the removal and the reporting of a
single element can also be performed in time O(1). From the amortized
size analysis of the C[¢'] follows immediately that these operations take time
O(k(Osum + 1)?) for each reference interval. The second type of operations
comprises computations, respectively tests, that involve only a single value,
respectively look-up, for each C[¢'] (lines 8 and 10). These operations are
obviously in time O(k) for each reference interval. In total, we have O(kn?)
reference intervals for which operations of amortized time O(k(8gym+1)?) are
performed. Thus, the total runtime of Algorithm 7 is in time O(k?n2(Jgum +
1)?), while the space requirements are in O(kn?). Therefore, we claim the
correctness of the following theorem:
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Algorithm 8 Outline of pairwise distance constrained reference gene cluster
computation in S = {51, ..., Sy} for distance threshold d,,

1: for each Sy = 51,...5; do

2. for each maximal interval [¢, j] in S, do

3: C — CS(S¢[i, 7])

4: if C has no location in Sp,...,S,_1 and Sy[1,7 — 1] then
5: for each Sy = 51,...5; do

6: C[¢'] « set of optimal dp-locations of C' in Sy
7 end for

8: if C[¢'] # 0 for all C[¢'] =C[1],...C[k] then

9: output C' and C[1],...,C[k]

10: end if

11: end if

12:  end for

13: end for

Theorem 5 Algorithm 7 computes in a set of k strings S = {S1,..., 5k}
all sum distance constrained reference gene clusters and their approzimate
occurrences for distance threshold Sgym in time O(K*n?(Ssum +1)%) using
O(kn?) space.

5.2 Computation of pairwise distance constrained
reference gene clusters

In the following, we show that the detection of pairwise distance constrained
reference gene clusters and their approximate occurrences is also possible in
the same way, i.e. without intermediate generation of approximate common
interval combinations.

5.2.1 Search strategy under the pairwise distance constraint

In Algorithm 8, we illustrate how the previous search strategy can be
adapted to the pairwise distance constraint. The generation of reference
intervals and the test of their character sets C' for previous locations in S
is analogous to Algorithm 7. Then follows the generation of the optimal
Opw-locations of C'. As their identification depends only on the value of the
distance threshold, not on the underlying distance constraining mode, we
can employ here the same method as for sum distance constrained reference
gene clusters. The differences begin with the test of C for being a reference
gene cluster which turns out to be much simpler under the pairwise distance
constraint: We only need to check whether every string has an optimal



5.3. DETECTION OF ¢q-COVERING REF. GENE CLUSTERS 61

dpw-location of C' (line 8). If this is the case, every combination of these
intervals, one from each string, is a k-tuple of approximate common intervals
with intersecting close set C' for d,,. Therefore, it follows not only that C
is a reference gene cluster in S, but also that all elements of the C, are
approximate occurrences as defined in Problem 6. Passing this test is also
the only way C can be a reference gene cluster. This follows immediately
from Observation 1 and the fact that a reference gene cluster intersects with
its approximate common intervals. Also, for obvious reasons, no interval not
contained in the C, can be in the solution set of Problem 6. The correctness
of Algorithm 8 follows directly from these considerations.

5.2.2 Complexity analysis

We come now to the complexity analysis of Algorithm 8. The generation of
optimal d,,,-locations of the character sets of all reference intervals in S is in
time O(k?n?(8pw + 1)2). Once these intervals are generated for a character
set C, the most costly operation is to iterate through the corresponding C[¢']
(line 9) to output the elements in case that C is a reference gene cluster.
Based on the amortization argument, this takes time O(k (8 + 1)?) for each
of the O(kn?) character sets. Therefore the asymptotic time complexity of
the complete algorithm is in O(k?n?(d,,+1)?). The space requirements are in
O(kn?) due to the parallel computation of optimal d-locations in k strings.
Based on these considerations, we claim the correctness of the following
theorem:

Theorem 6 Algorithm 8 computes in a set of k strings S = {S1,..., Sk} all
pairwise distance constrained reference gene clusters and their approzimate
occurrences for distance threshold 8,y in time O(k*n?(Spu+1)?) using O(kn?)
space.

5.3 Detection of g-covering reference gene clusters

To compute reference gene clusters that occur only in a subset of the input
strings, we need to introduce a quorum parameter g into our search strategy
that defines the minimum number of strings that need to be covered by the
cluster occurrences. For the pairwise distance constraint this adaptation
is trivial: Instead of testing whether a candidate C' has a C-optimal 0p,-
location in all k strings, we test if there is one in at least ¢ out of k strings.
If this is the case, C'is a ¢g-covering reference gene cluster for pairwise distance
constraint and the elements of the C, are its approximate occurrences.

The adaptation for the sum distance constraint is more involved due to
the dependency of the distance threshold on the number of strings covered
by approximate cluster occurrences. Recall that we decrease the distance
threshold by ‘55% for each missing string. A simple approach to test a
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character set C for being g-covering reference gene cluster is to check for
each ¢, ¢ < ¢’ <k, whether there is an &’ C S with |§’| = ¢/ in which C is a
reference gene cluster for distance threshold ¢’ 55%. To perform this test, we
can simply check if the ¢’ smallest of the minimum distance values sum up
to at most ¢’ 55%. If this holds for at least one ¢’, C'is a g-covering reference
gene cluster, otherwise it is not. However, this test can be simplified: It
is easy to see that this test fails for every ¢ > ¢ if it fails for ¢ = q.
This is because the average distance available for each string, i.e. %, is
independent of ¢’. If this value is exceeded for the ¢ smallest distances, it is
exceeded for every ¢ > ¢q. To test a candidate C for being a reference gene
cluster, it is therefore sufficient to identify the ¢ smallest minimum distance
values and check if their sum is at most q‘SS;;m. Only if this is the case, C' is
a g-covering reference gene cluster under the sum distance constraint.

For every C' that is a g-covering reference gene cluster, we need to identify
its approximate occurrences. These correspond to C-optimal intervals [a, b] s,
that occur in approximate common interval combinations for an &’ C S,
q < |8'| < k, with intersecting close set C' for distance threshold |S’\%_
Clearly, we get the smallest sum distance for |S’|-tuples containing [a, b] s,
if we combine this interval with the |S'| — 1 best approximate locations of
the |S| —1 strings other than Sy. Since D(C,CS(Sy[a,b])) is not necessarily
among the ¢ smallest minimum distance values, it is not sufficient here to
consider only |S'| = ¢. Instead, we adapt the average distance trick as
follows: We partition the minimum distances of the k — 1 strings other
than Sy into values of at most 55;’" and bigger values. Then, we combine
D(C,CS(Sy[a,b])) with all r values of at most ‘SS% plus possibly the next
(g — (r+1)) bigger values (to cover at least ¢ strings). Let ¢’ be the number
of distances in this combination. If their sum is at most ¢’ 55;’", [a,b]s; is an
approximate occurrence of C'. Moreover, one can easily verify that in case
this threshold is exceeded, [a, b] s, can not be an approximate occurrence of
the g-covering reference gene cluster C.

Obviously, the asymptotic time complexity of Algorithm 7 does not
change for the pairwise distance constraint when a quorum parameter is used.
We show that the same is true for the sum distance constraint: For testing a
character set for being a reference gene cluster, we only need to identify the
q smallest values in a set of k distance values in the range O, ..., dsu, and
compute their sum, which is possible in time O(k(dsum + 1)) using a bucket
sort on the distances. To detect the approximate occurrences of a g-covering
reference gene cluster, we need to build the partitioning based on 55;;”, find
the corresponding ¢’ and compute the sum of the ¢’ smallest distances. All
three operations take only O(k) time, once the distance values are sorted.
Therefore, the time spent on each candidate interval is in O(k(dsum + 1))
which is subsumed by the time used for detecting the C[¢].




Chapter 6

Median gene clusters

We now come to the first one of the two general approximate gene cluster
discovery problems studied in this thesis, the computation of median gene
clusters. Recall from Chapter 2 that this model differs from the sum distance
constrained reference gene clusters in the fact that no reference occurrence
of the gene cluster is required in the input genomes. This generalization
expands the search space for gene cluster detection drastically: the number
of candidate gene clusters is no longer polynomially bounded in the genome
lengths, but increases exponentially with the alphabet size, i.e. the number
of different gene family ids. Therefore, a fundamentally different search
strategy needs to be employed.

In [71], Rahmann and Klau solve the more general weighted median
gene cluster problem using an ILP approach. However, the performance
of their program is rather low even for the unweighted case and only two
input strings. The algorithms presented in the previous chapters solve these
types of problem instances in polynomial time. This is possible because the
problem of median gene cluster detection in two strings reduces essentially
to the computation of optimal d-locations. See Chapter 9 for a performance
comparison.

In this chapter, we follow a different approach to solve Problems 7 and 8
of Section 2.4 for multiple strings. Since median gene clusters are not just
sets of genes that are conserved at a certain rate in the given genomes but
also gene sets that best represent a specific combination of their approximate
occurrences, we begin our search not with subsets of the alphabet but with
pairwise set intersecting interval combinations and then test whether their
median complies with the given distance constraint. Clearly, the number
of interval combinations increases exponentially with the number of input
strings. However, for large alphabet sizes not all of them will be pairwise set
intersecting and even less will have a median that complies with the given
distance threshold, at least not if this value is chosen reasonably. Therefore,
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our goal is to define a filter approach that rules out a large number of interval
combinations before they are actually built and explicitly tests the remaining
ones.

The structure of this chapter is as follows: First, we formulate our gen-
eral search strategy for median gene cluster detection (Section 6.1), then we
give algorithmic solutions to the different steps of our method (Sections 6.2
to 6.4), and show what changes are necessary to employ the quorum param-
eter (Section 6.5). Finally, we present some optimizations that do not affect
the asymptotic time complexity of our approach but have the potential to
achieve notable speed-ups in terms of practical running times (Section 6.6).

6.1 General search strategy

Our strategy for detecting median gene clusters is based on the observation
that whenever a combination (CS(S1[i1,j1]), - -.,CS(Sk[ik, jk])) of character
sets of intervals from a set of k > 2 strings S = {S1,..., Sk} has a median C
for a given distance threshold , not only the total distance to the median is
constrained but also the distances between the k character sets. The first ob-
servation follows immediately from the triangle inequality of the symmetric
set distance:

Observation 9 For any two character sets Cp, Cy C 3 with D(Cy,Cs) > 4,
there is no C C X with D(C,Cy) + D(C,Cy) < 6.

For our search strategy this means that no two intervals need to be combined
whose character sets have a pairwise distance greater than 4. No matter
which additional k — 2 intervals are added to complete the k-tuple, the sum
distance to the median exceeds the threshold. To get a more powerful filter
of the search space, we take a closer look on how the sum distance to the
median can be distributed over the k character sets. Clearly, there is at least
one pairwise distance between C and these character sets that is at most %,
otherwise the sum of the distances would exceed 6. Therefore, the distance
between such a character set C’ and the k — 1 other character sets is limited
by the following upper bound:

Lemma 1 LetZ = ([i1,j1],-- -, [ik, J]|) be a k-tuple of intervals, k > 2, such
that for a set of strings S = {S1,...,Sk} over alphabet . and a distance
threshold 6 > 0 there exists a C C 3 with Zlgzl D(C,CS8(Selie, je])) < 6.
Then, T contains at least one [im, jm], 1 < m < k, with C" = CS(Sm[im, jm))
and

k-1

k
> D(C',CS(Sulie, je))) < 2= 0. (6.1)
/=1
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CS(S3(is,js))

CS(Salia, ja))

Figure 6.1: The sum distance to the median of character sets can be esti-
mated via the sum distance to the cluster filter.

Proof: ~ Choose [im,Jm], 1 < m < k from the intervals in Z, such that
D(C,CS(Sm[im:jm))) < 2. Let €' = CS(Smlim,jm]). From the triangle

inequality we infer:

k
S D(CeS(Selig,ge)) <Y (D(C’,C) +D(Cac‘9(5é[iz,j£]))>
=1 t#£m
k
< (k:—2)% +Y " D(C,CS(Sulie, je)))
=1
< (k:—2)%+6 < 2’“7;15.

g

The connection between the sum distances to C' and C’ is visualized in
Figure 6.1. Apparently, only interval combinations that contain an element
whose character set is of the form of C’ have the potential to yield a me-
dian gene cluster for distance threshold §. Unfortunately, this condition is
only necessary and not sufficient for the existence of a median gene cluster.
Nevertheless, we begin our search with the detection of these character sets,
named (median) cluster filters in the following. Afterwards, we test only
interval combinations that contain a perfect location of at least one cluster
filter for having a median that complies with distance threshold §. A more
detailed description of our approach is as follows:

1. First, compute all cluster filters C' in S = {S1,..., Sg}. For that pur-
pose, test all intervals in the strings Sy, ..., S; for having a character
set that meets the conditions of a cluster filter.

2. Second, compute for each C’ the pairwise set intersecting k-tuples of
the form ([i1, j1], - - -, [Pk, jk]) where all [ig, j¢], 1 < £ < k, are §-locations
of C" and at least one is a location of C’ and inequality (6.1) holds.

3. Finally, compute for each k-tuple from Step 2 the corresponding me-
dian(s). Report all medians along with the k-tuple if they comply with
the sum distance threshold § and have the minimum cluster size s.
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It follows immediately from the previous considerations that this ap-
proach solves Problems 7 and 8 stated in Section 2.4. The only flaw is
that medians may be reported redundantly if they originate from multiple
interval combinations. However, this problem can be easily resolved in a
post-processing step. In the following sections, we have a closer look on how
the three steps of the approach can be implemented.

6.2 Computation of cluster filters (Step 1)

For the first step of our search strategy, we observe that every cluster filter
in S is in fact a reference gene cluster for the relaxed cluster filter distance
threshold 6. = 2%5. Therefore, we can apply Algorithm 7 to perform
the first step of our search strategy. However, this algorithm is designed
to compute not only reference gene clusters but also optimal J.+locations
which are not needed for detecting cluster filters. Since these intervals are
not useful in the following steps (we will see later on why), we present a
simplified approach that generates d.p-locations only as far as necessary for
testing a candidate character set for being a reference gene cluster. Recall
that for this purpose it is sufficient to determine only the minimum distance
between the tested character set and the intervals of each string.

The pseudocode in Algorithm 9 implements the simplified search strat-
egy. Its basic structure is equivalent to Algorithm 6 for detecting d-locations,
except for the two extra for loops in lines 1 and 11 which are needed to ex-
tend the approach to multiple strings. The generation of reference intervals
(lines 2 to 9) and the generation of candidate intervals of approximate lo-
cations (lines 11 to 15) are also borrowed from Algorithm 6. They are only
performed now for more than one string: the former successively for all
strings in S, and the latter in parallel for all strings except for the current
reference string.

We also adopt the distinction between intervals that contain an occur-
rence of ¢, the latest character in the reference interval [, j]g,, and intervals
that do not contain such an occurrence. To compute the minimum distance
between CS(Sy[i,j]) and intervals of the form [l + 1,7, — 1], as defined in
line 15, we simply compute each pairwise distance and compare it to the
running minimum for the respective string (line 17). Due to Observation 1,
it is not even necessary to test the [l + 1,7, — 1] for being optimal with
respect to CS(Se[i, j]). Of course, it is possible that the minimum distance
to CS(Se[i, j]) occurs with an interval that does not contain c¢. But for inter-
vals of this type, the minimum distance to CS(Syli, j]) is bounded by their
minimum distance to the previous reference interval plus 1 for the missing
occurrence of c. We account for this in line 10 by increasing for each string
the respective minimum distance value by 1 after each extension of the ref-
erence interval. In doing so, it does not matter whether the old minimum
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distance value actually originated from an interval containing no occurrence
of ¢. This is because for other intervals, the true distances to CS(S¢[i, j]) are
computed anew in line 16. Therefore, no approximate locations need to be
inherited between successive reference intervals to determine the minimum
distances between CS(Sy[i, j]) and the intervals in the different strings. To
determine the minimum total distance, we simply add up the minimum pair-
wise distances for the k strings and compare the sum to the relaxed distance
threshold d.; (line 21). In case the distance constraint is met, we report
CS(Seli, j]) as cluster filter. To avoid the redundant detection of cluster fil-
ters that have more than one perfect location in the input strings, we can
reuse an idea from the previous chapter, where we skipped all intervals for
which we found a perfect location either in a previous reference string, or
earlier in the current reference string.

It follows from the previous considerations that Algorithm 9 detects all
cluster filters in the given strings for the relaxed distance constraint d.;.
The complexity analysis of Algorithm 9 can be mostly adopted from the
previous chapters. We are doing at no point substantially more work than in
Algorithm 7. In fact, the opposite is true: We save the effort spent on dealing
with lists of inherited approximate locations and on testing the optimality
of intervals. However, these changes have no impact on the asymptotic time
complexity, as the for-loop in line 15 is executed O(k*n?(§+1)?) times. The
space complexity is O(kn?) due to table NUM.

6.3 Generation of k-tuples from maximal d-locations
(Step 2)

To perform the second step of our algorithm, we need to build for each cluster
filter C” all k-tuples ([i1, j1],- - -, ik, jx]) of maximal §-locations with pairwise
intersecting character sets that have a perfect location of C’ among them
and satisfy inequality (6.1). To this end, it makes no difference whether we
build all combinations for a single cluster filter in a row, or if we build them
piecewise as its perfect locations become reference intervals in Algorithm 9.
Therefore, our strategy is to build those k-tuples containing a perfect location
[ims Fm)s,, Of a cluster filter C” at the time [iy,, jm]s,, is the reference interval
in Algorithm 9. In doing so, our dynamic data structures, RANK, L and R,
are in the right state at the time maximal d-locations of C" = CS (S, [im, jm])
need to be collected in the remaining k — 1 strings to build the corresponding
k-tuples.

We only need to adapt our redundancy test for cluster filters to this new
work flow: Since interval combinations are now built on the basis of a specific
cluster filter location, it is no longer possible to skip automatically intervals
that are not the first location of the cluster filter. Otherwise, we are likely
to miss some interval combinations for the cluster filter. However, what we
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Algorithm 9 Computation of cluster filters for median gene clusters detec-
tion in & = {51, ..., Sk} for distance threshold d.; = 2%5

1: foreach /=1,...,k do

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

fori=1,...,|5] do

minDist[l']| — 0 forall 1 </¢ <k
J—1
while j < |Sy| and [i, j|g, is left-maximal do
¢ — SyJ]
while Sy[i, j] is not right-maximal do
Je—J+1
end while
minDist[l'] < minDist[/{'| + 1 for all 1 < ¢ <k
foreach ¢/ =1,...,0—-1,¢+1,...k do
for each position p in Sy with Sy [p] = ¢ do
mark position p in Sy
find positions I1,...,ls+1 and r1,...,7541
for each interval [, + 1,7y — 1] with 1 <2,y <d+1 do
dist — D(CS(Sp[ly + 1,7y — 1]),CS(S[4, 5]))
minDist[¢'] < min {minDist[¢'], dist}
end for
end for
end for
if S8 _ minDist[('] < 6.5 then
output CS(Seli, 5])
end if
Je—Jj+1
end while

end for

27: end for




6.3. GENERATION OF k-TUPLES (STEP 2) 69

can do to avoid redundancy is to combine perfect locations of a cluster filter
only then into a k-tuple, when the first location in S is the reference interval.

We split the description of Step 2 into two substeps. First, we show how
all maximal J-locations of the character set of a reference interval can be
extracted efficiently from S. Then we show how the corresponding k-tuples
can be enumerated.

6.3.1 Collection of §-locations of a cluster filter

When searching for maximal d-locations of a cluster filter C’, the techniques
developed in Chapter 4 for computing optimal d-locations can not be reused.
This is for two reasons: In general, maximal intervals do not follow the
“[lz+1,7y—1] scheme” used previously for generating candidates of optimal
0-locations, but may start/end within marked blocks, i.e. the neighboring
characters may be elements of C'. Additionally, maximal J-locations need to
be generated only for those character sets of reference intervals that are a
cluster filter. Therefore, the continuity in inheriting (maximal) d-locations
between successive reference intervals is lost. Instead, we compute maximal
d-locations anew from scratch for each cluster filter C’ using the current
state of the data structures RANK, L and R each time a perfect location
[im, Jm]s,, is processed as reference interval. Pseudocode of this approach is
given in Algorithm 10.

To ensure that all d-locations are detected, we iterate for each ¢ € C’
through all its occurrences p in Sy (lines 1 and 2). Then we find borders
ls+1(p) and 7541(p) as in Algorithm 9 either by direct search or by a look-
up in tables L and R. We iterate through all maximal intervals between
ls+1(p) + 1 and r541(p) — 1 that contain position p (for loops in lines 4
and 11) and keep track of the number of the characters not occurring in C’
(lines 8 and 15). Finally, we compute the distance of the current interval to
C" (line 18) which equals |CS(Smlim, jm])| — |CS(Se[l,7])| + 2diotal to test
whether [I,7]s, meets the distance constraint. The tests in lines 5, 7, 12
and 14 ensure that no interval is considered more than once by stopping the
interval extension once we either read another character from C” with higher
rank than S[p| or find another occurrence of S[p] further left than p.

We analyze the asymptotic runtime of Algorithm 10 for one cluster filter:
When tables L, R and NUM are available, the runtime of Algorithm 10 is
O(n?), since each substring of Sy is processed at most once and in constant
time. For multiple strings, the computation of maximal d-locations has to be
done for the k—1 strings that are not the origin of the cluster filter. This can
be done independently for each of these strings, so that the time complexity
is in O(kn?). The practical running times should mainly depend on the
number of maximal J-locations contained in the strings and the fraction of
the strings covered by them. Both numbers will be rather small for large
alphabet sizes and reasonable values of §.
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Algorithm 10 Detection of maximal d-locations of C' = CS(Sp,[im, jm]) in
Sy for a reference interval [iy,, jm]s,, of Algorithm 9 if C” is cluster filter

1: for each c € C’ do

2. for each position p in Sy with Sp[p] = ¢ do

3: diefy, < 0

4: for I=p,....Lp|[0 +1]+1do

5 if Sp[l] € ¢’ and RANK[Sp[l]] > RANK[c] and [ # p then
6: break

7 else if Sy[l] ¢ C' and Sy[l] ¢ CS(Sp[l + 1,p]) then
8: ety diefy + 1

9: end if

10: diotal < dieft

11: forr=p,...,R[p][d+1] —1do

12: if Sy[r] € C" and RANK[Sy[r]] > RANK]c] then
13: break

14: else if Sy[r] ¢ C" and Sy [r] ¢ CS(Sp[l,r — 1]) then
15: diotal < diotal + 1

16: end if

17: dist — |CS(Smlim, im])| — [CS(Se[l,7])| + 2diotal
18: if dist < ¢ then

19: d-loc[l'][dist] «— d-loc[¢'][dist] U [I, 7]

20: end if

21: end for

22: end for

23:  end for

24: end for

6.3.2 Generation of k-tuples from d-locations

For enumerating all candidate k-tuples for a cluster filter C’, assume that the
information about its d-locations is stored in a table d-loc of size k x (6 + 1)
that stores at position d-loc[f][dist] the list of d-locations in Sy, 1 < £ < F,
that have exactly distance dist to C’. For the reference string S,,, the origin
of €7, the list at position d-loc[m][0] contains exactly one element [in, jm]
with CS(Sp[im, jm]) = C’. All other lists d-loc[m|[dist], dist > 0, are empty.
We can then use a recursive traversal of d-loc to build all combinations of 6-
locations of C’ that contain exactly one d-location from each of the k strings.
As mentioned before, we should build k-tuples with multiple perfect locations
only for the first one processed as reference interval. We can implement this
simply by keeping the lists d-loc[¢'][0] always empty once reference strings
Sm with m > ¢’ are processed.

Due to inequality (6.1), we can use a branch-and-bound technique in the
recursion that starts backtracking once the accumulated distances to C’ in
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1 2

Sp: 0 [[1 2

0 11 12

3 2 4 5 6]7 5 8 9]0 1 2 3 45 6 7 8 9

o 4 2 s 4 s s 1 s 5 10 u n CS(SL7) 11 1 1 1 1 0 0 0
Sy: 0]10[9 6 1 3 6 4 5]1 11 3 12]0 €S(%2,9) 1 0 1 1 1 1 0 0 1
o 1 2 3 4 s 6 71 s 9 w0 n CS(S32,8) 11 0 1 1 1 0 0 1
Sy 0]12[6_ 5 5 4 9 1 2]8 10]0 CSS43.9) 1 0 1 1 1 1.0 0 0
Se 012 8683 1 6 1 4 5]12 3 11]0 median 1T 1111000

Figure 6.2: Majority vote over the character sets of a 4-tuple of intervals
from a set of strings S = {51, S2, 53,54} (as defined in the figure). There
are four alternative medians due to the ties for characters 2 and 9.

the current branch of the traversal exceed d.; = 2%(5. However, in the
worst case even a single cluster filter may yield ©(n?*) k-tuples. As we have
seen in Example 12, this is already possible for § = 0. However, for strings
of gene family ids where || is in ©(n) the actual numbers are likely to be
much smaller, at least for reasonable values of §. We will see in Chapter 9
for which parameter ranges our approach is feasible in practice.

6.4 Computation of the median(s) for k-tuples of
intervals (Step 3)

Once an interval combination is generated from a cluster filter C’, we only
need to compute its median(s) and test whether the corresponding sum dis-
tance complies with the median gene cluster distance threshold §. Only then
the median(s) should be reported as median gene cluster(s).

6.4.1 Basic median computation

To compute the median(s) of a k-tuple of character sets C = (C4,...,Cy), we
simply need to perform a majority vote over the elements of X¢ = | J; ;< Co.
This means that characters occurring in more than half of the tuple elements
are in the median, while characters occurring in less than half of the elements
are not, and characters that occur in exactly half of the elements may or may
not be added to the median yielding different median variants. An example
of this multiplicity is given in Figure 6.2. To avoid this redundancy, one
can either define that all borderline elements are added to the median or
not, or introduce an additional tie state T for these characters as used in
Figure 6.2. In either case, we get a unique median representation. We refer
to the median that contains all borderline elements as the mazimal median.

Since all medians have the same sum distance to C1,...,C), we need
to test only once whether this value complies with the median gene cluster
distance threshold. The computation of this distance can be done character-
wise based on the following observation:
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Observation 10 Given a k-tuple of sets (C1,...,Ck) over an alphabet ¢
for which M C X¢ is a median, let p. be the number of sets Cy, 1 < € < k,
that contain character ¢ € X, and let n. be the number of sets that do not
contain c, then p. + n. = k holds. Furthermore, let d. :== min {p., n.}, then

it holds:

> d(M,Cp) = de. (6.2)

k
/=1 ceC

The time complexity of median computation is in O(k|X¢|), as the com-
putation of both the median representation and the total distance can be
done by a simple iteration through the characters .

At this point, we have introduced all three steps of our approach for
median gene cluster detection. Their execution is visualized in Figure 6.3
exemplarily for a single cluster filter. We show finally that a combination of
the Steps 2 and 3 can be used to improve the search space pruning.

6.4.2 Iterative median computation

While a median computation itself is not very time-consuming, it is the
sheer number of k-tuples to be tested that make this step of the algorithm
expensive. Remember that the number of k-tuples that originate from a
single cluster filter can be exponential in k. However, these k-tuples are not
all disjoint but share some elements as they originate from the recurrence
through the table d-loc that stores the maximal d-locations as described
in Section 6.3. We can take advantage of this observation by computing
medians iteratively, adding one element of the k-tuple after the other and
computing intermediate medians after each step. Updating the distance to
the intermediate median can then be done according to the following lemma:

Lemma 2 Let Cy,...,Cy be character sets over ¥ and let M; be the mawi-
mal median of {C1,...,C;},1 < j <k. Definep.; =|{¢|1<l<j,ceC}|
and ne; = |[{|1<l<j,c¢ Cp}|. Then the following equation holds:

i i-1
D d(M;,C0) =Y d(M;1,Co)+|Ci\ M| +[{c € M; 1\Cj i nejr # pej1}]-
=1 =1

(6.3)

Proof: Based on equation (6.2), the proof can be done separately for
each character ¢ € C. Let d.; = min{nc;,pc;}. There are four cases to
be considered: (i) ¢ ¢ M;_q and ¢ ¢ Cj, (ii) ¢ € M;_ and ¢ € Cj, (iii)
c¢ M;_y and c€ Cj and (iv) c € M;_; and ¢ ¢ Cj.

(i) It holds that n.;—1 > pcj—1 and therefore d.j_1 = pcj—1. From ¢ ¢ Cj,
we get ne; = nej—1+ 1 and p.; = pej—1 so that d.; = d. ;1.
(ii) It holds that p. j—1 > n¢ ;-1 and therefore d; j—1 = n j—1. From c € Cj,
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Step 1: Testing C’ =CS(S1[1,7]) for being cluster filter in S={S1, S2, S5} for §=3:

o 1 2 3 4 5 6 7 8 9 10 11 12
Si: 0f[1_2 3 2 4 5 6]7 5 8 9]0 minDist[1] = 0
o 1 2 3 4 5 6 7 8 9 10 11 12 13
Sy: 010 9[6 1 3 6 4 5 1]11 3 12]|0 minDist[2] = 1
Sy 0]12[6 5 5 4]9[1 2|8 10] 0 minDist[3] = 2

Sum of minimum distances: Z?zl minDist[(] = 3 < 251§ = C" is cluster filter

Step 2(a): Computation of maximal d-locations of C”

So: O-location: -

1-location:  [3,9]

2-location:  [5,8], [6,9], [2,9], [3,11], [3,7]

3-location:  [5,7], [6,10], [6.,8], [1,9], [2.11], [2,7], [3.6], [7.11], [7.9], [3,12]
S3: O-location: -

1-location: -

2-location:  [2,8]

3-location:  [1,8], [2,9], [2,7], [2,5], [3,8]

Step 2(b): Combinations of maximal d-locations that fulfill inequality (7.1)
distance to C": 3 distance to C”: 4

1,7 1,7 ,7] [1,7] [1,7] 1,7
3,9] 3,9] 3,9] 3.9] (3,9] (3.9 |
2,8 (1,8 9] 2,7 [2,5] 3.8
) (“’”) (“’”) ()
29 )L B )L 8.7
[2.8] [2.8] (2.8]

DW=

1
3
2

1234569 1234569 12345689
03(5[17]1111110 CSGL) 1111110 c3(5[17]11111100
CS(S:[3,9) 1011110 CS(S:(3,9) 1011110 CS(S[39)10111100
CS(S5[2,8) 1101111 CS(S5[1,8) 1101111 CS(S29)11011111
median 1111110 median 1111110 median 11 111100
total distance: 3 total distance: 3 total distance: 4
1234569 12345 6 1234569
CS(S,[l N I111110 CS(51[1 MI1i1111 1 CS(S,[l TDI111110
CS(Se[3,9) 1011110 CS(S5[3,9) 10111 1 CS(S:[3,9) 1011110
CS(S5(2,7) 1001 111 CS(S5(2,5) 000 1 1 1 CS(S5[3,8) 1101101
median 1011110 median 10111 1 median 1 1 11110
total distance: 3 total distance: 3 total distance: 4
1234569 12345609 12345609
CSGML) 1111110 G 1111110 CSSGLMHITI1I1110
CS(5:05,8) 0011110 CS(S:06,9) 1001110 (Sf2.9) 1011111
CS(S3/2,8) 1101111 CS(S3(2,8) 1101111 CS(S3(2,8) 1101 111
median 1111110 median 1101110 median 1111111
total distance: 4 total distance: 3 total distance: 3
1234560911 12345609
CS(SML,7) 11111100 CSSGLA)IIII110
CS(S2(3,11]) 1011110 1 CS(S2(3,7) 1011010
CS(S5[2,8) 11011110 CS(S528) 1101111
median 11111100 median 1111110
total distance: 4 total distance: 4

Median gene clusters for 6 = 3: {1,2,3,4,5,6}, {1,3,4,5,6}, {1,2,4,5,6}, {1,2,3,4,5,6,9}

Figure 6.3: Extract from median gene cluster computation for 6 = 3 in
S = {51, 52,53} (as defined in the figure): The 3-step approach is performed
for the character set CS(S1[1,7]). Among the four detected median gene
clusters, {1,2,3,4,5,6,9} is the only one with no reference occurrence in S.
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we get pe; = pej—1+ 1 and ne; = nej_1 so that d.; = d. ;1.
(iii) It holds that n.j—1 > pcj—1 and therefore d. ;—1 = p¢ j—1. From ¢ € Cj,
we get pej = pej—1+ 1 and ne; = nej—1 so that

4 — Deyj i Pej1 <nejo1—1
c, 3 —
J Nej i pejo1=ncj1—1

For both cases, we get d. ; = d. j—1+1 since the distance increases by 1 either
because ¢ ¢ M; or, in case ¢ € Mj, it follows that d.; = n.; = d¢j—1 + 1.
(iv) It holds that p.j—1 > n.j—1 and therefore d.j—1 = n¢j—1. From ¢ ¢ Cj,
we get ne; = nej—1+ 1 and pej = pej—1 so that

A — 4 e if nej1 <pej-1
] = : —
Dej i Nej—1 = Dej—1

In the first case, we get d.; = d.j—1+1 as ¢ € M; but ¢ C;. For the second
case with ¢ € Mj—l but ¢ ¢ Mj, we get dc,j = Pec,j = Pc,j—1 = Ne,j—1 = dc,j—l-
Since there are no other cases, the value of d.; increases by one if and only
if c € Cj \ Mj—l or c € Mj—l \ Cj with Te,j—1 75 De,j—1- In all other cases
dc,j = dqul holds. O

We can use the iterative distance computation of Lemma 2 to speed up
the recursion through the lists of d-locations of the k strings. When adding
a new interval [i, j], we additionally compute how the distance to the inter-
mediate median changes and start backtracking once this distance is bigger
than §. To compute the changes in the intermediate distance efficiently, we
keep track of n. and p. for each character ¢ that occurs in at least one of the
intervals already added to the k-tuple. Then, we can test for each character
in constant time whether one of the two cases occurs where the intermediate
distance increases. It is not necessary to generate the intermediate medians
explicitly. Instead, only the final median is computed once the k-tuple is
completely filled.

The speed-up of the iterative median computation is two-fold: Firstly,
we can stop adding new d-locations once the distance to an intermediate
median is greater than ¢, since by adding another character set the distance
never decreases. Secondly, for k-tuples that share the first ¢ < k elements,
the first £ intermediate distance computations are performed only once.

6.5 Introduction of a quorum parameter

Up to now our search strategy finds only median gene clusters that have an
approximate occurrence in each input string. To evade this constraint, we
can employ a quorum parameter, 2 < g < k, as we already did for perfect
and reference gene clusters. Once again, it is desirable to integrate this pa-
rameter directly into the search strategy rather than running the algorithms
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separately for each 8’ C 8. We show how this can be accomplished in our
search strategy for median gene clusters.

The basic idea is as follows: During the recursive generation of interval
combinations, we add up to k—q empty intervals that contribute each % to
the sum distance to the median. A convenient way of implementing these
changes is to insert empty intervals, one for each input string, into the 4-
loc tables. Then we can basically adopt the branch and bound strategy
for generating interval combinations. However, we should take care that
empty intervals are not used for intermediate median computation. Also, we
should avoid that more than k — ¢ empty intervals are combined into a k-
tuple. To this end, we can simply track the number of empty occurrences in
the current branch and start backtracking, once we accumulated too many
of them. Besides this new bound, we can reuse the bound for the sum
distance to the median. As we are subtracting the average distance share for
each empty cluster occurrence, it does not matter for this bound how many
intervals in a k-tuple are actually empty.

For the cluster filter threshold, we need to consider the following things:
When a single string is not covered by a gene cluster, the threshold 6.5 =
2%5 changes to 5;]@ = 2%(5— %) for the remaining strings. One can easily
verify that the difference between these values equals 2%:

Sep — Oy = 2-6- (kgl—(::f(pi)))

k—1 [((k—2)-k k—2
k _<(kz—1)-k—(k—1)-k>>
)

= 92.§.

- 9.

o >

Moreover, it follows from induction over the number of omitted strings that
this difference holds not only for the first but for every missing string. There-
fore, we change the cluster filter bound such that for each empty interval in
the current search branch, we subtract 2% from the remaining cluster filter
distance.

The worst case time complexity is not affected by the quorum parameter,
as at most O(kn?*~2) additional interval combinations need to be built for
a cluster filter which is subsumed by the overall time complexity O(n?¥).
However, in practice the extra work can be significant, as we can no longer
skip automatically cluster filters lacking a J-location in at least one input
string.
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6.6 Algorithm optimizations

Due to the enumeration of interval combinations in Step 2, our approach to
median gene cluster computation has exponential worst-case time complex-
ity. Although, in practice, the number of generated k-tuples is likely much
lower than the ©(n?*) possible interval combinations, it is still far from being
polynomially bounded. Nevertheless, we can try to optimize our algorithm
such that a substantial number of genomes can be processed in reasonable
running time. There are four main targets to optimizing our approach: (7)
We can try to rule out cluster filters that can not yield a median gene clus-
ter. (it) We can try to rule out intervals from d-loc tables that can not be
combined to any k-tuple that yields a median gene cluster. (ii7) We can
try to improve pruning criterions for the branch and bound phase. (iv) We
can preprocess the input genomes to identify segments that should be either
completely contained in a cluster filter location or not at all. In this section,
we study optimizations from all four categories.

6.6.1 Minimum cluster filter size

Our first optimization helps us to rule out cluster filters that are too small
to yield a median gene cluster of minimum size s. Clearly the minimum size
of a cluster filter C’ has to be s — % Otherwise,

D(C',C) > max{|C| — |C'], [C"] — |C|}>°
~ ~ ~ ~~ &

>s 5

<S_E <S—% 23

holds for all median gene clusters C, a contradiction to C’ being a cluster
filter. Therefore, we can skip in the first place the enumeration of interval
combinations for such small C’.

6.6.2 Infrequent characters in cluster filters

Our second idea to rule out cluster filters is to count characters that occur
not frequently enough in the input strings to ever be an element of a me-
dian. This is always the case if a character occurs in less than half of the
input strings. We call such characters infrequent in S. Every majority vote
will exclude such characters from the median. Hence, no character set may
contain more than % characters of this type to be a cluster filter. To test this
property efficiently for the character sets generated in Step 1, the character
frequencies should be precomputed in advance for all elements of X.

6.6.3 Suboptimal interval borders

When we restrict our search to intersecting median gene clusters, which are
the only ones meaningful in a biological context, we can rule out even more
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cluster filters. Recall from Section 2.4 that for intersecting median gene
clusters, it is sufficient to consider only combinations of intervals that are
all optimized with respect to the same median. So far, we did not make
use of this observation, as the prospect medians are unknown at the time
interval combinations are built. However, we can still take advantage of this
restriction:

Assume a k-tuple of intervals that are all optimized with respect to an
intersecting median C. Then, the left-most and right-most essential char-
acter in each interval may not be infrequent in §. Otherwise, the interval
would not be optimized with respect to the median. Therefore, if we find
out for an interval that for every interval combination its left-most and/or
right-most essential characters with respect to all intersecting medians are
infrequent, we can completely skip this interval in Step 2, or if the interval is
the perfect location of a cluster filter, we can skip Step 2 entirely. Figuring
out whether this holds may seem unrealistic at first glance, as the left-most
and right-most essential character of an interval depend on the composition
of a specific median which is unknown at the time it is needed for deter-
mining left-most and right-most essential positions. In general, this is true.
However, for intervals [ig, j¢|s, in which ¢ = Sy[i¢] has no other occurrence
than position iy, this is feasible. This is because either ¢ occurs in the respec-
tive median, or it does not. In the former case, ¢ is the left-most essential
character, and in the latter case, [if, js|s, is not compact. In either case,
we can skip the interval under the premise that ¢ occurs in less than half of
the input strings. Analogous considerations hold for Sy[js]. Since multiple
character occurrences in substrings are not the rule for large alphabet sizes,
this seems to be worth testing, since it can rule out a complete execution
of Step 2, while the test itself takes only constant time given that character
frequencies are precomputed.

In fact, we can make even more use of this partial determination of
the median content: When building interval combinations in Step 2, there
is always one fixed element [iy,, jm]|s,, which is the origin of the cluster
filter. If Sy, [im] and Sp,[jm] occur uniquely in this interval, we know that
Smlim] and Sp,[jm] are contained in every median C for which an interval
combination containing [im,, jm]s,, is optimized. (Otherwise, [im, jm]s,, is
not C-compact.) Moreover, we know that Sp,[im — 1] and Sy, [jm + 1] are
not contained in any of these medians. (Otherwise, [in,, jm]s,, is not closed.)
Therefore, we test every interval [is, j|g, in -loc for the following properties:

(7’) Sf[ié - 1] 7é Sm[zm] A S@U[ + ]-] 7& Sm[im]a
(i2) Selie = 1] # Smljm] A Selje + 1] # Sm[im]-

Only if all these tests turn out positive, [in,, jm]s,, and [ir, j¢|s, need to be
combined in the enumeration phase in Step 2. Otherwise, we can remove
lie, je)s, from 6-loc. If only one of the characters Sy,[im] or Spljm] has a



78 CHAPTER 6. MEDIAN GENE CLUSTERS

unique occurrence in [ip, jmls,,, we perform only the first, respectively the
second test. We get additional tests if Sy[is] and S¢[j¢] are unique occurrences

in [ig, je]s,:
(#11) Selie) # Smlim — 1] A Selic] # Smlim + 1],
() Seljel # Smlim — 1] A Selje] # Smlim + 1].

For these tests the same applies as above: If any of them fails, we can remove
i, je)s, from é-loc. Again, we can only use a part of the tests if only one of
the characters Splig] or Sy[j] is unique in [ig, ji]s, -

The same test can also be used to decide if two intervals from table §-loc
can be combined into an optimized k-tuple. This does not reduce the size
of the table, as such non-combinable intervals may still be combinable with
other intervals. Instead we can precompute the pairwise combinability of
the elements of d-loc and use this information later in the branch and bound
phase.

6.6.4 Lower bounds for sum distances to cluster filters

In the branch and bound approach used for enumerating interval combina-
tions, we use two pruning criteria based on the accumulated distances to the
cluster filter and the (iterative) median. We show that the bound for the
first criterion can be easily improved.

So far, we start backtracking once we accumulate a sum distance to the
cluster filter that exceeds 2%5. However, after combining [ < k inter-
vals there are still k¥ — [ intervals to be added from the remaining strings
Se+1,---,9k. Their distances to the cluster filter are not necessarily zero,
and a lower bound on them could be used to start backtracking earlier.
Clearly, after combining ¢ intervals, the sum distance to these intervals plus
the lower bound for the remaining strings may not exceed 2%(5 . If it does,
we can start backtracking. The lower bounds can be computed easily: We
simply precompute for each 1 < ¢ < k the sum of the minimum distances
to the intervals from each Spy1,...,Sk. This needs to be done only once for
each table d-loc.

6.6.5 Lower bounds for distances to prospective medians

Improving the second pruning criterion is slightly more involved, as there is
no fixed median during the branch and bound phase.

At first, we derive a lower bound on the distance between each element
i, Je)s, of d-loc with C* = CS(Selir, je]) and any prospective median C' of
interval combinations from d-loc containing [ir, js|s,. The Venn diagram in
Figure 6.4 visualizes all possible relationships between these two sets and the
corresponding cluster filter. Let f be the number of infrequent characters in
C* N C’. Then the following inequality holds:



6.6. ALGORITHM OPTIMIZATIONS 79

D(C*,C) = [C*\Cl+|C\C7|
(C*NC)N\CI+[(CT\NCH\CI+[(CNC)\CH[+[(C\C)\ C|
(6)+(7)+ (1) + (4)

6)+(7)+(1)+ ()+(3) (3)+(B)=()+(6)—(6)+4) -
= (M+B)+(1)+(5) = ((3) +(5) +(6) + (4)) +2((6) + (4))
— D(C*,C")~D(C",C) +2 (((C*ma \C) + ((C\C)\CF)

(4)

—_——— ——— —— —_—
known < % 2f >0
.m0
> D(C ’C)_E+2f'

An alternative estimation of D(C*,C) is: D(C*,C) < f’, where f’ is the
number of infrequent characters in C*. Therefore, the complete estimation
of the lower bound reads:

D(C*,C) = max{D(C*,C") — § +2f.f'}

In case |C*| < s, we can extend f’ to f'+ (s —|C*|), as there must be at
least s — |C*| characters in each median that do not occur in the respective
interval.

This estimation can be used for two purposes. First, we can rule out
elements of d-loc that have distance greater than ¢ to every prospect me-
dian. Second, if we compute for every level of d-loc the sum of the minimum
distances between the prospect median and the intervals with the best lower
bounds, max { D(C*,C") — % +2f, f'}, in the remaining strings, we can im-
prove the iterative median computation if we add these minimum distances
to those distances accumulated for the strings processed already.

6.6.6 Unfragmented entities

The last optimization technique presented in this section is a preprocessing
of the input strings. We identify intervals that are unfragmented in the sense
that the contained characters occur elsewhere in the strings only in form of
the complete substring, i.e. there are no fragmentary occurrences and within
each occurrence there are no changes in the character order or the character
copy numbers. We call such segments unfragmented entities.

From a practical point of view it makes no sense to study gene clusters
whose occurrences cover only a part of unfragmented entities. Such a gene
cluster is always suboptimal in the sense that its character set, as well as
its approximate occurrences, can be extended to yield a bigger gene cluster
with longer occurrences at no additional cost.

From a computational point of view, this modification of the gene cluster
model has the potential to save a lot of effort in processing intervals that
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¢ < (1): (Cncy\cr
m 2): (CNC)nC

v (3): (CnCH\C
AA (): (C\ e\ c

() (C'\C)\C*

6): (C*NCH\C

c (1) (C\ )\ C

Figure 6.4: Venn diagram showing all possible relations between the three
set types involved in median gene cluster computation: a cluster filter C’,
a prospective median C' and character sets C* # C’ of intervals [i,¢, ji]s,
contained in a k-tuple generated for C’ in Step 2.

start /end within unfragmented entities. However, the actual benefit depends
on the number and length of unfragmented entities in the input strings.

It remains to be shown how we can implement this optimization. One
approach is to collapse each unfragmented entity into a single character and
compute gene clusters in the resulting strings. But then we have to keep
in mind that there are characters of length greater than one and take the
actual sizes into account when computing character set sizes or distances to
intervals. Otherwise, we can substantially change the results. Alternatively,
we can precompute the locations of unfragmented entities in the original
strings and store them in a table. Then we can simply look-up whether the
processed intervals cut an unfragmented entity and skip them in case they
do.

As none of the optimizations presented in Section 6.6 has an impact on
the worst-case time complexity of our approach, we study their practical
running times on real genomes in Chapter 9.



Chapter 7

Center gene clusters

We now come to the last approximate gene cluster model studied in this the-
sis, the center gene clusters. This model differs from median gene clusters
in the way representatives of approximate cluster occurrences are defined.
Remember that under the sum distance constraint as used for median com-
putation, pairwise distances to a consensus set are not directly constrained
but only via their sum. Therefore, when it comes to median gene cluster
computation, a rather large distance to a single character set can be com-
pensated by less than average distances to others. Apparently, this effect
grows stronger for increasing numbers of input strings up to the point where
approximate occurrences counsisting only of single genes may be included in
approximate common interval combinations. To avoid such distorted conser-
vation patterns, in the first place, we can use the center gene cluster model
which differs from median gene clusters exactly in the point that pairwise
distances to approximate cluster occurrences are constrained individually.
If we additionally allow for missing occurrences in a small amount of input
genomes using a quorum parameter, we should be able to detect the same
gene clusters at lower distance thresholds.

The problem of center gene cluster detection has not been addressed
before in the literature. However, a related problem, the identification of
character sets with d-locations covering a certain number of input strings,
was studied by Chauve et al. [15]. The model presented there differs from
ours in the absence of an optimality criterion, i.e. no center is computed for a
certain approximate common interval combination. Instead all subsets of the
alphabet X should be reported along with their d-locations, in case these are
distributed over a sufficient number of genomes. The authors present three
equivalent formulations of this problem and sketch an algorithmic solution
for each. All three solutions have in common that their starting points for
gene cluster detection are not interval combinations but subsets from > that
are within a certain distance range of the character sets of the substrings of
the input strings.

81



82 CHAPTER 7. CENTER GENE CLUSTERS

In this chapter, we study how our approach for median gene cluster de-
tection based on building interval combinations can be adapted to center
gene clusters and how the computational complexity is affected thereby. Af-
ter giving an overview of the general search strategy to solve Problems 9
and 10 of Section 2.5, we study in more detail the changes necessary to the
different algorithm steps (Sections 7.2 to 7.5) and discuss the issue of the
quorum parameter (Section 7.6). We conclude this chapter with a survey of
the optimization techniques of the previous chapter to study which of them
can be reused for center gene cluster computation (Section 7.7).

7.1 General search strategy

For the detection of center gene clusters, we can largely employ the cluster
filter approach introduced in the previous chapter for median gene clusters.
We only need to adapt our filter criterion to the new distance constraint.

First of all, we observe that in a combination of intervals with a center
gene cluster for distance threshold § no two elements have character sets
with pairwise distance greater than 24:

Observation 11 Let 7 = ([i1, j1],-- -, [ik, jk]) be a k-tuple of intervals, k >
2, such that for a set of strings S = {Si,...,Si} over alphabet ¥ and a
distance threshold § > 0 there exists a C C X with

N <& _
lfggg(kD(C, CS(Selie, je])) <6 (7.1)

Then, it holds for every interval [iy,, jm] in Z, 1 < m <k, with character set
C' =CS(Smlim,Jm]) that

/ .

1rélgmg>{kD(C ,CS(Selie, je])) < 20. (7.2)
The correctness of this relation follows immediately from the triangle in-
equality. We name character sets of the form of C’ center cluster filters, or
simply “cluster filters” if the underlying gene cluster model is clear from the
context. The relation between a center cluster filter and a center gene cluster
is visualized in Figure 7.1.

In our new filter approach, we use inequality 7.2 to replace the two
distance thresholds introduced for median cluster filters, namely § for the
pairwise distance to single intervals and 6.5 = 2%5 for the total distance
to its best approximate locations in the k—1 remaining strings. At first
glance this may seem as a weakening of the filter condition. However, if we
take into account that the threshold § (= dsum) used for median gene clus-
ters constrains sum distances while the threshold § (=6,,) used for center
gene clusters constrains pairwise distances, it becomes clear that, in fact,
the opposite is true. For detecting gene clusters with the same degree of
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CS(Ss(i6: Jo)) CS(Ss(i6: Js))

CS(Ss(i3, j3))

CS(S2(i2, j2))

Figure 7.1: Relation between a center cluster filter C’ and a center gene clus-
ter C. Interval combinations that have a center C with maximum pairwise
distance ¢ are in a (20)-range of a center cluster filter C’.

conservation under both the center and the median gene cluster model, we
need to chose the corresponding distance thresholds such that approximately
Osum =k - Opyy, holds. With regard to that, the constraints for the sum of k—1
pairwise distances to a cluster filter are the same for both median and cen-
ter: 2%531”,1 = (k—-1)- 255% = (k—1) - 20py. The constraint for pairwise
distances, however, is stricter for the center as it is based on the average,
and not the total distance available: 20y, < dsum for all k& > 2. Moreover, it
follows from Observation 11 that in every k-tuple of intervals whose center
meets a given distance threshold 4, all elements of the tuple are center cluster
filters for 8. Therefore, we can detect the gene cluster and the corresponding
k-tuple starting from each of the k intervals.

These findings give rise to the following approach for detecting center
gene clusters: (1) Compute all cluster filters from a selected reference interval
(for instance Sy), identify for each of them the maximal (26)-locations in the
other k—1 strings and build all possible k-tuples. (2) Test each of these
interval combinations for having a center that fulfills inequality 7.1, and in
case they do, report them along with their center(s). There is only one
problem with this approach: Unlike median computation which we have
seen is trivial, the problem of center computation was proven to be NP-
complete [28, 49]. However, it was recently shown that the problem is not
only fixed parameter tractable for parameter § [29, 55] but also in polynomial
time if § € O(log(3¢)) holds [55]. Although the latter restriction can not
be guaranteed in gene cluster computation, these results suggest that center
computation should be tractable for the instances occurring in our approach.
Still, we would be in a better position if we kept the number of instances
for which we need to perform this costly computation as low as possible. A
simple method to reduce this number is to filter the generated k-tuples first
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for having a median and compute centers only for the remaining instances.
The soundness of this filter is guaranteed by the following observation:

Observation 12 Given a k-tuple of character sets C = {C4,...,Cy} over
an olphabet 3. If C has a center C C X with

<
Joax, {D(C,Cp)} <0

for 6 >0, then there is also a median M C 3 of C with

k
> D(M,Cp) < k-6
(=1
Proof: Clearly, 25:1 D(C,Cy) < k-§ holds. Therefore, either C'is a median

of C, or there is another M C ¥ with lezl D(M,Cy) < Zle D(C,Cy) that
is a median of C. o

Adding this additional filter, we obtain a 4-step approach to the compu-
tation of center gene clusters that can be summarized as follows:

1. Compute all center cluster filters ¢’ C ¥ in a fixed reference string
S,«ef esS= ({Sl, C ,Sk)} for 5cf = 2.

2. Compute for each C’ the pairwise set intersecting k-tuples of the form
([i1,71), - [ik, Jk]) where all [ig, j¢], 1 < £ < k, are maximal (20)-
locations of C’ and at least one is a perfect location of C'.

3. Discard all k-tuples generated in Step 2 that have no median that
fulfills the sum distance threshold kd.

4. Finally, compute centers for the remaining k-tuples. Report all centers
along with their k-tuple that comply with the sum distance threshold
0 and have at least the minimum cluster size s.

The correctness of this approach follows from the previous considerations.
However, like with median gene clusters, we have the problem that center
gene clusters may be reported redundantly if they are found for different
interval combinations. As with median gene clusters, we deal with this issue
in a post-processing step. In Figure 7.2, the complete 4-step approach to
center gene cluster computation is applied to a set of example strings.

In the following sections, we have a closer look at the different steps of our
approach focusing, where applicable, on the differences to the corresponding
steps for median gene cluster computation.
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Step 1: Testing C’ for being a center cluster filter in & = {51, S2, S3} for § = 1:

S 0f[1_2 3 2 4 5 6[7 5 8 9]0 minDist[1] = 0
o 1 2 3 4 5 6 7 8 9 10 11 12 13

Sp: 010 9[6 1 3 6 4 5 1]11 3 12]|0 minDist[2] = 1
o 1 2 3 4 5 6 7 8 9 10 11

Sg: 0126 5 5 4]9[1 28 10]0 minDist[3] = 2

Maximum of minimum distances: max, {minDist[f]} = 2 < 2§ = C" is cluster filter

Step 2(a): Computation of maximal 2d-locations of C”

So: O-location: -
1-location:  [3,9]
2-location:  [5,8], [6,9], [2,9], [3,11], [3,7]

S3: O-location: -
1-location: -
2-location:  [2,8]

Step 2(b): Combinations of maximal d-locations

sum distance to C": 3 sum distance to C’: 4

(1,7] [1,7] [1,7] (1,7) (1,7] (1,7]
3,9] B8 )L 69 ) 9 )L B L 3.7
() (B (k) (B () (52)

Step 3: Computation of medians

12345609 12345609 12345609
CSSIL) 1111110 CSGL) T 111110 CSGL7) 1111110
€S(S,[3,9) 1011110 CS(5:2(5,8) 0011110 CS(5:2(6,9) 1001110
CS(S52,8) 1101111 CS(S502,8) 1101111 CS(Ss2,8) 1101111

median 1111110 median 1111110 median 1101110

total distance: 3 total distance: 4 total distance: 3

12345609 123456911 1234569
CSGMLT) 1111110 CSSML7) 11111100 CSSL)I111110
CS(5[2,9) 1011111 C€85311) 10111101 €5(53,7)10110710
CS(S502,8) 1101111 CS(S52,8) 11011110 CS(S328)1101111

median 1111111 median 11111100 median 1 111110

total distance: 3 total distance: 4 total distance: 4

Distance threshold for median filter: k6 = 3 = three k-tuples are discarded.

Step 4: Computation of centers

1234569 1234569 1234569
CS(S1,7) 1111110 CS(51,7) 1111110 CS(51,7) 1111110
CS(S2[3,9) 1011110 CS(5:06,9]) 1001110 CS(5:2,9) 1011111
CS(S5312,8) 1101111 CS(S5312,8) 1101111 CS(55312,8) 1101111

center 1111110 center 1101110 center 1111111
maximum pairwise distance: 2 maximum pairwise distance: 1 maximum pairwise distance: 1

Center gene clusters for § = 1: {1,2,4,5,6}, {1,2,3,4,5,6,9}

Figure 7.2: Extract from center gene cluster computation for § = 1in § =
{81, 52,53} (as defined in the figure): The 4-step approach is performed for
the character set C' = CS(S1[1,7]).
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7.2 Computation of cluster filters (Step 1)

It follows from Observation 11 that center cluster filters are equivalent to
pairwise distance constrained reference gene clusters for distance threshold
dcf = 20. Hence, we can use Algorithm 8 for their computation. However,
like with median cluster filters, it is needless to track the complete set of
optimal d.s-locations. Therefore, we can simplify the procedure as was done
in Algorithm 9 for the computation of median cluster filters. In fact, Algo-
rithm 9 needs to be changed only at three points to compute center cluster
filters instead of median cluster filters:

e First, we need to identify in line 15 intervals of the form [l +1,r, — 1]
for the parameter range 1 < z,y < 20 + 1, instead of 1 < z,y <
0 + 1. This is due to the changed cluster filter property as defined in
Observation 11.

e Second, we need to change the test for the cluster filter property in
line 21 from Z]Z,:l manDistll'] < 0.5 to maxi<p<p {minDist{l'|} < dp.
This is again due to the fact that we restrict now pairwise distances to
the cluster filter.

e The third change is in the outermost for-loop (line 1) where we iterate
through all reference intervals. As mentioned in the previous section,
every element of a k-tuple that yields a center gene cluster has the
properties of a center cluster filter. Therefore we can fix the reference
interval, e.g. Sy = S1, and omit the for-loop.

It follows from the previous considerations and the explanations given in
Section 7.2 that the resulting algorithm computes all center cluster filters in
the reference string. The time complexity of cluster filter detection decreases
to O(kn?(d + 1)?) as it is performed now only for one reference string.

7.3 Generation of k-tuples from maximal d-locations
of a cluster filter (Step 2)

To perform Step 2 of our approach, we need to compute for each cluster filter
C" all k-tuples ([i1, 1], - -, ik, jk]) of maximal (26)-locations with pairwise
intersecting character sets that have among them a perfect location of C.
Analogous to Step 2 of median gene cluster computation, we do this compu-
tation separately for each perfect location in the reference string. However
now only for one designated reference string, not successively for all k strings.

Once a location of C' is fixed in the reference string, we identify at first its
maximal (2§)-locations in the other £—1 strings and store them in a (26)-loc
table using Algorithm 10 of the previous chapter. Then, we enumerate the
k-tuples using basically the same approach as in Section 6.3. There are only
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two differences to consider. Since we use only one reference string, the filter
against redundant generation of k-tuples with multiple perfect locations of
C’ becomes useless. Also the bound for the sum distance to the cluster filter
does not pay off anymore. However, this is not really a loss: As we learned
in Section 7.1, the equivalence to the median cluster filter threshold 2’“—;15
under the pairwise distance constraint is 2(k—1)Jd, and intervals that could
be combined to exceed this threshold are not even element of table (24)-loc.

The worst case time complexity of Step 2 is not affected by these changes:
The generation of table (20)-loc takes time O(kn?) and the enumeration of
all k-tuples takes time O(n?*). Both analyses are for the worst case, which
is unlikely to be achieved with real instances for gene cluster discovery.

7.4 Filtering k-tuples by median distances (Step 3)

Also, the third step of our approach is largely equivalent to the correspond-
ing step in Chapter 6, only the objective is different now: While median
computation used to be the final step to determine whether a k-tuple yields
a median gene cluster, it is now a filter to reduce the number of instances for
which the center needs to be computed. As we have seen before, a k-tuple
can only have a center that complies with distance threshold 0 if it has a
median with sum distance at most k6. Therefore, we compute in this step
the median distance of each k-tuple generated in Step 2 and compare it to
kd. Only if this threshold is not exceeded, we pass the corresponding k-tuple
on to Step 4 for center computation.

The median computation itself, including the iterative computation scheme,
can be adopted one-to-one from Section 6.4. Therefore, the time complexity
of this step is in O(k|X¢|) for each k-tuple generated in Step 2.

7.5 Computation of center gene clusters from re-
maining k-tuples (Step 4)

We now come to the final step of our approach, the determination of the
centers of the remaining k-tuples to figure out which of these interval combi-
nations yield a center gene cluster for the given distance threshold §. As men-
tioned before, center computation is an NP-complete problem that is fixed
parameter tractable. In this section, we review two alternative approaches
to center computation. The fixed-parameter tractable algorithm by Ma and
Sun [55] and an alternative approach developed by Léon Kuchenbecker for
his bachelor thesis [48] which was co-supervised by myself in the scope of
this PhD project.
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7.5.1 Preliminary remarks

As the algorithms presented in this section do not directly solve the problem
of center computation but the equivalent CLOSEST STRING Problem, respec-
tively the more general NEIGHBOR STRING problem, we need to introduce
some additional theory.

In the following, we represent a set of character sets C = {C1, ..., Cy} via
the corresponding bit strings 71, ..., Ty of length m = |¥¢|. These strings
are defined such that in every string Ty the character state of position p,
i.e. Ty[p], is set to one, if the pth character of ¥¢ occurs in Cy, and to zero
otherwise. The symmetric set distance D(Cy,Cp) between two character
sets from C is then equivalent to the Hamming distance of the respective
bit strings: Dy (Ty, Ty) = | {p | Te[p] # Tr[p]} |- The formal definition of the
CLOSEST STRING Problem (on general alphabets) is as follows:

Problem 17 Given a set of strings T = {T1,...,Tx} of length m over an
alphabet X, find a string T such that maxlgzl Dy (T,T) is minimized.

Clearly, for ¥ = {0,1}, CLOSEST STRING is equivalent to the problem of
center computation. A related problem is NEIGHBOR STRING:

Problem 18 Given a set of strings T = {T1,...,Tr} of length m over
an alphabet > and distance thresholds 01,...,0k, find a string T such that
Dy (T,Ty) < d; holds for all 1 < ¢ < k.

To simplify the description of the following algorithms, we introduce
additional terminology: Given two bit strings Ty and Ty of length m, we
say a position p, 1 < p < m, is a match between Ty and Ty if Ty[p] =
Ty [p] holds, otherwise it is a mismatch. Furthermore, we need the con-
cept of string partitions: Every string T of length m can be partitioned
into two smaller strings using a set P = {i1,..., i} C {1,...,m}. Let
Q = {j1,.-.,Jmr} be the complementary set of P, i.e. @ = {1,...,m} \
P. We denote the subsequence of T' defined by the index positions con-
tained in P as T|p = T[i1]T[i2] ... T[i},]. Analogously, we denote T|g =

T[71]T[jo] - .- T[j}]. Clearly, it holds for any two strings 7' and T” of length
m that l)H(T7 T/) = DH(T|p, T/’p) + DH(T’Q7 T/’Q)

7.5.2 The StringSearch Algorithm for center computation

Given an instance of the NEIGHBOR STRING problem ((Tl, 0), .oy (Th, (5k)),
the StringSearch algorithm compares a fixed reference string 77 to another
string Ty, 2 < ¢ < k for which T3 is not a neighbor string, i.e. Dy (11, Ty) > 0y,
and determines all positions p where the two strings disagree, T} [p] # Ty[p].
Let P be the set of these mismatch positions. The algorithm generates then
all character state combinations a potential neighbor string T could have at
these positions such that the distance thresholds §; and d; are not exceeded
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for Th|p and Ty|p. For each possible combination, the algorithm is called
recursively for the complementary string partition that corresponds to the
yet undefined positions in the neighbor string, decreasing in each search
branch the distance thresholds according to the mismatches between the k
strings and the respective character state configuration in the recently fixed
partition.

The recursion terminates successfully once there is no further 7T, for which
Dy (T, Ty) > 6y holds for the undetermined partition of 7. In this case, the
respective positions can be set to the character states of 77. The resulting
string is always a solution for the given instance of the NEIGHBOR STRING
problem. In case no neighbor string exists, the algorithm terminates after
all branches of the search tree have been tracked up to the point where the
first remaining distance for a string partition becomes negative. An example
of this procedure is given in Figure 7.3.

The key observation to prove the fixed-parameter tractability of this al-
gorithm is that the remaining distance to 77 is cut by half for each re-
cursive call of StringSearch. (See [55] for details.) Based on this find-
ing, it can then be shown that the time complexity of the algorithm is in
O(km + k§ - 2%9(|%| — 1)?), which reduces to O(km + kd - 24°) for binary
alphabets.

A way to solve the CLOSEST STRING Problem with this algorithm is to
run it several times for increasing ¢ until the first neighbor string is found. To
detect all centers, the algorithm needs to be modified such that it does not
terminate after the first solution is found but works through the remaining
branches of the search tree.

7.5.3 The MismatchCount Algorithm

The second algorithm for center computation studied in this thesis is the
MismatchCount Algorithm introduced in [48]. We present in the following a
simplified version of this approach that works directly on the binary strings
(in contrast to the use of “transition matrices” in the original algorithm.)
Given a set of binary strings 7 = {71, ..., T} of length m and a distance
threshold 9, the MismatchCount Algorithm solves the CLOSEST STRING
Problem for binary strings using a simple enumeration scheme that tests
all 2221 (ZL) strings T with distance at most § to a selected element of 7.
(Without loss of generality, we always choose 77 in the following.) During
the enumeration, the algorithm tracks the distances between the current T’
and each Ty, 1 < £ < k, remembering the smallest maximum distance found
so far along with the T" for which it was detected. The enumeration scheme is
chosen as follows: The T are enumerated separately for the different distance
values to T7. For each distance d € {0,1,...,d} the strings are generated
recursively by fixing the character states in T" from left to right, such that
once the states of positions 1,...,p are fixed containing d’ < d mismatches
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P
T 110 1 0 0 1 1 0 1 1 0 5 =4(-2)
Tp: 1 1.0 1 0 0 1 0 1 0 0 1 5y =4 (—3)
T3 1 1 0 0 1 1 0 1 1 0 1 1 53 =4 (—1)
T, 1110 0 1 0 1 1 1 1 0 5y =4 (—1)
T ? ?2 ?2 ?2 ?2 7?2 1 1 0 1 0
(a)
P
T 110 1 0 0 1 1 0 1 1 0 5 =2 (—1)
Tp: 1 1.0 1 0 0 1 0 1 0 0 1 5y =1 (—1)
T3: 1 1.0 0 1 1 0 1 1 0 1 1 53 =3 (—3)
T, 1110 0 1 0 1 1 1 1 0 51 =3 (—2)
T ?2 2 ?2 1 0 1 1 1 1 0 1 0
(b)
P

Ty 1 1.0 1 0 0 1 1 0 1 1 0 & =1

Tp: 1 1.0 1 0 0 1 0 1 0 0 1 52 =0

T3: 1 1 0 0 1 1 0 1 1 0 1 1 53 =0

T 11 1.0 0 1 0 1 1 1 1 0 5y=1(-1)
T 1 1 0 1 0 1 1 1 1 0 1 0

Figure 7.3: Search branch of the StringSearch Algorithm for neighbor string
computation on the problem instance ((71,01), (T2,02), (15,03), (T4, 04)) as
defined in the figure: (a) Dy (T1,T2) > 02 holds, therefore T is partitioned
based on the mismatches between 17 and T and a possible configuration of
T is fixed for the mismatch partition P; (b) StringSearch is called recursively
for the remaining positions. Since Dy (7T1,T3) > 03 holds, the partitioning
of T is continued based on the mismatches between T} and T3; (¢) for the
last string Ty, Dy (T1,Ty) < d4 holds. Therefore, the remaining positions of
T are set to the respective character states of 77.
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Figure 7.4: Enumeration scheme for all strings T' with Hamming distance at
most 3 to a bit string 77 of length 5. The ‘0’s denote matches between T’
and 77 at the respective positions, while ‘1’s denote mismatches.

compared to T1[1, p, the algorithm works through all possible character state
combinations for the remaining string T'[p + 1, m] with d — d’ mismatches
compared to T1[p + 1,m| before the character state of p is changed again.
An example of such an enumeration scheme that sets the character state of
every position — as long as possible — first to a mismatch compared to T}
is visualized in Figure 7.4. After each change of T, we need to update the

distance values to each T7,...,T;. To this end, it is sufficient to consider
only positions at which character states changed in relation to the previous T’
and compute for each T1,...,T; how the number of mismatches changed at

these positions. Based on these considerations, the time complexity of this
approach is in O(kf), where f is the total number of character state changes
during the enumeration of all possible configurations of T'. For the presented
enumeration scheme, it was conjectured in [48] that f € O(2™) holds. We
sketch a proof of this assertion: According to the enumeration scheme, every
position p in T is set once to 0 and once to 1 for every possible character
state configuration of T[1,p — 1] with up to § mismatches to T1[1,p — 1].
There are (pgl) such configurations for every d = 0,1,...,. Summing over
all possible values of p and d, we get the upper bound:

m

fgizmp( _1) 222( )gzi%’—lgzameoum).

Thus, the worst-case time complexity of the MismatchCount Algorithm
is in O(k2™). To accomplish Step 4 of our approach to center gene cluster
computation, we need to detect all centers of a k-tuple of intervals, and not
only one representative. Therefore, we need to modify the MismatchCount
Algorithm such that either all T' with the current minimum distance are
tracked (and discarded if a T with lower maximal distance is found), or
run the algorithm twice, the first time to determine the smallest maximal
distance to the center(s), and the second time to extract the closest strings.
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What makes the MismatchCount Algorithm especially interesting are two
optimizations that were shown to speed up the algorithm to an extent that
its practical runtimes are lower than those of the StringSearch Algorithm
on a broad range of random instances [48]. The first optimization is based
on the following observation: Once a configuration of T is generated and
the maximum pairwise distance dpqr = maxi<¢<k {D(T,Ty)} exceeds 9, at
least [4(dmaz — 0)] positions in T need to be changed before the maximum
distance constraint can be met. Therefore, the enumeration of the following
configurations can be skipped up to the point where [%(dpqz — 0)] changes
were made to the current 7. In the recursive enumeration scheme, this
corresponds to a backtracking to the point where the (d — [$(dpmaz — 6)])-th
mismatch compared to T was set. Respectively, if the backtracking involved
more than d mismatches, the complete search branch for strings T with d
mismatches to T can be skipped.

The second optimization makes use of the fact that for positions p having
the same character state in all strings, i.e. T1[p] = ... = Tk[p], it makes no
sense to consider a string T with the opposite character state at position p for
being closest string. This is because a closer string can always be constructed
from such a string by inverting the character state of this position.

Despite its higher asymptotic time complexity, the MismatchCount Al-
gorithm was chosen for the implementation of the presented approach to
center gene cluster computation. This decision was based on the observation
that its practical runtimes are lower on problem instances for center gene
cluster computation compared to the StringSearch Algorithm [48].

7.6 Introduction of a quorum parameter

To detect also center gene clusters that occur only in a subset of the input
genomes, we can integrate a quorum parameter g into our search strategy, as
we did for the previous gene cluster models. The basic idea to accomplish this
generalization is the same as for median gene clusters: During the recursive
generation of interval combinations, we add up to (k—¢q) empty intervals. For
the basic enumeration, we would not need to modify any distance constraints
to cope with empty intervals. However, as we perform an iterative median
computation for filtering purposes, we need to subtract § from the derived
median distance threshold k6 for each empty interval added to a k-tuple.
Also, we need to take care that the empty character sets of empty intervals
are not used for median computation.

The main change due to the quorum parameter is in the cluster filter
computation. Since a gene cluster can now have empty occurrences, it is no
longer sufficient to consider only a single reference interval. Instead (k—g+1)
strings need to be processed as reference intervals. This modification ensures
that all gene clusters covering at least ¢ strings are detected. The cluster
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filter threshold which constrains pairwise distances is not affected by the
quorum parameter. However, the use of multiple reference strings brings us
back the problem of redundant k-tuple generation for different locations of a
cluster filter, which occurred initially with median gene clusters. Using the
filters described in Section 6.3, the redundancy can be largely reduced.
Concerning the algorithmic complexity, only Step 1 of center gene cluster
computation is affected in terms of worst case time complexity by the quorum
parameter. As (k—q+1) reference strings need to be processed now, the
complexity increases to O(k?n?(6 4 1)?). For all other steps, the extra work
is subsumed by the respective complexity classes. However, each of them is
likely to be executed for more instances than without the quorum parameter.

7.7 Algorithm optimizations

Besides center computation, the enumeration of interval combinations is the
second step in center gene cluster computation that is not polynomially
bound. We show in the following that we can borrow most of the opti-
mization techniques used in median gene cluster computation to speed up
practical runtimes of this costly operation.

7.7.1 Minimum cluster filter size

Like with median gene clusters one can define a minimum size threshold on
cluster filters. Clearly, only center cluster filters C’ with |C'| > s — § can
yield a center gene cluster of size at least s. Therefore, we can skip Steps 2
to 4 for cluster filters that are smaller than that.

7.7.2 Infrequent characters in cluster filters

The trick to count infrequent characters in cluster filters does not work for
center gene clusters. As a center is not determined by a majority vote, it
may well contain infrequent characters.

7.7.3 Suboptimal interval borders

As already stated in Section 2.5, not every center gene cluster is necessarily a
center of an interval combination that is optimized with respect to it. Unlike
with median gene clusters, this is not even true if only intersecting center gene
clusters are considered. However, one can easily verify that for every center
gene cluster of this type, an equivalent or even better center gene cluster
can be found for which the same or a very similar interval combination is
optimal: Given an interval combination with a center gene cluster C' it is
not optimized for, we can replace every interval by the corresponding C-
optimized interval and test if C' is still center. If not there is another center
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with lower maximum distance to the new intervals. In case the intervals are
not optimized with respect to the new center, we replace them again by the
corresponding optimized intervals and so on. Since after each replacement
either the distance to the center decreases or a center-optimized interval
combination is found, this process converges. Hence, for practical purposes,
it should be sufficient to report only center gene clusters that are center of
an interval combination, that is optimized with respect to it.

If we choose to do so, we can partially anticipate suboptimal interval
borders in the same way we did for median gene clusters (Section 6.6.3). Of
course, it is not possible to skip intervals with infrequent left-most or right-
most essential characters, as they may be contained in centers. However,
we can rule out intervals that can not be combined with a certain cluster
filter location due to conflicting interval borders using the tests described in
Section 6.6.3.

7.7.4 Lower bounds for sum distances to cluster filters

As we have seen in Section 7.3, it is not necessary during the enumeration of
interval combinations to use an upper bound for the accumulated distances
to the respective center cluster filter. This is because by construction no
combination of intervals from the table (24)-loc can exceed the respective
threshold 2(k—1)d. Therefore, the anticipation of pairwise distances yet
to be added to the sum, as described in Section 6.6.4, is of no use in the
computation of center gene clusters.

7.7.5 Lower bounds for distances to prospective medians

On the contrary, the lower bounds for distances to prospective medians
are useful for center gene cluster computation: When filtering center in-
stances for having a median that complies with median distance threshold
kd (Step 3), these bounds can be applied as usual to stop branching as soon
as a partly generated k-tuple can no longer yield a median that meets the
distance constraint. We only need to adapt the bound to the corresponding
median distance threshold which results in the following bound:

D(C*,C) > max{D(C*,C")—d§+2f, f'}.
(Recall that f is number of infrequent characters shared among C* and C’,
while f’ is the number of infrequent characters in C*.)

7.7.6 Unfragmented entities

The last optimization technique presented in the previous chapter, the con-
sideration of unfragmented entities can be adopted for center gene clusters.
Clearly, if approximate cluster occurrences are no longer allowed to start/end
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within such well-conserved segments, suboptimal center gene clusters will be
ruled out as was already the case for median gene clusters. But practically
no gene cluster is lost, as they are all contained in “better” gene clusters
with more genes and longer approximate locations with the same number of
missing or intermitting genes.

7.7.7 Upper bound on pairwise distances between intervals
contained in table (26)-loc

An optimization that is only useful for center gene cluster computation con-
sists of an upper bound on the pairwise distances between intervals that are
combined in Step 2 to form k-tuples. By construction, these intervals are in
a (20)-range of the center cluster filter. Therefore, their pairwise distance
is bounded by 40. However, only for distances up to 20 their combination
may yield a center gene cluster for distance threshold §. Hence, we can stop
branching in the k-tuple enumeration once two intervals exceeding this upper
bound are combined. To test this bound efficiently, the pairwise distances
should be precomputed for all interval pairs.

Note that, in principle, a corresponding bound is applicable to median
gene cluster computation, as the pairwise distances between intervals that
have a median gene cluster are bounded by the sum distance constraint d.
However, each time this threshold is exceeded for a pair of intervals, also the
median distance threshold is exceeded for the median of the partially filled
k-tuple such that we gain no additional speed-up from this bound for median
gene cluster computation .
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Chapter 8

Statistical evaluation of gene
cluster predictions

Up to now, we focused in this thesis on the development of efficient ap-
proaches to gene cluster computation under approximate common intervals
based models. Clearly, in terms of practical applicability other issues apart
from runtime efficiency need to be considered. In particular, we need to shift
our attention to the question of whether gene clusters predicted by these ap-
proaches reflect indeed conserved ancestral gene order, or occur simply by
chance. While the final decision on this point can of course not be done by
purely computational means, we can use a statistical evaluation scheme to
assess the likelihood of both explanations, or at least give a ranking of the
predicted clusters to point out the most promising candidates for further
experimental evaluation. Moreover, the knowledge on what type of gene
clusters would be significant in a set of studied genomes can be used to rule
out uninformative parameter ranges in the first place and thereby reduce the
computational effort.

In the literature, many statistical models for gene cluster evaluation have
been proposed. See [70] for a recent overview. These methods are typically
designed for a special gene cluster model and are not generally applicable to
other models including the ones presented in this thesis. Hence, we develop in
this chapter a new approach that is suited for approximate common intervals
based gene clusters.

We begin with an overview of the basic challenges involved in statistical
gene cluster evaluation and a classification of the problem we are trying to
solve (Section 8.1). Then we derive a new statistical framework for approx-
imate common intervals based gene clusters in two steps. At first, we show
how the significance of a d-location can be computed (Section 8.2). Then
we study the problem of approximate gene cluster significance (Section 8.3).
We conclude the chapter with a critical reflection on the statistical power of
the presented evaluation scheme (Section 8.4).

97
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8.1 Basic challenges and related work

In comparative genomics, evidence of gene cluster conservation is typically
explained as remnant ancestral gene order that was preserved up to present
either by lack of divergence time or due to selective constraints. However,
as gene order and gene content of related genomes diverge progressively over
time, a third explanation becomes more and more important, namely that
the seemingly conserved structures occur merely by chance. To rule out this
possibility, it is necessary to test a predicted gene cluster against the null
hypothesis of random gene order. Designing suitable test statistics for gene
cluster significance is a challenging task, as many parameters need to be
considered: the underlying gene cluster model, the cluster size, the rate of
conservation, the size of the search space and the sizes of the involved gene
families.

In their seminal work on gene cluster statistics, Durand and Sankoff [23]
distinguish two basic statistical questions that occur in gene cluster evalua-
tion:

e Individual clusters: Given a particular set of genes, is it significant
to find them clustered in at least two genomic regions?

e Whole genome clustering: Given two genomes in which gene clus-
ters have been predicted under a given cluster model, is the number of
observed gene clusters significant?

Clearly, for our purpose, mainly the first question is of interest. Durand and
Sankoff [23] also showed that this question should be answered in the context
of the search strategy applied, as it determines the size of the search space
considered for gene cluster detection. They distinguish the following three
approaches:

e Reference region: Given a set of predefined reference genes, scan a
genome for regions that contain all or a subset of these genes.

e Window sampling: Given two regions either on one or two different
genomes, do they share a certain number of homologous genes?

e Whole genome comparison: Given two or more genomes, find all
sets of genes that occur clustered in both genomes.

As our approximate common intervals based gene clusters are detected via
the comparison of whole genomes, they clearly fall into the third category.
Durand and Sankoff proposed a combinatorial framework for this and the
other problem settings under the r-window model. However, as the approxi-
mate gene cluster occurrences in our models require no fixed interval length,
we can not directly employ these test statistics to our problem. However, we
will see in the following how it can be adapted to our purposes.
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8.2 Significance of d-locations

Before we deal with the problem of gene cluster significance, we study at
first a related question: What is the probability that a genomic region is an
approximate occurrence of a specific set of genes? Or stated more formally:
Given a character set C' C ¥, a distance threshold ¢ and an interval [i, j]
on a random permutation of a string S over an alphabet X, what is the
probability that

D(ES(S[i, 1), C) <

holds? For simplicity, we assume that each character from the alphabet
occurs in S with frequency 0 or 1. In the following, we set £ = j—i+1,
c=|Cland h = |CNCS(S[i,j])|. We refer to h as the number of hits, as it
denotes the number of characters from C' that are contained in the interval.
All other characters in [i,j] are referred to as non-hits. Having excluded
duplicate occurrences of genes, we get

D(CS(S[i, 5]),C) = c+ € — 2h, (8.1)

and we can reformulate our problem as follows: What is the probability that
at least Apin = %(c + ¢ — §) hits from C occur in [4, j]g? This is equivalent
to a problem under the r-window gene cluster model studied by Durand and
Sankoff [23]: What is the probability that h out of ¢’ genes occur in a window
of length ¢, where ¢ = |C' N CS(S)|? The probability that exactly h genes
fall into the window is given by the hypergeometric distribution. For the
complete probability one only needs to sum over all possible values of h:

min C,7£ c/ n—c/
<G ()

q(n,8,c,0) = Z

0 (8.2)
h=1(c+£-9) (2)

This formula computes the probability that a randomly chosen interval from
S constitutes a d-location of C.

To assess the significance of a §-location found through whole genome
comparison, we need to include the search space size into our evaluation.
Each of the ©(n?) intervals of S with sufficient length can be a d-location of
C. As these intervals are strongly overlapping, summing over the probabili-
ties obtained for the individual intervals would systematically underestimate
the significance of an observed d-location. In the r-windows model, this
problem is less prominent. With a fixed interval length of r, only n —r + 1
intervals are candidates for approximate cluster locations. We can achieve a
similar situation for approximate common intervals based gene clusters if we
do not rely on the probability that a specific interval [¢, j] is a d-location, but
on the probability that a certain position ¢ is a starting point of a §-location.
One can easily verify that the length of a d-location in S is bounded by ¢ +4.
So we only need to compute the probability that an interval [i, j] of length
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d 4§ or any prefix interval [i, 5], j/ < j, thereof is a d-location of C. To
obtain this value, we count the hit/non-hit configurations of an interval [i, j]
with h hits for which at least one [i,5'], 7/ < j, is a §-location of C. The
number of these configurations can be defined recursively as follows:

0 ifd<horf=0
Fnhod0) =S (5) (25) if > hynon 4
f(n,h,d 0—1)+ f(n,h—1,,0—1) else
(8.3)
The recursion contains two base cases. At first, we test if the current
interval and therewith all its prefixes are too small to contain the required
number of hits. If so, we return zero, as there is no valid configuration. The
second base case occurs if the interval itself is a d-location. Then, we count
the number of ways to distribute h hits over ¢ positions. The third case
applies if the interval itself is no d-location but is large enough that one of
its prefixes can possibly be a d-location. Then, we set the state of the last
position in the interval, once to a hit and once to a non-hit, and sum the valid
configurations in the next smaller prefix over both cases. Assuming that the
computation of the binomial coefficient is a constant time operation, this
computation can be performed in time O(¢h) using a dynamic programming
approach.
To obtain, from the number of valid configurations, the probability that
a d-location starts at a certain position, we only need to sum over all possible
values of h and divide the result by the number of all possible configurations
of the interval:

c’_ A, /’ NP
o8¢, ) = Zhzes D) (8.4

(eFs)

The probability of finding at least one §-location of C' in S can then be
bounded above by sampling all start positions in S that contain a gene from

C:
P(n,d,¢c,d) < -q(n,d,ec). (8.5)

8.3 Significance of individual gene clusters

Based on the results of the previous section, we can now estimate the prob-
ability of observing a gene cluster in a set of strings with randomized gene
order. At first, we study the pair-wise distance constraint, and then the sum
distance constraint.
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8.3.1 Significance under the pair-wise distance constraint

Assume we are given a set of k strings S = {S1,..., Sk} with randomized
gene order, a pair-wise distance threshold § and a fixed set of genes C' of size
c. Then, the probability that C' is a gene cluster in S can be obtained simply
by multiplying over the probabilities of observing a J-location in each string:

k

Pow(k,0,c) = H P(ny,d,¢,ch), (8.6)
k'=1

where nj, is the length of Sy and ¢, = |C NCS(Sk)|.

Using a quorum parameter g, the situation becomes more involved. To
obtain an exact probability, one needs to sum over all possible combinations
of covered and non-covered strings in which at least ¢ strings of S are covered.
A simpler approach is to substitute the strings by a uniform string, that is
defined such that the rejection of the null hypothesis of random gene order
is the least likely, i.e. the string has to be designed such that the observation
of an approximate location is the least likely. This is achieved by setting its
length n to min {ny,...,nx} and ¢ to min{c}, ..., ¢} }. Then, the probability
to find d-locations is at least ¢ out of k of these modified strings is:

k
Pow(k,6,¢,q) = Z (Z;/) P(n,d,c, c/)q/(l — P(n,d,c, c/))k_q . (8.7)

q7'=q

For the original strings this probability constitutes a lower bound.

8.3.2 Significance under the sum distance constraint

To obtain equivalent equations for the sum distance constraint, we need to
sum over all possible distributions of the sum distance & over the k strings.
Unlike the pairwise distances above, the individual distances in these distri-
butions are no upper bound but exact distances. Therefore, the equations
derived for d-locations can not be used in this evaluation. We need to adapt
them to the probability of observing a d-location that is no (§—1)-location.
This probability, denoted as ¢'(n,d, ¢, ') , corresponds to the difference be-
tween the probability of observing a d-location and the probability of ob-
serving a (d—1)-location:

(n,d,¢,d) —q(n,0—1,¢,) if 6 >0

8.8
(n,d,c,c) ifd =0 (8.8)

¢ (n,d,c,d) =231
q

The probability of observing at least one d-location with exact distance ¢§ in
S can again be found by summing over all ¢’ possible start positions:

P'(n,d,¢,d) < -q(n,d,cc). (8.9)
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We have now all prerequisites to define the probability of observing a sum
distance constrained approximate gene cluster. As mentioned above, we need
to sum the probabilities over all possible distributions of § over the k strings.
This sum can be defined recursively:

1)
Poum(k,6,¢) = P'(ng,d,c, &) - Paum(k — 1,6 — d,c), (8.10)
d=0

where Psym,(0,0,¢) = 1 is the base case. For the integration of the quorum
parameter into this calculation, we add a parameter that counts the number
of covered strings:

d
Psum,q(ka57 ¢, Q) :ZPl(nk,d, c, C;c) : Psum,q(k_lad_da Caq_l) (8 11)

d=0
+ (1 - P(nk767 c, CZ)> . Psum,q(k_175a c, q)

To ensure that only combinations covering at least ¢ strings contribute to
the probability, we add a new base case, Psym,q(k,9d,¢,q) = 01if ¢ > k. The
second base case is Pyym,q(0,0,¢,q) =11if ¢ < 0.

8.3.3 Gene cluster significance in whole genome comparison

Up to now, we assumed that a gene cluster for which we determine the
significance is a single pre-specified set of genes. However, this is not the
typical scenario in gene cluster detection. Usually gene cluster predictions
are obtained via a discovery, not a search strategy. Therefore, the number of
sets of genes that were tested during the process influences the significance
of observing a gene cluster with a certain size and degree of conservation.
Unfortunately, we observe that candidate gene clusters, no matter whether
they have a reference occurrence in the genomes or not, are largely intersect-
ing. This makes it very hard to design a statistical framework that considers
the search space size. Durand and Sankoff [23| proposed a solution for a ref-
erence based r-window approach where probability functions are corrected
for overlapping reference intervals. For approximate common intervals based
gene clusters, finding an efficient framework for whole genome comparison is
more involved, if possible at all. This is because of the higher complexity of
the model, the variable cluster size and, in case of median and center gene
clusters, the fact that there is no reference occurrence required. Therefore,
we pose as an open question whether such a framework can be found and
how it would look like.
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8.4 Discussion

We have designed a statistical framework to assess the significance of a pre-
defined gene cluster. For gene clusters found through a discovery strategy,
we have seen that the design of such a framework is a challenging task that
would go beyond the scope of this thesis. If we use the statistical framework
for pre-defined gene clusters to evaluate the predictions of our discovery
algorithms, we will systematically overestimate their significance. However,
to assess the relative significance of gene cluster predictions obtained in a
single discovery process, the presented framework can still be useful — for
example to obtain a ranking of the predictions that helps to identify the most
promising candidates for further evaluation or to select the most significant
representative among a possibly large number of redundant variants of a
single gene cluster.

A problem that could arise in the first application is that a gene cluster
consisting mainly of frequent genes can possibly get the same score as a gene
cluster that consists mainly of non-duplicated genes. If these clusters have
the same size and degree of conservation the observation of the second cluster
is clearly more significant. However, as our method of genome randomization
does not allow for gene families, this will not be reflected in the obtained
ranking. Hence, the integration of gene families into our framework could
improve the power of the evaluation scheme.

Apart from these technical difficulties, there is also a systematic problem
connected to the evaluation of gene cluster significance. Usually the predic-
tions are evaluated against the null-hypothesis of totally randomized gene
order. However, we are not aware of any studies on the evolutionary distance
that is necessary between species to assume random gene order. For closely
related gene clusters, remnants of ancestral gene order may be a more likely
explanation for some gene clusters than functional selection. Therefore, it
might be interesting to incorporate such information in the evaluation of
gene cluster significance.
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Chapter 9

Experimental Results

We now come to the experimental evaluation of the presented approaches to
gene cluster detection. The purpose of this chapter is two-fold: Our first goal
is to evaluate the practical runtimes of our filter based approaches. Secondly,
we will have a closer look at some of our gene cluster predictions to assess
their quality from a biological point of view and thereby assess the utility of
our approximate common intervals based gene cluster models. Unless stated
otherwise, all computations described in this chapter were performed on an
8 x 2.6 GHz AMD Opteron 8218 Dual-Core processor with 32 GB main
memory.

9.1 Data preparation

We used the genomes of five y-proteobacteria for our experimental study
which are summarized in Table 9.1. The datasets were downloaded from the
NCBI database [69]. For grouping genes into homology families, we employed
the GHOSTFAM tool [79]. Using the standard parameters for sequence com-
parison, this program distributed the 11,184 genes occurring in the studied
genomes into 5086 gene families of sizes between 1 and 63. We discovered
36 unfragmented entities in the dataset with maximal length 10. To avoid
that these segments are split up during computations, we flagged them in
a preprocessing step. Computational results without this preprocessing can
be found in Section 9.2.2.

9.2 Performance evaluation

For a general performance evaluation, we study, at first, the runtime of our
algorithms for a broad range of parameter settings. Then we study the
dependency of the runtime on the employed optimization techniques and
finally compare the performance of these approaches to the ILP approach of
Rahmann and Klau [71].
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species name refSeq number  # genes
Buchnera aphidicola APS NC 002528 564
Escherichia coli K12 NC 000913 4183
Haemophilus influenzae Rd ~ NC__ 000907 1709
Pasteurella multocida Pm70 NC_ 002663 2015
Xylella fastidiosa 9adc NC 002488 2680

Table 9.1: Data sets used in the experimental evaluation.

9.2.1 Runtime dependency on parameter settings

To evaluate practical runtimes of our algorithms in dependency to cluster
size and distance threshold, we conducted a series of test runs for different
parameter settings for both median and center gene cluster detection.

Results for the median mode are given in Tables 9.2 for small gene cluster
sizes and in Table 9.3 for larger size thresholds. For low distance thresholds,
we observe that median gene cluster computation is quite fast. However,
at a certain point that is dependent on the minimum cluster size, the com-
binatorial explosion kicks in which is caused by the recursion through the
6-loc tables. The number of possible k-tuples is an indicator of the hardness
of this step. However, for a broad range of parameters, computation times
for solving the general median gene cluster discovery problem are still man-
ageable. For extreme parameter settings where runtimes for median gene
cluster computation are prohibitive, practical results can be obtained under
the reference based approximate gene cluster models. The time spent on the
generation of §-loc tables, as given in the tables, is an upper-bound of the
computation time of the equivalent reference based gene cluster discovery
problem.

We performed a similar series of experiments for center gene cluster com-
putation. The results of these tests are summarized in Table 9.4. Here, we
observe the same combinatorial explosion as described above, albeit it seems
to occur later than for the median gene cluster approach if we adjust pairwise
and sum distances. Consider, for example, the parameter setting s = 6 and
Opw = 2. Comparing 5 genomes, this corresponds to a sum distance thresh-
old of dsym = 10. For this setting median gene cluster computation took
more than two hours, while center gene cluster computation finished within
32 seconds. However, as a substantial number of interval combinations with
valid median have no center for the corresponding pairwise distance thresh-
old, only a subset of the median gene clusters can be detected with a center
based approach. For example, in the previous setting only 9 out of 17 median
gene cluster classes are detected with the center approach.

Exemplarily, we studied also the impact of the quorum parameter on the
computation times. Results for g-covering median gene cluster computation
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=0 o0=1 d=5 6=28 6=10
s=4
running time 7s 7s 28s 1h 39m -
time for generation of d-loc 100% 100% 28% < 1% (3m 45s)
# cluster filters 55 100 4107 8823  1.7-10%
# possible k-tuples 11 5464 5.1-10° 3.0-10'' 8.0-10'2
# completely generated k-tuples 11 65 1.0-107 1.6-10° -
# optimal k-tuples 11 33 1304  1.1-10% -
# reference based k-tuples 11 33 1246 8574 -
# non nested k-tuples 6 13 404 3895 -
# gene cluster classes 6 7 36 43 -
s=95
running time 7s Ts 9s 1m 7s  35h 40m
time for generation of §-loc 100%  100% 96% 14% < 1%
# cluster filters 35 59 1293 4366  1.3-10*
# possible k-tuples 7 1902 6.3-10% 3.1-10'° 3.8.10'2
# completely generated k-tuples 7 37 5.0-10* 1.9.-10° 2.0-10%
# optimal k-tuples 7 18 478 3636 9889
# reference based k-tuples 7 18 445 2720 6006
# non nested k-tuples 5 10 129 748 1476
# gene cluster classes 5 5 13 25 26
s=6
running time 7s 7s 8s 13s 2h 14m
time for generation of d-loc 100% 100% 98% 67% < 1%
# cluster filters 20 33 513 1518 8959
# possible k-tuples 4 492 26-10® 88-10° 6.8-10
# completely generated k-tuples 4 21 1.5-10* 5.6-10° 1.9-10°
# optimal k-tuples 4 8 218 1347 3706
# reference based k-tuples 4 8 203 1071 2642
# non nested k-tuples 3 6 52 254 612
# gene cluster classes 3 3 6 17 17

Table 9.2: Experimental results for median gene cluster computation in five
~v-proteobacteria. Computation times and results are shown for different
combinations of s and §. The fraction of the total running time spent on
the generation of d-loc tables corresponds approximately to the time needed
for solving the equivalent reference based approximate gene cluster discov-
ery problem. We also give information on intermediate results: the number
of cluster filters, the number of k-tuples that can be generated from the 6-
loc table (# possible k-tuples), the number of k-tuples actually generated
during iterative median computation (# generated k-tuples), the number of
k-tuples that are optimal with respect to a median gene cluster (# optimal
k-tuples), the number of k-tuples for which the median has a reference oc-
currence (# reference based k-tuples), the number of median gene cluster
k-tuples not nested within a better k-tuple (# non nested k-tuples) and the
number of completely different, i.e. non-overlapping gene clusters (# gene
cluster classes). Note: For the parameter combination s = 4 and 6 = 10 the
computation was stopped unfinished after 48 hours, and only results for the
generation of the d-loc tables are given.
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6=28 6=12 6=18 0=24 6 =32
s =10
running time 9s 40s 6h 20m - -
time for generation of d-loc 99% 25% < 1% (8m 23s) (88m 16s)
# cluster filters 155 684 9010 2.3-10* 4.2-10*
# possible k-tuples 6.3-10% 4.8-101° 9.1-.10'2 23-10® 88.10'6
# generated k-tuples 8002 2.1-10° 3.4-10° - -
# optimal k-tuples 67 166 830 - -
# reference based k-tuples 31 80 195 - -
# non nested k-tuples 14 43 155 - -
# gene cluster classes 2 3 4 - -
s=15
running time 9s 10s 118s 3h 23m -
time for generation of §-loc 100% 99% 10% < 1% (18m 25s)
# cluster filters 53 81 338 2838 2.4-10*
# possible k-tuples 41-10° 1.0-10® 1.3-10"' 1.0-10® 9.7.10%
# generated k-tuples 1658 1.9-10* 7.1-10° 7.1-10% -
# optimal k-tuples 15 21 51 80 -
# reference based k-tuples 9 15 24 29 -
# non nested k-tuples 5 5 5 5 -
# gene cluster classes 1 1 1 1 -
s =120
running time 9s 10s 14s 1m 24s 16h 35m
time for generation of d-loc 100% 99% 87% 17% < 1%
# cluster filters 48 64 118 278 3472
# possible k-tuples 4.0-10° 1.5-107 6.5-10% 1.6-10'" 6.5-10%
# generated k-tuples 1614 1.6-10* 25-10° 7.9.10° 3.6-10°
# optimal k-tuples 12 15 39 50 72
# reference based k-tuples 6 9 18 23 27
# non nested k-tuples 3 3 3 3
# gene cluster classes 1 1 1 1 1

Table 9.3: Experimental results on median gene cluster computation in five
bacterial genomes for larger size and distance thresholds. Description of the
given data is equivalent to Table 9.2. For parameter combinations for which
computation was unfinished after 24 hours, only results for the generation
of é-loc tables are shown.
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0=20 0=1 §=2 6=3 6=4
s=4
running time 2s 4s  59m 16s - -
# cluster filters 11 219 2656 5522 -
# possible k-tuples 11 23-10° 7.4-10° 2.1 -10" -
# generated k-tuples 11 55-10°  1.7-10° - -
# distinct median k-tuples 11 1245 1.2-10° - -
# distinct center k-tuples 11 1180  1.2-10° - -
# non nested k-tuples 6 162 2.6-10* - -
# gene cluster classes 6 17 29 - -
s=26
running time 2s 4s 32s 6h Om -
# cluster filters 4 48 326 2766 5536
# possible k-tuples 4 53-10* 1.4-108 5.9-10"°  1.1.10'2
# generated k-tuples 4 486 2.6-107 1.4-10% -
# distinct median k-tuples 4 213 1.8-10* 7.2-10° -
# distinct center k-tuples 4 201  1.8-10* 6.6 - 10* -
# non nested k-tuples 3 61 856 1.6 - 10* -
# gene cluster classes 3 4 9 13 -
s=28
running time 2s 3s 6s 12m 51s -
# cluster filters 2 22 70 382 2857
# possible k-tuples 2 5051  6.4-10° 1.6-10°  3.3-10"
# generated k-tuples 2 96  3.3-10% 3.2-10% -
# distinct median k-tuples 2 17 2582 1.4-10° -
# distinct center k-tuples 2 17 2510 1.3-10° -
# non nested k-tuples 2 16 181 2560 -
# gene cluster classes 2 2 3 3 -
s =10
running time 2s 3s 5s 14s 3h 21m
# cluster filters 1 10 35 84 427
# possible k-tuples 1 722 85-10° 1.5-10%  1.2-10'°
# generated k-tuples 1 11 4482 1.3-10° 2.3-10°
# distinct median k-tuples 1 9 298 1.5-10* 5.2-10°
# distinct center k-tuples 1 9 296 1.4-10* 4.5-10°
# non nested k-tuples 1 9 71 1120 1.2-10*
# gene cluster classes 1 1 2 2 3

Table 9.4: Experimental results on center gene cluster computation in five
bacterial genomes for different combinations of size and distance thresholds.
Description of the given data is equivalent to Table 9.2. The additional dis-
tinction between median and center k-tuples is due to the fact that candidate
interval combinations for center gene clusters are checked for fulfilling the
corresponding median constraints. For parameter combinations for which
computation was unfinished after 24 hours, only results for the generation
of d-loc tables are shown (except for the uninformative setting s = 4 and
0 =4).
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s=50=28 qg=>5 qg=4 qg=3 q=2
running time 1m 53s 19m 8s 21m 10s 21m 15s
# cluster filters 4371 5102 5102 5102
# possible k-tuples 3.1-10'° 95.10" 9.5-10"  9.5.10"
# generated k-tuples 2.3-107 1.5- 108 1.7-108 1.7-108
# distinct median k-tuples 3636 8532 9139 9139
# distinct center k-tuples 2720 5733 6165 6165
# non nested k-tuples 748 592 478 478
# gene cluster classes 25 33 36 36

Table 9.5: Experimental results for g-covering median gene cluster computa-
tion in five bacterial genomes for s = 5 and J = 8. Description of the given
data is equivalent to Table 9.2.

with s = 5 and § = 8 are shown in Table 9.5. Employing a quorum parameter
increases runtimes considerably. However it seems that the specific value of
the quorum is of minor importance compared to the initial decision for or
a against a quorum parameter. It should also be mentioned that a part
of the increase in runtime is also caused by the incompatibility of some of
our optimization techniques with the use of a quorum parameter which were
switched off for the respective computations. Concerning the gene cluster
predictions in presence of a quorum parameter, we observe that a substantial
number of gene clusters seems to be conserved only in a subset of the input
genomes.

9.2.2 Evaluation of optimization techniques

For a better understanding of the performance of the basic algorithms and
their optimizations, we studied the runtime effects of the different optimiza-
tion techniques. In Table 9.6 all optimizations and their applicability to the
different algorithm variants are summarized.

At first, we study the performance on median gene cluster computation.

optimization techniques median center quorum
minimum cluster filter size + + +
infrequent characters in cluster filter +

suboptimal interval borders + (+) +
lower bounds on sum distances + (+)
unfragmented entities + + +
pairwise distances in table d-loc + +

Table 9.6: Combinability of the optimization techniques with the different
algorithm variants. + indicates full compatibility, (+) indicates partial com-
patibility. See Sections 6.6 and 7.7 for details.
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runtime speed-up

minimum cluster filter size 36 m 14 s -
infrequent characters in cluster filter 35 m 12 s 2.8%
suboptimal interval borders 2m 26 s 93.2%
lower bounds on sum distances 35m 25 s 2.2%
unfragmented entities 7m2ls 79.7%
all but unfragmented entities 1m35s 95.6%
all optimizations 28 s 98.7%

Table 9.7: Impact of the different optimization techniques on the runtime of
our approach to median gene cluster computation for the parameter combi-
nation s =6 and d = 9.

For simplicity, we use a fixed parameter setting for our tests. We chose the
combination s = 6 and § = 9, as it involves a substantial amount of com-
putation, while being still fast enough to run the program efficiently with
almost no optimizations. An exception is the test for minimum cluster fil-
ter size. If this is omitted, almost every small interval in the given string
is processed as cluster filter which inflates runtimes drastically. Therefore,
we use an extended version of the algorithm that contains already this test
as reference for the following evaluations. We added each of the remain-
ing optimizations separately and computed the relative speed-up in percent.
Additionally, we combined all optimizations except for the conservation of
unfragmented entities, as it is the only speed-up that affects the gene cluster
predictions — even though only in reducing redundancies. The results of the
tests are summarized in Table 9.7.

For center gene cluster computation, it was difficult to find a parameter
setting where computation times are feasible when our program is run with-
out optimizations. Only for § = 1, we obtained results in less than 6 hours.
Results for the parameter setting s = 6 and § = 1 are shown in Table 9.8. As
in median gene cluster computation, the removal of intervals with subopti-
mal interval borders and the consideration of unfragmented entities yield the
biggest reduction of practical runtimes. Also the center specific optimization
that rules out interval combinations based on pairwise distances seems to be
useful for runtime reduction.

9.2.3 Comparison to a related approach

The gene cluster detection approach that is most similar to ours are the
weighted median gene clusters introduced by Rahmann and Klau [71]. For
a comparison, we reproduced the study described in their work. For that
purpose, we obtained the annotated genomes of C. glutamicum and M. tuber-
culosis from http://gi.cebitec.uni-bielefeld.de/comet. Gene families
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runtime  speed-up

minimum cluster filter size 23m 8s -
suboptimal interval borders 4s 99.7%
lower bounds on sum distances  22m 25s 3.1 %
unfragmented entities 6s 99.5%
pairwise distances in table d-loc  1m 19s 94.3%
all but unfragmented entities 4s 99.7%
all optimizations 3s 99.8%

Table 9.8: Impact of the different optimization techniques on the runtime of
our approach to center gene cluster computation for the parameter combi-
nation s =6 and § = 1.

were already established in this dataset. The tests described in this section
were performed on a 1.66 GHz Intel Core Duo T2300 processor with 520 Mb
of main memory running under the Suse Linux operating system.

Our program detects the gene cluster reported in [71] in 17 seconds using
parameters 0 = 27 and s = 60 while the ILP using CPLEX 9.03 runs for
more than one hour on a superior processor to compute this cluster, using
size parameter D = 51.

We also conducted a similar series of experiments as reported in [71] to
find optimal gene clusters for each size between 5 and 150. Since our method
finds gene clusters based on a distance threshold and not for a certain size,
we had to run our algorithm several times for different minimal cluster sizes
and distance thresholds. Despite this overhead our method was able to find
all optimal gene clusters in this size range within 3 hours and 4 minutes.

9.3 Selected results

To evaluate our predictions from a biological perspective, we inspected the
gene annotations of the clusters detected in the dataset of Section 9.1. Most
of our predictions refer to well known conserved structures, like the operons
for ATP biosynthesis and histidine biosynthesis, the operon for cell wall
synthesis and cell division, as well as a large ribosomal cluster consisting of
28 genes. In the following, we exemplarily show some of our predictions.

9.3.1 Gene cluster for ATP biosynthesis

The structure of the gene cluster for ATP biosynthesis as predicted by our
approach is shown in Figure 9.1. We observe that the main part of this clus-
ter is perfectly conserved in respect to both, gene content and gene order.
This part of the cluster corresponds to the genes: atpC (377), atpD (29),
atpG (378), atpA (29), atpH (379), atpF (380), atpE (576), atpB (381).
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Figure 9.1: The structure of the gene cluster for ATP biosynthesis as pre-
dicted by our approach.

The duplication of gene 29 turns out to be an artifact of the sequence based
homology assignment. According to the gene annotation, these are two dif-
ferent genes, namely atpD and atpA. The fuzzy border on the right consists
of two genes coding for glucose inhibited division proteins (702, 382) and a
predicted coding region (1540).

9.3.2 The cell division and cell wall biosynthesis gene cluster

Another well-known cluster that we detected with our approach is the cell
division and cell wall biosynthesis gene cluster. Its structure as predicted by
our approach is shown in Figure 9.2. The most remarkable feature of this
prediction are the multiple occurrences of gene 9 in the cluster. However, an
examination of gene annotations reveals that the four occurrences of gene
9 are in fact four different genes namely, murk, murF, murD and murC.
Apparently, high sequence similarity caused their grouping into a single gene
family.

A further observation in this gene cluster is that gene ftsL (1225) ap-
pears to be missing in the cluster occurrences of B. aphidicola and X. fas-
tidiosa, while singleton genes are inserted at the respective positions in the
two genomes. However, the gene annotations reveal that one of them is in
fact a copy the ftsL gene, and the other is classified as general cell division
protein. Therefore, the cluster seems to be better conserved in reality than
the homology assignment suggests.

e-coi  [EEI) (D [1225 [103 ) [0 ) [9 ) [547) [Co ) [E04) [546 ) [9 ) [307) [639) [EED IETD 58D
B. aphidicola EDC )y sy sHEamy[ 9 y[Eay[s26y[ 9 ) B ED

Figure 9.2: The structure of the cell division and cell wall biosynthesis gene
cluster as predicted by our approach.
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9.3.3 Gene cluster with changing reading direction

Another interesting cluster predicted by our approach is shown in Figure 9.3.
It consists of two blocks whose order and orientation is conserved in three out
of five genomes. In the other two, one block is either completely missing or
reversed. This change in the reading direction indicates that the two blocks
are not transcribed together and thus may, in fact, be two separate clusters.
For the non-expert, the gene annotations give no hint at the cluster function:
The contained genes code for miscellaneous products: a peptidyl-prolyl cis-
trans isomerase, sulfur oxidation proteins, ribosomal proteins, elongation
factors as well as some genes of unknown function.

E. coli EAl & (411 ] (412 <1552 (7an ] (12| €2 @l
P. mutocida EA @A GGz (U22) (@ @z €@ @
B. aphidicola EA @A (411 (212 <(1722] (7an) (2|
X. fastidiosa ' 82 |

H. influenza  [HEEI) [1552) QEE @ (4n] (ar2]

Figure 9.3: Predicted gene cluster with changing reading direction.

9.3.4 Gene cluster with changes in gene order

Except for the block interchange in the previous cluster, the gene order of
all clusters studied so far is perfectly conserved in the compared genomes.
Differences in the occurrences seem to be restricted to intermitting or missing
gene occurrences. The picture is the same in most of the other gene cluster
predictions in this dataset. However, there are a few exceptions. One is
depicted in Figure 9.4, where we observe several rearrangement operations.

The gene annotations in this cluster suggest no obvious cluster function,
as the gene functions seem to be rather diverse. They are summarized in
Table 9.9. We leave as an open question, whether this gene cluster prediction
constitutes a gene cluster in the biological sense, and if so, what functional
role it may play in the studied organims.

Figure 9.4: Predicted gene cluster with rearranged gene order.
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genome gene id annotation
E. coli 324 structural component; Ribosomal proteins - modification
323 factor; Proteins - translation and modification (umk)
322  enzyme; Central intermediary metabolism: interconversions (rrf)
321 factor; Proteins - translation and modification (yaeM)
320 1-deoxy-D-xylulose 5-phosphate reductoisomerase (yaeS)
319 undecaprenyl pyrophosphate synthase
861 enzyme; Fatty acid and phosphatidic acid biosynthesis (yaeL)
657  zinc metallopeptidase (yzzY)
101  conserved protein (ompH)
1273 factor; Basic proteins - synthesis, modification
62 UDP-3-0O-(3-hydroxymyristoyl)-glucosamine N-acyltransferase
P. multocida 324 RpS2
323 Tsf
322 PyrH
321 Errf
320 Dxr
319 unknown
861 CdsA
657 unknown
101 unknown
1273 Skp
62 FirA
B. aphidicola 324 30S ribosomal protein S2 (tsf)
323  elongation factor Ts (pyrH)
322 uridylate kinase (frr)
321 ribosome recycling factor (dxr)
320 1-deoxy-D-xylulose 5-phosphate reductoisomerase (uppS)
319 undecaprenyl pyrophosphate synthetase (yaeT)
101 hypothetical protein (dnaFE)
X. fastidiosa 321 ribosome recycling factor
319 undecaprenyl pyrophosphate synthetase
861 phosphatidate cytidylyltransferase
320 1-deoxy-D-xylulose 5-phosphate reductoisomerase
657 conserved hypothetical protein
101 outer membrane antigen
62 UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase
H. influenzae 324  ribosomal protein S2 (rpS2)
323  elongation factor Ts (tsf)
62 UDP-3-0-(3-hydroxymyristoyl)-glucosamine (lpxD)
1273 outer membrane protein, putative
101 protective surface antigen D15
657 conserved hypothetical transmembrane protein
861  CDP-diglyceride synthetase (cdsA)
319 conserved hypothetical protein

Table 9.9: Functional annotations of the genes occurring in the predicted
gene cluster that is illustrated in Figure 9.4.
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Chapter 10

Applications in phylogeny
reconstruction

In the previous chapter, we have shown the potential of our method in de-
tecting functionally related gene complexes. While this is the most obvious
field of application, one can easily think of other problem settings in com-
parative genomics where approximate gene clusters may be useful, like the
determination of positional homologs.

We explore a more distant field of application in this chapter, namely
whole genome based phylogeny reconstruction. In the literature, two major
lines of this field can be found: approaches that compute edit distances be-
tween genomes based on a set of rearrangement operations, e.g GRAPPA [56]
and MGR [84], and feature based approaches that derive genomic distances
from counting the number of structural features of a certain type, like gene
content [80, 45, 37|, gene adjacencies [45, 4, 10|, or common /conserved inter-
vals [10], that are shared between genomes. We focus on the latter approach
and try to derive whole genome based distance measures based on the rate
of conservation of approximate gene clusters between genomes.

The approach presented in this chapter can be viewed as a generaliza-
tion of other feature-based methods: Phylogeny reconstruction based on gene
content is a special case where only trivial gene clusters of size one are con-
sidered. The same is true for approaches based on (unsigned) adjacencies
which are essentially gene clusters of size two. Clearly, common intervals are
also a subset of approximate common intervals. (Only conserved intervals
with their additional constraints can not be represented by our model.) Most
of the above mentioned approaches are not applied to sequences of genes but
on derived permutations, although a restriction to equal gene content is not
forced by the underlying models. Hence, the novelty of the presented ap-
proach is two-fold: We use a more permissive gene cluster definition and
omit the preprocessing step to transform sequences of genes into permuta-
tions. The intention behind the first generalization is to make our distance

117



118 CHAPTER 10. PHYLOGENY RECONSTRUCTION

measures more robust against gene losses and gene insertions in conserved
segments, as well as against errors in the genome data, while the idea behind
using sequences is simply to use the complete information contained in gene
order.

10.1 Distance Measures

Based on the assumption that two species are the closer related the more
structural features are conserved between their genomes, we use the following
basic distance measure for two strings S and 7"

(10.1)

; (cons(S, T)  cons(T, S)> |

ist(S,T) =1— =
dist(S, T) cons(S,S)  cons(T,T)

where the term cons(S,T") stands for the number of features of a certain type
present in S that can also be found in 7. In normalizing this value with
cons(S,S), the number of features of the given kind in S, we ensure that
0< % < 1. Since the conservation ratio is in general not symmetric,
we build the average over both ratios so that the overall distance lies between
0 and 1. A similar measure can be found in [10].

However, when using features like common intervals that grow quadrati-
cally in the string length, the value of cons(S,T') can become disproportion-
ally small compared to a self-comparison cons(S,S). As a consequence, the
distances between non-identical genomes will cluster at the top-end of the
distance range. To account for this imbalance, the general distance formula
can be modified as follows:

. 1 cons(S,T) cons(T', S)
dist(S,T)=1— - 10.2
ist(5,T) 2 (\/cons(S, S) * \/cons(T, T) (102)
The above definitions allow for a wide range of structural features whose

conservation can be represented by cons(S,T). The most basic ones among
them are gene content and unsigned adjacencies:

e GC(S,T) := | {i | there is a j with CS(S[i,i]) = CS(T[5,7])} |,
e Adj(S,T) := |{i | there is a j with CS(S[i,i+1]) = CS(T[j,j+1])}|.

Based on these definitions, it becomes evident that both features are special
cases of common intervals. A conserved gene is a common interval of size
one, and a conserved adjacency is a common interval of size two. Note that
the number of both structural elements is limited by the length of S. There
are at most |S| conserved genes and at most |S|—1 conserved adjacencies
(IS] in circular chromosomes).
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A natural extension is to consider larger segments of genes conserved
between species, i.e. common intervals, and even segments that are only
partially conserved, i.e. approximate common intervals:

o CI(S,T) :=[{[i,j]g | CS(S[i, j]) has a location in T'} |,
o CI(S,T,90) := |{[i,jlg| CS(S[i, j]) has a é-location in T'} |.

Apparently, CI(S,T') equals CI(S,T,d) for § = 0. Since there are (g) non-
empty substrings of a sequence of length n, the number of substrings of S
with a d-location in T is also restricted by (;) To represent the degree of
conservation of a genome segment, not only the gene content but also the
conservation of the gene order should be considered. This is done implicitly
in the above definitions, as for every conserved interval the following rela-
tion holds: the better its gene order is conserved, the more subintervals are
conserved and thus contribute to cons(S,T).

Apart from this, all intervals count equally in the previous definitions
independent of their size and their degree of conservation. To account for
such differences, we can weight the interval counts by length, by the degree
of conservation or by a combination of both attributes. This is realized in
the following definitions where the term CI(S, T, d, ) denotes the number of
intervals in S with length ¢ that have a d-location in 7" but no (d—1)-location:

5 1S

L4 CISiZe(Sa T7 5) = Z g ° CI(S, T, d, 5)
d=0¢=d+1
s 1S

o Clyeg(S,T,6):= > Y. 52-CI(S,T.d,0)
d=0¢=d+1

o Clliseaes(5.T.6) == zw% (t=d)- CUS. 7.0 1),

As the conserved intervals are weighted by their lengths, the maximum values
of the terms Clgise(S,T,9) and Clgize deg(S, T, 9) are bounded by the sum
Yoo l-((n+1)—0) = é -n-(n+1)-(n+2) while the value of Cleg(S, T, 0)
is bounded by (}).

10.2 Experimental Results

To evaluate the distance measures proposed in this study, we applied them
to a benchmark dataset for whole genome based phylogeny reconstruction
and compared our results to the trees obtained by Blin et al. on the basis of
common intervals in permutations [10]. The dataset comprises the genomes
of 12 ~v-proteobacteria, summarized in Table 10.1.
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abbreviation species name RefSeq #genes
BAPHI Buchnera aphidicola APS NC_ 002528 564
ECOLI Escherichia coli K12 NC 000913 4183
HAEIN Haemophilus influenzae Rd NC_ 000907 1709
PAERU Pseudomonas aeruginosa PAOI NC 002516 5540
PMULT Pasteurella multocida Pm70 NC_ 002663 2015
SALTY Salmonella typhimurium LT2 NC_ 003197 4203
WGLOS Wigglesworthia glossinidia brevipalpis NC_ 004344 653
XAXON Xanthomonas azonopodis pv. citri 306 NC 003919 4192
XCAMP Xanthomonas campestris NC 003902 4029
XFAST Xylella fastidiosa 9adc NC_ 002488 2680
YPEST-C092 Yersinia pestis CO_ 92 NC 003143 3599
YPEST-KIM  Yersinia pestis KIM5 P12 NC_ 004088 3879

Table 10.1: Overview of the benchmark dataset of twelve y-proteobacteria
used for phylogeny reconstruction.

We took the preprocessed genome sequences from [10] and computed
pairwise distances for all genome combinations using both distance formulas,
the four approximate common intervals based measures and a broad range of
distance thresholds: § = 0,1,5,10,20. In total, we derived 40 distance ma-
trices for this dataset which we processed by the tree reconstruction program
fitch of the PHYLIP package [25], which is based on the Fitch-Margoliash
approach [27]. For all runs of the program, we used options J, causing a ran-
domization of the input order, and G, allowing for global branch-swapping.
For assessing the predicted trees, we compared them to the putative refer-
ence tree for this dataset (see Figure 10.1(b)). This tree was generated from
concatenated protein data using a neighbor-joining approach [51]. To mea-
sure the distance between the trees, we used the treedist command of the
PHYLIP package which computes a tree distance based on the Robinson-
Foulds metric [73].

Table 10.2 shows the Robinson-Foulds distances between the predicted
trees and the reference tree. In many cases, the predicted phylogeny is
very close to the reference tree or even identical with it. In cases where the
Robinson-Foulds distance equals 2 or 4, the distance is due to a misplacement
of the two endosymbionts Buchnera aphidicola and Wigglesworthia glossini-
dia brevipalpis as shown in Figure 10.2, whose placement in the reference
tree is discussed controversially in the literature [33, 51].

Furthermore, we can conclude from Table 10.2 that the second distance
formula employing the square root clearly outperforms the plain distance
formula on this dataset. Apparently, taking the square root of the ratio

Egizgg partly compensates for the relatively low conservation rate. Sur-
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Distance Formula (10.1) Distance Formula (10.2)
d= 0 1 5 10 20 0 1 5 10 20
CI 4 4 2 0 0 2 2 2 2 0
Clsize 12 8 6 6 6 8 6 0 O 0
Clieg 4 4 4 2 0 2 2 2 2 2
Clsizedeg 12 8 6 6 6 8 6 0 0 0

Table 10.2: Robinson-Foulds distances between predicted trees and the puta-
tive reference tree for all four approximate common intervals based distance
measures and a collection of distance thresholds §.

prisingly, it seems to be counterproductive to weight the conserved clusters
by their length. However, this could be an artifact of our method as the
weighting increases the discrepancy between cons(S,7T') and cons(S,.S) fur-
ther. Taking also approximate gene clusters into account appears to be
beneficial as the distance to the reference tree decreases in all cases with
growing 0.

An example for the dependency of the reconstruction accuracy and 9 is
depicted in Figure 10.2. The results were achieved with the Distance Formula
(10.1) using the term CI(S, T, ¢) for counting approximate common intervals.
One can see that the topology of the tree conforms better and better with the
reference tree for increasing values of § until identity is reached for § > 10.

This example of our results is also the one suited best for a compari-
son with the method presented in [10], as both were obtained with com-
parable distance formulas for phylogeny reconstruction based on common
intervals. Recall that there are still two essential differences between these
two approaches: our distance formula is defined on sequences while the one
used by Blin et al. is defined on permutations, and we count not only com-
mon intervals but also approximate common intervals. When comparing
the two approaches on the test dataset, we observe the following: While
Pseudomonas aeruginosa is placed into a wrong clade in the trees predicted
by Blin et al. [10] (see Figure 10.1(a)), its location in the trees constructed
by our method for CI(S,T,J) is congruent with the reference tree even for
0 = 0. This indicates that working with sequences instead of permutations
alone can already be beneficial for accurate tree reconstruction. However, for
small J, our method has the same difficulties in placing Buchnera aphidicola
and Wigglesworthia glossinidia brevipalpis into the right clade, as was also
reported by Blin et al. Interestingly, this problem vanishes for larger values
of § which supports our conjecture that using approximate common inter-
vals should increase the robustness of common intervals based approaches to
phylogeny reconstruction.
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Figure 10.1: Tree topologies used for comparison with our predictions: (a)
tree predicted by Blin et al. based on common intervals in permutations [10],
(b) putative reference tree obtained by Lerat et al. [51] (taken from [10]).

10.3 Concluding remarks

In this chapter, we introduced a family of new whole-genome distance mea-
sures that are based on approximate gene cluster conservation. Our method
is directly applicable to gene sequences, such that the artificial reduction of
the gene sequences to permutations often used in phylogeny reconstruction
is not necessary. The second novelty of our approach is that not only per-
fectly conserved gene clusters are considered but also clusters occurring with
a slightly different gene content in the compared species. Initial experimen-
tal results suggest that both model extensions are beneficial for phylogenetic
tree reconstruction. A comparison with a previous approach [10] supports
this conjecture as well.

While the suggested distance measures yield promising results, some
questions remain open: For example, an explanation for the rather counter-
intuitive observation that it seems to be unfavorable to consider the length
of the conserved blocks is missing. This could either be an artifact of our
distance measures, that would not occur for methods using a more sophis-
ticated way to deal with low interval conservation rates, or it reflects the
situation that the length of an interval is already sufficiently represented by
the counts of its subintervals.

Another point of further research is to study in more detail the effect of
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Figure 10.2: Phylogenetic trees predicted with Distance Formula (10.1) using
CI(S,T,0) to measure conservedness of approximate common intervals for
different values of §. The boxed species are misplaced with respect to the
reference tree. Tree (d) is congruent with the reference tree.
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the distance threshold on the prediction quality. There should be an optimal
value such that prediction accuracy worsens when increasing the threshold
beyond this point.

A more general issue is the question how approximate common intervals
conservation correlates with the divergence times of the compared species.
Most likely, a saturation level is reached after some time such that further
genome rearrangement operations, including changes of the gene content,
have only a marginal effect on the conservation rates. As a first step to answer
these questions, one could study the impact of the different rearrangement
operations, including changes of the gene content, on the conservation rates
of approximate common intervals. For a more thorough analysis, a complete
model of whole genome evolution would be needed. However, this process is
not yet completely understood.



Chapter 11

Conclusion and perspectives

In this thesis, we studied novel approaches to the detection of approximate
gene clusters in multiple genomes. We formalized the concept of approxi-
mate common intervals and defined thereon four gene cluster models that are
based on the symmetric set distance to measure the degree of conservation
between gene clusters and their approximate occurrences. The presented
models differ in two ways: the distance constraining mode and the gene
cluster concept. Distances are either constrained individually for each ap-
proximate occurrence or via their sum, while the two cluster concepts either
allow any combination of genes to form a gene cluster, or only those sets
having a perfect reference occurrence in at least one of the studied genomes.

We have shown that the latter type of gene clusters can be computed
efficiently using an extension of the Connecting Intervals Algorithm for com-
mon intervals computation. During our study of the original version of this
algorithm, we discovered a simple modification that reduces its space com-
plexity from quadratic to linear dependence on the genome lengths. We
believe that the underlying trick is also applicable to the computation of
approximate gene cluster occurrences. However, due to the higher intricacy
of the extended algorithm, the realization will be technically more involved.
To improve the scalability of our approaches to the comparison of a larger
number of genomes, it will be useful to elaborate this improvement in the
future.

For our general approximate gene cluster discovery problems, we had
to face a search space that grows exponentially with the number of com-
pared genomes. Here, we managed to design a filter scheme that sufficiently
narrows down the search space to compute approximate gene clusters in
multiple genomes. Additional optimization techniques substantially reduced
the practical runtimes and extended the range of feasible parameter settings.
Further work in this direction may become essential as typical gene cluster
discovery scenarios develop towards the comparison of ever larger numbers
of genomes.

125
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This development makes only sense if also complete losses of gene clusters
are allowed in a subset of the compared genomes. Otherwise, the detections
will be limited to a small number of core gene clusters. In this thesis, we
described extensions of our gene cluster models that cover missing gene clus-
ter occurrences and showed how the respective algorithms can be adapted to
these models. The asymptotic time complexities were not affected by these
extensions. However, we have seen that the practical runtimes can increase
substantially for the general approximate gene cluster discovery problems.
As this is partly due to the fact that some of the optimization techniques are
in their current form not combinable with missing gene cluster occurrences,
the situation can be probably improved by designing optimization techniques
that are customized to these model variants.

Our experimental results showed that our approaches are capable of de-
tecting biologically meaningful gene clusters that are only approximately
conserved in the studied genomes. Manual inspection of gene annotations
suggests that most of the predictions correspond to well-known gene clus-
ters, but for some no obvious functional classification can be derived from the
gene annotations. The natural next step in this direction is a deeper analysis
of the predictions in cooperation with biologists and a large-scale applica-
tion to genomic datasets. Here, the selection of newly sequenced genomes
may increase the chances to detect novel gene clusters and/or novel gene
functions.

The experimental results gained up to now allow for a first assessment of
the proposed gene cluster models. We frequently observed both missing and
intermitting genes in approximate gene cluster occurrences. These findings
support the basic idea of our set distance based gene cluster models, that
allowing only gaps and no deletions in approximate cluster occurrences as
seen in max-gap clusters systematically underestimates the degree of gene
cluster conservation.

Moreover, we observed that for larger distance thresholds the optimal
consensus gene set of a combination of gene cluster occurrences has often
no perfect occurrence in any of the studied genomes. This seems to suggest
that the additional effort in solving the general approximate gene cluster
discovery problem pays off in terms of prediction completeness. However,
one has to be aware that the same approximate gene cluster occurrences can
be found under the reference based gene cluster model simply by relaxing the
distance thresholds as necessary to account for the increased distances to a
close gene set instead of an optimal consensus. Therefore, if the target is only
to detect genome segments with similar gene content, it may be completely
sufficient to use a reference based gene cluster model.

Concerning the use of a sum or pairwise distance constraint, our cur-
rent results are inconclusive. Both approaches have their advantages and
disadvantages: While the sum distance constraint is a suitable way to cope
with different degrees of gene cluster conservation, it leads to undesired ef-
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fects when comparing large numbers of genomes. To allow for the same
degree of overall gene cluster conservation, the distance threshold needs to
grow with the number of compared genomes. Already for a small amount
of genomes, we observed the effect that most cluster occurrences are smaller
than the distance threshold. This can increase computation times as single
gene occurrences need to be considered as candidate cluster occurrences and
a substantial number of them is even reported as approximate cluster occur-
rence if the degree of conservation is sufficient in the other genomes. Such
single gene cluster occurrences are not informative especially if the gene in
question has several occurrences in the genome. A simple remedy against
this undesired effect could be an additional constraint that defines the min-
imum size of a cluster occurrence. For the pairwise distance constraint, we
observe the completely opposite situation. It automatically rules out badly
conserved gene cluster occurrences, but has in turn trouble to detect gene
clusters with different degrees of conservation in the studied genomes. For
practical purposes it might be interesting to define a hybrid version between
the two distance constraining modes that limits both the pairwise and the
sum distance.

Concerning the general approximate gene cluster discovery problem an-
other interesting question is whether the median or the center is a better
representation of an approximate gene cluster. Intuitively, one might as-
sume that consensus gene sets should have an evolutionary interpretation
as the putative gene cluster composition in the most recent common ances-
tor. However, one can easily see that this is unlikely in general. Assuming
that the degree of gene cluster conservation between genomes corresponds
to their evolutionary divergence time, we have to see that the median de-
pends strongly on the evolutionary distances of the chosen genomes. If these
are not well distributed over the phylogenetic tree, the state of the median
is dominated by the best represented clade and represents — if at all —
a gene cluster occurrence of an ancestor of this clade. For a center based
consensus set, a phylogenetic interpretation seems to be more convincing
at first glance, as the center has approximately the same distance to each
of the studied genomes. However, also the composition of the center can
be distorted by certain conservation patterns. For example, a single badly
conserved gene cluster occurrence with intermitting genes can cause a center
based consensus to include some of these intermitting genes to minimize the
maximum pairwise distance. So, evolutionary interpretability is not a qual-
ity of our consensus gene sets and is therefore no useful criterion for their
comparison.

While we have shown that our set distance based gene cluster models
improve over existing approaches, we believe it is currently not possible to
choose “the best one” among these models. In practice, it may be useful to
run gene cluster predictions under several models and compare the results.
Alternatively, one can simply pick the model that best matches the intention
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of the current gene cluster search and the computational resources available.

However, our findings give rise to a number of possible refinements that
are interesting for all four approximate common-intervals based gene clus-
ter models. To provide a better reflection of the biological reality in our
genome representations, we should extend our models and computational
approaches towards circular and multi-chromosomal genomes. Such an ex-
tension is straight-forward: For gene cluster detection in circular chromo-
somes, we simply need to allow for gene clusters that overrun the current
string boundaries and continue at the other end of the chromosome. For
multi-chromosomal genomes, we need to adapt the search strategy such that
all chromosomes of a genome are considered for containing cluster occur-
rences. This can be simply realized by iterating over all chromosomes of a
genome whenever it is processed in the course of the algorithm. The latter
extension is already included in our implementations.

Another enhancement might be the use of a more sophisticated cost func-
tion for missing and intermitting genes in cluster occurrences. So far, we use
the same cost for both types of changes, gene insertions and gene losses. One
could argue that intermitting genes, especially if they are on the opposite
strand, have less severe effects on the functionality of a gene cluster than re-
locations or losses of genes from the consensus gene set. Therefore, it might
be useful to decrease the cost of such events. It is, however, unclear how
such a weighting should look like in detail.

Besides the weighting, another modification of our set distance measure
should be considered. The biological idea behind the symmetric set distance
is that the content of gene cluster occurrences changes by gene losses and the
insertion of genes. However, differences in the gene content can as well be
explained by gene transformations, i.e. the nucleotide sequences of homolo-
gous genes may diverge to the point that their evolutionary relationship is
no longer detected when gene families are constructed. This separation may
be wanted, as also the function of the genes may have diverged sufficiently,
or unwanted, in case of erroneous homology assignment. In any case, such a
gene transformation is counted as two events, the loss and the gain of a gene.
To count these transformations as single events, the symmetric set distance
could be replaced by the set transformation distance:

D(C,C") = max{|C'\ C'],|C"\ C|}.

Also the concept of homology assignment in general could be reconsid-
ered. As we have seen, current approaches based on sequence similarity have
difficulties to restore the evolutionary relationships between genes, which
causes gene clusters to appear less conserved than they actually are. Im-
provements in the homology assignment may reduce this problem, but perfect
homology assignment is unlikely to be achieved in the near future. There-
fore, we propose a rather radical approach that completely avoids homology



129

assignment by using gene similarities instead of gene equality. This means
that we assign every pair of gene occurrences a similarity score. In doing so,
we get a continuous instead of a binary relation between gene occurrences.
We could then measure the degree of gene cluster conservation based on the
overall gene similarity in the cluster occurrences.

Another radical change of our gene cluster models would be the integra-
tion of phylogenetic information into our concept of consensus gene clusters.
In doing so, it may be possible to overcome the shortcomings of center and
median gene cluster representatives as described above. One approach in
this direction would be the reconstruction of ancestral gene cluster compo-
sitions based on a parsimony approach. The genes assigned to each inner
node in the tree could then be interpreted as a consensus gene cluster of the
respective subtree.

Apart from these model refinements, future work on approximate com-
mon intervals based gene cluster models could also go in the direction of
exploring other fields of application than gene cluster prediction. Our mod-
els and algorithmic approaches are not limited to strings of gene family ids.
Any kind of sequences can be processed to detect approximate common in-
tervals based conservation patterns. A promising candidate for such studies
are sequences of transcription factor binding sites, as conservation patterns
of such elements are used to predict regulatory regions in genomes [43]. Also
applications in non-biological sequences are imaginable, like the detection of
text passages with similar word content

Based on the results achieved in this thesis, we belief that further studies
on approximate common intervals based gene cluster models and the nu-
merous extensions described above are a worthwhile endeavor. With the
increasing availability of completely sequenced genomes, the demand for ef-
ficient and flexible approaches to gene cluster prediction is likely to grow in
the near future and new algorithmic challenges will arise.
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Appendix A

Incompleteness of the ACI
Algorithm

As already mentioned in Chapter 4, an alternative approach to the detection
of §-locations can be found in the literature, namely the ACI Algorithm by
Amir et al. [2]. However, one can show that this graph-based approach
misses a certain subclass of d-locations. In the following, we sketch this
algorithm as far as necessary to understand the incompleteness problem,
present an example for which the algorithm fails to report the complete
solution set and categorize the subclass of d-locations that are detected by
the approach. Unfortunately, there is no apparent remedy for this problem
in the ACI Algorithm, at least none that would not substantially increase
the algorithmic complexity.

A.1 Search strategy of the ACI Algorithm

For simplicity, we review the ACI Algorithm using the terminology and no-
tation of the main part of this thesis. The problem that Amir et al. intend
to solve in [2] is as follows:

Problem 19 Given a set of k strings S = {S1,..., Sk} over an alphabet ¥
and a distance threshold 0, report for each character set C=CS(Sy[ig, je]) all
character sets C' = CS(Syip, jor]) with D(C,C") <6 and all locations of C'.

The suggested ACI Algorithm works in two steps: First, a graph G = (V, E)
is built such that

e the set of distinct character sets C'=CS(S¢[ir, j¢]) in S maps to the
vertex set V = {vo | C=CS(S[ig, je]) }, and

e edges are drawn between vertices ve, ver if and only if D(C,C") =1,
labeled with the unique character in (C'\ C") U (C"\ C).
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By construction, this graph represents all pairs of character sets in S whose
pairwise distance is exactly one. An example of such a graph is given in
Figure A.1. For the second step of the algorithm, recall from graph theory
that a path in a graph G = (V, E) is a sequence of vertices vg, vy, . .., Uy, such
that there is an edge (v;,vi+1), 0 < i < m, between every pair of successive
vertices, and the length of the path corresponds to the number of edges in
the path. This concept is used in the ACI Algorithm to collect d-locations
from the graph: Beginning from every vertex vo € V, all paths of length ¢
are traversed in a depth-first manner as long as no edge label is read that
occurred earlier in the path.

A.2 Incompleteness of the algorithm

Clearly, every vertex on the traversed paths corresponds to the character set
of a d-location of C. However, not all such character sets are detected by
this method, as we can see in Figure A.1: The shortest path between the
two gray-shaded vertices has length four, although the distance between the
corresponding character sets is only two. Therefore, the algorithm will not
report the locations of the respective character sets as d-locations of each
other.

We find the same type of problem for all pairs of character sets for which
at least one intermediate character set is not represented in the graph. This
is no exceptional event, as it can happen with all intervals that share some
characters but are not nested. Moreover, we observe that every path be-
tween the two gray-shaded vertices contains redundant edge labels, a second
reason why the algorithm would not detect the connection between the two
character sets.

A simple remedy against the incompleteness of the algorithm is to allow
for both, longer paths and redundant edge labels. However, these changes
have a negative effect on the asymptotic time complexity. In the original
algorithm, the complete cost for the depth-first traversal of paths can be
hidden in the output size, as all vertices on these paths are reported as 6-
locations of the character set associated with the start vertex. If we allowed
for longer paths to cope with missing intermediate character sets, this is no
longer possible.

We leave as an open question, whether a more sophisticated way of mod-
ifying the algorithm can be found that preserves its time complexity. For
the ACI Algorithm in its current state, we can summarize our findings as
follows:

Observation 13 The depth-first search of the ACI Algorithm detects for a
given character set C C X only those character sets C' of §-locations for

which there is a sequence of character sets Cy,C1,...,Cq, with Cy = C,
Cy=0C" d<9, and |C; \ Ciyj| + |Cigj \ Cs| = j for all j < 6—i.
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Figure A.1: Graph constructed by the ACI Algorithm for the two strings
S1=1,2,3,4,5,6 and Sy = 7,2,5,8. The locations of the gray shaded char-
acter sets should be reported as d-locations of each other for every 6 > 2.
However, the shortest path between these vertices has length four and con-
tains redundant edge labels. It is therefore not considered in the algorithm.



