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Abstract

We consider the dynamics of Brownian particles exposed to symmetric periodic po-
tentials and driven out of equilibrium by symmetric driving forces at several examples.
For any non-zero temperature, the average velocity vanishes but there may be dynamical
states of sustained transport spontaneously breaking the symmetry in the deterministic
limit, named spontaneous symmetry breaking transport. If the symmetry of the dynam-
ics is broken by a small perturbation, e.g. a constant bias force, the particle mobility may
be in practically any direction, even in the direction opposite to the bias force. Changing
only a scalar parameter of the dynamics, e.g. the amplitude or frequency of the symmetric
driving force, the particle can be directed into almost any direction. Without a constant
bias force, the diffusion coefficient of the particle diverges in the deterministic limit. In
more than one (spatial) dimension, diffusion is highly anisotropic, and the direction of
fast diffusion can be adjusted by a scalar parameter of the dynamics, e.g. the amplitude
of the symmetric driving force. Our examples are (i) the dynamics of an underdamped
Brownian particle in a one dimensional periodic potential, published in [1, 2] and verified
experimentally in [3], (ii) the dynamics of an overdamped Brownian particle in a two
dimensional square lattice, published in [4], and (iii) the dynamics of two interacting
Brownian particles, i.e. a dimer, in a one dimensional periodic potential. Lastly, we show
how lattice potentials can be exploited to sort molecules that differ only by their chirality,
published in [5]. Using spontaneous breaking of chiral symmetry, the two chiral partners
can be directed into orthogonal directions under the influence of a constant bias force in
a symmetry direction of the lattice and into opposite directions if a periodic driving force
is applied.
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Chapter 1

Introduction

The advances in the understanding, observation, and control of micrometer scale physics
[6] and, from a different point of view, in the understanding and modeling of supercon-
ductivity [7], have lead to great interest in the transport properties of Brownian particles
[8], see [9–11] for a few reviews. In this work we will show that the transport direction
of Brownian particles can be controlled by making use of dynamical states of station-
ary directed transport spontaneously breaking a symmetry of the dynamics, spontaneous
symmetry breaking transport (SSBT). Our central results cover three exemplary Brown-
ian particle dynamics and have been published in [1–5], of which we include preprints1

in the respective chapters, i.e. [1–3] in chapter 3, [4] in chapter 4, and [5] in chapter 7.
We begin with a short outline of our work, followed by a more detailed introduction.

The three main parts of this work, chapter 3, chapter 4, and chapter 7, can be read
separately and use the notations of the respective publications. Chapter 2 gives a formal
introduction to the role of symmetries in the dynamics of Brownian particles and an out-
look of how our methods can be generalized beyond the examples which we consider in
this work. Our first example is an underdamped2 Brownian particle in a one dimensional
symmetric potential. Our main results are summarized in the brief account [1], and [2]
and chapter 3 provide further details. The main effect predicted in [1], absolute nega-
tive mobility, has been measured experimentally in the context of Josephson junctions
[3]. Moving beyond the restrictions of spatially one dimensional dynamics in chapter 4
(summarized in [4]), we will consider the overdamped3 dynamics of a Brownian particle
in a two dimensional periodic potential as our second example, generalize our results to
weakly disordered potentials in chapter 5, and consider the special case of two interact-
ing Brownian particles in spatially one dimensional overdamped dynamics in chapter 6.
Lastly, we will turn to chiral symmetry of rigid molecules and show how a chiral molecule
can be separated from its chiral partner molecule4 in chapter 7 (summarized in [5]).

A key question is how the transport properties of Brownian particles can be controlled
by an experimentalist, e.g. to separate the different species of Brownian particles in a
mixture. While the direct and individual manipulation and observation of Brownian

1The preprints are largely identical to the printed articles. The latter can be obtained via the pub-
lishers.

2I.e., its mass cannot be neglected.
3The mass of the particle is negligible compared to the friction forces.
4i.e. the molecule which is its mirror image
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particles by an experimentalist has become possible per se5, it is not feasible on a larger
scale which is what is often necessary in quantitative experiments, drug research and
manufacturing, or biological processes.

If the dynamics of a Brownian particle are spatially asymmetric6 and far from thermo-
dynamic equilibrium, directed transport is the generic result according to Curie’s prin-
ciple7, even if the asymmetry is unbiased. Such dynamics are referred to as Brownian
motors or ratchets8, and current reversals of ratchets, i.e. the inversion of the transport
direction in dependence of some parameter, are one possible tool to control transport,
in particular in the context of particle sorting [9, 10]. Then, the difference between two
species of particles in a mixture can be considered as such a parametric variation, and
the different particle species can be made to move into opposite directions.

The current vanishes exactly in spatially symmetric and ergodic dynamics. If the
symmetry is broken by a weak perturbation, a non-zero current is the generic result. If the
perturbation is inversed, that current is inversed as well, and weakly perturbed symmetric
dynamics are always “close” to a current reversal. In that sense, symmetric dynamics are
possibly in an advantageous state to control the transport direction of Brownian particles,
e.g. for the purpose of particle sorting. The question is to what extend an experimentalist
can control the direction of the symmetry breaking perturbation, if and how fast particles
are transported due to this perturbation, and, in a sorting experiment, whether the
different species of particles react differently to changes of that perturbation. We will
focus on the conceptually simplest symmetry breaking perturbation, a constant bias force,
and occasionally remark on more general perturbations. In chapter 7, we will also consider
the chirality of molecules as a symmetry breaking perturbation. The naive expectation is
that different particle species will be dragged into the same or almost the same direction
by a constant bias force and particle sorting would be rather inefficient. Indeed, in linear
dynamics this is exactly the case. For particles on a structured surface9 subjected only
to a constant bias force, the angle between that force and the transport direction, the
deflection angle, is limited by the symmetry properties of the surface [4, 5, 18–20]. E.g.,
the deflection angle has to be smaller than 45◦ for a point particle on a surface with
square lattice symmetry10, and thermodynamic stability requires the deflection angle to
be smaller than 90◦ if the dynamics are in thermodynamic equilibrium without the bias
force. The angles between the transport directions of different particle species on the same
substrate are limited by the maximum deflection angle and are typically much smaller,
see e.g. [18, 21] for a few theoretical investigations and [22–28] for some experiments. We
will overcome these limitations by making use of SSBT.

5See, e.g., [6, 12, 13]
6I.e. the dynamics are not the same if viewed through a mirror. We will formally discuss this matter

in chapter 2.
7We will discuss Curie’s principle [14] in more detail in chapter 2.
8See [10] for a review, [15] for an experimental proof using colloids, and [16, 17] for experiments in

the context of superconducting interference devices.
9I.e. the dynamics are spatially two dimensional.

10Trivially, deflection angles of almost 90◦ can be achieved if there is a hard wall on the surface,
and the bias force is almost orthogonal to that wall. This is the limit of small bias forces and small
noise strengths of a general (rectangular) lattice with different potential barrier heights for the lattice
directions. But then, due to the “trivial” nature of the deflection, different particle species will have very
similar transport directions, and this limit is not of much use for particle sorting.
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A simple, but nonergodic and otherwise useless, example of SSBT is that of a single
particle moving without friction and stochastic fluctuations in a spatially symmetric
potential of finite height and depth. If its initial momentum is sufficiently large, it will
continue to move forever, i.e. it is in a dynamical state of stationary directed transport.
While the dynamics of that particle are globally11 symmetric, i.e. it is impossible to
distinguish from its mirror image, the high initial momentum state spontaneously breaks
this symmetry, i.e. it carries SSBT. Stationary transport is ruled out in thermodynamic
equilibrium12. While there are countless ways of driving a thermodynamic system out of
equilibrium, we will focus on deterministic driving forces throughout this work. We will
consider non-interacting13 classical particles for which ergodicity breaking is possible only
in the deterministic limit, i.e. in the absence of stochastic fluctuations14. We will show
[1–5] that if SSBT is present in the deterministic part of the dissipative dynamics of a
Brownian particle, the transport properties of the noisy (and thus ergodic) dynamics can
be controlled via the interplay of SSBT, a weak symmetry breaking perturbation, and
thermal noise. In particular, this nonlinear interplay lifts the linear connection between
the “preferred” direction15 implied by a constant bias force and the resulting transport
direction of Brownian particles.

In other words, SSBT may lead to directed transport against an applied bias force.
For small bias forces, this counterintuitive behavior has come to be known as absolute
negative mobility16 (ANM) or negative absolute resistance (or conductance) when referring
to the charge carriers in electrical devices.

In the latter context, ANM was discovered experimentally as a purely quantum me-
chanical effect more than 30 years ago in a sample of bulk GaAs [30, 31] and later in
semiconductor heterostructures [32], Semiconductor super lattices [33]17, and charge den-
sity waves [35]. ANM of classical particles has probably been measured first indirectly and
“accidentally” during the 1980’s investigation of chaos in microwave irradiated Josephson
junctions in e.g. [36, 37]18 as negative absolute resistance of a Josephson junction but
went largely unnoticed at the time. Much later, the phenomenon gained much theoret-
ical attention for classical particles. One of the first theoretical demonstrations, [38],
used a model of interacting Brownian particles. For certain parameters, this model also
exhibits a spontaneous ratchet effect in the thermodynamic limit of an infinite number
of particles similar to [29], in which case “anomalous hysteresis” [38] is found. Further

11In the sense that all available configurations of the particle are considered.
12Our example of a single particle does not equilibrate.
13A very small number of interacting particles will be considered in chapter 6.
14For an infinite number of interacting classical particles in a symmetric system, [29] shows that spon-

taneous symmetry breaking leads to a spontaneous breaking of ergodicity and thus to directed transport.
Nonanalyticities, e.g. a divergent potential barrier, may also be a cause of ergodicity breaking but we
will not consider this case.

15In so far as such a direction is given. E.g., a parametric asymmetry of the potential [10] and chirality
[5] of a molecule do not lead to a clearly defined “preferred” direction.

16The mobility is the slope of the response curve, i.e. the current in dependence of the applied force.
Absolute refers to the zero bias (force) mobility.

17It is interesting to note that SSBT accompanies ANM in that context, see also [34].
18The dynamics of small Josephson junctions can be mapped onto the dynamics of a classical particle

in a washboard potential [7], and absolute negative resistance of a Josephson junction translates into
ANM of a classical particle in a washboard potential. See [2, 3] and chapter 3 for a more detailed
discussion.
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models were put forth in [39–44] and [44] shows that no more than 3 interacting particles
are needed to get ANM. The mechanism of ANM in [38] is that, for certain parameter
values, the symmetry breaking bias force stabilizes the part of phase space responsible
for the (spontaneous) ratchet effect that leads to an uphill current, i.e. against the bias
force, and the mechanism is, in that sense, rather similar to the one described in the
preceding paragraph. [43] shows ANM in a random walk model penalizing larger jumps
in the spirit of Parrondo’s game [45, 46]. This “high velocity penalty” introduces a fun-
damentally different mechanism of ANM. Moving the “high velocity penalty” into a two
dimensional surface structure, ANM of a single classical particle subjected to a deter-
ministic driving force and a potential geometry that forces the particle on a meandering
path was first shown as a noise induced effect in [47–50]19. Another variant is to move
the “high velocity penalty” into an internal state variable, allowing for an otherwise one
dimensional dynamics [56, 57], or to the transition rate between two ratchet dynamics of
opposite directions [58], which we will revisit in chapter 6. [47] paved the way for a direct
experimental proof for colloids in a microfluidic device [59–61] which allowed ANM to be
applied to particle sorting [62]: one species of colloids shows ANM while the other does
not. Hence, the different particles are transported into opposite directions and separated
(see also [52] for a recent review).

ANM of a single classical particle moving in a simple one dimensional periodic po-
tential and subjected to symmetric driving forces and equilibrium thermodynamic fluc-
tuations was discovered theoretically20 by [63], and independently at the same time by
the author [1, 2], see chapter 3. These dynamics can be mapped onto the dynamics of a
Josephson junction modeled in the resistively and capacitively shunted junction (RCSJ)
model [7, 64, 65], allowing for the immediate experimental realization presented in [3].
For these dynamics, an intuitive explanation for the effect is given in [1, 2], see chapter 3.
Using the interplay of deterministic and stochastic dynamics, various further astonishing
effects could be facilitated, such as noise induced ANM (NANM) (either with positive
mobility [1, 2] or vanishing mobility [63] in the deterministic limit) or normal zero bias
mobility, but the particle moves uphill for a certain interval of non-zero bias forces [1, 2].

The main requirements of the effects put forth in [1–3, 63] are a three dimensional
phase space, broken thermodynamic equilibrium and nonlinearity, as shown in [1, 2]. The
general idea of SSBT induced ANM can be extended to the overdamped dynamics of two
interacting Brownian particles in a one dimensional periodic potential, as we will show
in chapter 6, and to the overdamped dynamics of a periodically driven Brownian particle
in a two dimensional potential, as we will show in chapter 4 for a perfectly periodic po-
tential and in chapter 5 for an almost periodic (weakly disordered) potential. Lifting the
restriction of transport in only one spatial dimension allows for a much richer response
behavior and for more promising applications. Due to the nonlinear interplay of the pe-

19See [51, 52] for reviews. Furthermore, [53, 54] show that non-equilibrium random fluctuations induce
ANM of a single classical particle in meandering geometries, and [55] extends the idea put forth in [47]
by using the shape of the particles to get a suitable trapping mechanism penalizing large bias forces.

20As has been mentioned above, due to the general nature of the effect it was already contained in
much earlier works, but has gone largely unnoticed. Furthermore, [56, 57] show ANM in the spatially one
dimensional overdamped dynamics of a single Brownian particle with an additional fluctuating internal
state variable, that can also be considered as a non-equilibrium noise source. Both approaches can be
considered as simplifications of more complex dynamics. In particular, the non-equilibrium noise used
in [57] is not completely unlike an extremely simplified model of the inertia forces.
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riodic drive, the bias force, the periodic potential, and noise, the transport direction of
the Brownian particle depends on almost all scalar parameters in a nontrivial way. This
allows us to direct the Brownian particle into almost any direction by changing only a
single scalar quantity, e.g. the amplitude of the periodic drive, and not changing any
inherent direction of the dynamics, coined “directing Brownian motion” in [4]. Further-
more, this “sensitive” dependence of the transport direction on the system parameters is
ideally suited for particle sorting. The differences between different particle species can
be considered as such system parameters, and it is thus possible to sort more than two
different particle species simultaneously in the same device by “directing” each species
into a different direction. In dynamics in which transport is restricted to a narrow chan-
nel or one dimension, this is possible only by making use of multiple sorting stages21, or
one has to use differences in the absolute migration velocities of the particle species, see
e.g. [67, 68].

Lastly, we will turn to chiral symmetry. A molecule which is not identical to its image
in any planar mirror is called chiral. Typically, a chiral molecule and its chiral partner (i.e.
its mirror image) have rather similar physical properties, e.g. mass, charge, volume, spec-
tral properties or dissociation energy, but their biological or pharmaceutical properties
may be very different. E.g., a specific chiral molecule may have a medical use, while its
mirror image is toxic [69, 70]. Several methods of separation employing a chiral selector,
i.e. an ingredient which is not identical to its mirror image, have been put forth [70–74].
Due to the effort involved in finding a suitable chiral selector for a given molecule, chiral
selector free methods are desirable. Several methods employing hydrodynamic flows have
been put forth theoretically [67, 68, 75–79], and some have been verified experimentally
[80–83] for natural and artificial chiral objects of sizes from centimeters to micrometers.
A different method is to use an achiral structure for chiral separation [84, 85] and to
make use of the different interactions of the chiral partners with the achiral structure.
The advantage is that one structure may be used to sort many chemically different but
physically (i.e. volume, mass, etc.) similar molecules. To that end, we will show that a
tilted periodic potential (i.e. subjected to a constant bias force) may be used for highly
efficient chiral separation [5], see chapter 7. In the generic case of the tilted potential
having no symmetries, we will make use of the different deflection angles of the chiral
partners. If the potential is reflection symmetric across a line, and the bias force respon-
sible for the tilt is parallel to that line, the tilted potential remains reflection symmetric
across that line. Transport of achiral molecules perpendicular to that line spontaneously
breaks this symmetry (SSBT). Considering the chirality of a chiral molecule as a sym-
metry breaking perturbation, we will make use of SSBT to achieve highly efficient chiral
separation, with the transport directions of the chiral partners being orthogonal. Adding
a time dependent driving force, the separation efficiency can be enhanced further, and the
chiral partners can be made to move into opposite directions even for rather large noise
strengths. Alternatively, diffusive separation can be achieved with each chiral partner
diffusing very fast along one direction and very slowly in the orthogonal direction, and
the directions of fast diffusion are orthogonal for the chiral partners. A proof of principle

21 E.g., in the Anselmetti lab of Bielefeld University three different species of colloids could be separated
in the same ratchet device using an ac electrophoresis generated potential [6] and multiple sorting stages.
During each stage, one species is made to move into one direction, while the other species move into the
opposite direction, and thus the species can be separated [66].
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experiment has been conducted successfully in the Anselmetti lab of Bielefeld University
[86] (see chapter 7).
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Chapter 2

Symmetries and transport

This chapter gives a formal introduction to discrete symmetries of (random) dynamical
systems describing the dynamics of Brownian particles and tries to give a unifying view on
the remainder of this work. After an introduction, we will formally define the governing
equations in section 2.2 and give examples of the symmetries encountered in this work in
sections 2.3-2.5. Some of the main consequences of symmetries in dynamical systems will
be discussed in sections 2.6-2.7. In section 2.8, we give an overview of how the considered
symmetries are used in this work.

2.1 Introduction

Symmetries are ubiquitous in physical theories. Often, symmetries simplify calculations
dramatically. In nature all symmetries are typically broken but often weakly. E.g. to
obtain the theory of solid state physics, heavy use of lattice symmetries is made while
typical solid molecules contain numerous impurities. But the volume of these impurities
is typically negligible compared to the volume of the body considered, and the symmetric
theory describes most of the physics of the solid body correctly.

We are interested in the influence of symmetries on the transport properties of Brow-
nian particles. If the particle dynamics are symmetric, i.e. there is some symmetry
transformation1 which leaves the dynamics invariant, it is intuitively clear that any par-
ticle trajectory has the same probability as its image under the symmetry. In an ergodic
dynamics2 the average transport velocity of the particle has to be invariant under the
symmetry, i.e. its component “transverse”3 to the symmetry has to vanish. Reflection
symmetry through a point is the most dramatic example, leading to an exactly vanishing
average velocity.

Conversely, if there is no symmetry in the dynamics, Curie’s principle [14] states “that
if a certain phenomenon is not ruled out by symmetries, then it will occur” [10] implies

1e.g. a reflection or a rotation
2For a definition in the context of chaotic maps see e.g. p. 56 of [87] and pp. 299-300 of [87] for a

further discussion. For our purposes, the additive Wiener process [88, 89] will always provide ergodicity
in the sense that the corresponding Fokker-Planck equation [90, 91] will have a unique attractor for
normalized initial conditions.

3i.e. the components that are not invariant under the symmetry
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that a broken symmetry leads to a non-zero current4 “transverse” to that symmetry5.
This phenomenon has been extensively studied in the context of ratchets6 [10].

Thermodynamic equilibrium requires all transport currents to vanish [10]. Weakly
perturbed thermodynamic equilibrium can be treated within linear response theory [90]
and the second law of thermodynamics and thermodynamic stability put severe restric-
tions on the transport properties of such dynamics. Namely, the current in response to an
externally applied force has to be in the direction of that force7 and the non-equilibrium
current in response to a weak and bounded driving force of zero mean vanishes in linear
order [10].

To avoid that restriction, we will consider far from thermodynamic equilibrium con-
ditions provided by periodic driving forces throughout this work except for some parts
of chapter 7. We will consider dynamics with weakly perturbed symmetries, and try
to understand their transport properties from the unperturbed dynamics. Usually, it is
much easier to understand the transport properties of the symmetric dynamics, and our
hope is that this approach allows us to control the transport properties of the perturbed
dynamics. E.g., one application is particle sorting. Without symmetry, the dynamics of
different particle species will be, simply, different, but without additional knowledge no
conclusion can be drawn about the transport velocities and, in particular, their direc-
tions (directions of the average velocities). In some cases [5], it turns out that without
fine tuning of the dynamics, the transport properties of not too different particle species
will be rather similar without using symmetries (e.g., see Fig. 1 of [5] and figure 7.15),
but if symmetries can be used, the dynamics become highly selective (Fig. 2 of [5]).
If the dynamics have a symmetry, one knows that the transport velocities transverse
to the symmetry of all particle species will be zero. If the symmetry is weakly broken
(perturbed), the transport velocities will be non-zero in general, and will be different
for all particle species. If we construct our dynamics such that the transport direction
depends sensitively on the parameters (i.e. particle species), different particle species can
be transported into different directions, allowing for simultaneous sorting. It turns out
that spontaneous symmetry breaking transport is a convenient way of creating such a
situation.

Our tool of choice for breaking the symmetry will be an applied constant bias force. In
principle, our results can be carried over to more general perturbations, see e.g. [92–95]
for a hint in that direction. The advantage of a constant bias force is its simplicity, and
its clearly defined direction, setting naive expectations. The response of an equilibrium
system to a constant bias force is given by linear response theory to be in the direction
of that force (see above). In the limit of very large bias forces, the response current will
again be in the direction of the bias force. An illustration of some possible response
behaviors can be found in [51].

The dynamics of a Brownian particle can be described by a Langevin, or stochastic

4An ensemble of Brownian particles with some average velocity generates a current (of Brownian
particles). We will use the terms “current” and “average velocity” (of Brownian particles) equivalently.

5unless there is some other symmetry at work, such as thermal equilibrium
6a device that generates a current from zero mean driving forces or fluctuations.
7In higher dimensions, the scalar product between the force and the current has to be positive, i.e.

the mobility tensor has to be positive (semi-)definite.
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differential equation (SDE)8 [88–90] and can be written as

d~q(t)

dt
= ~̇q(t) = ~Q(~q(t), t) +D~ξ(t) . (2.1)

~q(t) with components qi(t) = ~q(t) · ~ei , i = 1...N9 describes the state of the particle, e.g.

the particle position. The state ~q(t) moves in the vector field ~Q(~q, t) (sufficiently smooth).

D is the (constant) diffusion matrix (N × N constant matrix over R) and ~ξ(t) is a N
dimensional stochastic (Wiener-) process modeling the thermal noise to which the particle
is subjected. We have restricted ourselves to additive noise by choosing D constant, and
will restrict ourselves to Gaussian processes ~ξ(t) with 〈ξi(t)ξj(s)〉 = δijδ(t − s)10. While
that restriction is not necessary, we will keep it for simplicity, as that case will be the only
one relevant to this work. Each pair (~q, t) describes one state of our dynamics, and phase

space is the N+1 dimensional Euclidean space of the (~q, t) for a non-autonomous ( ~Q(~q, t)
depends explicitly on time) equation and, dropping time for an autonomous equation, it
is N dimensional in that case.

2.2 Discrete symmetries

Euclidean symmetries can be divided into translations and orthogonal transformations.
A brief dsicussion of symmetries and their consequences can be found in e.g. [97]. We

will write a Euclidean symmetry as S =
(

(Ŝ, ~L), (st, TS)
)

with the real N×N orthogonal

matrix Ŝ and ~L being the spatial part of the symmetry, and the numbers TS and st = ±1
are the temporal part of the symmetry. The symmetry S acts on phase space vectors as

S (~q, t) =
(

Ŝ~q + ~L, stt + TS

)

(2.2)

which also defines its action on trajectories (~q(t), t), where ~q(t) is a solution of (2.1) and
thus its action on solutions of (2.1).

We will consider only dissipative dynamical systems in which time inversion, st = −1,
induces a change of stability and will not be of further relevance. Therefore we set

st = +1 (2.3)

henceforth. When discussing Hamiltonian dynamics and one dimensional overdamped
dynamics we will comment briefly on time inversion symmetry.

We call (2.1) S symmetric if

~Q
(

Ŝ~q + ~L, t+ TS

)

= Ŝ ~Q (~q, t) (2.4)

and
Ŝ~ξ (t− TS) =̂~ξ (t) (2.5)

8We will ignore the differences, and refer to both equivalently.
9~ei is the unit vector along the usual lines [96]. Throughout this work, we will refer to the components

of a vector ~q with indices, i.e. qi = ~q ·~ei with the usual (Euclidean) scalar product of vectors in R
N . We

will refer to the components of vectors on the plane also with indices x/y in the natural way.
10The average is meant to be over all realizations of the noise process, and the δ’s are to be interpreted

in the usual way [90].
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with (2.5) meaning that all statistical properties of these processes are identical, i.e.
the resulting SDE’s are identical. In particular, this means that the realization of the
stochastic process ~ξ(t) has the same statistical weight as the realization Ŝ~ξ (t− TS) [10,
98].

All symmetries (including the identity11) of a given equation (2.1) form a mathemat-
ical group [96, 99–102], i.e. combinations of symmetries will be symmetries again (and
the identity is a symmetry).

In the deterministic case D = 0, the consequence of (2.4) is that if we have a particular
solution ~q(t) satisfying the S symmetric equation (2.1), we get

~qS(t) := Ŝ~q (t− TS) + ~L (2.6)

also satisfying (2.1), i.e. ~qS(t) is another solution, which we call the S symmetry partner
of ~q(t), or, depending on the context, the image of ~q(t) under S. If

~q(t) = ~qS(t) (2.7)

both partners are identical, and we will call ~q(t) S symmetric. Otherwise, there will be
up to mS ∈ N ∪∞ symmetry partners with mS being the smallest number (or infinity)
for which SmS = 1, and we will call q(t) a spontaneous symmetry breaking solution.

If (2.1) furthermore satisfies (2.5), each trajectory of (2.1), belonging to a particu-
lar realization of the stochastic process, and its S symmetry partner, belonging to the
realization Ŝ~ξ (t− TS) of the stochastic process, will have equal weight [10, 98].

For our purposes, the main consequence of the symmetry partner solutions is that
averages will satisfy the symmetry. In particular, the average (transport) velocity (or
current)

~v :=
〈

~̇q
〉

~ξ(t),t,~q(t0)
= lim

t→∞

~q(t) − ~q(t0)

t− t0
(2.8)

(where the average is over time, initial conditions and all realizations of the stochastic
process, and the second equality due to ergodicity) will satisfy the symmetry since for
each trajectory12 contributing to that average, its symmetry partner contributes with the
same weight but inversed (under the symmetry) contribution13 [10]:

Ŝ~v = ~v. (2.9)

This is the formal way of saying that currents transverse to the symmetry vanish. ~v is an
eigenvector of Ŝ to the eigenvalue 1 (we ignore the trivial case of ~v = 0). A special kind
of current not captured in this picture are vortex currents. See e.g. [97] for a discussion
thereof.

Tacitly requiring (2.5) from now on, we furthermore focus on the deterministic part
of (2.1) when discussing the symmetry properties of (2.1).

11Which we write as 1 irrespective of the set it operates on.
12We will refer to specific solutions of (2.1) as trajectories.
13Alternatively, one can consider the distributions directly, and thus the corresponding Fokker-Planck

equation [90, 91]. Discrete symmetries translate into symmetries of the Fokker-Planck equation, with
supersymmetry [98] being an exception.
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2.3 Spatial symmetries of a square lattice

The main types of spatial symmetries considered in this work will be reflection symme-
tries, possibly combined with translations of time. Our main examples in spatially two
dimensional dynamics will be the symmetries of a square lattice (mapping the lattice onto

itself), i.e. those of a force field ~F (~r) = −∇U(~r) being the gradient of a potential with
square lattice symmetry [103] and ~q = ~r = (x, y)14. If each lattice site (i.e. the “atoms”
of the lattice) satisfies these symmetries, the system will be symmetric with respect to
these symmetries. For the potential this results in

U(Ŝ~r + ~L) = U(~r). (2.10)

We will call such a potential (spatially) (Ŝ, ~L) symmetric, or short Ŝ15 symmetric, and
the derived force field −∇U(~r) (spatially) Ŝ symmetric. The motion of a particle moving
in such a potential is described by a SDE of the form (2.1) according to Newton’s law
and the fluctuation dissipation theorem [90].

Ŝx Ŝy Ŝxy Ŝ0 = Ŝx ◦ Ŝy Ŝπ
2

= Ŝy ◦ Ŝxy

Ŝ~r (x,−y) (−x, y) (y, x) (−x,−y) (−y, x)
mS 2 2 2 2 4
~v = (vx, vy) vy = 0 vx = 0 vx = vy ~v = 0 ~v = 0

Table 2.1: Some linear symmetries of a two dimensional square lattice, their action on
(~r) = (x, y), mS of the implied symmetry of the dynamics, and their consequences for
the average velocity when no other forces are at work. The coordinate frame is chosen
such that ~L = 0 [100].

These linear symmetries have a severe impact on the average velocity (2.8), as shown
in table 2.3. On the other hand, if the dynamics are such that all relevant symmetries
are broken, Curie’s principle implies that, in general, the affected component of ~v will
not be zero under non-equilibrium conditions [10].

Furthermore, we have translational symmetries of the lattice, each shifting one compo-
nent of ~q by the lattice spacing in that direction. Note that unless we restrict our dynamics

(e.g. to a torus16) a symmetry consisting only of a translation, i.e. S =
(

(1, ~L), (1, 0)
)

,

has mS = ∞.

2.4 Symmetries of a periodic driving force

We will consider the special case of rocking and pulsating driving forces, i.e. we restrict
~Q(~q, t) to be of the form

~Q(~r, t) = b(t) · ~Q(~r) + ~A(t) . (2.11)

14Note that we will consider all components of ~q = ~r to be spatial coordinates, and the symme-
tries affecting all components, i.e. we consider overdamped dynamics. Generalizations to non-spatial
components of ~q (e.g. inertial dynamics) or symmetries not affecting all components are obvious.

15If we can, we will choose the coordinate systems such that L = 0 [10].
16I.e., we consider some components of ~q modulo some period. Geometrically, the resulting phase

space is a torus, which we will call our unit cell. We will tacitly do so if the dynamics are periodic unless
otherwise noted, or specifically refering to parts of phase space outside the unit cell.
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~A(t) is called a rocking drive, b(t) · ~Q(~r) is called a pulsating, or flashing, potential, and

we will call b(t) a (scalar) pulsating drive for short. Note that we use the same symbol ~Q
for both vector fields since the number of the arguments is sufficient to differentiate both.
If the vector field ~Q(~r) is (spatially) (Ŝ, ~L) symmetric, b(t) does not affect this symmetry

but ~A(t) may affect the symmetry. If

Ŝ ~A(t) = ~A(t) , (2.12)

i.e. ~A(t) is in the 1 eigenspace of Ŝ (for all t), the dynamics are S =
(

(Ŝ, ~L), (1, 0)
)

symmetric. If ~A(t) is not in the 1 eigenspace of Ŝ, (2.4) can only be satisfied by the
choice of (1, TS) to be such that

Ŝ ~A(t) = ~A(t + TS). (2.13)

This in turn requires that

Ŝb(t) ~Q(~r) = b(t + TS) ~Q(Ŝ~r + ~L), (2.14)

i.e. the time shifts of the pulsating drive and the rocking drive can not be chosen inde-
pendently, putting a restriction on a simultaneously rocking and pulsating potential (or
allowing for another way of breaking symmetry).

Without further specifying ~A(t), we cannot go into more detail than (2.13)-(2.14).
Therefore, we will focus on a few examples. A purely rocking drive with synchronized
components, i.e. b(t) = 1 and ~A(t) = ~Aa(t) with the direction ~A and the real valued

drive protocol a(t), is symmetric if either Ŝ ~A = ~A, i.e. above discussed situation and

(2.12), or Ŝ ~A = − ~A and a(t+ TS) = −a(t) due to orthogonality of Ŝ. From the latter it

follows that a(t + 2TS) = a(t), i.e. ~A(t) = ~A(t + 2TS) is periodic with period T = 2TS.
Symmetries of both kinds will be discussed in chapters throughout this work, see e.g. [4].

Another important example is that of a periodic symmetric elliptic drive, breaking
vorticity symmetry [97] in general. Then the symmetry Ŝ may cycle through the com-

ponents of ~A(t), with TS compensating. Consider a two dimensional dynamics with

b(t) = 1, TS = T
4
, Ŝπ

2
. Then, ~Q

(

Ŝπ
2
~r
)

= Ŝπ
2

~Q (~r) and A1(t+T ) = A1(t) = −A1(t+ T
2
) =

A2(t + T
4
) = −A2(t + T

4
+ T

2
). This situation is considered in e.g. [104] and a hexagonal

lattice symmetry is considered in [105–107].

2.5 Some examples of spatio-temporal symmetries

2.5.1 Spatially one dimensional dynamics

First, we will discuss the spatially one dimensional inertial dynamics of a point par-
ticle with mass M , coordinate x and velocity ẋ moving in the pulsating force field
F (x) = −b(t)U ′(x) of a periodic and symmetric potential U(x) = U(−x)17, subjected to
a rocking drive A(t), friction force −ηẋ and Gaussian white noise ξ(t). The dynamics

are given by (2.1) and setting ~q(t) = (x(t), ẋ(t)), ~Q(~q, t) =
(

ẋ, −ηẋ+b(t)·U ′(x)+A(t)
M

)

and

D = diag
(

0,M−1
√

2Γ
)

18. The only spatial symmetry leading to a vanishing current is

17We have set possible shifts L to zero by our choice of the coordinate system [10].
18I.e. diag (d1, d2, ..., dN )ij = δijdi.
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Ŝ0(x, ẋ) = (−x,−ẋ). The associated symmetry transformation is

S0(x, ẋ, t) = (−x,−ẋ, t+
T

2
) (2.15)

with A(t + T ) = A(t) = −A
(
t+ T

2

)
and either

U(x) = U(−x) and b(t +
T

2
) = b(t) (2.16)

or

U(x) = −U(−x) and b(t +
T

2
) = −b(t) = −b(t + T ) , (2.17)

and if A(t) = 0 ∀ t, there is no requirement to b(t).
In the two limits M = 0 or η = 0 of the particle dynamics, st = −1 symmetries

can be applied, but care has to be taken. For simplicity we consider only b(t) = 1. In
overdamped dynamics (M = 0), supersymmetry [97, 98], i.e. st = −1, U(x) = −U(x+ L

2
)

and A(−t) = −A(t), leads to a vanishing current but that result cannot be extended to
higher dimensions, as the time reflection induces a change of stability. Only the low
dimensional phase space of a one dimensional dynamics makes the symmetry work [108].

In the Hamiltonian limit η = 0, a symmetry with st = −1 requiring ~A(−t) = ~A(t + TS)
is at work, leading to a vanishing current [97, 108–110] for a certain part of phase space.

2.5.2 Spatially two dimensional dynamics

Our second example are the overdamped dynamics of a point particle in a square lattice
potential U(~r) with symmetries as shown in table 2.3, and driven out of equilibrium

by a rocking drive ~A(t). The dynamics are given by (2.1) and setting ~q(t) = ~r(t) =

(x(t), y(t)) to be the particle coordinate at time t, ~Q(~q, t) = −~∇U(~q) + ~A(t) and D =

diag
(√

2Γ,
√

2Γ
)

. Our discussion can be extended to a pulsating potential or inertia

forces along the lines of section 2.5.1. Geometrically, Ŝx, Ŝy and Ŝxy correspond to
reflections across lines, the x axis, the y axis and the separatrix x = y respectively.
Ŝ0 is a point reflection through the origin and Ŝπ

2
is a rotation by 90◦. If the periodic

drive respects these symmetries as discussed in section 2.4, we get the symmetries of the
particle dynamics. Some examples are shown in table 2.2.
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Sx Sy Sxy

S(x, y, t) (x,−y, t+ TS) (−x, y, t+ TS) (y, x, t+ TS)
mS 2 2 2
~v = (vx, vy) vy = 0 vx = 0 vx = vy

T
2

Ax(t+ TS) Ax(t) −Ax(t) Ay(t)
Ay(t+ TS) −Ay(t) Ay(t) Ax(t)

TS
T
2

T
2

T
2

S0 Sπ
2

S (x, y, t) (−x,−y, t + T
2
) (−y, x, t+ T

4
)

mS 2 4
~v = (vx, vy) ~v = 0 ~v = 0

Ax(t+ TS) Ax(t) −Ay(t)
Ay(t+ TS) −Ay(t) Ax(t)
TS

T
2

T
4

Table 2.2: Some symmetries of an overdamped particle moving in a two dimensional
square lattice potential and subjected to a rocking drive ~A(t). The symmetries are shown
in table 2.3, their action on a phase space vector (~r, t) = (x, y, t), mS, the constraint

put on the average velocity ~v = (vx, vy), the requirements on the rocking drive ~A(t) =
(Ax(t), Ay(t)) for a symmetry to be at work, and the value of TS with respect to the
period T of the rocking drive. Note that TS may be zero if the rocking drive satisfies
(2.12). In all other cases, the presence of the symmetry implies periodicity.
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2.5.3 Rigid bodies in two dimensional potentials and chirality

Our last example are the dynamics of rigid bodies (molecules) on a symmetric surface. We
consider a molecule to be an ensemble of N different point particles (monomers) coupled
to each other via suitable interaction potentials depending only on the distance of the
monomers, and of which the limit of stiff coupling is taken. The interaction potential
is invariant under all Euclidean transformations affecting all monomers equally, and the
symmetries of the potential will be symmetries of the equations of motion along the lines
of section 2.2 before we take the limit of stiff coupling. That limit is singular in that the
interaction potential may have several equilibrium configurations. This corresponds to
a specific molecule having different possible configurations, between which switches are
extremely rare under the assumed circumstances. Therefore, not all Euclidean symmetries
of the potential “survive” the limit of rigid coupling. Only those symmetries of the
potential that map the chosen equilibrium configuration onto itself will be symmetries of
the rigid molecule dynamics.

Reflection symmetries are of special interest in that context. Rigid molecules which
are identical to their image in a mirror, i.e. there is a true reflection symmetry19 which
maps the molecule onto itself, are called achiral. Molecules that are not identical to their
images in any mirror are called chiral [5, 111–113]. These symmetries are of particular
importance in biology, chemistry and medicine [69, 70].

The overdamped dynamics of a rigid molecule consisting of N monomers with fric-
tion coefficients γi and positions ~xi in a two dimensional potential (i.e.constrained to two

spatial dimensions) can be described by one vector ~X being a suitable linear combina-
tion of the N monomer positions ~xi and one angle φ [114] forming a three dimensional

phase space with elements ~q = ( ~X, φ). For the dynamics of the rigid molecule only the
symmetries of this reduced description are relevant. They follow along the same lines as
in section 2.2, i.e. (2.4). Defining [5, 67, 68, 79] (see chapter 7):

~X(t) =
N∑

i=1

γi

γ
~xi(t) (2.18)

~yi(t) = ~xi(t) − ~X(t) = O(φ(t))~yi(0) (2.19)

with φ(t) = φi(t)−φi(0) = atan
(

yiy(t)

yix(t)

)

−φi(0) ∀ i ∈ [1, N ], γ =
∑N

i=1 γi, γφ =
∑N

i=1 γi~y
2
i

and O(φ) =
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)

, our equations of motion read

~̇X(t) =

∑N
i=1

~F (~xi(t), t)

γ
+ ~ζ(t) , (2.20)

φ̇(t) =
~ez ·

∑N
i=1 ~yi(t) × ~F (~xi(t), t)

γφ
+ ζφ(t) . (2.21)

We have temporarily embedded the vectors in three dimensions to get a short notation

for (2.21). The
(

~ζ, ζφ

)

are independent Gaussian white noises (see chapter 7), the ~yi(0),

i ∈ [1, N ], define the reference configuration and φ(t) is the rotation angle with respect to

19The symmetry cannot be represented by a combination of other symmetries not involving a reflection.
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the reference configuration. Together with (2.18)-(2.19), the right hand sides of (2.20)-

(2.21) define ~Q(~q, t). Our analysis applies equally to different choices of ~X(t), as long as
~X(t) is not changed by permutation of “identical” monomers, which we will define below.
The choice of the reference configuration (~yi(0)), i ∈ [1, N ] is arbitrary, but once made,
we have to keep it fixed.

To identify the symmetries of a rigid molecule in a potential, we proceed as follows.
Mathematically, the set of monomer coordinates can be interpreted as an unordered set of
colored points {(~xi, ai)} [113], the color being the physical properties of the monomers (i.e.
mass, friction coefficient (shape), charge etc.). Using that approach, one can identify the
symmetries of the rigid molecule in free space, i.e. all (spatial) Euclidean transformations
(affecting only the coordinates of the colored points) which map the set of colored points
onto itself. These transformations map the given equilibrium configuration of the non-
stiff interaction potential onto itself, up to permutations of identical monomers. Choosing
a suitable coordinate frame of the free molecule and assuming bounded molecules in two
dimensions, these symmetries applied to the reduced description by ~q = ( ~X, φ) yield
symmetries of the dynamics.

If the free molecule has a rotation symmetry by an angle θ, O(θ), we get translational
symmetry of the φ coordinate:

~Q( ~X, φ+ θ) = ~Q( ~X, φ) (2.22)

by directly inserting the rotated molecule configuration O(θ)~xi in (2.20)-(2.21).

If the potential has a rotation symmetry Ŝ = O(θS), i.e. Ŝ ~F (~x, t) = ~F (Ŝ~x+~L, t+TS),
we get a rotation symmetry of the rigid molecule dynamics. Applying Ŝ yields a new
valid configuration of the rigid molecule, i.e. ŜO(φ)~yi = O(φ+ θS)~yi. Inserting Ŝ~xi into
(2.18)-(2.21), we get the symmetry S ′ of the rigid molecule dynamics (which is induced
by the rotation Ŝ along with the translations L and TS):

S ′(( ~X, φ), t) = ((Ŝ ~X + ~L, φ+ θS), t+ TS) , (2.23)

and S ′ satisfies (2.2) for ~Q(~q, t) as defined by (2.18)-(2.21).
Next, we consider a reflection symmetry of the potential. It is sufficient to consider

Ŝx, i.e. ~F (Ŝx~x + ~L, t + TS) = Ŝx
~F (~x, t) is reflection symmetric across the x axis. All

other reflection symmetries of ~F (~x) can be constructed from Ŝx using rotations and
translations. Applying the symmetry to the monomer positions, we can construct the new
phase space vector if ŜxO(φ)~yi(0) = O(φ′)~yi′(0) with a new angle φ′ and a permutation
of the indices on the right hand side respecting color, i.e. ai = ai′ , which requires the
free rigid molecule to have a reflection symmetry. Assuming that reflection symmetry to
be a reflection across the x axis without loss of generality20, we obtain from basic planar
geometry φ′ = −φ. A reflection across an arbitrary line passing through the origin can
be written as Ŝ = O(θS)ŜxO(−θS) where θS is the angle enclosed by the reflection line

and the x axis. We get for a general (spatial) reflection symmetry Ŝ of ~F (~x)

S ′(( ~X, φ), t) = ((Ŝ ~X + ~L, 2 · θS − φ), t+ TS) (2.24)

20In other words, we fix the reference configuration.
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as the induced symmetry of the rigid molecule satisfying (2.2) because the reflection
inverts the sign of the cross product in (2.21). Moreover, we get for its spatial part

Ŝ ′( ~X, φ) = (Ŝ ~X,−φ) , (2.25)

which is of interest in particular for the average velocity (see below).
Thus, in a two dimensional potential with the symmetries as shown in table 2.3, the

dynamics of an achiral molecule is reflection symmetric with respect to (the symmetries
induced by) Ŝx, Ŝy and Ŝxy (in the sense of the spatial symmetry applied to all monomers,
followed by some suitable Euclidean symmetry not involving any reflections across lines),
while that of a chiral molecule is not. Note that the dynamics will still be symmetric with
respect to the reflection across a point Ŝ0 or the rotation Ŝπ

2
and combinations thereof

(again to be understood in the sense outlined above).
A crucial observation is that a reflection maps a chiral molecule onto its mirror image,

i.e. symmetry (or chiral) partner. Therefore, if the potential has a reflection symmetry,
the dynamics of a chiral molecule and its partner will be mirror images of each other.
This applies in particular to their average velocities. In the overdamped dynamics (with
obvious generalizations to finite mass dynamics) of an achiral rigid molecule in a potential
having a reflection symmetry Ŝ, we get

Ŝ ′~v = ~v (2.26)

for its average velocity ~v = (vx, vy, vφ) with vx/y = 〈Ẋx/y〉 and the average angular

velocity vφ = 〈φ̇〉). In particular, this means that the average angular velocity has
to vanish. Considering a chiral molecule and its symmetry partner and denoting their
average velocities as ~vL/R

21, we get

Ŝ ′~vL = ~vR, (2.27)

i.e. the symmetry maps the average velocities of the chiral partners onto each other.
Using this property, the transport properties of chiral molecules can be controlled [5, 67]
(see chapter 7).

2.6 Symmetry breaking bifurcations

An important consequence of symmetries in the noise free D = 0 dynamics are symmetry
breaking bifurcations [100, 115]. Let ~Qµ(~q, t) depend sufficiently smoothly on a parameter
µ and have a symmetry S with mS = 2 for all values of µ. Let ~qµ(t) = ~qµ(Tq + t)
be a S symmetric and stable22 periodic solution (periodic orbit) of (2.1), and thus a
stable fixed point of the Tq-stroboscopic map ΘTq

23. A common bifurcation occurring in
such dynamical systems is a symmetry breaking bifurcation [87, 115]. At µ = 0, ~qµ(t)

21I.e. ~vL is the average velocity of the molecule described by {(~xi, ai)} and ~vR that of the molecule

described by
{

(Ŝ~xi, ai)
}

.
22I.e. a trajectory starting sufficiently close to the periodic orbit converges to the periodic orbit for

sufficiently long times.
23 The stroboscopic map (or time T map) ΘT is the map (derived from the vector field) that iterates

time by T , i.e. ΘT (~q, t0) = ~q(T + t0) with ~q(t0) = ~q being the trajectory with initial condition ~q at time
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undergoes a change of stability (becoming unstable) by one of its Floquet multipliers24

crossing the unit circle (or equivalently for the Lyapunov exponents [87]). Simultaneously
a pair of new solutions of (2.1), ~q±, springs into existence for µ > 0 with opposite stability
properties (i.e. stable) and spontaneously breaking S symmetry, i.e. ~q−(t) is the image
of ~q+(t) under S and ~q−(t) 6= ~q+(t). This situation is called a (supercritical) pitchfork
bifurcation [115] or symmetry breaking bifurcation. If the pair of symmetry breaking
orbits exists already for µ ≤ 0 (but unstable) and “vanishes” for µ > 0, the bifurcation
is called subcritical, and can lead to hysteresis if there is another stable branch25 of
the bifurcation connected to the symmetry breaking unstable branches via saddle node
bifurcations, see [115] or figure 4.7(b1) for an example. Note that in higher dimensions
the stability properties discussed need only to apply to one direction in phase space, i.e.
one eigenspace of the Floquet operator. Considering the whole spectrum of the Floquet
operator, the solutions considered may well be all linearly unstable in another direction,
and thus unstable.

An important consequence of spontaneous symmetry breaking is that if one of the
spontaneous symmetry breaking objects undergoes some change (i.e. bifurcation), its
symmetry partner(s) will undergo the same change. E.g., if a spontaneous symmetry
breaking attractor26 collides with a spontaneous symmetry breaking periodic orbit, its

t0. By choosing a different starting time, different stroboscopic mappings are obtained. Unless otherwise
noted, we will always refer to the t0 = 0 map and drop the t0 dependence. In a periodically driven
system, i.e. if ~Q(~q, t+ T ) = ~Q(~q, t), we will refer to the natural stroboscopic map as Θ = ΘT .

The stroboscopic map is a special (and very convenient) case of a Poincaré map [87, 115]. We will
consider more general Poincaré maps only for autonomous (i.e. time independent) vector fields. To
define a Poincaré map, one needs a N − 1 dimensional manifold M (the Poincaré surface of section)
transverse to the vector field, i.e. the vector field is nowhere tangent to M . The Poincaré map maps
each point ~q on M to the next intersection of the trajectory passing through ~q with M .

Thus, the dynamics of a continous time differential equation are equivalent to the dynamics of an
invertible map of lower dimension.

24For an exhaustive treatment see [116]. The Floquet multipliers are the eigenvalues of the Jacobian
dΘTq

d~q

∣
∣
∣
~q

(Floquet operator), where ~q is the fixed point of ΘTq
corresponding to the periodic orbit (thus

the Floquet multipliers are the Lyapunov numbers of the stroboscopic map). A periodic orbit is stable iff
all Floquet multipliers are in the interior of the unit circle and unstable if at least one Floquet multiplier
is outside. If a Floquet multiplier is on the unit circle, the orbit is marginally stable in that direction,
i.e. critical, which is the case at a bifurcation. The same applies to a fixed point of a general (invertible)
map instead of the stroboscopic map, but different names are used then, see [87].

25We call the family of periodic orbits (µ, qµ(t)) a branch of the bifurcation. E.g. at the symmetry
breaking bifurcation two new branches due to ~q±(t) are created. Considering the stroboscopic map, and
possibly phase space reduced to a torus, each branch corresponds to curves (µ, ~qµ(t0 +n ·T )). If ~qµ(t) are
periodic orbits with period T , i.e. fixed points of the stroboscopic map, it corresponds to only one curve.
Period two fixed points of the stroboscopic map (i.e. fixed points of the two times iterated stroboscopic
map Θ2) correspond to two curves, and so forth for orbits of higher perodicity. Non periodic orbits result
in an infinite number of curves, and thus more or less complicated structures. In particular, the invariant
measure on a chaotic attractor (see below) is usually approximated by the density of the curves in phase
space [87]. Plotting only one component of the branches versus one parameter, one obtains the usual
bifurcation diagrams [117], see e.g. figure 4.7.

26An attractor [87, 115, 118] is a closed invariant set A (i.e. for each (~q, t) ∈ A, the trajectory passing
through (~q, t) is contained in A for later and earlier times), which is contained in an open and absorbing
subset of phase space U (i.e. A ⊂ U , and for each (~q, t) ∈ U , the trajectory passing through (~q, t) is
contained in U for later times), and A attracts all trajectories in U , i.e. limt→∞distance((~q(t), t),A) = 0
for all trajectories passing through U , and the distance is the Euclidean distance [119, 120]. The largest
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symmetry partner(s) will collide with the symmetry partner(s) of that periodic orbit. If
that periodic orbit is symmetric, all the symmetry partners of the spontaneous symmetry
breaking attractor will collide with the same periodic orbit, resulting in an attractor
merging crisis (or its reverse):

Let A± be S symmetry breaking (chaotic27 attractors of ~Qµ(~q, t) at µ < 0, i.e. SA+ =
A− in the sense that each orbit ~q+(t) on A+ is mapped onto an orbit ~q−(t) on A−. At
µ = 0 let both attractors undergo boundary crises28 simultaneously (as both attractors
are each other’s image under the action of S this is always the case) such that the basin
of attraction of A− can be reached from A+ (and vice versa due to symmetry), and no
other “new” regions of phase space except for the unstable manifolds connecting both
attractors become accessible. Then both attractors form a “new” S symmetric chaotic
attractor for µ > 0 [87, 115, 123, 124]. See figure 4.7(b5) for an example. We will
call the reverse bifurcation also an attractor merging crisis. Again, in higher dimensions
(at least 3, which is always the case in this work) the same consideration applies if the
attractors have another “unstable” direction (i.e. an unstable manifold) not involved in
the bifurcation, and the objects may be chaotic repellers29 (with the basins of attraction
replaced by the sticky regions [126]).

[127] shows that under certain circumstances, i.e. spatially one dimensional inertial
dynamics of a particle subjected to a periodic driving force, a symmetry breaking bifur-
cation may be a necessary prerequisite for period doubling bifurcations, and thus for the
Feigenbaum transition to chaos [121, 122].

For symmetries with higher mS, these bifurcations will involve “more” symmetry
breaking branching solutions/attractors. We will not consider this situation in more
detail, but this may be important in the understanding of the transport properties of
dynamics with such symmetries, e.g. [104–107].

Spontaneous symmetry breaking in itself may be used for separation purposes if the
spontaneous symmetry breaking attractors have spatial coordinates differing enough to
allow for separation. See [79] for an idea in that direction in the context of chiral sepa-
ration.

of all such sets is the basin of attraction of A.
27For a thorough discussion of chaotic attractors, see e.g. [87, 115, 118]. For our purposes, a chaotic

attractor is non-periodic and contains an infinite number of periodic orbits, the dynamics on the attrac-
tor are given by the unstable manifolds of these peridic orbits and trajectories on the attractor have
positive Lyapunov exponents [87] (i.e. two trajectories starting with almost identical initial conditions
diverge). The chaotic attractors considered in this work are usually generated from a Feigenbaum or
period doubling cascade [121, 122] at some point in their “lifes”, but may contain additional structures
due to further bifurcations.

28I.e. the attractor touches its basin of attraction [87].
29E.g., if a chaotic attractor undergoes a boundary crisis, typical trajectories on the attractor will

leave the attractor, but there may be differently created chaotic repellers. The resulting repelling phase
space object is called a chaotic repeller, and the associated behaviour is called transient chaos. One
important property is that the lifetime of chaotic transients, i.e. the average time trajectories spend on
the chaotic repeller before leaving it, scales like τtransient ∝ (µ−µc)

−h, where µ is a system parameter,
µc is the value at which the chaotic repeller is created from a boundary crisis, and h is a scaling exponent,
typically larger than 1

2 [87, 123–126]. For a review, see [126].
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2.7 Spontaneous symmetry breaking transport (SSBT)

For our purposes, the absence of transport currents in any other direction than the 1
eigenspace of a symmetry, cf. (2.9), is the most important consequence of that symmetry.
Restricting ourselves to the directions orthogonal to the 1 eigenspace of the symmetry
S (or rather, the 1 eigenspace of its spatial part Ŝ) with mS = 2 for simplicity, without
noise individual orbits (and attractors) may carry transport transverse to the symmetry
(i.e. a non-zero average velocity ~v not in the 1 eigenspace of the symmetry). But they
will always come as symmetry related pairs (each being the other’s image under S) with

~v+ = Ŝ~v− , (2.28)

where we have used the +/− sign to differentiate between the symmetry partners. Thus
we have spontaneous symmetry breaking transporting attractors, called SSBT attractors
for short. One immediate consequence is that SSBT attractors enhance diffusion30. Ther-
mal noise averages over the pair of SSBT attractors. For small noise strengths this leads
to a strongly enhanced diffusion because noisy trajectories will alternate between both
attractors, and the diffusion coefficient diverges in the deterministic limit. If the SSBT
attractors vanish at some bifurcations and their remains are correctly connected31, unbi-
ased32 deterministic diffusion is found in the deterministic dynamics, with the determin-
istic diffusion coefficient scaling with the distance from the bifurcation [123, 130–136].

The simplest, but somewhat trivial, example of SSBT can be found in the Hamiltonian
dynamics of a particle in free space. The dynamics are S0 symmetric. If the particle has
an initial velocity, its orbit will be transporting. Applying S0 yields the orbit of the
particle with opposite initial velocity, and we have a pair of SSBT orbits. Actually
the same will still occur if a suitable periodic potential and drive are added in a less
trivial manner, see e.g. [110]. Another well known and well studied example are zero
crossing Shapiro steps [137], corresponding to periodic (or phase-locked33) orbits of a

30Trajectories for different realizations of the noise process and/or initial conditions are different, such
that for sufficiently large times (we consider only one dimension or component) the Einstein relation
〈
(q(t) − 〈q(t)〉)2

〉
= 2D∗t holds [8, 90, 128] with the non-zero diffusion coefficient D∗. Anomalous

diffusion refers similar relations with different algebraic relations [129]. Due to deterministic chaos, D∗

may already be non-zero in the absence of noise, resulting in deterministic diffusion, cf section 4.11.1
and section 4.22.

31They may be connected via the unstable manifolds of some periodic orbits that are part of the
attractors and allow trajectories to escape from the (former) attractors. Furthermore, the remains of
the SSBT attractors have to be part of the resulting attractor. The simplest such situation is a pair
of chaotic SSBT attractors colliding via a symmetric unstable periodic orbit in an attractor merging
crisis, see section 2.6. Other scenarios may involve transient chaotic objects connecting the former SSBT
attractors or the former SSBT attractors merging with another chaotic attractor. E.g. two periodic
attractors vanishing through tangent bifurcations and merging with a previously existing chaotic repeller
leads to intermittency [87]. If the periodic orbits are SSBT attractors, the resulting chaotic attractor
will give rise to deterministic diffusion.

32If the resulting attractor is not symmetric, biased deterministic diffusion results.
33 An attractor is called phase-locked if there are T ∗, l, ~L∗ such that

∣
∣
∣~q(j · T ∗ − t0) − ~q(t0) − j · ~L∗

∣
∣
∣ < l (2.29)

for all j ∈ N, and all trajectories ~q(t) on the attractor. E.g., a transporting period 1 orbit that advances
an integer number of spatial periods (in each component of the position) in each temporal period of a
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particle in a one dimensional periodic and symmetric potential subjected to a periodic
and symmetric drive, i.e. the same situation as considered in e.g. [110] but in the
presence of dissipation. Zero crossing Shapiro steps can be used to “create” various
intriguing transport phenomena connected with absolute negative mobility [1, 63], see
chapters 3-6. A third example is a long and narrow molecule (rod-like) with a reflection
symmetry in a two dimensional periodic egg carton (e.g. see figure 4.1(b)) potential. The
potential is Sx, Sy and Sxy symmetric, and the molecule is preferably aligned with the
x or y axes34. If the molecule is subjected to a constant weak bias force35 breaking Sx

and Sy symmetry but leaving the dynamics Sxy invariant, the molecule will move into a
direction which has a positive scalar product with the direction of the bias force. If the
bias force is weak enough, the molecule will remain aligned with the potential and move
in the x or the y direction, depending on its initial configuration. As a result, we get a
pair of SSBT attractors. Basically the same idea can be applied to less trivial molecules
to sort chiral molecules [5], see chapter 7. Lastly, SSBT can arise as a spontaneous ratchet
effect. [38] shows that an infinite number of interacting particles under non-equilibrium
conditions may undergo a phase transition into a state of broken symmetry that leads to
a spontaneous current, see also [29, 38–44], [138] show that a granular gas subjected to
shaking may undergo a phase transition again leading to a state of spontaneously broken
symmetry, which can be used to generate a spontaneous ratchet effect, and [139] show
theoretically and [140] experimentally that a symmetric non-equilibrium driving force
leads to a state of spontaneously broken symmetry of two pendula, or nanomechanical
electron shuttles driven by a symmetric ac voltage in the experiment, which results in a
spontaneous dc current across the device containing the pendula. q

To use SSBT to achieve “transport phenomena”, one usually breaks the symmetry S
that is broken by SSBT by a small perturbation. Otherwise, the transport velocity will be
zero, in which case one can use the less direct approach of diffusive sorting, which again
relies on SSBT, see e.g. section 4.22 and section 7.7.2. In the case of a point particle in
a potential the perturbation may be a small (constant) tilt of the potential (force) but
also a parametric asymmetry of the potential. In the case of an extended body (i.e. the
example of the rod-like molecules) this may be a parametric asymmetry of the molecule
breaking its reflection symmetry. We now consider the family of dynamical systems
implied by ~Qµ(~q, t), sufficiently smooth in µ. Let ~Q0(~q, t) have a symmetry S (again with

mS = 2, but generalizations are obvious) that is broken for µ > 0, i.e. ~Qµ(~q, t) , µ > 0 are
not S symmetric. Moreover, we assume a pair of SSBT (or more generally spontaneous
symmetry breaking) attractors36 A± (as above) at µ = 0. At µ = 0 we have SA± = A∓.
If the situation at µ = 0 is structurally stable, i.e. typical, we get

SA± ≈ A∓ (2.30)

time (with period T ) and space (with period ~L) periodic dynamical system is phase-locked with T ∗ = T

and
L∗

i

Li
∈ Z and each component of the average velocity is an integer multiple of the corresponding

component of the fundamental velocity: vi = nLi

T , n integer. If that periodic orbit undergoes a period

doubling cascade, the result will be a phase-locked chaotic attractor with T ∗ = T and
L∗

i

Li
∈ Z [137].

The same applies with regard to well chosen Poincaré surfaces of sections in autonomous dynamics, see
chapter 7.

34Imagine a rod in an egg carton.
35I.e. a tilt of the potential.
36Generalizations to other (e.g. not stable) objects are obvious.
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for 0 < µ ≪ 1. This is to be interpreted in the sense that for sufficiently small µ each
perturbed attractor can be obtained from the attractor at µ = 0 by Taylor expansion in µ.
For almost all initial conditions, orbits on both attractors will be rather “similar“ either
directly, in the case of periodic attractors, or statistically for non-periodic attractors.
Moreover, all smooth properties of the attractors (i.e. smooth functions of all external
parameters, such as the coordinate ~q(t∗) of some specific orbit at some specific time t∗ on
the attractor or the pseudopotential depth of attractors37) will vary continuously under
changes of µ until a bifurcation occurs. This applies particularly to discrete properties of
the attractors (such as the periodicity of periodic orbits, or the average velocity in case
of phase-locked orbits) which will be identical even for µ > 0.

If ~Qµ(~q, t) additionally depends on some more external parameters, and calling the
whole space of parameters the parameter space, the regions in parameter space in which
the symmetry related pair of attractors undergoes bifurcations will be “similar”. We con-
sider only one additional parameter for simplicity. We define the set (region) of parameter
space enclosed by the set of parameters at which the attractors undergo bifurcations that
change their stability to unstable, or where they vanish, their region of existence which
we denote G±(µ) for the two attractors. At µ = 0 the sets will be identical for both
attractors, G+(0) = G−(0) = G0, and we assume G0 to be an interval. For small µ > 0,
the borders of G±(µ) will be lines in parameter space with different slopes. Around the
borders of G0, and for µ > 0, typically there will be regions of parameter space in which
only one of the symmetry partners38 is stable. See figures 3.1 and 7.4 for examples.
By choosing the “right” border, one can choose between the attractors. Assuming the
solutions of the SDE to be dominated by these attractors for weak thermal noise, the
transport behavior can be controlled.

In the example of a point particle in a periodic potential, one can choose between
transport directions in the direction orthogonal to the 1 eigenspace of S. µ introduces
some “preferred” direction in the system (such as a constant tilt of the potential), and
the transport properties of the system will be dominated by the interplay of SSBT and
µ, which may lead to nontrivial response behavior [1, 2, 4, 63, 92, 93]. In a similar
context, SSBT of an infinite number of interacting point particles has been reported in
e.g. [38, 40–44, 138] as a phase transition, again with concomitant nontrivial response
behavior. Concerning the example chiral rod-like molecules, one can choose a border of G0

such that one chiral molecule is transported in the x direction and its mirror image in the
y direction leading to separation [5] if µ is the chirality inducing “asymmetry”. That way,
SSBT can be exploited to create a sensitive dependence of the transport properties on
the system parameters (e.g. particle properties) needed for separation purposes. These
considerations can be extended to the unstable objects left behind by the attractors
outside their regions of existence. Typically, the escape times from these objects scale
with the distance from the region of existence of the attractor [126, 146, 147], allowing
for a similar treatment as above, see e.g. [2], Sec. V D.

37The pseudopotential depth VA is discussed in e.g. [141–145]. Basically, the mean escape time τesc

from an attractor perturbed by a small amount of thermal noise of strength Γ scales like τesc ∼ e
VA
Γ ,

i.e. it follows the same law as the escape of a particle from a potential well would. There are different
models for the prefactor [144]. See also [2] for an investigation in the context of SSBT attractors.

38Strictly speaking, the attractors are only symmetry partners at µ = 0. We will call the two attractors
symmetry partners also for µ > 0, tacitly referring to their “similarity”, as discussed in this section.
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2.8 Summary and conclusion

We have formally introduced symmetries in ordinary and stochastic differential equations
and identified the simple symmetries relevant to this work, mainly those of a square
lattice and a rocking drive. Considering different symmetry classes, the results of the
remainder of this work can be extended in the same framework to other dynamics. SSBT
attractors, i.e. a pair39 of attractors carrying currents of opposite signs with respect
to a symmetry40 may be used to control the transport of Brownian particles. Without
perturbing the symmetry, the enhancement of diffusion due to SSBT attractors can be
used to sort particles. Weakly perturbing the symmetry, and thus “choosing” one of the
SSBT attractors, the different particle species can be transported into opposite directions
with respect to the symmetry. Due to the nonlinear interplay of SSBT, the perturbation
and noise, the outcome of this interplay is nontrivial and can lead to an unexpected
response behavior. The determination of this outcome in some special cases is the aim
of this work.

In chapter 3 we will consider the dynamics of an inertial Brownian particle in a S0

symmetric spatially one dimensional potential subjected to appropriate driving forces.
Using SSBT, various absolute negative mobility related “unexpected” response behaviors
of the particle can be explained [1–3]. In chapters 4-5 we consider the overdamped
dynamics of a Brownian particle in a two dimensional symmetric square lattice potential
and subjected to appropriate driving forces. Due to spontaneous symmetry breaking and
SSBT, the particle can be directed into almost any direction, or an ensemble of different
particles can be sorted simultaneously [4]. In chapter 6 we consider the dynamics of
two coupled overdamped particles in a spatially one dimensional S0 symmetric potential
driven by a symmetric drive. We will show that SSBT can be used to generate the same
“unexpected” response behaviors as discussed in chapter 3. In chapter 7 we consider the
dynamics of chiral molecules in a two dimensional square lattice potential and show that
SSBT can be used to separate the chiral partners, either by breaking all symmetries or
by using diffusion enhancement in the presence of S0 symmetry [5].

39or more
40in the sense that the symmetry maps the current of one attractor onto that of the other
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Chapter 3

Spatially one dimensional dynamics

In this chapter we discuss spontaneous symmetry breaking transport (SSBT) in spatially
one dimensional dynamics, starting with a brief introduction to SSBT of underdamped1

Brownian particles. The main results are summarized in the brief account [1] and the
long account [2], of which we include preprints2 in sections 3.2-3.3. In section 3.4 we
review the mechanism leading to SSBT induced absolute negative mobility (ANM) and
its relation to the Bessel function approximation of Shapiro steps3. [137]. The effects
predicted theoretically in [1] have been realized experimentally and published in [3], which
we preprint in section 3.5. In section 3.6 we will discuss the method with which we have
fitted the experimental data to the theoretical model and review in detail the mechanism
which gives rise to ANM (or negative absolute resistance) in the experiment. We close
this chapter by a brief discussion of how the fitting of experimental data to a theoretical
model in [3] could be done in less than a minute instead of several days without much
effort using a graphics processing unit (GPU) (section 3.7).

3.1 Introduction

Recently, anomalous transport behavior4, namely a Brownian particle moves uphill
against an applied bias force in spatially one dimensional dynamics, has been found
and explained by the presence of SSBT in the zero bias (symmetric) dynamics [1, 63].
This discovery has led to a series of publications [2, 148–150], has been demonstrated
experimentally in [3], and has enabled the discovery of closely related effects due to col-
ored noise [151], superimposed ratchet effects [92–95] or the same effects in a different
system (i.e. a different potential) [94]. In spatially one dimensional dissipative systems
SSBT has been known for a long time in the field of Josephson junctions [152] and has
been explained within the picture of a single particle moving in a rocked washboard po-
tential [153] onto which the dynamics of a Josephson junction can be mapped within the

1I.e. the particle dynamics include inertia effects.
2The preprints are largely identical to the printed articles. The latter can be obtained via the pub-

lishers.
3 In short, Shapiro steps correspond to a single particle in a periodic potential synchronizing with an

externally applied periodic driving force via the nonlinearity of the potential, resulting in the particle
current v taking a rational value when appropriately normalized to the period of the drive and the period
of the potential.

4See [51] for a review of some non-equilibrium response behaviors defying “linear” expectations.
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RCSJ (resistively and capacitively shunted junction) model under certain circumstances
[7, 64, 65]. In that field SSBT is more commonly known as zero crossing5 Shapiro steps
[154] and has been particularly useful for zero bias voltage standards [137, 155].

In short, Shapiro steps correspond to a single particle in a periodic potential syn-
chronizing with an externally applied periodic driving force via the nonlinearity of the
potential, resulting in the particle current v taking a rational value when appropriately
normalized, i.e.

v = 〈ẋ〉 = lim
t→∞

1

t

∫ t

t0

ẋ(t′)dt′ =
n

m

L

τ
(3.1)

with L the period of the potential, τ the period of the periodic drive n ∈ Z and m ∈
N \ {0}.

As has been detailed in chapter 2, if the potential and the drive are symmetric (and
the dynamics are thus S0 symmetric), zero crossing Shapiro steps are always found in
pairs carrying currents of opposite signs. Upon perturbing the symmetry, the result is
determined by the interplay of the perturbation, noise and the Shapiro steps and is thus
influenced by the nonlinearity and broken thermal equilibrium, allowing for counterin-
tuitive transport behavior not found in simpler (linear or equilibrium) dynamics. Our
results are summarized in the following publications, the brief account [1] and a more
detailed account [2]. In particular, the understanding of the remainder of this chapter re-
quires the reading of [2], we will adopt the notation of [2] and refer to the model described
by (1)-(2) of [2] throughout this chapter.

5Shapiro steps show up as regions of constant non-zero voltage in the current-voltage characteristics
of Josephson junctions. In that picture the (bias) current corresponds to an applied bias force and the
voltage to the average velocity. Hence, zero crossing means that a Shapiro step crosses the zero bias axis.
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Transient chaos induces anomalous transport properties of an underdamped Brownian
particle

David Speer, Ralf Eichhorn, and Peter Reimann
Universität Bielefeld, Fakultät für Physik, 33615 Bielefeld, Germany

For an underdamped Brownian particle in a one-dimensional periodic potential we theoretically
predict three unusual transport properties: (i) A static bias force (of either sign) generates an
average particle motion in the opposite direction. (ii) A small bias leads to a particle transport in
the direction of the bias, but upon increasing the bias the particle velocity reverses direction. (iii)
For a given bias force, the particle motion follows the direction of the force for low temperatures, but
upon increasing the temperature reverses its direction. The considered model is shown to be minimal
for the occurrence of these phenomena. A detailed analysis of its deterministic properties and
the influence of thermal noise is carried out with numerical simulations that are complemented by
analytical approximations. Intuitive explanations of the basic mechanism behind the three effects are
provided; their origin is attributed to a subtle interplay between the stability of coexisting attractors,
noise induced metastability, and transient chaos. An experimental system for the realization of the
predicted effects is given within the Stewart-McCumber model for Josephson junctions. Suitable
parameter values for which these effects can be observed are quite realistic experimentally.

PACS numbers: 05.45.-a, 05.40.-a, 05.60.-k

I. INTRODUCTION

The interplay of non-linearity and (thermal) noise in
non-equilibrium systems often gives rise to quite unusual
emerging properties, in the sense that they might seem at
first glance to contradict physical intuition or every-day
experience. Prominent examples are the stabilization of
transient chaos by noise [1, 2], ratchet effects [3], stochas-
tic resonance [4], enhancement of diffusion [5], and noise
suppression by noise [6], to name but a few. In many
cases, such unusual properties can be revealed by con-
sidering the “characteristics” of the system in form of a
response to an external perturbation.

Here, we predict three anomalous transport properties
of a single Brownian particle in one dimension by study-
ing its response to an external static bias force:

(i) In the absence of the bias the symmetry of the sys-
tem rules out any systematic transport. When perturb-
ing the system by a static force of either sign (but not
too large modulus) the result is an average motion with
velocity of just the opposite sign. This quite astonish-
ing response behavior is referred to as “absolute negative
mobility”, see [7] for a recent review. For single Brow-
nian particles, it has been theoretically studied so far
in two dimensional structured systems [8] or by includ-
ing an “internal” degree of freedom [9]. Experimentally,
it has been observed for charged Brownian particles in
structured microfluidic devices [10], and due to quantum
effects in a sample of bulk GaAs [11] and in semiconduc-
tor heterostructures [12]. In the latter two cases one also
speaks of “absolute negative conductance”. For a more
detailed account of the quite extensive literature (mainly
theoretical) we refer to [7].

(ii) For small bias forces, the transport direction is as
usual, i.e. in the direction of the bias. However, upon in-
creasing the bias the transport velocity suddenly changes
sign and switches to the direction opposite to the exter-

nal force, before returning to normal for even larger bias
forces. To our knowledge, such a paradoxical non-linear
response has so far only been reported in the theoreti-
cal studies [13] of single Brownian particles confined to
two-dimensional meandering structures.

(iii) For a given bias force, the transport behavior is as
usual for low temperatures, but upon raising the temper-
ature, first turns anomalous and later again normal. In
other words, by increasing the random fluctuations due
to thermal noise the transport velocity can be reversed to
be opposite to the bias, in contradiction to our intuitive
expectation that an increase of noise would support the
downhill motion in the direction of the bias.

With the present work we continue and provide the
details of our brief account [14] on the existence of the
above described transport phenomena (i)-(iii) in a one-
dimensional dynamics of a Brownian particle for which
inertial effects play a dominant role. An independent,
closely related investigation of the above effect (i) has re-
cently been published in Ref. [15]. While the qualitative
findings therein agree with ours, the underlying physical
mechanisms are fundamentally different in the two cases,
as detailed in Sec. V.D below. Moreover, our approach
to analyze the observed effects is complementary to the
one from Ref. [15], admitting additional insight into the
underlying physical mechanisms.

The paper is organized as follows: In Section II we in-
troduce our model and the observable of main interest,
namely the average particle velocity. In Section III basic
properties of our model are discussed: It is shown that
this model is minimal for the occurrence of the above
described effects (i)-(iii), in particular a no-go theorem
is mathematically proven for the case of overdamped
one-dimensional systems. Focusing on the above effect
(i), Section IV contains a detailed analysis of the deter-
ministic properties of the model. The observed chaotic
behavior in the deep non-linear regime does not admit
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a quantitative analytical treatment. Instead, numerical
simulations are complemented by intuitive explanations
of the basic physical mechanism behind the occurrence
of absolute negative mobility. Noise effects due to fi-
nite temperatures are thoroughly discussed in Section V
and analytical approximations for the average particle
velocity are provided that agree well with the numeri-
cal simulations. After this detailed analysis of absolute
negative mobility, the occurrence of the other two phe-
nomena (ii) and (iii) in our model follows quite natu-
rally and is easily understood, as described in Section
VI. In Section VII, Josephson junctions with the prop-
erty that they can be well modeled by the so-called RCSJ
or Stewart-McCumber model are considered as a concrete
experimental system to which our theoretical predictions
apply. Suitable parameter values for which the effects
(i)-(iii) can be observed are quite realistic experimentally.
Finally, we conclude and discuss our results with Section
VII.

II. MODEL

Our working model consists in the one-dimensional dy-
namics of a Brownian particle with coordinate x(t), mass
M , and friction coefficient η [16],

M ẍ(t) = −η ẋ(t)−V ′(x(t))+f(t)+F +
√

2ηT ξ(t) (1)

where V (x) = V (x+ L) = V (−x) is a spatially symmet-
ric, L-periodic potential, f(t) = −f(t+ τ/2) is a tempo-
rally symmetric, τ-periodic driving, F is a dc-bias, and
thermal fluctuations are modeled as usual by unbiased,
δ-correlated Gaussian noise ξ(t) with units of the tem-
perature T such that Boltzmann’s constant equals one.
Furthermore, we focus on the simplest example, namely
purely harmonic potentials V (x) and drivings f(t), and
we adopt dimensionless units of time, length, and mass
such that

M = 1, V (x) = − cosx, f(t) = A sin(ωt) (2)

i.e. L = 2π and τ = 2π/ω. More general models will be
briefly addressed at the end of the paper.

Driven Brownian motion in a periodic potential is of
relevance in many different contexts, such as atomic fric-
tion, fluxons in semiconductors, superionic conductors,
Josephson junctions, charge density waves, phase and
mode locking phenomena, intracellular transport, neu-
ral activity, and so on, see e.g. Ref. [16, 17] and ref-
erences therein. The corresponding minimal model (1),
(2) has been extensively studied e.g. from the viewpoints
of noisy chaos and phase locking [18–22], resonance ac-
tivation [23, 24], stochastic resonance [25], and escape
processes [26–28]. An even much larger literature is avail-
able if one also includes slight modifications (e.g. non-
harmonic V or f), generalizations (e.g. two-dim. mod-
els), or special limits (vanishing M , η, T , f etc.) of the
basic model (1), (2), addressing various aspects of ratchet

effects [3b,29,30] and diffusive transport [16, 17], to name
but two examples.

The observable of foremost interest in (1), (2) will be
the time and ensemble averaged particle velocity

v :=
τ

L

〈

lim
t→∞

1

t

∫ t

0

dt′ ẋ(t′)

〉

(3)

expressed as a dimensionless multiple of the spatial and
temporal periods L and τ . The ensemble average is indi-
cated by 〈·〉 and the time average ensures independence
of initial transients and of the τ -periodic oscillations im-
posed by the driving f(t) in (1).

III. BASIC PROPERTIES, MINIMAL MODEL,
NO-GO THEOREM

The dynamics (1), (2) is ergodic for any finite noise
strength ηT and hence the velocity (3) unique (indepen-
dent of initial conditions). For symmetry reasons, it fol-
lows that F 7→ −F implies v 7→ −v, in particular v = 0
for F = 0. As mentioned at the beginning, our main
objective will be to find situations with opposite signs of
F and v. To appreciate that such a behavior is indeed
quite astonishing, we first give three arguments which –
at first glance – seem to prohibit it altogether.

First, according to Newton’s second law, when increas-
ing the force from F = 0 to a finite value one should
always expect a finite acceleration in the same direction
and hence a change of the velocity from v = 0 to a finite
value of the same sign. This argument, however, is no
longer conclusive for a non-linear dynamics: one cannot
simply superimpose the effects of those forces which are
already present when F = 0 with the effect of an addi-
tional finite F . Indeed there is one non-linear term in
(1), (2), namely −V ′(x).

Second, one might object that a velocity v opposite to a
dc-force F contradicts thermodynamic stability criteria,
the principle of Le Châtelier, and ultimately the second
law of thermodynamics. Again, such an argument is no
longer conclusive for systems out of equilibrium [32]. The
latter is guaranteed in (1) by the periodic driving f(t).

Third, let us consider any one-dimensional stochastic
dynamics of the form

ẋ(t) = h(x(t), t) + F + g(x(t), t) ξ(t) (4)

whose solutions x(t) are almost certainly ergodic and
continuous. Furthermore, let us define v as in (3) but
without the prefactor τ/L. For ergodicity reasons, the
time average is equivalent to the ensemble average, hence
the latter is in fact superfluous. It follows that v =
limt→∞ x(t)/t, independent of x(0) and independent of
the particular realization of the noise ξ(t) [3b]. Next,
consider two solutions x1(t) and x2(t) of (4) with identi-
cal seeds x1(0) = x2(0) and identical realizations of the
noise ξ(t), but with different dc-bias F , say F1 > F2.
Then, for any t with the property x1(t) = x2(t) it follows
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from (4) that ẋ1(t) − ẋ2(t) = F1 − F2 > 0. Exploiting
continuity, we can infer that x1(t) ≥ x2(t) for all t and
hence v1 ≥ v2 [33]. In other words, v is a monotonically
increasing function of F , implying the following no-go
theorem: v and F cannot have opposite signs for any
continuous, ergodic dynamics of the form (4) with v = 0
for F = 0. In a special case, namely for t-independent
h and constant g in (4), the same conclusion has been
reached in a completely different way in Ref. [34]. For
our purposes, the above generalization for t-dependent
h in (4) is indispensable. Namely, by comparison with
(2) we now can rigorously rule out opposite signs of v
and F in the absence of the inertia term Mẍ(t) in (1)
(overdamped limit).

Omitting the dissipative term −ηẋ(t) in (1) is equiva-
lent to the limit η → 0 with ηT kept fixed, i.e. a system
coupled to an infinitely hot bath. Then, the effect of the
potential force −V ′(x(t)) is negligible. As seen above,
this excludes v opposite to F .

As we will see later, without the last term in (1), v
opposite to F is still possible but this may now depend
on the choice of the initial conditions. Apart from that,
we can conclude that every single term in (1) is indis-
pensable. In this sense the model (1), (2) is minimal.

It remains to be shown that this minimal model indeed
can give rise to net motion against the average force [35].
In general, the dynamics (1), (2) exhibits an extremely
rich behavior as a function of its parameters η, A, ω, F ,
T . A general overview is provided, e.g., by Refs. [20–
22]. Our objective is not such a systematic exploration
but rather to unravel the above mentioned anomalous
transport behavior.

Such a behavior can readily be ruled out for very small
and large frequencies ω: Below some lower limit an adia-
batic approximation becomes valid [36], and beyond some
upper limit an approximation by means of Bessel func-
tions holds [22]; absolute negative mobility is ruled out
within the range of validity of both approximations. Our
detailed analysis shows that the lower limit is about 0.01,
and the upper limit about 2, and that

ω = 0.6 (5)

is close to the optimal choice, see also the following dis-
cussion. Moreover, as already mentioned before, for large
temperatures T the effects of the potential force −V ′(x)
in (1) become negligible. The remaining linear dynam-
ics (1) is readily solved, yielding for the velocity (3) the
result

v → τ

L

F

η
for T → ∞ (6)

in the direction of F . Hence, we can focus on the low
temperature regime.

IV. DETERMINISTIC BEHAVIOR

Starting with the unbiased dissipative dynamics (1),
(2) in the deterministic limit (i.e. F = 0, η > 0, T = 0),

the remaining control parameters are A and η. In gen-
eral, analytical progress is still fairly hopeless [20–22],
but numerical solutions are readily available. As usual
[20–22, 29], one finds that those deterministic solutions
of the dissipative dynamics (1), (2) either converge to-
wards a periodic attractor [37] or maintain an aperiodic
behavior in the long time limit, depending on the choice
of A, η, and the initial conditions.

In the case of a periodic attractor, the resulting aver-
age velocity (3) is of the form v = n/m with integers n
and m, indicating that the periodic attractor proceeds by
n spatial periods L of the potential V (x) during m time-
periods τ of the driving f(t) in (1). In the aperiodic case
we distinguish between: (i) Phase locked aperiodic: the
long time solution still proceeds by n elementary spatial
cells during m time-periods, but with an aperiodic be-
havior of the reduced dynamics within the elementary
cell [0, L] [38]; (ii) Non-phase locked aperiodic [39].

A. Numerical findings

The colors in Fig. 1 summarize our numerical findings
for a few dominating n/m-ratios, including both periodic
and phase locked aperiodic attractors. The remaining
white regions refer to non-phase locked attractors [41].
For symmetry reasons, every solution with v 6= 0 has a
coexisting twin brother with opposite v. Further, v is
invariant under A 7→ −A. In agreement with what one
would have expected, for very small and large amplitudes
A, only solutions with v = 0 survive. Also in agree-
ment with the well known behavior in the Hamiltonian
(η → 0) and overdamped (η → ∞) limits, for weak (but
finite) dissipation η one typically finds a whole mess of
coexisting attractors with different velocities v by prob-
ing different seeds [30], while for larger η the asymptotic
velocity is in most cases unique apart from the above
mentioned degeneracies due to symmetry [42]. Such a
situation with unique velocity is, for instance, observed in
the (η,A) regions around the two black crosses in Fig. 1,
which indicate the parameter values we study in more
detail below, see (7) and (12).

A magnification of the lowest red stripe in Fig. 1 is
reproduced in Fig. 2a, while in Figs. 2b-d the effect of
a finite static bias F in (1) is illustrated. As mentioned
above, the red region in Fig. 2a comprises coexisting so-
lutions for F = 0 with either v = 1 or v = −1. This
degeneracy is lifted by gradually increasing F , and hence
the regions with v = 1 and v = −1 in Figs. 2b-d start
to diverge. Focusing on any point at the border of the
colored region in Fig. 2a (an example is indicated by the
larger black cross), there is a well defined local “speed”
at which the two border-lines with v = 1 and v = −1 in
Figs. 2b-d start to move apart upon increasing F . For
any such border point (η,A) which turns blue in Figs. 2b-
d (e.g. the larger black cross) we thus expect a velocity
|v| = 1 opposite to the static bias F , at least for not too
large |F |.
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FIG. 1: (Color) Regions in the (η,A) plane with periodic and
phase locked aperiodic attractors of the unbiased, determin-
istic, dissipative dynamics (1), (2), (5), i.e. F = 0, T = 0,
η > 0, ω = 0.6, obtained by numerical integration sampling
many different initial conditions. Colors: average velocity v
from (3) on these attractors for a few dominating rational
v-values. Black: other rational v-values. White: no phase
locked attractors have been found. Overlapping of regions
with different colors typically indicates coexistence of attrac-
tors. The larger black cross represents (7) and the smaller
one (12).

B. Basic physical mechanism

The way in which the two regions with v = 1 and
v = −1 in Fig. 2 move apart and deform upon variation
of the bias F can be qualitatively understood by means
of the following two intuitive arguments. First, it is quite
clear that for sufficiently large F any net motion in the
opposite direction will finally become impossible. This
basically explains why the blue region in Fig. 2 shrinks
and finally disappears upon increasing F , while the or-
ange region grows (at least for not too large F ; later
it disappears as well). Second, it is plausible that for
any fixed amplitude A, a solution with a given velocity
|v| = 1 will dissipate on average less energy when η is
decreased. Now, consider any border point in Fig. 2a

 1
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|v| = 1 v = −1

v = −1v = −1

v = +1

v = +1v = +1

FIG. 2: (Color) (a) Magnification of the lowest red stripe in
Fig. 1. The large black cross represents (7), the small one
(12). (b)-(d): Same but for F > 0. Periodic and phase locked
aperiodic attractors with v = 1 are indicated in orange and
those with v = −1 in blue, yielding red in the coexistence
regions. Apart from this degeneracy due to symmetry (see
also main text), the asymptotic velocities v = ±1 are unique,
i.e. independent of initial conditions [41].

(e.g. the larger black cross) where the |v| = 1 solutions
cease to exist when η is decreased. But now, instead of
decreasing η we apply a small positive bias F > 0. Along
the same lines, a solution with positive velocity v = 1
gains energy on the average, which is basically equiva-
lent to saying it dissipates less. Therefore we expect that
this solution ceases to exist. While not rigorous, this ar-
gument explains why for any given A-value the border
under consideration moves into the direction of increas-
ing η upon increasing F , at least for sufficiently small
F (later, non-linear corrections take over). Analogous
arguments hold for any border point of the orange and
blue regions in Fig. 2, thus explaining why they move to
the right and left, respectively, upon increasing F . By
inspection of Fig. 2, one furthermore sees that the pa-
rameter choice indicated by the larger black cross, i.e.

η = 0.465 A = 1.24 , (7)

is optimal in the sense that it remains within the blue
region for the largest interval of F -values.

C. Bifurcation diagrams

A more detailed illustration of the above reasoning is
provided by Fig. 3. The panels (a)-(d) correspond to
horizontal sections through the larger black cross in the
corresponding panel of Fig. 2. The red dots in Fig. 3a-d
are a common way of visualizing attractors of a nonlinear
dynamics [22]. These bifurcation diagrams reveal the two
qualitatively different dynamical situations already clas-
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FIG. 3: (Color online) Bifurcation diagrams of attractors
(red) [37] and concomitant velocities (blue) versus damping
strength η from numerical solutions of the deterministic dis-
sipative dynamics (1)-(3) with T = 0, ω = 0.6, A = 1.24
and the same values of the static bias F as in Fig. 2. For
any given η and F , the red dots represent x(kτ ) modulo L
(stroboscopic map of the reduced spatial dynamics) for a set
of sufficiently large integers k such that initial transients have
died out. The dashed line at η = 0.465 correspond to the
larger black cross in Fig. 2. Coexistence of different velocities
v implies coexistence of attractors, but not vice versa.

sified above. The vertical red stripes that cover the whole
spatial period L correspond to non-phase locked aperi-
odic attractors, whereas the period-doubling cascades to
chaos and the periodic windows comprise phase locked
aperiodic and periodic attractors.

The large window without non-phase locked aperiodic
attractors in each panel corresponds to the colored region
along the horizontal sections in Figs. 2a-d. Focusing on
Fig. 3a, we find v = 0 in the entire non-phase locked
regime and within most of the small periodic windows.
Within the large window, the phase locked solution with
velocity v = 1 and its symmetry partner with v = −1
are each generated by two attractors. All four attractors
are born out of tangent bifurcations, coexist in a small
η range around η ≈ 0.53 (in which they are connected
by an unstable invariant set in phase space), and are
destroyed by way of crisis [22, 45] after evolving through a

period doubling route to chaos. In particular, four phase-
locked attractors coexist around η ≈ 0.53, but only two
velocities v = 1 and v = −1 are observed. Note that in
the stroboscopic map in Fig. 3a the actual symmetry of
the v = 1 and v = −1 solutions would be recovered after
shifting the stroboscopic times for one of them by τ/2.

For F > 0 (Figs. 3b-d) the symmetry of the period
doubling cascades is broken, especially their birth (tan-
gent bifurcations) and death (crises) points along the
η-axis no longer coincide. As a consequence, a gap is
opening up at the lower end of the phase locked regime
(small η-values), where only solutions with v = −1 re-
main possible, whereas the formerly coexisting solution
with v = 1 has lost stability and turned into a chaotic
repeller [1]. An analogous gap opens up at the upper
crises. Since one is dealing with either a periodic attrac-
tor or phase locked aperiodic solutions within the entire
phase locked regime, structural stability implies that the
time- and space-periodicities n and m do not change and
hence the velocities v = n/m indeed keep their values
±1 upon changing F . In contrast, the velocity v within
the η-regimes with non-phase locked aperiodic attractors
is expected to depend continuously on the bias F and
hence in general no longer vanishes for finite F .

The situation within the small windows is analogous to
that in the large one, but beyond the resolution of Fig. 3.
A very small periodic window containing v = ±2/3 phase
locked attractors is located in Fig. 3a at η ≈ 0.464 just
left to the dashed line, but is beyond the resolution of
Fig. 3a. It gives rise to another anomalous transport
behavior as detailed in Sec VI.

In the same vein, the results for T = 0 in Fig. 4 can
be readily understood by observing that they basically
amount to a cut through Figs. 3a-d along the dashed line
(fixed η = 0.465). The fact that the parameters in (7)
do not exactly hit the border line in Fig. 2a (see also
Fig. 3a) explains why v does not immediately jump to
−1 for F > 0. A nice illustration of three coexisting
attractors but only two velocities v = 1 and v = −1 is
visible around F = 0.13 in Fig. 4.

According to our above explanations of Figs. 2-4, the
simplest case of net motion opposite to the bias F is
exemplified by the specific parameter choice (7) and
F = 0.1. In this case, there is a unique attractor of
the deterministic dynamics (1), (2), (5), consisting of a
period m = 1 orbit whose time evolution is illustrated
by the 9 snapshots in Fig. 5. Apparently, the delicately
tuned up and down tilting of the total potential prevents
the particle from running downhill and even stabilizes the
periodic uphill motion against arbitrary perturbations of
finite duration!

Basically, the solution in Fig. 5 advances by one spa-
tial period during the first half time-period and remains
within the same spatial period in the second half time-
period. The same rough behavior applies for all the solu-
tions within the lowest red stripe in Fig. 1. Likewise, the
solutions within the next red stripe in Fig. 1 advance by
2 spatial periods during one half time-period and then
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FIG. 4: (Color online) Same as Fig. 3a, but keeping η = 0.465
fixed and instead varying F . In addition, the numerically
determined velocity v from (3) for various T is indicated in
the lower part. The numerical uncertainty is of the order of
the symbol size. The connecting lines serve as guides to the
eye. Since F 7→ −F implies v 7→ −v, negative F are omitted.

move back by one spatial period during the second half
time-period, and so on: in each red stripe the solutions
advance by n and then return by n − 1 spatial periods,
resulting in |v| = 1 in all cases, and similarly for the other
colored stripes in Fig. 1.

Besides the “main” stripe of the lowest red region in
Fig. 1 there are many very fine additional filaments em-
anating from this main stripe, see also Fig. 2a (the one
to the lower left of the larger black cross is relatively
well visible, most of the others are at or below the res-
olution of the numerics or the figures). With increasing
F the corresponding orange filaments in Fig. 2 start to
grow and move somewhat. Some of the small periodic
windows in Figs. 3 and 4 can be traced back to such fil-
aments. If a filament crosses a part of one of the other
main stripes with a different color in Fig. 1, there are
several coexisting |v|-values. As announced above, the
measure of parameter values (η,A) for which this is the
case, is quite small for moderate-to-large η. Moreover,
only the solutions within the main stripes are reasonably
robust against parameter changes and perturbations e.g.
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FIG. 5: (Color online) Time evolution of the unique attractor
of the deterministic dynamics (1), (2) with T = 0, ω = 0.6,
A = 1.24, η = 0.465 (cf. Eqs. (5) and (7)), and F = 0.1. The
black dots and red arrows indicate position and velocity of
the stable period-one orbit x(t) at 9 time instances during one
driving period. The blue curves represent the instantaneous
total potential V (x) − x [f(t) + F ] + 1 according to (1), (2).

by weak noise.

V. NOISE EFFECTS

Next we address the effect of thermal noise with finite
temperatures T in (1). As mentioned at the end of Sec.
III, we can focus on small T . The first main consequence
of any finite T is that any deterministic attractor turns
metastable, and due to the noise induced transitions be-
tween them the dynamics is always ergodic and hence the
velocity (3) independent of the initial condition. While
in the deterministic case the unstable periodic orbits and
chaotic repellers play no role with respect to the veloc-
ity (3), in the presence of noise they are back in the
game during the transitions between the attractors. Es-
sentially, the velocity (3) will thus be the average over the
individual velocities of all the attractors and repellers,
weighted according to their “lifetimes” [46].

To illustrate these qualitative arguments in more de-
tail, we next compare numerical results for finite T step
by step with our above findings for T = 0. Fig. 6 is the
analog of Fig. 1 but for finite temperature T and bias
F [47]. Apparently, the periodic and phase locked aperi-
odic solutions with v = 0 (grey in Fig. 1) are quite robust
against some noise and bias (white in Fig. 6). For the pe-
riodic and phase locked aperiodic solutions with finite v
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FIG. 6: (Color) Same as Fig. 1 but for T = 0.001 and F = 0.1.
The value of the velocity v from (3) is independent of initial
conditions and indicated by the coloring.

(colored in Fig. 1) the symmetry breaking F > 0 in most
cases leads to a dominance of the solutions with positive
v (orange in Figs. 2 and 6) but also substantial regions
with v opposite to F (blue in Figs. 2 and 6) survive at
the upper borders of some colored stripes in Fig. 1. The
quite notable positive velocities v within the lowest stripe
in Fig. 6 and the negative velocities at the upper border
of this stripe are obviously the noisy traces of the orange
and blue regions in Fig. 2c, and similarly for the other
stripes in Fig. 6.

The main conclusion from Fig. 6 is that net motion
against the bias F indeed can survive in the presence of
noise. In fact, for any given friction η between 0.1 and
0.65 there exists an interval of amplitudes A with signif-
icant v opposite to F according to Fig. 6! Furthermore,
comparison of the blue islands in Fig. 6 suggests that
there are parameter values (η,A) whose motion against
F is even somewhat faster and more robust than the one
indicated by the larger black cross, however with a more
complicated deterministic motion than the one in Fig. 5.
Its actual quantitative robustness against bias and noise
is shown in Figs. 4 and 7. Hence, we expect that by op-
timizing parameters, one may be able to further improve

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.0001  0.001  0.01  0.1

v

T

FIG. 7: (Color online) Symbols: Average velocity v from (3)
versus temperature T from numerical solutions of (1), (2),
(5) with parameter values (7) (labeled by the larger black
cross in Figs. 1, 2, 6), and with bias F = 0.1. The numerical
uncertainty is smaller than the symbol size. Red solid line:
analytic approximation (8), (10), (11); green dashed line: an-
alytic approximation (9)-(11), with velocities v+ = 0.88 and
v− = −1, cf. Fig. 9. Arrow: analytical asymptotics v → 0.358
for T → ∞ according to (6).

the maximal F in Fig. 4 and the maximal T in Fig. 7
with v opposite to F , see Sec. VB below. Comparison
of Figs. 1 and 6 furthermore suggests that periodic at-
tractors of low period are more stable against noise than
those of high period and phase locked aperiodic solutions.

A. Analytic approximation

The noisy counterpart of the deterministic, period-one
solution from Fig. 5 is depicted in Fig. 8. According to
Fig. 8a, roughly speaking, the trajectory seems to switch
randomly between pieces with a negative slope v− and
pieces with a positive slope v+. Those with v− are al-
most perfectly periodic and indeed practically coincide
with the deterministic period-one orbit and hence one
readily understands that v− = −1. Those with v+ have
an aperiodic fine structure which can be naturally un-
derstood as the fingerprint of the underlying chaotic re-
peller, see the above discussion of Fig. 3. Contrary to
the naive first guess v+ ≈ 1, the average velocity of long
lived transients on the repeller is found to be v+ ≈ 0.88,
cf. Fig. 8b. In other words, the chaotic repeller does not
strictly maintain the velocity of the former attractor, and
in fact there does not seem to be any reason why it should
do so.

We have analyzed the above noisy transitions between
the period-one attractor and the chaotic repeller by ex-
tensive numerical simulations for a number of tempera-
tures T between 2.5 × 10−3 and 6.7 × 10−4. We found
that they can be described very well in terms of escape
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FIG. 8: (Color online) Typical numerical solution x(t) of the
dynamics (1), (2), (5), with parameter values (7) (labeled by
the larger black cross in Figs. 1, 2, 6), and with T = 0.001 and
F = 0.1. (a) Global behavior. (b) Magnification of the green
window in (a). Dashed: straight lines with slopes v+ = 0.88
and v− = −1.

rates k− and k+ from the periodic orbit and the repeller,
respectively [46]. Thus, we adopt a two state Markov
model for the system with the states being the attrac-
tor (’−’ state) and the repeller (’+’ state). Asymptoti-
cally, the escape rates are given by the inverse lifetimes
of the states. In principle, these could be determined
from the average (temporal) length of the uninterrupted
v = −1 (v ≈ 0.88, respectively)-segments of the noisy
trajectory, cf. Fig. 8. The length of these segments is
expected to follow an exponential distribution for suffi-
ciently long segments, and the average lifetimes can be
obtained from the exponents of the cumulative distribu-
tion functions. However, the numerical determination of
the time instant at which the motion switches from one
state to the other turned out to be ambiguous when based
only on the particle position x(t). It is more convenient
to use a well-defined set in the (x, v) phase space that
represents the ’−’ state with motion on or close to the
phase locked attractor, and to track when the trajectory
leaves this set and enters its complement, corresponding
to the ’+’ state on the repeller.

This approach is illustrated with Fig. 9. The crosses
represent the stroboscopic signature of the v = −1 at-
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τ
)
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FIG. 9: (Color) Stroboscopic representation of the phase-
locked periodic attractor with v = −1 (black crosses), whose
time evolution is illustrated in Fig. 5, shown within three
spatial periods of the full (x, v) phase space (indicated by
the dashed lines) for three consecutive driving periods. The
colored regions represent the synchronous basin of attraction
of the attractor (see main text) also for these three driving
periods. The right cross and blue region correspond to the
first, the middle cross and green region to the second, and
the left cross and red region to the third driving period. This
picture can be periodically repeated to the right and to the
left to obtain the attractor and its synchronous basin of at-
traction for previous and later driving periods, respectively.
The synchronous basins of attraction of all these periods have
filaments that extend into the shown part of the phase space,
and if one included them, they would completely cover the
white region.

tractor for three successive driving periods, i.e. if the
trajectory starts on the rightmost cross in Fig. 9, it is
located on the middle cross one period later, and on the
left cross another period later. A deterministic solution
(T = 0) starting from any other point in the phase plane
[48] (irrespective of its color) is eventually attracted to
this periodic trajectory. The colored regions consist of
those trajectories in phase space that, while converging
to the attractor, move “synchronously” with a trajec-
tory on that attractor, i.e. a point from the blue region
jumps to the green region and then to the red region dur-
ing two successive driving periods. We term this subset
of the total basin of attraction the “synchronous basin of
attraction”, and use it to define the set in phase space
that represents the ’−’ state of the noisy dynamics in
the following way. A noisy trajectory switches from the
’+’ state to the ’−’ state when entering the blue part
of the synchronous basin of attraction within the right-
most spatial period of Fig. 9 (or the green part within
the middle period, or the red part within the left period,
etc.), and remains in the ’−’ state until it leaves the syn-
chronous basin of attraction of the associated attractor
[22]. Consequently, a trajectory in the ’−’ state moves
uphill against the force F > 0 with v = −1 exactly like a
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FIG. 10: (Color online) Arrhenius plot of the escape rates
k− and k+ from the attractor (red squares) and the repeller
(blue dots), respectively. Remaining parameter values: same
as in Figs. 5, 7-9. The statistical uncertainties are of the
order of the symbol sizes. The solid lines represent the data
fits (8), the dashed lines show (9). All fits are based only on
the escape rates for temperatures T . 0.0025, because in this
temperature range the description of the noisy trajectories
in terms of transitions between the ’+’ and ’−’ state with
respective escape rates k+ and k− is expected to be valid, as
is self-consistently concluded from the obtained values in the
exponents of (8) and (9).

trajectory on that attractor (and would continue to do so
if the noise source is switched off). The behavior in the
complementary ’+’ state is characterized by a downhill
motion close to the chaotic repeller resulting in v ≈ 0.88.

Based on this definition of the ’+’ and ’−’ states, the
average lifetime of the attractor is calculated from the
average time it takes a trajectory, initialized on the at-
tractor [49], to leave the synchronous basin of attraction
for the first time. The average lifetime of the repeller is
determined from an ensemble method [1], which basically
estimates the exponential part of the decay into the ’−’
state of a population of trajectories being initialized close
to the repeller in the ’+’ state.

The temperature dependence of the resulting escape
rates is shown in Fig. 10. The escape rate k− from the
attractor (red squares) is found to be well described by an
Arrhenius law [22], whereas the escape rate k+ from the
repeller (blue dots) is found to be roughly temperature
independent (cf. solid lines in Fig. 10):

k− = 0.14 exp(−0.0034/T ) , k+ = 0.081 . (8)

These approximations can be improved by taking into
account the temperature dependence of the pre-factor in
the Arrhenius law of k− [50], and by heuristically includ-
ing a lowest order temperature dependence of k+ of the

form
√
T , yielding (cf. dashed lines in Fig. 10)

k− = 2.5
√
T exp(−0.0028/T ) , k+ = 0.07 + 0.46

√
T .
(9)
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FIG. 11: (Color) Same as Fig. 6, but for F = 0.05 and various
T ; blue indicates negative velocities with transport against
the bias (see color panel in Fig. 6). (d) and (e) represent
magnifications of the dashed box in (c), but for higher tem-
peratures. Negative average velocities can still be observed
for T = 0.04. The black cross represents the parameter val-
ues (7).

Both, the Arrhenius form of k− and the approximate T -
independence of k+ are quite plausible, while the quan-
titative details are clearly beyond the analytical realm.

Next, the probabilities p− and p+ to be in the ’−’
state on the attractor and the ’+’ state on the repeller,
respectively, will be approximately proportional to the
inverse escape rates (lifetimes) and normalized, i.e.

p± =
k−1
±

k−1
+ + k−1

−

. (10)

Finally, this suggests to approximate the velocity v by the
average over the velocities v± associated with attractor
and repeller, weighted with the respective probabilities
p±,

v ≃ v+ p+ + v− p− . (11)

The agreement with the numerical results in Fig. 7 is
remarkably good even at rather high T , where the rate
theory is expected to fail. Surprisingly, the more sophis-
ticated form (9) of the escape rates shows no notable
improvement as compared to the less precise represen-
tation (8). The reason is that by (8) both, k− and k+,
are underestimated for larger T (see Fig. 10) so that the
respective errors compensate in (10).

B. Maximal temperature and bias

Next, we address the question: What is the maximally
achievable temperature which still supports net motion
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against the applied bias, and similarly, what is the max-
imally achievable bias?

Figure 7 shows that the attracting properties of the pe-
riodic v = −1 orbit are overruled by thermal noise effects
if T becomes large, so that finally the average velocity is
in the direction of the bias F . Although it is clear from
the discussion of Eq. (6) that for high enough temper-
atures T transport is always (i.e. for any values of the
other parameters in (1)) in the direction of F , the quan-
titative details of the temperature region with v opposite
to F depend on the specific properties of all attractors
and repellers present, and thus on the specific parameter
values in (1), (2). For our choice (7), e.g., we see from
Fig. 4 (lower part) that a smaller bias F (still F > 0)
allows for larger T with an average motion against the
bias. A more comprehensive picture of this observation
is presented with Fig. 11, showing that part of Fig. 6,
which contains the blue regions with average velocities
opposite to F , for smaller bias but larger temperatures.
From Fig. 11(d) we see that transport against the bias
is possible even for temperatures as high as T = 0.04 for
optimized values of η and A.

One might conjecture that the temperature range with
v opposite to F becomes largest for F → 0. This is,
however, not generally true, because the stability of the
present attractors can change considerably with decreas-
ing F , and even new attractors or repellers with other
T -specific properties can come into play and dominate
the transport behavior. Indeed the parameter values (7)
constitute an example for such a situation, as discussed
in detail in Sec. VI below.

From a complementary point of view, we may expect
that the strength of the bias F at which the negative aver-
age velocity finally becomes positive and then follows the
direction of F can be larger for smaller temperatures T .
Although we could find (numerically) transport against
the bias for forces up to F = 0.32 at T = 4 × 10−5, a
general statement is not possible in the same sense as
above.

C. Speedy uphill motion

In comparison with purely noise-induced negative mo-
bilities as studied in [7–9, 13, 15], the maximal velocities
against the external bias observed here are considerably
larger (typically at least by one order of magnitude). As
detailed above, this is due to the fact that for not too
large temperatures the noisy dynamics (1) is governed
by the presence of phase locked attractors with deter-
ministic transport in the direction opposite to the bias.
Accordingly, the effect can readily be accelerated by ex-
ploiting phase locked attractors with higher velocities |v|,
see Fig. 1. As an example, we consider n/m = 3 by choos-
ing the parameter values given in Fig. 12. These values
are located at the upper border of the green region in
Fig. 1 around η ≈ 0 . . . 0.23 and A ≈ 1.5 . . . 1.8, which
indicates the existence of a symmetric pair of period-one
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FIG. 12: (Color online) Average velocity v for the given pa-
rameter values and for various temperatures, obtained from
numerical simulations of (1), (2). The indicated values for η
and A are located at the upper border of a green region in
Fig. 1 with deterministic transport velocities |v| = 3.

attractors with |v| = 3. Hence, transport against the
bias F occurs by the same mechanism as illustrated with
Fig. 2 for the |v| = 1 attractors. The resulting speedy
uphill motion is depicted in Fig. 12 for various temper-
atures T . Surprisingly, it is comparably robust against
noise and only little less stable with respect to increasing
bias forces F as the slower uphill motion in Fig. 7.

In principle, unlimited acceleration of the uphill trans-
port seems to be possible by using attractors with even
higher deterministic velocities |v|. In practice, however,
this is limited by the fact that such attractors are typi-
cally located at smaller η-values in coexistence with other
attractors, and only exist in rather small parameter re-
gions.

D. Non-transporting attractors and comparison
with Ref. [15]

Non-transporting phase locked deterministic solutions
with v = 0 typically exist over large parameter ranges
(see, e.g., the grey region in Fig. 1). If there is a param-
eter region, in which such a non-transporting solution
coexists with a symmetric pair of transporting attractors
at F = 0, then absolute negative mobility can occur for
suitable parameter values at the border of that region
by the same mechanism as detailed in Fig. 2. The only
qualitative difference to Fig. 2 is that the white back-
ground would be grey, indicating the coexisting v = 0
attractor. This situation is exemplified by Fig. 13 for
some finite bias F > 0 (compare to Fig. 2c); suitable pa-
rameter values are located in the blue region, indicating
the existence of a transporting attractor with v = −1/2.
Correspondingly, the noisy trajectories at small temper-
atures T switch between three different states, since the
uphill and downhill transporting ’−’ and ’+’ states are
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FIG. 13: (Color) Same as Fig. 2, but for the case of coexisting
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2
attractors. The indicated cross and the

chosen frequency ω and bias force F represent the parameter
values used in Figs. 1 and 2 of Ref. [15]; a vertical section
through the cross corresponds to Fig. 1(a) therein. (Note
that the units used by us and in Ref. [15] differ by some
factors of 2π.)

now complemented by a non-transporting ’0’ state. As
a main consequence, the achievable velocities v opposite
to F are slowed down considerably.

In contrast to the above situation, the parameter val-
ues indicated by the black cross in Fig. 13 are never
reached by the blue region for any bias F > 0 (nor
by the orange and red regions). Nevertheless, absolute
negative mobility can occur by another, different mech-
anism: Obviously, at T = 0 we find v = 0, because the
non-transporting solution is globally attractive. At small
temperatures T , however, the dynamics is governed not
only by the stable v = 0 orbit but also by two repellers
that emerge from the v = −1/2 and v = 1/2 attractors
due to crises occurring at the border lines of their stabil-
ity regions (the blue and orange region in Fig. 13). Since
the escape time from a repeller scales with the distance
from the crisis according to some power law [51], and
since the black cross in Fig. 13 for F > 0 is closer to the
blue than to the orange region, the major contribution
of the chaotic repellers to the noisy trajectories comes
from the repeller with negative v ≈ −1/2. As a result,
an average velocity v opposite to the bias F is observed
for small temperatures T .

The above explanations represent our announced com-
plementary intuitive insight into the basic physical mech-
anism behind the effect of “absolute negative mobility
induced by thermal equilibrium fluctuations”, recently
reported by Machura et al. [15]. While the latter effect
per se is qualitatively very similar to the one discussed in
the previous Section of our present paper (see also Ref.
[14] and footnote [22] in Ref. [15]), the underlying ba-
sic physical mechanism is thus quite different. Moreover,
qualitatively the maximally achievable velocities are sub-

0 0.05 0.1 0.15 0.2 0.25
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FIG. 14: (Color online) Symbols: Numerically determined
velocity v from (3) for (1), (2) with parameters as indicated
in the plot. The numerical uncertainty is smaller than the
symbol size. The red line is a guide to the eye.

stantially smaller: In our units, the maximal velocity v
opposite to a negative bias F reported by Machura et al.
[15] is about v = 0.017, and our more detailed numerical
analysis of the parameter range from Fig. 13 indicates
that one indeed can hardly do better.

In summary, the distinct feature of the effect reported
in Ref. [15] is that it is purely noise induced, while the
effect at the main focus of Ref. [14] and our present study
has the advantage of producing much larger velocities.

VI. FURTHER ANOMALOUS TRANSPORT
PROPERTIES

Our so far understanding of the system (1), (2) allows
us to readily predict further remarkable transport prop-
erties. Two examples are discussed in the following.

First, we consider the small black cross in Fig. 2 at

η = 0.2 A = 0.85 . (12)

For small bias F we are somewhere in the white or grey
domains of Fig. 1. Around F = 0.1 the small black cross
in Fig. 2c penetrates a bulge of the orange area which
is “moving upwards” as a function of F . Hence, a ve-
locity v of the same sign as F is expected. At the still
larger F -value in Fig. 2d, the small black cross has left
the orange bulge again and now instead is hit by the blue
stripe, so that we expect a velocity v opposite to F . The
corresponding prediction for the velocity v as a function
of the bias F is nicely confirmed by the numerical simu-
lations in Fig. 14. For small bias, the velocity direction
is as usual, but changes sign upon increasing the bias,
before returning to normal for even larger F [52].

Second, we focus on the small periodic window around
F = 0.007 in Fig. 4. This window represents an attrac-
tor with a unique deterministic velocity v = 2/3 in the
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FIG. 15: (Color online) Same as Fig. 7, but for F = 0.007.
Lines: approximation (10)-(11) with v+ = 2/3, v− = −1, and
k+ = 0.024 exp(−1.35× 10−7/T ), k− = 0.036 (red solid line),

k− = 0.038 − 6.6
√
T k+ = 63

√
T exp(−1.1 × 10−7/T ), (green

dashed line).

direction of the bias F . The reason for the appearance of
this attractor at small bias forces is that the parameter
values (7) indicated by the larger black cross in Figs. 1
are not exactly located at the upper border of the red
stripe but somewhat above. The v = −1 attractor con-
tained in this red region and emerging from it in blue in
Fig. 2 reaches the larger black cross only at F ≈ 0.012
(cf. Fig. 4); for smaller F it turns into a chaotic repeller.
Similarly as in (8)-(11), one thus has a competition be-
tween the deterministic attractor with v+ = 2/3 and this
chaotic repeller with v− ≈ −1. As confirmed by Fig. 15,
for small T the attractor with v ≃ 2/3 wins, then the
repeller with v ≃ −1 takes over, and finally the usual
large-T asymptotics v = (τ/L) (F/η) ≃ 0.028 according
to (6) is approached. Therefore, the response behavior
for the bias force around F = 0.007 is as usual in the
direction of F for low temperatures, but upon increas-
ing the temperature first turns opposite to F , and then
switches again to normal. Note that of the temperatures
T > 0 shown in Fig. 4 only the largest one falls into the
ranges with positive v at F ≈ 0.007.

VII. ABSOLUTE NEGATIVE CONDUCTANCE
IN A JOSEPHSON JUNCTION

As a concrete experimental example of the predicted
absolute negative mobility we consider the Stewart-
McCumber or RCSJ (resistively and capacitively shunted
junction) model [22, 31] for the phase difference ϕ across
a Josephson junction with capacity C, resistance R, crit-
ical current Ic (maximal Josephson current), and exter-
nally imposed current I(t). Within this model, the ϕ-
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FIG. 16: (Color online) Same data as the green symbols
in Fig. 4 but presented according to the Stewart-McCumber
model (1), (2), (13), (14) for a Josephson junction with re-
sistance R ≈ 0.2 Ω, capacity C ≈ 250 pF, critical current
Ic ≈ 180µA, temperature T ≈ 4.2 K, driven by an ac-current
of frequency 28 GHz and amplitude 220µA.

dynamics is governed by the dimensionless equations (1),
(2) via the identifications

ϕ(t/ωp) = x(t), I(t/ωp) = Ic [f(t) + F ],

η = (RCωp)
−1, T = C (ωp/Ic)

2 kBT
∗ , (13)

where ωp := (2πIc/Φ0C)1/2 is the plasma frequency,
Φ0 := h/2e the flux quantum, and kBT

∗ the thermal
energy.

As far as the RCSJ model is concerned [22, 31], the
voltage U(t) across the junction is given by Φ0ϕ̇(t)/2π
(second Josephson-relation) and hence its average ac-
cording to (3), (13) by

〈U〉 =
Ic
C

ω

ω2
p

v (14)

Hence, absolute negative mobility for a Brownian particle
(1), (2) corresponds to absolute negative conductance in
a Josephson junction, characterized by a dc-component
of the current I(t) in (13) with sign opposite to average
voltage in (14).

Using the relations (13),(14), our predictions from
Fig. 4 can be realized by a Josephson junction with re-
sistance R ≈ 0.2 Ω, capacity C ≈ 250 pF, critical current
Ic ≈ 180µA, temperature T ≈ 4.2 K, driven by an ac-
current of frequency 28 GHz and amplitude 220µA. The
theoretically predicted I-V curve is shown in Fig. 16.

Additionally, by varying the AC amplitude, noisy I-V
characteristics corresponding to bifurcation diagrams in
the A direction should be accessible using the same junc-
tion. We remark that it is not necessary to hit the given
parameters exactly as can be inferred from Fig. 6. Pa-
rameter values as exemplified in Fig. 16 are quite realistic
and the resulting voltages 〈U〉 easily detectable.
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Such an experiment [54] is presently under construc-
tion in the group of Dieter Kölle and Reinhold Kleiner
in Tübingen (Germany). In fact, the effect might have
already been implicitly observed (without further discus-
sion or explanation) in the experimental work [55].

VIII. SUMMARY AND CONCLUSIONS

In conclusion, we have unraveled in Figs. 4,14,15 three
rather astonishing transport properties of the one dimen-
sional stochastic dynamics (1), (2): (i) a transport op-
posite to the static bias F (absolute negative mobility,
Fig. 4), (ii) anomalous non-linear response in form of a
average particle velocity that follows the direction of F
for small F , but switches direction upon increasing F
(Fig. 14), and (iii) a reversal of the transport direction
from normal to anomalous at a fixed bias force F but for
increasing temperature T (Fig. 15).

Apart from our own brief account [14] on such phe-
nomena and the independent discovery of effect (i) by
Machura et al. [15] (see Sec. V.D), further prelimi-
nary hints to the existence of effects (i) and (ii) in a
one dimensional model (1), and an experimental trace
of effect (i) are also implicitly contained already in the
previously existing literature on Josephson junctions (see
[35, 52, 55]). These findings are, however, not further dis-
cussed or explained in those works, because their focus is
on other (dynamical) aspects of Josephson junctions. In
fact, these “accidental” observations of the above effects
(i), (ii) point to their remarkably common occurrence
in dynamical systems like (1), as demonstrated by our
present paper.

The above effects (i)-(iii) are observed for system pa-
rameters that are all of the order of magnitude of unity.
This fact makes analytical studies extremely difficult;
for instance, a perturbational approach becomes com-
pletely impossible. Accordingly, our detailed analysis of
the model (1), (2), its deterministic limit, and the effects
of noise due to finite temperatures relies on extensive
numerical simulations. An important exception is our
strict proof using mathematical and physical arguments
that the model (1) is minimal, in the sense that any of
the terms in (1) is indispensable for the occurrence of the
above phenomena.

Based on the numerical findings, we were able to de-
velop a simple intuitive physical picture for the mecha-
nism behind the observed response phenomena. Their
occurrence is traced back to a subtle interplay of de-
terministic phase locked attractors, transient chaos on
chaotic repellers and noise-induced metastability of these
dynamical “states”. The latter has been shown to be well

described by a simple rate-theoretical approach (see Sec-
tion V.A).

Apart from their fundamental interest [11, 12, 32] the
effects (i)-(iii) may be applied for particle sorting [10],
stabilization of unstable states, and making work (trans-
port) available upon request [7]. For instance, one can
see from Fig. 6 that particles with different friction coef-
ficients (e.g. due to different sizes) can easily be guided
into opposite directions by a suitable choice of the driving
amplitude A.

As an experimental realization of the predicted effects
we propose resistively and capacitively shunted Joseph-
son junctions. Their dynamical behavior is character-
ized by the RCSJ- or Stewart-McCumber model which is
mathematically equivalent to our model (1), (2). Suitable
parameter values for which the above effects are predicted
to occur are quite realistic experimentally.

Further experimental realization may be cold atoms
in resonance with laser induced optical lattices [56, 57]
and diffusion of single atoms and molecules on atomically
clean crystal surfaces [58–60]. In such systems, the bias F
and/or the driving f(t) in (1) may also be substituted [61]
by suitable “traveling-wave potentials” (pump) in place
of the static V (x). More precisely, −V ′(x(t)) + f(t) + F
in (1) is replaced by −V ′(x(t) − v0t − g(t)), with av-
erage velocity v0 and superimposed sinusoidal oscilla-
tions g(t). Indeed, for the transformed variable y(t) :=
x(t)− v0t− g(t) one readily recovers [61] the original dy-
namics (1) with F = −ηv0 and a suitably chosen A in (2).
The effects predicted in the present work would result in
averaged velocities that are considerably faster than the
traveling velocity v0 of the “entraining” potential, so that
the particle is “running ahead” of the traveling-wave po-
tential.

Finally, the basic physical mechanism as identified in
our discussion of Figs. 1-3 is clearly quite robust against
a large variety of modifications and generalizations of the
dynamics (1), (2). The only indispensable prerequisites
are deterministic chaos, phase locking, and the symmetry
properties V (−x) = V (x) and f(t + τ/2) = −f(t). For
example, we have found similar effects for various non-
harmonic V (x) and f(t) in (1) and also when the “period-
ically rocking force field” −V ′(x)+f(t) in (1) is replaced
by a “pulsating field” of the form −V ′(x) [1 + f(t)].
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Figure 3.1: Phase diagram at T = 0 as described in [2] (figure 2) for (a) the dynamics
described by (1)-(2) of [2] and ω = 0.6, T = 0 and A = 1.24, the colors being identical to
figure 2 of [2] and (b) for a particle with coordinate x(t) in a pulsating potential obeying
ẍ(t) + ηẋ(t) + sin(0.7t) sin(x(t)) = F . All phase diagrams in this chapter have been
calculated along the lines of section 3.9.1.

3.4 Mechanism of absolute negative mobility

The mechanism leading to ANM has been described in [1, 2], see section IV.B of [2].
Complementary to [1, 2], the intuitive argument can be beautifully illustrated by the
phase diagram figure 3.1 showing the regions of existence of the involved attractors in
the η-F plane of parameter space for two different dynamics. The argument can be
further explained by the relevant work contributions. For simplicity, we consider a pair
of period 1 SSBT attractors with average velocities v± = ±1 (cf. (3) of [2]) and ẋ±(t) =
± L

2π
ω + ζ±(t). When the particle starts at x0± at time t0± and advances one length unit

in the corresponding transport direction, the work contribution of the dissipation (at zero
temperature [156]) is

W η
± = −η

∫ x0±±L

x0±

ẋ±(t)dx±(t) = −ηωL
2

2π
− η

∫ t0±+ 2π
Ω

t0±

ζ2
±(t)dt , (3.2)

and the contribution of the bias force is

W F
± = ±FL . (3.3)

An increase of F can be compensated for by a decrease of η for the attractor transporting
against the bias force, and an increase of η for the symmetry partner, if the change of
second term in (3.2) and that of all remaining work contributions could be neglected.
The second term in (3.2) can increase or decrease when any parameter of the dynamics is
changed, and the same applies to the work performed by the potential and the periodic
drive. Essentially, these contributions depend on the shape of the trajectory, i.e. ζ±(t),
and if that were to remain constant when F and η are varied, the intuitive explanation
would be exact. Furthermore, the argument is supported by the so called Bessel function
approximation [137, 157], cf. (3.5), and the relation between F and η implied by the
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argument becomes exact for the attractor carrying transport in the direction of the bias
force for large F because v = F

η
for F ≫ 1 and all other parameters of order 1. Lastly,

it can be extended to phase-locked chaotic attractors when a longer time interval is
considered, and the argument can be extended to the drive frequency because a change
of the drive frequency has the same effect as a change of the friction coefficient in (3.2)
due to phase-locking, see also section 4.11.2. Hence, we expect the region of existence of
the attractor transporting against the bias force to move towards smaller η when F is
increased, and that of its symmetry partner to move towards larger η. We have found
this argument to be surprisingly well satisfied for the dynamics considered in figure 3.1
for many different parameters.

A particularly noteworthy feature of SSBT of underdamped particles in spatially one
dimensional periodic potentials subjected to a sinusoidal periodic rocking drive is that
the dynamics can be well approximated by the so called Bessel function approximation
[137, 154]. The approximation works for large frequencies ω and drive amplitudes A by
making the ansatz

x(t) = x0 + nωt+
A

ω
√

ω2 + η2
sin
(

ωt+ atan
( η

ω

))

, (3.4)

inserting (3.4) into the equations of motion and expanding everything into a Fourier
series. One obtains that the regions of existence of Shapiro steps of order n, i.e. with
v = nω and period 1, are given by Bessel functions:

|F − ηωn| ≤
∣
∣
∣
∣
∣
Jn

(

A

ω
√

ω2 + η2

)∣
∣
∣
∣
∣
. (3.5)

The borders of the regions of existence given by this approximation can be shown [137]
to be saddle node bifurcations, and there are no borders towards smaller η within the
approximation, and the 3.5 is in line with the intuitive argument discussed above with
respect to the movement of the SSBT parameter regions.

Upon decreasing the frequency towards the “nonlinear regime” [137, 158] (see e.g.
figure 27 of [137] and figure 3 of [158]), these Bessel function shaped regions of existence
(and the associated Shapiro steps being called Bessel function Shapiro step) develop a
resonance like instability at their center leading to a period doubling cascade to a chaotic
attractor and the subsequent destruction of that attractor via a boundary crisis [137].
Exactly at this instability, ANM is found close to the regime of validity of the Bessel
function approximation [1, 2, 157]. Even for parameters “deep” in the nonlinear regime
far from the validity of the Bessel function approximation, the regions of existence of
SSBT (and, more generally, phase-locked attractors) keep some of the features of the
Bessel function form, most notably the saddle node bifurcation close to the border given
by the approximation (see figure 3 of [158]).

Due to the very general nature of the approximation, basically relying only on Fourier
expanding the equations of motion in the drive frequency, this locking mechanism is
of a very general nature, and hence can be found also for differently shaped potentials
[4], drive forces [159–161], overdamped particles [7, 162, 163] and higher dimensions
[4, 7, 17, 164, 165], while the associated analytical computations usually cannot be carried
out due to the added complexity. In particular, we have found a very similar behavior,
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including the remains of Bessel function shaped regions of existence of SSBT attractors,
for an overdamped particle in a two dimensional periodic and symmetric potential, see
[4] and chapter 4.
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2Fakultät für Physik, Universität Bielefeld, 33615 Bielefeld, Germany
3Institut für Mikro- und Nanoelektronische Systeme, Universität Karlsruhe (TH),

Hertzstraße 16, D-76187 Karlsruhe, Germany
(Dated: May 9, 2011)

We experimentally demonstrate the occurrence of negative absolute resistance (NAR) up to about
−1Ω in response to an externally applied dc current for a shunted Nb-Al/AlOx-Nb Josephson
junction, exposed to a microwave current at frequencies in the GHz range. The realization (or not)
of NAR depends crucially on the amplitude of the applied microwave current. Theoretically, the
system is described by means of the resistively and capacitively shunted junction model in terms
of a moderately damped, classical Brownian particle dynamics in a one-dimensional potential. We
find excellent agreement of the experimental results with numerical simulations of the model.

PACS numbers: 05.45.-a, 05.40.-a, 05.60.Cd, 74.50.+r

When a static force is applied to a system consisting
of mobile particles, these particles usually move in the
direction of the force, i. e., they show positive mobility,
which leads to, e. g., a positive conductance or resis-
tance in electrical systems. Also well known is the fact
that such a system can exhibit regions of negative differ-
ential mobility/resistance [1–6]. However, the absolute
mobility/resistance usually remains positive. The oppo-
site response, i. e., a motion against the static force is
termed negative absolute mobility or negative absolute
resistance (NAR). This is clearly a quite counter intu-
itive effect which, at first glance, might seem even to be
in conflict with Newton’s laws and thermodynamic prin-
ciples [7]. Yet, nonlinear systems being driven far from
equilibrium can indeed exhibit not only a negative dif-
ferential resistance but also a NAR effect. Unambiguous
and convincing experimental observations of NAR are
still quite scarce, involving systems consisting of electrons
in a sample of bulk GaAs [8], electrons in semiconductor
heterostructures [9], electrons in low dimensional conduc-
tors [10], and charged Brownian particles in structured
microfluidic devices [11]. Apart from the low dimensional
conductors, the system was always driven out of equilib-
rium by means of an ac driving force and then its re-
sponse to an externally applied static perturbation was
studied. On the theoretical side, a considerably larger
literature is available, most notably on different types of
semiconductors and semiconductor heterostructures [7].
In all those cases (except [11]) NAR is based on purely
quantum mechanical effects which cannot be transferred
into the realm of classical physics. For classical systems,
a first theoretical demonstration of the effect was pro-
vided in the context of a spatially periodic and symmet-
ric model system of interacting Brownian particles, sub-

∗Electronic address: kleiner@uni-tuebingen.de

jected to multiplicative white noise [12]. While each of
the different ingredients of the model is quite realistic
in itself, their combined realization in an experimental
system seems difficult. In particular, the main physical
mechanism is based on collective effects of at least three
interacting particles [13]. An entirely different mecha-
nism was later on suggested theoretically for a realistic,
classical model dynamics of a single Brownian particle in
a suitably tailored, two-dimensional potential landscape
in Ref. [14] and subsequently realized experimentally in
Refs. [11, 15]. As a first application of NAR, the separa-
tion of different particle species has been realized in Ref.
[16]. While the underlying basic physical mechanism still
requires at least two spatial dimensions, very recently,
NAR has been analyzed and predicted theoretically to
occur also in the simplest possible case of a single Brow-
nian particle dynamics in one dimension [17, 18]. More
precisely, two basically different physical mechanisms ca-
pable of generating NAR in such systems have been un-
raveled, namely a purely noise induced effect in Ref. [17]
and a transient chaos induced effect in Refs. [18]. In both
cases, an experimental realization by means of a Joseph-
son junction subjected to suitable dc and ac currents has
been proposed. In this Letter we show that a moderately
damped Josephson junction being driven by microwaves
indeed shows NAR of the type predicted in Refs. [18].
A first hint along these lines can be found in Fig. 13 of
[19], although without further explanation or discussion
and no direct reference to the resistively and capacitively
shunted junction model.

To model the Josephson junction we use the resistively
and capacitively shunted junction model [20, 21]. It de-
scribes the equation of motion for the difference δ of the
phases of the superconducting order parameter in the two
electrodes

I =
Φ0

2π
Cδ̈ +

Φ0

2πR
δ̇ + I0 sin δ + IN . (1)
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Here, C, R, and I0 denote the junction capacitance, re-
sistance and maximum Josephson current, respectively,
dots indicate time-derivatives, Φ0 is the magnetic flux
quantum, and I = Idc + Iac sin(ωt) is the total current
applied to the junction, consisting of a dc and a high
frequency ac component. The first term on the right
hand side of Eq. (1) describes the displacement current

CU̇ , where U is the voltage across the junction, and has
been rewritten in terms of δ̇ using the Josephson rela-
tion δ̇ = 2πU/Φ0. The second term describes the cur-
rent through the resistor R, the third term the Joseph-
son current, and the last term the noise current arising
from Nyquist noise in the resistor. Its spectral power
density is assumed to be white with SI(f) = 4kBT/R,
where T is the temperature and kB Boltzmann’s con-
stant. The model (1) implicitly assumes that magnetic
fields created by circulating supercurrents can be ne-
glected (short junction limit). This holds when the lat-
eral junction dimensions are below about 4λJ , where
λJ = (Φ0/4πµ0j0λL)1/2 is the Josephson length in terms
of the critical current density j0, the London penetration
depth λL, and the magnetic permeability µ0.

By integrating Eq. (1) one obtains δ and, by time aver-

aging, the dc voltage V = Φ0〈δ̇〉/2π across the junction.
This is the main observable of our present work, which
is measured when recording V (Idc), the current voltage
characteristics (IVC). For numerical simulations, (1) can
be rewritten in dimensionless units by normalizing cur-
rents to I0, voltages to I0R, times to tc = Φ0/(2πI0R),
and hence frequencies to fc = I0R/Φ0, yielding

i = βcδ̈ + δ̇ + sin δ + iN , (2)

where i = idc + iac sin(τf/fc) is the normalized applied
current, τ = t/tc the normalized time, βc = (fc/fpl)

2 =
2πI0R

2C/Φ0 the Stewart-McCumber parameter, fpl =

(I0/(2πΦ0C))1/2 the Josephson plasma frequency, and
iN the normalized noise current with spectral density
Si(f/fc) = 4Γ and noise parameter Γ = 2πkBT/I0Φ0.

In a nutshell, the basic ingredients of NAR as predicted
in [18] are as follows. The unperturbed deterministic dy-
namics (Eq. (2) with idc = 0 and iN = 0) exhibits two
symmetric attractors, carrying currents of opposite signs
(zero crossing Shapiro steps). When an external pertur-
bation in the form of a static bias idc is applied, a subtle
interplay of this bias force and the dissipation leads to
a destabilization of that attractor, whose current points
into the same direction as the applied bias. Its remnant
is a strange repeller, exhibiting transient chaos, hence
the name “transient chaos induced NAR” coined in [18].
The actual realization of NAR along these lines requires
a careful choice of model parameters in (2) within the
general regime of frequencies f comparable to fpl and
values of βc roughly between 1 and 100. To obtain precise
quantitative results, we have solved Eq. (2) numerically
for various such parameter values by integrating and av-
eraging over typically 5 · 103 periods of the ac current.

For experiments, which were performed at T = 4.2 K,
we used circular Nb-Al/AlOx-Nb Josephson junctions

with an area of 200µm2, cf. upper left inset in Fig.
1(a). The junctions were shunted by a AuPd strip with
resistance R = 1.27 Ω and integrated in a coplanar wave-
guide. We denote the critical current Ic as the maximum
dc current for which V = 0. In general, Ic is a function
of Iac and fluctuations. By measuring Ic(Iac = 0) and
matching it with simulations we determined I0 = 197µA,
yielding I0R = 250µV, fc = 121 GHz and Γ = 9 · 10−4.
The Josephson length is about 40µm, i. e., well above
the 16µm diameter of our junctions assuring the short
junction limit. The design value of the capacitance was
8.24 pF, yielding fpl = 43 GHz, and βc = 7.9. The ac-
tual value used in the simulations shown below is some-
what smaller, namely βc = 7.7, reproducing particularly
well the hysteretic IVC in the absence of microwaves.
The transport measurements have been performed with
a standard four terminal method, using filtered leads.
Microwaves between 8 and 35GHz, with variable output
power Pm, were applied through a semirigid cable that
was capacitively coupled to the 50 Ω coplanar waveguide.
The samples were electromagnetically shielded and sur-
rounded by a cryoperm shield, to reduce static magnetic
fields.

Given I0, R, C, T and Idc, all relevant model param-
eters are fixed, with the exception of the (frequency de-
pendent) coupling factor between the microwave ampli-
tude

√
Pm applied from the source and the amplitude

Iac of the ac current induced across the junction. We
have fixed this factor by comparing the measured depen-
dence of Ic(

√
Pm) with the calculated curve Ic(Iac), as

shown in the right inset of Fig. 1, for a microwave fre-
quency of 19GHz (f/fc ≈ 0.16). The experimental and
theoretical curves are in good agreement. In particular,
the main side maxima can be found, both in experiment
and simulation. By adjusting the position of these max-
ima, we obtain a coupling factor Iac/

√
Pm(19 GHz) =

1.0 mA/
√

mW.

Figure 1(a) shows IVCs under f = 19 GHz microwave
irradiation at three values of Iac. In the absence of
microwaves (black line) the IVC is hysteretic, exhibit-
ing a critical current of 195µA and a return current of
100µA (black arrows). When the microwave field is ap-
plied, the hysteresis decreases with increasing Iac, and
step-like features appear on the IVC. At Pm = 194µW
(Iac = 435µA; magenta line), we observe NAR with a re-
sistance of −1.07 Ω, occurring in an interval |Idc| ≤ 20µA
(i. e., approximately 10% of I0). When Iac is increased
to Pm = 253µW (Iac = 497µA; green line) the NAR has
disappeared. However, centered on a voltage which cor-
responds to the first Shapiro step (V1 = Φ0f ≈ 39µV),
regions of negative differential resistance appear. In
Fig. 1(b) measured and simulated IVCs for the two mi-
crowave amplitudes 435µA and 497µA are compared.
For the former case, which is recorded at the microwave
amplitude where the maximum NAR has been observed,
the agreement between the experimental and the theo-
retical curve is nearly perfect. For the latter case some
small differences can be seen, although the agreement is
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FIG. 1: Current voltage characteristics (IVC) of the Joseph-
son junction at 4.2 K in a 19 GHz microwave field. (a):
at 3 levels of applied microwave power (0µW, 194µW and
253µW) showing the effect of negative absolute resistance
at 194µW (Iac = 435µA) and of negative differential resis-
tance at 253µW (Iac = 497µA). Left inset: image of the
Josephson junction. Right inset: measured (thick green) and
calculated (thin black) dependence of the critical current Ic

on the microwave current amplitude Iac. (b): enlargement
of the measured IVCs for 194µW and 253µW, together with
the simulated IVCs, cf. legend.

still very good. To demonstrate the origin of the NAR,
the grey curve in Fig. 1(b) shows a simulated IVC for
iac = 2.242µA and Γ = 0, i. e., for the noise-free case.
The curve shows n = −1 Shapiro steps to be the cause
of NAR, clearly revealing its nature to be of the type
discussed in [18].

Figure 2 compares in more detail the measured
and calculated dependence of V on Idc and on Iac,
for two frequencies (8 GHz and 19GHz). For f =
8 GHz, the comparison between measured Ic(

√
Pm)

and simulated Ic(Iac) curves yields a coupling factor

Iac/
√
Pm(8 GHz) = 0.33 mA/

√
mW. In the graphs, V

is normalized to Φ0f , yielding an integer value n for the
n-th Shapiro step. Again, the agreement between theory
and experiment is very good. There are at least five Iac

intervals where NAR appears at f = 8 GHz, and three
such intervals at f = 19 GHz. Within those regimes, the
resistance at Idc = 0 reaches values up to about −1 Ω. In
the case of f = 8 GHz, the NAR persists up to values of

FIG. 2: Contour plot of the normalized dc voltage V/Φ0f
across the junction as a function of dc current Idc and mi-
crowave current amplitude Iac. (a) f = 8 GHz, experiment;
(b) f = 8GHz, simulation; (c) f = 19 GHz, experiment; (d)
f = 19 GHz, simulation. For symmetry reasons, Idc 7→ −Idc

implies V 7→ −V , hence negative Idc values are not shown.
Blue areas indicate NAR.

|Idc| ≈ 10µA, for all values of Iac for which NAR shows
up. In contrast, for f = 19 GHz, the Idc interval for
NAR decreases with increasing Iac. When we increased
the frequency further to 35 GHz, hysteretic Shapiro steps
appeared on the IVC, crossing the voltage axis (Idc = 0).
As a consequence, NAR ceases to exist both in the ex-
periment and the simulations.

In a second series of experiments we applied a mag-
netic field B parallel to the junction plane in order to
tune (decrease) its Josephson current I0, making it a B
dependent function I0(B) [22]. Thus all I0-dependent
parameters entering the normalized equation (2) aquire
a B-dependence, in particular i, βc, f/fc, and Γ. Figure
3 shows a comparison of the measured and calculated de-
pendence of the resistance upon Iac and I0(B). Again, we
find excellent agreement between measurement and the-
ory. Blue regions indicate NAR. Their most remarkable
feature is that the values of Iac, for which NAR appears,
practically do not depend on I0. Furthermore, we find
that the NAR value can be tuned by I0 via an applied
magnetic field. For our junction parameters we find a
maximum NAR at I0 ≈ (0.4 . . . 0.6)I0(B = 0), which is
increasing with Iac.

In conclusion, we have observed negative absolute
resistance (NAR) of up to about −1Ω in a shunted
Nb-Al/AlOx-Nb Josephson junction device subjected to
microwaves. To clearly see the effect, a careful choice
of parameters is required, but still the range of suitable
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FIG. 3: (a) Contour plot of the experimentally measured re-
sistance R := V (I = 5µA)/5µA as a function of the Joseph-
son current I0(B) and of the microwave amplitude Iac. I0
has been varied by applying a magnetic field to the junction.
Graph (b) shows the corresponding simulated plot. For both
graphs parameters at B = 0 are the same as in Fig.2(a),(b).

parameters is quite large. In all cases, we obtain very
good agreement with theoretical simulations of the
resistively and capacitively shunted junction model.
Furthermore a closer inspection of the corresponding

model dynamics reveals that the relevant physical mech-
anism is of the transient chaos induced NAR type from
[18]. The similarity between our Fig. 1 and Fig. 2 in
[9] suggests that with respect to NAR, purely quantum
mechanical band structure and energy quantization
effects may be imitated by inertia effects in a purely
classical, one dimensional noisy dynamics. Moreover,
our Fig. 3 exhibits many features which are quite similar
to the corresponding plots in [18], while the intuitive
explanation of the almost vertical stripe-pattern in Fig.
3 remains as an open problem. As an application, our
present work opens the intriguing perspective of a new
resistor-type electronic element which is tunable between
positive and negative resistance via an easily accessible
external control parameter, e. g., the amplitude of an
ac driving or an externally applied magnetic field in the
mT range.

This work was supported by the Deutsche Forschungs-
gemeinschaft (Grants No. KO 1303/7-1, RE 1344/5-1,
and SFB 613).
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3.6 Experimental realization

Supplementary to [3], in this section we will summarize earlier hints to ANM or its
electrical pendant negative absolute resistance (NAR) in Josephson junctions and briefly
discuss further experimental realizations in real pendula. Then we will discuss one of the
most striking features of [3], the excellent agreement between the theoretical model and
the experiment.

Since the ANM effect is of a very general nature and expected to be found in almost
any Josephson junction operating in the chaotic regime around zero bias, it is not sur-
prising that ANM, or rather its electrical pendant, negative absolute resistance (NAR)
has already been measured prior to [3]. The first hints along these lines are found in Fig.
13 of [36] and Fig. 12(c) and 14(c) of [37], but without further discussion of NAR. Also
without further discussion, early theoretical studies (Fig. 4 of [166], Fig. 3(a) of [167]
and Figs. 13(c) and 25(b) of [137]) point towards the occurrence of NAR, although they
lack the inclusion of noise and are thus less conclusive than the experiments.

Another line of possible experimental realization of the ANM effects of rather funda-
mental nature are real pendula, i.e. a mass, or “bob”, connected via a stiff rod to a pivot
in a constant (gravitational) force field. In that context, the displacement of the bob,
described by the angle between its current position and its equilibrium position, takes
the role of the particle coordinate, and the resulting potential is a cosine potential. Its
undamped dynamics are described by equations equivalent to (1)-(2) of [2] with η = 0
(and possibly, see below, a different driving force), and ANM translates into an average
angular velocity opposed to an (average) torque applied to the pendulum. In the liter-
ature, various methods to provide the necessary driving forces are described, the most
promising using magnetic fields [168, 169], leading to equations equivalent (up to noise
and friction) to those studied in [1, 2], or an oscillating pivot [170, 171], leading to equa-
tions similar to those used to obtain figure 3.1(b). Two other variants would be to use a
rotating pivot coupling via friction to the pendulum, or to put a permanent magnet on
the bob and another onto a rotating disc such that the magnet drives the bob whenever
it comes close to the bob. Using a symmetric protocol for the rotation of the disc, or two
counter-rotating discs, the driving would be symmetric. An essential difference lies in
fluctuations and friction. Depending on the construction of the apparatus, fluctuations
are negligible, but ANM can be observed in that case, if one considers parameters for
which there is only one attractor. In general, the friction forces due to the pivot will be
different from the model of damping considered in this work. Using magnetic fields [169],
the same friction forces as considered in [1, 2] can be realized. Furthermore, there seems
to be no reason why another type of friction should not yield the same ANM effects.
While probably practically useless otherwise, such an experiment may serve as a beauti-
fully simple and direct demonstration of ANM. E.g., if a mass is connected via a string
to the pivot, it exerts a torque due to gravitation to the pendulum, and hence would be
lifted up by the pendulum6.

Our main contribution to the work [3] lies in the theoretical analysis of NAR, some
simulations, and in carrying out some of the simulations leading to the high precision
of the RCSJ model parameters as found in [3], and thus the similarity between theory
and experiment. We will first comment on the latter, and close this section with a

6This idea is due to Peter Reimann.

57



-500

-250

 0

 250

 500

-400 -200  0  200  400

V
 [µ

V
]

Idc [µA]

(a)

-40

-20

 0

 20

 40

-30 -20 -10  0  10  20  30

-1.0

-0.5

0

0.5

1.0

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

V
 
[

µV
]

v
/

Ω

Idc [µA]

F
(b)

C

R

Ic
Iac
ω

Ω
η
A

8 pF

1.27 Ω
197 µA
435 µA
19 Ghz

0.44

0.36

2.24

=

=

=

=

=

=

=

=

T=0

 T=0.0001

T=0.1

T=0.0009

  Texp=4.2 K

Figure 3.2: (a) current voltage characterististic of the junction considered in [3], cf.
Fig. 1 of [3]. (b) the same as in (a) but 194µW microwave current is applied, and
simulation results are shown. The simulation parameters are shown in panel (b), and the
experimental data was provided by Joachim Nagel, Universität Tübingen.

more detailed theoretical discussion of the NAR effect. Basically, most of the parameters
employed in the RCSJ model [7, 64, 65], namely (1) and (2) of [3], can be calculated
from the design parameters of the Josephson junction, with the capacitance C given by
the junction geometry and material parameters, the resistance R given by the material
parameters of the shunt resistor and the temperature given by the cooling (liquid He).
The critical current I0 is not given by the design with sufficient precision but can be
calculated from measured current voltage characteristics without microwave irradiation,
see e.g. figure 3.2(a) and the black line of figure 1a of [3]. The measurement is performed
by increasing the dc current from zero until the junction jumps to a non-zero voltage
state, corresponding to subjecting a particle in a sinusoidal potential with barrier heights
of 2 · I0 to an increasing bias force, and then measuring the critical bias force at which
the particle starts moving. By matching the obtained current voltage characteristic with
a simulation taking into account noise, the critical current is obtained [3]. Moreover,
the slope of the resistive portion of the current voltage characteristic is proportional to
the resistance R of the model, the difference between the measured value and the design
value being minimal.

The coupling factor Iac√
Pm

connecting the irradiated microwave power to the ac bias
current to which the junction is subjected cannot be easily estimated from the employed
junction design and varies with frequency, it being dependent on how the microwaves
propagate through the junction design. By matching measurements at various microwave
powers with simulations at various ac bias amplitudes, this factor can be obtained. One
way is to measure the critical current Ic(

√
Pm) (i.e. the dc current at which the junc-

tion switches from the zero voltage state to a non-zero voltage state) in the presence
of microwave irradiation [7], see the lower right inset of figure 1a of [3]. To obtain an
even better estimate, we have calculated figure 3.3, i.e. we have simulated figure 2 of [3]

for various values of the McCumber parameter βC = 2πI0R2C
Φ0

and coupling factor, and
computed the difference between the measured and simulated voltages, simply using the
sum over all absolute differences of voltages at all considered data points. With all other
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Figure 3.3: Deviation between simulations and experiment for (a) f = 19Ghz and (b)
f = 8Ghz, obtained by comparing the voltage measured in the experiment with simulated
voltages in the experimentally easily accessible Iac − Idc plane of parameter space, i.e.
figure 2 of [3]. The remaining model parameters are fixed by figure 3.2(a) as R = 1.27 Ω,
I0 = 197µA and T = 4.2 K by design (He cooling). Thus βc is proportional to the junction
capacitance C. The crosses indicate the parameters used in [3]. The experimental data
was provided by Joachim Nagel, Universität Tübingen.

parameters fixed βC is proportional to the junction capacitance, and thus particle mass.
The figure implies that the actual choice of the value of βC is not critical, while the value
of the coupling factor can be obtained rather precisely. The actual values were chosen
close to the design parameters of the junction while reproducing the features of interest
in figure 2 of [3] satisfactorily, in particular the regions of NAR. The quality of the fit
could be further enhanced by using a different weighting, i.e. cost function [172].

As can be seen from figure 3.2(b) and in particular from figures 2 and 3 of [3], the
final agreement between theory and experiment is striking. To further elucidate the
mechanism behind NAR as found in figure 1b of [3] and figure 3.2(b), we calculate the
deterministic (i.e. T = 0 in (1)-(2) of [2]) phase diagram for the model parameters
describing the junction used in [3]. This diagram, figure 3.4, is the equivalent of figure 2
of [2] with some added information. In the units of [2] the drive frequency is ω = 0.43774
and thus comparable to the frequency used in [2]. The regions of existence of the relevant
attractors have a very similar shape as in figure 2 of [2], and the “movement” of the
attractors upon switching on the bias current (bias force) is likewise very similar. Thus
the mechanism is indeed the same as discussed in [2].

The model parameters corresponding to the simulated curve (dashed blue line) and
matching the measured curve (thick red line) in the units of [2] are ω = 0.43774, η = 0.36
and A = 2.242. The actual parameters considered in figure 3.2(b) are slightly outside the
main region of SSBT at zero bias current(force) directly on one of the filaments of the
region of existence of the SSBT attractors, around which a region of deterministic chaos
is found, as in [2] (where the final choice of parameters , i.e. η = 0.465 and A = 1.24,
is in the chaotic region, but that difference is minor). This can be seen particularly
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Figure 3.4: Deterministic T = 0 phase diagram for the dynamics (1)-(2) of [2]. Ad-
ditionally to the equivalent information shown in Fig. 2 of [2], parameter regions of
non-transporting attractors are shown in grey, coexistence of transporting phase-locked
attractors with non-transporting attractors by desaturation of the color of the phase-
locked attractor (rarely seen), and transporting phase-locked attractors of all velocities
are shown, not just |v| = ω. The parameters are ω = 0.43774 and F is indicated in the
panels. The parameters indicated by the cross correspond to the set of parameters (ex-
cept F ) used to obtain the grey curve in figure 1b of [3], i.e. βc = 7.7 and fc = 121GHz.
The other simulations corresponding to f = 19Ghz in [3] are calculated for the same
parameters, but T = 0.0009 and possibly different ac and dc currents (forces).

well from the black points in figure 3.2(b) showing the simulated deterministic behavior.
At zero bias force (dc current) (and also for very small bias forces) the particle current
(voltage) locks to v = ω, i.e. on the filament of the SSBT attractor (see figure 3.4)
or, in other words, on the broken Shapiro step. For slightly larger bias currents the
junction is in a chaotic state, the current being dominated by periodic windows of the
chaotic attractor appearing, vanishing or almost appearing (i.e. appearing for slightly
different parameter values than those considered) and thus influencing the current on the
chaotic attractor [87, 124–126, 146]. Globally, the dominating influence is from the main
SSBT attractors becoming stable around Idc ≈ 20µA (or F ≈ 0.1), having a much larger
weight in the ergodic chaotic attractor due to their greater stability7 than minor periodic

7E.g., the pseudopotential depths scale with the distance from the birth and death points of the
attractors, and are very small for minor periodic windows with a very small size in parameter space.
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windows. For slightly different parameter values, i.e. outside the filament, the junction
is in a (deterministic) diffusive chaotic state at zero bias and the current is zero, but
the phase diffuses chaotically (result not shown). These features are washed out by the
addition of noise (solid orange line in figure 3.2(b)), and thus the difference is rather of
academic nature. Finally, hypothetically increasing the noise strength by several orders
of magnitude, NAR vanishes as expected (dashed orange line in figure 3.2(b)).

Lastly, we turn to the other anomalous transport properties predicted in [1, 2, 63].
First, noise induced NAR is probably found for at least some parameters considered in
[3], e.g. take figure 3.2(b) and consider the part of the black curve where it is barely
positive for small positive bias currents around Idc ≈ 1.5µA. Thus, if the parameters used
to obtain the black curve were the exact parameters describing the junction, NAR would
clearly be noise induced. But even if that is not the case, slightly different parameters
will yield similar curves,or even non-transporting or positive current carrying periodic
windows and NAR would be noise induced. But in contrast to [63], non-transporting at-
tractors with appreciably large regions of existence are practically never found close to the
SSBT attractors leading to NAR. Compare figure 3.4 with figure 13 of [2] describing the
situation as found in [63]: the SSBT attractors actually coexist with a non-transporting
attractor, whose region of existence is much larger than those of the SSBT attractors
(or the attractors into which they evolve upon breaking the symmetry). Considering
the noise induced NAR effect described by figure 15 of [2], a similar conclusion applies.
While the parameters considered in, e.g., figure 2 of [3], do indeed show the effect (e.g.
see the black points in figure 3.2(b)) for sufficiently low temperatures, such temperatures
are inaccessible to the experiment as conducted in [3]. Furthermore, it is not possible to
change the temperature during the experiment, and even if the experimental apparatus
would allow doing so, a change in the temperature leads to a change in the junction
parameters, most notably the critical current [7], thus making an experiment revealing
noise induced NAR very difficult. One way of getting around this would be to use a
magnetic field reducing the critical current [3, 7]. In properly scaled units, and upon
adjusting the dc current, microwave amplitude and frequency accordingly, one could ef-
fectively lower the noise strength in the rescaled dynamics without changing any other
parameter. Such a measurement would be possible in theory but the difficulties involved
in changing the microwave frequency in particular would make it rather difficult, notwith-
standing that noise induced ANM is not found theoretically for the junction parameters
and noise strengths considered. Finally, from a practical point of view, the effect would
rather be magnetic field induced ANM since the absolute temperature is not actually
changed during such an experiment. Turning to the effect described by figure 14 of [2],
i.e. a positive voltage for a small dc bias current turning into a negative voltage for a
larger dc bias current, the effect as described in [2] cannot be found in the experiment
of [3] due to the temperature (or rather the noise strength) being too large. Some of the
regions of NAR shown in figure 2 of [3] have a rather complex shape or are tilted in the
Iac-Idc plane of parameter space, even at the temperature considered. Naively, the effect
predicted by figure 14 of [2] is realized for these parts of parameter space, since there
are regions of small bias forces in which the voltage is positive, and the NAR region is
reached for larger bias forces. But the observed positive voltages for small bias forces are
very small and below the experimental precision of [3]. The simulations do indeed show
that the effect described by figure 14 of [2] is found, and, judging from the very good
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agreement between theory and experiment, we conclude that this effect may be realized
in [3], but at vanishing amplitude, i.e. in the same sense as noise induced ANM.

3.7 Graphics processing unit (GPU) programming

The processing time to obtain the fits of the experimental data to the RCSJ model, i.e.
figure 3.3, could be significantly decreased by using graphics processing units (GPUs)
[173–175]. Thus, the method seems to be well suited for a simple (single machine) real
time Josephson junction characterization without much effort. The computing time to
obtain one panel of figure 3.3 in double precision arithmetics is about 7 days using a
single thread on a contemporary Intel Q6600 processor (CPU) running at 2.4 Ghz without
further optimization. This can be easily reduced by parallelization. We have found that
using an ATI Radeon 3850 graphics processor (GPU), costing less than 50 Euros at the
time of writing, and doing the calculations in single precision arithmetics8 this time can
be shortened by a factor of about 1

180
(see figure 3.5). To that end, a slightly different

but relatively easy to use programming model, Brook+ [176], has to be used, see figure
3.6 for the main code used to generate figure 3.5. [173] have found that using a faster
GPU with the CUDA [177] programming model, this factor can be improved to almost
1

700
9. Using the most advanced GPUs available at the time of writing, e.g. an ATI

Radeon 5970, costing less than 500 Euros at the time of writing, we estimate this factor
to be of the order of about 1

2000
10. Thus, the processing time can be reduced to several

minutes without further optimizing the calculations and to less than a minute with such
optimizations11. This in turn would make a very convenient tool for experimentalists
whenever such a high precision in the model parameters is needed.

As an example of how to employ a GPU for calculations, we have recalculated part
of Fig 4. of [2] (see figure 3.5 for details) and measured the runtime on an otherwise
idle system. The GPU used to obtain figure 3.5 is capable of performing roughly 320
mathematical operations in parallel, but that number may be less for more complex
operations [176]. To show the simplicity of the code, we have included the main routines
used to generate figure 3.5 on the GPU, which have not been optimized in any kind.
The SDE solver algorithm employed is taken from [180], while the very simple method
to generate random numbers is taken from [173].

8As [173] point out, these are sufficient for the noisy calculations. If possible, using double precision
arithmetics reduces the GPUs performance by a factor of 1

2 - 1
8 [176, 177], depending on the architecture,

while the CPU is not affected, since it performs the computations at 80 bits anyhow [178].
9[173] use a comparable CPU.

10The ATI Radeon 3850 is rated at 427 GFLOPS and the ATI Radeon 5970 is rated at 4640 GFLOPS
single precision [179]. While these theoretical numbers do not necessarily translate into application
performance [173], they may serve as an indication of relative performance when comparing similar
devices and applications.

11As we were not time constrained, we have used a very high resolution in the figures, which is not
necessary. Reducing that, and possibly using a minimization algorithm to find the minimum, should
reduce computation time dramatically without much effort. We have used a much smaller value than
necessary for the integration step size h = 0.003 2π

Ω in the (2,3)rd order stochastic Runge-Kutta algorithm
employed [180, 181] to be on the safe side and used the same sample size to calculate the averages at
each grid point.
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Figure 3.5: Total runtime tCPU of a single thread on the CPU compared to the runtime
tGPU of many (as indicated on the axis) threads on the GPU taken to compute part of the
green line of Fig. 4 of [2], i.e. solving the system (1)-(2) of [2], but only one trajectory of
length 2000T is used at each data point. The total computation time is about 3 seconds
on the GPU for 2048 threads. The CPU calculation has been performed only for 32 data
points to reduce overhead (i.e. the equivalent of 32 threads), and then extrapolated.

3.8 Summary

We have shown that SSBT induced ANM is a common feature of spatially one dimensional
inertial dynamics far from thermal equilibrium and exhibiting deterministic chaos. The
mechanism behind ANM, the competition between SSBT induced transport without bias
force and the applied bias force, has been detailed, and we have given a heuristic prediction
for the parameters at which ANM can be found. Our predictions have been verified
experimentally with excellent agreement between theory and experiment if the model
parameters are calculated with sufficient precision, and we have shown a method of
obtaining the parameters quickly and without much effort. This method might be of
use in future experiments requiring a precise knowledge of the model parameters. The
required computing time can be drastically reduced using a GPU, and that idea can be
extended to different problems which are computationally limited by algebraic operations
and light on memory access.

As hinted at by figure 3.1 and various further publications [92–95, 150, 151] considering
other potentials, drive forces or noise sources, the mechanism is of a very general nature
and can be expected to be found in various other dynamics considering particles in a
nonlinear potential and subjected to a non-equilibrium drive, the main requirement being
the presence of SSBT. SSBT of underdamped particles and the mechanism which gives rise
to it is well known [137, 152, 153, 155]. The overdamped dynamics of a single particle on a
two dimensional, symmetric and periodic surface meets the same requirements, i.e. a three
dimensional phase space, nonlinearity and non-equilibrium. Two spatial dimensions allow
for a richer transport behavior, making the dynamics even more interesting. This applies
also to underdamped particles in two spatial dimensions [182–184] but their dynamics
are of less interest from a fundamental point of view since they are not minimal, and the
mechanism would be a trivial extension in the limit of separable dynamics. Moreover, in
many important experimental systems, e.g. biological systems, microfluidic devices and
vortices in superconductors, the dynamics are overdamped. In overdamped single particle
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dynamics, SSBT has not yet been investigated in detail, and there are only a few hints
throughout recent literature [104–106, 185] to our knowledge. Furthermore, it is well
known that SSBT, or zero crossing Shapiro steps, are not found for Josephson junctions
operating in the overdamped regime [137] (in which case the low dimension of phase space
rules out SSBT), and we will deal with overdamped super conducting interference devices
(SQUIDS) in chapter 6. We will show that SSBT and all effects derived from SSBT can
be found for suitable spatially two dimensional dynamics in chapter 4 and that the added
spatial dimensions allows for a much better control of the transport properties.
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3.9 Appendix

3.9.1 Phase diagrams

Basically, phase diagrams are two parameter bifurcation diagrams showing some property
of the dynamics encoded in color. Typically, phase diagrams are most useful if there are
sufficiently large (compared to the section of parameter space shown) regions throughout
which that property is constant, i.e. there are phases. Basically, the phase diagrams in
the theory of phase transitions and critical phenomena have a very similar meaning.

Unless otherwise noted, the phase diagrams in this work show some property of the
average velocity of attractors. We restrict ourselves to nondiffusive attractors, since it is
difficult to tell a (chaotic) transient from a diffusive (chaotic) attractor. We consider a
trajectory to be “on” a nondiffusive attractor, if it satisfies (2.29) with certain tolerances,
as discussed in the next paragraph. Thus, if the trajectory is cut into a number of
segments of a certain length (in time) each, the average velocity, calculated for each
segment separately, does not depend on the segment within the numerical tolerances
defined below. Periodic and phase-locked attractors [137], cf. footnote 33 of section 2.7,
are prime examples, but we have also found certain quasiperiodic attractors, cf. section
4.17, to fall into this category within the numerical tolerances defined below.

Numerical protocol

Numerically, the phase diagrams are obtained as follows. A (rectangular) grid in pa-
rameter space is chosen. At each grid point, a certain number Nseed (typically about
10) of random initial seeds in phase space are drawn according to a uniform distribution
(with some parts of phase space corresponding to unphysical initial conditions possibly
excluded). For each seed, it is determined whether the seed lies in the basin of attraction
of a stable periodic orbit (periodic attractor) as follows. Each seed is iterated up to
imax & 300 under Θ (i.e. its images under Θi, i, imax ∈ N, 0 < i < imax are calculated).
We determine if a periodic attractor is reached by directly checking for periodicity of the
stroboscopic map Θ. To that end, periodicity is assumed if an image of the initial seed is
mapped onto itself (possibly shifted in each component by some integer multiple of the
corresponding spatial period) by some iterate Θm (with m ≤ 32 in most cases) of the
stroboscopic map in the sense that the point and its image are in a small ball, typically
of radius ǫ . 10−3 times the spatial period. It is then checked if the images of the point
under Θm·j of the point are again mapped into the same ball for 1 < j < 5, to avoid
unstable periodic orbits.

Once a periodic orbit is found, it is saved, and no further iterates of Θ are computed.
At each grid point (in parameter space) neighboring those of the initial seed, we check for
the presence of the same periodic orbit (smoothly distorted due to the change of parame-
ters), using the phase space coordinates of the periodic orbits as initial conditions (seeds)
[117]. In other words, we “follow” the evolution of the periodic orbit upon changing the
system parameters. If a periodic orbit is found and has the same average velocity ~vpo

(up to some numerical tolerance of order 0.01), the new orbit is saved, and the same
procedure is repeated for each grid point at which the periodic orbit is found. (Note
that we allow for different periodicities, i.e. we ignore period changing bifurcations not
affecting transport, since we want to follow period doubling cascades.)
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If no periodic orbit is found for a neighboring grid point, we check if a nondiffusive
attractor has been created as follows. As initial condition the known (but for different
parameters) periodic orbit is chosen and iterated by Θk·j with k, j integers, and typically
k & 16 and 1 ≤ j ≤ 8. If (2.29) is satisfied with T ∗ = k · T for each j considered, l = 2L
(with L being the spatial period, which we assume to be identical for all components of

the phase space vector) and ~L∗ = k ·~vpo, then the last coordinate thus obtained is assumed
to lie “on” a nondiffusive attractor. If, for at least one j, (2.29) is not satisfied, the seed is
discarded. If a nondiffusive attractor is found, it is again “followed”, as described above.

If the initial seed is not mapped onto a periodic orbit (according to above described
procedure) after imax iterations of Θ, it is tested whether a nondiffusive attractor has
been found as described above. If the trajectory is found to be nondiffusive, the attractor
is “followed” as described above.

After cycling through the whole grid each grid point is assigned a color as described
in the text. If no nondiffusive attractor is found, i.e. the grid point is “empty”, it is left
white.

Coarse grid and fine grid

To increase the resolution of the figures without increasing the computation time by the
same magnitude, we use 2 differently spaced grids of parameter space. Practically all the
computation time is spent in computing the iterates of Θ, and most of these have to be
calculated for random seeds corresponding to long chaotic transients or in the basins of
attraction of chaotic attractors. In particular, the “following” of periodic attractors is
computationally rather “cheap”, since (if the grid is sufficiently fine) the initial condition
is already close to the attractor. Random seeds are drawn only on a “coarse” grid, which
is a subset of a “fine” grid, on which nondiffusive attractors are followed. Typically we
choose grid spacings such that the “coarse” grid has 4 times the spacing of the “fine”
grid, i.e. has only 1

16
th of the “fine” grid points, of which there are typically more than

100000.

Consequences for chapter 3

Concerning the dynamics (1)-(2) of [2] considered in chapter 3, the method outlined above
yields the regions of existence of phase-locked attractors created from periodic orbits quite
well. Directly considering solutions of (1)-(2) of [2], we have found this to be the typical
transport behavior in the sense that for the dominant part of parameter space, transport
is dominated by such attractors, except for the white regions in the phase diagrams, which
contain diffusive chaotic attractors in most cases. The average velocity of trajectories on
these attractors varies (more or less) continuously with changes of parameters in the
sense that there are no “large” jumps (until further bifurcations/crises occur [2]), but
the weight according to the invariant density [87] of the different parts of the attractor
changes. Without a more detailed investigation, it is not possible to determine whether
such behavior corresponds to a chaotic transient or a chaotic attractor, and of what
nature that attractor is.
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Consequences for chapters 4-6

By directly evaluating representative trajectories, we have found a similar behavior for
the models considered in chapters 4-6, i.e. (4.9), (5.1) and (6.11) (all considered without

noise or disorder) with one exception. When the symmetry is broken, i.e. ~F 6= 0 in (4.9),
(5.1) or (6.11), quasiperiodic attractors are found for certain parameters, as discussed in
section 4.17. We have found the quasiperiodic attractors to be nondiffusive within our
numerical tolerances (as discussed above), and they are shown in the phase diagrams.

Consequences for chapter 7

The same as for chapters 4-6 applies to the quasiperiodic attractors found in the dynamics
(2)-(4) of [5] in the presence of a symmetric drive, cf. section 7.46, but they show up
already without a bias force. Without a time dependent driving force, the (noise free)
autonomous dynamics discussed in chapter 7, i.e. (2)-(4) of [5], are treated slightly
differently. Instead of the stroboscopic section, three (approximate) Poincarré surfaces
of section are used simultaneously along the lines of [117]: Xx = 0, Xy = 0 and φ = 0,
and for each of the induced maps the same procedure as for the stroboscopic mapping Θ
(see above) is used to detect nondiffusive transporting attractors. Furthermore, bounded
attractors are detected as fixed points of the dynamics if, at the given precision of the
solver, the solution does not change within one iteration of the solver. In practice, a
trajectory is iterated until it crosses any of the above discussed Poincarré surfaces of
section, it is found to end on a fixed point of the dynamics or a time of typically more
than 250 (in the units of chapter 7) has elapsed (in which case the trajectory is discarded).
If it crosses any of the above discussed Poincarré surfaces of section, one iterate of the
associated map is calculated, and the trajectory is continued. Since, in the units used in
chapter 7, the average velocity of periodic attractors is not constant when a parameter is
changed, we do not require the average velocity to remain so when “following” nondiffusive
attractors as outlined above.

Discussion

Due to the various tolerances used (e.g. imax, ǫ, l, precision of the ordinary differential
equation solver, basically rkqs with eps = 10−7 of [186], grid spacing), the lines of bifurca-
tions at which the attractors are created or vanish are not calculated accurately [117]. At
the resolutions and figure sizes in this work, these numerical errors are negligible for the
figures shown in this work, but may become visible upon upon magnification. At system
parameters not corresponding to bifurcations, the dynamics are structurally stable, i.e.
a small change in some parameter does not invoke a qualitative change of the dynamics.
Since (in two dimensional diagrams) the lines (or points) at which bifurcations occur
have measure zero, practically all system parameters considered yield structurally stable
dynamics, and our method is sufficiently accurate (typically more than 3 digits for the
parameters at which bifurcations occur, which is usually beyond the resolution of the
figures).

Moreover, not all attractors are found due to the limited number of initial conditions
and the limited grid resolution. If a random seed drawn at the grid point (i, j) (in
parameter space) has a probability 0 ≤ p(i, j) ≤ 1 of being in the basin of attraction of one
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specific attractor (taking into account finite integration time, tolerances etc. as outlined
above), the total probability of drawing at least one initial condition in the basin of
attraction of that attractor is p = Nseed

∑

i,j p(i, j). Attractors of interest to this work (i.e.
sufficiently robust against thermal noise and other perturbations), typically have basins
of attraction occupying rather large fractions of phase space (say one tenth or more),
and regions of existence (non-zero p(i, j)) occupying a non-negligible part of parameter
space (typically more than 50 points of the coarse grid). Therefore, the probability of
finding such attractors is practically one with our method, and, once found at one point,
the whole (connected component of the) region of existence of the attractor is typically
found. Conversely, “smaller” attractors (either smaller basins of attraction or smaller
regions of existence) are not found, but that is no problem since these attractors can be
neglected for the noise strengths considered in this work.

Furthermore, it is possible that transients show up as nondiffusive attractors according
to the method outlined above due to the numerical tolerances employed. Typically,
the resultant “impostor attractor” is found only at very few and isolated grid points
unless the transient is particularly long lived, which typically happens only around the
lines of bifurcations creating the transient. Thus, such transients show up only as a
slightly too large region of existence of the corresponding attractor. We have verified our
main conclusions by directly evaluating trajectories, and, more importantly, by applying
thermal noise.

3.9.2 Brook+ example
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double t e s t ( unsigned in t tmax , unsigned in t N)
{

// account ing
in t k ;
double e lap ;
t imeval st , et ;

// streams
: : brook : : Stream<f l o a t2 > x(1 ,&N) ;
: : brook : : Stream<f l o a t2 > ox(1 ,&N) ;
: : brook : : Stream<f l o a t > var i anz (1 ,&N) ;
: : brook : : Stream<unsigned int>

rn g s t a t e (1 ,&N) ;
: : brook : : Stream<f l o a t4 > sysparms (1 ,&N) ;
: : brook : : Stream<unsigned int>

o rng s ta t e (1 ,&N) ;

// l o c a l v a r i ab l e s
f l o a t 2 ∗ input x=new f l o a t 2 [N ] ;
f l o a t 2 ∗ input ox=new f l o a t 2 [N ] ;
f l o a t ∗ i nput var i anz=new f l o a t [N ] ;
f l o a t 4 ∗ input sysparms=new f l o a t 4 [N ] ;
unsigned i n t ∗ i n pu t r ng s t a t e=

new unsigned i n t [N ] ;
unsigned i n t ∗ i nput o rng s t a t e=

new unsigned i n t [N ] ;
f l o a t input h ;
f l o a t i nput t ;
f l o a t input tmax ;

// s t a r t time measurement
gett imeofday (&st , 0 ) ;
srand ( time (NULL) ) ;

// i n i t i a l i z e l o c a l v a r i a b l e s
input h =0.01 f ;
i nput t =0.0 f ;
input tmax=(( f l o a t ) tmax ) ∗ 6 . 2 8 /0 . 6 ;
f o r ( i n t k=0;k<N; k++) {

i n pu t o rn g s t a t e [ k]=rand ()%9999999;
input sysparms [ k ] . x=−0.465 f ;
input sysparms [ k ] . y=0.6 f ;
input sysparms [ k ] . z=1.24 f ;
input sysparms [ k ] .w=0.0 f+( f l o a t )k

/( f l o a t )N∗0.2 f ;
input x [ k ] . x=0.0 f ;
input x [ k ] . y=0.0 f ;
i npu t r n g s t a t e [ k]= inpu t o rn g s t a t e [ k ] ;
i nput var i anz [ k]= sq r t (−0.001 f ∗2.0 f ∗

input sysparms [ k ] . x∗3.0 f ∗ input h ) ;
}

// move l o c a l data to the GPU
x . read ( input x ) ;
sysparms . read ( input sysparms ) ;
var i anz . read ( i nput var i anz ) ;
r ng s t a t e . read ( i n put r n g s t a t e ) ;

// run the c a l c u l a t i o n on the GPU
s r k j o s ( input h , input t , input tmax ,

var ianz , sysparms , x ,
rng s tat e , ox , o rn g s t a t e ) ;

// read r e s u l t from GPU
ox . wr i t e ( input ox , 0 ) ;
o rn g s t a t e . wr i t e ( i nput orng s t at e , 0 ) ;

// f i n a l time
gett imeofday (&et , 0 ) ;
e lap=(double ) ( ( et . tv sec−s t . t v s e c )
+0.000001∗( double ) ( et . tv usec−s t . tv u sec ) ) ;

d e l e t e [ ] input x ;
d e l e t e [ ] input ox ;
d e l e t e [ ] i nput var i anz ;
d e l e t e [ ] input sysparms ;
d e l e t e [ ] i npu t r ng s t a t e ;
d e l e t e [ ] i n pu t o rn g s t a t e ;
r e tu rn elap ;

}

Figure 3.6: Main part of the C/Brook+
code used to generate figure 3.5. The same
code, only with the float4 and float2 vari-
ables replaced by float variables has been
used for the CPU calculation.

kerne l void s r k j o s ( f l o a t ext h , f l o a t ext t ,
f l o a t ext tmax , f l o a t ext var i anz <>,
f l o a t 4 ext sysparms <>, f l o a t 2 ext x <>,
unsigned in t ext rn g s t a t e <>,
out f l o a t 2 ext ox <>,
out unsigned in t ex t o rng s ta t e <>)

{
f l o a t
unsigned in t r n g s t a t e ;
f l o a t h , t , tmax , tc , twoPI ,T, theta1 , theta2 ,

h23 , h16 , h12 , h14 , stmp , var i anz ;
f l o a t 4 sysparms ;
f l o a t 2 H2 ,H3 ,A1 , dx , xc , x ;
// SDE s o l v e r con stan t s
h=ext h ; h23=0.666667 f ∗h ; h16=0.166667 f ∗h ;
h12=0.5 f ∗h ; h14=0.25 f ∗h ;
// l o c a l v a r i a b l e s
r n g s t a t e = e x t r n g s t a t e ;
tmax=ext tmax−h ; t=ex t t ; x=ext x ;
sysparms=ext sysparms ;
var i anz=ext va r i anz ;
twoPI=2.0 f ∗3.141592653589793 f ;
T=twoPI/ sysparms . y ;
// xc and tc count the number o f s p a t i a l and
// temporal pe r i od s
xc=x ; tc =0.0 f ;

whi l e ( t+tc<tmax) {
// account f o r p e r i o d i c i t y
i f (x . x>twoPI ) {

x . x=x . x−twoPI ; xc . x=xc . x+twoPI ;
}
i f ( x . x<−twoPI ) {

x . x=x . x+twoPI ; xc . x=xc . x−twoPI ;
}
i f ( t>T) {

t=0.0 f ; tc=tc+T;
}
// ca l cu l a t e 3 point d i s t r i b u t e t RVs
rn g s t a t e = rng s ta t e ˆ ( r ng s ta t e >> 13 ) ;
rn g s t a t e = rng s ta t e ˆ ( r ng s ta t e << 17 ) ;
rn g s t a t e = rng s ta t e ˆ ( r ng s ta t e >> 5 ) ;
theta1 = (( f l o a t ) rn g s t a t e )/4294967296.0 f ;
i f ( theta1 <0.6666667 f ) theta1 =0.0 f ;
e l s e {

i f ( theta1 <0.833333 f ) theta1=var i anz ;
e l s e theta1=−var i anz ;

}
rn g s t a t e = rng s ta t e ˆ ( r ng s ta t e >> 13 ) ;
rn g s t a t e = rng s ta t e ˆ ( r ng s ta t e << 17 ) ;
rn g s t a t e = rng s ta t e ˆ ( r ng s ta t e >> 5 ) ;
theta2 = (( f l o a t ) rn g s t a t e )/4294967296.0 f ;
i f ( theta2 <0.66667 f ) theta2 =0.0 f ;
e l s e {

i f ( theta2 <0.833333 f ) theta2=var i anz ;
e l s e theta2=−var i anz ;

}

// SDE s o l v e r step
stmp=sysparms . z∗ s i n ( sysparms . y∗ t )

+sysparms .w;
dx . x=x . y ;
dx . y=sysparms . x∗x . y−s i n ( x . x)+stmp ;

H2 . x=x . x+h23∗dx . x ; H2 . y=x . y+h23∗dx . y ;
stmp=sysparms . z∗ s i n ( sysparms . y

∗( t +0.66667 f ∗h))+sysparms .w;
A1 . x=H2 . y ;
A1 . y=sysparms . x∗H2 . y−s i n (H2 . x)+stmp ;

H3 . x=x . x+h16∗dx . x+h12∗A1 . x ;
H3 . y=x . y+h16∗dx . y+h12∗A1 . y+theta2 ;
x . x=x . x+h14∗(dx . x+A1 . x ) ;
x . y=x . y+h14∗(dx . y+A1 . y ) ;

A1 . x=H3 . y ;
A1 . y=sysparms . x∗H3 . y−s i n (H3 . x)+stmp ;
x . x=x . x+h12∗(dx . x+A1 . x ) ;
x . y=x . y+h12∗(dx . y+A1 . y)+theta2 ;

t=t+h ;
}
// re tu rn r e s u l t
ext ox=x+xc ;
e x t o r ng s t a t e=rng s t a t e ;

}

69



Chapter 4

Spatially two dimensional dynamics

In this chapter we will show that spontaneous symmetry breaking transport (SSBT) can
be used to direct a Brownian particle on a surface into almost any direction. Our main
result is summarized in the short publication [4], of which a preprint1 is included in
section 4.2 to give an overview. The remainder of this chapter is devoted to a thorough
investigation of the effects summarized in [4]. The results of chapters 5 and 6 are derived
from the results presented in this chapter.

In section 4.1, we summarize the main result of chapter 3 and give an overview of
previous efforts to understand and control the transport properties of Brownian particles
on two dimensional surfaces. The mechanism which gives rise to SSBT in spatially two
dimensional overdamped dynamics will be unraveled in the simplest case when the drive
is in a symmetry direction of the lattice in sections 4.8-4.10.3. The consequences of SSBT
in that simple case, i.e. absolute negative mobility (ANM) and anisotropic deterministic
diffusion, will be discussed in section 4.11. In sections 4.12-4.15, we show how SSBT
is created when the drive is not in a symmetry direction of the lattice and investigate
its consequences in sections 4.17-4.22, culminating in “directing Brownian motion” on a
periodic surface.

4.1 Introduction

It is well known that spontaneous symmetry breaking transport (SSBT) is a common fea-
ture of simple underdamped dynamics in one or more dimensions when either a rocking
[1, 109, 110, 137, 154] or pulsating drive [157, 187, 188] is applied. In Hamiltonian dynam-
ics, a high starting velocity induces sustained transport, see e.g. [110]. Including friction,
this question becomes more complicated [137]. Recently, it was shown independently by
the author [1, 2] and Machura et al. [63] that SSBT can be exploited to achieve various
novel transport phenomena: ANM and various noise induced ANM effects [1–3, 63, 92–
95, 148–151, 157], see chapter 3. The general idea of these effects is that the direction
of transport is controlled by the competition of the direction induced by a constant bias
force (or any other symmetry breaking term introduced into the equations of motion)
and the pair of transport directions given by a pair (or more) of SSBT attractors, see
section 2.7. Thus, the intuitive idea of an average transport in a “preferred” direction,

1The preprint is largely identical to the printed article which can be obtained via the American
Physical Society.
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given for instance by a constant bias force, is no longer valid, and the opposite can be
the “normal” behavior for certain parameters (not too far from the symmetric case).

In general, the exploitation of SSBT to achieve “interesting” transport phenomena
seems to be coupled to the occurrence of chaos in simple 1D underdamped dynamics
[1, 2, 63, 137, 157]. While chaos is not a necessary companion of SSBT [137, 157], see also
section 6.6, the occurrence of SSBT requires the ingredients for the occurrence of chaos:
a 3 dimensional phase space and nonlinearity [1, 2]. In the dynamics considered in [1, 2],
the coordinates are the particle position, velocity and time. The Poincare-Bendixon-
Theorem [118] excludes chaos in two dimensional dynamical systems, so three dimensional
systems are “minimal” for the occurrence of chaos, as is nonlinearity [87, 115, 118]. The
exploitation of SSBT to achieve “interesting” transport phenomena in [1, 2, 63] made use
of instabilities linked to chaos. Thus, SSBT and chaos are coupled in the sense that they
occur in the same class of systems.

A natural question to ask is whether ANM and SSBT can be found for a single
overdamped particle in a two dimensional periodic and symmetric potential and driven
out of equilibrium by a symmetric and periodic driving force. The dynamics of the particle
are described by a two dimensional non-autonomous differential equation, and thus, with
regard to chaos, the same effects as for the inertial dynamics of a single particle in a
one dimensional periodic potential can be expected. The idea is to “replace” the inertial
forces by a second spatial dimension. But then, there is no simple mechanism of SSBT,
as there is no term in the dynamics which can store directed “energy” in an obvious
manner, like the momentum in inertial (or Hamiltonian) dynamics. In the absence of
other forces, the only mechanism of “energy” storage is the particle coordinate. If the
particle sits on the descending flank of a potential barrier (or equivalently in the basin of
attraction of a potential well), it has “directed” energy. But due to the periodic nature
of the potential it is not possible to draw a curve (i.e. a particle trajectory) through
the potential only through regions of the potential with a positive scalar product of the
force field (i.e. the gradient of the potential) and one fixed direction. Thus, the case of a
purely unidirectional “energy” storage such as inertia in the high initial velocity case of
Hamiltonian dynamics is not possible.

The added spatial dimension allows for a much richer transport behavior. First,
the response of the particle to a dc bias force or, more generally, a symmetry breaking
perturbation can now be, in principle, a current in any direction, i.e. the particle may be
deflected from the direction of the bias force and the angle between the bias force and the
average velocity of the particle is called the deflection angle. Throughout the literature,
deflection angles of up to 90◦ are reported: deflection angles of less than 45◦ are reported
for Brownian particles on a square lattice driven only by a constant bias force, see e.g.
[23–25, 28, 189–192] (experimentally) and [18–21, 26, 27, 193, 194] (theoretically). A
deflection angle of 45◦ cannot be achieved, and the limit is approached for small bias
forces and temperatures [20]. Another variant is to replace the symmetric potential with
a ratchet potential, resulting in a geometric ratchet [195–201]. The particle is deflected
from the direction of the bias force due to the asymmetry of the potential, and deflection
angles of less than 90◦ are possible2. Applying a constant bias force and a (time) periodic

2Trivially, if a Brownian particle is made to slide along a “wall”, a deflection angle of almost 90◦ can
be reached. The same applies to symmetric rectangular lattices in the limit of small noise and bias forces
along the same lines as in [20].
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circular drive to Brownian particles in a square lattice potential, deflection angles of 90◦

are reported in [104, 202, 203] and termed “absolute transverse mobility”. For interacting
particles, a spontaneous deflection of the particles even if the dc drive is in a symmetry
direction of the lattice, i.e. the deflection spontaneously breaks a reflection symmetry
of the dynamics, is reported in [204–207]. That deflection is similar to the SSBT effect
discussed for extended and structured molecules in chapter 7. Lastly including inertia
effects in a spatially two dimensional dynamics, it is clear that ANM can be observed if
one embeds the system considered in chapter 3 [1, 2] in two dimensions. Thus, already for
separable dynamics3 a wide variety of deflection angles can be obtained easily. Therefore,
we will not pursue this direction in detail. Previous studies in this direction have focused
on broken symmetry, i.e. ratchet effects [183, 208], or considered the small driving force
limit and separable dynamics [184].

Second, without a symmetry breaking perturbation, the particle will diffuse, i.e. an
initially sharply localized distribution of particles with cover a certain area after some
time has elapsed. The rate at which the distribution widens is a powerful tool to control
the particle in one spatial dimension [22, 105, 209–219]. Adding a second direction, the
particle may exhibit anisotropic diffusion, i.e. the particle distribution will be elliptical,
making diffusion a much more powerful tool than in one spatial dimension.

With regard to SSBT and ANM, a recent series of papers [104–106, 185, 202, 203, 220]
considers the overdamped dynamics of a single particle in a symmetric two dimensional
potential and driven by a circular symmetric AC drive. [105, 106, 185, 220] consider
a potential with hexagonal symmetry and report SSBT, both experimentally and the-
oretically, but do not study the particle mobility4. Since SSBT is found, the experi-
ment [105, 106, 185, 220] is a good candidate to test our findings [4] experimentally.
[104, 202, 203] consider square lattice potentials and report diffusive delocalized motion
but not SSBT. Including a dc bias force [104] contains a hint that the average particle
current might have been against the dc drive but remains inconclusive5. Furthermore,
[104, 202, 203] show several realizations of differential negative mobility, i.e. an increase
of the bias force leads to a decrease of the particle current, while that current is still
in the direction of the bias force. From [221] we conclude that the same results can be
obtained for many interacting particles subjected to periodic pinning potentials and a
circular ac drive. Differential negative mobility (and ANM as a special case) can already
be observed for single spherical (or non-spherical) particles subjected to thermal noise
in a trapping, or meandering, geometry [47–50, 53–55, 222]6. In spatially one dimen-
sional dynamics, SSBT of interacting overdamped particles is reported in the limit of
infinitely many particles in e.g. [29, 38–44] where a non-equilibrium phase transition in
the thermodynamic limit leads to SSBT and ANM. In some of these models, ANM can
be found for as few as three interacting Brownian particles [43, 44]. Likewise, SSBT of a

3I.e. the equations of motion can be separated into two independent equations, each equation de-
scribing the movement of of one component of the particle position.

4i.e. the change of the particle current (average velocity) when a constant bias force is applied
5Figs. 6 and 10 in [104] might contain a realization of ANM, but the data is obtained (cf. sec. II of

[104]) by starting with zero dc bias and then slowly increasing the bias force to the first data point, and
from there to the second and so forth. Effectively, only a single deterministic particle trajectory is gen-
erated and the curve may depend on the initial condition. Due to the reported presence of deterministic
diffusion, and thus an unbounded attractor, ANM might be observed in the system considered in [104].

6experimentally realized in [3, 52, 59–62]
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granular gas, i.e. interacting hard sphere particles, is reported in [138], but the mobility
is not studied. Using a linear periodic driving force but introducing an asymmetry, vari-
ous ratchet effects can be realized in spatially two dimensional dynamics, e.g. [223–236]
(drive parallel to the direction of transport) and [234, 237–239] (drive orthogonal to the
direction of transport), see [10, 11] for reviews. Common to all these studies is that one
reflection symmetry of the dynamics remains intact, such that transport breaking this
symmetry is ruled out.

We will consider the simplest possible situation of a single overdamped Brownian par-
ticle subjected to a periodic rocking driving force in a periodic potential: the simplest
possible scenario for SSBT and ANM in overdamped dynamics: due to the low dimen-
sional phase space of one dimensional overdamped dynamics, SSBT is ruled out, and the
no-go theorem from [1, 2] rules out ANM. As mentioned above, we include a preprint of
our publication [4] as a summary of our findings.
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We consider an overdamped Brownian particle, exposed to a two-dimensional, square lattice
potential and a rectangular ac-drive. Depending on the driving amplitude, the linear response to
a weak dc-force along a lattice symmetry axis consist in a mobility in basically any direction. In
particular, motion exactly opposite to the applied dc-force may arise. Upon changing the angle of
the dc-force relatively to the square lattice, the particle motion remains predominantly opposite to
the dc-force. The basic physical mechanism consists in a spontaneous symmetry breaking of the
unbiased deterministic particle dynamics.

PACS numbers: 05.45.-a, 05.60.-k, 05.40.-a

Brownian particle dynamics in two-dimensional peri-
odic potential landscapes arise in a large variety of dif-
ferent contexts. Examples include driven vortex lattices
[1–3], surface diffusion [4], a ring of several Josephson
junctions [5], colloidal particles or globular DNA in struc-
tured microfluidic devices [6, 7] and in optical [8, 9] or
magnetic [10] lattices, enzymatic reaction cycles driving
molecular motors [11], nanoscale friction [12] and super-
lubricity [13]. They have recently attracted considerable
theoretical [1, 14] and experimental [8] interest for par-
ticle sorting in two-dimensional periodic structures with
the help of an externally applied dc-force, whose angle
relatively to the periodic potential can be parametrically
changed. The key point is that the resulting particle ve-
locity may exhibit a different direction than the applied
dc-force and that the deflection angle may be different
for different particle species. While the deflection angles
between force and velocity remain bounded to relatively
small values, our present system will lead to (practically)
arbitrary deflection angles.

A second recent series of papers [2, 10] considers the
same system but in the presence of an additional circular
ac-drive. Deflection angles up to 90◦ (absolute trans-
verse mobility) have been found in [2], while [10] reports
transporting orbits in the absence of a dc-drive. A related
variant is to replace the circular by a more common, lin-
ear ac-drive, but now breaking the time-space symmetry
by chosing a bi-harmonic driving signal [3], and focus-
ing on the low friction regime [15]. The setup we will
consider here is related but simpler: a standard ac-drive
without any concomitant space-time symmetry breaking
and negligible inertia effects.

Unbiased far from equilibrium dynamics of a Brownian
particle, responding to a dc-force by a directed trans-
port opposite to that force, have been extensively in-
vestigated under the label “absolute negative mobility”
(ANM) [7, 16]. Our present work represents the natu-
ral extension, namely an unbiased far from equilibrium
system admitting an easily controllable linear response
into (practically) any direction relative to the dc-force,
including ANM as a special case.

We consider the following 2d Langevin dynamics of a

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

y

x

F~eφF~eφ

A~eαA~eα~v~v

ψψ

FIG. 1: Schematic illustration of our model (1). The contour
lines represent the potential U(~r) with a cut-off for better
visualization (white discs). The double arrow indicates the ac-
drive A(t)~eα, one arrow the dc-bias F~eφ, and another arrow
the particle velocity (2). The particle is sketched by the black
dot. The angle ψ quantifies the “deflection” of ~v from F~eφ.

Brownian particle with coordinates ~r = x~ex + y~ey:

~̇r(t) = A(t)~eα + F~eφ −∇U(~r(t)) +
√

2Γ ~ξ(t) . (1)

Thus, inertia effects are neglected (overdamped dynam-
ics), and the friction coefficient is absorbed into the time
unit. As illustrated with Fig. 1, A(t) is the ac-driving
signal along the direction ~eα := (cosα, sinα), and anal-
ogously for the dc-bias F~eφ. The periodic potential is
represented by U(~r) and thermal fluctuations of temper-
ature Γ are modeled by the two delta-correlated, Gaus-

sian noise components of ~ξ(t). We focus on the particu-
larly simple rectangular driving A(t) = a sign{cos(Ω t)}
with amplitude a and period T = 2π/Ω. We veri-
fied that a sinusoidal A(t) leaves all our main findings
qualitatively unchanged and expect the same for even
more general A(t). Further, we focus on the potential

U(~r) =
∑
Ũ(~r + Ln~ex + Lm~ey) with r := |~r|, Ũ(~r) =

u exp{−r/λ}/r, and u, λ > 0. In other words, we con-
sider a square lattice of repulsive Yukawa potentials, a
standard choice for screened charges [2]. Again, we ex-
pect that our results remain qualitatively unchanged for
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FIG. 2: Velocity (2) from numerical simulations of (1) for
α = 0.15 · 360◦ = 54◦, a ∈ [4.3, 8], φ = 0◦, F = 0.03, Ω = 4.3,
Γ = 2.2 · 10−4 (left) and Γ = 6.7 · 10−4 (right). Shown is
the parametric dependence of the velocity components vx, vy

on the ac-amplitude a in units of L/T (L = 1, T = 2π/Ω).
Arrows indicate increasing a-values. Upon further decreasing
F , a close to linear response behavior of ~v results (not shown).

more general Ũ(~r), modelling e.g. pinned vortices [1],
optical tweezers [8, 9], or magnetic bubbles [10], and we
have explicitly verified this for Gaussian shaped repul-
sive and attractive potentials. Without loss of generality
we choose length and time units with L = 1 and u = 1.
Regarding λ, we obtained practically indistinguishable
results for all λ ≥ 4, variations by a few percent down to
λ ≈ 1, and notable quantitative but no qualitative differ-
ences at least down to λ ≈ 0.1. In the following we focus
on the representative example λ = 4.

The observable of main interest will be the time-
averaged particle velocity

~v = vx~ex + vy~ey := lim
t→∞

1

t

∫ ∞

0

dt′ ~̇r(t′) . (2)

being independent of the seed ~r(0) and the realization of
~ξ(t) in (1) for any Γ > 0 due to ergodicity reasons.

Generally speaking, the periodic potential, the ac-drive
and the dc-bias in (1) give rise to several “competing di-
rections”, whose net effect on the velocity ~v from (2) is far
from obvious. For zero bias F , the ac-forcing still keeps
the system off equilibrium but any non-zero velocity ~v is
prohibited by symmetries [17]. Our first objective is the
linear response of ~v to a weak dc-bias along the x-axis, cf.
Fig. 1. Our findings in Fig. 2 exhibit a quite intriguing
behavior. Keeping all “competing directions” fixed and
solely changing the ac-amplitude by 40%, almost any di-
rection of ~v may arise, even motion exactly opposite to
the applied dc-bias (ANM).

Next, we focus on a set of parameters close to the oc-
currence of ANM in Fig. 2 and now ask for the response
of ~v upon changing the direction of the dc-bias. Again,
the results in Fig. 3 are quite non-trivial, the most re-
markable feature being that the projection of the veloc-
ity along the dc-bias is mostly negative, i.e. the particle
motion remains predominantly opposite to the dc-force
(90◦ < ψ < 270◦). Similarly as in Fig. 2, the effect
is particularly striking for small noise strengths Γ, and
vanishes for Γ & 10−3.

ψ
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FIG. 3: Deflection angle ψ (see Fig. 1) and velocity v := |~v|
versus “dc-directionality” φ (see (1)) for the same system as
in Fig. 2 but with a = 7.4, and Γ = 4.4 · 10−4 (solid), Γ =
6.7 · 10−4 (dashed).

To better understand these findings we first focus on
the deterministic dynamics (Γ = 0) in the simplest case
when the ac-drive and the dc-bias are parallel and acting
along one of the main symmetry axes of the periodic
potential. Regarding the (1, 0) direction, i.e. φ = α =
0◦, the lines y = n/2 constitute invariant sets of the
deterministic dynamics (1), stable for odd and unstable
for even n. Thus, the particle motion is confined between
two neighboring such lines and generically is attracted by
the one with odd n for large times. Further, the velocity
(2) necessarily must follow the direction of the dc-force,
i.e. ψ = 0◦, and, in particular, vanishes for F = 0. This
qualitative behavior remains unchanged in the presence
of noise (Γ > 0). Analogous conclusions hold for the
(0, 1) lattice direction.

Turning to the (1, 1) direction, i.e. φ = α = 45◦,
the lines x − y = n now constitute invariant sets of the
deterministic dynamics (1) due to its invariance under
S1 : (x, y) 7→ (y, x). Again, the particle motion must re-
main confined between two adjacent such lines, implying
for the velocity (2) that ψ = 0◦ and hence vx = vy. But
now, the motion on the invariant lines may change its
stability properties upon variation of a system parame-
ter, and additional non-trivial attractors, not contained
in any of the invariant lines, may arise. A typical exam-
ple is shown in Fig. 4. We see that – depending on the
driving amplitude a and possibly also on the seed ~r(0)
– the orbit ~r(t) approaches a periodic or a chaotic long
time behavior. The concomitant velocity (2) is still well
defined but – in contrast to the noisy case Γ > 0 – now
may depend on the initial condition ~r(0). The “central”
straight line in the bifurcation diagram for a < 3.22 be-
longs to all the periodic attractors on the invariant sets
x − y = n, exemplified by (a) in the upper inset of Fig.
4, and giving rise to a vanishing average velocity. At
a ≈ 3.09 we observe the appearance of an additional pair
of non-transporting (~v = 0) periodic attractors, spon-
taneously breaking S1 as well as the second symmetry
S2 : (x, y) 7→ (−x,−y) of (1), but still maintaining (up
to translations) S1 ◦ S2 : (x, y) 7→ (−y,−x), see (b) in
Fig. 4. Thus, there are now three coexisting attractors
within every unit cell of the periodic potential, one of
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FIG. 4: Upper part: Bifurcation diagram for the unbiased
(F = 0) deterministic (Γ = 0) dynamics (1) with α = 45◦,
Ω = 3, and varying a. Shown is a stroboscopic representation
of the attractors, governing the long-time behavior, by plot-
ting x(jT ) modulo L (L = 1), i.e. the reduced x-component
at multiples j of the driving period T = 2π/Ω, for several dif-
ferent seeds ~r(0) after initial transients have died out. Lower
part: Corresponding x-component of the average velocity (2)
in units of L/T . Upper inset: Stable periodic orbits (attrac-
tors) for a = 3.1 (a and b) and for a = 3.107 (c). Dotted:
invariant sets x − y = n. Black “clouds” and “discs” repre-
sent the potential U(~r), corresponding to Fig. 1 after a 45◦

rotation. Lower inset: stable period-2 transporting orbit for
a = 3.33.

type (a), the others of type (b) and its image under S1.
At a ≈ 3.102 the pair of type (b) attractors exhibits
a pitchfork bifurcation, which spontaneously breaks the
S1 ◦ S2 symmetry (symmetry breaking bifurcation [18]),
resulting in four distinct, non-transporting attractors per
unit cell. One of them is exemplified with (c) in Fig. 4,
its three “brothers” follow as mirror images with respect
to the closest x − y = n and/or x + y = n lines. Upon
further increasing a, a period doubling route to chaos fol-
lows, which would be impossible without the preceding
symmetry breaking bifurcation [18]. The corresponding
attractors loose stability by way of a crisis at a ≈ 3.12.
They reappear beyond a ≈ 3.19 as “chaotic bands”, inter-
rupted by “periodic windows”. Some of these windows
exhibit attractors corresponding to phase-locked trans-
porting orbits. The symmetry breaking bifurcation at
a ≈ 3.102 is pivotal for such transporting orbits: Since
there is no systematic force (F = 0), which could fa-

vor motion in one or the other direction, spontaneous
symmetry breaking of all symmetries involving S2 is an
indispensable prerequisite for transporting orbits. The
simplest and most prominent example arises within the
periodic window at a ≈ 3.33, exhibiting two attractors
between any pair of adjacent x − y = n lines. One
such orbit is exemplified in the lower inset of Fig. 4,
its “twin brother” follows as mirror image with respect
to any x + y = n line. Apparently, this orbit arises by
continuing the deformation of orbit (b), which leads to
(c) even further, and rewiring one of its “arms” into the
neighboring unit cell. The latter operation cannot be re-
alized by a continuous deformation and hence one might
guess that this somehow happens within the “gap” in the
bifurcation diagram between a ≈ 3.12 and a ≈ 3.19.

Due to the S1 ◦ S2 symmetry at F = 0, oppositely
transporting orbits co-exist and are stable within exactly
the same range of the other system parameters. Applying
a force F 6= 0, however, breaks the symmetry and hence
the existence regions of the two orbits in parameter space
no longer coincide. Closer inspection of how these regions
change shape and size reveals that there are, for not too
large |F |, parameter values, where the only stable orbit
is the one which transports against the dc-bias F . In
other words, we recover yet another example of “pure”
ANM (ψ = 180◦) [7, 16], which furthermore turns out to
survive even in the presence of (sufficiently weak) noise
(Γ > 0).

We finally address the case of arbitrary (but fixed) ori-
entations of the external forcings. Without loss of gen-
erality we restrict ourselves to 0 < α < 90◦ but admit
arbitrary φ. For such general driving directions the de-
terministic dynamics (1) is not restricted any more by
simple invariant sets. Rather, by means of extensive
computer simulations we have found that transporting
particle motion is created in a way very similar to the
case exemplified above with Fig. 4, and typically “locks”
to one of the three main symmetry axes (1, 0), (0, 1) or
(1, 1), depending on amplitude and frequency of the ac-
drive. In particular, for F = 0, symmetry dictates the co-
existence of transport into opposite directions for either
of these basic orientations. Applying a (not too large)
dc-bias F~eφ along a direction that is generally different
from the one of the ac-drive, φ 6= α, has two main effects:
First, this co-existence is lifted, yielding parameter re-
gions where only one transporting direction out of the 6
different possible directions is stable. Second, new trans-
port directions around the orientation of the bias force
become accessible that follow a similar “locking scheme”
as in [14] upon variation of a system parameter.

In other words, systematically changing, say, the driv-
ing amplitude a leads to “jumps” in the deterministic
transport direction where – due to the time-dependent
ac-drive – also transport with velocity components oppo-
site to the bias force occurs, in marked contrast to pre-
vious findings in [14]. The main effect of (weak) thermal
noise is to “interpolate” between neighboring determin-
istic directions, resulting in the smooth behavior shown
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in Fig. 2: transport in virtually any direction but with
emphasis on directions around the orientation of the dc-
bias. Similarly, the variations of the deflection angle ψ
observed in Fig. 3 result from a basically unchanged
orientation of ~v into the “negative” (1, 0) direction as
long as the dc-bias has a non-vanishing component in the
“positive” (1, 0) direction (i.e. −90◦ . φ . 90◦) and a
quick transition into the opposite situation when the dc-
orientation φ moves into the complementary regime be-
tween 90◦ and 270◦. In any case, too large noise strengths
Γ basically override the effects of the periodic potential
and the system tends to return to the trivial behavior in
the absence of the periodic potential.

In conclusion, several quite astonishing linear response
transport phenomena of a very simple and general non-
equilibrium system have been observed and understood

to the extent that an efficient and systematic search of
pertinent parameter regions becomes easily feasible. The
system is minimal in so far as any further reduction or
simplification unavoidably rules out one of the indispens-
able prerequisites, most notably the occurrence of spon-
taneous symmetry breaking and chaos in the determin-
istic limit. On the other hand, the effects are robust
against a large variety of modifications and amendments
of the model and hence should be realizable in several dif-
ferent experimental systems [5–10] for instance for parti-
cle sorting purposes.
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Figure 4.1: (a) Yukawa and (b) Gauss square lattice potential with Lx = Ly = 1 rep-
resented by equipotential lines, i.e. (4.2) with (a) (4.3) and (b) (4.4). The parameters
are λ = 4 (a) and u = 10 and σ = 1

4
(b). In panel (a) the relevant vectors are shown,

namely, the average velocity ~v = v~eϑ (black), the constant bias force ~F = F~eφ (red) and

the deflection angle ψ (i.e. the angle enclosed by ~F and ~v). The periodic driving force is

indicated by a blue double arrow ~A = A~eα.

4.3 Model

As a simple and representative example we choose the Langevin dynamics of the position
coordinate ~r(t) = (x(t), y(t)) of a single overdamped Brownian particle interacting with

a periodic potential U(~r), a rocking drive ~A(t), a constant bias force ~F = F~eφ
7 and two

dimensional Gaussian white noise ~ξ(t) of strength Γ:

η~̇r(t) = ~A(t) + ~F − ~∇U(~r(t)) +
√

2ηΓ~ξ(t) (4.1)

with 〈ξi(t)ξj(s)〉 = δijδ(t− s).
Normalization factors of the potential can be absorbed into the friction coefficient η,

which can in turn be absorbed into the time unit. Specifically, we set

U(x, y) =
∑

n,m

Ũ

(

x +

(

n +
1

2

)

· L, y +

(

m +
1

2

)

· L
)

(4.2)

and choose the sample potentials Ũ to be

ŨYukawa(x, y) =
exp(− r

λ
)

r
(4.3)

7~eφ is the unit vector enclosing the angle φ with the x axis, i.e. in the direction of φ. Likewise, we
will denote the unit vectors in the x/y direction as ~ex/y.
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(Yukawa potential, a standard model for screened charges [202, 203, 240, 241]) with
r = |~r| and λ > 0, or, occasionally,

Ũgauss(x, y) = u · σ · exp(− r2

2σ2
) (4.4)

(Gauss potential, a standard model for optical traps [23, 24, 28, 189, 191, 242]) with
σ > 0 and u 6= 0. The prefactor σ ensures that the gradient has the maximum value
|~∇Ũ(σ~eν)| = u · exp

(
−1

2

)
with ν being an arbitrary direction. This choice turns out

to be convenient when comparing different values of σ. It is important that due to
the rotational symmetry of (4.3) and (4.4) the force due to a single lattice site is also
rotationally symmetric and thus depends only on the distance r from the lattice site.
Otherwise, the total potential would have different symmetry properties. Both potentials
turn out to yield qualitatively similar results if certain conditions are met, see figure 4.40
and figure 4.4.

As normalization, we set
L = Lx = Ly = 1 (4.5)

from now on, but will refer to the lattice period as L occasionally. For the driving force
we write

~A(t) = ~eα · a · f̃(t) (4.6)

with the drive protocol f̃(t), the drive amplitude a and the drive direction α. We will use
only periodic drive protocols with period T and frequency Ω = 2π

T
. For the drive protocol

we will choose a square wave in most cases:

f̃square(t) = sign(− sin(Ω · t)) (4.7)

and, in a few cases, a sine wave protocol

f̃sine(t) = − sin(Ω · t). (4.8)

Our “standard” model reads

~̇r(t) = ~eα · a · sign(− sin(Ω · t)) + F~eφ − ~∇ŨYukawa(~r(t)) +
√

2Γ~ξ(t) (4.9)

and our central observable will be the time- and ensemble averaged dimensionless velocity,

~v = v~eϑ =
T

L
lim
t→∞

1

t

∫ ∞

0

dt′~̇r(t′), (4.10)

taking values of n
m

with n ∈ Z and m ∈ N\{0} for periodic, and thus also for phase-locked
solutions. Our notation is largely the same as in [4], except for the normalization of the
average velocity, a shift of the potential and in the drive protocol.

(4.7) turns out to be advantageous in overdamped dynamics, as, for sufficiently large
drive amplitudes a, it prevents the particle from relaxing towards the potential minima
in the low frequency limit Ω → 0. In contrast, any smooth drive protocol respecting S0

symmetry, e.g. (4.8), allows the particle to relax towards a potential minimum if the
frequency is sufficiently low. This results in trajectories with different initial conditions
getting very close when they relax towards the minima, resulting in narrow basins of
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attraction. Usually, this yields a low noise resistance, i.e. pseudopotential depth [2, 141,
144, 243] of the attractor, since already a small noise kick may put a noisy trajectory on
the attractor outside the attractor’s basin of attraction. This is particularly relevant in
the presence of symmetry induced bistability.

The square wave drive (4.7) introduces a discontinuity into the dynamics. This may
have significant effects on the dynamics. In particular, it may lead to deterministic chaos
in a non-autonomous one dimensional ordinary differential equation of the same class
as considered here but without S0 symmetry [244]. Without the discontinuity, chaos
is excluded in such dynamics [118]. We have verified that our results are qualitatively
unchanged if the discontinuity is lifted by using the sine drive protocol (4.8), see in
particular figure 4.31 and figure 4.41, see also section 4.6.

4.4 Numerical treatment of the potentials

With regard to our choice of λ and σ in (4.4) and (4.3) (see section 4.5), it is clear that
the numerical computation of (4.2) is prohibitively expensive. First, a numerical cutoff
has to be introduced, i.e. the sum is computed only for a finite number of terms (see
also footnote 5 of section 5.2). We keep only the terms from the neighborhood of the
elementary cell that the particle is in up to a certain radius (more precisely all lattice
sites with a Chebyshev distance8 from the elementary cell the particle is in equal to
or less than that radius). For (4.3), we have found the sum to converge if about 20
neighboring grid sites are taken into account, in the sense that there are no discernible
differences, at the resolution of the figures, if the attractors shown in (e.g.) figure 4.7 are
computed for different radii. To avoid the computation of the sum in each step of the
solver, we compute the force field on an equally spaced rectangular grid and use bilinear
interpolation [186]. To that end, we have found the numerics to converge already if the
grid has a resolution higher than 100 × 100, in the sense that there are no discernible
differences, at the resolution of the figures, if the attractors shown in (e.g.) figure 4.7
are computed. When calculating unstable periodic orbits with large Floquet multipliers,
the nonanalyticities introduced by the bilinear interpolation result in some problems
at certain combinations of the system parameters, numerical tolerances and grid sizes,
which can be avoided by varying the system parameters9. If the computations are done

8The Chebyshev distance of two points ~a, ~b in R
N is maxi |ai − bi|.

9 To calculate the stroboscopic map Θ used to obtain unstable periodic orbits of the dynamics we
have used the rk4 ODE solver from [186] with h = 10−3 since the rkqs algorithm from [186] yielded worse
results (even for much smaller values of ǫ), possibly due to the interplay of the minimization scheme, the
adaptive step size control and the interpolated force field. Convergence of the minimization scheme is
assumed if the residual is sufficiently small, i.e. |Θ(~rfp) − ~rfp| < 10−6, and we have found our results to
be robust if the residual is either increased or decreased by more than one order of magnitude. We have
found the minimization scheme to fail to converge for some combinations of bifurcation parameter values
and grids from which the force field is interpolated, even if the residual is increased by two orders of
magnitude. This is due to the nonanalyticities of the bilinearly interpolated force field. We have found
that decreasing the grid spacing (and thus increasing the resolution of the force field interpolation) does
not solve the problem satisfactorily but considering more values of the bifurcation parameter does. To
find all unstable periodic orbits, we use a very high resolution grid in the bifurcation parameter. To follow
unstable periodic orbits (in the same sense as following stable periodic orbits in phase diagrams) we have
not used equally spaced values of the bifurcation parameter but vary the spacing at each increase of the
bifurcation parameter until the minimization scheme converges or a maximum/minimum step width of
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on a normal processor (CPU) with a sufficiently large on chip cache, we have found
the method to be sufficiently fast for our purposes. For large grid sizes, and possibly
for large noise strengths, we have found a significant increase of the computation time.
The first can be attributed to the grid becoming too large for the on chip caches of the
CPU, while the latter may be attributed to the data prefetch algorithms of the CPU
working less efficiently for noisy trajectories. The situation would be much different if
the computations were to be done on a GPU. Then, the frequent memory accesses would
be prohibitively expensive due to the much smaller on chip caches, and the large number
of threads competing for the caches. In that case a summation technique (see footnote 5
of section 5.2) would yield better results. With regard to the Gauss potential, a similar
conclusion applies, only that the radii of the neighborhood taken into account may be
much smaller. We have found the method to have converged for radii larger than 4 for
σ = 0.25 (and possibly smaller, depending on the choice of σ) in the same sense as above.

4.5 Choice of parameters

From now one, we will consider the case of no noise and no bias force

Γ = 0 and ~F = 0 (4.11)

unless otherwise noted, i.e. S0 symmetric deterministic dynamics, and try to show how
SSBT is created. To begin, we fix the free parameters σ in (4.4) and λ in (4.3). For
λ → 0 the potential using (4.3) becomes flat, the dynamics become linear and SSBT is
ruled out. For λ → ∞ the potential converges to that generated by a square lattice of
electric charges and SSBT is not ruled out. Thus, we expect a good choice of λ to be
λ≫ 1. The treatment of that case involves some subtleties, which we avoid by choosing

λ = 4 (4.12)

unless otherwise noted. For larger λ we found no significant differences in the dynamics.
A slightly different line of reasoning applies to (4.4) with respect to σ. For both σ = 0
and σ → ∞ the potential becomes flat, and we do not expect SSBT. Thus, there should
be an “ideal” choice in between. We expect it to be somewhat less than the lattice period
L since this yields a potential without flat parts, while the depth of the potential wells is
reduced for σ > L. Unless otherwise noted, we choose

σ = 0.25 and u = 10 (4.13)

from now on since this choice closely matches our choice of λ in (4.3), see figure 4.40.

the bifurcation parameter is reached. To further improve these calculations for unstable periodic orbits
with unfavorable Floquet multipliers we estimate the phase space coordinate of the unstable periodic
orbit at each new value of the bifurcation parameter from the known phase space coordinates of the
unstable periodic orbit at the previous values of the bifurcation parameter according to the method
described in [117], i.e. extrapolation. This method allows larger steps in the bifurcation parameter to
be taken and reduces computation time.
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4.6 Symmetries

A general treatment of the possible symmetries of the dynamics is found in chapter 2.
The square lattice Gauss and Yukawa potentials are Ŝ0, Ŝxy, Ŝx, Ŝy and Ŝπ

2
symmetric

(see (4.14)-(4.17) and table 2.3). Due to the symmetry of the potential, it is sufficient
to consider α ∈ [0◦, 45◦], since the whole interval [0◦, 360◦) is contained in the image of
[0◦, 45◦] under the action of suitable combinations of the lattice symmetries. Note that
removal (by considering a potential of lower symmetry) of any one of these symmetries
is enough to change this.

Together with the symmetry properties of the periodic drive, the spatial symmetries of
the potential imply symmetries of the dynamics. As in chapter 2, we use the same symbols
for the symmetries of the non-autonomous dynamics, but without the hats. Furthermore,
we usually do not specify the action of these symmetries on time, tacitly assuming their
actions to be along the lines of section 2.4. The main symmetries considered in this
chapter are (cf. section 2.4):

S0 : (x, y, t) →
(

−x,−y, t+
T

2

)

(4.14)

Sxy : (x, y, t) → (y, x, t) (4.15)

Sx : (x, y, t) → (x,−y, t) (4.16)

Sy : (x, y, t) → (−x, y, t) . (4.17)

We will write all other symmetries as combinations of these symmetries. Furthermore,
we define the lattice shift symmetries as

SLx : (x, y, t) → (x+ 1, y, t) (4.18)

SLy : (x, y, t) → (x, y + 1, t) (4.19)

and use the same symbols but with hats for their restrictions on the spatial coordinates
(x, y).

For F = 0, S0 symmetry is always at work. α = 0◦ breaks Sy
10 and Sxy symmetry,

but the dynamics remain Sx symmetric. This implies that the lines (x, n
2
), x ∈ R, n ∈ Z

are invariant manifolds (of the dynamics)11. In our case, they are stable for n even and
unstable for n odd, as can be readily inferred from eqs. (4.2)-(4.4) and figure 4.1. These
invariant manifolds are linear subspaces, and the dynamics on to the linear subspaces
can be described by a one dimensional non-autonomous ordinary differential equation
describing the overdamped dynamics of a point particle in a one dimensional S0 symmetric
and periodic potential. Hence, all results with respect to deterministic spatially one
dimensional overdamped dynamics apply after initial transients have died out, and SSBT
and ANM can be ruled out due to the low dimensional nature of the attracting manifold12.

10as defined by (4.17). If the temporal part is defined as in (4.14) (i.e. time is shifted by T
2 ), another

symmetry is derived, but that symmetry does not imply the presence of invariant manifolds of the
dynamics.

11Meaning that a trajectory that has at least one common point with the invariant manifold is neces-
sarily a part of the invariant manifold.

12Since there is only one spatial degree of freedom, SSBT solutions would have to cross, which is not
possible, and the no-go theorem from [2] rules out ANM.
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As discussed at the end of section 4.3, [244] have shown that the discontinuous forcing
(4.7) can lead to chaos in the (driven) overdamped dynamics of a point particle, and

thus in the dynamics on the attracting manifold of (4.9) for ~F ‖ ~A(t) ∀t and α = 0◦. By
extensive numerical simulations, we have verified that there are no chaotic attractors in
the dynamics on that attracting manifold if ~F = 0. Therefore, the result due to [244]
might require broken S0 symmetry.

For α = 45◦, the only remaining symmetry is Sxy (and S0). The lines

Wn = (x + n, x), x ∈ R n ∈ Z (4.20)

are invariant manifolds, and the dynamics are restricted to “transport channels” con-
fined by adjacent invariant manifolds Wn, Wn+1

13. Since potential minima and maxima
alternate along the invariant manifolds, the attractor of the deterministic dynamics is
not necessarily contained in a linear invariant subspace. Thus, SSBT is not ruled out a
priori14. The main consequence of the presence of the invariant manifolds Wn is that tra-
jectories are restricted to “transporting channels” between two of these manifolds, since,
without noise, no trajectory on one of these invariant manifolds can leave the manifold,
nor can any trajectory started outside any of these invariant manifolds ever enter any of
these manifolds. Thus, the average velocity ~v of all attractors has to be zero orthogonal
to the bisectrix, i.e. SSBT with respect to Sxy is ruled out, see section 2.7. This makes
the treatment of α = 45◦ simpler than that of more general choices of α and we set15

α = 45◦ (4.21)

for now. For all other values of α between 0◦ and 45◦, the only remaining symmetry is S0

and there is no restriction on the average velocity and SSBT attractors with transport
in practically any direction are possible. This case is most complex and will be treated
later.

4.7 Rotated coordinate frame

For α = 45◦, we use a rotated (and stretched) coordinate frame in which the invariant
manifolds Wn, n ∈ Z are parallel to the coordinate axes for convenience:

x̃ = x + y (4.22)

ỹ = x− y. (4.23)

The new unit cell is (x̃, ỹ) ∈ [−1, 1) × [−1, 1). This unit cell can be subdivided by the
invariant manifold W0 (i.e. ỹ = 0) into a lower half [−1, 1) × [−1, 0) and an upper half

13Whenever referring to the Wn from now on, we tacitly require n to be integer.
14Yet, under similar conditions, we have not found SSBT. For the potential U(x, y) = u ·

(cos(2π · x) · cos(2π · y) + cos(2π · x) + cos(2π · y)) and a driving force in arbitrary direction and of ei-
ther form (4.8) or (4.7) we did not find SSBT despite exhaustive numerical search. The same applies to
the potential U(x, y) = u · cos(2π · x) · cos(2π · y) + y2 irrespective of the drive protocol used and the
latter can be explained by “Middleton’s no-passing rule”, see chapter 6.

15Note that the same argument applies to α = 0◦, but that case is of no interest, as discussed above.
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[−1, 1) × [0, 1), i.e. phase space is separable, as was argued in section 4.6. Sxy maps one
half onto the other, and the dynamics in both halves are equivalent. We will use

[−1, 1) × [0, 1) (4.24)

as our unit cell for α = 45◦. The following applies only to the interior of our unit cell.
We replace Ŝxy with

ˆ̃Sxy := ŜLx ◦ Ŝxy : (x̃, ỹ) → (x̃+ 1,−ỹ + 1), (4.25)

which maps the “transport channel’, i.e. [−∞,+∞] × (0, 1), onto itself. Likewise, we
replace Ŝ0 by

ˆ̃S0 := Ŝxy ◦ Ŝ0 : (x̃, ỹ) → (−x̃, ỹ) (4.26)

which maps the unit cell (x̃, ỹ) ∈ (−1, 1) × (−1, 1) onto itself and leaves each “transport
channel” invariant. Note that we have assigned the “lower” part of the invariant manifold
[−1, 1) × {0} to the unit cell for completeness. On the invariant manifold, we continue

to use the “unrotated” symmetry group {Ŝxy, Ŝ0} since ˆ̃Sxy maps one invariant manifold
onto another. The unit cell is separable, i.e. there exists no trajectory leading from one of
the invariant manifolds Wn (cf. (4.20)) into the interior. Therefore it is valid to consider
two different symmetry groups for its components.

4.8 Spontaneous symmetry breaking for α = 45◦

We now turn to α = 45◦ as the simplest possible scenario for SSBT in (4.9). The
remaining parameters are the drive amplitude a and frequency Ω. Transporting solutions
of (4.9) necessarily break S̃0 symmetry and all (combined) symmetries containing S0.
Therefore, we begin our discussion of SSBT by considering the symmetry properties of
(spatially) bounded16 (non-transporting) periodic attractors of (4.9).

For large drive frequencies Ω ≫ 1, the particle is expected to show regular behavior
under certain circumstances. The drive power a

Ω
is a more convenient way to characterize

the drive properties for large frequencies. At fixed drive power a
Ω

, the oscillation amplitude
of a free particle subjected to the periodic drive remains constant. For large frequencies
Ω > 10, the general structure of the symmetry properties of periodic attractors is (see
figure 4.2(b)):

1. For very small drive power a
Ω

, there are only symmetric attractors living on the
invariant manifold W0 and respecting both symmetries S0 and Sxy since small oscil-
lations around the potential minima are symmetric (see section 4.10). An example
of such an orbit at Ω = 10 is shown in figure 4.3(a) (dashed).

2. Upon increasing the drive power, there is a symmetry breaking bifurcation17 cre-
ating (a pair of) S̃0 but not S̃xy symmetric attractors. An example of this pair of

16Meaning that the attractor, projected onto the (spatial) coordinate space, i.e. the x-y plane, is
bounded. In turn, trajectories on the attractors have zero average velocity.

17This bifurcation is equivalent to the bifurcation (b1) discussed in figure 4.7, with the direction of the
symmetry breaking branches inversed, i.e. in the direction of increasing drive power.
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Sxy and S0

Figure 4.2: (Symmetry-) Phase diagram for the deterministic dynamics (4.9) with ~F = 0,
Γ = 0 and α = 45◦. Shown are the symmetry properties, encoded in colors according to
the legend in (b), of non-transporting (bounded) periodic attractors of (4.1). Regions of
existence of unbounded (see text) periodic attractors are also shown and will be discussed
in more detail in section 4.9, see also figure 4.4. White regions correspond to non-periodic
attractors. Coexistence of different symmetry classes are shown by shading of the two
corresponding colors. (a) shows the Ω-a plane of parameter space, see also figure 4.4(a). In
(b) the rescaled drive amplitude a

Ω
proportional to the asymptotic oscillation amplitude

has been used instead of the drive amplitude a. The figure has been obtained by the
same method as described in section 3.9.1, i.e. figure 3.1, but only periodic attractors are
shown. The grid resolution is 800×800 grid points, and the absolute numerical tolerance
of the Runge-Kutta algorithm with adaptive step size control, rkqs of [186], is ǫ = 5 ·10−7

with all components of the solution being weighed equally.
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Figure 4.3: Stable periodic orbits (attractors) of the deterministic dynamics (4.9) with all
parameters as in figure 4.2, Ω = 10 and various values of the drive power a

Ω
: (a) a

Ω
= 0.35

(dashed-dotted), a
Ω

= 0.4 (solid and dashed, the dashed orbit is the (shifted) image of the

solid orbit under Ŝxy); (b) a
Ω

= 0.45 (solid and dashed, the dashed orbit is the (shifted)

image of the solid orbit under Ŝxy ◦ Ŝ0); (c) a
Ω

= 0.65; (d) a
Ω

= 0.7; (e) a
Ω

= 0.85; (f)
a
Ω

= 0.925; (g) a
Ω

= 1.05. The particle positions when the drive changes sign are marked
by the symbols, and the distance of the symbols is the oscillation amplitude. Note that
we show not only the unit cell, and thus some of the symmetric orbits have to be shifted
before they are really mapped onto themselves by their symmetry. The same applies to
all further trajectories shown in this work. The same numerical scheme has been used as
in figure 4.2 and will be used for all other deterministic trajectories shown in this work.
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attractors is shown in figure 4.3(a) (solid and dotted). The drive power value at
which this bifurcation occurs converges to a

Ω
π√
2
≈ 0.56 for very large frequencies18.

3. At drive power a
Ω

π√
2
≈ 0.96, there is a further symmetry breaking bifurcation creat-

ing 4 nonsymmetric attractors. Two of them are shown in figure 4.3(b). The other
two follow by applying S̃xy to the orbits. For slightly larger drive power (O( 1

Ω
)), a

symmetry restoring bifurcation follows, creating S̃xy ◦ S̃0 symmetric attractors (see
figure 4.3(c)). The distance of these bifurcations shrinks to 0 as 1

Ω
. We have found

a width of less than 0.01 at Ω = 80.

4. The bifurcations discussed in 3 repeat in inverse order at drive power a
Ω

π√
2
≈ 1.35.

Nonsymmetric attractors (see figure 4.3(d)) are created in a symmetry breaking
bifurcation and destroyed in a symmetry restoring bifurcation for a slightly larger
value of drive power (again, O( 1

Ω
)), creating S̃0 symmetric attractors, see figure

4.3(e). For larger drive powers, the widths of the regions of existence of nonsym-
metric attractors are even smaller.

5. The S̃0 symmetric attractors undergo the same bifurcation as described above in
3 at a

Ω
π√
2
≈ 1.99 (see figure 4.3(f)), while the then created S̃xy ◦ S̃0 symmetric

attractors (see figure 4.3(g)) undergo the same bifurcation as described above in 4
at a

Ω
π√
2
≈ 2.4. In other words, the bifurcations repeat periodically in a

Ω
π√
2

with a
period of approximately 1.

This regular structure at large drive frequencies and amplitudes can be justified by
an analytical approximation based on a Fourier series expansion of (4.9) and its solution.
In section 4.25.1 we give a sketch of how the approximation can be obtained, but do
not go into details. The approximation yields that increasing the drive power a

Ω
by

√
2

π
,

the oscillation amplitude19 of non-transporting periodic orbits increases by exactly the
spacing of minima on the invariant manifolds (4.20) in the drive direction (i.e. (∆x̃,∆ỹ) =
(±2, 0) in figure 4.3). This is shown in figure 4.3. Compare in particular (a) with (e),
and (c) with (g). Thus, such an increase in the oscillation amplitude corresponds to
one additional potential maximum and one additional potential minimum (counting only
those on the “lower” invariant manifold ỹ = 0) passed during each drive period, and the
total number of potential minima and maxima passed during each drive period increases
by two (counting both equally).

For smaller frequencies, this regular structure is broken up and the symmetry breaking
bifurcations occur at larger drive power for lower frequencies, indicating that the particle
no longer follows the drive as a free particle would. Thus, the stripes (of regions of
existence of symmetric attractors) are “bend upwards” in figure 4.2(b). Moreover, the
widths of the stripes of regions of existence of nonsymmetric periodic attractors grow

18The rate of convergence is 1
Ω . This rate of convergence basically applies to all critical values of the

drive power a
Ω discussed below. It has been obtained numerically and its being independent of frequency

for asymptotically large frequencies will be justified later by an analytical approximation. Furthermore,
our numerics failed for frequencies larger than Ω = 80 yielding a precision less than 0.02 in the asymptotic
values given below. With that in mind, we omit the O( 1

Ω) correction henceforth.
19We define the oscillation amplitude as the distance between the turning points of the orbits in the x̃

direction, i.e. |x̃( 0 )−x̃( T
2 )|. The turning points points are also marked in figure 4.3.
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for smaller frequencies (in the a
Ω

direction) at the expense of the width of the stripes of
symmetric attractors.

Most importantly, for Ω . 10 regions of existence of non-periodic attractors emerge in
the stripes of nonsymmetric attractors. These chaotic attractors are created via period
doubling cascades [87, 115, 121, 122] and will be discussed below in section 4.9. By
the argument due to [127], period doubling bifurcations, and thus chaos created by that
mechanism, can only occur for the nonsymmetric attractors, except in very special cases.
In short, the argument is that by using S0, the stroboscopic map Θ20 can be written as
the square of another map, Θ̃S0 . Using the T

2
propagator ΘT/2(~r0) = ~r(T

2
), where ~r(t) is

the trajectory passing through ~r0 at time 0, i.e. ~r(0) = ~r0, we write

Θ =
(

Ŝ0ΘT/2

)2

= Θ̃2
S0
, (4.27)

and likewise for Sxy ◦ S0
21.

Symmetric (with respect to either of these symmetries) periodic orbits are then fixed
points of Θ̃S0 . A symmetry breaking bifurcation means a period doubling bifurcation of
that map. In turn, a period doubling bifurcation (with respect to Θ) of the symmetric
orbit means a period quadrupling bifurcation of Θ̃S0 . This is a two-parameter bifurcation
[127, 245], a highly special situation as argued in [127]. In other words, the manifold of
parameter space in which the bifurcation occurs has two dimensions less than parameter
space. For dynamics in which there is a restriction on the phase space volume contraction
rate, and thereby a restriction on the Floquet multipliers, such as those considered in e.g.
[1, 2], this period quadrupling can even be ruled out completely [127].

Within these regions of non-periodic attractors, unbounded22 (including SSBT) at-
tractors are found for Ω . 6. The drive power a

Ω
is not a convenient parameter for small

frequencies, and we use the drive amplitude a from now on. Figure 4.2(a) shows an
enlargement of the regions of existence of unbounded periodic attractors found in figure
4.2(b). From figure 4.2(a) it is clear that they are found only in the regions of non-periodic
attractors, which in turn are found only in the regions of nonsymmetric attractors, as
has been detailed above.

The structure of non-periodic and unbounded attractors will be further discussed in
section 4.9, and the mechanism by which they are created will be discussed in more detail
in section 4.10.

20The stroboscopic map (or time T map) Θ is the map that iterates time by T , i.e. Θ(~r0) = ~r(T ) with
~r(0) = ~r0 being the trajectory with initial condition ~r0 at time 0, see footnote 23 of section 2.6.

21In detail (see [127]), the calculation is as follows. Defining the propagator P t1
t0 : R

2 → R
2 : ~r → ~r(t1),

where ~r(t) is the trajectory passing through ~r at time t0, i.e. ~r(t0) = ~r, the stroboscopic map can be

written as Θ = PT
T/2 ◦ PT/2

0 . In S0 symmetric (and likewise in Sxy ◦ S0 symmetric dynamics with S0

replaced by Sxy ◦ S0), for each trajectory ~r(t) there is another trajectory ~̃r(t) = S0~r(t) = Ŝ0~r(t + T
2 ).

Using such a pair of trajectories, we get P
T/2
0 Ŝ0~r(

T
2 ) = P

T/2
0 ~̃r(0) = ~̃r(T

2 ) = Ŝ0~r(T ) = Ŝ0P
T
T/2~r(

T
2 ) and

thus PT
T/2 = Ŝ−1

0 P
T/2
0 Ŝ0, where Ŝ−1

0 = Ŝ0 denotes the inverse of Ŝ0. (4.27) follows immediately.
22In the literal sense. An unbounded attractor, projected into the x-y plane (spatial coordinates)

does not fit into any ball of finite radius. Transporting attractors are the prime examples. Our second
important example are chaotic diffusive attractors, on which the average velocity is zero, but individual
trajectories are unbounded.
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Figure 4.4: Phase diagram for the dynamics (4.1) with ~F = 0, Γ = 0, drive protocol (4.7)
with α = 45◦ and potentials (4.3) (a) and (4.4) (b). Shown are regions of parameter space
in which phase-locked attractors are found. Their transporting velocities are indicated by
colors, see the legend. Non-transporting attractors are displayed in grey. White regions
correspond to regions where no phase-locked attractors have been found. Note that due
to α = 45◦, one has vx = vy. The figure, as well as all following phase diagrams, has
been obtained by the same method as described in section 3.9.1, i.e. figure 3.1. The
grid resolution is at least 400 × 400 grid points for all phase diagrams, and the absolute
numerical tolerance of the Runge-Kutta algorithm with adaptive step size control, rkqs of
[186], is less than ǫ = 5 · 10−7 with all components of the solution being weighed equally.

4.9 SSBT for α = 45◦

We will now discuss the above mentioned regions of unbounded attractors. Our numerical
findings are summarized in figure 4.4.

First, due to the similarity between the potentials, see figure 4.1, there is no significant
difference between (4.3) and (4.4), as can be seen from figure 4.4. In particular, the
divergence of (4.3) and the area around it is of no relevance since this region of phase space
is not accessible to deterministic trajectories unless initiated in it. We will henceforth
focus on (4.3) and figure 4.1(a).

Phase locked SSBT attractors exist for Ω . 6, and a values roughly between 3 and
4. Their parameter regions23, shown as colors indicating their average velocity in fig-
ure 4.4, are isolated from each other, and are surrounded predominantly by grey areas,
corresponding to bounded attractors, or, less frequently, white areas, corresponding to
unbounded diffusive attractors. We have found most of the latter to belong to unbounded
S̃0 symmetric diffusive chaotic attractors24 by looking at representative trajectories.

23or region of existence, i.e. the region of parameter space, in which they exist
24i.e. chaotic attractors leading to unbiased deterministic diffusion, see section 4.11.1
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Figure 4.5: Trajectories for the same dynamics as considered in figure 4.4(a) for (a):
Ω = 6.99, a = 1 (red) and Ω = 4.01, a = 3 (black); (b)-(j):Ω = 4 and a = 3.22(b),
3.25(c), 3.29(d), 3.303(e), 3.304(f), 3.383(g), 3.383(h), 3.384(i), 3.41(j); (k) Ω = 1.85 and
a = 4.58; (l) Ω = 2 and a = 3.41. The particle coordinate at t = nT , n ∈ N is indicated
by a filled circle in (a)-(d) and as red dots in (e)-(i) with the exception of (h). In (h), the
shifted coordinate at t = nT of the trajectory shown in (g) is shown by the red line, and
the coordinate at t = nT of the black trajectory in (h) is shown by the yellow line. In
(j)-(l) the particle coordinate at t = n

2
T , n ∈ N \ {0} is indicated by black diamonds and

the particle coordinate at t = 0 by a black circle. Furthermore, the particle trajectory
is drawn as a black line for t ∈ [0, T ] and as a dashed yellow line for t ∈ [T, 2T ]. (e)-(i)
show chaotic attractors, and the filled black areas show the projection of the attractors
while the colors lines show their images under Θ.

In contrast to [1, 2], section 4.10 and chapter 6, most of the SSBT regions in parameter
space contain attractors with |v| = 0.5 transport, and are either period 2 attractors, or
attractors which are created via period doubling from period 2 attractors, see figure 4.5(g)
for an example periodic orbit. Period 1 SSBT attractors with |v| = 1 are also found, but
their concomitant parameter region is much smaller. Their apparent absence in figure
4.1(b) is due to the resolution of the figure.

4.9.1 Limiting cases

We have not found SSBT outside the region of the a-Ω plane shown in figure 4.4, except
for Ω → 0. This can be explained by the need for a three dimensional phase space: we
can discard most limiting cases for a and Ω. For a = 0, Ω = 0 or Ω

a
→ ∞ there is no

time-dependence and phase space is two dimensional. a → ∞ will be treated in section
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4.9.3 and rules out SSBT according to (4.28) if the gradient of the potential is bounded25.
The last limiting case is that of 0 < Ω ≪ 1. Then SSBT occurs just as for Ω ≈ 1, see

section 4.9.2. The basic mechanism of SSBT is unchanged, see section 4.9.5 and occurs
within the part of the drive period just before the drive changes sign. The parameter
space region occupied by each individual SSBT attractor shrinks with Ω → 0. Due to this,
noise resistivity of these attractors is usually smaller than for intermediate frequencies.
Even for the smooth drive protocol (4.8), we have found SSBT for Ω = 0.01. At that
frequency, the particle will always relax almost into a local minimum when the drive
changes sign. This in turns seems to make SSBT impossible as long as there is only one
minimum, as trajectories would then cross in that minimum. Since the particle does not
exactly relax to the minimum, trajectories do not actually cross, but come very close. The
noise resistance of these SSBT attractors is extremely small and they are of no interest.

4.9.2 Repetitive tongue structure

The (yellow) regions of existence of the main |vx| = 0.5 SSBT attractors are “tongue”-
shaped in the Ω-a plane. A higher drive frequency requires a larger drive amplitude
to achieve SSBT and each tongue is tilted to the right. Basically, each tongue can be
interpreted as a periodic window26 of a diffusive chaotic attractor. The main periodic orbit
of this windows has period 2, and is terminated either by tangent bifurcations or period
doubling cascades ending in chaotic crises. The diffusive chaotic attractor largely occupies
the white areas around the yellow tongues, but its region of existence extends beyond
into the grey area (bounded attractors), as can be inferred from e.g. figure 4.7. Around
each tongue, further windows of “smaller” (in the sense that their parameter region has
smaller volume) SSBT attractors carrying different average velocities are found.

Basically, all |vx| = 0.5 tongues to the left (e.g. the second, counting from the right,
marked with a ’+’) are tilted and distorted copies of the rightmost tongue (marked with a
’×’). The chief difference is that during each half period of the periodic drive, the particle
travels a larger distance in the instantaneous direction of the driving force (which it then
travels back during the second half-period of the drive). In effect the average transport
velocity is not changed, see figure 4.5(j) and figure 4.5(l) for an illustration. The orbit in
figure 4.5(j) corresponds to the rightmost tongue and the orbit in figure 4.5(l) belongs to
the second vx = 0.5 tongue.

Essentially, the isolated and repeated appearance of SSBT parameter regions can be
explained from the nonlinear synchronization of the periodic potential and the periodic
drive leading to phase-locking. An intuitive explanation for this can be given by looking
directly at the shape of the periodic SSBT orbits, which we will do in sections 4.9.4-4.9.5,
and a more complicated explanation can be given by comparison with the dynamics of
Josephson junctions, i.e. (1)-(2) of [2], see section 4.9.3.

25In case of (4.3), the potential (and its derivative) is unbounded. Thus, one cannot rule out SSBT
for arbitrarily large drive amplitudes. In our extensive numerical simulations, we found only bounded
periodic oscillations. A likely explanation for this behavior is that trajectories are straight lines away
from the part of the potential with large gradients of magnitude a. Going to a bounded potential yielding
equivalent dynamics removes the problem.

26Periodic windows correspond to a stable periodic orbit “suddenly” appearing in the complicated
structure of a chaotic attractor after a system parameter is varied and then somehow loosing stability
when that parameter is varied further [115, 246].
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4.9.3 Comparison with the dynamics of Josephson junctions

The shape and structure of each SSBT parameter region in figure 4.4(a) features a striking
resemblance to those found in the dynamics of Josephson junctions, i.e. (1)-(2) of [2], see
chapter 3 and fig. 1 of [2], if one replaces Ω in figure 4.4(a) with the friction strength η,
which is tantamount to writing (4.9) in the rescaled time t′ = Ω · t. In that context, the
synchronization can be explained by a Fourier series expansion of the equations of motion
[137, 157]. The main differences are as follows. First, unbounded diffusive attractors
occupy a smaller fraction of parameter space in figure 4.4(a) and are replaced by non-
transporting attractors or coexist with non-transporting attractors. Second, SSBT is
absent above a certain threshold value of the drive amplitude a in figure 4.4(a) and, third,
the dominant SSBT attractors found in figure 4.4(a) correspond to period 2 windows27,
while in [1, 2] attractors from period 1 windows are dominant, see sections 4.9.4-4.9.5 for
a more detailed discussion.

In chapter 3 and [137], it was argued that the general structure of the main win-
dows follows from a Fourier expansion in the drive frequency of the equations of motion,
(1)-(2) of [2], called the Bessel function approximation. The approximation is valid in
several limiting cases [137], a,Ω ≫ 1 with a

Ω
= O(1) being of interest to us. Such an

approximation is more problematic for (4.9): in order to get SSBT in [1, 2, 137, 157]
at high frequencies, the friction coefficient has to be sufficiently small. The principal
equation of the Bessel function approximation is the lowest order (constant) term of the
Fourier expansion and is obtained by averaging over the equation of motion, i.e. (4.9).
Substituting t′ = Ωt and dividing (4.9) by a in order to get a “finite” coefficient for the
derivative and then averaging over time, one obtains

Ω

a

〈

~̇r
〉

=
1

a

〈

−~∇U(~r)
〉

. (4.28)

For a≫ 1 and ~v 6= 0, SSBT is ruled out, in contrast to [2, 137] and, in the regime where
the Bessel function approximation can be expected to be valid, SSBT is ruled out in
(4.9). Another hint towards the inapplicability of a Bessel function approximation is the
shape of the regions of existence of SSBT attractors, cf. figure 4.4. Comparing with the
shapes of the SSBT parameter regions found in [1, 2, 137], we find that the shape of the
regions in figure 4.4(a) corresponds to tongues with unstable centers, so called “broken”
Shapiro steps28, which are found only in the chaotic regime, where the Bessel function
approximation fails [137]. Since we have no adjustable parameter left to “reach” a regime
where the Bessel function approximation becomes valid, the approximation cannot be
extended.

Yet, it is reasonable to expect some features of this regular structure to survive, and
the main features of the main SSBT parameter regions in figure 4.4(a) can be understood
from the Bessel function approximation. First, the Bessel function approximation leads
to isolated and, with decreasing (and properly scaled) drive power, periodically repeated
SSBT regions, cf. (3.5), explaining the repeated structure of SSBT regions in figure
4.4(a). Second, the Bessel function approximation gives one set of boundary curves by
an appropriate Bessel function, cf. section 3.4 and (3.5). These boundaries correspond to

27They are created from period 2 orbits by period doubling cascades.
28Cf. footnote 3 of chapter 3.
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saddle node bifurcations. A second border emerges when the drive frequency is decreased
by the appearance of deterministic chaos in the dynamics, namely by a period doubling
cascade of the attractor culminating in a chaotic boundary crisis after which either an
unbounded symmetric attractor is left behind, or another attractor, which had been in
existence independently [1, 2, 137], takes over.

In figure 4.4, this general structure is recovered. This is most easily seen by the
largest region of existence of SSBT attractors (tongue) (marked with a ’×’). The large
Ω part of its region of existence is bounded on both sides (with respect to a) by saddle
node bifurcations, the interval of a values for which the attractor exists is unbroken,
and there is no period doubling (see for example Ω = 4.5, figure 4.11). When Ω is
decreased, the interval of a values for which the attractor exists becomes “broken”, see
figure 4.7. This instability is due to a period doubling cascade to chaos and a chaotic
crisis, as in [1, 2, 137]. For even smaller frequencies, the orbits involved in the saddle
node bifurcations both become unstable in another direction of phase space, and no SSBT
attractor is found for these frequencies in figure 4.4. The relevant orbits are still present,
but with different stability properties29.

In effect, the so called Bessel function Shapiro step [137, 154] becomes unstable in its
center [1, 2, 137]. This, see the white regions in figure 4.4, results in a diffusive chaotic
attractor, occupying the center of the former Shapiro step if there are no other stable
structures. For certain drive frequencies, this attractor in turn has periodic windows, in
which the center of the former Shapiro step reappears, as seen in figure 4.4 and Fig. 1 in
[1, 2]. For small frequencies, only these parts of the SSBT attractor remain, as in [1, 2].

4.9.4 Period 1 SSBT orbits

An interesting feature in figure 4.4 are |vx| = 1 SSBT attractors (green), which correspond
to period 1 windows of the diffusive chaotic attractor. They can be found30 for small
frequencies Ω < 1.3 and a ≈ 3, break S̃xy in addition to S̃0, and their regions of existence
are much smaller than those of the |vx| = 0.5 attractors. An example orbit is shown in
figure 4.5(k). We will now discuss the shape of the |vx| = 1 period 1 orbits, which is
much simpler than the shape of the dominant |v|x = 0.5 period 2 orbits.

At t = 0 (when the drive changes sign to be in the negative x̃ direction), the particle
starts on the trajectory of a particle subjected only to a constant bias force in the +x̃
direction, more or less at the point where it is closest to the invariant manifold ỹ = 0 and
also close to the potential maximum at (x̃, ỹ) = (1, 0). Due to the potential minimum
at (x̃, ỹ) = (0, 0), the invariant manifold ỹ = 0 is attracting at first, and the particle
relaxes towards the invariant manifold. Once the particle passes the saddle point where
the invariant manifold becomes repulsive (in the ỹ direction), the particle travels around
the potential maximum at (x̃, ỹ) = (−1, 0). Since the particle starts close to the invariant
manifold ỹ = 0, it is slow while travelling around the potential maximum and does not
get around the potential maximum before the drive changes its direction.

This behavior is the origin of transport. Due to the relaxation towards the invariant
manifold ỹ = 0, the particle gets so close to it that it spends the remainder of the first half
period of the drive travelling slowly around the potential maximum at (x̃, ỹ) = (−1, 0).

29I.e. the Floquet multiplier not involved in the saddle node bifurcation becomes greater than one.
30Their apparent absence in panel (b) is due to the resolution of the figure.
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When the drive changes sign, the particle is far away from the invariant manifold ỹ = 0
(in figure 4.5(k), the particle is actually close to ỹ = 0.5) and quickly “relaxes” to the
path of a particle subjected only to a constant bias force (in the +x̃ direction). At the
end of the drive period, the particle arrives at its initial position but shifted by 2 length
units in the +x̃ direction and the orbit continues periodically.

Construction of period 1 SSBT orbits

In principle, a SSBT orbit could be constructed according to this mechanism for other
potentials of the same lattice type and symmetry. First, one has to choose a constant bias
force for which unbounded solutions exist. One then picks a suitable initial condition on
the orbit that a particle travels on if subjected to a constant positive bias force (i.e. in the
+x̃ direction). This initial condition has to be so that the particle relaxes towards one of
the invariant manifolds (4.20), without loss of generality ỹ = 0, upon being subjected to
a negative instantaneous force from the drive during the first half period, is slowed down
when “travelling” around the next potential maximum, and the first half period of the
drive has to be long enough that the particle is sufficiently far from the invariant manifold
ỹ = 0 when the drive changes sign. Then, the particle does not relax too far towards the
potential minimum. Instead, it relaxes towards the orbit of a depinned particle subjected
to a constant bias force of same value as the instantaneous drive. Once it reaches its
shifted initial condition, one sets this time as the end of the “second” half period of the
drive “protocol”.

The issue is that the half periods of the drive have to be of the same length. Both can
be made arbitrarily long by letting the particle travel on the constant bias force paths.
But in order to match the lengths of both half periods of the drive, these times cannot
be varied smoothly due to the requirements to the particle positions described above.
This explains the repetitive appearance and disappearance of these orbits in figure 4.4.
With decreasing frequency, the path travels a larger distance during each half period of
the drive, and the lengths of these segments have to be matched with the periodicity of
the potential. In fact, this matching is rather subtle as is shown by the small size of the
regions of existence of period 1 SSBT attractors in figure 4.4.

Moreover, for each fixed potential geometry, there is an upper limit of how close to the
invariant manifold (4.20) the particle can relax from the constant bias force trajectory
when the drive changes sign. Thus, there is a maximum a value for which this mechanism
of SSBT can work, and, for the same reason, the maximum average velocity is bounded.
In fact, we have not found periodic orbits with |vx| > 1 in figure 4.4, but that may be
due to the resolution of the figure.

In comparison with [2, 137], i.e. the case of one spatial dimension with inertial forces,
these inertial forces have now been substituted by the second spatial dimension in a
nontrivial manner. A particle with inertial dynamics “stores” energy in its momentum
when it is accelerated. Then, if a force opposite to that momentum is applied to the
particle, that momentum is depleted first, and the particle does not change its direction
instantaneously. Here, loosely speaking, the ỹ component of the particle position takes
this role, but it cannot store “directed” momentum. Instead, if the particle is close to the
middle of the elementary cell, ỹ = 0.5, and a (sufficiently large) force is applied to the
particle, the particle will be transported relatively quickly into the next elementary cell,
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and its “instantaneous mobility” in the x̃ direction is “high”, i.e. the particle reacts to
a force in the x̃ direction by moving quickly into the direction of that force. In contrast,
if the particle is close to the invariant manifold ỹ = 0 and a force is applied to the
particle, the particle has to travel around the potential maxima towards ỹ = 0.5 first,
thereby “depleting” ỹ, before it can reach the next elementary cell, and its “instantaneous
mobility” in the x̃ direction is “low”. In that sense, the dynamics are somewhat related
to particle transport and diffusion in confining geometries [47, 55, 247–251] in which the
“instantaneous” particle mobility in the one direction depends on the other coordinate(s)
of the particle. and

4.9.5 Period 2 SSBT orbits

Having understood the shape of the |vx| = 1 period 1 orbits, we now turn to the shape
and structure of the |vx| = 0.5 period 2 orbits found in the yellow tongues in figure 4.4.
As seen from figure 4.5(j), the orbit consists of two parts, each a full drive period long.
The second part (shown in yellow) can be obtained from the first part by application of
ˆ̃Sxy since the orbit is a fixed point of ˆ̃Sxy ◦ Θ on the torus31. Therefore, it is sufficient to
discuss only the first (black in figure 4.5(j)) part of the orbit.

The first part of the orbit appears to be just another version of the period 1 orbit
in figure 4.5(k) which has been cut during the second half period of the drive: the
particle starts close to the invariant manifold ỹ = 0, relaxes towards ỹ = 0 and travels
slowly around the next maximum at (x̃, ỹ) = (−1, 0). When the drive changes sign, the
particle relaxes onto the constant bias force trajectory corresponding to the instantaneous
direction of the drive (+x̃). When the particle has reached the image under S̃xy of its
starting position, the drive changes sign before the orbit has traveled a full elementary
cell. This is where the orbit differs from the period 1 orbit (apart from “minor” shifts).
Due to S̃xy symmetry, this is repeated in the second drive period, and the particle ends
on its starting position shifted by spatial period of the rotated coordinate frame since
ˆ̃S2
xy (x̃, ỹ) = (x̃ + 2, ỹ), see also (4.30).

Comparing with the period 1 orbit, it becomes apparent why the period 2 orbit has
greater regions of existence, i.e. is more robust against variations of the parameters. In
the case of the period 1 orbit, the particle has to travel ≈ 2 length units in one half period
of the drive, which requires a certain amount of drive power. But this higher drive power
means that the particle has to relax closer to the invariant manifold ỹ = 0 during the
first half period of the drive (when the drive is in the −x̃ direction) to be slowed down
long enough. On the period 2 orbit, the particle has to travel only ≈ 1 length unit during
one half period of the drive, and the drive power may be significantly lower. First, this
is why period 2 orbits can be found for much smaller drive power than period 1 orbits.
Second, and more importantly, the closer to the invariant manifold the particle has to
be, the more subtle the matching of the different parts of the periodic orbit becomes.
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Figure 4.6: Bifurcation diagram for the same dynamics as considered in figure 4.4(a) and
Ω = 4, i.e. a vertical cut through figure 4.4(a). The upper panel shows the x component of
the stroboscopic map Θ of attractors reduced to a torus, and the lower panel shows their
average velocities. The figure has been obtained by integrating the equation of motion for
a sufficiently long time (such that initial transients have died out) at least 25 times (for
each parameter value considered) with uniformly distributed random initial conditions,
and then plotting the final 50 stroboscopic images of each trajectory as indicated by the
axis label. Furthermore, periodic orbits have been detected and followed according to
the same method used to obtain the phase diagrams, see figure 4.2. See also Fig. 3 of [2]
and Fig. 4 of [4], and the corresponding explanations.
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4.10 Creation of SSBT at α = 45◦

We now analyze the structure of figure 4.4(a) in more detail by means of a bifurcation
analysis. We choose

Ω = 4 (4.29)

as a convenient choice for this analysis. A comparison with the analysis in [4], at a less
convenient frequency, can be found in section 4.25.2.

First, consider figure 4.6 corresponding to a vertical cut through figure 4.4(a) at Ω = 4
for a large set of a values, in particular starting at a = 0 and showing only attractors.
There are only non-transporting and bounded attractors for a /∈ [3.38, 4.35]. For a ∈
[3.38, 4.35] (see also figure 4.7 for an enlargement of this region) there are unbounded
(diffusive chaotic) attractors of 0 net average velocity and SSBT attractors as periodic
windows of these unbounded attractors. The SSBT attractors are almost always phase-
locked, and most are even periodic.

For a < 3.24 there is only one periodic, S0 and Sxy symmetric non-transporting attrac-
tor living on the invariant manifolds (4.20). We will treat this attractor in more detail
below. For a & 5.35 there is only a S̃0 symmetric attractor coexisting with its image
under S̃xy. As a is increased further, these attractors undergo a S̃0 symmetry breaking
bifurcations at a ≈ 5.85, and a nonsymmetric bounded periodic attractor and its 3 im-
ages under {S̃0, S̃xy} is created. These nonsymmetric attractors undergo S̃0 symmetry
restoring bifurcations at a ≈ 6.17, and S̃0 symmetric bounded periodic attractor is cre-
ated. This process repeats periodically upon further increasing a, as has been discussed
in section 4.8. Transporting attractors are found in figure 4.6 between 3.38 < a < 3.68,
though more transporting attractors exist as periodic windows of the unbounded attrac-
tors, especially around a ≈ 4.3, corresponding to the second (marked with a ’+’) tongue
in figure 4.4, section 4.9.2. Their regions of existence are smaller than the resolution of
figure 4.6, and therefore these SSBT attractors are of no further interest here.

We now turn to a detailed analysis of the creation of SSBT attractors. For a = 0 there
is only the force of the potential (4.2) acting on the particle. Thus, the particle will relax
to the minimum corresponding to its initial position. This is located at (x̃, ỹ) = (0, 0) (the
minimum at (1, 1) belongs to the lower part of the next elementary cell and is equivalent
due to symmetry). There are no other minima in the elementary cell, and all minima lie
on of the invariant manifolds (4.20).

Upon switching on the drive, the particle starts to oscillate around the minimum.
This oscillation is restricted to the invariant manifold ỹ = 0 for sufficiently small a and
grows in amplitude when a is increased, see figure 4.5(a). Once the oscillations become
large enough, the behavior changes. This is shown in more detail in figure 4.7, in which
some of the important bifurcation are marked as (b1-b5). We will henceforth refer to
these bifurcations often as figure 4.7(b1)-(b5). At a ≈ 3.34 (see figure 4.7(b1)) the periodic
attractor looses stability in a symmetry breaking bifurcation [115], see section 2.6. The
oscillations on the invariant manifold ỹ = 0 have become unstable since the amplitude
has become large enough for the trajectory to reach regions of the potential where the
invariant manifold ỹ = 0 is repulsive already for a = 0 32.

31Therefore, the orbit has to break that symmetry before it can undergo period doubling as discussed
in section 4.8.

32At a = 0 the vector field component orthogonal to the invariant manifold, ỹ = 0 without loss of
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Figure 4.7: Bifurcation diagram for the same dynamics as considered in figure 4.4(a) and
Ω = 4, i.e. a vertical cut through figure 4.4(a). The red dots are identical to figure 4.6,
the blue lines show all unstable periodic orbits of period 1, and the green lines show two
selected unstable transporting period 2 orbits. The unstable periodic orbits have been
obtained by finding the fixpoints of the stroboscopic map (or its iterates) [117] using the
hybrids minimization algorithm from [252] for 10000 randomly chosen initial conditions
(for each parameter value considered), and a much higher resolution in the bifurcation
parameter than used for the attractors. For more details see footnote 9 of section 4.10.
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This bifurcation creates a pair of S̃xy symmetry breaking unstable periodic orbits,
see figure 4.5(b). As can be seen from figure 4.7(b1), the orbits start close the invariant
manifold ỹ = 0 at the bifurcation and then move away from the invariant manifold
ỹ = 0. Due to the direction of the bifurcation, the orbits exist for smaller values of
a, i.e. “prior” to their point of creation in the chosen arbitrary parameterization of
the bifurcation diagram. At a ≈ 3.24 these “new” orbits become stable in a tangent
bifurcation, see figure 4.7(b2). One of these stable periodic orbits is shown in figure
4.5(c). At a ≈ 3.28, these stable branches undergo S̃0 symmetry breaking bifurcations,
see figure 4.7(b3), creating four stable periodic orbits, which are related to each other
by the symmetry group {S̃0, S̃xy}. An example of one of these orbits is shown in figure
4.5(d).

The S̃0 symmetry breaking bifurcation is the prerequisite for the following period
doubling bifurcation starting at a ≈ 3.29 and thus chaos, as has been discussed in section
4.8. After the first period doubling, the attractor undergoes a period doubling cascade,
and at the accumulation point of the period doubling cascade a chaotic attractor is created
[87, 121, 122]. An example is shown in figure 4.5(e). As before, all four attractors are
obtained by application of the symmetry group.

At a ≈ 3.3 (figure 4.7(b4)) each pair of S̃0 symmetry breaking attractors collides in
an attractor merging crisis [115]. Both chaotic attractors, each belonging to one of the
branches created at the bifurcation (b3), collide simultaneously with the unstable branch
of the bifurcation (b3), and thus both attractors collide33. The result is a (pair) of globally
S̃0 symmetric bounded chaotic attractors. One of them is shown in figure 4.5(f).

Upon further increasing a, the attractor “grows” and deforms, and in particular the
amplitude of oscillations grows further, see figure 4.5(g). At a ≈ 3.38 (see figure 4.7(b5)),
the attractor has grown such that it touches its image under S̃xy, and, due to S̃0 symmetry,
also its image under S̃0 ◦ S̃xy, see figure 4.5(h). Since the set in phase space where the
attractors touch at the bifurcation belongs to neither attractor but is part of the union of
both attractor’s basin boundaries, it is invariant under the dynamics. Usually such sets
are periodic orbits, as is the case here. It is the unstable periodic orbit which oscillates
around the saddle connecting two adjacent minima in the same transport channel of the
potential. An example of this orbit is shown in figure 4.5(a) for two different values of a,
and it is traced from a = 0 to the bifurcation (b5) in figure 4.8.

Thus, it is now possible for trajectories, initiated on the (former) attractor, to reach
the images (under S̃xy or S̃0 ◦ S̃xy) of the (former) attractor, and, likewise, trajectories
initiated on one of the images (under S̃xy or S̃0 ◦ S̃xy) of the (former) attractor to reach
the (former) attractor. Simultaneously, due to S̃xy symmetry, each image (under S̃xy) of
the (former) attractor touches its image (under S̃xy), and likewise for S̃0 ◦ S̃xy. Since

ˆ̃S2
xy(x̃, ỹ) = (x̃ + 2, ỹ), (4.30)

the attractor becomes an unbounded S̃xy and S̃0 symmetric chaotic attractor consisting

generality, is pointing toward the invariant manifold ỹ = 0 around the minimum and is thus attracting
and repulsive around the maximum(divergence). Once oscillations on the invariant manifold ỹ = 0 reach
this point they do not become unstable immediately, since the attracting part around the minimum will
still dominate if the drive frequency Ω is not too small. This happens once the combination of time spent
on the repulsive part of the invariant manifold ỹ = 0 and strength of repulsion dominates.

33I.e. each of the 4 attractors collides with its image under S̃0.
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Figure 4.8: Bifurcation diagram for the same dynamics as considered in figure 4.4(a) and
Ω = 4 for a > 3 (see below) showing all period 1 orbits, obtained by the same method as
described in figure 4.7. Stable orbits are shown as red lines, and unstable orbits are shown
as blue lines. Furthermore, the part of the bifurcation diagram left of the vertical dashed
line (a = 3) considers a different curve in parameter space as bifurcation parameter:

(a,Ω)(ã) =
(

ã, 4 + (4 − 7) tanh(3ã−6)−1
2

)

, which starts at (a,Ω)(0) = (0, 7) and ends at

(a,Ω)(3) = (3, 4) (for all practical purposes). The reason is as follows: The Floquet

multipliers z can be written as z = e
2π
Ω

c with c being the Floquet exponent. Around
a & 0, all period 1 orbits will oscillate around potential equilibria. Thus, the Floquet
exponents will be proportional to the curvature of the potential (which is of the order
of 10 for the unstable directions of the saddles) and the period of the drive, T . This
follows from expanding the potential around the equilibrium and calculating the orbits
and their stability properties analytically. At Ω = 4, the Floquet exponents of unstable
periodic orbits can thus be estimated to be around 15, yielding z ≈ e15 for the Floquet
multipliers, i.e. the unstable orbits cannot be calculated numerically.
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of all the copies of the attractor and their images under S̃xy merged, see figure 4.5(i),
Thus, the whole attractor shown in figure 4.5(i) is created from the “evolution” of

only two periodic orbits, the one oscillating around the minimum, the one oscillating
around the saddle, and their images under the symmetry transformations. Conversely,
this route to the creation of an unbounded attractor can be ruled out if the conditions
are different. For instance, if no saddle exists, or no potential minima in the case of a
locally flat potential. Moreover, in the case of more complex potentials, the creation of
SSBT has likewise to follow a different route. In that sense, the case considered here
is the simplest for the creation of SSBT in two dimensional overdamped single particle
dynamics.

4.10.1 Disappearance of the unbounded attractor

Upon further increasing a, the unbounded attractor vanishes at a ≈ 3.67 in a reverse
attractor merging crisis, leaving behind two bounded chaotic attractors34, which are again
related to each other through S̃xy symmetry. These attractors undergo a reverse period
doubling cascade when a is increased further, terminating at a ≈ 3.8 in two periodic
(period 1) attractors (of which each is the other’s image under S̃xy). The main point
is that the process of the disappearance of the unbounded attractor is the same as its
creation, and no unbounded chaotic repeller is left behind in phase space. This conclusion
is further supported by figure 4.35(d).

4.10.2 Other tongues

Continuing our examination of the evolution of the periodic (period 1) attractors created
at a ≈ 3.8 (and discussed above), we see that through a similar process an unbounded
chaotic attractor is created at a ≈ 4.3, see figure 4.6 and also figure 4.4 (the orange
“specks” in figure 4.4 around Ω = 4 and a ≈ 4.3 correspond to periodic windows of
this attractor). This attractor disappears at a ≈ 4.33 through the same mechanism as
detailed above, leaving behind two periodic (period 1) bounded attractors at a ≈ 4.54.
Upon further increasing a, these attractors undergo period doubling bifurcations (up to
period 4), followed by reverse period doubling bifurcations and thus develop a “bubble”
at a ≈ 5.1 in the bifurcation diagram. Upon changing some other system parameter,
e.g. for a lower frequency, these bubbles can undergo period doubling cascades to form
another chaotic attractor.

According to figure 4.4 and figure 4.2(b), the unbounded attractor at a ≈ 4.3 can
be associated with the second (counting from right) |vx| = 0.5 main region of SSBT by
following the line defined by slope of the tongue in the Ω-a plane of parameter space in
figure 4.4. This line corresponds to the symmetry breaking bifurcation leading to the
region of nonsymmetric attractors in which the SSBT attractors are found, see figure
4.2(b). Likewise, the bubbles around a ≈ 5.1 can be associated with the third main
SSBT attractor in figure 4.4 or the corresponding stripe of nonsymmetric attractors in
figure 4.2 by the same argument.

34Note that these bounded attractors extend into the neighboring elementary cell, as do their basins
of attraction.

101



Again, this can be attributed to the argument found in [127]: the symmetry-breaking
bifurcation, i.e. the presence of nonsymmetric periodic orbits is a prerequisite to period
doubling bifurcations. Thus bubbles, chaotic attractors (such that are created from a
period doubling cascade) and finally SSBT can only occur in the stripes of nonsymmetric
attractors in figure 4.2.

4.10.3 Spontaneous symmetry breaking transport

It is crucial to observer that while the unbounded attractor in total is S̃0 symmetric, i.e.
the image under S̃0 of each orbit on the attractor is part of the attractor, this is not
true for individual orbits of finite time on the attractor. I.e. the attractor is globally S̃0

symmetric, but not locally (in time).
For instance, if the particle “travels” from the part of the attractor corresponding to

figure 4.5(g) to the part of the attractor corresponding to the image under S̃xy of the first
part, this part of the orbit certainly breaks S̃0 symmetry in a transporting manner, as
the particle has then been “spontaneously” transported.

Usually, orbits on the attractor shown in figure 4.5(i) consist of very long orbits on
parts of the attractor corresponding to those shown in figure 4.5(g)-(h) and short transits
to new parts of the attractor. When such transits occur, and in which direction, depends
sensitively on the initial conditions. The attractor is chaotic diffusive, transporting with
zero net average velocity.

This attractor has periodic windows. Some of these are non-transporting windows,
but there are also transporting periodic windows, i.e. Shapiro steps, such as the large
periodic window around a ≈ 3.6 in figure 4.7. Considering that the attractor already
contains short “transporting” orbits spontaneously breaking S̃0 symmetry for finite time
intervals, the existence of these windows seems likely.

The structure of the simplest of such periodic windows, found for larger frequencies,
always follows the same scheme: a periodic orbit is “created” from a tangent bifurcation
on each side of the window, see for instance figure 4.11(a) for an example at Ω = 4.5. For
smaller frequencies, the periodic windows are more complex. The periodic orbits undergo
period doubling cascades ending in chaotic crises in the center of the windows, and thus
merge with the underlying chaotic attractor. This is the case for the “main” periodic
window in figure 4.7 around a ≈ 3.6. Its full extend is illustrated by plotting also the
periodic orbit for values of a where it is unstable, and its companion unstable periodic
orbit. Furthermore, the periodic orbits need not be stable at the tangent bifurcations at
the borders of the windows. This structure corresponds to the situation already described
in [1, 2, 137, 157] and chapter 3. In particular, the instability of the Shapiro steps in
their centers was used in [1–3] to get ANM.

4.11 Consequences at α = 45◦

4.11.1 Anisotropic Diffusion

As can be seen from figure 4.7, at Γ = 0 the average velocity depends on initial conditions
and is not a smooth function of parameters (e.g. the SSBT windows in figure 4.7). This
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Figure 4.9: Diffusion coefficients D1 and D2 as defined in (4.32) for the dynamics (4.9)

with ~F = 0, α = 45◦, Ω = 4 and various Γ as indicated in the legend. The diffusion
coefficients have been obtained from a sample of 500 trajectories of length 5000 drive
periods each. The plotting range has been restricted since smaller values of D1/2 are not
correctly obtained from our sample size, and the divergence of the red line has been cut
off. In particular, D1/2 = 0 unless the curve obviously leaves the plotting area for larger
values. The (larger) wiggles of the Γ = 0 curve are due to periodic windows, as discussed
in the text, but of no further relevance, and the small wiggles of all curves are due to the
statistical uncertainty due to our limited sample. ϑD = 45◦, as defined in (4.32), within
the precision of our data for all parameters considered.
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has consequences for the diffusion matrix

D = lim
t→∞

1

2t

(
〈(x(t) − x(0))2〉 〈(x(t) − x(0))(y(t) − y(0))〉

〈(x(t) − x(0))(y(t) − y(0))〉 〈(y(t) − y(0))2〉

)

(4.31)

= OϑD

(
D1 0
0 D2

)

O−ϑD
(4.32)

of the S0 symmetric dynamics with the rotation matrix OϑD
=
(

cos(ϑD) − sin(ϑD)
sin(ϑD) cos(ϑD)

)

, the

diffusion coefficients (eigenvalues) D1 > D2 and the main diffusion direction ϑD being
the direction of the eigenvector of D to the eigenvalue D1. If the diffusion coefficients
are different, there is a direction of strong diffusion, and diffusion is anisotropic. SSBT
corresponds to ballistic directed transport. Thus, at Γ = 0, the main diffusion direction
will be the direction of SSBT and D1 = ∞ (also at α 6= 45◦). Due to Sxy symmetry,

the diffusion matrix has to be invariant under Ŝxy, and thus ϑD ∈ {45◦, 135◦, 225◦, 315◦},
where the latter two orientations are equivalent to the former two. At the borders (in
parameter space) of SSBT there is an algebraic divergence of the diffusion coefficient
related to crisis induced intermittency [123–126, 146, 253–255] leading to deterministic
diffusion, which has been studied extensively for one dimensional maps as model systems
[130, 131, 133, 134, 256–258], note in particular [131] discussing a very similar scenario
for the creation of SSBT in the climbing sine map. Deterministic diffusion in continu-
ous dynamical systems is discussed in particular with respect to Josephson junctions in
[132, 133, 135–137] and the Hamiltonian case is discussed in, e.g. [259–262]. The critical
exponents of the escape times of the intermittent chaotic repellers are expected to be ±1

2

depending on the scenario considered [135], from which the scaling of the diffusion coeffi-
cient follows [126]. In the presence of (weak) noise, the eigenvalues of D are always finite,
but the divergence can still be observed as a sharp increase of the diffusion coefficient
for sufficiently small noise strengths. For arbitrarily large noise strengths, diffusion is
isotropic since the potential can be neglected. Therefore, the expected effect of noise on
SSBT dominated deterministic diffusion is that the larger diffusion coefficient shrinks and
that the smaller diffusion coefficient grows but, due to the complexity of the dynamics,
deviations from this behavior can be expected.

Figure 4.9 summarizes the (unbiased) diffusion properties of the dynamics (4.9) at
α = 45◦ and Ω = 4. For all parameter values considered, we have found ϑD = 45◦ within
the precision of our data, and the x̃ direction is always the main diffusion direction. We
consider Γ = 0 first, i.e. the red curve in the upper panel of figure 4.9. Due to the invariant
manifolds Wn, we have D2 = 0 and ϑ = 45◦ strictly. There is no diffusion outside the
region of existence of the unbounded diffusive chaotic object behind SSBT, starting at
a ≈ 3.38 and ending at a ≈ 3.67. In the parameter range of the unbounded diffusive
chaotic attractor, D1 takes a non-zero and finite value (deterministic diffusion) and varies
continuously (with a) except at bifurcations. At the borders of each SSBT periodic
window of the attractor, there is a power law divergence of D1, and D1 = 0 in periodic
windows of bounded attractors [132, 133, 135–137]. Diffusion is highly anisotropic when
D1 is large. For small, but non-zero, noise strengths Γ, both diffusion coefficients are
always finite, non-zero, and loosely follow their deterministic values except around the
bifurcations and divergences, but D2 remains unmeasurably small for Γ < 10−4 (and
our sample size). Moreover, the onset of diffusion (i.e. non-zero values of D1 in the
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upper panel of figure 4.9) is shifted away from the chaotic crises creating the unbounded
attractor, leading to diffusion outside the parameter region of deterministic diffusion.
For larger noise strengths, the deterministic behavior is smoothed out. An interesting
feature of the lower panel is the peak of D2 for Γ = 10−4 around a ≈ 3.33. For these
a values, the deterministic attractors looks like the attractors shown in figure 4.5(e)-(h),
and diffusion orthogonal to the invariant manifolds Wn is particularly effective before the
onset of deterministic diffusion parallel to the invariant manifolds Wn at a ≈ 3.38. At
Γ = 0.001, D1 remains almost constant throughout the a interval considered but is still
quite far from its asymptotic large noise value (of 0.01)35. The diffusion anisotropy can,
in principle, be used for separation, e.g. along the lines of [105, 106, 185, 220].

4.11.2 Absolute negative mobility

A second remarkable consequence of SSBT is that due to the presence of SSBT, the
dynamics already have some (here two) “preferential” directions, namely the transport
directions of the pair of SSBT attractors. The introduction of another “preferential”
direction into the dynamics, in the simplest case by adding a constant bias force ~F = F~eφ,
F ≥ 0, leads to a “competition” of all the “preferential” directions. Here, we consider
only φ = 45◦ or φ = 225◦, i.e. a perturbation which breaks S0 but leaves Sxy intact. Thus,
the invariant manifolds Wn remain, and, without noise, transport remains restricted to
the transporting channels.

The result of the “competition” between the SSBT attractors and the bias force is not
clear unless one of the competing directions dominates in an obvious manner, e.g. if the
bias force is large. The direction of transport is decoupled from the direction implied by
symmetry breaking perturbations because of SSBT. This applies also to other perturbations
than a constant bias force, e.g. to ratchet potentials or an asymmetry of the periodic
drive if considered as a symmetry breaking perturbation, see [92–95] for a hint in that
direction. The consequence may be transport against the bias force and is called absolute
negative mobility (ANM) [10, 11, 51].

While there is no general rule stating which SSBT attractor will survive a constant
bias force, an intuitive argument was given in [1, 2] and section 3.4 using that the work
done by the bias force can be compensated for by a change of the work done by the
dissipation. The intuitive argument can be applied to the overdamped dynamics (4.9).
First, we have absorbed the friction coefficient η of the dynamics (4.1) into the time unit
to get the dynamics (4.9). Thus, multiplying η in (4.1) by some factor is the same as
to multiply the frequency Ω in (4.9) by the same factor, and we can replace the label of
the horizontal axis in figure 4.12 by η and use the argument from section 3.4. Second,
a change of the drive frequency has the same effect on the relevant work contribution as
a change of the friction coefficient for a phase-locked trajectory, cf. (3.2), because the
average velocity increases when the frequency is increased.

Thus, to increase the constant bias force F~e45◦ can be compensated for by a decrease
of the frequency Ω for a phase-locked attractor transporting against the bias force, and
an increase of Ω for its symmetry partner. When a bias force F~e45◦ is applied to the
dynamics (4.9), the parameter regions of the attractors transporting against the bias force
should move towards smaller frequencies, and those of their symmetry partners should

35D1 ≈ Γ is reached around Γ = 1 for the parameters considered.
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Figure 4.10: Bifurcation diagram, calculated for the same parameters and dynamics and
drawn along the same lines as figure 4.7. Only the values of the bias force ~F = F~ex are
different, as indicated in the panels.
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both transport directions is shown by shading, yielding ochre. White regions contain no
(found) no phase-locked attractors. Note that due to α = 45◦, only ϑ = 45◦ and ϑ = 225◦

are possible.

move towards larger frequencies. Simultaneously, the parameter regions of attractors
transporting in the direction of the bias force should grow since, for very large bias forces,
only these should survive, and the parameter regions of attractors transporting against
the bias force should shrink. If the parameter regions of the pair of SSBT attractors has
a border towards smaller Ω at F = 0, the attractor transporting against the bias force
is expected to move into that “empty” region when the force is switched on and to be
the only one stable of the two attractors in that region for F > 0. Hence, we expect to
find ANM at these borders. This is the case for the large frequency parts of the SSBT
tongues shown in figure 4.12 but not for their small frequency parts. In addition to
this movement of the parameter regions in the Ω direction (of parameter space) when the
bias force is switched on, the parameter regions of attractors transporting in the direction
of the bias force move “quickly” towards larger drive amplitudes a, and the parameter
regions of attractors transporting against the bias force move towards smaller a. The
work contribution of the periodic drive to the energy balance of phase-locked (periodic)
transporting solutions, upon which our intuitive argument relies, is not unidirectional
[110], and we are unable to extend our argument to the drive amplitude a36. In fact, this
very “fast” movement37 of the regions of existence in the a direction (of parameter space)
seems to be special to α = 45◦, and if α 6= 45◦ the movement in the a direction is much
“slower”, cf. figure 4.18, and the same is true for the dynamics considered in chapter 6.

Another argument as to where ANM can be expected to occur in figure 4.12 can be
obtained from the analogy of the tongue structure of figure 4.4 with the Bessel function
Shapiro steps observed in [1–3, 157] (see section 4.9.3). At the borders of the regions of

36This would be possible by taking into account the specific shape of the transporting solutions, but
this would be highly specific to the situation considered here.

37In that context, slow and fast are to be interpreted as the speed at which the parameter regions
move when F is increased, i.e. is interpreted as the “time” variable of that movement.
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Figure 4.13: Average transport velocity, encoded in colors according to the legend shown
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(corresponding to the + in right panel), (b) Ω = 3.5 and a = 3.36 (corresponding to

the × in the right panel), and (c) ~F = 0.03~e45◦ and Γ = 10−5. The averages have
been computed from 50 trajectories of length 10000T numerically calculated with a step
size h = 0.01 ≈ 0.004T in the second order stochastic Runge-Kutta scheme, see section
4.25.7 for more details. All numerically obtained averages over the solutions of SDE’s are
calculated with the same method and similar parameters in the following.

existence of the Shapiro steps (tongues of SSBT attractors) given by the Bessel function
approximation, the approximation excludes ANM, cf. (3.5). When the frequency is
decreased, the Bessel function structure of the Shapiro step is destroyed, and the Shapiro
steps undergoes a period doubling instability first at its center [137]. There is a hint
[3, 157] that ANM occurs at this instability. The large frequency part of each tongue in
figure 4.4(a) and figure 4.12 corresponds to the remnants of the Bessel function Shapiro
step, as was argued in section 4.9.3. At Ω = 4.5, the tongue (Shapiro step) has no
instability in its center, and there is no deterministic ANM, cf. figure 4.11. Conversely,
at Ω = 4 the tongue (Shapiro step) is terminated a ≈ 3.51 by a chaotic crisis, and
reappears at a ≈ 3.41 by the same mechanism. At both chaotic crises, ANM is found for
F > 0, cf. figure 4.10.

We now turn to the effect of thermal noise, i.e. Γ > 0, on SSBT induced ANM. Ther-
mal noise smoothes out the deterministic SSBT and suppresses ANM [1, 2]. Nonetheless,
the interplay of noise, SSBT attractors and other attractors may lead to some quite in-
teresting phenomena [1, 2, 63] where noise even seems to induce ANM at first glance
[63], though the mechanism behind ANM is deterministic [2]. Given the right choice of
parameters, both variants of noise induced ANM, cf. Fig. 3 of [63] and Fig. 15 of [2], will
occur here as well. Therefore, we do not show these phenomena explicitly, but restrict
ourselves to a brief analysis of the noise resistivity of ANM as encountered here. Figure
4.13 shows a summary of our findings. The numerical method used to solve the SDE
(4.9) is due to [181] and described in section 4.25.7.

Panel (c) shows the results of our simulation with a noise strength of Γ = 10−5 and
|F | = 0.03 corresponding otherwise to the Γ = 0 case shown in the middle panel of
figure 4.12. ANM (i.e. blue areas) can only be found at some of the places which figure
4.12 suggests, most notably at the lower (with respect to a) edge of the stable part of
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the largest SSBT attractor (indicated by a + in panel (c)), but also in the diffusively
chaotic regime close to the top end of the tongue-shaped region of existence of the SSBT
attractor, marked with a ’×’ in panel (c).

At the noise strength considered here, the effectiveness of deterministic ANM is very
low. The noise induced escape time from attractors (and thus their statistical weight
upon averaging) scales like ∼ eVA/Γ for small noise strengths [1, 2, 137, 137, 141–143, 143–
145, 243, 243, 263, 264]. If the noise strength Γ and the pseudopotential depth VA are
of similar magnitude, noise induced escape from the attractor occurs within a few drive
periods, and the attractor no longer contributes significantly to the average velocity. The
results is that not all “blue” regions from figure 4.12 show up in figure 4.13(c). For
the two representative choices of parameters indicated in figure 4.13(c), a more detailed
analysis of the effects of noise and bias force on ANM is presented in figure 4.13(a) (’+’)
and figure 4.13(b) (’×’).

At the parameters considered in panel (a) of figure 4.13, ANM is induced by the
periodic attractor carrying transport against the bias force. At low noise strengths Γ, the
average velocity is significantly larger than if ANM is due to a diffusive chaotic attractor
as considered in figure 4.13(b), and ANM survives for larger bias forces. In both cases,
the noise strength at which ANM vanishes is comparable. The larger current at low noise
strengths in figure 4.13(a) is due to the fact that transport is more effective. Trajectories
in this regime mostly consist of parts closely resembling trajectories on the SSBT attractor
responsible for ANM interrupted by short bursts into other regions of phase space. These
bursts are suppressed exponentially as Γ → 0. In contrast, trajectories in the diffusive
chaotic regime close to the regions of existence of SSBT attractors spent most of their time
on the chaotic repellers due to the (unstable) SSBT attractors and switch intermittently
between them [1, 2, 126, 253, 256]. The parts carrying transport against the direction
of the force are due to the remnant of the SSBT attractor transporting against the bias
force, i.e. the ANM attractor, and have a similar, but not necessarily identical [2], average
velocity as trajectories on the attractor. Most parts of the trajectory not on the repeller
due to the ANM attractor carry transport in the direction of the bias force and reduce
the effectiveness of transport.

In conclusion, ANM is sustained up to noise strengths of order Γ ≈ 10−5 and bias
forces of order F ≈ 10−1. Typical pseudopotential depths of SSBT attractors carrying
transport against the bias force will be of the same magnitude, i.e. of order 10−5 [1, 2].
Thus, noise resistivity is about 2-3 orders of magnitude lower compared to [1, 2]. Part of
this can be attributed to the fact that the potential barrier separating adjacent potential
minima considered here is about 1

4
as that considered in [1, 2]. Second, trajectories get

rather close to the invariant manifolds Wn and thus to their Sxy symmetry partners living
on the other side of Wn. This may lead to a low pseudopotential depth. For smooth drive
protocols this effect is even more pronounced, as discussed section 4.3. This is lifted for
α 6= 45◦, and as we will see in section 4.19, the noise resistivity will be larger by an order
of magnitude then.

4.12 Breaking Sxy Symmetry

As of yet, we have considered the drive to be such that (4.9) is Sxy symmetric. The chief
reason for doing so was the simplicity due to the main consequence of Sxy symmetry:
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the transport direction is fixed up to its sign. This makes the discussion of SSBT and
its creation clearer because there are fewer “independent”, i.e. not related by symmetry,
objects in phase space (attractors, repellers etc.) to be considered.

As has been noted above, it is conceivable that the symmetry leads to a lower noise
resistivity (lower pseudopotential depth) of SSBT attractors. Moreover, the restriction
of the transport direction allows no new effects beyond those possible in the dynamics
considered in [1, 2, 63] to be found except for anisotropic diffusion. Rather, our findings
so far strengthen the claim of [1, 2] that a three dimensional phase space, S0 symmetry,
and chaos are the main ingredients for SSBT induced ANM. With respect to a single
particle in a periodic potential driven out of equilibrium by a deterministic driving force,
we have now covered the two main classes of systems by rather generic and minimal
examples.

We now turn break Sxy by letting α 6= 45◦ to find “new” effects which are not possible
in one spatial dimension. The particle may now travel into any direction on the surface.
Our main object is to control the transport properties of the particle. This has now
become more fruitful, as any direction is available, but also more complicated for the
same reason.

By setting φ into some direction with a sufficiently large force, one can direct the
particle into any desired direction. But our archetypical application is to sort different
species of particles. With just a constant force in some direction, it is natural to expect
all different species of particles experiencing that force to be transported into a similar
direction. This is just what happens and in geometries such as considered here, the
deflection angle, i.e. the angle between the transport direction of the particle and the
bias force, is restricted to be smaller than 45◦ [18–20]. Similarly, the angle between the
transport directions of different particle species is restricted. For a notable exception for
extended objects with an internal structure see [5] and chapter 7. Our goal is to be able
to steer the particle into any direction without “rotating” any inherent direction of the
dynamics, coined directing Brownian motion in [4].

4.13 Choice of parameters

Parameter space has more dimensions now, as neither α nor φ are fixed any more. From
figure 4.4 it is apparent that the choice of the drive frequency Ω does not affect the
appearance of SSBT significantly as long as the frequency is not too high: there is always
a matching drive amplitude a for which a SSBT attractor can be found. We choose Ω = 4
fixed at first and vary only the drive amplitude a. In the S0 symmetric case ~F = F~eφ = 0,
the remaining parameter is α, while in the case with the bias force, F and φ come into
play. The primary role of the bias force is to break S0 symmetry. For bias forces of
sufficiently small absolute value F , the response of the system will be linear in the force
for almost all parameters38. Thus, we restrict ourselves to a few appropriately chosen
directions of the bias force in the following. The most interesting directions of bias force
seem to be

38This is no contradiction to the nonlinearity of the dynamics. In particular, with noise, there are no
nonanalyticities in the average velocity as a function of any parameter, and we can Taylor expand. The
Jacobian of the average velocity as a function of the bias force is called the mobility tensor. Effectively,
we will estimate this Jacobian.
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1. the coordinate axes: φ = 0◦, 90◦

2. the bisectrix: φ = 45◦

3. the direction of the periodic drive: φ = α.

The latter case may be particularly important in systems where both bias forces are
generated from the same source. While changing the absolute value of the bias force may
lead to remarkable results [1, 2], here we will focus on the regime of small bias forces.

4.14 Transition from α = 45◦ at fixed frequency

We consider the case of ~F = 0 and Ω = 4 as noted above. We first choose a fixed
drive amplitude a = 3.55 which lies near the center of the main periodic SSBT window
found in figure 4.7 at α = 45◦. With all other parameters fixed, we lift Sxy symmetry by
varying the direction of the periodic drive α and obtain figure 4.14: the SSBT attractors
“survive” up to α ≈ 45.3◦. Then, the unbounded chaotic attractor reappears followed by
another smaller periodic SSBT window at α ≈ 45.4◦. Even though the symmetry itself is
no longer in effect, the periodic windows visible in figure 4.14 still satisfy the transport
restriction imposed by Sxy symmetry, i.e. vx = vy. The same applies to diffusion on the
unbounded chaotic attractor which replaces the periodic windows after they terminate
in boundary crises. I.e. while trajectories may cross the lines Wn

39, no net transport
results for the unbounded chaotic attractor. This may be astonishing at first glance, but
the chaotic attractor can only carry transport across the line Wn once a connection via
the unstable manifold of some unstable periodic orbit part of the attractor (or a more
complex combination thereof) crossing the former invariant manifold of the dynamics
and connecting to the copy of the attractor40 on the other side of the former invariant
manifold of the dynamics is formed. Apparently, for the unstable periodic orbits forming
the backbone of the chaotic attractor, this does not happen for the parameters considered
here41.

At α ≈ 45.57, the unbounded chaotic attractor suddenly shrinks (indicated by the
arrow in figure 4.14) and undergoes a backwards-oriented attractor merging crises (i.e. an
attractor “separation” crisis). Apart from the lifted S̃xy symmetry and the direction with
respect to the bifurcation parameter, this is the “same” bifurcation as the bifurcation/cri-
sis (b5) in figure 4.8 in the following sense. In figure 4.8(b5), the bounded attractor A
collides with the attractor Ã = S̃xyA, such that trajectories initiated on A can reach Ã,
i.e. A is “connected” to Ã. Simultaneously, Ã collides with the attractor S̃xyÃ, but that

39Until now, these lines were called “invariant manifolds” Wn, (4.20). But for α 6= 45◦, they are no
longer invariant.

40Again, a more complex scenario involving other transient objects in phase space is possible.
41Note that the unstable periodic orbit oscillating around the potential minimum crosses the lines Wn

for any α 6= 45◦. For α = 45◦, the lines Wn constitute its inset (stable manifolds). Therefore, it cannot
be part of the chaotic attractor in that case. But if it does not lie in the phase space region occupied by
the chaotic attractor, no net transport across the former invariant manifold of the dynamics results for
the chaotic attractor. The situation where, for some reason, this orbit is part of the chaotic attractor in
the sense that the outset of one of the unstable periodic orbits of the chaotic attractor touches the inset
of this orbit seems to be highly exceptional, and more importantly structurally unstable, e.g. of weight
0 in parameter space.
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Figure 4.14: (a) Bifurcation diagram as in figure 4.6 with α as bifurcation parameter
and fixed Ω = 4, a = 3.55 and F = 0. While α 6= 45◦ breaks Sxy symmetry, we have
found only attractors for which vx = vy, and thus it is sufficient to show only the vx

component of the average velocity in panel (b), in units of the unrotated coordinate
frame. Additionally, in panel (b) the maximum transient length (4.33) is shown (right
scale) for n = 6 (solid blue line) and n = 20 (dashed cyan line) and 5000 random initial
seeds have been used to approximate the maximum in (4.33). Please note that we show
|~rmax| (n) in units of the rotated coordinate frame. This incurs a stretching by a factor
of

√
2, compared to the original coordinate frame.
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attractor is the copy of A in the next elementary cell due to (4.30), and an unbounded
attractor is formed42. If S̃xy symmetry is lifted by a small perturbation, the two crises
in figure 4.8(b5) no longer occur simultaneously. Therefore, when α is increased from 45◦

in figure 4.14, one of the above discussed connections is lifted first, and that happens at
α ≈ 45.57. The second connection is lifted “later”, at α ≈ 46.1◦ but that is not visible
from the upper panel of figure 4.14, since that panel shows only attractors.

To that end, we consider the maximum transient length

|~rmax| (n) = max
~r0 ,~r(t0)=~r0

|~r(nT ) − ~r(t0)| , n integer (4.33)

where ~r(t) is is the trajectory passing through ~r0 at time t0. |~rmax| (n) measures the
maximum Euclidean distance any trajectory can cover in the given time n ·T . Ideally, we
would consider |~rmax| = limn→∞ |~rmax| (n) if the limit exists (see below). Then, if there is
a transporting periodic orbit or an unbounded attractor or repeller, |~rmax| = ∞, and the
speed of the divergence depends on the average velocity of transporting attractors or on
the properties of the unbounded attractor. Conversely, if there is only a bounded period
1 attractor, or a bounded attractor on which the dynamics are ergodic, |~rmax| will be
the largest possible Euclidean distance of any point on the attractor to any point on the
basin boundary. If there is more than one attractor, |~rmax| will take the largest possible
value for all attractors. If there is an attractor on which the dynamics are different,
e.g. a periodic orbit of higher periodicity, |~rmax| (n) may fail to converge for n → ∞.
Numerically, we will choose a fixed n, and will not observe that effect. Furthermore,
if the starting time is varied, the shape of the attractors and their basins of attraction
changes, affecting |~rmax| (n), but we avoid this in our numerics by always setting t0 = 0.
We have found |~rmax| to be well approximated by |~rmax| (n) for n ≥ 6, unless unbounded
objects/attractors are present, cf. figure 4.14. Whenever |~rmax|, thus obtained, changes
abruptly we expect a qualitative change of the dynamics, i.e. a bifurcation, but it is
clear that not all bifurcations can be found that way. One possible way to gain further
insight using the same calculation is to replace ~r(nT )−~r(t0) in (4.33) by a suitable scalar
product, e.g. ~ex · (~r(nT ) − ~r(t0)), which is shown in figure 4.43 for ~ex̃, ~eỹ, ~ex and ~ey.

The crises of A and Ã discussed above should be observable as discontinuous changes
of |~rmax|, unless another phase space structure leads to a larger transient length. The
maximum transient length |~rmax| (n), calculated for two different n, is shown in the lower
panel of figure 4.14. The crisis at α ≈ 45.57 is observable as a sharp decrease of |~rmax|.
Then, |~rmax| varies smoothly due to the deformation of the attractor, which is of no
interest to us, and at α ≈ 46.1◦ |~rmax| decreases sharply due to the second crisis discussed
above or, rather, due to the rearrangement of the involved periodic orbits and their
invariant manifolds.

This claim is further supported by figure 4.15(a). We now consider the a-α plane of
parameter space at fixed frequency Ω = 4 and show |~rmax|. The region of existence of
unbounded attractors are red in figure 4.15(a), corresponding to large maximum transient
lengths which we have cut off at 3 length units of the rotated coordinate frame. The
regions of existence of the unbounded attractors behind SSBT at α = 45◦ correspond
the triangular red region in figure 4.15(a) that contains the ’♦’, i.e. around α = 45◦

42Due to S̃0 symmetry, even more crises occur at the same time, as discussed in section 4.10, but these
are not important here.
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Figure 4.15: (a) Maximum transient length (4.33) for n = 12 and 5000 random initial
seeds, cf. figure 4.14, for the same dynamics as considered in figure 4.14. |~rmax| is
encoded in colors, and the color palette has been cut off after 3 length units in the rotated
coordinate frame. (b) The angle enclosed by the vector ~rmax, corresponding to |~rmax| in
(a), and the x̃ axis, encoded in colors. Due to S0 symmetry, only a half circle of directions
is shown and coexistence with transients of the opposite direction (i.e. other half of the
circle) tacitly assumed. Note that we have shown the angle with respect to the rotated
coordinate frame for ease of comparison. In both panels, the symbols correspond to the
parameters shown in figure 4.35. The dashed line indicates the parameters considered in
figure 4.14. A slightly different representation, allowing for further insight is shown in
figure 4.43.

and a = 3.5. At α = 45◦, the left (i.e. towards decreasing a) border of the red triangle
is the bifurcation/crisis (b5) in figure 4.8 which splits into two branches of crises upon
lifting Sxy symmetry, and the right border is analogous. Thus, there are two “arms” with
somewhat larger |~rmax| & 2 projecting out from the sides of the red triangle, and their
borders correspond to one of the bifurcations/crises discussed above. The direction of
the connection intact within each arm can be best seen from figure 4.43(c)-(d).

Of interest is the right arm towards larger a. We will discuss its properties only briefly,
and a more detailed account can be found in section 4.25.4. The right arm of the red
triangle meets other lines of jumps of |~rmax| at two points of interest. At α = 45◦, there
is another region of SSBT around a ≈ 4.3, cf. figure 4.6. It is not well resolved in figure
4.15(a), but the areas of larger |~rmax| & 2 belonging to it are visible, and their borders are
lines of bifurcations analogous to the borders of the arms of the red triangle containing the
’♦’. At the first point of interest, marked by the dotted arrow in figure 4.15(a), the lower
border of the right arm meets that area of larger |~rmax|, and |~rmax| suddenly increases
around this point. Since both connections meeting at that point connect regions of phase
space which are not separated by any of the lines Wn (n integer), the unbounded object
found in that region is unbounded only in the x̃ direction as indicated by ϑ~rmax = 0◦

(ϑ~rmax is the angle enclosed by ~rmax and the x̃ axis and shown in panel (b) of figure 4.15).
We have found SSBT with transport in the x̃ direction in that parameter region.
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At the second point of interest, marked with a dashed arrow in figure 4.15, the upper
border of the right arm of the red triangle meets another line where |~rmax| changes sharply.
That line can be traced back to α = 90◦, see figure 4.31, and can be explained as follows.
At α = 90◦ and small a, the particle oscillates around the potential minima on a bounded
period 1 orbit. When a is increased, that period 1 orbit interchanges stability with the
saddle separating it from its copy in the next elementary cell (in the y direction) in a
degenerate pitchfork bifurcation at a critical a value [162, 163]43. When α is decreased
from 90◦, that degeneracy is lifted and there are two lines of bifurcations similar to the
situation encountered at α = 45◦ discussed above. When one of these lines meets the
right arm of the red triangle, |~rmax| increases abruptly, and even more importantly, ϑ~rmax

changes to almost 45◦, i.e. ~rmax is now in the x direction. We have found SSBT in the
x direction in that parameter region. A more detailed account can be found in section
4.25.3 and section 4.25.4.

In summary, we have shown that unbounded attractors at α 6= 45◦ are, in a sense,
a consequence of unbounded attractors at α = 45◦. When the phase space objects due
to which unbounded attractors are found at α = 45◦ “meet” phase space objects with
different symmetry properties, the resulting unbounded attractors are no longer restricted
by either symmetry properties.

4.15 SSBT for α 6= 45◦

4.15.1 Description of color palettes in the phase diagrams

We start with a technical digression. As all transport directions are now possible, the
visualization of regions of existence of attractors can no longer show the full information
available due to the limitations of printing on paper. We show only the transport di-
rection of the attractors and indicate coexistence of attractors with different transport
directions. Even that can lead to very confusing phase diagrams. Therefore, we have
chosen parameters such that the phase diagrams are rather clear.

In order to show regions of coexistence of attractors with different transport directions,
we use different approaches:

1. Coexisting attractors with opposite transport directions are the most common case
due to S0 symmetry, since we are considering the case of rather small bias forces.
We use the colors shown in the color palette in figure 4.16(a) for coexistence of
attractors with opposite transport directions.

2. Coexistence of transporting attractors with non-transporting attractors is very com-
mon at ~F = 0. In that case, we show coexistence of a pair of transporting attractors
and a non-transporting attractor by the same tonality as in the palette in figure
4.16(a) but of a lighter shade.

3. For F > 0, all transport directions are possible and shown by the color palette in
figure 4.16(b). Coexistence of pairs of attractors with opposite transport directions
is assigned the corresponding color from the palette in figure 4.16(a). Most regions

43We have found the same behavior as [162, 163] for the dynamics on the attracting manifold of the
dynamics (4.9) for α = 90◦.
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Figure 4.16: Deterministic Γ = 0 phase diagrams for the dynamics (4.9) with Ω = 4 and ~F
as indicated in the panels. As in figure 4.12, only the direction of phase-locked attractors
is shown by colors, as indicated by the color palettes. For a detailed description of the
palettes and colors, see section 4.15.1. Panels (b)-(f) will be discussed in section 4.16.
Some of the attractors visible only in panels (b)-(f) are quasiperiodic, cf. section 4.17.
The white specks in their regions of existence are due to their complicated structure not
being completely captured by our method of calculating the phase diagrams, cf. section
3.9.1. The same applies to all following deterministic phase diagrams with ~F 6= 0.
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of existence of non-transporting attractors shrink with
∣
∣
∣~F
∣
∣
∣ > 0. The phase dia-

grams become too complicated if non-transporting attractors are shown, and we do
not show non-transporting attractors for ~F 6= 0. The case of attractors with differ-
ent, but not anti parallel, transport directions is shown by a checkerboard pattern
corresponding to the two transport directions. Due to the high resolution of the
figures this pattern blends into a “mix” color to the eye, which is the best we could
achieve. This case is extremely rare, as discussed in the text (below).

4.15.2 SSBT in the a-α plane of parameter space at ~F = 0

First, consider figure 4.16(a) for Ω = 4 and ~F = 0. Shown is the phase diagram,
i.e. regions of existence of phase-locked transporting attractors and non-transporting
attractors. Since the diagram extends to α = 45◦ and Ω = 4, it can be compared to
figure 4.7, which is a horizontal cut through figure 4.16(a) at α = 45◦, and also to figure
4.14, which is a vertical cut through figure 4.16(a) at a = 3.55.

At a ≈ 3.5 the SSBT attractors found at α = 45◦ are recovered and shown in yellow.
As discussed in section 4.14, lifting Sxy symmetry destroys the attractors, but the phase
space structures left behind are involved in the creation of “new” SSBT attractors at
α & 48◦. Most of these “new” SSBT attractors carry transport in the (1,0) direction44

(exceptions are, e.g., the attractors carrying transport in the (1,1) direction).
Furthermore, transporting windows with transport in the (0, 1) direction are found for

e.g. α ≈ 57◦ and a ≈ 8. Their regions of existence are very small and hard to make out in
figure 4.16(a). These attractors are also found for the other values of Ω considered below
in figure 4.17 with similar properties. Their existence can be explained from symmetry
arguments: at α = 90◦, transport is restricted to the (0,1) direction due to Sx symmetry
(even if there are no transporting attractors in that case). For α approaching 90◦, Sx

symmetry gradually takes over, leading to transport in the (0,1) direction. Due to their
small weight in parameter space, these transporting windows are of no further interest
here, and we focus on the large periodic windows with transport in the (1,0) direction.
The first begins at α ≈ 49◦ and a ≈ 4.5 and extends to α ≈ 55◦ and a ≈ 645 but has a
maximum width of about ∆a ≈ 0.25 in the a direction for fixed α and about ∆α ≈ 1◦

in the α direction for fixed a. The transporting periodic window appearing already at
α ≈ 48◦ and a ≈ 4 is part of this large window, but the connecting filament is either
unstable, beyond the resolution of figure 4.16(a) or exists only for different parameter
values46. This can be inferred, e.g., from the other transporting periodic windows with
larger oscillation amplitude having a stable filament in the corresponding part or from the
large window with transport in the direction of the applied bias force in figure 4.16(d).

This transporting periodic window is significantly larger (in parameter space) than
the one responsible for SSBT at α = 45◦. It can be expected to be more robust against
random perturbations (such as noise or quenched disorder) and is more interesting to

44We refer to the lattice direction by (n,m), meaning the direction of n · ~ex +m · ~ey.
45A filament of the periodic window extends even further in both directions but with negligible widths

in either direction. This filament is due to the periodic orbits forming the window being part of the
whole chaotic repeller occupying the portion of phase space outlined in figure 4.15.

46I.e. the two parts of the region of existence of the attractor are connected in the full parameter
space.
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Figure 4.17: a-α plane phase diagrams for various Ω as indicated in the panels and for
the same dynamics as in figure 4.16(a). The color palette is the same as used in figure
4.16(a).

study from a practical point of view.
Further copies of this transporting periodic window appear for larger a, and the values

of α for which they appear increase for larger a. There are a total of 3 large periodic
windows. This repeated occurrence is due to the same locking effect as described in
section 4.9.2, see also figure 4.5. As can be seen from figure 4.17(b) further islands of
unbounded attractors (corresponding to white regions in figure 4.17(b)) appear after the
third large window. Usually, the white regions contain transporting periodic windows,
but these windows are beyond the resolution of figure 4.17(b).

In general, the overall size (or weight) in parameter space of the transporting windows
decreases with increasing oscillation amplitude of the periodic orbits. I.e. the “first”
transporting periodic window seems to be best suited from a practical point of view.
This observation is also largely supported by figure 4.17 considering other values of Ω.
For larger Ω, the size of the transporting periodic windows largely decreases, especially
for the ones with larger oscillation amplitude as can be seen from figure 4.4, where the
number of transporting “tongues” encountered by varying a at fixed drive frequency Ω
decreases with increasing drive frequency, see also figure 4.18. The islands of diffusive
attractors encountered in figure 4.17 can be explained from figure 4.2. At fixed (not
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Figure 4.18: Phase diagram for α = 54◦ and various ~F (as indicated in the panels) in the
Ω-a plane of parameter space and otherwise the same dynamics as in figure 4.16. As in
figure 4.16, non-transporting attractors are shown in (a) and are not shown in (b)-(d),
see section 4.15.1.

too large) frequency, regions of attractors with broken S0 symmetry are encountered
repeatedly when increasing a, and these regions may contain chaos as was argued in
section 4.8.

In turn, for the smallest drive frequency considered in figure 4.17, Ω = 1, the size of
the transporting islands is also significantly decreased, while their number has increased
significantly. Again, comparing with figure 4.4, this behavior is expected. Therefore,
there is an “optimum” value of Ω somewhere between 1 and 10 for SSBT.
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Figure 4.19: Bifurcation diagram of the dynamics (4.9) with α = 54◦, Ω = 4 and ~F as
indicated in the panels, showing only attractors obtained and drawn by the same method
as described under figure 4.16. Each panel is subdivided into an upper part showing the
asymptotic large-time stroboscopic section of the dynamics and a lower part showing the
average transport velocity ~v = v~eϑ. ϑ is shown in blue and v in red. The inset (d) shows
an enlargement of the upper part of panel (a).
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4.15.3 SSBT in the Ω-a plane of parameter space at ~F = 0

From figure 4.17 we infer that practically any α ∈ [48◦, 58◦] yields SSBT on a large
transporting window for a suitably chosen value of the drive amplitude a. We focus on

α = 54◦ (4.34)

to further investigate the role of the drive frequency Ω. The result is found in figure
4.18. The structure encountered is again similar to that found in figure 4.4. The largest
(connected) regions of existence of SSBT attractors is found for the largest frequencies
considered (SSBT is not found for larger frequencies), and slightly shrunken and distorted
copies of this SSBT region are found for smaller Ω. These regions always extend from
a ≈ 6 to a ≈ 8, and beyond these values of a SSBT is not found. All SSBT attractors
found carry transport in the (1, 0) direction. Other directions are not expected since our
choice of α is such that it is smaller than the value for which attractors carrying transport
in the (0, 1) direction are found but also quite far from the symmetric case α = 45◦, for
which attractors carrying transport in the (1, 1) direction are expected.

We show the nature of SSBT at α = 54◦ in more detail in figure 4.19(a). Around
a ≈ 4.5 there is a symmetry-breaking “bubble”, which will be discussed below in section
4.17. The first main window of SSBT attractors is encountered at a ≈ 5.93. The process
which leads to its creation is discussed in more detail in section 4.25.5.

For small values of a, there is a S0 symmetric periodic orbit (see figure 4.37(a) for
an equivalent orbit at slightly different frequency) which undergoes a symmetry breaking
bifurcation at a ≈ 5.75, yielding a pair of nonsymmetric, non-transporting periodic orbits
(see figure 4.37(b)). These non-transporting orbits undergo a period doubling cascade
with accumulation point around a ≈ 5.842, where a nonsymmetric bounded chaotic
attractor (see figure 4.37(c)) is created. It merges with its symmetry partner in an
attractor merging crisis around a ≈ 5.844, yielding a symmetric bounded chaotic attractor
(see figure 4.37(d)). At a ≈ 5.87 an unbounded (in all directions) chaotic attractor
is found. This attractor carries diffusion into “all” directions in the sense that any
elementary cell on the lattice can be reached from any other. The argument that this
should indeed be the case since there is no restricting symmetry does not always hold
in the deterministic limit, see section 4.14. We will discuss this in the appendix (section
4.25.5).

A second (and larger) main window of SSBT is located at a ≈ 6.93. It is interesting to
note that the main |v| = 1 window is preceded by (in the sense that one finds for smaller
values of a) a period adding sequence of SSBT orbits yielding a staircase-like structure
in the average velocity with average velocities of values |v| = 1

n
. That sequence begins

at a ≈ 6.9 and is visible only as a few non-zero and non-integer values of v in figure
4.19(a). Moreover, the window is terminated by a saddle node bifurcation for larger a.
Since the SSBT window coexists with a non-transporting attractor, this does not yield
a diffusive chaotic attractor but a chaotic repeller of that nature. At this border of the
window ANM is encountered, see section 4.16 and figure 4.19(b).

From figure 4.18 it follows that the largest (the “rightmost”) region of SSBT attractors
is the “best” choice for studying SSBT due to its expected robustness against changes
of parameters or random fluctuations (see figure 4.24 for a demonstration of this fact).
This would imply a choice of

Ω ≈ 6 (4.35)
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to choose parameters close to the center47 of this region and to avoid coexistence with
other (non-transporting) attractors. This choice is ideal for just achieving SSBT and
related effects (namely ANM and deterministic diffusion) but not for “directing Brownian
motion”, see below.

4.16 Broken S0 symmetry: all symmetries are broken

As has been discussed in section 4.11, ~F = 0 implies that the average particle velocity
will be zero in the presence of thermal fluctuations. Therefore the control of the transport
properties is limited to using diffusion properties, cf. section 4.11.1 and section 4.22.

Breaking S0 symmetry by letting

~F = F~eφ 6= 0 (4.36)

from now on provides a more direct approach to control the transport properties of the
particle.

4.16.1 ~F 6= 0 in the a-α plane of parameter space

For reasons which will become apparent in the following paragraph, we stay with our
previous choice

Ω = 4. (4.37)

Since Ω = 4 is not too different from Ω = 6, the differences with respect to robustness
against random perturbations turn out to be only a factor of about 2, leaving room for
optimization.

As has been discussed in section 4.13, we limit our investigation to a few representative
directions for the bias force, namely ~F ‖ ~ex, ~F ‖ ~ey, ~F ‖ ~e45◦ and ~F ‖ ~eα. We consider
a small bias forces F = 0.02 only in (one of) the directions of SSBT, and a somewhat
larger force F = 0.08 in all directions considered. The latter choice removes most of
the coexistence of attractors with different transport directions, making the diagrams
readable. We start with ~F = 0.02~ex found in figure 4.16(b).

First, lifting S0 symmetry separates the regions of existence of coexisting SSBT at-
tractors of opposite transport velocities yielding red (transport in the direction of the bias
force) and blue (transport against the bias force) regions. The movement of the regions
of existence in the Ω direction is just as predicted by the intuitive argument discussed
in section 4.11.2, i.e. the regions of existence of SSBT attractors transporting against
the bias force move towards smaller Ω, and the regions of existence of their symmetry
partners move towards larger Ω. Simultaneously, the regions of existence of the former
move towards smaller a, and those of the latter towards larger a, but the “speed” of that

47At the borders of the regions of existence of SSBT attractors, their pseudopotential depth vanishes.
We therefore expect the center of the regions of SSBT attractors to be the best choice with respect to
their stability. While instabilities of Shapiro steps (and thus SSBT attractors) have also been found in
the center of the steps (regions of existence) [137], this effect was found at the transition from the regular
regime to the chaotic regime, while we are considering parameters “deep” in the chaotic regime, where
the center of the former Shapiro step has already undergone this instability, see section 4.9.3 and section
4.11.2.
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movement (with respect to F ) is rather slow. Since the parameter regions of SSBT have
a borders towards smaller Ω at F = 0, ANM is found at those borders, see figure 4.37(h)
for an example orbit at Ω = 4, a = 5.95. The regions of existence of ϑ = 45◦ attractors
separate likewise. Simultaneously, the regions of existence of attractors with transport
in the direction of the bias force grow, while the regions of existence of attractors with
transport against the bias force shrink.

Second, in the region of parameter space where deterministic chaos is found for ~F = 0,
which largely coincides with the region of |~rmax| > 3 in figure 4.15, “new” attractors
emerge from periodic windows becoming stable and/or growing. Apparently, their trans-
port directions are influenced by, but in general not equal to, the transport directions of
other large transporting windows in their vicinity. Individually, these “new” attractors
have rather small regions of existence, in particular for smaller bias forces ~F , but allow
for deterministic transport with many “new” directions.

Third, regions of existence of “new” attractors with completely different properties,
and in particular new transport directions, emerge in parameter regions in which neither
chaos nor unbounded objects are found for ~F = 0. All these “new” attractors are created
at parameter values close to the remains of S0 symmetry breaking bifurcations which
become avoided bifurcations for broken S0 symmetry [115]. The attractors are non-
periodic and we will discuss their properties in the following section.

4.17 Quasiperiodic transport at ~F 6= 0

There are two main types of these “new” attractors, both quasiperiodic48 but differing by
their transport direction. The first emerge around the symmetry-breaking bifurcations in
the Sxy symmetric case close to α = 45◦ and reach out towards α > 45◦ carrying ϑ = 45◦

transport (or ϑ = 315◦ for ~F with opposite sign). Their properties are similar to those
of the second type, which we will discuss now.

The second type emerges around the S0 symmetry breaking bifurcations at α = 90◦

continued towards 45◦ < α < 90◦, see figure 4.15. These attractors are first found
close to the regions of existence of the SSBT attractors discussed above (section 4.10) at
the borders towards smaller drive amplitudes a (and thus at the borders of the regions of
existence of the unbounded objects discussed in section 4.14). Most of the attractors carry

exactly ϑ = 90◦ transport. The case of other ~F , in particular ~F ‖ ~ey will be discussed
below. Upon closer inspection, there is a more or less smooth transition of their transport
direction where their regions of existence meet those of the SSBT attractors. As can be
seen from figure 4.19, the absolute values of their transport velocities varies smoothly
with the drive amplitude a. This is due to the quasiperiodic nature of the attractors
differing significantly from that of the phase-locked SSBT attractors considered so far.

These new transporting attractors are analyzed in detail in figure 4.20 using the
representative example of the attractor existing for the smallest a value around a ≈
2.8 for Ω = 4 in figure 4.16(c). At a = 0 and for each value of ~F , there are only
three periodic orbits: the one oscillating around the potential minimum and the orbits
oscillating around the saddles. Already at ~F = 0, the two saddles in the elementary
cell (we are now considering the unrotated elementary cell and the coordinates x and

48 Trajectories on the attractors never close on the torus, but the attractors are not chaotic [115].
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Figure 4.20: Bifurcation diagram of the deterministic Γ = 0 dynamics (4.9) for α = 54◦,

Ω = 4 and various ~F , see legend. Shown are both attractors and unstable period 1
orbits, obtained and drawn according to the same method as outlined under figure 4.7.
The unstable periodic orbits are drawn in lighter colors. (b) shows a magnified view of
the region of interest in (a). Since the figure shows only a part of phase space (in the
x-direction), one unstable periodic orbit is missing, see text. Apart from this orbit, all
unstable periodic orbits (found) are shown. For a < 2.5, the unstable periodic orbit
oscillating around the saddle has been obtained using the method described under figure
4.8, starting at a = 0, Ω = 7 and ending at a = 2.5, Ω = 4.

y) are not equivalent, and the unstable periodic orbits oscillating around these saddles
are not equivalent. In figure 4.20, we show only the unstable orbit oscillating around
the saddle at (x, y) = (0, 0.5). The other saddle (x, y) = (0.5, 0.0) is not contained in
the window of phase space shown in the figure. Since the orbit oscillating around the
saddle (x, y) = (0.5, 0.0) is isolated from the other periodic orbits considered here, it is
not relevant to the discussion49. With that in mind, the other (stable) periodic orbit
found around a = 0 in figure 4.20 is the one oscillating around the potential minimum.

For ~F = 0, at a ≈ 2.76 and a ≈ 2.89 there are pitchfork bifurcations. At the
latter, the orbit oscillating around the potential minimum (see figure 4.21(a)) undergoes a
backwards-oriented pitchfork bifurcation, becoming unstable for larger a and creating two
branches of S0 symmetry breaking unstable periodic orbits. These branches are connected
to the former pitchfork bifurcation, where the unstable periodic orbit oscillating around
the saddle (see figure 4.21(b)) becomes stable for larger a. In figure 4.19(a) the same
situation is found at a ≈ 4.4 and a ≈ 4.6 with the directions of the (symmetry-breaking)
pitchfork bifurcations reversed50. Thus, a “bubble” with broken S0 symmetry is created,
unstable in figure 4.20 and stable in figure 4.19(a).

49We were unable to find it using our simple numerical methods for Ω = 4 due to its Floquet multipliers
being too large. Moreover, using the method described under figure 4.8 we were also unable to find it,
indicating that it is not involved in any bifurcation changing its stability within the parameter ranges
considered in figure 4.20. Since the bifurcations we are considering here are “complete” in the sense of
all branches being present, we conclude that the orbit is not involved in any of them.

50In figure 4.19(a), two periodic orbits also “exchange” roles/stability. These changes of symmetry
and stability can be attributed to the same reasons as discussed in section 4.8.
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Figure 4.21: Periodic orbits (a)-(b) and quasiperiodic orbit (c) corresponding to the

parameters and dynamics considered in figure 4.20 except for ~F = 0, a = 2.7 (a), ~F = 0,

a = 2.9 (b) and a = 2.8, ~F = 0.05~ex (c). In panels (a) and (b) the turning points of
the orbits (i.e. the times when the periodic drive changes sign) are marked by a filled
circle (drive protocol becomes negative) and an open diamond (drive protocol becomes
positive). In panel (c), only one turning point (drive protocol becomes negative) is marked
by red points, indicating the attractor’s shape under the stroboscopic section. Moreover,
only a part of the orbit is drawn in full phase space (not reduced to the torus).

For ~F 6= 0 the pitchfork bifurcations become “avoided” pitchfork bifurcations (see the
green curve in figure 4.20) [115]. This means that the subcritical pitchfork bifurcation
becomes a tangent bifurcation where the stable orbit collides with one of the (formerly
symmetry breaking51) unstable orbits, and the other (formerly symmetry breaking) un-
stable orbit is no longer “involved” in this bifurcation. It is now “directly” connected
to the other remaining periodic orbit, the (formerly symmetric) unstable periodic orbit
created in the pitchfork bifurcation, see the green curve in figure 4.20 and also [115] for
a beautiful illustration. In our case, the unstable periodic orbit “uninvolved” in the tan-
gent bifurcation is connected to the other avoided pitchfork bifurcation, which transforms
likewise.

These tangent bifurcations “move” upon increasing the bias force. In particular, the
avoided pitchfork bifurcation involving the orbit oscillating around the potential minimum
occurs for smaller values of a, while the other avoided pitchfork bifurcation occurs for
larger values of a. Thus, at first the a values at which they occur move towards each other
for increasing bias force modulus. At ~F ≈ 0.03~ex they are almost identical. Beyond this
“critical” value of the force, the tangent bifurcations exchange places in the bifurcation
diagram. This leaves a “hole” in the bifurcation diagram without periodic orbits (in the

51With
∣
∣
∣~F
∣
∣
∣ 6= 0 there is no S0 symmetry any longer and thus there are no symmetric orbits.
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phase space region formerly occupied by the orbits considered so far). Since the orbits
involved are connected to each other via their invariant manifolds forming an invariant
circle (see below), this is an infinite period bifurcation [115], creating a quasi-periodic
attractor, see figure 4.21(c) for the corresponding orbit.

The bifurcation creating transport can be explained by considering the spatially pe-
riodic structure of the equations. Let us consider one of the pairs of stable and unstable
periodic orbits creating the infinite period bifurcation, e.g. set a = 2.75 fixed, increase
the modulus of ~F = F~ex and consider the “lower” branch of the two bifurcations. The
structure of the infinite period bifurcation implies that, prior to the bifurcation, the un-
stable manifold of the unstable periodic orbit is directly connected to the stable manifold
of the stable periodic orbit. Here, we have to be careful with winding numbers on the
torus or, in other words, to which copy of the stable periodic orbit in which elementary
cell the two halves of unstable manifolds are connected. In our case, the unstable peri-
odic orbit oscillating around the saddle at (x, y) = (0, 0.5) is the separatrix separating
the basins of attraction of the stable periodic orbits oscillating around the minima at
(x, y) = (0, 0) and (x, y) = (0, 1). One half of its unstable manifold connects to the stable
periodic orbit oscillating around (x, y) = (0, 0), and the other half connects to the copy
of that stable periodic orbit oscillating around (x, y) = (0, 1). If the stable and the unsta-
ble periodic orbit annihilate in a tangent bifurcation, they leave behind their connected
(un)stable manifolds creating the quasiperiodic transporting attractor. We have verified
this structure [117] for representative parameter choices for this system (not shown) .

In particular, this explains the structurally stable transport direction of the attractor
far from the region of existence of SSBT attractors, although the modulus of its transport
velocity is not structurally stable. Basically, this structure is similar to the one encoun-
tered for only a constant bias force, but in that case one deals with fixed points of the
dynamics instead of periodic orbits [214, 215].

Upon further increasing the bias force (but keeping its direction), the size of these
attractors in parameter space grows as can be expected from the direction in parame-
ter space into which the responsible avoided symmetry breaking bifurcations move for
increasing bias forces.

Letting ~F → −~F , the transport direction of the quasiperiodic attractors is reflected
at the origin, i.e. changes sign. As has been argued above, the transport direction will
be parallel to ~ey in certain regions of parameter space. Therefore, one interval of bias
forces can be associated with ϑ = 90◦ transport and another interval, which follows upon
reflection at the origin, with ϑ = 270◦ transport. This is shown in figure 4.22 and accounts
for the ϑ = 90◦ attractors found for ~F = 0.08~e45◦ , ~F = 0.08~ey and ~F = 0.08~eα, since at
α 6= 45◦ there is no symmetry restricting the values of α at which the transport current
is inversed. In fact, this angle varies with α, and it is fixed only at α = 45◦. Lastly, the
quasiperiodic attractors turn out to be remarkably robust against a rotation of the bias
force ~F = F~eφ, cf. figure 4.22. E.g., the ϑ = 90◦ attractor (light green in figure 4.22)

survives beyond φ = 180◦ for certain a values, i.e. ~eϑ · ~F < 0.

4.18 Summary of transport properties at Γ = 0

Putting things together, with all symmetries broken we have an abundance of attractors
transporting in practically all directions, depending on the choice of system parameters.
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Figure 4.22: Deterministic Γ = 0 phase diagrams for the dynamics (4.9) with α = 54◦,

Ω as indicated in the panels and ~F = 0.08~eφ. The transport direction of transporting
attractors is encoded in colors, cf. the legend in (b), and non-transporting attractors are
shown as grey. In case of coexistence of transporting and non-transporting attractors,
only the transporting attractor is shown. φ ∈ [180◦, 360◦] can be obtained from φ ∈
[0◦, 180◦] due to S0 symmetry.

The interplay of the periodic potential and the periodic drive leads to pairs of SSBT
attractors with opposite transport directions, carrying transport parallel to the (1,1)
and (1,0) directions. A second consequence of this interplay are symmetry breaking
bifurcations. The interplay of the symmetry breaking bifurcations and an applied bias
force leads to quasiperiodic attractors carrying transport parallel to the (0,1) and (1,1)
directions, depending on the direction of the applied bias force. Where the regions of
existence of these attractors meet those of other attractors, the interplay of the competing
transport directions leads to an even richer spectrum. A crucial observation is that the
transport direction can be rotated without rotating anything in the system. E.g. choosing
Ω fixed, say Ω = 4, and varying the drive amplitude with all parameters fixed (i.e. a
horizontal line in figure 4.18(c)), attractors carrying transport into most directions are
encountered in the sense that for each direction on the surface an attractor carrying
transport into a direction that differs only by a few degrees is encountered, the only
exception being the ϑ = 275◦ direction. In turn, this allows a particle to be directed along
a surface, but except for a few discrete directions given by phase-locked and quasiperiodic
attractors with large parameter regions, the transport direction of the particle depends
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sensitively on the choice of system parameters. Thus, it is rather difficult to direct a
specific particle species into a specific direction unless that direction is “special”, but the
mechanism of directing the particle is highly sensitive to different particle species. As we
will see in the next section, the former limitation is mitigated by thermal noise.

4.19 Noise effects

So far, we have been considering the deterministic dynamics, Γ = 0. Adding noise leads
to a plethora of new effects such as diffusion [8, 128], stabilization of transient chaos [147,
265], suppression of deterministic diffusion [258], ANM related effects [1, 2, 63, 151], and,
most importantly for our purposes, noise induced escape from deterministic attractors
[1, 2, 137, 141, 144, 263, 264], to name but a few. The latter has effects both beneficial
and detrimental to our purpose, namely directing Brownian motion.

Noise induced escape destabilizes attractors. In the deterministic case, once a tra-
jectory has reached an attractor, it will stay there indefinitely. In the presence of noise,
it will leave that attractor after a time, visiting other regions of phase space. For the
transport of a particle “living” on such a trajectory, this means that its average velocity
will be the time average over the (deterministic) average velocities of all regions of phase
space it visits and thus, due to ergodicity, the average over all points of phase space,
each weighed with is weight [90, 91]. First, and detrimental to our purpose, this usually
reduces the average velocity in the presence of transporting attractors because the sym-
metry breaking perturbation is small. In the systems and parameters considered here, i.e.
for small bias forces, transporting attractors or the unstable objects which are created
upon their destruction are the regions of phase space with the largest (deterministic) av-
erage velocities out of those regions of phase space with appreciable weight. For Γ → ∞,
the average velocity will be ~v = ~F [10], which is much smaller than the (deterministic)
average velocities due to SSBT.

Second, noise induced metastability smoothes the average velocity as a function of a
system parameter. In the deterministic case, this function is usually discontinuous due
to bifurcations and even multi-valued due to coexistence of attractors52. Noise induced
transitions between deterministic attractors lift this by ergodic averaging over phase space
[10, 90]. For the purpose of directing a particle on a surface this is crucial from a practical
point of view. In the deterministic case, a very small change in some parameter can lead
to a completely different transport velocity or even trap the particle on a non-transporting
attractor. Thus, control of the particle might then become impossible in an experiment.
Therefore, noise is an essential ingredient for directing Brownian motion, but only in the
right quantity: we have briefly addressed the effects of noise in section 4.11.2 to estimate
the noise strength at which ANM effects vanish at α = 45◦ and found this to be of order
Γ ≈ 10−5. As has already been hinted at in section 4.11.2, considering α 6= 45◦ we expect
the noise resistivity to increase, but there remains a threshold at which ANM and related
effects vanish and their transport directions become inaccessible.

52One can try to associate a statistical weight to attractors in the noise free case. If the limit Γ → 0,
e.g. of the average velocity, is well behaved, one can define a single valued function in the noise free case
and a probability density (statistical weight) of phase space. But one then has a statistical description
of a nonergodic dynamics, which needs further interpretation.
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Figure 4.23: Dimensionless average velocity ~v = |~v|~eϑ for the dynamics (4.9), Ω = 4 and
remaining parameters as indicated in the figure. ϑ is shown in the lower rows (subscripts
2), and v in the upper rows (subscripts 1). The palette for |~v| has been cut off. If
|~v| < 0.008, corresponding to a displacement of less than 400 elementary cells for the
single trajectory used to obtain the averages, white is displayed for ϑ and |~v|. If |~v| > 1,
the palette above figure 4.24 is used.
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Figure 4.24: Dimensionless average velocity ~v = |~v|~eϑ for the dynamics (4.9), α = 54◦ and
remaining parameters as indicated in the figure. ϑ is shown in the lower rows (subscripts
2), and |~v| in the upper rows (subscripts 1). If |~v| < 0.01, corresponding to a displacement
of less than 200 elementary cells for the single trajectory used to obtain the averages,
white is displayed for ϑ and |~v|.
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Figure 4.25: Dimensionless average velocity ~v = |~v|~eϑ for the dynamics (4.9), α = 54◦,
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and |~v| in the upper rows (subscripts 1). If |~v| < 0.008, corresponding to a displacement
of less than 3200 elementary cells for the single trajectory used to obtain the averages,
white is displayed for ϑ and |~v|.

Figures 4.23, 4.24 and 4.25 summarize of our findings. Figure 4.25 shows the maxi-
mum noise strengths and bias forces possible for two representative choices of parameters
exhibiting ANM (see the symbols in figure 4.24). The maximum noise strengths for which
ANM is supported are of the order Γ ≈ 10−3, that is two orders of magnitude larger than
for α = 45◦. The maximum bias forces against which transport is supported, also called
load forces, are of similar magnitude at F ≈ 0.1, compared to α = 45◦. Figures 4.23 and
4.24 are analogs of figures 4.16 and 4.18 showing the modulus of the average velocity |~v|
and its direction ϑ in separate panels as indicated by the color palettes and the captions.
For completeness, the results for Γ = 0 are repeated in figure 4.24, and moreover |~v| at
Γ = 0 is included, which is not shown in figure 4.18.

Due to the destabilization of non-transporting attractors and the associated increase
of the statistical weights of deterministically transient regions in phase space, the regions
in parameter space with measurable transport velocities grow. Basically, this is the same
effect as is behind noise induced ANM discussed in [63] and [1, 2], see therein for a brute
force quantitative analysis in terms of pseudopotentials for a representative example. The
difference lies in the transport properties of the deterministic repellers and attractors
involved. In short, if the deterministic attractor vanishes by means of some bifurcation,
it leaves behind an unstable object in phase space, the nature of which depends on the
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particular bifurcation. Here, these objects are chaotic repellers, but also the traces of
periodic orbits prior to their birth in tangent bifurcations [115, 253, 254, 266]53. Due
to noise, these regions of phase space become accessible and gain a positive statistical
weight and thus influence the average transport velocity. Therefore, these effects are most
pronounced in regions of phase space where there are only non-transporting deterministic
attractors.

Thus, the effect of noise on attractors carrying transport against the bias force is as
follows. These attractors are SSBT attractors, S0 symmetry is only weakly broken and
their regions of existence are always close to the regions of existence of their symmetry
partners (i.e. their images under S0 at ~F = 0). In regions of parameter space for
which only attractors carrying transport against the bias force exist, the remains of the
attractors carrying transport in the direction of the bias force (e.g. chaotic repellers) gain
statistical weight due to noise, and the average velocity is reduced or even inversed, as
was discussed in [1, 2]. But simultaneously, upon increasing the noise strength regions
in parameter space neighboring the regions of existence of the deterministic attractors
acquire their transport properties. Due to this mechanism, upon increasing the noise
strength, the regions of parameter space exhibiting transport against the applied bias
force move into regions of parameter space previously exhibiting no transport. This
effect has been discussed in [63] and termed “noise induced absolute negative mobility”.
For a unified notation, we term this effect noise induced ANM (NANM). As an example
consider the parameters

Ω = 7.5 and a = 7.6, (4.38)

and a vertical line through figure 4.25(a). Comparing with [2, 63], the fraction of pa-
rameter space occupied by non-transporting attractors is much larger in the overdamped
dynamics considered here, and NANM is much more common in overdamped dynamics.
It is particularly noteworthy that through the movement of ANM regions, NANM sur-
vives for larger noise strengths than “normal” ANM, as exemplified in figure 4.25, and
also visible in figure 4.24, but the concomitant average velocity is very small in modulus.

4.20 Rotating the bias force

We have addressed the effect of different directions of the constant bias force briefly in
the discussion of figures 4.16, 4.18, 4.23, 4.24 and in particular 4.22. Applying S0, the
bias force is rotated by 180◦. Therefore, each attractor moves in parameter space upon
rotating the bias force such that its S0 symmetry partner takes its place after a 180◦

rotation, see figure 4.22. This is most easily seen for the pairs of SSBT attractors, but
also applies to the quasiperiodic attractors which only exist for broken S0 symmetry,
as has been discussed in section 4.17. Choosing a point in parameter space minus the
direction of the bias force φ, the transport direction is determined by the attractors
“visiting” this point in parameter space upon changing φ. As an example we select
parameters which correspond to a SSBT attractor leading to ANM at φ = 0◦ and rotate

53I.e., we are referring to the region of phase space involved in the regular (laminar) parts of intermittent
chaos, only that we do not require that their stable manifolds be connected to the unstable manifolds of a
chaotic attractor. Therefore we do not require deterministic intermittency, but intermittency is induced
by noise.
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Figure 4.26: Average velocity ~v = v~eϑ (upper panel: ϑ, lower panel: v) for the dynamics

(4.9) with α = 54◦, Ω = 4.3, a = 7.4, ~F = 0.03~eφ, Γ = 4.4 · 10−4 (solid lines) and
Γ = 6.7 · 10−4 (dashed lines).

the bias force in figure 4.26. For the smaller noise strength considered in figure 4.26,
the direction of transport remains largely in the negative x direction until the bias force
points in the y direction. For φ slightly larger than 90◦, the transport direction quickly
changes to the positive x direction, remains so until φ passes 270◦, and then changes
again to be in the negative x direction due to symmetry reasons. In turn, the deflection
angle ϑ shows a linear dependency on φ, varying between 90◦ and 270◦, and jumps at
the inversion points. Deterministically, the modulus of the transport velocity vanishes
around the inversion points due to non-transporting attractors. With noise, it becomes
very small at the inversion points. For the larger noise strength considered in figure 4.26,
the effect is washed out, with the deflection angle no longer reaching 180◦, but staying
close to 90◦. In turn, the modulus of the average velocity is larger around the inversion
points due to noise induced transport, and smaller in between due to (SSBT induced)
phase-locked transport being destabilized. Figure 4.26 is a horizontal (constant a) cut
through the ANM region of a figure analogous to figure 4.22 but at a slightly different
frequency.

4.21 Directing Brownian motion

We are now ready to understand the mechanism behind the control of the transport direc-
tion of a Brownian particle discussed in [4]. The interplay of SSBT attractors, symmetry
breaking bifurcations and an applied (symmetry breaking) bias force leads to determin-
istic phase space structures allowing transport into most of the main directions of the
lattice by selecting a suitable combination of frequency Ω and amplitude a of the periodic
drive at fixed angles α and φ, cf. 4.16 and 4.18. Moreover, the spectrum of available
transport directions remains almost complete if one of the remaining parameters is fixed,
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Figure 4.27: “Response spectrum”, i.e. both components of the average velocity ~v =
(vx, vy) in dependence of some parameter, a, for the dynamics (4.9) with α = 54◦ and
Ω = 4. The upper row, (a)-(c), shows ~v(a) for a ∈ [4.5 : 8] as indicated by the color of
the lines, see legend, and (a) Γ = 10−4, (b) Γ = 3 ·10−4 and (c) Γ = 10−3. The lower row,
(d)-(f), shows ~v(a,Ω(a)) for a ∈ [4.5 : 9] as indicated by the color of the lines, see legend,
and (a) Γ = 10−4, (b) Γ = 3 · 10−4 and (c) Γ = 10−3. Ω(a) parameterizes the solid line in
figure 4.24(a)-(c).

e.g. the drive frequency. By adding noise, the discontinuous behavior of the transport
velocity is smoothed, and “new” transport directions become available through the noise
induced averaging over all deterministic directions. We call the set of all directions that
are available if a parameter of the dynamics is varied the response spectrum. Choosing
the drive amplitude as a parameter, we get the response spectrum shown in figure 4.27,
of which panels (d)-(f) show the same information as Fig. 2 of [4], except for different
parameters being used.

The most remarkable feature of figure 4.27 is the presence of practically all transport
directions, “selectable” without changing any inherent direction of the model. Previous
studies in this line, cf. section 4.1, have been restricted to deflection angles of less than
90◦, i.e. “absolute transverse mobility”, and hence the resultant response spectra were
incomplete.

Upon closer inspection of the dependence of the transport direction on the particular
choice of a in figure 4.27, i.e. the color of the line, it is evident that the most interesting
part of the spectrum, where transport is against the applied bias force, corresponds only
to a small set of a values. This can be explained from figure 4.18, in which panels (d)-(f)
of figure 4.27 correspond to the vertical dashed line. The a values for which transport
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against the bias force results correspond to the narrow “blue” stripes. In practice this
sharp dependence may be a limitation. By giving up the simplicity of varying only
one parameter, this limitation can be lifted. E.g., if Ω and a are varied simultaneously
such that they trace a line passing longitudinally through the “blue stripe” in the a-Ω
plane, the response spectrum as shown in figure 4.27(a)-(c) is obtained. Apart from the
smoother dependence of the transport direction on the control parameter, the numerous
current reversals observed as crossings of the vx = 0 or vy = 0 axes in figure 4.27(d)-(f)
are lifted, and the response spectrum takes a more “circular” form. But this choice of
varying the system parameters is artificial, may be much harder to realize experimentally
and does not fit directly into the picture of different particle species corresponding to a
different value of the control parameter54.

4.22 Directing Diffusion

Another remarkable consequence of SSBT is deterministic anisotropic diffusion, as was
already discussed in section 4.11.1 for α = 45◦. We limit our discussion to unbiased
diffusion, i.e.

~F = 0 (4.39)

in this section. Due to SSBT, diffusion can be arbitrarily large in the sense that one
eigenvalue of the diffusion tensor D, (4.32), diverges with Γ → 0, and diffusion is stronger
in the direction of the corresponding eigenvector of the diffusion tensor, i.e. diffusion is
anisotropic. At α = 45◦, the diffusion tensor (4.32) was restricted by S̃xy symmetry,
and one of its eigenvectors had to be parallel to ~e45◦ . That restriction is lifted when Sxy

symmetry is broken by α 6= 45◦, and we choose

α = 54◦ (4.40)

since we have already explored this value in detail, cf. figure 4.18 and figure 4.24. The
main features of interest are

1. For a between 6 and 8, SSBT attractors transporting parallel to the x axis alternate
with bounded attractors, which are replaced by attractors transporting parallel ~e45◦
for ~F 6= 0.

2. For certain a values between 2 and 6 and ~F 6= 0 there are quasiperiodic attractors
transporting parallel to the y axis.

Arbitrarily strong anisotropic diffusion parallel to the x axis will be the result of the SSBT
attractors and works along the same lines as discussed in section 4.11.1. The attractors

54E.g., particles that differ by their radii, and thus friction coefficients, correspond to different values
of Ω in the dynamics (4.9). If they furthermore differ by their interaction with the periodic drive, both
parameters a and Ω are different for the particles. Another variant are particles that differ in their
interaction with the periodic potential, i.e. their differences can be encoded into a prefactor ũ before the
~∇ŨYukawa(~r(t)) term in (4.9). ũ can be absorbed into the units of the drive amplitude and the unit

of time, and in the units of (4.9), one gets Ω(u) = Ω0

ũ , a(u) = a0

ũ , F (u) = F0

ũ and Γ(u) = Γ0

ũ where
the parameters with subscript 0 are the parameters before ũ is absorbed. Hence, the parameters in the
units of (4.9) of such particles lie on lines passing through the origin of the a-Ω plane and their response
spectra will be more akin to panels (a)-(c) than (d)-(f) of figure 4.27.
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Figure 4.28: (a) Diffusion coefficients D1 and D2 as defined in (4.32) for the dynamics

(4.9) with ~F = 0, α = 54◦, Ω = 1 and Γ = 4 · 10−4. The diffusion coefficients have
been obtained from a sample of 750 trajectories of length 15000 drive periods each. The
plotting range has been restricted since smaller values of D1/2 are not correctly obtained
from our sample size, i.e. D1/2 = 0 if the curve is not visible. The rate of free diffusion,
Γ, is shown as a dashed line. (b) ϑD, as defined in (4.32), for the same dynamics as in
(a). (c) Sample particle distributions for the same dynamics as in (a) and (red) a = 4.74;
(blue) a = 7.94 ; (green) a = 8.58. (d) Same as in (c) but different scale and (red)
a = 2.08; (blue) a = 5.3 ; (green) a = 6.73. In (c)-(d), the positions at time 15000 · T
of 10000 particles initialized at the origin are shown, the origin is indicated by the black
cross and a length of 100 elementary cells is indicated by the bar.
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transporting parallel to the y axis and parallel to ~e45◦ are similar55, and quasiperiodic
transport parallel to the y axis with broken S0 symmetry has been investigated in detail
in section 4.17. With respect to diffusion, it is akin to the diffusion of overdamped
particles in one dimensional dynamics subjected to periodic driving forces [267–269] or
a dc driving force [214, 215]. In that context, for small but non-zero noise strengths,
diffusion can be significantly stronger than free diffusion at the same noise strength when
the dynamics are close to a deterministic bifurcation affecting the particle velocity. In
short, and slightly oversimplifying, the mechanism of stronger diffusion is that the noise
has to work only a little to overcome a dynamical bottleneck and achieve a significant
change of the particle position due to the instability of the dynamics at the bifurcation. In

effect, for the parameters for which quasiperiodic transport is expected for 0 <
∣
∣
∣~F
∣
∣
∣≪ 1,

we can expect diffusion to be much stronger parallel to the y axis, i.e. anisotropic, and to
be enhanced in comparison with pure thermal diffusion at the considered noise strength.
We have verified both behaviors (numerically), arbitrarily strong anisotropic diffusion in
the SSBT regime for Γ → 0, and enhanced, by several orders of magnitude (depending
on the noise strength and parameters), anisotropic diffusion in the other two cases.

In the spirit of “directing Brownian motion”, a remarkable consequence is that the
direction of strong diffusion, i.e. the direction of the eigenvector belonging to the (much)
larger eigenvalue of D, can be selected by changing only the drive amplitude a (or another
parameter, cf. figure 4.18 and figure 4.24). The two mechanisms of diffusion are very
different. Diffusion due to SSBT is most effective at Γ = 0, while diffusion due to
quasiperiodic transport is absent at Γ = 0 and most efficient at some optimum value of
Γ. The difficulty is to choose the remaining parameters, i.e. Γ, Ω and a such that both
mechanisms work reasonably, and, for practical purposes, result in comparable diffusion
coefficients.

We have found Γ = 4 · 10−4 and Ω = 1 to be a convenient choice for that purpose56.
The spectrum of diffusion behavior thus obtained is shown in figure 4.28. Roughly, there
are three regimes. For small values of a, diffusion with ϑD = 90◦ is found for certain a
values and D2 is always practically zero. The maximum D1 values are about one order
of magnitude smaller than in the other two regimes. When a approaches the region of
deterministic SSBT, both diffusion coefficients increase significantly and ϑD “rotates”
to ϑD ≈ 0◦. At the lower border of the deterministic SSBT region, around a ≈ 6, the
largest values of D1 are found. The third regime, starting at a ≈ 6.5, corresponds to the
parameter range where deterministic SSBT regions and bounded attractors, or, with a

55We have verified ϑ = 45◦ transport to be created along the same lines as the quasiperiodic transport
discussed in section 4.17, i.e. at ~F = 0 there is a pitchfork bifurcation of a non-transporting periodic
orbit, which splits into two tangent bifurcations (avoided pitchfork bifurcations [115]) when ~F 6= 0.

The tangent bifurcations “move” apart when the modulus of ~F is increased, and at a “critical” ~F
value, a “gap” between the tangent bifurcations is created. In that gap, a non-periodic attractor with a
continuously varying (with the bifurcation parameter) average velocity locked to ϑ = 45◦ is found. We
have not investigated whether that attractor is quasiperiodic or chaotic, since we do not believe that
to be essential. Since the mechanism of its creation is the same as in section 4.17, we believe it to be
quasiperiodic.

56If a larger value of Ω is chosen, the ϑ = 45◦ transporting regime is less pronounced, but the SSBT
with ϑ = 0◦ is more pronounced, cf. figure 4.18, and similar results can be obtained. We have not
investigated smaller values of Ω. For other values of Γ, 10−4 < Γ < 10−3, we have obtained qualitatively
similar results.
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non-zero bias force, attractors with transport parallel to ~e45◦ , alternate with increasing
a. Thus, ϑD oscillates roughly between 0◦ and 45◦ and the diffusion coefficients oscillate
likewise. Since SSBT is not found for a > 8, the oscillations of ϑD no longer reach 0◦ for
larger a values. The deterministic pattern of symmetry breaking bifurcations, as shown
in figure 4.2, is behind the oscillations of the properties of D for a > 8.

Figure 4.28(a)-(b) enables us to choose a few exemplary a values such that each
corresponds to a different direction of diffusion, and the magnitudes of the concomitant D1

values are comparable. The result is found in figure 4.28(c)-(d). An immediate application
would be to “direct” particles by diffusion, similar to section 4.21. Without changing
any inherent direction of the dynamics, the interplay of the deterministic directions and
noise enables us to control the direction of strong diffusion. In an experiment with
a finite sample size, the particle distributions shown in figure 4.28(c)-(d) would mean
that, depending on the a value, the different particle species would leave the sample at
different places, i.e. are separated. If different particle species have (significantly) different
diffusion coefficients, they can also be separated since the “faster” particle species will
leave the sample (by diffusion) much earlier than the first.

According to figure 4.18 and figure 4.24, diffusive separation along the lines of this
section is not restricted to particles that “differ” in their values of a.

Lastly, an interesting diffusion behavior can be constructed if the potential is not
Ŝxy symmetric such that the potential barrier orthogonal to the direction of SSBT is
smaller than parallel to the direction of SSBT. At large noise strengths, and often when
no SSBT is present, diffusion will then be enhanced along the lower potential barriers.
Conversely, at low noise strengths and in the presence of SSBT, diffusion will be enhanced
along to the direction of SSBT. In effect, the preferred direction of diffusion changes with
temperature, but also with other system parameters affecting SSBT. Such behavior can
be exploited for sorting purposes along similar lines as discussed in this section. We have
verified this for a suitable model57 and have indeed found the effect as expected.

4.23 Some possible experimental realizations

First, our conclusions are of a general nature and apply to various overdamped58 dy-
namics of Brownian particles on periodic and symmetric (or slightly asymmetric) sur-
faces subjected to periodic and symmetric (or slightly asymmetric) driving forces. Such
dynamics are given by, e.g., vortices in superconducting films with pinning sites [223–
228], possibly making use of multiple vortex layers [230, 231], atoms on crystalline sur-
faces [182, 183, 208, 270], optical lattices [18, 23–25, 27, 28, 189, 190, 271–276], mo-
tor proteins (see chapter 6), magnetic potentials subjected to periodic magnetic fields
[105, 106, 185, 218, 220, 277], rings of several Josephson junctions [107, 278, 279], colloids
or DNA in microfluidic devices [280, 281] (square lattice geometries), [25, 61, 62, 282, 283]
(symmetric lattices of lower symmetry), see also [4, 5] for further examples. We will con-

57We have considered U(x, y) = cos(x) cos(y) + κxx · cos(x) + κy · cos(y) and a sine drive protocol. For

κx < κy, the potential is not Ŝxy symmetric, the potential barrier in the y direction is lower than in the
x direction, and the dynamics exhibit SSBT transverse to the x direction for α = 45◦.

58Preliminary results indicate that dynamics with inertia yield similar results, and nothing else is to
be expected. In particular, SSBT seems to be somewhat more robust in not overdamped dynamics due
to the inherent locking mechanism, see chapter 3.
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Figure 4.29: (a) Potential (4.68) for I2 = 2I1 normalized to Ic = 286µA. The direction
of the sinusoidal drive is indicated by the blue double arrow. A sample SSBT trajectory
on a period 1 attractor is shown in black for 2 periods of the periodic drive. The time
instants at which the drive changes sign are indicated by black dots, and the direction
of the average velocity is indicated by the black arrow. (b) equivalent circuit of two
resistively coupled Josephson junctions with negligible capacitances modeled in the RSJ
model. The junction critical currents are I1/2, the phase differences of the superconducting
phases ϕ1/2(t) and the voltage drops across the junctions are U1/2(t). All resistors have
resistance R, and the noise due to the resistors is denoted as ξi(t). The bias currents
are denoted as A1/2(t). The currents through each element of the circuit are indicated
by their symbols and an arrow indicating the direction of a positive current. (c) Sample
dielectrophoretic potential in an asymmetric microfluidic post array. x and y are given
in meters. The figure was provided by Lukas Bogunovic, Universität Bielefeld [66].
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sider two example realizations in more detail in the following: microfluidic devices and
coupled Josephson junctions.

Microfluidic devices

In microfluidic devices, post arrays and dielectrophoresis (due to high frequency ac elec-
tric fields) may be used to generate suitable potentials [62, 66, 280]. An example di-
electrophoretic potential generated by an ac field59 in an asymmetric device is shown
in figure 4.29(c) [66]. The advantage is that electrophoresis and electroosmosis [6] are
averaged out due to the high ac frequency. Superimposing a slowly varying electric field
or a hydrodynamic flow, the required periodic driving force could be generated. In the
shown device, the driving would be parallel to the x axis. We have shown that if the
drive is in a symmetry direction of the lattice, the observed SSBT induced effects are
weaker than if the drive is in not in a symmetry direction. In an appropriate symmetric
device, a more general direction of the drive can be obtained by tilting the lattice during
the design process as in [86]. While such a setup would be far from the simple model
considered in this work, we expect SSBT to be found in such a device if thermal fluctu-
ations are sufficiently small compared to the dielectrophoretic potential. E.g., in such a
device, an ensemble of different particles could be sorted simultaneously60 (cf. figure 4.27
and figure 4.18, different particle species could have different sizes, polarizabilities etc.,
resulting in various ways of sampling through parameter space, e.g. figure 4.18) or ANM
of particles could be observed. The main requirement is that diffusion is sufficiently weak,
i.e. dielectrophoretic trapping has to be so strong that diffusion is completely suppressed
on the time scale of the drive providing the ac driving of the particle.

Magnetic bubble lattices

SSBT has been observed experimentally for magnetic beads in a symmetric magnetic
bubble lattice potential [105, 106, 185, 220] for a circular driving force and hexagonal
lattice symmetry. Introducing an asymmetry into such dynamics, simultaneous one stage
separation of more than two particle species should be possible, and if that asymmetry
is a bias force, ANM should be observable for suitable parameters.

Coupled Josephson junctions

The dynamics of a superconducting ring containing three resistively shunted Josephson
junctions can be mapped onto the dynamics of an overdamped particle in a hexagonal
lattice [107], i.e. a similar system. We have observed SSBT and ANM for these dynamics.
The model can be simplified by removing one of the junctions but keeping its resistor,
yielding two resistively coupled Josephson junctions [278, 279], see figure 4.29(c) for
an illustration of the setup. Using the same mapping as in [107], the dynamics of the
resistively coupled junctions can be mapped onto that of an overdamped particle in a

59The form of the potential does not depend on the frequency of the ac field, while the absolute
values do [6]. Experimentally, the situation is more complicated. E.g. different particles with different
polarizability properties “see” different potentials, depending on the ac frequency [6, 66].

60Using ratchet effects, different particle species were sorted in the same device, but slightly differently,
see footnote 21 in chapter 1.
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symmetric oblique lattice (parallelogram lattice). Again, we have found SSBT and ANM
for these dynamics. As an example, we show the potential for two Josephson junctions
with different critical currents in figure 4.29(a), together with a sample period 1 SSBT
orbit. The equations of motion can be derived from the equivalent circuit shown in figure
4.29(b), see section 4.25.8.

In an experiment, one major difficulty in building such a device is the direction of
the driving force. To control the direction of the driving force, the two junctions have to
be fed with different ac currents, i.e. microwaves, which is experimentally difficult [284].
The simplest setup yielding SSBT with reasonably large regions of stability in parameter
space (that we have found) is if the second junction is fed with the same signal as the
first junction, but its phase shifted by one half period. The microwave signal could be
generated from one microwave source coupled with opposite polarities to each junction.
In that case, the dynamics are very similar to the dynamics considered throughout this
chapter, and we therefore do not show the results in detail. The sizes of the regions
of existence of SSBT and ANM attractors are comparable to the dynamics (4.9)61, but
their symmetry properties are somewhat different due to the reduced lattice symmetry.
The same applies to the observed noise resistivities. We have neglected the correlations
between the components of the noise process, but we do not expect significant differences
if the correlations are accounted for.

From the transformations (4.67), one readily obtains the relation between the par-
ticle mobility and the current voltage behavior of the junctions62. One main result is
that a negative scalar product of bias force and average particle velocity, which is typical
for ANM (see figure 4.26), implies a negative scalar product of the vectors of the bias

currents ~Idc = (Idc,1, Idc,2)
63 and the voltage drops ~U = 〈(U1(t), U2(t))〉 across the junc-

tions, i.e. negative absolute resistance (see [3] and chapter 3). E.g., for the parameters
corresponding to the SSBT solution shown in figure 4.29(a), the voltage drop across the
second junction is zero, and the first junction operates on a zero crossing Shapiro step.
First, if a bias current is applied to the first junction (and the remaining parameters are
suitable, e.g. at the right border of the regions of existence of the SSBT attractors), the
voltage drop across the junction and the bias current will have opposite signs, and the
same conclusions as in [3] apply to the junction. The circuit may be used as a resistor
which can be “switched” between positive and negative resistance by adjusting an easily
accessible external control parameter (e.g. the frequency or amplitude of the microwave
signal or an externally applied magnetic field) [3]. Moreover, due to the two dimensional

61The shape of the regions of existence is rather similar to those found for two interacting overdamped
particles, see chapter 6, figure 6.2.

62The bias force applied to the overdamped particle is, cf. section 4.25.8, ~F = BAI
~Idc (BAI is defined

in section 4.25.8, ~Idc = (Idc,1, Idc,2), and Idc,1/2 are constant bias currents added to A1/2(t)). We write
the average particle velocity as ~v = 〈(ẋ, ẏ)〉 (i.e. as (4.10), but without the normalization) and the vector

of the voltage drop across the junctions is ~U = 〈(U1(t), U2(t))〉 (note that ~U has nothing to do with the
potential U , but we use the same letter for both). Thus,

~I · ~U = (B−1
AI
~F ) · (Brϕ~v) = ~F · (B−1

AI

t
B−1

rϕ ~v) = 2 ~F · ~v . (4.41)

Using (4.41), the zero bias resistance and the zero bias mobility are found to be similar [96, 102], with
B−1

AI = 1
2B

t
rϕ being the change of basis matrix.

63Idc,1/2 are constant bias currents added to A1/2(t).
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nature of the device, it would effectively act as two such resistors. Depending on the
external parameters, either junction may be a positive or a negative resistor64. Second,
without the coupling there are no zero crossing Shapiro steps [1], which are used in zero
bias voltage standards [155]. Hence, (arrays of) capacitively shunted junctions (i.e. junc-
tions with a nonnegligible capacitance) are used in [137, 155]. “Our” device would allow
resistively shunted junctions with negligible capacitances to be used in a zero bias voltage
standard.

We can estimate the parameters for the ring similar as in [1, 3]. The parameters of
figure 4.29(a) are tC = 3Φ0

2πRIc
, f = 1

4tc
, A1(t)/Ic = 0.813 sin(ft) = −A2(t)/Ic,

I1+I2
Ic

= 1,
I1
I2

= 0.5, and a noise strength of Γ ∼ 2 · 10−4 is needed to obtain reasonable results.
For a liquid Helium cooled junction operating at 4.2 K and irradiated by f = 10 Ghz
microwaves, the sum of the critical currents is Ic = kBT

Γ
· 2π

3Φ0
≈ 286µA. For the resistors,

we obtain R = 3Φ0

2πIc
4f ≈ 0.13V

A
(Ohm). The junction capacitances have to be sufficiently

small to reach the overdamped operating regime. For a desired McCumber parameter
[3] smaller than 0.1, the capacitances have to be smaller than 6 pF. The ring inductance
would have to be as small as possible, smaller than 1 pH. Comparing with [3, 285], it
should be possible to realize such a setup with similar methods.

4.24 Summary and outlook

We have shown that SSBT can be found in the spatially two dimensional overdamped dy-
namics of Brownian particles. Thus, the ANM related effects discussed in [1, 2] can indeed
be realized in a spatially two dimensional but overdamped dynamics. To that end, the
necessary degree of freedom, inertia, can be replaced by a second spatial coordinate. This
leads to the natural extension of absolute negative mobility, “directing Brownian motion”
on a surface, which allows a particle to be steered into almost any direction on a periodic
surface by controlling only a scalar quantity, i.e. without rotating any inherent direction
of the model. Another application is to sort more than two different species of particles
simultaneously in one stage on the same substrate. Spontaneous symmetry breaking in
the unbiased dynamics is the root of these effects, leading to transport locked to discrete
directions in the form of SSBT and quasiperiodic transport together with an applied bias
force. Both transport mechanisms lead to transport directions independent of the applied
bias force up to a sign. Thermal noise averages between these competing directions and
leads to a smooth response spectrum (~v as a function of some suitable system parameter)
containing almost any direction. We have unraveled the mechanisms leading to SSBT
at arbitrary angles of the periodic driving force and to locked quasiperiodic transport.
Which transport mechanism is at work for a given set of system parameters, and its
direction, depends on all parameters in a nontrivial manner. Transport into almost any
direction can be achieved by selecting a suitable transport region in parameter space and
varying only one parameter.

In addition to the results presented in this chapter, we have found SSBT to be robust
against variations of the form of the drive, the potential and the inclusion of inertia forces.

64To obtain suitable junction parameters, a more exhaustive search of parameter space would be
necessary. We have obtained the described situation when both junctions were driven in a more general
direction, i.e. the drive direction of the particle is not in a lattice direction.
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In that case, the mechanism leading to SSBT in the one dimensional dynamics can be
carried over to the spatially two dimensional dynamics, trivially so if the drive is parallel
to a stable linear invariant manifold. If the drive is not in such a “trivial” direction,
preliminary results show that the interplay between the different mechanisms leading to
SSBT leads to a similarly rich dynamics, and that the picture remains qualitatively the
same.

Dynamics with different symmetry properties, in particular other lattice symme-
tries, offer intriguing new possibilities. E.g. the hexagonal symmetry considered in
[105, 106, 185, 220] leads to SSBT with all six lattice directions, which might further
improve the control of the particle. While the structure of transporting attractors will be
different for different symmetries, we expect our results to be robust in that case. Another
important generalization of our model are ratchets with weakly perturbed symmetry. In
that context, we expect the interplay of SSBT and locked quasiperiodic attractors with
the ratchet symmetry breaking to allow for “directing Brownian motion” in a similar
manner.

The spatially one dimensional overdamped dynamics of two coupled particles can
be considered as a generalization of our model in the sense that the symmetry of one
coordinate, the distance of the particles, is reduced because it is no longer periodic,
but the phase space dimension remains the same. In particular, the experimentally
important dynamics of an ac SQUID (a superconducting ring containing two Josephson
junctions) modeled by the resistively shunted junction (RSJ) model [285] fall into this
category. These dynamics will be discussed in chapter 6. Quenched disorder is another
generalization, the most dramatic consequence being disorder induced absolute negative
mobility, see chapter 5.
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4.25 Appendix

4.25.1 Bessel function approximation

We have carried out the approximation only for a cosine drive protocol, since that is easier
than for a square wave drive protocol (see below on how to extend the approximation).
Moreover, we have use the potential

U(x, y) = cos(x) cos(y) + κ (cos(x) + cos(y)) (4.42)

which corresponds to keeping only the lowest order terms of the Fourier sum of the
potential (4.2) (see [193, 286] for similar simplifications with respect to the periodic
potential) since the computations cannot be done reasonably for the Yukawa or Gauss
square lattice potential considered in the remainder of this chapter. Thus, the equations
of motion are

~̇r(t) = −~∇U(~r(t)) + a
√

2~e45◦ cos(Ωt) (4.43)

Basically, the idea is to expand all terms in (4.43) in Fourier series, which is the extension
of the Bessel function approximation discussed in 3 and [137]. If either a, Ω or both are
large compared to the forces due to the periodic potential, the latter can be treated as
a small perturbation in the Fourier expansion. Using the properties of the trigonometric
functions involved, namely [287]

sin (a− b sin (φ)) =
+∞∑

k=−∞
Jk(b) sin (a− kφ) (4.44)

cos (a− b sin (ϕ)) =

+∞∑

k=−∞
Jk(b) cos(a− kϕ) , (4.45)

the corrections to the free oscillation of the particle due to the potential can be calculated
if a and Ω are large and a

Ω
= O(1). The resulting approximate solution takes the form

x(t) + y(t)

2
= z1 +

a

Ω
sin (Ωt) (4.46)

x(t) − y(t)

2
= z2 (4.47)

and (4.46)-(4.47) inserted in to the equation of motion (4.43) yield

0 = sin(z1)
(

J0

(

2
a

Ω

)

cos(z1) + κJ0

( a

Ω

)

cos(z2)
)

(4.48)

0 = sin(z2)
(

cos(z2) + κJ0

( a

Ω

)

cos(z1)
)

(4.49)

after averaging over one drive period. Solving (4.48)-(4.49) is straightforward and yields
a number of solutions with different symmetry properties. Using the same approximation
to calculate the stability properties of the obtained solutions along the lines of [137], i.e.
to approximate the Floquet operator, the structure of the equivalent of figure 4.2 for
the potential (4.42) can be obtained. In particular, the parameter values of symmetry
breaking bifurcations can be obtained, but the (complicated and not shown) equations
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have to solved numerically. At a few example values of κ and Ω, we have verified that
the approximation and the numerics agree well.

The approximation can be extended to the square wave drive protocol used here. For
brevity, we only estimate the oscillation amplitude ã of the approximate solution. We
do not account for the different potential here since it does not affect the oscillation
amplitude. The approximate solution will then take the form

x̃(t) = x(t) + y(t) = x̃0 +
a

Ω

4

π

√
2
∑

k odd

cos(kΩt)

k2
(4.50)

ỹ(t) = x(t) − y(t) = ỹ0 (4.51)

using the Fourier expression of the square wave drive sgn(sin(Ωt)) = 4
π

∑

k odd
sin(kΩt)

k
.

The oscillation amplitude follows by using
∑

k odd
1
k2 = π2

8
[288] (S. 254) as ã = π

√
2 a

Ω
.

This can also be obtained by directly integrating the equation of motion of a free particle
subjected to a square wave drive yielding the same, but above expressions are useful to
carry out the full approximation in the case of a square wave drive protocol. Similarly,
the approximation can be extended to arbitrary potentials by extending the potential in
a Fourier series.

Lastly, if a is not large, the small oscillations of the particle can be calculated directly
by linearizing the force around the potential equilibria.

4.25.2 Creation of SSBT at other values of Ω

The choice of Ω = 4 in section 4.10 is particularly convenient, as the objects involved are
stable, and the direction of the bifurcations is such that the process follows the “natural”
pattern of creation of new orbits upon increasing a, except for the bifurcation shown in
figure 4.7(b1). For different values of parameters, most notably lower frequencies, this is
not the case. I.e. there is no reason why the periodic orbits created at the bifurcation
figure 4.7(b1) need to become stable at any point, nor does the unbounded chaotic object
created from these need to be an attractor. Thus, if a chaotic repeller is created, SSBT
may occur just as in the case discussed above. But it is much more difficult to analyze
the structure of the process in detail due to the unstable nature of the objects involved.

If one chooses different parameters, one gets bifurcation diagrams like the one found
in Fig. 4 of [4] for Ω = 4.5, reproduced in figure 4.30. In that case, the bounded attractor
looses stability at Ω ≈ 3.12 colliding with the orbit corresponding to the one created by
the pitchfork bifurcation shown in figure 4.7(b1). Its remnant is a chaotic repeller [126],
having the same properties except for a “leak” through which trajectories escape the
object (to periodic orbits on the invariant manifolds (4.20) in this case). At a ≈ 3.2, the
repeller re-collides with the same unstable periodic orbit and the attractor “reappears”.
Knowing the underlying mechanism, it is clear what happens in that case.

For clarity, we have reproduced65 the chaotic repeller in figure 4.30 (green), along with
the relevant unstable periodic orbits (blue). Basically, the mechanism of the creation of

65 For the reconstruction of the chaotic repeller, we have used the following method, similar to the
method described in [126]. A large (1500) number of trajectories is started close to the chaotic repeller.
Specifically, we have initiated the trajectories close to an unstable periodic orbit, which is supposed to be
part66 of the chaotic repeller (here we have used a cube with sides of length 0.005 centered on the orbit).
Of these we show the particle positions at the time instant defined by the stroboscopic map used in the
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Figure 4.30: Bifurcation diagram showing attractors (red), selected unstable periodic
orbits (blue) and two selected chaotic repellers (green). The attractors and unstable
periodic orbits have been calculated as in figure 4.7, and the chaotic repeller according
to footnote 65 of section 4.25.2. Shown are the particle positions during the first 3
consecutive drive periods of 1500 trajectories starting close (within a cube of length
0.005) to an unstable periodic orbit (shown in black), which is “part” of the chaotic
repeller. The unstable periodic orbit is shown in grey. It is “created” at the S0 symmetry
breaking bifurcation at a ≈ 3.1, corresponding to the bifurcation (b3) in figure 4.7.

SSBT is the same as for Ω = 4. All relevant bifurcations are recovered, to which the
ones involving the “creation” and “destruction” of the chaotic repeller (green) are added.
Please note that the weight of phase space is not correctly reproduced by the method used
to calculate the repeller. Thus, the vertical frequency of (green) dots in figure 4.30 does
not correspond to the weight of the corresponding portion of phase space. In the other
parts of the figure, there is a “loose” correspondence. Therefore, the vertical frequencies
of dots do not match for the representations of the attractor and the repeller in figure
4.30.

bifurcation diagram until the trajectories have left the repeller. For simplicity (and since our result is
largely unaffected), we have used trajectories of a fixed and short length of a few drive periods (3T ).
While the method reproduces the portion of phase-space occupied by the repeller, the weight (i.e. the
frequency of visits by the trajectories) of these regions is not correctly reproduced since the choice of the
periodic orbit and the length of the trajectories is arbitrary.
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Figure 4.31: (a) maximum transient length |~rmax| and (b) angle ϑ~rmax obtained for the
same dynamics and by the same method as in figure 4.15. A larger region of parameter
space is shown.

4.25.3 Spatially 1D dynamics

This section is complementary to section 4.14. To understand the nature of the “meeting
point” of the right arm of larger |~rmax| belonging to the red triangle in figure 4.15 and the
“critical” line coming from α = 90◦, marked by a dashed arrow in figure 4.15, we have to
digress towards α = 90◦. The extension of figure 4.15 to α = 90◦ is shown in figure 4.31

First, we consider the dynamics on the attracting invariant manifold x = 0 (and its
copies due to the periodicity of the potential) of the dynamics (4.9) with α = 90◦. In short,
the behavior is as follows: for small drive amplitudes a, the particle oscillates around
the minima with increasing oscillation amplitudes for increasing drive amplitudes. The
corresponding periodic attractors are separated by unstable periodic orbits corresponding
to S0 symmetric oscillations around the saddles of the potential. I.e. there is one stable
period 1 attractor and an unstable period 1 orbit, both S0 symmetric. At some critical a
value, the oscillations around the minima and the oscillations around the saddle exchange
stability via a possibly degenerated pitchfork (symmetry breaking) bifurcation [162, 163]
without changing periodicity. Upon further increasing the drive amplitude, this exchange
of stability is reversed in another possibly degenerated pitchfork bifurcation. This process
repeats ad infinitum. The corresponding oscillations simply grow in amplitude just as
in the cases considered before. A detailed analysis including analytical proofs is found
in [162, 163] for a similar system. We have found the same qualitative behavior for the
system (4.9). In particular, the bifurcations are degenerated within the precision of our
numerics. Since degenerate pitchfork bifurcations are limiting cases of ordinary pitchfork
bifurcations, we do not further consider this particularity of the dynamics.

The crucial point is that due to these bifurcations, when embedded in the full three
dimensional phase space of (4.9), the unstable manifolds of some periodic orbits are
connected to other periodic orbits in different elementary cells. We will call this config-
uration of the unstable manifold henceforth a connection. We consider the first of these
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Figure 4.32: Basins of attraction of non-transporting period 1 attractors for the dynamics
(4.9) at Ω = 4, ~F = 0, (a) α = 90◦, a = 1.9, (b) α = 90◦, a = 2.2, (c) α = 80◦, a = 2.55,
(d) α = 55◦, a = 3.05, (e) α = 50◦, a = 3.55 and (f) α = 47.43◦, a = 3.55. The basins
of attraction are displayed by colors representing the scalar product of the final particle
coordinate after 10 drive periods with a suitably chosen vector (i.e. one not invariant
under any symmetry), see the legend. The black double arrow indicates the direction of
the periodic drive.

bifurcations, i.e. the one occurring for the smallest drive amplitude at a ≈ 1.95 (and
α = 90◦). Prior to the bifurcation, the basins of attraction have roughly the form of
distorted squares, see figure 4.32(a), and are the continuation to a > 0 of the basins of
attraction of the potential wells at a = 0 which are exactly squares. Due to the periodic
drive, the squares are distorted to the forms found in figure 4.32(a)67.

After the bifurcation, the basins of attraction of each copy of the periodic attractor
extend into the area of neighboring copies by a narrow stripe along the invariant manifold
x = 0. Due to the singularity of the potential (4.3), we have not calculated the basins of
attraction close to the singularity, where we expect these stripes to be connected to the
main part of the basin of attraction. We infer this by comparison with the dynamics in
the potential (4.4) which is very similar (see figure 4.4 and figure 4.42) and for which the
corresponding basins of attraction are shown in figure 4.33. Using this system at a larger
frequency to reduce the phase space volume contraction of the stroboscopic map used,
the exact location of basin boundaries can be obtained, in particular the connectedness
of the basins of attraction, see figure 4.3468. Therefore, this bifurcation leads to a pair

67Note that the squares are rotated since we are using the rotated coordinate frame in figure 4.32.
68At the frequency used in figure 4.33, the stroboscopic map is strongly dissipative, and most initial

conditions are mapped to the periodic attractor (within numerical precision) by one iteration of the map.
This, together with the symmetry of the system, leads to the fixed point of the map corresponding to
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Figure 4.33: Basins of attraction of non-transporting period 1 attractors for the same
dynamics as (4.9), but the potential (4.4) (σ = 0.25, u = 1) at Ω = 0.3, ~F = 0, (a)
α = 90◦, a = 0.178, (b) α = 90◦, a = 0.189, (c) α = 60◦, a = 0.25, (d) α = 60◦, a = 0.33,
(e) α = 47◦, a = 0.33 and (f) α = 46.3◦, a = 0.33. The basins of attraction are displayed
as in figure 4.32, see also the legend. The black double arrow indicates the direction of
the periodic drive.
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Figure 4.34: Basins of attraction of non-transporting period 1 attractors for the same
dynamics as (4.9), but the potential (4.4) (σ = 0.25, u = 1) at Ω = 1, ~F = 0, α = 90◦,
(a) a = 0.35 and (b) a = 0.36. The basins of attraction are displayed as in figure 4.32,
see also the legend. The black double arrow indicates the direction of the periodic drive.
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of connections forming between different elementary cells (of the unrotated coordinate
frame). Again, there are two connections due to symmetry, Sy symmetry in this case.
These connections are different from the connections considered so far in that there is no
deterministic chaos found in phase space69.

Upon breaking Sy symmetry by letting α < 90◦, the degeneracy of the pitchfork
bifurcation is lifted and avoided nondegenerate pitchfork bifurcations result [115, 162,
163]. Then, there are two bifurcations leading to connections for two different a values,
each corresponding to one connection, as has been discussed above. We now focus on
the second of these lines, found at slightly larger a values than the first. At the “meeting
point” marked by a dashed arrow in figure 4.15, this line meets the border of the “right”
arm projecting out of the “red triangle” of SSBT at α = 45◦. The transients now have
a direction of ϑ~rmax ≈ 45◦, i.e. are in the x direction. As can be inferred by comparison
with figure 4.16, SSBT in the x direction is found within this region of “large transients”
which is particularly important for applications.

4.25.4 Phase space structure of transport

This section is complementary to section 4.14 and contains are more detailed analysis of
the phase space structure in the parameter space regions responsible for SSBT and the
connection of SSBT at α = 45◦ and α 6= 45◦. We start with figure 4.35 which shows
the elementary cell of the rotated coordinate frame for various representative parameters
indicated by symbols in figure 4.15. For each initial condition (seed), the distance of
the start point and the end point of a finite-time trajectory initiated at this seed is
shown. The time (length of the trajectories) is 3 drive periods T . The distance is shown
in colors. Black (apart from the regions around the potential maxima) corresponds to
small distances close to 0. The distance is exactly zero if the trajectory is initiated on
a non-transporting periodic orbit with a period of which 3 is a multiple. By considering
the portions of phase space which are “smoothly” connected in these plots (i.e. the
color varies smoothly), the basins of attraction of the attractors are obtained. Moreover,
the smoothness of these colors indicates the nature of phase space. Transient chaos is
indicated by a wildly varying and fractal structure, and regions of phase space which
are transported into other elementary cells are shown by colors corresponding to larger
distances.

First, we first consider α = 45◦ to obtain a picture of “known” phase space to compare
with. Figure 4.35(a) corresponds to α = 45◦ and a = 3, for which there is only a S̃xy and
S̃0 symmetric attractor, see figure 4.7. There are 2 points in the plot corresponding to
0 distance, but the second is just the image of the first under S̃xy and lies in the “other
half” of the elementary cell (the upper border ỹ = 1 is not part of the elementary cell).

the unstable periodic orbit oscillating on the potential hill appearing to have 4 invariant manifolds, 2
of which do not really belong to the fixed point, as can be inferred from figure 4.34. Therefore, the
basin boundaries formed by these invariant manifolds could not be calculated reliably due to the limited
resolution of the numerics, in particular the bilinear interpolation used for the force field. At a larger
frequency the dissipativeness, i.e. volume contraction, of the map is reduced, lifting these problems.

69Note that we have not shown that any of the connections is tied to deterministic chaos. But the
periodic orbits involved in the connections considered so far are “parts” of chaotic attractors or repellers,
and therefore it is possible that their presence already implies chaos, e.g. their invariant feature tangles
or similar features of deterministic chaos [118].
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Figure 4.35: Distance |~r(3T )− ~r(0)| of the particle position after 3 drive periods T from
its initial condition encoded in colors and for the same dynamics as considered in figure
4.15. The color palette is the same as in figure 4.15. The regions immediately around the
potential maxima are painted in black, as there the forces due to the potential gradient are
so large that this region of phase space is inaccessible for trajectories starting anywhere
else. Parameters are the same as in figure 4.15, except for a and α: (a) a = 3.0, α = 45◦

(empty circle), (b) a = 3.25, α = 45◦ (filled circle), (c) a = 3.45, α = 45◦ (empty
diamond), (d) a = 3.9, α = 45◦ (filled diamond), (e) a = 3.55, α = 46.8◦ (plus) and (f)
a = 3.9, α = 46.8◦ (cross). The symbols in brackets correspond to the symbols in figure
4.15.

The basins of attraction of both attractors are clearly separated by a separatrix and have
a “regular” structure.

Upon increasing a with α = 45◦ fixed, a pair of S̃xy symmetry breaking attractors is
created, see again figure 4.7. They are shown in figure 4.35(b) for a = 3.25. The unstable
periodic orbit, whose invariant manifolds form the separatrix separating these attractors
is also visible as a “flat” black region on the separatrix. In figure 4.35(b), phase space
has obtained a more complicated structure than in figure 4.35(a), but we have not found
(upon magnification) fractal structures, e.g. sensitive dependence on initial conditions
on a subset of phase space with non-zero measure.

At a = 3.45 (and α = 45◦), an unbounded chaotic attractor exists, and phase space
has a fractal structure, as shown in figure 4.35(c). As has been detailed in section 4.10,
upon further increasing a, this chaotic attractor disappears by a mechanism similar to
its creation. Figure 4.35(d), corresponding to a = 3.9, shows that no chaotic repeller
is left behind when the unbounded chaotic attractor is destroyed, as already argued in
section 4.10. There are two (again being each others images under S̃xy) period 1 periodic
attractors. Their basins of attraction have a smooth structure, and there is no sensitive
dependence on initial conditions. In contrast to the case of a < 3.3 (i.e. panels (a) and
(b)), the basins of attraction extend into the neighboring elementary cell, as can be seen
by the ”green“ regions in figure 4.35(d).

Having an overview of phase space structures at α = 45◦, we turn to the representative
case of α = 46.8◦. First, we consider a = 3.55 (figure 4.35(e)) corresponding to a
maximum transient length smaller than 2 according to figure 4.15. Superficially, phase
space has the same structure as for a = 3.9 and α = 45◦. But in striking contrast,
there is only one periodic attractor since S̃xy symmetry has been broken. There are no
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fractal structures, but the basin of attraction of the attractor extends into the neighboring
elementary cells. Upon closer inspection, the image of the periodic attractor under S̃xy

is visible as an unstable periodic orbit in the plot, marked by a white arrow.
The second important case is encountered at a = 3.9 (and α = 46.8◦) in the regime of

larger maximum transient lengths greater than 2 length units. As seen from figure 4.35(f),
the phase space structure is still rather similar compared to figure 4.35(e) with a single
period 1 attractor. One mayor difference is that basin boundaries extend even beyond
the neighboring elementary cell, e.g. trajectories starting around x̃ ≈ 0.5 and ỹ ≈ 0.99
are transported 2.5 length units until they reach the attractor two elementary cells away.
While impossible to see in figure 4.35(f), most of the apparent basin boundaries seen in
figure 4.35(f) contain a cantor like substructure of further basins of attraction of different
attractors in different elementary cells that is robust against changes of the parameters
controlling the numerical precision. We have found similar phase space structures for
other sets of parameters corresponding to the area of larger maximum transient lengths
greater than 2 in figure 4.15.

4.25.5 Creation of SSBT at α = 54◦

We have argued in section 4.14 that the unbounded attractor leading to SSBT at α 6= 45◦

is directly related to the unbounded attractor leading to SSBT at α = 45◦. We will now
analyze the creation of the unbounded attractor at α = 54◦ analogous to our analysis in
section 4.10, i.e. start at small a and show the relevant bifurcations when a is increased.
We fix the frequency for this paragraph only at

Ω = 3.8 (4.52)

for convenience (e.g. at Ω = 4 some of the orbits involved are unstable and the bifurca-
tions occur in a different order with respect to a, complicating the analysis). The result
is found in figure 4.36 showing the bifurcation diagram and figure 4.37 showing selected
orbits.

Figure 4.36 shows only a values of interest. Except where otherwise noted, the bi-
furcations are most easily seen in the upper panel (a) of figure 4.36. For a < 5.78,
the bifurcation diagram is largely equivalent to the one found for Ω = 4, see figure
4.19. Our analysis starts with the S0 symmetric periodic orbit at a = 5.785, cf. figure
4.37(a), corresponding to the symmetric orbit shown in figure 4.5(c). The orbit under-
goes a S0 symmetry breaking bifurcation at a ≈ 5.79 yielding the orbit shown in figure
4.37(b). This orbit undergoes a period doubling cascade accumulating into a S0 symme-
try breaking bounded chaotic attractor at a ≈ 5.834 (see figure 4.37(c) for an orbit on
the attractor). This attractor merges with its image under S0 at a ≈ 5.835 forming a S0

symmetric bounded chaotic attractor (see figure 4.37(d)). Now, the crucial bifurcation is
this attractor merging with its image under SLy at a ≈ 5.844, forming a chaotic attractor
which is unbounded in the y direction and bounded in the x direction, see figure 4.37(f)
for a representative orbit on the attractor. The symmetric orbit with which the attrac-
tors collide is the orbit oscillating around the saddle of the potential separating the two
merging attractors, see figure 4.37(e). We have again used the same method as in figure
4.8 to verify that this orbit is indeed isomorphic to the periodic orbit created from the
saddle of the potential at a = 0. As will be discussed below (see section 4.16), this orbit
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Figure 4.36: Bifurcation diagram of the deterministic Γ = 0 dynamics (4.9) with α = 54◦,

Ω = 3.8 and ~F = 0 showing only attractors obtained and drawn by the same method as
described under figure 4.16. Panels (a) and (b) show one component of the stroboscopic
map each, with the phases of the stroboscopic maps chosen differently, see the labels on
the y axes. (c) shows, componentwise, the normalized mean squared displacement after
t = 20000 drive periods, i.e., according to (4.32), Dxx/yy = ~e t

x/y ·D · ~ex/y. The red (solid)

line corresponds to the x component, and the blue (dashed) line to the y component.
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Figure 4.37: Trajectories of the deterministic Γ = 0 dynamics (4.9), corresponding to
the parameters chosen in figure 4.36 (except for (h) corresponding to figure 4.19) and
a = 5.785 (a), a = 5.8 (b), a = 5.8347 (c), a = 5.8354 (d), a = 5.84445 (e), a = 5.845
(f), a = 5.85322 (g) and Ω = 4, a = 5.95 (h). In all panels except for (f), the turning
points of the orbits (i.e. the times when the periodic drive changes sign) are marked by
a filled circle (drive protocol becomes negative) and an open diamond (drive protocol
becomes positive). In panel (f), only one turning point (drive protocol becomes negative)
is marked by red points, indicating the attractor’s shape under the stroboscopic map. To
mark the end points of the orbits (g) and (h), a filled circle has been drawn at the start
point of the orbit, and a filled square marks the end point of the orbit. Furthermore,
the period 2 orbit (g) has been drawn in 2 colors, the first drive period in black and the
second drive period in yellow (dashed).
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also becomes stable for certain a values smaller than those considered in figure 4.36 and
is involved in other symmetry breaking bifurcations.

The result of this bifurcation is (anisotropic) deterministic diffusion, as can be inferred
from the elements of D, cf. (4.32), corresponding to diffusion along the coordinate axes
shown in the lowest panel (c) of figure 4.36. The mean squared displacement of the x
component of the particle position remains 0, and there is no deterministic diffusion in
the x direction. An example of a resulting SSBT periodic (period 2) orbit is shown in
figure 4.37(g). Since the attractor is unbounded only in the y direction, the SSBT orbit
is transporting into the y direction.

At a ≈ 5.85, this attractor has a non-transporting period 1 window. The periodic
orbits constituting the window are S0 symmetry breaking. Therefore, there are two orbits,
each being the other’s image under S0. The orbits undergo a period doubling cascade,
and the resulting chaotic attractor merges again with the former chaotic attractor. But,
as can be seen from the x component of the stroboscopic section, cf. figure 4.36(b), the
attractor now grows in the x component, collides (merges) with its image under SLx and
creates an unbounded (in both components) chaotic attractor. The particle now diffuses
over the whole lattice. This attractor allows for diffusion into “all” directions, as can also
be seen from the mean squared displacement of the x component, see figure 4.36(c) (blue
curve).

Upon changing the remaining parameters (e.g. Ω or α), the bifurcations move in
parameter space, exchange order (with respect to a) and new bifurcations occur. In
particular, the latter merging crisis can actually occur for smaller a than the former.
This happens mostly for larger Ω, creating an unbounded attractor (in all directions).
Moreover, depending on the chosen frequency (or other parameters), these merging crises
occur while the chaotic object is unstable creating a chaotic unbounded repeller.

4.25.6 The applicability of the theory from [1, 2] at large Γ

Here, we are often considering ratios of noise strength Γ to pseudopotential depth VA
that are large compared to the ratios for which the quantitative theory from [1, 2] is
applicable. E.g. for the attractor behind ANM in figure 4.25(b), the pseudopotenial
depth can be calculated along the lines outlined in [2] to be VA ≈ 1.48 · 10−5, and we
are considering noise strengths larger by one or two orders of magnitude. A quantitative
agreement is only to be expected if the ratios VA

Γ
are sufficiently small. While it is possible

to improve the approximation by including a non-equilibrium prefactor, see [2, 144, 263],
the basic requirements remains that Γ should not be larger than VA. In some cases even
the unstable objects in phase space involved are different, as we are not only considering
chaotic repellers, but more general phase space structures that allow a particle to move
from one elementary cell to the next.

Yet, the qualitative picture remains the same, as we will show below. Denoting the
particle position after the time T , when initialized at ~r0 for the particular realization ~ξ(t)
of the Wiener process ~r(~r0, T, ξ(t)), we consider the noisy displacement map (“shifted”
stroboscopic section):

Θ(~r0, ξ(t)) = ~r(~r0, T, ξ(t)) − ~r0 (4.53)

depending on the particular realization of the Wiener process and its mean value when
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Figure 4.38: Typical noisy trajectory (red line) of the dynamics considered in figure

4.25(a), i.e. Ω = 7.5, a = 7.6, α = 54◦, ~F = 0.04~ex and Γ = 7 · 10−4. The upper panel
shows the x component, and the lower panel shows the y component. The black line
corresponds to a trajectory on the deterministic attractor (stable period 1 orbit) carrying
~v = 1.0 · ~ex transport at a = 7.21, and the blue line corresponds to its symmetry partner
carrying ~v = −1.0 · ~ex transport at a = 7.21. The insets are enlargements of the main
trajectories.

averaged over all realizations of the Wiener process ξ(t)

〈Θ〉(~r0) = 〈~r(~r0, T )〉ξ(t) − ~r0 . (4.54)

The average velocity then follows as

〈~v〉 =
1

T

∫

unit cell
p(~r0)〈Θ〉(~r0)d~r0 (4.55)

with the stationary distribution p(~r0) on the torus [10], which we assume to exist. At
sufficiently small noise strengths, p(~r0) is strongly peaked at regions of phase space con-
taining attractors and only these regions contribute in (4.55). As an example, we consider
the particularly relevant case of a deterministic attractor carrying no transport coexisting
with two unstable objects carrying transport parallel and anti parallel to the direction
of the applied bias force. These unstable objects need not be chaotic repellers, or even
unstable periodic orbits, but can be more general transient objects such as what is left
behind by a periodic orbit annihilated in a tangent bifurcation70 (the latter is the case

70In the presence of strong noise it is irrelevant whether one considers parameters prior to the anni-
hilation of a periodic orbit or after with respect to (4.55). Without noise, (4.53) vanishes at a periodic
orbit, or is of the form (nL,mL) for transporting periodic orbits. Thus, upon further iteration of (4.53)
deterministically transporting trajectories are generated. After a periodic orbit disappears through a
tangent bifurcation, (4.53) no longer vanishes (or is (nL,mL)), but retains a finite (but small, scaling

157



for the object behind (N)ANM in figure 4.25(a), as we will see below, cf. figure 4.38).
Due to the ergodic nature of the dynamics in the presence of noise, p(~r0) will have a
non-zero value for almost all ~r0, and the unstable objects contribute in (4.55) with their
weights. The weights, but also the effectiveness of transport, expressed by the average
displacement in (4.54), scale with the distance from the (possibly) stable objects to which
the transient objects are due [125, 146, 147, 258]. In particular, in the case of system
parameters close to a region of existence of a pair of SSBT attractors carrying transport
into opposite directions, the object closer to its region of stability (in parameter space)
is likely to dominate over the other object. Superimposed over this competition is the
transport due to an applied bias force. At very large noise strengths it yields 〈~v〉 = ~F and
cannot be due to one of the deterministic objects considered so far. The last contribution
to (4.55) is due to the assumed deterministic attractor carrying no transport and leads,
in general, to a reduction of (4.55) in modulus. The interplay of these four contributions
to (4.55) determines transport in our simple picture. In particular, the only contribution
leading to transport against an applied bias force is the one due to the object associated
with the SSBT attractor carrying transport against the bias force. By comparing with
e.g. [2], the basic mechanism is quite similar. As an example, we consider the noisy
dynamics corresponding to figure 4.25(a) at F = 0.04 and Γ = 7 · 10−4 as shown in
figure 4.38. In that case, deterministic phase space has only one attractor, a period 1
non-transporting orbit. As can be deduced from figures 4.18 and 4.24, for slightly smaller
values of a, deterministic transporting attractors exist. At a = 7.21, there is a pair of
period one orbits carrying v = 1 transport parallel and anti parallel to ~ex. The orbits are
destroyed in tangent bifurcations at a ≈ 7.3425 for the orbit carrying transport in the
direction of the bias force, and a ≈ 7.36 for the one carrying transport against the bias
force. For a & 7.36, the only attractor is the non-transporting period 1 orbit. At a = 7.6,
we have calculated its pseudopotential depth as VA ≈ 4 · 10−4, i.e. at the noise strength
considered, noise induced escape is very frequent, and escape times are of order T .

A typical noisy trajectory consists of longer parts where the particle oscillates on
the deterministic period 1 orbit (or rather, close to it). When the particle leaves the
attractor, it either travels in the negative or positive ~ex direction. Two of the longer of
these transporting parts of the trajectory are compared to the transporting periodic orbits
existing at a = 7.21 in figure 4.38, see the insets, and found to be practically identical.
The shorter transporting bursts seem to be comparable in shape with the longer ones.
We conclude that these transporting bursts are due to the transporting periodic orbits
existing at a = 7.21, or rather what is left of them at a = 7.6, and the qualitative picture
is the same as considered in [63] and [2]. A quantitative analysis along the lines of [1, 2]
does not seem to be useful, since the NANM effect is most pronounced for relatively large
noise strengths, i.e. VA

Γ
≈ 0.57. Therefore, the escape rate from the non-transporting

attractor will, in general, not follow the Arrhenius law used in [1, 2]. Furthermore, the
lifetimes of the two transient states are of the order of 1 drive period, in which case the
assumption of a Markov model becomes doubtful.

with the distance from the bifurcation in parameter space) value in a neighborhood of the periodic orbit.
But in the presence of strong noise no deterministic transporting trajectories are generated at all: some
trajectories really reach a neighborhood of the periodic orbit again after one drive period has elapsed,
but (almost) none reach it exactly, while others end up in entirely different regions of phase space. It is
therefore irrelevant whether (4.53) vanishes exactly or is small but non-zero.
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4.25.7 Stochastic differential equation solver

We have used the scheme given by Table 5.3 of [181], a stochastic Runge-Kutta algorithm,
to obtain a weak solution of the SDE (4.1), which we write in this section as

~̇r(t) = ~F (~r(t), t) +
√

2Γ~ξ(t) (4.56)

for brevity. ~ξ(t) is an N dimensional Wiener process, and ~r(t) are N dimensional vectors.
The scheme converges in the weak sense with order 2 [89, 181] and deterministically (i.e.
without noise) with order 3 [181, 186]. This improves the accuracy when only small noise
strengths are considered. Simplified to our needs, i.e. additive noise, the scheme is as
follows. The numerical approximation is calculated for the times tn = t0 + h · n and
denoted by ~Yn, i.e. ~Yn approximates ~r(tn). The support sites to calculate the numerical
approximation at time tn+1 are given by

~H1 = ~Yn (4.57)

~H2 = ~Yn +
2

3
~F ( ~H1, tn) · h (4.58)

~H3 = ~Yn +
1

6
~F ( ~H1, tn) · h +

1

2
~F ( ~H2, tn +

2

3
h) · h+

√
2Γ~Ξn , (4.59)

and the numerical approximation at time tn+1 is given by

~Yn+1 = ~Yn +
1

4
~F ( ~H1, tn)h+

1

4
~F ( ~H2, tn +

2

3
h)h +

1

2
~F ( ~H3, tn +

2

3
h)h+

√
2Γ~Ξn , (4.60)

where the ~Ξn are independent 3 point distributed random variables with independent
components, and each component is distributed according to

Prob
{

~Ξn · ~ei =
√

3 · h
}

=
1

6
; Prob

{

~Ξn · ~ei = −
√

3 · h
}

=
1

6
; Prob

{

~Ξn · ~ei = 0
}

=
2

3
.

(4.61)
For not too large frequencies, we have found the method to converge around h .

0.01 in the sense that at the resolutions of the figures and the sample size the result of
the computation does not change systematically or significantly upon further decreasing
h, i.e. varies within statistical errors, see figure 4.39. As reference, we have found
the results for h = 0.01 to be comparable in above described sense to those obtained
with an extrapolated weak Euler-Maruyama scheme [89], see figure 4.39. Note that the
extrapolation is feasible only if the statistical errors are sufficiently small, i.e. the sample
sizes are large enough. Since the computation of each of the data points with highest
precision in figure 4.39 takes about 30 hours of single threaded computation time, such
sample sizes are not feasible on a larger scale. The typical sample sizes used to obtain
averages in this work are at least one order of magnitude smaller than those used in
figure 4.39 due to the limited computation time. For such sample sizes, and the resulting
precision, the method converges in above described sense for somewhat larger values of
h. We have used h . 0.01 throughout this work. As evident from figure 4.39, we would
need about an order of magnitude more computation time to obtain the same precision
using the Euler-Majurama scheme at the smaller noise strengths considered.
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Figure 4.39: Convergence (with respect to the step width h) of the algorithm discussed
in section 4.25.7 (red symbols) compared to that of the weak Euler-Majurama scheme
[89] with h

4
(blue symbols), and thus incurring comparable (slightly higher) numerical

costs. Shown are numerical approximations of the x component of the average velocity
in dependence of h for the dynamics (4.9) with λ = 4, Ω = 6, a = 6.7, α = 54◦,
~F = 0.05~ex, (a) Γ = 10−4, (b) Γ = 10−3 and (c) Γ = 10−2. The averages have been
obtained by averaging 25000 trajectories of length 10000T for different realizations of the
stochastic process. The symbol sizes are of the order of 3 times the (estimated) standard
deviation of the mean average velocity. Furthermore, the two last obtained (smallest h)
data points for the weak Euler-Majurama scheme have been extrapolated to h = 0, and
the concomitant average is indicated by the blue lines. In (a), the weak Euler-Majurama
scheme fails to converge in the given precision, as indicated by the blue lines, showing the
extrapolation result for the three last obtained pairs of data points (the pair for largest h
corresponding to the dashed-dotted lines, the next to the dashed line, and the last to the
solid line as in the other panels), exhibiting a systematic drift, which, within the precision
of the figure, is absent from the other panels. In (d)-(f) the corresponding autonomous

a = 0 dynamics are considered with T = 1, ~F = 1.4~ex, (d) Γ = 10−3, (e) Γ = 3 · 10−3

and (f) Γ = 7 · 10−3. In panel (d), 10000 trajectories of length 100000 time units have
been used to compute the averages, and in panels (e)-(f) the same number of trajectories,
but of length 10000 time units. The blue lines correspond to linear extrapolations of the
last four data points obtained for the Euler-Maruyama scheme. Note the scaling of vx in
panels (d) and (e).
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4.25.8 Coupled Josephson junctions

In this section, we derive the equations of motion of the coupled Josephson junctions
shown in figure 4.29(b). Using Kirchhoff’s law for the current flowing from the first
junction to the second junction, one obtains

I1 sin(ϕ1(t))+
Φ0

2πR
ϕ̇1(t)−A1(t)−ξ1(t) = I2 sin(ϕ2(t))+

Φ0

2πR
ϕ̇2(t)−A2(t)−ξ2(t) , (4.62)

where we have introduced the phase differences of the superconducting phases of the
junctions ϕ1/2 [7] with critical currents I1/2, the shunt resistance R, the externally applied
currents A1/2(t), the magnetic flux quantum Φ0 and the noise currents due to the shunt
resistors ξ1/2(t) with 〈ξi(t)ξj(s)〉 = δijδ(t−s)2kBTK

R
. kB is Boltzmann’s constant and TK is

the temperature in Kelvin. The currents through the junctions are given by Josephson’s
equations [7].

Applying Kirchhoff’s law to the current from the second junction flowing through the
single (third) resistor, we get

U3(t)

R
− ξ3(t) = I2 sin(ϕ2(t)) +

Φ0

2πR
ϕ̇2(t) − A2(t) − ξ2(t) . (4.63)

Using the fact that the voltage drop across the whole device has to be zero, i.e. U1(t) +
U2(t) + U3(t) = 0, together with Josephson’s equations for the voltage drops across the
junctions,

Φ0

2πR
(ϕ̇1(t) + ϕ̇2(t)) = −

(

I2 sin(ϕ2(t)) +
Φ0

2πR
ϕ̇2(t) − A2(t) − ξ2(t) + ξ3(t)

)

(4.64)

follows. A similar device is studied in e.g. [135]. The equations of motion of the two
phases follow from simple algebraic manipulations:

3
Φ0

2πR
ϕ̇1(t) = I2 sin(ϕ2(t)) − 2I1 sin(ϕ1(t)) + 2A1(t) − A2(t) (4.65)

+ 2ξ1(t) − ξ2(t) + ξ3(t)

3
Φ0

2πR
ϕ̇2(t) = I1 sin(ϕ1(t)) − 2I2 sin(ϕ2(t)) + 2A2(t) − A1(t) (4.66)

+ 2ξ2(t) − ξ1(t) + ξ3(t) .

Applying [107]

(
x(t)
y(t)

)

=

(

0
√

3
2

1 1
2

)

︸ ︷︷ ︸

Brϕ

(
ϕ1(t)
ϕ2(t)

) (
Ax(t)
Ay(t)

)

=

(

− 1
2
√

3
1√
3

1
2

0

)

︸ ︷︷ ︸

BAI= 1
2(B−1

rϕ )
t

(
A1(t)
A2(t)

)

,

(4.67)
the dynamics are equivalent to that of an overdamped particle with damping coefficient
Φ0

R
moving in the periodic potential

U(x, y) = −I1
2

cos

(

y − x√
3

)

− I2
2

cos

(
2√
3
x

)

, (4.68)
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and subjected to a rocking driving force (Ax(t), Ay(t)), and the noise transforms like the
bias currents. The components of the resulting noise process are not uncorrelated, e.g.
if one transforms the dynamics to a Fokker-Planck equation. See figure 4.29(a) for an
illustration of the potential for I2 = 2 · I1.
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4.25.9 Supplementary figures
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Figure 4.40: The same phase diagram for the same dynamics and parameters as shown
in figure 4.18(b), except for λ, as indicated in the panels.
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Figure 4.41: (a) |~rmax| and (b) angle ϑ~rmax obtained by the same method for the same
dynamics and parameters as in figure 4.31, except for the drive. A sine drive (4.8) has
been used instead of the square wave drive (4.7). We have chosen a different frequency,
Ω = 6.5, to match the different drive protocols such that we are considering an equivalent
part of the phase diagram at α = 45◦, Γ = 0, i.e. figure 4.4.
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Figure 4.42: (a) |~rmax| and (b) angle ϑ~rmax obtained by the same method for the same
dynamics and parameters as in figure 4.15, except for the potential. Instead of the
Yukawa potential (4.3), a Gauss potential (4.4) with σ = 0.25 and u = 1 has been used.
The remaining parameters have been scaled to match the dynamics with figure 4.15, i.e.
Ω = 0.3, and a as indicated in the figure.
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Figure 4.43: (a) |x̃max| (n) = max~r0 ,~r(t0)=~r0 |~r(nT ) · ~ex̃ − ~r(t0) · ~ex̃| in units of the rotated

coordinate frame, i.e. multiplied by
√

2, and encoded in colors according to the palette
which has been cutoff. ~r(t) is is the trajectory passing through ~r0 at time t0 and n = 12.
5000 random initial seeds have been samples to approximate the maximum, cf. figure
4.14. The same dynamics as in figure 4.15 are considered. (b) The same as in (a), but ~ex̃

is replaced by ~eỹ. (c) The same as in (a), but ~ex̃ is replaced by ~ex. (d) The same as in
(a), but ~ex̃ is replaced by ~ey.

165



Chapter 5

Quenched disorder

We have considered perfectly periodic systems in chapters 3-4. We will now consider
time independent (quenched) deviations from perfect periodicity, quenched disorder. Our
discussion starts with a short introduction. Formally, we define our disordered system
in section 5.2. Our main argument, an analogy between thermal noise and quenched
disorder, will be discussed in section 5.3. For our purposes, the Golosov effect is the
main qualitative difference between quenched disorder and thermal fluctuations and will
be discussed in sections 5.4-5.5, along with some notes on how we calculate averages in
the nonergodic disordered system. Section 5.6 contains our results, the most dramatic
being “disorder induced” absolute negative mobility (ANM). We close our discussion with
section 5.7 and give an outlook on inertia effects.

5.1 Introduction

The influence of thermal noise on spontaneous symmetry breaking transport (SSBT)
and hence derived effects has been discussed throughout the text, see in particular sec-
tions 4.11.2 and 4.19. In experimental systems, a second important, and at first glance
very different, source of fluctuations are time independent imperfections of the periodic
lattice (quenched disorder), e.g. small displacements of the lattice “atoms”, inhomo-
geneities in their interaction with the particle such as discussed in [106, 201, 210, 217]
or even completely random potentials [129, 289–293]. Quenched disorder leads to, e.g.,
anomalous diffusion [129], localization (Golosov effect) [294], enhancement [295] and sup-
pression [296, 297] of chaotic diffusion, as well as enhancement of giant diffusion [217],
giant transversal diffusion [219], diffusive transport [298], ratchet effects [293], friction
[299], enhancement of soliton transport [300], and synchronization [301]. For our pur-
poses, the main difference of quenched disorder and thermal noise, leading in particular
to localization, is that a particle encounters the same realization of the disorder upon
revisiting a particular place on the surface. Therefore, if there is a region from which it
cannot escape, it will stay there indefinitely (Golosov effect) [294], suppressing transport,
suppressing chaotic diffusion (if sufficiently strong) [295, 296], leading to a divergence of
the diffusion coefficient [298] or quenching ratchet effects [298, 302–306].
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5.2 Modelling quenched disorder

We model quenched disorder as a time independent random perturbation ~ζ(~r) of (4.1)
(cf. the discussion of (4.1) for an explanation of the terms in (5.1)):

η~̇r(t) = ~A(t) + ~F − ~∇U(~r(t)) +
√

2Γ~ξ(t) + ~ζ( ~r(t)), (5.1)

whose statistical properties depend on the particular system we have in mind. In general,
we assume that the correlation length of ~ζ(~r) is of the order of the spatial period of the
periodic lattice. There are countless ways of modelling quenched disorder discussed in the
literature. We restrict our investigations to a physically simple discrete implementation
by randomizing the positions of our “atoms” in each elementary cell. I.e., we replace
(4.2) by

U(x, y, ~ζ) = u
∑

n,m

Ũ

((

x + (n+
1

2
) · L, y + (m+

1

2
) · L

)

+ ~ζnm

)

(5.2)

with
L = 1 . (5.3)

The ~ζnm are independent random vectors with independent Gaussian distributed compo-
nents of zero mean and variance γ1. This kind of disorder seems to be a natural starting
point to model small imperfections in a periodic lattice. A similar approach is used in
[106], and many studies focussing on random pinning in the context of vortices in su-
perconducting devices use basically the same approach, see e.g. [23, 293] and references
therein. We do not expect qualitatively different results if other parameters of the lattice
are thus randomized, in particular as found in [106]2. We expect our results to be robust
against changes of the disorder if one considers qualitatively different types of disorder,
see e.g. [217, 219] for random potentials, [304] for uncorrelated random forces3, [295, 298]
for dichotomous random forces4, [308] for spatially correlated random forces and [129] for
a review in the context of diffusion. In fact, these types of disorder, in particular those
with no, or short ranged spatial correlations, seem to be even better suited with respect
to the applicability of (5.7) (see below) than the physically inspired disorder considered
here.

For the discussion of quenched disorder we will use a Gaussian repulsive potential:

ŨGauss(x, y) = u · σ · exp(− r2

2σ2
) , (5.4)

in (5.2), cf. (4.4). The Gaussian potential has the significant advantage of being short
ranged, reducing numerical difficulties compared to the Yukawa potential used in the

1We have cut off the Gaussian distribution such that
∣
∣
∣~ex/y · ~ζnm

∣
∣
∣ < 0.1 for physical reasons. We do

not expect the neglected large but rare realizations of the disorder to change our results.
2Note that the disorder considered in [106] is not fully quenched, but varies slowly. We will discuss

this case in more detail below.
3Note that there is a qualitative difference between disordered force fields and disordered potentials

[307].
4Note that in that case there is only a finite number of realizations of the disorder for each finite

surface. Hence, our claim that all unbounded deterministic attractors are destroyed by disorder is not
always true in this case, see section 5.4.
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discussion of SSBT in chapter 45, while the results are virtually identical, see figure 4.4
and section 4.14.

Our central observable will be the time and ensemble averaged normalized velocity

~v = v~eϑ =
T

1

〈

~̇r(t)
〉

= lim
t→∞

T

1

1

t

∫ ∞

0

dt′~̇r(t′), (5.5)

where the average is over all realizations of the noise and the disorder and over time, and
the last equality holds only for non-zero noise strength Γ > 0. Without thermal noise,
the average velocity depends on the initial conditions, and we will comment on how we
obtain the averages numerically in section 5.5.

5.3 Analogy to thermal fluctuations

We are interested in the influence of quenched disorder on phase-locked SSBT attractors
with average velocity ~v. Since trajectories on phase-locked SSBT attractors are transport-
ing, they continuously visit new regions of the surface. Therefore, an analogy between
weak quenched disorder and thermal fluctuations can be drawn by considering the noise
and disorder free case first, and writing

~r(t) = ~r0 + ~v · t + ~s(t), (5.6)

i.e. splitting ~r(t) into the bounded, fluctuating part ~s(t) and the unbounded part ~v · t.
To understand the effects of a weak quenched disorder on that trajectory, we write

~ζ (t) = ~ζ (~v · t+ (~r0 + ~s(t))) , (5.7)

with ~v · t linearly increasing with time. If we could neglect ~s(t), ~ζ (t) would behave like a
time dependent noise with memory, and as long as the trajectory remains transporting,
the quenched disorder is a random function of time along that trajectory. In particular, we
can try to apply the results about thermal noise induced metastability of these attractors.
In [201] (see also [290, 292, 314]), using a similar approach, an effective temperature is
defined and analyzed in a very simple two dimensional system, where both coordinates can

5These are as follows. In the simulations without quenched disorder, we calculate the gradient of the
potential on an equally space grid, usually of about 400 × 400 grid points to avoid the computation of
the sum in (4.2) multiple times during each iteration of the (S/O)DE solver. Alternatively, the sum can
be transformed to an easier form, analogous to [309], [310, 311] in the case of magnetic bubble lattices
[106] and [312, 313] in the case of vortex-vortex interactions in superconductors [203]. Obviously, both
strategies rely on the periodicity of the lattice and fail in the presence of quenched disorder. Computing
the full sum in (4.2) is not possible. Even after introducing a cutoff in the sum, i.e. a maximum distance
(from the current particle coordinate) up to which the sum is computed, its computation remains pro-
hibitively expensive if that cutoff is not very small. With the long ranged Yukawa interactions considered
so far, this cutoff has to be chosen on the order of about 20 elementary cells, i.e. about 400 terms con-
tribute to the sum. Using the fact that we are considering small disorder, i.e. small displacements of the
atoms, we can mix both approaches, i.e. perform the summation in (5.2) using a relatively small cutoff,
and compensating for the error by using a previously calculated bilinear interpolation of (4.2) with a
large cutoff, including only those terms which are not accounted for in (5.2) due to the small cutoff, and
neglecting the disorder for these terms. This does not change the long range of the Yukawa interaction,
and therefore this approach works best for short range interaction, e.g. Gaussian interactions.
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Figure 5.1: Typical trajectories for the Γ = 0 disordered dynamics (5.1) using (5.2), a
repulsive Gaussian potential (5.4) (u = 1 and σ = 1

4
) and a square wave periodic drive

(4.7) with α = 50.4◦. The strength of the disorder is indicated in the panels, and the

remaining parameters are (a)-(c): Ω = 0.328, a = 0.455, ~F = 0.004 · ~ex (corresponding

the ’×’ in figure 5.2 except for ~F ), and (d): Ω = 0.4, a = 0.475, ~F = 0. In panel
(c), the deterministic (i.e. γ = 0) phase space structures (periodic orbits of period
1) behind transport and trapping events are shown: the blue line corresponds to the
bounded periodic orbit stable at Ω = 0.324, the grey line to the transporting orbit stable
at Ω = 0.328, and the green line corresponds to the orbit behind ANM, stable at Ω = 0.33
(in each case all remaining parameters are the same).

be decoupled, and deterministic transport in one of the components is trivial. Therefore,
the dynamics are equivalent to a Langevin equation including only thermal noise of some
effective temperature, as is the case in [314] for dichotomous disorder. Here, the situation
is more complicated since the disorder leads to disorder induced metastability of the SSBT
attractors. Once the attractor is left, the transport properties of the trajectory change,
and (5.7) fails from then on.

5.4 The Golosov effect: trapping events

For our purposes, the most dramatic difference between thermal noise (i.e. time-
dependent random forces) and quenched disorder are trapping events, suppressing trans-
port for sufficiently strong disorder [295, 296, 298, 303–306, 314], termed the Golosov
effect [294]. Examples of such trajectories for the systems considered here can be found
in figure 5.1(c-d) (see the discussion thereof in section 5.6.4). Basically, if a trajectory
subjected to quenched disorder reaches a position at which the disorder is such that it
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cannot pass and the trajectory stays in that region (i.e. leaves its transporting attractor
or other transporting or unbounded phase space structure, and ends up on a bounded
phase space structure), it is trapped. From a mathematical point of view, this means
that the trajectory is attracted by a non-transporting attractor after a (transient) time

τcatch

(

~r0, ~ζ
)

6 has elapsed7. We define the average of these times for an ensemble of

trajectories

τcatch =
1

T

〈

τcatch

(

~r0, ~ζ
)〉

~r0,~ζ
, (5.8)

averaged over all realizations of the disorder and all initial conditions according to a
weight which is yet to be specified, the catch time. Note that we use the same symbol,
τcatch, but without the arguments to denote the average catch time. From a practical
point of view, two main types of these events are found in the dynamics considered here.

First, quenched disorder can lead to an escape from a transporting attractor directly to
a simple non-transporting attractor. The latter can either be existing in the unperturbed
(disorder free) dynamics, or it may be existing for slightly different system parameters. In
the latter case, the change of system parameters is “emulated” by the quenched disorder.
Since the trajectory will always encounter the same realization of the disorder, with
exactly the same numerical values, it will stay on this attractor indefinitely. A trapped
trajectory is shown in figure 5.1(c). See [298, 306, 315] for a discussion of similar trapping
events in the context of overdamped one dimensional ratchet dynamics and [305] including
inertia effects.

Second, quenched disorder can lead to a transition to another transporting region
of phase space (e.g. an attractor or a transient region), “deflecting” the particle. For
simplicity let us consider the spatially 1D case, i.e. the disorder depends on only one
coordinate. Here, the most common situation encountered is a switch from one SSBT
attractor to its image under the symmetry (or what becomes thereof upon breaking the
symmetry). The trajectory will then leave the region where the switch has occurred. But
whenever that trajectory revisits that region, it still cannot pass, unless some other degree
of freedom has changed (i.e. the phase of the drive if there is no other degree of freedom).
Now, if the trajectory tends to reach said trapping region always at the same phase of
the drive and all other coordinates the same, e.g. due to synchronization on a periodic

6Note that, in principle, we should write τcatch

(

~r0, ~ζ, t0

)

, i.e. the catch time depends on the starting

time t0 as well. This dependence can be absorbed into the starting vector. Therefore we omit this
dependence and set t0 = 0.

7Note that there are some mathematical subtleties involved in the definition of the catch times. To
define such a time, one has to define a set containing the attractor. The bounded attractor’s basin of
attraction is naturally excluded, since it is unbounded in general, and, even worse, the union of all basins
of attraction of bounded attractors is dense in phase space (see text), and the catch time would be zero.
Therefore, a suitable absorbing subset of the attractor’s basin of attraction has to be chosen, such that

once a trajectory enters this set, it can be considered to be trapped. τcatch

(

~r0, ~ζ
)

is then the smallest

time for which a trajectory starting at ~r0 enters the set for a particular realization of the disorder. But
the definition of this set is nontrivial. If the bounded attractor is chaotic and has a fractal basin boundary
structure, such a set is not necessarily simple. Here, we ignore such subtleties and use an arbitrary open
set containing the bounded attractor, whose distance from the attractor is sufficiently small. For the

dynamics considered here, there does not seem to be a significant dependence of τcatch

(

~r0, ~ζ
)

as long as

the absorbing set is reasonable.
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attractor, it will never pass the deflecting region, no matter how often it “tries”. This
will be particularly evident for periodic attractors, and if the temporal distance between
two “attempts” is large enough. If a trajectory is trapped between two such regions, it
will stay there indefinitely, bouncing back and forth. An example of such a trajectory
is shown in figure 5.1(d). These bounded attractors have a rather complicated structure
due to their composite nature. This kind of trapping event is particularly relevant for
~F = 0 if a pair of SSBT attractors coexists. Actually, that situation is ruled out in a
periodic, spatially one dimensional overdamped dynamics (without nonanalyticities) due
to the fact that deterministic trajectories cannot cross, i.e. if there is only one coordinate
except for time, the asymptotic transport velocity is unique for all initial conditions due
to the low dimensional nature of phase space.

The same behavior is found in spatially two dimensional systems. With more spatial
dimensions, the trajectory has more options of passing the first deflecting region in an-
other attempt. A similar behavior has also been observed in a slightly different context
for diffusion in disordered media [129, 316]. E.g., if transport is along the x direction it
suffices if the trajectory has a different y coordinate the next time it visits the deflect-
ing region. With respect to synchronization (e.g. on periodic attractors), the number
of transporting deterministic attractors is important in that case. If, without disorder,
there is only one8 deterministic transporting attractor with transport in the direction
considered, and this attractor leads to synchronized trajectories, the additional degrees
of freedom will become synchronized. Thus, the particle will be deflected again. In con-
trast, if there are multiple transporting attractors with transport in the same direction,
the y component can have a different value even in the presence of synchronization. If
the system is periodic in the y direction, this can be due to “phase slips” of the y compo-
nent9, such that the trajectory visits another elementary cell in that direction and thus
a different “copy” of the attractor. The trajectory then encounters a different realization
of the quenched disorder if it revisits the deflecting x coordinate, and will not necessarily
be deflected again.

Nonetheless, unless there is a preferred direction, such as in the simpler dynamics of
[201, 219], e.g. each deflection necessarily leads to a slip in the, say positive y direction
(staying in the picture of transport in the x direction), it is clear that each trajectory will
end up bouncing back and forth between two deflecting regions after a sufficiently long
time (or on another bounded attractor), since any unbounded trajectory will eventually
encounter a realization of the disorder that will trap it. The only exception to this would
be if the quenched disorder is restricted such that an unbounded deterministic attractor
survives for all realizations of the quenched disorder, e.g. if the disorder is bounded or
there is only a finite number of realizations of the disorder on each finite sized part of
surface, see e.g. [314, 315, 317–319]. Of course, such a restriction itself does not imply
the existence of such an attractor.

8A copy of that attractor, which differs only in a coordinate not subjected to quenched disorder, e.g.
time, does not count as a different attractor for obvious reasons.

9We are using the analogy between quenched disorder and thermal noise again. Noise induced phase
slips are extensively discussed in, e.g. [37, 137] in the context of Josephson junctions. For our purpose,
a phase slip is the fluctuations induced change of a periodic coordinate by an integer multiple of the
period of that coordinate, with the system being in the same state before and after the transition, i.e.
on the same attractor, but different copies thereof.
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5.5 Averaging in the disordered dynamics

In the disordered dynamics, the disorder is tantamount to a certain averaging over phase
space for transporting trajectories. But for Γ = 0, in general the latter (and all other
averaged quantities) still depends on the initial condition for each realization of the
disorder with the weight of the initial condition not being inherently defined.

Above discussed trapping events, see the trajectories shown in figure 5.1(c-d), repre-
sent a formidable question with respect to averaging the transport velocity in the presence
of disorder: due to these, the average transport velocity obtained from a finite sample of
trajectories will always be zero for asymptotically large times10. But this is not always re-
alistic in an experiment running only for a finite time, or finite substrate sizes. Therefore,
we compute the average velocity for finite but relatively large times, i.e. times for which
initial transients of the ordered dynamics have died out. In a sorting experiment, this
approach would correspond to starting with an ensemble of particles, subjecting them to
a periodic drive for some finite time, and then collecting the particles, e.g. by means of
a constant force. A different view would be to consider a finite sized sample surface with
absorbing boundaries: once a trajectory has reached the edge of the surface by travelling
a certain distance, it is finished, and the particle is collected. Therefore, it does not
matter if the trajectory would become trapped at a later time.

If one considers large surfaces, i.e. if τcatch · ~v is small compared to the size of the
surface, most trajectories will become trapped before leaving the surface. But this limi-
tation can be easily overcome, e.g. by slowly and periodically varying some parameter of
the dynamics with a (very long) period larger than the “typical” transient times of the
dynamics and of the order of τcatch. Then, the bounded attractors on which trajectories
are trapped are destroyed, but transporting attractors are unaffected most of the time.
E.g., one could periodically apply a large constant force for a short time, and thus trans-
port all trajectories to different regions on the surface, or one could periodically change
the amplitude of the periodic drive, heat the system and so forth.

Next, the timescales on which the disorder is actually quenched are the maxi-
mum catch times. Usually, the disorder is assumed to be of such a nature, that
the timescale τdisorder on which it varies is much larger than all other relevant time
scales. For our purposes, the relevant time scales are the “typical” transient time of
the dynamics τtransient and the duration of the (numerical) experiment τexperiment. If
τdisorder ≫ τexperiment, τtransient, the disorder is fully quenched. But the results presented
in this chapter can be easily generalized if τtransient ≪ τdisorder < τexperiment. In that case,
trapping events will only be of finite duration, and trapped trajectories will become free
again, once the disorder changes such that the trapping (bounded) attractor is destroyed.
This will generically be the case for small disorder if there are no bounded attractors in
the ordered (perfectly periodic) phase space. In contrast, if there is a bounded attractor
in ordered phase space, this will only be the case if the temporal variation of the disor-
der is such that the bounded attractors are destabilized. E.g., slowly varying disorder is
used to explain larger than expected (from the temperature alone) fluctuations in SSBT
trajectories of paramagnetic colloidal particles in a magnetic-bubble lattice in [106].

Thermal fluctuations are another point to be considered. Due to the thermal fluctua-
tions, all attractors become metastable as has been discussed in section 4.19. Therefore,

10And another averaged quantity would yield the value it has on the specific bounded attractors.
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trapped trajectories are freed after a noise induced escaped from the trapping (bounded)
attractor. Since we are considering weak disorder, the pseudopotential depth of these at-
tractors is small compared to the pseudopotential depths of the deterministic attractors
if there are no stable bounded attractors without disorder. If one considers the disorder
as a (complex) parametric variation of system parameters, e.g. one introduces a scalar

prefactor (magnitude of disorder) affecting ~ζ in (5.1), the pseudopotential depth of the
trapping (bounded) attractors scales with the distance to the bifurcations at which these
attractors are destroyed (e.g. tangent bifurcations or chaotic crises). This distance is the
strength of disorder, and thus can be expected to be small.

Lastly, we address the issue of averaging. Without thermal noise, we are considering
a nonergodic dynamics. In particular, the average velocity will, in general, depend on
the initial conditions.

First,the choice of the initial conditions within one elementary cell may affect the value
of the averages in nonergodic dynamics. The initial conditions have to be drawn according
to some weight which has to be chosen according to the experiment we have in mind. E.g.
if we consider a particle which is initially placed on the substrate without applying any
external forces, we should choose initial conditions in the potential wells. As we are not
directly trying to represent a particular experiment, we stay with a particularly simple
choice for the weight of initial conditions, a uniform distribution. Thus, attractors are
weighed according to the volume of their basins of attraction in the t0 = 0 stroboscopic
section, which is a bit arbitrary. If the strength of the quenched disorder is sufficiently
strong, the disorder introduces a certain averaging for transporting phase space structures,
see the trajectories shown in figure 5.1(a-b). While these trajectories are not ergodic,
they closely resemble ergodic trajectories in the presence of thermal noise. Therefore, we
expect (and have checked) our results to be robust against changes of the weighting of
~r0 for sufficiently strong disorder. We show the average transport velocity only if either
there is only one deterministic attractor, i.e. the choice for the initial conditions does
not matter for sufficiently long times, or if the disorder is strong enough to remove the
dependence on the initial conditions11 unless otherwise noted. We have verified this in
each case manually by calculating the figures for differently distributed initial conditions.

Second, we have to average over all realizations of the disorder. In practice, it is
sufficient to consider only one realization of the disorder and place all initial conditions in
randomly (according to a uniform distribution) chosen elementary cells. Each trajectory
starting from one of these initial conditions effectively “sees” an individual realization
of the disorder since the correlation length of the disorder is of the order of the lattice
spacing. To avoid trajectories “leaving” our surface, we use periodic boundary conditions
and choose our surface large enough to avoid trajectories crossing the surface more than
once.

11In particular, we have not found any significant differences if we change the phase of the stroboscopic
section by T

2 , i.e. the sign of the periodic drive, in figure 5.2.
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Figure 5.2: (a)-(c): deterministic phase diagram without disorder (Γ = 0 and γ = 0)
for the dynamics (4.1) with a Gauss potential (4.4) (u = 1 and σ = 1

4
) and square wave

periodic drive (4.7) with α = 50.4◦. ~F is indicated in the panels. (d): catch time (d1)
and average transport velocity (d2)-(d3) in the presence of quenched disorder (γ = 10−3)
for the same dynamics as in (c), but quenched disorder is accounted for by replacing
(4.2) with (5.2) in (4.1). The transport velocity has been calculated from an ensemble
of 20 trajectories of length 4000 drive periods T , weighting all trajectories equally. The
’+’ corresponds to the system parameters used in figure 5.5. Likewise, the dashed line
around Ω ≈ 0.33 and a = 4.55 corresponds to the parameters considered in figure 5.4.
Note that, in the large region of coexistence of the ϑ = 0◦ transporting attractor and
unbounded attractors, the average velocity depends somewhat on the initial conditions,
see text. The palettes for vx/y and τcatch have been cut off, i.e. smaller or larger values
are displayed as the minimum/maximum of the palette.

5.6 Effect of quenched disorder on phase-locked SSBT attrac-
tors

5.6.1 Deterministic phase diagram

Basically, figure 5.2(a-c) shows a zoom into the largest region of parameter space ex-
hibiting SSBT in figure 4.18, i.e. the rightmost large region of SSBT, but for a different
potential, and thus different parameters. In particular, we have used α = 50.4◦, as this
resulted in slightly better results than α = 54◦. In contrast to figure 4.18, we have also
shown bounded attractors for ~F 6= 0 in figure 5.2(b-c) by desaturation of the particular
color, as these play an important role for trapping events, as has been discussed above.
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Note that we have used u = 1 in (4.4) and not rescaled our parameters to match the
Yukawa potential in (4.9), in contrast to figure 4.4. Therefore, all quantities (i.e. a, Ω, F
and Γ) affected by the rescaling of u will be smaller by a factor of about 10 compared to
chapter 4. With that in mind, we discover nothing “new” in figure 5.2(a-c): the behavior
is the same as found in figure 4.18.

5.6.2 Disorder effects

Upon switching on the disorder, we show the average catch time τcatch and transport
velocity in figure 5.2(d). The average is carried out along the lines of section 5.5. Since
we are mostly considering transport in the x direction, we show both components of the
average velocity instead of its direction and modulus. We have used a representative
choice of the bias force, ~F = 0.004~ex, i.e. the same parameters and view as in figure
5.2(c), and disorder strength γ = 10−3. Note that in the region of parameter space where
ϑ = 0◦ transporting attractors and bounded attractors coexist, the magnitude of disorder
is too low to average out the dependence of averaged quantities on the choice of initial
conditions. Therefore, the observed reduction of the transport velocity is an artifact of
our choice of weight for the initial conditions. In principle, the catch time is expected
to be somewhat reduced for weak disorder in the presence of a stable non-transporting
attractor, since then disorder only has to induce an escape from the transporting tra-
jectory, and without the deterministically stable non-transporting attractor, the disorder
has to create, or stabilize, a bounded attractor on top of inducing the escape from the
transporting trajectory. Here, the disorder is too strong to observe that effect. There is
no reduction of the transport velocity in the second region of coexistence of transporting
and non-transporting attractors in figure 5.2(c) (to which the parameters corresponding
to the ’+’ belong): for this region of coexistence, the disorder is sufficiently strong to
remove the dependence on the initial conditions.

Due to disorder, practically all regions of transport in parameter space shrink. Even
more, the transport velocities are always reduced due to trapping events. This is a
significant difference to thermal fluctuations which actually induce transport for certain
regions of parameter space or enhance the average velocity, see section 4.19. In particular,
this noise induced transport was responsible for an apparent movement of the regions
of transport when the strength of thermal fluctuations was increased. This movement
is practically absent from figure 5.2(d), and also if one considers weaker disorder (not
shown). This absence will be further discussed in section 5.6.4.

5.6.3 Escape rates

To further understand the effect of quenched disorder on transporting attractors and the
analogy to thermal fluctuations, we calculate the escape rates from deterministic trans-
porting attractors in the presence of quenched disorder. As has been discussed in section
4.19, all deterministic attractors become metastable in the presence of thermal noise. Due
to quenched disorder, only the unbounded deterministic attractors become metastable for
almost all realizations of the disorder, while bounded attractors may become destabilized
only for specific realizations of the disorder. Therefore, we can calculate the escape
rate, or its inverse, the mean escape time, from transporting (unbounded) attractors.
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Figure 5.3: (a) mean escape times for the transporting attractors corresponding to the ’+’
in figure 5.2(c) in dependence of the strength of disorder γ (upper axis) and the strength
of thermal fluctuations Γ (lower axis). The scales have been chosen such that the slopes
of the blue lines are equal, see text. The error bars are of the order of the symbol sizes.
The lines correspond to fits, see text. The attractor carrying ϑ = 0◦ transport is labeled
as ’+’, and the attractor carrying transport in the opposite direction as ’−’. (b) basins of
attraction (for t = 0) of the ’+’ attractor (red), the ’−’ attractor (blue), and the bounded
attractor (grey). The escape rates are calculated along the lines of [2]. Symbols: the
attractors (period 1 orbits).

The mean escape time is the average, over all realizations of the disorder and all initial
conditions within the attractor’s basin of attraction, of the time it takes a (disordered)
trajectory to first leave the (immediate) basin of attraction (of the attractor) [2, 320], see
[2] for a definition in the context of thermal noise. The dependence on the initial condi-
tion (within the basin of attraction) can be neglected if the perturbation is weak. In the
presence of thermal noise, the dependence of the mean escape time on the temperature
is given by an Arrhenius law, possibly including prefactors [2, 141, 144, 320]: τ ∼ e

∆U
Γ ,

see also section 4.19. Using the analogy between thermal noise and quenched disorder for
transporting attractors, we postulate that the mean escape time from these attractors
should follow an Arrhenius law in the magnitude of the disorder, if that is described by a
suitable scalar quantity (depending on the particular type of the disorder). To find this

for our choice of disorder, i.e. (5.2), we write ~ζ (~r(t)) as in (5.7). By (Taylor) expanding

(5.2) in powers of ~ζnm, we obtain

~ζ (~r(t)) ≈
∂
(

~∇U
)

∂~r

∣
∣
∣
∣
∣
∣
~r(t)

~ζnm. (5.9)
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Using
〈

~ζ2
nm

〉

= 2γ2, we get the scaling of
〈

~ζ (~r)2
〉

with γ

〈

~ζ (~r)2
〉

∼ γ2. (5.10)

From this, we expect

τescape ∼ e
∆̃U
γ2 (5.11)

and define

ι =
∆̃U

∆U
(5.12)

as the ratio of the pseudopotential depth for disorder induced escape to the pseudopo-
tential depth for thermal noise induced escape. In general, this ratio depends on all the
so far neglected contributions to the difference between quenched disorder, expressed as
(5.7), and thermal noise, i.e. the specific form of the attractors, the system parameters,
the type of disorder and its correlation length. Using this, we can define an effective
temperature in a different way than in, e.g., [201, 290, 314].

To verify our hypothesis, we have calculated the mean escape times for the transport-
ing attractors encountered at various choices of system parameters found in figure 5.2 and
have always found an Arrhenius law with ι depending on the choice of parameters. As
an example, we choose the transporting attractors found for parameters corresponding
to the ’+’ in figure 5.2(c-d), and show the mean escape times due to both, thermal fluc-

tuations and quenched disorder, in figure 5.3(a). Fits to straight lines τdisorder = D̃e
∆̃U
γ2

and τnoise = De
∆U
Γ are included in the Arrhenius plot figure 5.3(a), and the parameters

of the fits are found in table 5.1.

Attractor ∆̃U · 106 ∆U · 106 D̃ D
+ 0.92 3.32 1.88 1.82
− 2.50 8.43 1.99 1.62

Table 5.1: Parameters for the Arrhenius fits corresponding to figure 5.3(a). The attractors
are labeled according to the signs of the x component of their average velocities.

As can be seen from figure 5.3(a), the Arrhenius law holds for sufficiently large escape
times for the quenched disorder, and ι ≈ 0.30 is calculated for the ’−’ attractor (i.e. the
attractor carrying ϑ = 180◦ transport). In principle, we have ι ≈ 0.28 for the + attractor,
but the difference is negligible. We have matched the scales of 1

Γ
and 1

γ2 in figure 5.3(a),

such that the slopes are identical, i.e. we have multiplied 1
γ2 with ι.

A different situation is found for the bounded attractor also present in phase space
(its basin of attraction is shown as grey areas in figure 5.3(b)). In the presence of thermal
fluctuations, its pseudopotential depth is smaller than 10−7, i.e. it has no influence on the
average transport properties for the noise strengths considered here. In contrast, if one
were to try to calculate its pseudopotential depth in the presence of quenched disorder,
one would find that the mean escape time is infinite for all strengths of the disorder. This
is due to the attractor being stable for a non-zero weight subset of the realizations of the
disorder, and its pseudopotential depth with respect to quenched disorder is not defined.
Thus, in the case of only quenched disorder (and no thermal fluctuations), the average
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transport velocity depends on the choice of initial conditions as has been discussed in
section 5.5. Here, the volume of the basin of attraction of the bounded attractor is very
small (as is its pseudopotential depth with respect to thermal noise), and it does not
influence the average transport velocity as calculated here in the sense of section 5.5.

5.6.4 Quenched disorder induced absolute negative mobility

Quenched disorder induces escape from deterministic bounded attractors at most once for
each trajectory. After a disorder induced escape from a deterministic bounded attractor
(i.e., the attractor exists already without disorder) a transient follows, which can be
transporting. But after that transient ends in a trapping event, the trajectory will end
up on a bounded attractor, terminating transport. Therefore, disorder induced ANM,
carrying significant transport velocities, will only be found close to the bifurcations leading
to the disappearance of transporting ANM attractors, where the transient lengths are
sufficiently long to allow a single transient to yield a significant contribution to transport.
Moreover, as does thermal noise, sufficiently strong disorder is expected to reduce these
transient lengths in general (in contrast, small disorder can be expected to increase the
transient length under certain circumstances [147]. [295, 297] may also be a hint in
that direction). We have found that transient lengths tend to zero very quickly when
going away from the bifurcation in the systems and for the parameters considered here.
Therefore, we conclude that the main mechanism for noise induced ANM outlined in
section 4.19, coexistence of a bounded attractor and a transient ANM inducing phase
space structure [63], is effectively absent from the purely disordered case without thermal
fluctuations.

The situation can be remedied by considering a different situation leading to noise
induced ANM, which has been discussed in [1, 2]. Basically, the reason for the absence of
disorder induced ANM due to the mechanism from [63] is the failure of the analogy be-
tween thermal noise and quenched disorder for the bounded attractors considered therein.
The obvious solution is to replace the bounded attractor by an unbounded attractor, e.g.
a transporting attractor carrying transport in the direction of the bias force. Then, if
this attractor coexists with an unstable ANM object in phase space, e.g. its region of
existence is close to (but not inside) a region of existence of an ANM attractor, and the
unstable ANM object dominates in the presence of fluctuations of the right magnitude,
the fluctuations will induce ANM by destabilizing the transporting attractor and assign-
ing sufficient statistical weight to the unstable ANM object. This situation has been
discussed in [1, 2] for thermal noise: for certain parameters and an applied (positive) bias
force, transport is in the direction of the bias force without (thermal) fluctuations. When
the strength of the fluctuations is increased, the transport velocity changes to be opposite
to the applied bias force. For very large (thermal) fluctuations, transport is again in the
direction of the bias force. We expect the same to be true if thermal fluctuations are
replaced by quenched disorder due to the analogy between thermal noise and quenched
disorder for transporting trajectories (section 5.3), only that transport will vanish for
large fluctuations, instead of being in the direction of the bias force. In [1, 2] this con-
figuration of phase space was realized by choosing a pair of SSBT attractors and a small
bias force. In general, the regions of existence of the SSBT attractors have numerous
filaments and protrusions (in parameter space), but the SSBT attractors have very small
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Figure 5.4: Dependence of the average transport velocity on the strength of the disorder,
γ, and the frequency of the periodic drive, Ω, calculated from an ensemble of 20 trajec-
tories of length 5000 drive periods T , weighting all trajectories equally. The parameters
chosen correspond to the dashed line in figure 5.2(b), except for the addition of quenched
disorder. The palettes have been cut off as in figure 5.2.

pseudopotential depths in the filaments. If we select parameters where such a filament
belonging to the attractor carrying transport in the direction of the bias force meets the
main “body” of the region of existence of the attractor carrying transport against the
bias force, the situation described above is realized.

Considering figure 5.2(a), such a filament is readily found for ~F = 0. Upon switching
on the bias force, the regions of existence of the pair of SSBT attractors separate, yielding
a parameter region where the filament of the attractor carrying transport in the direction
of the bias force goes straight through the main region of existence of the ANM attractor,
and where no other attractors of relevance12 exist. At the intersection of the edge of this
region and the filament, above described situation is realized, see the dashed line in figure
5.2(b). To quantify the effect, we choose a = 4.55 and ~F = 0.0005~ex fixed and vary the
frequency Ω and the strength of the disorder, see figure 5.4. The symbols correspond to
Ω = 0.328 (i.e. the ’×’ in figure 5.2) and γ = 4 · 10−5 and γ = 10−4 respectively, i.e. the
parameters corresponding to the trajectories in figure 5.1(a-b). There is a narrow range
of parameters around Ω ≈ 0.328, marked with a ’+’ and a ’×’, for which transport is in
the direction of the force for very small disorder γ . 4 · 10−5 (’+’), and against the force
for larger γ (’×’). In contrast to the case of thermal noise, the transport does not return
to “normal”, i.e. in the direction of the bias force, for large strengths of the disorder
(at least not with a measurable velocity). As discussed above, all trajectories become
trapped for strong disorder.

The trajectories shown in figure 5.1 show this behavior in more detail. (a) corresponds
to a strength of the disorder where transport is still normal, but with a small transport
velocity (the ’+’ in figure 5.4). It consists of relatively long almost periodic flights, where
the particle travels in the positive x direction, broken by parts where the particle seems to
diffuse chaotically in the negative x direction and occasionally travels a few length units
in the y direction. When the strength of the disorder is increased further, the length

12I.e., such that have an appreciably large region of existence in parameter space.
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Figure 5.5: Dependence of the average transport velocity on the strength of the disorder,
γ, and the strength of thermal fluctuations, Γ, calculated from an ensemble of 20 tra-
jectories of length 5000 drive periods T , weighting all trajectories equal. Except for the
addition of thermal noise and varying disorder strength, all other parameters correspond
to the ’+’ in figure 5.2(d).

of the almost periodic flights is reduced, and the x component of the transport velocity
becomes negative. At γ = 10−4, the almost periodic flights have all but vanished, and
only the chaotic parts, carrying transport in the −x direction, remain. The transport
velocity in the y direction has not changed significantly, i.e. remains small. For an even
larger strength of the disorder, γ = 10−3, the transport velocity is practically 0, with only
short excursions to the metastable or unstable transporting structures in phase space, and
trajectories are almost immediately attracted to a bounded attractor. That attractor is
the stable period one orbit existing for slightly smaller values of Ω, and is stabilized
locally by disorder. This behavior is shown in figure 5.1(c), where a short excursion to
both transporting phase space structures (periodic orbits, grey line and green line in
figure 5.1(c)) is shown, as well as the periodic bounded attractor (blue line). Indeed,
the transport properties are determined by the interplay of these periodic orbits and
quenched disorder. Of course, the same analysis can be applied to the other panels in
figure 5.1 as well and yields identical results (with different orbits for panel (d) of course).

5.6.5 Thermal fluctuations and quenched disorder

Finally, we consider the interplay of thermal noise and quenched disorder. As has been
discussed above, the main effect of weak thermal noise on the phase space structure due
to quenched disorder is to destabilize the unbounded attractors, and thus to suppress
trapping events. Furthermore, thermal noise has the usual effects on all other phase
space structures. There is a competition between thermal noise induced and quenched
disorder induced escape for all deterministic attractors of the ordered system. As has
been discussed above, bounded attractors are affected only to a lesser degree to weak
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quenched disorder. If the disorder is “weaker” than the thermal noise, i.e. the disorder
induced escape times are much larger than the thermal noise induced escape times, the
effect of thermal noise will be identical to the case without quenched disorder.

The chief consequence of thermal noise is that the asymptotic transport velocity
will (almost) always have a non-zero value (unless there is an appropriate symmetry,
of course). In that sense, ANM in the presence of quenched disorder is always “noise
induced” if the average is calculated for infinite times. In contrast, NANM in perfectly
periodic systems, as discussed in [1, 63], is noise induced for certain values of system
parameters only. As has been discussed above, in most cases, this is only relevant for
possibly very long times and large surfaces, and only if the strength of the quenched
disorder is such that transport practically vanishes for the surface size considered.

With that in mind, we turn to figure 5.5, showing the effect of thermal noise and
quenched disorder for a representative choice of system parameters corresponding to the
’+’ in figure 5.2(c-d). First, we find exactly the effect described in above paragraph:
around γ = 2 · 10−3, where transport vanishes without thermal noise, we find NANM: for
Γ = 10−6 the transport current vanishes, and for Γ = 10−5 (and the same value of γ), we
find transport against the applied bias force.

As can be seen from figure 5.2(c-d), the choice of parameters in figure 5.5 does not lie
exactly in the center of the ANM region but slightly outside. This choice is motivated to
optimize both resistivities simultaneously: from figure 4.24 we have inferred that upon
increasing the noise strength, the region of parameter space in which ANM is found moves
into regions previously exhibiting no transport, see section 4.19 (NANM). It turns out
that, for this particular choice of parameters, ANM vanishes at about γmax ≈ 2 · 10−3

and Γmax ≈ 2 · 10−5, of which the latter is in line with what we have observed in section
4.19 if we factor in the different potentials used, i.e. the factor of 10 discussed in section
5.6.1. Going back to (5.1), both limits are not unrelated.

Using the analogy between thermal noise and quenched disorder as discussed in section
5.6.3, we can quantify this relation. To estimate the typical magnitude of ~ζ (~r(t)), we

estimate the second order derivative of the potential,
∂(~∇U)

∂~r

∣
∣
∣
∣
~r(t)

, in (5.9): along the lines

y = 0 and y = x the potential basically looks like a sine potential with period 1 and√
2 respectively, and barrier heights ∆U ≈ 0.05 and ∆U ≈ 0.25 respectively. Thus, the

second order derivative will be of order 1, yielding a proportionality constant of order 1

in (5.10). Comparing with

〈(

~ξ(t)
)2
〉

= 2 · Γ, we obtain γ2 ∼ Γ up to a factor of order

1. For this factor we can use 1
ι
≈ 3.4, relating the pseudopotential depths as discussed

in section 5.6.3, yielding γ2
max

ι
≈ 1.4 · 10−5, which is quite close to Γmax. The remaining

difference can be attributed to our rough estimate, in particular using ι as proportionality
constant, i.e. only the respective lifetimes of the transporting states and not taking into
account transient states or trapping events.
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5.7 Summary and outlook on inertia effects

We have shown that quenched disorder can be treated as thermal noise with regard to the
disorder induced escape from unbounded attractors carrying ballistic transport13. Using
this analogy, we have found quenched disorder induced ANM by a similar mechanism
as NANM in [1]. At disorder strengths slightly larger than the “critical” value at which
ANM vanishes for the given parameters and experiment, thermal noise again induces
ANM in a somewhat less artificial way than in [1, 2, 63]. Moreover, we have estimated
the threshold of disorder at which SSBT, and SSBT induced ANM, vanish using that
analogy. These thresholds tend to be rather small, as can already be inferred from the
thresholds with regard to thermal noise. Thus, experiments exploiting SSBT have to
be well controlled with regard to disorder in the lattice. While that may seem to be
discouraging at first glance, it is important to note that our analogy, and the derived
thresholds, depend on the distribution of disorder. E.g., rare but large impurities of the
lattice have a much different effect on the dynamics. Ultimately, they will lead to the
Golosov effect, but at very different time scales than small but frequent disorder, and
their effect may well be covered up by realistic thermal noise. In such a situation, the
effect of quenched disorder may be much weaker than the Gaussian disorder considered
in this chapter.

The observed resistivities against random perturbations can be improved by including
inertia effects. If one compares the pseudopotential depths found in [1, 2] with those found
here and accounts for the different potential well depths, the overdamped dynamics still
have a lower threshold at which the SSBT derived effects vanish, see also section 4.19.
Including inertia effects, all effects from [1, 2] are recovered trivially for e.g. α = 0◦. For
other values of α, there is a competition between the effects discussed so far (see also
[4]), and the spatially 1D effects from [1, 2], see [183, 208] for a hint in that direction.
We have found pseudopotential depths in line with those found in [1, 2] (accounting for
the differences in the depth of the potential wells) if we include inertia effects in (4.1).
Moreover, as was found in [1, 2] (see also [137, 183, 208, 321]), for sufficiently large inertia
(or, equivalently, small damping coefficients), the behavior of the system is dominated by
diffusive chaos, and bounded attractors are much less common than in the overdamped
case considered above, reducing the trapping rate of disorder.

We have found that, with inertia, ANM can survive up to γ . 10−2, with significant
transport velocities sustained up to γ ≈ 10−3, which is about one order of magnitude
“better” than in the overdamped case. First, this is due to the more robust mechanism
of SSBT using inertia effects, as has been discussed in section 4.19. Second, the catch
times are larger. First, this is due to bounded attractors being less common, i.e. it is
easier to choose system parameters far away from the regions of existence of bounded
attractors in parameter space, and a less probable realization of the disorder is needed to
stabilize these. Second, the additional degrees of freedom increase the dimensionality of
the dynamics and allow trajectories more possibilities to pass deflecting regions. Lastly,
disorder induced ANM as discussed in section 5.6.4 is more common if inertia effects are
included since the regions of existence of SSBT attractors tend to have more filaments in

13Quenched disorder may have a different influence on purely diffusive attractors. In particular, the
scaling between disorder and noise strength may be different since diffusive transporting trajectories
frequently revisit regions of phase space, and thus disorder.
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that case.
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Chapter 6

Dimers in one dimension

Contrary to the remainder of this work, we will consider interacting particles in this
chapter and show that in spatially one dimensional overdamped dynamics the interaction
of two monomers induces spontaneous symmetry breaking transport (SSBT) and absolute
negative mobility (ANM). We introduce our minimal model in section 6.2. In section 6.3
we show analytically that the dynamics are very simple for convex interaction potentials
and that SSBT and ANM are ruled out. Turning to non-convex interaction potentials,
we show that SSBT induced ANM can exist for symmetric dimers in section 6.5 and also
for asymmetric dimers in section 6.6.

6.1 Introduction

To find ANM, we have to consider at least three dimensional dynamical systems. So far
we have considered only single particle dynamics. Spatially one dimensional systems with
time and inertia were considered in chapter 3 and spatially two dimensional system with
time (and without inertia) were considered in chapter 4. A three dimensional phase space
can also be realized by two overdamped particles in a one dimensional periodic potential
subjected to time depended forces and interacting via a coupling force, i.e. a dimer.
We restrict ourselves to the case where that interaction is mediated by an interaction
potential Uint(y), where y is the distance of the monomers. Then the dimer dynamics
can be mapped to the dynamics of a single particle on a two dimensional surface which
is not periodic in one direction.

These systems have attracted considerable recent interest in the context of modeling
friction and diffusion (mostly considering more than two monomers) [322–334], molecular
motors [10, 335], in particularly in the form of dimer ratchets with harmonic interactions,
both overdamped [336–346] and underdamped [347, 348] (allowing for chaos) or including
more monomers [349–352] which may even lead to SSBT and SSBT induced ANM as a col-
lective effect [38, 40–44] for a non-convex global interaction potential. Convex interaction
potentials usually serve as an approximation of the “real” interaction potential around
the minimum (equilibrium length) of that potential. Non-convex interaction potentials
are the more general situation. First, when the distance of the monomers becomes large,
the interaction forces have to vanish, which is captured by e.g. molecular inspired poten-
tials [353, 354], such as Lennard-Jones [355–357] or Morse potentials, used to model the
dynamics of weakly bound dimers [358] or chains of coupled particles [359, 360]. Second,
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we will consider spatially one dimensional dynamics which are an approximation of two
or higher dimensional dynamics, i.e. only one component of the monomer coordinates
is kept and the other components of the monomer coordinates are neglected. Some of
the effects of the neglected degrees of freedom can be captured by a modified interaction
potential. In particular, a 180◦ rotation of the dimer can be allowed for if the interaction
potential is reflection symmetric, i.e. Uint(−y) = Uint(y), but that leads to a non-convex
interaction potential if the dimer is to have a non-zero equilibrium length, the simplest
case being a bistable interaction potential. Bistable interaction potentials, inspired by
the modeling of random walkers in motor proteins [361–368] (see in particular [367, 368]
for a symmetric motor protein), have been considered in dimer ratchet models [369–373]
and were shown to yield a richer dynamical behavior of the ratchet. Third, more complex
dimers may have several stable configurations, or the stretching process may involve ad-
ditional (fast) internal degrees of freedom that lead to a non-convex interaction potential,
as considered in e.g. [374]. Lastly, another possible generalization of the model is the
inclusion of hydrodynamic interactions in a fluid [375, 376], and Hamiltonian transport
of dimers has been considered in [333, 377, 378].

6.2 Model

We require our model dynamics to be reflection symmetric and to consist of two over-
damped particles, which we will henceforth refer to as monomers, with monomer coordi-
nates x1 and x2. Furthermore, we define the “center of mass”1

x = x1 + x2 (6.1)

and the dimer length
y = x1 − x2. (6.2)

Each monomers is subjected to a one dimensional periodic and symmetric potential
U1,2(x1,2) = U1,2(x1,2 + L1,2) (the indices indicating to which monomer they apply) and
are coupled via an interaction potential Uint(x1 − x2) = Uint(y). Furthermore, we ap-
ply rocking, symmetric, and periodic driving forces a1,2(t) with periods Ti = T

ni
with

integers ni (T
2

is the time shift of reflection symmetry, see below)2, constant bias forces
F1,2 and (white noise) thermal fluctuations3 ξ1,2(t) with 〈ξi(t)ξj(t′)〉 = δij · δ(t− t′) with
scalar prefactors

√
2Γiηi according to the usual fluctuation-dissipation relations [8] to

each monomer. As in chapter 4, we require the periodic potential and the driving forces
to be symmetric, i.e.

Ui(xi) = Ui(−xi) (6.3)

and

ai(t+
Ti

2
) = −ai(t) (6.4)

1Actually, the physical center of mass is one half our “center of mass”, but we found our definition
to be more convenient.

2If the periods of the two driving forces are incommensurate, reflection symmetry would always be
broken, as the time shift could not be applied to change the signs of both driving forces simultaneously.

3In principle, we could use more general stochastic processes and in particular with different statistical
properties for the two particles, as long as the symmetry properties are fulfilled (see below).
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where trivial shifts have been set to zero [10, 379]. There are two different ways to imple-
ment reflection symmetry if F1 = F2 = 0, depending on whether the system, interpreted
as a single particle in a two dimensional potential, is symmetric under an interchange of
the monomer coordinates (i.e. exhibits the Sxy symmetry from chapter 4). This is the
case if both monomers are identical, i.e. U1(x) = U2(x), η1 = η2, Γ1 = Γ2, a1(t) = a2(t)
and we define

S̃0 : (x1, x2, t) →
(

−x2,−x1, t+
T

2

)

(6.5)

(corresponding to S0 ◦ Sxy from chapter 4 but with a different physical meaning). If the
two monomers are not identical, reflection symmetry can only be satisfied4 if the total
potential Utotal(x1, x2) = U1(x1) + U2(x2) + Uint(x1 − x2) is reflection symmetric, i.e.

Utotal(x1, x2) = Utotal(−x1 +N1 · L1,−x2 +N2 · L2) (6.6)

with integers N1 and N2
5. But since Uint is, in general, not periodic (or has a different

spatial period than U1/2), it is not invariant under translations by integer multiples of
the spatial periods of the coordinates. Therefore, the interaction potential has to satisfy

Uint (−x1 +N1 · L1 + x2 −N2 · L2) = Uint (x1 − x2) , (6.7)

i.e. it has to be reflection symmetric around an integer-linear combination of the spatial
periods of the individual monomer potentials U1/2. Henceforth we will set N1 = N2 = 0
for simplicity and define the reflection symmetry as

S0 : (x1, x2, t) →
(

−x1,−x2, t+
T

2

)

, (6.8)

which is the analog of S0 symmetry in chapter 4. In particular, this applies is the dimer
is allowed to rotate by 180◦, as discussed above.

We focus on the simple choices for the monomer potentials and the periodic drive

U1/2(x) =
1

2π
cos(2π · x) (6.9)

and
a1/2(t) = a1/2 sin(Ω · t) (6.10)

with T = 2π
Ω

. As in the preceding chapters, reasonable generalizations of these simple
choices are not expected to qualitatively change our conclusions, as long as the symmetry
properties are unchanged, and changes in the potential barrier heights and spatial periods
are taken into account. Moreover, we use the same functional form for the drive protocol
of the two monomers, allowing only for different amplitudes. Thus, our model reads:

η1ẋ1(t) = sin(2πx1(t)) − U
′

int (x1(t) − x2(t)) + a1 sin(Ωt) + F1 +
√

2η1Γ1ξ1(t) .

η2ẋ2(t) = sin(2πx2(t)) + U
′

int (x1(t) − x2(t)) + a2 sin(Ωt) + F2 +
√

2η2Γ2ξ2(t). (6.11)

4The “proof” is obtained by evaluating the force field of the deterministic equation of motion for
(−x1,−x2, t+

T
2 ).

5Note again that we have absorbed trivial shifts of x1/2 into the choice of the coordinate system.
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For identical monomers, we can absorb the friction coefficient into the time unit and our
model reads

ẋ1(t) = sin(2πx1(t)) − U
′

int (x1(t) − x2(t)) + a sin(Ωt) + F +
√

2Γξ1(t) .

ẋ2(t) = sin(2πx2(t)) + U
′

int (x1(t) − x2(t)) + a sin(Ωt) + F +
√

2Γξ2(t). (6.12)

We have used the same symbols for the rescaled quantities, in particular Ω for the rescaled
frequency Ω · η1 since we will only consider the case η1 = η2 in the following.

Our central observable will be the time and ensemble averaged normalized velocity of
the monomers

v =
T

1
lim
t→∞

1

t

∫ ∞

0

dt′ẋi(t
′) , i = 1, 2 (6.13)

which will be identical for both monomers for all data presented in this chapter6.

6.3 Convex interaction potentials

We first consider the case that in the dynamics (6.12) the two monomers interact via a
harmonic potential

Uint(y) =
k

2π
· (y − l)2 (6.14)

with the equilibrium length l and interaction strength k. If l is an integer, the dynamics
are S0 symmetric, otherwise not. The dynamics are S̃0 symmetric if the monomers are
identical [285]. This system is of particular importance in the modeling of superconduct-
ing rings containing two weak links, i.e. SQUIDs [380] irradiated by microwaves in the
resistively shunted junction model [7, 64, 65]. Generalizations have been used to model
various SQUID ratchets [17, 285, 381, 382]. Moreover, in the limit of small displacements
from the minimum, it is a reasonable approximation to all interaction potentials featuring
a quadratic minimum.

A harmonic interaction potential is the simplest representative of convex interaction
potentials, which we will consider in the following, i.e.

∂2

∂y2
Uint(y) > 0 (6.15)

for all y. This property implies that the asymptotic average velocity

(6.16)

(which we have defined in normalized units for convenience) is unique for all initial con-
ditions already in the absence of thermal fluctuations [383–386]. The proof is as follows:

consider two solutions of (6.11), ~h(t) = (h1(t), h2(t)) and ~g(t) = (g1(t), g2(t)) with

h1(t0) > g1(t0), h2(t0) > g2(t0). (6.17)

6For bound interaction potentials, i.e. Uint(y) → ∞ for |y| → ∞ sufficiently fast, this is clear. For
interaction potentials that become flat for large monomer distances, the average velocity of the “free”
monomers will be identical if the monomers are identical (even in the absence of noise due to the low
dimensional nature of phase space). The average velocities of the monomers may be different in the
case of an (unphysical) periodic interaction potential or if the monomers are are not identical and the
interaction potential allows the dimer to dissociate. We will not consider these cases.
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The physical reasoning is as follows: if the second dimer, ~g(t), tries to “pass” the first,
~h(t), at a later time, there is a time at which the positions of, e.g., the “right” monomers
are identical and the relative order due to (6.17) still holds for the other monomers. Then
the monotonically increasing interaction forces (due to the convexity of the interaction po-
tential) will try to restore that order while all other forces acting on the “right” monomers
will be identical. The right monomer of the second dimer will be “pulled back” if the
dimers are stretched or the “right” monomer of the first dimer will be “pushed ahead“ if
the dimers are compressed. More formally, proceeding along the lines of [386], let

t∗ = inf {t > t0 : hi(t
∗) = gi(t

∗), i = 1, 2} (6.18)

and i = 1 without loss of generality, i.e.

h1(t∗) = g1(t
∗) (6.19)

and thus
h2(t) > g2(t) ∀ t0 < t ≤ t∗. (6.20)

If such a t∗ does not exist, (6.17) will hold for all t or the solutions will coincide (which
is not possible due to uniqueness [387]). Using (6.15), (6.19) and (6.20) we get

ḣ1(t
∗) − ġ1(t

∗) = −U ′

int (h1(t∗) − h2(t
∗)) + U

′

int (g1(t
∗) − g2(t

∗)) (6.21)

> −U ′

int (h1(t∗) − h2(t
∗)) + U

′

int (h1(t∗) − h2(t∗)) (6.22)

= 0. (6.23)

Thus, (6.17) will hold for all t > t∗ and “the solutions cannot pass each other”. Due to the
periodicity of the monomer potentials, each deterministic solution of (6.11) is straddled
by two other solutions with the same average velocity, and hence, all solutions have the
same the average velocity. If the order of the dimers is inversed, the proof is similar. This
result is known as Middleton’s no-passing rule in the context of Frenkel-Kontorova models
[383–386], mathematically proven in [388], known already in [389] (but not in a physical
context) and more recently in [390, 391]. The result can be generalized to disordered (i.e.
not periodic) potentials and up to infinite chains of monomers with convex interaction
potentials.

Note that we have not used that the driving forces applied to the monomers are
identical, i.e. the results directly apply to the stochastic dynamics (6.11) for each par-
ticular realization of the stochastic process. A second and for our purposes even more
severe consequence is that we can extend the no-go theorem from [1, 2] to a dimer. Let
~h(t) = (h1(t), h2(t)) be a solution to (6.11) with Fi = Hi, i = 1, 2 and the realization
~ξ(t) of the stochastic process and ~g(t) = (g1(t), g2(t)) a solution of (6.11) for the same
realization of the stochastic process but different value of the bias force Fi = Gi, i = 1, 2
and

Hi > Gi , i = 1 and i = 2 (6.24)

and the same initial condition
~h(t0) = ~g(t0). (6.25)

Then
~̇hi(t0) − ~̇gi(t0) = Hi −Gi > 0, (6.26)
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l = 1.25. Dots indicate turning points.

i.e. the solutions separate and, assuming everything to be well behaved, we get

t∗ = inf {t > t0 : hi(t
∗) = gi(t

∗), i = 1, 2} > t0 (6.27)

(it can be infinite, though). Moreover, we assume i = 1 without loss of generality and
thus

h1(t
∗) = g1(t

∗) (6.28)

h2(t
∗) ≥ g2(t

∗). (6.29)

Using the same arguments as to get (6.21), we get

ḣ1(t
∗) − ġ1(t

∗) ≥ H1 −G1 > 0. (6.30)

Therefore, ~g(t) cannot pass ~h(t). Again, this is an obvious generalization to a stochastic
dynamics of the results found in [383–386, 388–391].

The generalization of these results to finite (or even infinite) chains of monomers cou-
pled by nearest neighbor convex interaction potentials is straightforward. Thus, absolute
negative mobility is ruled out for convex interaction potentials. Moreover, SSBT requires
two coexisting deterministic solutions, which is ruled out by the no-passing rule and thus
SSBT cannot be found for convex interaction potentials.

In particular, both theorems apply to a harmonic interaction potential and thus SSBT
and ANM are ruled out. As discussed below (6.14) this conclusion applies to SQUIDs.

6.4 Non-convex interaction potentials

As has been discussed in section 6.1, convex interaction potentials are only approxima-
tions of “real” interaction potentials, which are necessarily non-convex for “physical”
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dimers. The question is whether the non-convexity of the interaction potential is actu-
ally “explored” by the dimer dynamics in a particular model. The no-go theorems from
section 6.3 do not apply to non-convex interaction potentials, and SSBT and ANM are
no longer ruled out. We will now show how we can actually get SSBT and SSBT induced
ANM for dimers with non-convex interaction potentials.

6.5 Identical monomers - symmetric dimers

First, we will consider two identical monomers coupled by a non-convex interaction po-
tential. Then, there is no simple argument for the occurrence of SSBT, apart from Curie’s
principle [14] “that if a certain phenomenon is not ruled out by symmetries, then it will
occur” [10] (where, of course, we have to take liberties in the interpretation of the term
“symmetries”)7. Since we know that SSBT will occur in spatially two dimensional over-
damped dynamics which are periodic in both components (chapter 4), we can reasonably
expect to find SSBT. Since both monomers are now identical, we drop the indices, i.e.

Fi = F, ai(t) = a(t), ηi = 1,Γi = Γ, Ui(x) = U(x). (6.31)

As a first example of a non-convex interaction potential, we will consider the quartic
potential

Uint(y) =
k

2π

(
b1(d)

4
(s(y − l))4 +

b2(d)

3
(s(y − l))3 + d(s(y − l))

)

(6.32)

with b1 = 192
(

d
3

+ 2
)

and b2 = − (36 · d+ 192), see figure 6.1 for an illustration. Four
parameters are needed to define a quartic potential, and we have found k, s, l and d to be
particularly convenient: −51

3
≤ d ≤ 0 is the slope of the potential at the leftmost turning

point8, k is the interaction strength, l the position of the leftmost turning point and s the
stretching factor, which controls the distance from the minimum to the leftmost turning
point. The potential (6.32) has two turning points: a turning point at ytl = l (which is

a saddle for d = 0) and a second turning point at s(ytr − l) = −2b2(d)
3b1(d)

= 3d+16
8d+48

. It has

a unique minimum at ymin = l + 1
2s

with U(ytl) − U(ymin) = 2k
2π

matching the barrier
height of the periodic monomer potential up to the factor k, and only for d = 0 there
is a saddle point at y = l. Between the turning points l < y < ytr it is concave, and
otherwise convex. The basic idea of the interaction potential (6.32) is that there exists, in
addition to the stable dimer length y = ymin, another “likely” dimer configuration in the
concave regime allowing for SSBT and ANM, with y = ytl being most “likely” in the sense
that the restoring force is smallest then. Physically, this could be interpreted as a (bio-)
molecule having a stretched and a compressed state, or more generally two (meta-) stable
states. As has been discussed in chapter 4, a three dimensional phase space is necessary
to find SSBT in the overdamped dynamics of a point particle, to which the dynamics
(6.12) are equivalent. If the interaction potential is either stiff or soft compared to the
monomer potentials, one variable can be eliminated from the equations of motion, ruling

7In particular, we do not know these “symmetries” a priori, e.g. no-go theorems.
8For d > 0, the potential has a second minimum and for d = −5 1

3 , the turning points coincide, i.e.
the potential is convex again. For sufficiently small d, a second minimum develops.
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out SSBT. Two representative examples of (6.32), matching the monomer potential (6.9)
in their shape, are drawn in figure 6.1.

As a second example, we consider the Lennard-Jones potential, which is often used
in molecular dynamics simulations:

Uint(y) =
k

2π

[(
l

y

)12

− 2

(
l

y

)6
]

, (6.33)

see figure 6.1. It has a unique minimum at y = l with dissociation energy (well depth)
k
2π

and a single turning point at ytp = 7
13

· l ≈ 1.109 · l with Ulj(ytp) − Ulj(l) ≈ 0.213 k
2π

.
This potential is significantly different from (6.32) in that the dimer can dissociate. The
interaction force is monotonously decreasing to 0 for y > ytp. Thus, if the distance of
the monomers becomes large enough, the monomers will become trapped by the periodic
monomer potential, i.e. the slightly perturbed unique (up to translations) attractor of
the uncoupled (k = 0) deterministic dynamics. With noise, the monomers can recombine
again. We will address this issue in more detail below.

Lastly, we point out again that our dynamics will be the same if the interactions poten-
tials are shifted by an integer-linear combination of the spatial periods of the monomer
potentials, as has been noted under (6.7). In the picture of monomers with identical
monomer potentials, this means that dimers that differ in their equilibrium length l by
one spatial period of the monomer potential will have the same dynamics. This corre-
sponds to a shift of the potential minimum in figure 6.1, i.e. a change of l int (6.32) or
a translation of y in (6.33) respectively, and our following results directly apply to such
“longer” or “shorter” dimers.

6.5.1 Bound interaction potentials

From chapter 4 we know that SSBT can be expected if “everything” is of the same order,
such that the nonlinearity is not suppressed in the dynamics (6.12). From chapter 4 (see,
e.g. figure 4.4) we expect that for each, not too large or small frequency a suitable drive
amplitude a can be found. If we consider a cut in the direction of the “center of mass”
x through the total potential Utot, i.e. we fix the dimer length y, the potential looks like
a sine, the amplitude of which is modulated by the dimer length9. For y integer, the
amplitude is 1

π
, while for y = 0.5 +n with n ∈ Z, the amplitude is zero [336, 337]. Thus,

the potential barriers for the motion of the “center of mass” are somewhat smaller than
those considered in chapter 4, depending on the choice of dimer equilibrium length in the
interaction potential, i.e. l (and s in case of (6.32)).

We focus first on the potential (6.32) and choose an arbitrary dimer model, avoiding
any “symmetries” in the parameters

k =
0.75

2.1
, s = 2.1, l = 0.26, d = 0 , (6.34)

corresponding to the red curve in figure 6.1 where the value of d was chosen to get a saddle
point in the interaction potential, i.e. a second but marginally stable dimer equilibrium

9Writing the total potential in dependence of the “center of mass” x and the dimer length y, we get
Utot(x, y) = 1

π sin (πx) cos (πy) + Uint (y).
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Figure 6.2: Phase diagrams for the dynamics (6.12) with Γ = 0, F = 0, Ω = 0.4 and
interaction potential (6.32) with parameters (a) d = 0, l = 0.26 and s = 2.1; (b) d = 0,
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figure 6.4, i.e. dark red indicates to a pair of SSBT attractors and no other phase-locked
attractors, desaturated dark red to a pair of SSBT attractors coexisting with bounded
attractor(s), grey to bounded attractors, and white to no (found) phase-locked attractors.
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length. Moreover, to study SSBT we fix

Γ = 0 and F = 0. (6.35)

To get an idea of the SSBT parameter region of the dynamics (6.12) with the in-
teraction potential (6.32), we have considered a number of frequencies of order 1 and
calculated phase diagrams in which a and one of the interaction potential parameters k,
l, s or d is varied while all remaining parameters are kept fixed at the values given by
(6.34). We have found SSBT for frequencies 0.05 < Ω < 2, and henceforth focus on the
convenient choice

Ω = 0.4 (6.36)

(i.e. neither too large or too small for the given potential), except where otherwise noted.
The results are shown in figure 6.2. There are always several separate regions of SSBT,
each corresponding to a “tongue” (see section 4.9.2) since we are considering a frequency
well below the threshold frequency beyond which SSBT vanishes (see section 4.8 and
section 4.9). The parameter regions of l (figure 6.2(b)) and k (figure 6.2(a)) are rather
narrow and depend somewhat on the choice of Ω, corresponding to the subtle matching
of the monomer dynamics with the interaction dynamics giving rise to SSBT, see below
(section 6.5.2),

Physically interesting are the values of l for which SSBT is found, 0.16 < l < 0.35.
Since we have ymin = l + 0.238, these values correspond to equilibrium dimer lengths
around ymin ≈ 0.5, i.e. a significantly reduced total potential barrier height in the direc-
tion of the “center of mass” x (note that for ymin = 0.5 we would always get (possibly)
unstable periodic orbits corresponding to free, i.e. with a flat monomer potential, oscil-
lations of the dimer, which we avoid). The metastable dimer length y = l is thus about
a fourth of the monomer potential period corresponding to significantly larger barrier
heights. Note that the same behavior will be found for l shifted by integers due to the
periodicity of the monomer potentials, as has been noted above.

The range of s values for which SSBT is found for all remaining parameters fixed
is rather narrow (not shown). Basically, an increase of s increases the slope of the
interaction potential which becomes too stiff/soft for only moderate changes in s (see
also the behavior upon changing l and k in figure 6.2(a-b)). Therefore, we scale k with s
in figure 6.2(c) as

k̃(s) = k · s, (6.37)

i.e. we change the distance between ylp and ymin and keep the slope at the same level.
With that scaling, the region of s values for which SSBT is found is quite large, and the
particular choice of s has no significant impact on the occurrence of SSBT, but there are
optimum values.

With respect to the choice of d, we have not found a significant impact of that choice
as long as the potential is not too close to being convex, i.e. d is not too close to −51

3
. For

the model parameters (6.34) SSBT vanishes already around d ≈ −1, and the optimum
choice is d ≈ 0 (not shown). For only slightly different values of the remaining interaction
potential parameters much smaller values of d support SSBT, i.e. that SSBT is not found
for d < −1 for our choice (6.34) is not due to the potential being “too convex” but a
feature of our chosen parameters. Therefore, we consider a slightly different value for the
dimer length, l = 0.16, to consider the influence of d on the parameter region of SSBT
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and obtain figure 6.2(d). As expected, the width (in the a direction) of each separate
parameter region of SSBT shrinks as d gets closer to −51

3
, i.e. the potential becomes

convex. Numerically, we have found SSBT with very narrow regions of existence up to
d . −4, cf. figure 6.2(d). We expect expect to be able to find SSBT (possibly unstable)
for even smaller values of d, though there does not seem to be much practical use in this,
as the regions of existence are very narrow in all directions in that case, resulting in a
very low noise resistivity.

As discussed above, the choice of the frequency Ω is not critical for the occurrence
of SSBT, and the influence is basically as in chapter 4. As an example we consider the
dimer model corresponding to (6.34) yielding the expected tongue structure in figure
6.4(a). Comparing with e.g. figure 4.4 or figure 4.18(a), the same structure is recovered,
only that transport is restricted to one direction due to the bound interaction potential10.

6.5.2 Mechanism of SSBT

In section 4.9 the origin and properties of SSBT orbits were discussed in detail. In short,
SSBT orbits spontaneously break the reflection symmetry by dissipating the drive energy
during one half period of the drive and use the drive energy during the other half period
to achieve (spontaneous symmetry breaking) transport. In section 4.9 this was achieved
by the coordinate of the particle position transverse to the transport direction. If the

10Considering e.g. a periodic interaction potential somewhat similar to [38], transport would be two
dimensional, and we have found results basically equivalent to chapter 4 in the case of a sine interaction
potential, as expected.
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particle was “trapped” between potential maxima at the borders of the transporting
channel, drive energy would be dissipated, and if the particle was close to the middle of
the transporting channel, the drive energy could be used to achieve transport.

Basically, the same mechanism is at work here. We show a representative example
of a pair of SSBT orbits in figure 6.3, Here, the parameter determining the “instan-
taneous dimer mobility” with respect to the driving force is the dimer length: if the
dimer length is commensurate with half the spatial period of the monomer potentials,
the forces due to the monomer potentials cancel, and the corresponding “instantaneous”
dimer mobility is high, i.e. the dimer reacts to an applied force by moving “quickly” into
the direction of that force. If the dimer length is commensurate with the spatial period
of the monomer potentials, the forces due to the monomer potentials add up, and the
corresponding “instantaneous” dimer mobility is low. If these states of “instantaneous”
mobility are synchronized with the periodic drive such that during one drive half period,
the “instantaneous” mobility is high, and it is low in the other half period, the result will
be transport in the direction of the periodic drive during the high “instantaneous” mobil-
ity half period of the drive. Since it is “normal” for a nonlinear dynamics to synchronize
with an externally applied periodic driving force, such a “special” synchronization not
unrealistic.

That is exactly the case for the majority of SSBT attractors that we have found. An
example is shown in figure 6.3: for the left orbit, carrying transport in the +x direction,
the dimer length is around y ≈ 0.5, i.e. the equilibrium length, during the first half period
of the periodic drive, i.e. positive forces, and the dimer advances by about one spatial
period during that half period. When the driving force amplitude becomes small around
the time at which the drive changes sign, the dimer is compressed to the metastable length
y = 0.26, because both monomers “relax” towards the same monomer potential minimum.
The dimer remains in this configuration for most of the second half period of the periodic
drive, i.e. negative forces. Towards the end of that half period of the periodic drive,
the current monomer positions “straddle” a monomer potential maximum, and when the
driving force becomes smaller and changes sign, the dimer switches to the y ≈ 0.5 length,
because the monomers cannot relax towards the same monomer potential minimum.

6.5.3 Consequences of SSBT

Systematic transport being restricted to one dimension, the effects of SSBT on trans-
port are as discussed in section 4.11, i.e. deterministic diffusion with a divergent (with
Γ → 0) diffusion coefficient, the transport properties depend sensitively on the system
parameters, and ANM. We will focus on the latter, since it is absent in all other dimer
models considered in the literature (to our knowledge). To discuss ANM, we proceed as
in chapter 4, i.e. we consider the regions of existence of SSBT at F = 0 in a suitable
cut through parameter space. Here we use again the Ω-a plane in order to be able to use
the relation between frequency and damping coefficient to exploit the heuristic reasoning
from [1, 2] and section 4.11.2.

The results are given in figure 6.4. Similar to the previously discussed overdamped
SSBT induced ANM, upon switching on the bias force and breaking S̃0 symmetry, the
previously coexisting regions of existence of SSBT attractors (see figure 6.4(a)) separate.
The regions of existence of attractors transporting in the direction of the bias force
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Figure 6.4: (a)-(c): phase diagrams for the dynamics (6.12) in the a-Ω parameter plane
for Γ = 0 and the interaction potential (6.32) with (6.34) and various values of the
force as indicated in the panels. (d-f): average velocity of one monomer. (d): depend-
ing on the force F and the noise strength Γ for parameters corresponding to the ’+’
in (a),(b),(c),(e),(f). (e)-(f): for the same region of parameter space as in (b)-(c), but
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responds to the color palettes used in e.g. figure 5.2, see the legend in (a). Dark red
corresponds to a pair of SSBT attractors and no other phase-locked attractors, light red
to an attractor transporting in the direction of the bias force, blue to an attractor trans-
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grow and move roughly towards increasing frequencies and (as in section 4.11.2) drive
amplitudes, and the regions of existence of attractors transporting against the bias force
shrink and move roughly towards decreasing frequencies and drive amplitudes, i.e. into
the opposite direction (see figure 6.4(b,c)). The borders of the SSBT regions at F = 0
in the direction of decreasing frequencies and drive amplitudes are quite frequent, and
ANM is readily found at these borders. The regions of existence of SSBT attractors
at F = 0 being mostly surrounded by regions of existence of bounded attractors, the
already discussed mechanism of noise induced ANM (see section 4.11.2 and section 4.19)
and movement of regions of noisy ANM upon increasing the noise strength (not shown)
is at work.

As already found in chapter 4, the “simplest” SSBT attractors survive “best” in the
presence of noise and bias forces opposite to the transport direction, and at the considered
noise strength, ANM is found for the tongues corresponding to the smallest oscillation
amplitudes, i.e. smallest a and Ω. The noise resistivity of ANM is further detailed in
figure 6.4(d), with a particular choice of parameters corresponding to the ’+’ in panels
(a),(b),(c),(e) and (f) exhibiting noise induced ANM due to the known mechanism [2, 63].
The maximum noise strengths and bias forces against which transport in the direction
opposite to the bias force is sustained are of order F . 0.04 and Γ . 4 · 10−4, which is in
line with the results from section 4.19 considering the differences in the potentials barrier
heights.

6.5.4 Unbounded interaction potentials

Next, we consider our second model interaction potential, (6.33), which has only one
turning point ytp, i.e. is concave for y > ytp, and convex for y < ytp. Therefore, the
potential cannot become large for large y, and the interaction forces holding together the
dimer vanish with y → ∞. Therefore, for y ≫ 1 the monomers are effectively decoupled
and single particle dynamics apply.
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6.5.5 Uncoupled dynamics

For our purposes, the main property of the uncoupled dynamics is that all deterministic
solutions for a given set of parameters have the same asymptotic average velocity. There
are no unbounded solutions in the uncoupled dynamics for F = 0 (and Γ = 0) due to
symmetry and the low dimensional phase space, i.e. the monomers are trapped. In the
presence of noise, the dimers diffuse unbiased for F = 0, while the diffusion is biased if a
constant bias force F > 0 is applied. In that case, the single particle dynamics features
Shapiro steps, i.e. unbounded solutions locked to the periodic drive, and the diffusion may
be significantly enhanced at the borders the Shapiro steps [267–269]. For small values
of the bias force such Shapiro steps are found directly around the symmetry breaking
bifurcations of the unbiased F = 0 single particle dynamics by a similar mechanism
as discussed in section 4.17. In figure 6.5(b)-(c), the diagonal desaturated red stripes,
corresponding to transport in the direction of the bias force, and which are not present at
F = 0 (panel (a) of figure 6.5), are these Shapiro steps. For small values of the bias force,
this enhancement of diffusion is due to the competition between the transporting phase-
locked Shapiro steps and bounded solutions. Thus, around these values in parameter
space, the recombination time for decoupled monomers is significantly reduced. Moreover,
due to the uniqueness of the average velocity of the uncoupled dynamics, there is always
only one solution (up to periodicity) due to decoupled monomers.

6.5.6 Interplay of coupled dynamics and uncoupled dynamics

Coupled monomers forming a dimer feature basically the same dynamical behavior as
already discussed in section 6.5.3. At F = 0 (see figure 6.5(a)), the regions of exis-
tence of SSBT attractors form repeated tongues, as in figure 6.4(a), and always coexist
with trapped solutions corresponding to dimers with large y, i.e. effectively decoupled
monomers. At the borders of the SSBT regions towards decreasing frequency and drive
amplitude, ANM results upon breaking the symmetry, cf. figure 6.5(b)-(c), as has already
been discussed in section 6.5.3. Furthermore, around symmetry breaking bifurcations of
the decoupled dynamics, Shapiro steps carrying transport in the direction of the bias
force emerge. As has been noted above, the “new” diagonal transporting stripes in figure
6.5(b)-(c) having no corresponding transporting stripe in figure 6.5(a) are the parameter
regions of these Shapiro steps.

Roughly speaking, all attractors of the coupled dynamics coexist with one attractor
corresponding to effectively decoupled monomers, either transporting in the direction of
the bias force or bounded. If a dimer trajectory decouples, it is trapped on an decou-
pled attractor until the monomers reach a partner and recombine. The time until that
happens depends on the diffusion constant of the decoupled dynamics. At F > 0 and
at certain places in parameter space, the regions of existence of coupled dynamics at-
tractors meet the lines in parameter space where the uncoupled dynamics switche from
bounded to unbounded. We expect transport to be particularly efficient around these
lines if dissociated dimer states play any role at all, since decoupled monomers will have
lower waiting times to reform a dimer due to the enhancement of single particle diffusion
[269].

Considering an ensemble of monomers on some substrate, a straightforward appli-
cation of this behavior would be to sort monomers from dimers by condensation [235].
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Note that separation is only possible if the reactants can pass each other, i.e. in more
than one dimension. But our results are easily generalized to that case for, e.g. effec-
tively 1D transport channels on a substrate between which hopping is possible. Moreover,
taking into account another (rotational) degree of freedom does not destroy SSBT, but
only changes the parameters [5, 392], see also chapter 7. If one considers parameters
such that dimers are transported against the bias force (ANM) and uncoupled monomers
in the direction of the bias force (either via biased diffusion or ballistic transport on a
Shapiro step), one gets an effective mechanism for separation. Moreover, if there are
different dimer configurations, or different dimers, these can be separated along the lines
of “normal” SSBT, i.e. the different species will typically belong to different transport-
ing attractors and thus migrate in different directions. Using only diffusion for sorting
would be possible as well by considering the unbiased F = 0 dynamics11 and parameters
such that the dimers exhibit SSBT. Then the diffusion coefficient diverges for Γ → 0, i.e.
dimers diffuse very fast for sufficiently small noise strengths.

Whether dissociation of the dimers is relevant in practice depends on the nature of
the deterministic attractors and, in particular, on the noise strength. Basically, if there
is a deterministic attractor corresponding to a bound12 dimer, which usually is the case,

11One can also consider the biased dynamics, of course, and use the resulting biased diffusion.
12In the sense of not dissociated.
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thermal noise has to induce an escape from that attractor to a deterministic attractor
corresponding to a dissociated dimer.

The pseudopotential barrier separating these attractors is influenced by the entire time
dependent dynamics of the dimer and is rather complicated [145, 263]. In particular, it is
not only due to the higher interaction potential energy of the dissociated dimer compared
to the bound dimer. But, in a rough picture, the latter may be seen as an approximation
of the real potential barrier which has to be overcome by noise. For our example potential
(6.33) with k = 1 and l = 1.25, we have found that transporting stochastic trajectories
corresponding to transporting attractors of the bound dimer typically do not extend
much beyond y = 2 · l. Therefore, the potential energy difference between the maximum
length of the dimer due to the bound dynamics and the dissociated dimer is very large
compared to the thermal energies at which ANM induced by SSBT vanishes. As a result,
dissociation of an initially bound dimer practically does not happen. Typical trajectories
for dimers initiated in the bound state at two different sets of parameters are shown
in figure 6.6(a-c). Panel (c) shows the bare interaction potential difference between the
current dimer length y(t) and the dissociated state, the minimum energy differences being
of order of 0.1 and thus much larger than the noise strength Γ = 1 · 10−4. That noise
strength is about 1

2
the maximum noise strength at which transport against the bias

force vanishes for the given parameters anyhow. Panels (d)-(e) show typical trajectories
when the dimer is initiated in the dissociated state. As has been noted above, if the
parameters are close to a transport affecting bifurcation of the dissociated dynamics,
the diffusion of the dissociated monomers is enhanced significantly, as shown by the red
trajectories. In contrast, if parameters are far from such a bifurcation, the dissociated
monomers do not diffuse at all during the selected time frame and noise strength. Thus
a mixture of dissociated monomers and dimers would behave drastically different for
the two sets of parameters despite the bound dimer dynamics being similar. I.e. for
the parameters corresponding to the red curves, dissociated monomers diffuse and will
eventually recombine. During diffusion the monomers migrate in the +x1 direction, while
dimers migrate in the −x1 direction. In contrast, for parameters corresponding to the
cyan curves, monomers are effectively trapped, while dimers are transported in the −x1

direction. If one considers parameters for which the dissociated monomer dynamics are
transporting via a Shapiro step, one has the situation of monomers migrating in the +x1

direction without significant diffusion, and thus without recombining. If then the dimers
exhibit ANM, one also gets separation of dimers and monomers.

6.6 Asymmetric dimers

If both monomers are identical and the interaction potential is bistable, we have observed
basically the same dynamical behavior as discussed in section 6.5.1. E.g. if we replace
the saddle of (6.32) with a local minimum, the dynamics are qualitatively unchanged.
Therefore, we will not discuss bistable interaction potentials with identical monomers
further.

The more interesting situation is found if two different monomers are coupled via a
bistable symmetric interaction potential. This situation corresponds to a S0 symmetric
dynamical system. Each of the two equilibrium configurations corresponds to a state with
broken reflection symmetry and thus to an effective ratchet model [393, 394], and the two
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Figure 6.7: (a) Double ratchet potential (6.38) for l̃ = 5
2π

. (b)-(c) phase diagram for the
coupled ratchet model corresponding to the potential in (a) for a = 2, Γ = 0 and (b)
F̃ = 0 and (c) F̃ = 0.02. The color palette corresponds to the one used in, e.g. figure
6.4(a).

states are images under S0 of each other. We have found the dynamics of asymmetric
dimers to be qualitatively very similar to those of a single particle in a similar, but not
equivalent, 2D potential as in [393] and will now consider this situation.

The single particle potential is

Udr(x̃, ỹ) =
1

2π

(

sin(2πx̃) · sin(2πỹ) + cos(2πx̃) + cos(2πỹ) +
1

2πl̃4
·
(

ỹ2 − l̃2
)2
)

(6.38)

with the particle position ~r = (x̃, ỹ). An example of the potential for l̃ = 0.78 is shown

in figure 6.7(a). The particle is subjected to a sinusoidal rocking driving force ~A(t) =

a sin (Ωt)~eα, a constant bias force ~F = F~ex̃ and Gaussian white noise of strength Γ. The
equation of motion is (analogous to (4.1))

~̇r(t) = ~A(t) + ~F − ~∇Udr(~r(t)) +
√

2ηΓ~ξ(t) (6.39)

with 〈ξi(t)ξj(s)〉 = δijδ(t − s), and the dynamics are S0 symmetric. Both equilibrium
configurations of the quartic term in (6.38) correspond to states with broken reflection
symmetry, or “transport channels” of the potential. SSBT is readily found for a = 2 and
0◦ < α . 56◦ with α = 0◦ corresponding to a drive in the x̃ direction, see figure 6.7(b).

Upon closer inspection, SSBT at α = 0◦ corresponds to spatially separated trans-
porting attractors, each attractor “living” in one half (i.e. ỹ < 0 and ỹ > 0) of the
transporting channel. If one removes e.g. the lower half ỹ of the transporting channel,
the attractor in the upper half is not affected. In that sense, the attractor resembles that
of a one dimensional ratchet model, but the no-go theorem from [1, 2] does not apply

directly. Applying a bias force ~̃F = F̃~ex̃ with F̃ > 0, each ratchet shows the “normal”
1D response behavior. In turn, for F̃ > 0 there are no regions around α & 0 where the
attractor transporting against the direction of the bias force does not coexist with the
attractor transporting in the direction of the bias force, cf. figure 6.7(c).

Thus, ANM is not found for the attractors corresponding to α = 0◦ SSBT. The
situation is different if the driving force is rotated to about α ≈ 45◦. Then the oscillations
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imposed by the driving force destroy the quasi one dimensional two state structure. In
turn, ANM is found along the lines of chapter 4. Moreover, taking into account the
potential barrier heights, noise resistivity is again in line with the results from chapter 4
(for α 6= 45◦), as are the maximum forces against which transport is sustained.

We have found qualitatively the same behavior for various models of overdamped
single particle dynamics in globally symmetric two dimensional potentials, but which
break the symmetry locally. In particular, we have considered potentials that are periodic
in both directions, e.g. ratchet potentials (in the x direction) arranged with alternating x
directions in the y direction, such that the potential is reflection symmetric with respect
to a reflection across the origin but not with respect to a reflection across the x axis. A
particularly simple example is a periodic potential whose elementary cell consists of two
pairs of spatially separated Gaussian potential wells, each pair forming a ratchet (e.g.
the wells have different depths), and arranged such that the total elementary cell of the
potential is S0 symmetric. These models can be constructed such (if the potential wells
are arranged along lines) that for a driving force parallel to the ratchets, the lines parallel
to the ratchet direction are one dimensional invariant manifolds of the dynamics. On these
manifolds, the no-go theorem from [1, 2] applies in the deterministic case, yielding an
analytic example where deterministic ANM is rigorously ruled out for a specific direction
of the driving force despite SSBT being at work.

As noted above, we have found the same behavior for asymmetric dimers with sym-
metric bistable interaction potentials when considered as a single particle in a two dimen-
sional “channel” similar to the model (6.39), in particular with respect to the direction
of the driving force in the 2D potential. This implies that the monomers have to interact
differently with the periodic drive such that the direction of the driving in the equivalent
single particle dynamics is not a “trivial” direction.

6.7 Conclusions

We have shown that monomers interacting via convex interaction potentials do not show
SSBT and ANM. Dimers with non-convex interaction potentials, or more general models
of single (effectively) mass less particles in two dimensional potentials which are non-
convex and bound in one direction, have a rich dynamical behavior due to SSBT. We have
discovered qualitatively similar results as in chapter 4, the difference being that systematic
transport is restricted to one spatial dimension. In particular, noise resistivities and
maximum load forces against which transport can be sustained are of similar magnitudes.

Overdamped single particle dynamics in two dimensional potentials consisting of “al-
ternating ratchet channels” are very similar to models of asymmetric dimers with a sym-
metric interaction potential in a spatially one dimensional symmetric potentials. These
models are examples of systems exhibiting SSBT while ANM can be rigorously excluded
(if the attractors are particularly simple), ruling out chaos and giving another hint at the
close connection of SSBT induced ANM and chaos.

Our model systems are of a simple and minimal nature, the main requirement be-
ing non-convex interaction potentials13, symmetry, and non-equilibrium conditions. Our

13Actually, realistic interaction potentials should be non-convex, since the restoring force should vanish
for large monomer distances, but this non-convex regime might actually correspond to a destruction of
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conclusions can be extended to a broader class of systems, in particular more (spatial)
degrees of freedom, finite inertia, different forms of driving, such as a flashing potential
or (inherently) weakly broken spatial symmetry, and our results should apply to many
different dynamics with an internal degree of freedom. Moreover, we expect our results
to be applicable also to systems with more internal dynamical degrees of freedom or more
complex internal dynamics, such as a droplet on a surface, a (bio-) molecule interacting
only at a few specific sites with a surface onto which it is absorbed, or two linked col-
loids, e.g. via a DNA strand [220, 277]. The effects might be observed as, e.g., negative
absolute resistance in superconducting rings containing several weak links and various
forms of coupling (e.g. inductive, resistive, capacitive) [7, 107, 278, 279, 285, 381, 395–
401], spontaneous transport and ANM14 in (symmetric generalizations of) motor protein
models [367, 368], surface dynamics of dimers (or more complex objects) [353] or col-
loidal particles [375] and spontaneous, or negative, friction in nanofriction experiments
[402–404]15.

the physical system and might not be covered by a simple model.
14which could be applied to sorting
15If the spring potential of the tip-sample interaction is sufficiently soft, or possibly mediated by a

some sort of a linker molecule, such that the actual area of contact may move by several lattice periods
independent of the cantilever position, the combined potential of the surface and the cantilever/linker
correspond to a soft bound (harmonic) potential, due to the cantilever/linker, modulated by a periodic
potential due to the surface (see Fig. 4 of [402]). In that picture, the bound (harmonic) potential induces
a position dependent bias force, which is controlled by the position of the cantilever relative to the area
of contact. If, under these circumstances, the area of contact is such that it has some sort of internal
dynamics, e.g. the deformation of a nanodroplet or an atomic force microscope (AFM) tip with multiple
apexes, and some sort of periodic driving, such as mechanical agitation of the sample, an applied ac
electrical field [405] or modulation of the cantilever position [403, 406], is applied, our model might apply
as a rough approximation. The resulting “spontaneous” movement of the contact area might manifest as
“spontaneous” or negative friction in the experiment, i.e., depending on the particular response behavior
of the model, the cantilever would be “spontaneously” deformed without actually moving the cantilever,
the cantilever might be deflected opposite to the expected deflection due to “normal” friction if the
cantilever is moved, or the area of contact might perform “spontaneous” oscillations as in [407].
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Chapter 7

Chiral separation

Stereoisomers are molecules containing exactly the same constituents but arranged dif-
ferently and have different chemical, biological and pharmaceutical properties but share
many physical properties (such as mass). A special subclass are chiral molecules, i.e.
molecules which are not identical to their mirror images, also called enantiomers. Chiral
molecules share even more physical properties than general stereoisomers, e.g. volume,
charge, melting temperature (dissociation energy) etc. will be exactly identical for enan-
tiomers. Nevertheless, enantiomers may have drastically different biological and phar-
maceutical properties, such as a chiral molecule having a medical use, while its chiral
partner, i.e. its mirror image, is toxic [69, 70].

Several methods to separate a chiral molecule from its symmetry partner have been
put forth. Commonly used are techniques employing a chiral selector [70–74], i.e. a
molecule or structure which in itself is chiral (i.e. breaks reflection symmetry) and allows
to separate enantiomers by interacting differently with the two partners, such as different
binding affinities. Usually, chiral selectors are highly specific, and most chiral molecules
require a different chiral selector. Thus, less specific methods are of great interest, and
several concepts employing asymmetric devices have been put forth, mostly microfluidic
flows breaking reflection symmetry. Using microfluidic vortices, spatial separation of
chiral molecules was theoretically predicted in [79]. Shear flows leading to a lateral
migration which is different for the chiral partners have been considered theoretically
in [75–78] and experimentally in [80–83] with chiral objects of sizes from centimeters
to micrometers. Asymmetric parabolic flow profiles are predicted to lead to different
longitudinal migration speeds of the chiral partners in [67, 68]. Another way of breaking
mirror symmetry in the device and achieving separation is to use circularly polarized
light, with which the chiral partners interact differently [408], and has been considered
theoretically in [409].

Using an achiral device (i.e. a device having a reflection symmetry, see [84] for some
fundamental thoughts), [85] predicts chiral crystals sliding on an inclined but otherwise
(reflection) symmetric surface to separate transverse to the slope, the magnitude of the
effect being the main obstacle to a practical implementation. Here, we will overcome this
limitation by considering a structured but symmetric inclined (i.e., a constant bias force
is applied) surface. Our main idea has already been discussed in chapter 2 and can be
summarized as follows. If the bias force is parallel to the reflection line of the symmetry
of the surface, the dynamics of a point particle are reflection symmetric across that line.
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Each path of the point particle, in a particular realization of the experiment, has the same
probability as the mirror image of that path across the reflection line of the symmetry.
Hence, the average velocity of a point particle sliding down the surface has to be parallel
to the reflection line.

A similar reasoning applies to the dynamics of an extended molecule. The difference
is that the probability of the extended molecule, sliding down the surface in a particular
realization of the experiment, taking a particular path, is the same as the probability of
the mirror image of that molecule taking the mirror image (with respect to the reflection
line of the symmetry of the potential) of that path. Hence, the average velocity of a
chiral, i.e. not identical to its mirror image, molecule, sliding down the surface, is not
necessarily parallel to the reflection line of the symmetry. Rather, the average velocity of
the chiral partner, is the mirror image of the average velocity of the molecule. Formally,
this can be expressed by (2.27). Thus, if a chiral molecule, sliding down the surface, is, on
average, displaced orthogonal (transverse) to the reflection line from its initial position,
its chiral partner will be displaced, on average, in the other direction transverse to the
reflection line.

Adding a time-dependent driving force, the magnitude of the effect can be enhanced
dramatically, and the chiral partners can even be made to move into opposite directions.
These results have been published in the following paper [5], which is the basis of our
discussion in the remainder of this chapter.
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7.1 Preprint of [5]

D. Speer, R. Eichhorn, and P. Reimann, Physical Review Letters 105, 090602 (2010),
Copyright (2010) by the American Physical Society

Exploiting lattice potentials for sorting chiral particles

David Speer1, Ralf Eichhorn2, and Peter Reimann1

1Universität Bielefeld, Fakultät für Physik, 33615 Bielefeld, Germany
2NORDITA, Roslagstullsbacken 23, 10691 Stockholm, Sweden

Several ways are demonstrated of how periodic potentials can be exploited for sorting molecules
or other small objects which only differ by their chirality. With the help of a static bias force, the
two chiral partners can be made to move along orthogonal directions. Time-periodic external forces
even lead to motion into exactly opposite directions.

PACS numbers: 05.40.-a 05.60.-k,05.45.-a

Chiral particles are extended objects which are non-
superposable with their mirror image. So-called enan-
tiomers, i.e. chemically identical molecular species with
opposite chirality play a crucial role in Chemistry, Bi-
ology, and Medicine due to the omnipresence of chiral
molecules in living organisms but with only one of the
two chiral partners actually being present. Accordingly,
enantiomers in drugs, pesticides etc. have very differ-
ent effects on an organism and thus their separation is
of great importance. Established methods of separating
enantiomers mostly exploit some kind of chiral selector
[1], i.e. some materials, structures, or ancillary molecules
which themselves exhibit an intrinsic chirality. Their
main disadvantage is that essentially every enantiomer
species requires a different selector. Therefore, several
alternative concepts have recently been put forward. A
first promising direction proposes to utilize appropriate
microfluidic flows, such as vortices [2] or shear flows [3, 4].
Second, photoinduced separation by means of suitably
chosen electromagnetic fields has been theoretically pre-
dicted in Ref. [5]. A third approach to exploit a structure
without an intrinsic chirality is due to de Gennes [6], pre-
dicting qualitatively that, according to Curie’s principle
[7], small chiral crystalls should slide down an inclined
plane along directions which slightly differ for the two chi-
ral partners, provided thermal noise is negligible. Here,
we further pursue this approach, showing that with the
help of periodic potentials the two chiral partners even
can be made to move into opposite directions, with re-
markable persistence against thermal noise.

Apart from “true” (bio-) molecular enantiomers, we
also have in mind chiral nano- and micro-particles, e.g.
helically shaped nonmotile bacteria [3] and artificial flag-
ellae [8], carbon nanotubes, chiral colloidal clusters [9], or
ferromagnetic nano-propellers [10]. The periodic poten-
tials we are proposing to utilize for sorting those chiral
particles may be realized e.g. by means of crystal sur-
faces [11], optical lattices [12], periodic micro- and nano-
structures [13], or magnetic bubble lattices [14].

Most of us are not very accustomed to think in terms
of chiral symmetry and symmetry-breaking, especially in
combination with the crystal symmetries of a periodic
potential. For this reason only, we mainly focus on the
simplest possible setup [2], namely the two-dimensional
dynamics in a square lattice potential of a “minimal”
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FIG. 1: (a) Solid: Triangle, specified by a, b, c. Dashed: Its
chiral partner. (b) and (c): Direction ϑ and modulus v of the
net velocity ~v = ~eϑv versus the direction α of a static bias A in
(5) by numerically solving (2)-(6) with parameters as specified
below (6). Solid: kT = 0.08, A = 3.6, a = 0.4, b = 0.23,
c = 0.34 (proportional to the solid triangle in (a)). Dashed:
Same but for the chiral partner (dashed in (a)). Dashed-
dotted and dotted: Same but for A = 10.

planar, chiral “molecule”, consisting of three identical,
rigidly coupled “atoms” or other small objects with bro-
ken mirror symmetry, see Fig. 1a. All basic effects and
mechanisms are recovered in three dimensions and also
for more general lattices, but are much more cumber-
some to visualize and explain. This very general validity
of our main results will be exemplified for various other
chiral “molecules” in the end. We thus consider the two-
dimensional dynamics

mi~̈xi(t) = −γi~̇xi(t) + ~F (~xi(t), t) + ~fi + ~ξi(t) . (1)

Dots indicate time derivatives, ~xi = ~e1xi,1 + ~e2xi,2 are
the “atom positions” (i = 1, 2, ..., N) in Cartesian coor-
dinates ~eν (ν = 1, 2), mi their mass, and γi their dissi-
pation coefficient, e.g. due to an ambient fluid. In par-
ticular, for the triangular particles (Fig. 1a) we have
N = 3 and i-independent γi and mi. The force field
~F (~x, t) is partly due to a “lattice potential” (see be-
low) and partly due to an externally applied driving,
typically via electrophoresis. Under these conditions,
hydrodynamic interactions are screened [15] and there-
fore safely negligible [2, 3]. The internal constraining
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2

forces, maintaining e.g. the triangular shape in Fig.

1a, are represented by ~fi, and thermal fluctuations are
modelled as usual by unbiased Gaussian white noise
~ξi(t) = ~e1ξi,1(t) +~e2ξi,2(t), satisfying the fluctuation dis-
sipation relation 〈ξi,µ(s)ξj,ν (t)〉 = 2γikT δijδµνδ(s − t)
with T the ambient temperature and k Boltzmann’s con-
stant. The position of the rigid “molecule” is conve-
niently specified by the so-called center of friction [2]
~X :=

∑N
i=1 γi~xi/

∑N
i=1 γi, and its orientation by the an-

gle φ between the ~e1 axis and the position of “atom 1”

relative to the center of friction: φ := �(~e1, ~x1 − ~X).

Rewriting (1) in terms of ~X and φ to get rid of the con-

straining forces ~fi is a basic mechanics exercise. Further,
for the very small objects we have in mind, inertia effects
are negligible [16, 17], yielding [2]

~̇X(t) =

∑N
i=1

~F (~xi(t), t)
∑N

i=1 γi

+ ~ζ(t) , (2)

φ̇(t) =
~e3 ·

∑N
i=1 ~yi(t) × ~F (~xi(t), t)
∑N

i=1 γi y2
i

+ ζφ(t) , (3)

~xi(t) = ~X(t) + ~yi(t) , ~yi(t) = O(φ(t))~yi(0) . (4)

In (3), vectors are temporally embedded into R
3 with

standard scalar and vector products · and ×. In (4), O(φ)
is a rotation matrix with elements O11 = O22 = cosφ and
O12 = −O21 = − sinφ. Thus, ~yi(t) are the particle pos-
tions relative to the center of friction with convention
φ(0) = 0 and with t-independent modulus yi := |~yi(t)|.
Finally, ~ζ(t) and ζφ(t) are independent Gaussian white
noises with 〈ζµ(s)ζν(t)〉 = 2kT δµνδ(s − t)/

∑
γi and

〈ζφ(s)ζφ(t)〉 = 2kT δ(s− t)/
∑
γiy

2
i .

As already said, the force field consists of two parts,

~F (~x, t) = ~eαA(t) − ~∇U(~x) , (5)

namely a spatially homogeneous, externally applied force
along the direction ~eα := ~e1 cosα + ~e2 sinα and a Gaus-
sian square lattice potential with period L:

U(~x) = u

∞∑

m,n=−∞

exp{− (~x− [m~e1 + n~e2]L)2

2σ2
} . (6)

For this potential with u > 0 and u < 0 as well as for var-
ious other potentials we always found similar results. Fo-
cusing on u > 0 from now on, the natural energy scale is
the potential barrier ∆U := U(~e1L/2)−U((~e1 +~e2)L/2)
separating adjacent potential wells. We henceforth adopt
time, energy, and length units so that mini γi = 1,
∆U = 1, L = 1, and focus on σ = L/4 [18].

The quantity of central interest is the net velocity ~v =

~eϑv, obtained by averaging ~̇X(t) over time. Obviously,
rotating the force field (5) by 90◦ leaves the potential (6)
invariant and entails a rotation of ~v by 90◦. Hence, it is
sufficient to focus on α ∈ [0◦, 90◦]. Likewise, one readily
sees that A(t) 7→ −A(t) implies ~v 7→ −~v.

We first consider t-independent A, i.e. the force field
(5) derives from a tilted periodic potential. For A = 0

symmetry implies ~v = ~0. For A 6= 0 the salient point is to
realize that there exists no symmetry argument why two
“molecules” of opposite chirality should travel down the
tilted periodic potential with identical velocities ~v. Fol-
lowing de Gennes [6], we thus can invoke Curie’s principle
to conclude [7, 16] that generically (i.e. up to parameter
sets of measure zero) the velocities will indeed be dif-
ferent. In other words, (practically) any tilted periodic
potential can separate chiral partners via their velocities.
The main remaining problem pinpointed by De Gennes
is the quantitative efficiency of the effect.

Fig. 1 provides those quantitative details in a typical
case. We see that the velocities ~v of the two chiral part-
ners are indeed disappointingly similar, except around
α = 45◦. The explanation is as follows: For small ther-
mal energies kT and small bias A, the particles travel
extremely slowly by thermally activated hopping from
one local minimum of the tilted periodic potential to the
next. For any given orientation α there exists a critical
tilt A in (5) at which certain local minima disappear by
annihilation (collision) with saddle points, giving rise to
“running solutions”. For kT = 0 (deterministic limit),
these solutions travel either parallel to ~e1 or to ~e2, and
for small kT > 0 still almost so. Roughly speaking, the
direction “closer” to that of the static bias ~eαA is pre-
ferred, but due to the broken mirror symmetry, the di-
rection actually switches already at some α < 45◦ for
one chiral partner and symmetrically at α > 45◦ for the
other (solid and dashed in Fig. 1). Since these consid-
erations do not depend on any details of the model we
can conclude that a separation by (almost) 90◦ is generic
for α = 45◦, small kT , and A close to criticality. Upon
further increasing A, the deterministic running solutions
speed up and bifurcate into new ones, “locked” [12, 17]
along directions of the form n~e1 +m~e2 with increasingly
large integers n and m (dashed-dotted and dotted in Fig.
1) and with ~v → ~eαAN/

∑
γi for A → ∞. Likewise, for

finite kT the deterministically “sharp” bifurcations get
washed out (Fig. 1) and ~v → ~eαAN/

∑
γi for kT → ∞.

Thus focusing on α = 45◦, the dependence of the ve-
locity ~v on the bias A is shown in Fig. 2 (a,b). For sym-
metry reasons, the velocities of the two chiral partners
are now equal in modulus and symmetric about α = 45◦

(see also Fig. 1). Remarkably enough, for some A-values,
one triangle moves (practically) parallel to ~e1 (Fig. 2c)
and thus its chiral partner parallel to ~e2 (not shown in
Fig. 2), while for some different A-values it is exactly the
other way round (Fig. 2d). In other words, one and the
same triangle may move along orthogonal directions for
two different A-values.

Turning to periodic A(t) in (5), our so far findings quite
naturally suggest the following idea: We select α = 45◦

and two static bias values A1 and A2 with velocities
~v1 = v1~e1 and ~v2 = v2~e2 (e.g. A1 = 4 and A2 = 6
for the solid lines (kT = 0.014) in Fig. 2a,b) and exploit
that the signs of v1 and v2 can be arbitrarily chosen by
adjusting the signs of A1 and A2 (recall that A 7→ −A
implies ~v 7→ −~v). If we now construct a time-periodic
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FIG. 2: (a) and (b): Direction ϑ and modulus v of the net ve-
locity ~v = ~eϑv for the solid triangle from Fig. 1a versus static
bias A with fixed direction α = 45◦. Shown are numerical so-
lutions of (2)-(6) for kT = 0.014 (solid), kT = 0.16 (dashed),
and kT = 0.32 (dotted). Other parameters as in Fig. 1. (c)
and (d): Illustration of the triangle’s motion for A = 4 (c)
and A = 6 (d) at kT = 0.014. The static bias is indicated

by ~A := ~eαA and the periodic potential (6) as “shaded back-
ground”. The triangle motion is shown for a time-span of
about 14.5 time-units in (c) and about 8.5 in (d), and then
continues periodically up to noise effects (not shown).

A(t) which takes the value A1 during a fraction p ∈ [0, 1]
of its total period τ and the value A2 during the rest of
the period, the resulting time averaged velocity will be
~v = p~v1 + (1− p)~v2, provided τ is so large that transient
effects after each jump of A(t) are negligible. Therefore,
the molecule can be steered into any direction on the two-
dimensional plane by varying p and adapting the signs of
A1,2. In particular, we will encounter a situation where
~v is orthogonal to the force direction ~eα. E.g. from the
solid lines in Fig. 2 we can read off that the triangle will
move with such a velocity ~v ⊥ ~eα if we choose A1 = −4,
A2 = 6, and p ≈ 2/3 to account for the difference in
modulus of the corresponding velocities ~v1 ≈ −1.2~e1
and ~v2 ≈ 2.4~e2. The net velocity ~v of the chiral part-
ner follows from the above mentioned symmetry about
α = 45◦: This symmetry applies to both ~v1 and ~v2 sepa-
rately, and hence also to ~v = p~v1 +(1−p)~v2. Altogether,
the two chiral partners can thus be forced to move into
exactly opposite directions. Deviations due to the so far
neglected transient effects after each jump of A(t) are –
at least for not too small τ -values – small and thus can
be compensated by adjusting p and/or A1,2.

Fig. 3 shows that these ideas indeed work out in prac-
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FIG. 3: (a): Absolute velocity v versus thermal energy kT
(logarithmic scale) for the same system as in Fig. 1 but with
a τ -periodic driving ~eαA(t) with α = 45◦ and A(t) taking
the value A1 = −4 during a fraction p of the period τ and
the value A2 = 6 during the rest of the period. (b): The
corresponding p-values, adjusted as described in the main text
so that the two chiral partners move into exactly opposite
directions. (c) Typical single-particle trajectories ~X(t) for the
two chiral partners (light red and dark blue) with t ∈ [0, 100],
~X(0) = ~0, kT = 0.02, p = 0.66, and τ = 6. Other parameters
as in (a). The bar indicates 50 lattice periods and the double
arrow the periodic driving [18]. (d) Same but for a much
larger thermal energy kT = 0.32 and t ∈ [0, 6000], p = 0.69.
(e) Same as in (c) but for a very different triangel with a = 2.5,
b = 2.2, c = 1.1 (cf. Fig. 1), and a driving with A1 = −7,
A2 = 14, p = 0.8 [18].

tice, and in fact down to surprisingly small time-periods
τ and up to remarkably large thermal energies kT . Note
that while the velocities in Fig. 3a are long-time aver-
ages, Figs. 3c-e exemplify single-particle trajectories of
moderate duration. Hence the thermal noise still leads
to quite notable random fluctuations of each trajectory
~X(t) around the average behavior, especially in Fig. 3d.
Only in Figs. 3c,e we still can see the expected “steps”

of ~X(t) at jumps of A(t).
Our above recipe for tailoring transport directions can

be readily extended to arbitrary velocities ~v1 and ~v2, pro-
vided they are not parallel to each other: Then, as be-
fore, ~v = p~v1 + (1− p)~v2 can be made to point along any
direction by properly choosing p and the signs of A1,2.
Intuitively and in view of Fig. 2, it is quite clear that
generically one will always be able to find two bias values
A1 and A2 with non-parallel velocities ~v1 and ~v2. We thus
can conclude that chiral partners can (practically) always
be made to move into opposite directions by means of a
suitably tailored periodic driving force. Fig. 3e exempli-
fies this generalized theoretical scheme for comparatively
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~e1~e1 ~e1
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~A(t)~A(t) ~A(t)

(f)

(b)(a) (c)

FIG. 4: (a)-(c): Further examples of chiral “molecules”.
Dots indicate the constituting “atoms”, lines their rigid cou-
pling, and the “shaded background” the periodic potential
(6). Adopting units as specified below (6), γi = 1 for all
“atoms” except for the larger dots in b and c, represent-
ing γi = 3. (d) Typical single-particle trajectories ~X(t) for
the molecule from (a) and its chiral partner (light red and
dark blue), obtained by numerically simulating (2)-(6) with

t ∈ [0, 100], ~X(0) = ~0, and kT = 0.02. Parameters of the peri-
odic driving (see main text): α = 45◦, A1 = 7.8, A2 = −11.7,
τ = 6, p = 0.71. The bar indicates 50 lattice periods and
the double arrow the periodic driving. (e): Same but for
the “molecule” from (b) and A1 = 7, A2 = −10.5, p = 0.78
[18]. (f): Same but for the “molecule” from (c) and A1 = 3,
A2 = −6, p = 0.85 [18].

“large” triangular particles and Fig. 4 for a representa-
tive selection of more general chiral “molecules”. Gen-
eralizations involving more than two “static velocities”
~vi and the concomitant optimization problems point into
interesting directions for future research.

In conclusion, periodic potentials can act as very effec-
tive and versatile selectors for sorting small objects which
only differ by their chirality. Static bias forces make the
two chiral partners move into directions which differ by
up to 90◦ (Figs. 1,2). Appropriately chosen time-periodic
forces even lead to motion into exactly opposite direc-
tions (Figs. 3,4). A major advantage compared to many
other separation concepts [1] is that one and the same pe-
riodic potential may act as an efficient selector for quite
different chiral particle species by suitably adapting the
time-periodic driving force. Furthermore, the separation
mechanisms are remarkably robust against thermal noise.
The basic symmetry breaking conditions at the origin of
all these effects are generically satisfied for much more
general systems than in (1)-(6), including three spatial
dimensions, finite inertia effects, other chiral objects and
crystal potentials. An experimental proof of principle
for chiral micro-particles [8–10] moving in a periodically
structured microfluidic device [13] is presently under con-
struction in the Anselmetti lab at Bielefeld University.
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7.2 Equations of motion of a rigid body

The equations of motion of an overdamped rigid object in two spatial dimensions are
given by (1) of [5] but only one R

2 vector and one angle are needed to describe the
dynamics. Calling these the generalized coordinates, the straightforward way to obtain
them from (1) of [5] is to use Itô’s formula [89], i.e. the chain rule of stochastic calculus,
after performing the overdamped limit mi → 0 [10]. Itô’s formula for a function p(~q(t))
of the solution ~q(t) of the SDE (2.1) reads [88, 89]

dp

dt
(t) =

∂p

∂~q

d~q

dt
(t) +

1

2

∑

i,j,k

Dik
∂2p

∂qi∂qj
(t)Dkj (7.1)

after removing all terms not needed now and with the notation of chapter 2.
As generalized coordinates we choose the center of friction [79] ~X and the orientation

φ:

~X(t) =

N∑

i=1

γi

γ
~xi(t) (7.2)

φ(t) = φi(t) − φi(0) = atan

(
yiy(t)

yix(t)

)

− φi(0) ∀i ∈ [1, N ] (7.3)

~yi(t) = ~xi(t) − ~X(t) = O(φ(t))~yi(0) ∀i ∈ [1, N ] (7.4)

γ =

N∑

i=1

γi (7.5)

γφ =
N∑

i=1

γi~y
2
i (7.6)

with O(φ) =
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)

. Note that we use subscripts x and y to denote the x and

y components of vectors, e.g. Xx/y = ~X~ex/y. Applying (7.1) to (7.2)-(7.3), we get the
equations of motion of the generalized coordinates, (2)-(3) of [5]:

~̇X(t) =

∑N
i=1

~F (~xi(t), t)

γ
+ ~ζ(t) , (7.7)

φ̇(t) =
~ez ·

∑N
i=1 ~yi(t) × ~F (~xi (t), t)

γφ

+ ζφ(t) (7.8)

with independent Gaussian white noises ~ζ(t) and ζφ(t): 〈ζi(s)ζj(t)〉 = 2kTδijδ(s − t)/γ
and 〈ζφ(s)ζφ(t)〉 = 2kTδ(s− t)/γφ.

We now summarize the main steps of the derivation of these equations. First, we
require the constraining forces to satisfy

∑

i

~fi(~q) = 0 (7.9)

∑

i

~xi × ~fi(~q) = 0 , (7.10)
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i.e. there is no net internal force and no net internal torque acting on the rigid body.
(7.9)-(7.10) follow immediately if we consider pair interactions for the monomers. Let

~fi(~q) =
∑

j 6=i

~Cij(~q) (7.11)

with ~Cij(~q) =
~xi−~xj

|~xi−~xj |cij(|~xi − ~xj |), cij(|~xi − ~xj |) = cji(|~xi − ~xj |) and ~q is the phase space

vector, i.e. all the coordinates ~xi. (7.9) is then obtained by using ~Cij(~q) = −~Cji(~q), and
(7.10) follows from
∑

i,j 6=i

~xi× ~Cij(~q) =
∑

i,j 6=i

(~xi−(~xi−~xj))× ~Cij(~q) =
∑

i,j 6=i

~xj× ~Cij(~q) = −
∑

i,j 6=i

~xi× ~Cij(~q) (7.12)

since (~xi − ~xj) × ~Cij(~q) = 0.
We start with the nonstiff equations of motion, (1) of [5] and let mi → 0 (overdamped

limit [10]). Applying (7.1) to (7.2), using (1) of [5] with mi = 0, linearity and (7.9), we
obtain (7.7) ((2) of [5]) except for the noise term:

~̇X(t) =

∑N
i=1

~F (~xi(t), t)

γ
+

∑N
i=1

~ξi(t)

γ
. (7.13)

We now let the

φi(t) = atan

(
yiy(t)

yix(t)

)

∀ i ∈ [1, N ] (7.14)

vary independently of each other (nonstiff coupling potential), apply (7.1) to (7.14) and
use

∂φi

∂~xj
=

(

δij − γj

γ

)

~y 2
i

(−yiy, yix) (7.15)

∂2φi

∂x2
jx

=
2
(

δij − γj

γ

)2

yixyiy

~y 2
i

= −∂
2φi

∂x2
jy

(7.16)

to get

dφi

dt
(t) =

N∑

j=1

dφi

d~xj

d~xj

dt
= ~ez ·

N∑

j=1

(
δij

γj
− 1

γ

)

~y 2
i

~yi(t) ×
(

~F (~xj , t) + ~fj(~q) + ~ξj(t)
)

. (7.17)

Summing over all the φi, weighted to get rid of the constraining forces, we get

N∑

i=1

γi~y
2
i (t)

dφi

dt
(t) = ~ez ·

N∑

i,j=1

(

δij −
γi

γ

)

~yi(t) ×
(

~F (~xj , t) + ~fj(~q) + ~ξj(t)
)

(7.18)

= ~ez ·
N∑

i=1

~yi(t) ×
(

~F (~xi, t) + ~fi(~q) + ~ξi(t)
)

(7.19)

= ~ez ·
N∑

i=1

~yi(t) ×
(

~F (~xi, t) + ~ξi(t)
)

, (7.20)
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where we have used
∑N

i=1
γi

γ
~yi = 0 to get (7.19) and

∑N
i=1 ~yi × ~fi(~q) =

∑N
i=1 ~xi × ~fi(~q) −

∑N
i=1

~X × ~fi(~q) = 0 because of (7.9)-(7.10) to get (7.20).
Now, we perform the limit of stiff coupling1 and get

φi(t) = φ(t) + φi(0) and ~y 2
i (t) = ~y 2

i (0) ∀i ∈ [1, N ] , t > 0 (7.21)

with some arbitrary reference angle φ(t), and thus2

dφ

dt
(t) =

N∑

i=1

~yi(t) ×
(

~F (~xi, t) + ~ξi(t)
)

γφ
, (7.22)

which is (7.3) or (3) of [5] except for the noise terms. Lastly, we simplify the noise terms
by using a statistically equivalent stochastic process. The easiest way to do this without
hassle is to transform the system (7.13),(7.22) to a Fokker-Planck equation (and back).
The system (7.13),(7.22) can be interpreted as a 3 dimensional non-autonomous SDE
with a 2N dimensional Wiener process and multiplicative noise:

d~q

dt
(t) = ~Q(~q(t), t) +H(~q(t))~Υ(t) (7.23)

with the noise process ~Υ(t)T = 1√
2kT

(
1√
γ1
ξ1x(t), 1√

γ1
ξ1y(t), 1√

γ2
ξ2x(t), ..., 1√

γN
ξNy(t)

)

,

〈Υi(t)Υj(s)〉 = δijδ(t− s), the phase space vector ~q(t)T = (Xx(t), Xy(t), φ(t)) and

H(~q) =
√

2kT






√
γ1

γ
0

√
γ2

γ
0 ...

√
γN

γ
0

0
√

γ1

γ
0

√
γ2

γ
... 0

√
γN

γ

−
√

γ1

γφ
y1y

√
γ1

γφ
y1x −

√
γ2

γφ
y2y

√
γ2

γφ
y2x ... −

√
γN

γφ
yNy

√
γN

γφ
yNx




 .

(7.24)
Using (DFP )ij = 1

2

∑2N
k=1 (H)ik (H)jk [90] we get the diffusion matrix of the corresponding

Fokker-Planck equation:

DFP = kT








PN
i=1 γi

γ2 0 −
PN

i=1 γiyiy

γγφ

0
PN

i=1 γi

γ2

PN
i=1 γiyix

γγφ

−
PN

i=1 γiyiy

γγφ

PN
i=1 γiyix

γγφ

PN
i=1 γi(y

2
iy+y2

ix)

γ2
φ








(7.25)

=






kT
γ

0 0

0 kT
γ

0

0 0 kT
γφ




 , (7.26)

from which (7.7)-(7.8), i.e. (2)-(3) of [5], follow since the deterministic part of the equation
is unaffected by the transformation.

7.3 Setup

Throughout this chapter, we will consider general chiral objects which need not be “real”
molecules, but we will refer to them as molecules and to their constituents as atoms.

1We should take more care in doing so, similarly as with the overdamped limit [10].
2Actually, this step is another application of Itô’s formula, but to a linear transformation.
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Figure 7.1: Representation of the square lattice potentials with Gaussian the lattice site
potentials, i.e. (7.30)-(7.31), (a) σ = 0.25, (b) σ = 0.1 and (c) σ = 0.05. The potential
height is encoded in colors according to the legend in panel (b). The molecules (triangles)
correspond to our “standard” triangle (7.36) but the triangles in (b) have L∆ = 0.25 and
(c) L∆ = 0.05. Furthermore, the parameters b∆ (red) and h∆ (white) are illustrated.

Moreover, we restrict ourselves to rigid objects. That restriction is not necessary as long
as the dynamics are such that the configuration of the molecules is not changed (or only
with vanishing probability), e.g. one chiral partner cannot change its configuration to
that of its mirror image, but it makes the discussion much easier.

Our setup will be the dynamics of a molecule described by (7.2)-(7.8) in the force field

~F (~r, t) = −~∇U(~r) + A~eα + A′(t)~eα′ (7.27)

of a square lattice potential U(~r) (see below), a constant bias force A~eα and the rocking
driving force A′(t)~eα′ . We allow the rocking driving force to have its own direction in
contrast to [5], but unless otherwise noted we will use

α = α′ (7.28)

and otherwise keep the notation of [5]. Moreover, we will consider only a constant bias
force, i.e.

A′ = 0 (7.29)

unless otherwise noted. For the potential U(~r), we will use (4.2) and (4.4) with u = 20,
i.e.3

U(~r) =
∑

n,m

Ũ

(

x+

(

n +
1

2

)

· L, y +

(

m +
1

2

)

· L
)

(7.30)

and

Ũ(x, y) = 20 · σ · exp(− r2

2σ2
) . (7.31)

3~r = (x, y). Note that the lattice considered in [5] has been shifted by ~e1+~e2

2 (in the notation of [5])
for aesthetic reasons, and there is a typo in [5]: the equation following “... potential barrier” should read
∆U := U(~e2L/2)− U(~e1L/2 + ~e2L/2).
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Our “standard” choice for the remaining parameter will be

σ =
1

4
(7.32)

so that the potential barrier for a point particle escaping from one potential well to the
next along the x direction is approximately4 1 for our standard choice, and we get the
same setup as in [5] except for above mentioned minor differences in notation. We will
henceforth tacitly refer to the above described dynamics, and only mention differences
from these “standard” dynamics when appropriate.

Our “standard” molecule will be a trimer, parameterized as a triangle with side lengths
as in [5], but we will use a more convenient way to define the side lengths:

a∆ = L∆ (7.33)

b∆ = L∆

√
(

1

2
− b∆

)2

+ h2
∆ (7.34)

c∆ = L∆

√
(

1

2
+ b∆

)2

+ h2
∆ , (7.35)

see figure 7.1(a) for an illustration. L∆ · h∆ is the height of the triangle with respect to
the base a∆ = L∆. L∆ · b∆ is a qualitative measure of the chirality of the triangle. b∆ = 0
implies a isosceles triangle and the chiral partners are obtained by changing the sign of
b∆. Our “standard” choice for the triangle will be identical to the one shown in figure 1a
of [5] and figure 7.1(a):

b∆ = 0.2 , h∆ = 0.5 , L∆ = 0.5 , γ1,2,3 = 1 . (7.36)

At some points, we will consider “smaller” or “larger” triangles “proportional” to (7.36)
in the sense that the triangles are described by (7.36), only that L∆ is smaller/larger.
Moreover, we will always consider γ1,2,3 = 1 unless otherwise noted.

We denote the time and ensemble averaged center of friction [5] (or spatial) transport
velocity of the molecule as

~v = v~eϑ =
〈

~̇X
〉

(7.37)

with the modulus v and direction ϑ. We will add subscripts L and R to indicate that
we refer to one of the chiral partners when necessary. Unless otherwise noted, L will be
our standard choice and omitted. We quantify the separation efficiency by the separation
angle

ϑS = ϑL − ϑR (7.38)

where ϑL/R denote the transport directions of the chiral partners, L denoting the consid-
ered triangle and R its mirror image, and the separation vector

~vS = ~vL − ~vR (7.39)

with ~vL/R being the average velocities of the chiral partners and L and R as above.

4Actually, in [5] u = 1
U(0.5,0)−U(0,0) ≈ 20.24 is used for all computations, so that the barrier height is

exactly one, but the differences are negligible.
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The bare potential is Ŝx, Ŝy, Ŝxy, Ŝπ
2

and Ŝ0 symmetric. The applied forces break
some or all of these symmetries depending on their direction and nature. First, the bias
force always breaks Ŝπ

2
and Ŝ0. The line reflection symmetries will be broken unless the

bias force is parallel to the particular reflection line, i.e. at most one of the symmetries
implied by Ŝx, Ŝy and Ŝxy survives in the presence of a bias force, depending on its
direction. The time dependent drive breaks the reflection symmetries again unless it is
parallel to the particular reflection line, or orthogonal and symmetric (see section 2.4).
Moreover it always breaks Ŝπ

2
if chosen as in (7.27). Only a circular drive (see section

2.4) would keep the rotation symmetry. Ŝ0 is broken by the time dependent drive unless
the drive is symmetric (see section 2.4). Lastly, a chiral molecule breaks all line reflection
symmetries Ŝx, Ŝy and Ŝxy, but if any of these symmetries is present in the dynamics of a
point particle in the same potential (to which we will refer as “point particle dynamics”),
it maps the dynamics of one chiral partner onto the other, as has been discussed in
chapter 2:

~vR = Ŝ~vL , (7.40)

where we have called the appropriate symmetry Ŝ, and (7.40) is equivalent to (2.27).
As was already hinted at in section 2.5.3, according to Curie’s principle [14], once all

symmetries preventing transport in a given direction are broken, transport in that direc-
tion will be the generic situation. Moreover, in the same spirit, two different dynamics
which are not related by symmetry will have different transport properties. Thus we are
left with two setups:

1. The point particle dynamics have no reflection symmetry (across any line). Then
the currents of the chiral partners will be different in general.

2. The point particle dynamics have a reflection symmetry (across a line). Then, by
Curie’s principle, the current of a general chiral molecule will have a component
orthogonal to that line, and the corresponding component of the current of its chiral
partner will have the opposite sign. A special case of this situation is if the point
particle dynamics are additionally Ŝ0 symmetric. Then, there is no current, but
there may be diffusion, and (2.27) will then apply to the diffusion tensors.

Throughout this chapter, we will consider mainly the latter, but the former will be
considered in section 7.4 (figure 7.2), section 7.6.2 (figure 7.7) and section 7.9 for a
slightly different situation (namely, a locally flat potential).

7.4 “Long” molecules

Complementary to figure 1 of [5], we consider a two dimensional phase diagram of the
dynamics of our standard triangle in figure 7.2(a). The deterministic dynamics of its
mirror image is obtained by applying Ŝxy symmetry and not shown, as are the dynamics

for other directions of the bias force, which are obtained by using Ŝπ
2
. For small bias

forces, the triangle is in a bound state, and at some critical value of the force the triangle
starts moving. Since it is easier for the triangle to move parallel to the coordinate axes
due to the lower potential barriers to be overcome, this critical force is lower for forces
parallel to the coordinate axes, and highest for a bias force parallel to the bisectrix,

215



 0 4 8  0 4 8  0 4 8  0 4 8

 0 4 8

x

 0 1 2

x

 0 4 8

x

α

(a)

67.5◦

90◦

(b1)

22.5◦22.5◦

(c1)

AAAA

(d1)

(b2)

0◦

0◦0◦

45◦

45◦

(c2) (d2)

(c3)

0◦

45◦

|~vL − ~vR| |~vL|

−90◦−45◦ 0◦ 45◦ 90◦

ϑL − ϑR

90◦
45◦
0◦
0◦, 90◦

bound

Figure 7.2: (a) Deterministic kT = 0 phase diagram showing only periodic attractors for
the dynamics of the triangle described by (7.36) subjected only to a constant bias force
~A = A~eα. The transport direction of the triangle, i.e. ϑL, is encoded in colors. The
colors corresponding to the predominant transport directions are shown in the legend in
panel (a). Coexistence of deterministic transporting attractors with different transport
directions is indicated by hatching the corresponding colors, except for the most impor-
tant attractors, see the legend in (a). The full color palette used can be found in e.g.
figure 7.4(a) (the palette shown for ϑ), but colors other than those shown in the legend
in (a) are practically absent in figure 7.2(a). If a transporting attractor coexists with a
non-transporting attractor its color is desaturated. All phase diagrams in this chapter
have been calculated along the lines of section 3.9.1. (b)-(d) show the separation angle
and vector of the triangle and its mirror image for (b) kT = 0.04, (c) kT = 0.08 and (d)
kT = 0.16. The separation angle and vector for α > 45◦ follow from symmetry and are
not shown. b1 shows the separation angle, i.e. ϑL − ϑR for α ∈ [0◦, 45◦], b2 shows the
modulus of the separation vector |~vL − ~vR| for the same α range and (c1),(c2),(d1),(d2)
are analogous. The inset (c3) shows the modulus of the transport velocity |~vL| for the
intermediate noise strength kT = 0.08 considered in panels (ci), encoded in colors ac-
cording to the palette shown in panel (c2). The palette has been cut off at 10, and larger
velocities are shown as 10. The modulus of the transport velocity for the other noise
strengths considered is not very different and not shown.
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i.e. α = 45◦. The triangle moves parallel to the coordinate axes if the force is parallel
to either axis. Upon rotating the force away from the axis, the motion of the triangle
remains locked to the direction of the axis, and this locking persists up to α = 45◦ for
small forces, while the triangle locks to ϑ = 45◦ for larger forces around α = 45◦ and
there are some regions of coexistence of different locking regimes. Due to the broken Ŝxy

symmetry (even at α = 45◦), i.e. chirality, the phase diagram is not symmetric around
α = 45◦. Thus, the general situation is that if the solutions locked to the coordinate axes
persist up to α = 45◦, they will have different properties and regions of stability, and in
particular the critical forces at which they emerge from a bound solution will be different,
which is clearly visible in figure 7.2(a) with the solution locked to the x direction having
a smaller critical force. Moreover, due to Ŝxy symmetry of the point particle dynamics
at α = 45◦ the chiral partner molecule will exhibit the same behavior with the x and y
axis interchanged.

The fact that these solutions persist up to α = 45◦ is due to the shape of the triangle
and the potential. Imagine a very long straight “rod”. Due to the potential this rod
cannot rotate and will always move parallel to one of the coordinate axes unless the bias
force is very large, even if the bias force is parallel to the bisectrix. Basically this property
carries over to the particular triangle we have selected, and is the basis of the 90◦ separa-
tion of triangles subjected to a constant bias force reported in [5]. By considering noise
induced escape at small bias forces (see [5]) instead of deterministic running solutions,
90◦ separation can always be achieved if there are non-flat potential barriers separating
adjacent potential wells, but possibly at vanishing currents. In contrast, if the potential
barriers separating minima are negligible, i.e. the potential is locally flat (smaller σ, see
section 7.9), this behavior is lifted, and at α = 45◦ the triangle will always move parallel
to the bisectrix, and we have found no separation with respect to the separation angle at
α = 45◦.

Including noise, we find that for our potential the separation angle is only large (in
modulus) around α = 45◦ and practically zero otherwise, it being largest for smaller
forces. Moreover, the separation vector exhibits a similar behavior, but it is non-zero
also for α far from 45◦ due to the transport velocities of the chiral partners differing in
modulus (see also figure 1 in [5]). Furthermore, noise reduces the separation efficiency
in most cases, with separation vanishing for arbitrarily large noise strengths, but there
are also regions in which noise improves the separation efficiency, in particular for small
bias forces where transport is noise induced and no deterministic running solutions are
present [5].

We conclude that for relatively large triangles (we have found L∆ ≈ 0.1 to be close
to the lower limit, and the same applies to the “size”, i.e. the largest monomer-monomer
distance of more generally shaped objects, cf. figure 4 of [5]) and potentials with non-flat
potential barriers separating minima, separation is most efficient at

α = 45◦ , (7.41)

and we will consider this situation in the following sections. Additionally the Ŝxy sym-
metry of the point particle dynamics simplifies the situation drastically, allowing us to
calculate the average velocity of the chiral partner by means of (2.27).

217



 0.25

 0.5

 0.75

 1

 0.25

 0.5

 0.75

 1

 0 4 8  0 4 8  0 4 8  0 4 8

h
∆

(a) b∆ = 0 (b) b∆ = 0.025 (c) b∆ = 0.1 (d) b∆ = 0.2

L
∆

(e) b∆ = 0 (f) b∆ = 0.025 (g) b∆ = 0.1

AAAA

(h) b∆ = 0.2

90
◦

45
◦

0
◦

0
◦, 90

◦

bound

Figure 7.3: Deterministic kT = 0 phase diagrams as in figure 7.2(a) of the dynamics of a
triangle with parameters as indicated in the panels, L∆ = 0.5 (upper row) and h∆ = 0.2
(lower row). The direction of the average transport velocity of periodic attractors, ϑ, is

shown in dependence of a constant bias force ~A = A~eα with α = 45◦ and there is no
time dependent drive. The same method as in figure 7.2(a) is used to show ϑ as colors,
including coexistence, see also the legend.

7.5 Spontaneous symmetry breaking transport leading to chiral

separation

Figure 7.3 investigates the influence of the shape of the triangle on its deterministic static
bias transport properties at α = 45◦. Focusing first on b∆ = 0.2 in panels (d) and (h), i.e.
a triangle of the same “chirality” as in figure 7.2 (in the sense that for all other parameters
identical, the triangles are identical), we find that the shape of the triangle does not alter
our main conclusion, i.e. there are running solutions locked to either coordinate axis for
sufficiently small bias forces as long as the triangle is not too small (L∆ & 0.15 for the
given parameters). But, depending on the shape of the triangle, this can be either the x
or the y axis. For small h∆, i.e. almost “rod” like triangles, as well as for small b∆, both
chiral partners are almost identical (i.e. “less chiral”). Hence, for most parameter values
for which running solutions locked to the coordinate axes are found, at least two coexist,
one locked to the x axis and one to the y axis, except for a very narrow strip close to the
critical value of A at which the first running solution is created. That difference scales
with the “degree of chirality”.

We next focus on b∆ = 0 (panels (a) and (e)) to take a different view on chiral
separation. In that case the triangle is achiral, hence the dynamics are Ŝxy invariant with
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the formal symmetry of the dynamics as discussed in section 2.5.3. Then the critical values
of the bias force for which running solutions (locked to the coordinate axes) are created are
identical for both coordinate axes due to the symmetry. E.g. a running solution locked to
the x axis implies the existence of another running solution locked to the y axis and vice
versa5. Therefore the regions of existence of these solutions coincide exactly. Thinking
in terms of section 2.7 these solutions are actually SSBT solutions with respect to Ŝxy

symmetry. In those terms, chiral separation can now be understood as a consequence
of SSBT. If we break the symmetry of the dynamics by letting b∆ > 0, the regions
of existence of the two solutions no longer coincide. At the borders of their regions of
existence only one of the solutions will be stable, and hence the triangle will be transported
parallel to the corresponding coordinate axis for sufficiently small noise strengths. But
employing the symmetry, the triangle is mapped onto its chiral partner, i.e. the symmetry
can be understood to work as Ŝ0 works in chapters 3-4, but it inverts the sign of b∆
instead of F . It follows that the triangle’s chiral partner will be transported along the
other coordinate axis. In contrast, if there is no SSBT at b∆ = 0, no deterministic chiral
separation occurs (with noise, the average velocities of the chiral partners will still be
different, in general).

Putting this idea to test, figure 7.4 (and figure 7.5) reveals a plot that, with colors
and labels interchanged, could easily pass as belonging to chapters 3-4, cf. figure 3.1.
At b∆ = 0, there is a critical value of the force around A ≈ 0.18 at which all remaining
stable and bounded solutions annihilate and become running solutions via saddle node
bifurcations (see figure 7.5), creating two running solutions with transport along the
coordinate axes, each solution being the image under Sxy of the other solution. Breaking
the symmetry, these critical values of the force no longer coincide, and two lines of
bifurcations in figure 7.4 with different slopes in the A-b∆ plane of parameter space are
found. The first corresponds to the creation of a running solutions carrying transport
along the x axis and the second corresponds to the creation of the symmetry partner
(using that the symmetry is only weakly perturbed), and, in particular, to the vanishing
of the bound solution with which the first running solutions coexists. At the other border
of the region of existence of SSBT attractors around A ≈ 0.4 the order of the critical
lines is the same. The running solution carrying transport along the y axis survives for
larger bias forces, at which it coexists with a running solution carrying transport in the
(1,1) direction, i.e. parallel to ~e45◦ . Including weak noise (see figure 7.4(b-d)), the picture
remains the same with noise averaging between the coexisting attractors and other phase
space structures, thus uniquely determining the transport direction and chiral separation.
An interesting effect is that upon increasing the bias force with all other parameters
fixed, the transport direction of the triangle can be changed from ϑ = 0◦ to ϑ = 90◦

(for vanishing noise strength) for b∆ . 0.38, and the other way around for larger b∆.
This effect, which is specific to our choice of the triangle (see e.g. figure 7.3), can be
used to beautifully explain how to obtain 180◦ separation angles by using an asymmetric
periodic driving force [5]. Lastly turning to the modulus of the average velocity, we find
that it does not significantly depend on the choice of b∆ and the magnitude of noise due
to the nature of the running solutions, which are created via saddle node bifurcations

5More generally, any solution spontaneously breaking the symmetry implies the existence of a sym-
metry partner as discussed in section 2.6. This applies particularly for any running (i.e. SSBT) solutions
whose average velocity is not parallel to ~e45◦ .
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Figure 7.4: (a) Deterministic kT = 0 phase diagram as in figure 7.2(a) for the dynamics
of the same triangle, driving forces and potential as considered in figure 7.2 except for
α = 45◦ and b∆ is varied as a parameter. Due to α = 45◦ the average velocity of the
mirror image of the triangle follows from Ŝxy symmetry and is not shown. The angle of
the transport direction, ϑ, is shown in (a), (b1), (b2) and (b3) and is encoded in colors
according to the legends. In panel (a) the same method as in figure 7.2(a) is used to show
coexistence of deterministic attractors with different transport directions, see the legend
in figure 7.2(a). (b1) shows ϑ in the presence of noise with kT as indicated in the panels.
(b2) shows the modulus of the transport velocity, v, according to the legend and for the
same noise strength as in (b1). The same applies to (c1/2) and (d1/2).

like simple running solutions of a particle in a tilted potential, in contrast to the phase
locked solutions considered in chapter 4.

A more detailed account of the creation of running solutions is found in the bifurcation
diagram in figure 7.5 showing the φ coordinates of all equilibria of the tilted force field
(potential) and those of stable running solutions at the instant when they cross their
Poincaré surfaces of section Xx/y = n · L, n integer. At A = 0 and b∆ = 0 there are
four stable equilibrium configurations of the triangle, separated by saddle-type equilibria
due to Ŝπ

2
symmetry, and many more unstable equilibria, which, having the same φ

but different ~X coordinates are not all visible in figure 7.5(a). We focus on the stable
equilibria and their saddles. A > 0 breaks Ŝ0 symmetry, and some of these equilibria
annihilate in pitchfork and saddle node bifurcations, the former becoming also saddle
node bifurcations (avoided pitchfork bifurcations) for b∆ 6= 0. Some of these saddle node
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Figure 7.5: Deterministic kT = 0 bifurcation diagrams for the dynamics of the same
triangle, driving force and parameters as considered in figure 7.4 and for specific values of
b∆, as indicated in the panels. The modulus of the static bias force, A, is the bifurcation
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(d2), show the modulus of the concomitant average transport velocity, v, in blue and the
direction, ϑ, in red.

bifurcations (but not all, depending on other saddles6) give rise to running solutions. In
particular, the configurations of the triangle with its longest side (a∆) aligned parallel
to one of the coordinate axes and the opposite vertex pointing in the positive direction
of the other coordinate axis lead to stable running solutions of largely the same triangle
orientation after colliding with their saddles (which start on the saddle of the potential
at A = 0), see figure 2(c)-(d) in [5].

Another noteworthy feature is that the running solutions carrying transport in the
(1,1) direction7 for large bias forces are not directly created from bifurcations of the
running solutions carrying transport along the coordinate axes, as the lower resolution
phase diagrams, e.g. figure 7.4, suggest but are created from saddle node bifurcations,
which we have not further investigated. Thus there are regions of parameter space in
which all three kinds of running solutions coexist, as one can already guess from the

6Transport only arises if the unstable manifolds of the saddles are connected to the stable manifolds
of different copies (in different elementary cells) of the equilibria

7We refer to the lattice direction by (n,m), meaning the direction of n · ~ex +m · ~ey.
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phase diagrams.
Lastly, the regions in which the direction of the running solutions varies continuously

are not well resolved in the phase diagrams due but visible in figure 7.5. As can be
inferred from figure 7.5, these regions contain devils staircase structures, period adding
and quasiperiodicity [21, 26] and have a rather complicated structure depending on the
symmetry of the lattice, which is mostly destroyed by noise and thus not of further
interest here.

7.6 180◦ chiral separation by an asymmetric periodic drive

7.6.1 α = 45◦

As has been detailed in [5], by applying a time dependent periodic and asymmetric drive

A′(t)~eα′ = (A′
1θ(pτ − t) + A′

2θ(t− pτ))~e45◦ (7.42)

(for t ∈ [0, τ ] and outside that interval periodically continued with period τ) with α′ =
45◦, the chiral partners can almost always be made to move into opposite directions, even
for relatively large noise strengths.

For our “standard” triangle, one particular chiral species can be made to move along
x direction or the y direction depending only on the magnitude of the instantaneous bias
force, and the explanation is particularly simple, but the mechanism requires only that
the transport direction of the triangle depends on the magnitude of a constant bias force
in the (1,1) direction. Then, for sufficiently slow switching, i.e. large τ ,

~v = p~v(A1) + (1 − p)~v(A2) (7.43)

can be chosen arbitrarily if the transport velocities ~v(A1/2) belonging to the two bias
force values A1/2 are linearly independent. Therefore, ~v can be made to be orthogonal to

the (1,1) direction, i.e. the reflection line of Ŝxy symmetry, and the two chiral partners
will move into opposite directions. Complementary to figure 3 of [5], we investigate the
robustness of the effect against thermal noise and finite switching times in more detail in
figure 7.6 by showing the p dependence of the transport direction and velocity. It turns
out that for large bias forces or short switching times (high frequencies), the transport
direction depends sensitively on the choice of p, and the transport velocity is close to zero
as already evident from figure 3a of [5]. While there is always only exactly one value of p
for which the separation angle is 180◦, in an experiment a smaller value may be sufficient
depending on how exact p and other parameters (e.g. the magnitude of the instantaneous
bias forces) can be adjusted in the experimental apparatus. The robustness of separation
can be estimated from the width of the region of p values for which separation is achieved.
This becomes very narrow for kT & 0.2 or τ . π, and the transport velocity at which
the chiral partners are separated becomes very small. Thus, applying a time dependent
drive can improve the separation angle dramatically and increases the robustness against
thermal noise but does so at the expense of the speed at which the chiral partners separate
(see e.g. figure 4e of [5]) and added experimental complexity.
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of the triangle and potential as considered in figure 7.13, i.e. Gaussian repulsive lattice
potential with σ = 0.1 and the triangle is proportional to (7.36), but L∆ = 0.25. Only to

a constant bias force ~A = A~eα with direction α = 32.6◦ is applied. The solid red(blue)
line shows ϑL(ϑR) and the corresponding dashed lines show vL/R. (b) Separation angle
(green line) and average velocities (dashed lines as in (a)) for the same dynamics as in
(a) but the constant bias force is replaced by the asymmetric periodic drive (7.42) with
τ = 2π, A′

1 = −7.8, A′
2 = 16 and p according to the x axis of the panel. (c) Example

trajectories of length 3142 = 500τ , showing 180◦ separation for the same dynamics as in
(b) with p = 0.697. The red line corresponds to the triangle proportional to (7.36) and
the blue line to its mirror image. The bar shows 200 spatial periods of the potential.

7.6.2 α 6= 45◦

Achieving 180◦ separation is more complicated if the driving forces are not in a symmetry
direction of the lattice. Again using a slow asymmetric periodic drive, i.e. applying a
force ~A1 for a fraction p of the very long drive period and a different force ~A2 for the
remaining fraction q = 1−p, one gets 4 independent instantaneous average velocities ~v1L,
~v1R, ~v2L and ~v2R, with the numeric index denoting the value of the driving force to which
the velocity belongs and the index L/R referring to the chiral partners. As above, one
gets

vL~eϑL
= ~vL = p~v1L + q~v2L (7.44)

for the average velocity of the first molecule in the time dependent force field, and for the
second molecule the same equation with L replaced by R. Note that we would get the
same equations for 2 completely different molecules, not only for chiral partners. Solving
these equations for |ϑL − ϑR| = 180◦ means solving a quadratic equation for p, i.e. the
solution may not be real since, in general, 180◦ separation will no longer be possible8.
Changing q means rotating both directions ϑL and ϑR simultaneously, thus it is clear
that the two directions need not become orthogonal for any choice of q. Thus, α 6= 45◦ is
not well suited to 180◦ separation. But according to section 7.9, chiral separation will be
impossible under certain conditions at α = 45◦. We will therefore focus on the situation
described in section 7.9, and collinear ~A1 and ~A2 for experimental simplicity. Considering
figure 7.13, the general situation will be that ~viL and ~viR, i = 1, 2 will differ only by a few
degrees with the lengths of the vectors being proportional to the modulus of the respective

8If the solution is real but not in the unit interval, one can always change the sign of one of the force
values and renormalize to get a solution in the unit interval.
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forces. Choosing ~A1 in the first quadrant without loss of generality, we have to choose ~A2

in the third quadrant. Increasing q from zero then means rotating ~vL/R, i.e. increasing
(counter clockwise rotation) or decreasing (clockwise rotation) ϑL/R. If the transport
directions of both chiral partners rotate in the same order, the transport directions will
remain similar. But if the transport direction of one chiral partner rotates clockwise and
the other counter clockwise, one will always get 180◦ separation since both directions
have to rotate by almost 180◦. At α = 45◦, reflection symmetry maps the dynamics of
the two chiral partners onto each other and thus 180◦ chiral separation actually makes
use of above described mechanism (reflection inverts the order of rotation).

We conclude that 180◦ separation by an asymmetric drive can be obtained for the
dynamics considered in section 7.9 if

(~v1L − ~v2L) · (~v1R − ~v2R) < 0 . (7.45)

Considering figure 7.13, one readily finds that this situation is realized for certain com-
binations of parameters, in particular for the locking step transitions to the ϑ = 45◦

step, i.e. close to the symmetric case (for which, as remarked above, the requirement for
180◦ separation is naturally met if separation is possible at all). An example is shown in
figure 7.7 for the same triangle and potential as considered in figure 7.13 and α′ = 32.6◦,
A′

1 = −7.8 and A′
2 = 16 for the drive and kT = 0.002. Furthermore, we were able to

achieve 180◦ separation for kT one order of magnitude larger. For even larger kT we
found the average velocities to be too small to reasonably achieve 180◦ separation.

7.7 Symmetric periodic drive

Applying a symmetric periodic drive to the trimer is theoretically of interest, correspond-
ing to a situation with S0 symmetry, but may also be more feasible in certain experimental
situations where constant bias forces are not available for some reason or otherwise unde-
sirable, e.g. a biased drive could lead to a drift of other constituents of the experimental
setup. From chapter 4, SSBT may be expected in general and can be employed for chiral
separation. In particular, there are no invariant manifolds restricting the dynamics if the
drive is applied in a symmetry direction of the lattice, and the dynamics are much more
complicated due to the 3+1 dimensional phase space. Therefore, we do not perform a
systematic investigation of these effects but consider only a few examples. We choose as
square wave of amplitude A′ and period τ :

A′(t) = A′sgn

(

sin

(
2π

τ
t

))

. (7.46)

7.7.1 Directing Brownian motion

For very small triangles approaching the limit of point particles all effects derived in
chapter 4 can be applied for chiral separation. The chiral partners correspond to dif-
ferent particle species and will have different transport properties in general, and in
particular if SSBT enhances the sensitivity of the transport properties to variations of
the system parameters. Thus, using a pair of SSBT attractors to sort chiral particles is
straightforward: the regions of existence of the SSBT attractors will be different for both
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chiral partners, and the same applies to the transporting attractors considered in section
4.17. Thus, if parameters are such that one chiral partner is transported by a SSBT
attractor and the other is not or is transported by a different attractor, separation is
achieved. A particularly interesting situation can be constructed by considering a pair of
SSBT attractors leading to ANM in the presence of an added constant bias force. Then,
one chiral partner can be transported against the bias force, and the other in the opposite
direction, achieving 180◦ separation. Furthermore this approach (or more generally using
a pair of SSBT attractors, and lifting symmetry by a constant bias force in any direction)
seems to be a reasonable method for the separation of more general stereoisomers as in
[67]. We have found 180◦ chiral separation by ANM attractors for triangles whose longest
side was of order 0.2 and found a strikingly similar structure of transporting attractors
as in chapter 4, see in particular figure 4.18 for a similar direction of the external forces.
Furthermore, we have found 90◦ separation by using the quasiperiodic attractors encoun-
tered for smaller drive amplitudes in figure 4.18. We do not present these results here,
as they are very similar to those already considered in chapter 4, but focus on “novel”
methods.

7.7.2 Diffusive separation

Consider first the simplest case of 90◦ chiral separation for a constant bias force ~A = A~eα

in the α = 45◦ (1,1) direction, e.g. A = 3.6 for our “standard” triangle. Then there is
only one transporting attractor carrying transport along the x direction, and otherwise
only non-transporting solutions. Now consider A = −3.6, i.e. apply Ŝ0 symmetry to the
problem. Then there is only one attractor carrying transport along the −x direction. But
that attractor corresponds to a triangle rotated by 180◦. Now apply a positive bias force
A = 3.6 for a sufficiently long time τ

2
, then a negative bias force A = −3.6 for an equal

amount of time, and then repeat the process. If the triangle is initially on the constant
bias force attractor corresponding to transport along the x direction, it will be transported
along the positive x direction during the first half period of the periodic drive. When
the drive changes sign, the triangle has to rotate by 180◦ before it can be transported
along the −x direction. When and if this rotation occurs deterministically depends on
the structure of phase space, and this waiting reduces the triangle’s velocity during the
second half period of the drive. It turns out that for the considered example the rotation is
even noise induced for some parameter values and does not occur at all deterministically.
Thus a SSBT (exactly in the sense of chapter 4) attractor is created, carrying transport
along the +x direction. By S0 symmetry, its symmetry partner carries transport along
the −x direction. Adding noise, and thus switching between these attractors, results in a
strongly anisotropic diffusion, with diffusion along the x axis being fast, and slow along
the y axis. Due to the Ŝxy symmetry of the potential and the direction of the drive,
the chiral partner will diffuse quickly in the y direction and slowly along the x direction.
This in turn can be exploited to achieve chiral separation. Consider a racemic mixture
of (non-interacting) triangles initially close to the center of the substrate to which this
symmetric periodic drive is applied. After some time has elapsed, these initially sharp
spatial distributions will evolve into ellipsoidal distributions with large eccentricities close
to 1, the major axis being either the x axis or the y axis depending on the chiral partner,
allowing an experimentalist to collect the sorted chiral molecules at the right/left and the
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Figure 7.8: (a)-(d): Properties of the diffusion matrix (7.47) for the noisy (kT as indicated
in the panels) dynamics of the triangle described by (7.36) subjected only to a symmetric
periodic square wave driving force (7.46) with α = 45◦ and the parameters of (7.46)
as indicated in the panels. The upper row (a1)-(d1) shows the larger eigenvalue of the
diffusion matrix, multiplied by 2 times the (temporal) length of the simulation tf = 4000τ ,
denoted as 2〈D1〉tf , see the upper legend to the right of (e), the middle row (a2)-(d2)
shows the anisotropy of the diffusion, i.e. the ratio of the eigenvalues of the diffusion
matrix, denoted as D1

D2
, see the upper legend to the right of (e), and the lower row (a3)-

(d3) shows the direction of the eigenvector belonging to the larger eigenvalue, denoted ϑD,
see the lower legend to the right of (e). (e)-(f) show the final center of friction positions
after 4000 cycles of the periodic drive of an ensemble of 1000 particles initialized with
coordinates in the center of the plot for the dynamics corresponding to the symbols shown
in (d), (e) corresponding to the ’+’, (f) to the ’×’ and (g) to the ’∗’. The bar indicates
200 lattice periods.
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top/bottom of the substrate.
A bit more formally, we use the “diffusion tensor” of the center of friction:

D = lim
t→∞

1

2t
· (7.47)

(
〈(Xx(t) −Xx(0))2〉 〈(Xx(t) −Xx(0))(Xy(t) −Xy(0))〉

〈(Xx(t) −Xx(0))(Xy(t) −Xy(0))〉 〈(Xy(t) −Xy(0))2〉

)

= OϑD

(
D1 0
0 D2

)

O−ϑD
(7.48)

with the rotation matrix OϑD
=
(

cos(ϑD) − sin(ϑD)
sin(ϑD) cos(ϑD)

)

, the diffusion coefficients (eigenvalues)

D1 > D2 and the main diffusion direction ϑD being the direction of the eigenvector of
D to the eigenvalue D1. We can quantify the effect of diffusive chiral separation by the
ratio D1

D2
, and the angle ϑD and get figure 7.8, finding diffusive separation for a large

range of frequencies 2π
τ

, drive amplitudes A′ and noise strengths. Separation is most
efficient at small noise strengths, and the dependency on the frequency is complicated.
In particular, the drive periods considered are rather short, and the SSBT attractors
found carry transport along the y direction, and not along the x direction as would
be expected from the intuitive explanation given above and valid in the limit of slow
driving. From, e.g. panel (d), we can infer that this adiabatic limit of chiral separation
will be reached for lower frequencies, i.e. the particle clouds rotate, see panels (e)-(g) for
a visualization. In particular, depending on the frequency and the noise strength, one
species of particles can be made to diffuse along different axes, cf. panels (e) and (f),
and the “green” and “red” areas in e.g. panel (d3). A similar conclusion applies to the
smaller drive amplitudes considered in (a)-(c). Moreover, the anisotropy of the diffusion
can be enhanced significantly by considering different parameters, e.g. A′ = 3.6, τ = 20
and kT = 0.02 for diffusion as shown in panel (e), and A′ = 3.6, τ = 2.5 and kT = 0.005
for diffusion as shown in panel (f) (result not shown).

We have also considered the deterministic phase space structure of the synchroniza-
tion of the triangle to the periodic drive and found a complex behavior including chaos,
devils staircases, period adding and quasiperiodicity around the periodic SSBT attrac-
tors. In particular, the transport direction varies when the parameters are changed, i.e.
the SSBT attractors are destroyed by suitable variations of the parameters, leaving be-
hind chaotic attractors. Further variation of parameters leads to new periodic SSBT
attractors with different locking directions. This applies in particular to the transition to
the adiabatically driven case, with SSBT along the y axis for large frequencies, the next
locking direction being the (1,1) direction, reached after a reduction of the frequency, then
the (1,2) direction for an ever lower drive frequency, and so forth until SSBT is almost
along the (0,1) direction in the adiabatic limit, corresponding to the intuitive explanation
presented above.

7.7.3 180◦ separation by absolute transverse mobility

In [203] the term absolute transversal mobility is coined, corresponding to a situation
in which a particle reacts to an applied constant bias force by transport orthogonal
(transversal) to that force. Here we can employ such a situation to achieve 180◦ chiral
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Figure 7.9: Deterministic kT = 0 phase diagram showing nondiffusive attractors of the
dynamics of a triangle corresponding to h∆ = 0.75, b∆ = 0.5 and L∆ = 0.25 subjected to
a symmetric periodic square wave drive (7.46) with direction α = 135◦ in dependence of

its frequency 2π
τ

and amplitude A′. A transverse dc bias force ~A = A~e45◦ is applied with
A as indicated in the panels. Coexistence of nondiffusive SSBT attractors of opposite
transport velocities is indicated by colors corresponding to the palette shown above (a).
The transport direction of deterministic transporting attractors not coexisting with sym-
metry partners is shown by colors corresponding to the palette shown above (b)-(c). If a
deterministic transporting attractor coexists with a non-transporting attractor, the color
of the transporting attractor is shown but desaturated. Bounded attractors are shown as
grey. Parameter values for which only diffusive attractors were found are drawn in white.

separation. If the dynamics (including the bias force) have a reflection symmetry, i.e.
the bias is parallel to the reflection line of that symmetry, one immediately gets 180◦

separation. To achieve this, we apply a periodic and symmetric square wave drive (7.46)
with amplitude A′, frequency 2π

τ
and α′ = 135◦ orthogonal to the ~e45◦ direction in which

we apply the constant bias force ~A = A~e45◦ . As can be inferred from chapter 4, SSBT
parallel to the periodic drive can be expected according to the mechanism outlined in
section 4.9 for small triangles. For larger triangles, such as our “standard” triangle, we
have found a different mechanism of achieving almost the same for somewhat larger drive
amplitudes: a bounded periodic attractor collides with its corresponding saddle orbit and
create a transporting quasiperiodic attractor already in the absence of a constant bias
force, a situation, which we have not found for point particles. Due to Ŝ0 symmetry of the
potential and the symmetry of the drive, this happens simultaneously for two bounded
attractors9. Their regions of existence are shown in figure 7.9, and their quasiperiodic

9Due to S0 symmetry, each bounded attractor coexists with another bounded attractor in which the
molecule has been rotated by 180◦.

229



 0

0.1

0.2

2 4 6  0.01  0.1

-180

0

180
|~v
|

2π
τ

(a)

ϑ
L
−
ϑ

R
[◦

]

kT

(b)

~ex

~ey

~A(t)

(c)

Figure 7.10: The same dynamics as in figure 7.9 are considered. (a) Modulus of the
average velocity of SSBT attractors in dependence of the frequency of the periodic drive
corresponding to a horizontal cut through figure 7.9 at A′ = 13.3 and A = 0.5. (b)
Modulus of the average velocities of the chiral species (lines, left scale) and the separation
angle ϑL−ϑR (symbols, right scale) in dependence of the noise strength kT for three values
of the drive frequency: 2π

τ
= 2 (grey) (blue) and 2π

τ
= 0.5 (red). (c) Sample trajectories of

a triangle as in figure 7.9 (bright colors) and its mirror image (dark colors) corresponding
to the parameters shown in (a) with 2π

τ
= 2 and kT = 0.01(red), kT = 0.02(green),

kT = 0.04(blue) and kT = 0.2(orange). The triangles are initialized at the origin,
and their center of friction position for the next 10000 cycles of the periodic drive are
shown. The bar indicates 200 lattice periods. The orange trajectories are longer than
the substrate sample shown in the figure.

nature is revealed from their continuously varying transport velocity in figure 7.10(a) (we
have also done a careful analysis, verifying the mechanism by explicitly calculating the
involved orbits and their invariant manifolds, finding them to create an invariant circle
which forms the quasiperiodic attractor after the periodic orbits annihilate).

Upon switching on the constant bias force ~A = A~e45◦ , the dynamics of an achiral
molecule would remain Ŝxy symmetric (with an appropriate symmetry of the dynamics
involving a time translation). Thus applying the symmetry maps the dynamics of one
chiral partner onto its mirror image. If the conditions are such that applying a constant
bias force results in transverse mobility, the direction of transport is inversed as well,
resulting in 180◦ separation, which is found for A > 0. The regions of existence of
the pair of SSBT attractors no longer coincide, leading to absolute transverse mobility.
Calculating the separation angle and the corresponding transport velocity for various
frequencies in dependence of the noise strength in figure 7.10(b), we find no significant
dependence on the drive frequency in the range of frequencies considered. For kT &

10−3, the separation angle to deviates from 180◦ while the transport velocity decreases
simultaneously. In contrast to the case of phase locked attractors, where the transport
velocity is typically much larger than the asymptotic large noise transport velocity due to
a small constant bias force [2], here the transport velocity increases once the deterministic
structures are destroyed by noise. The reason is that the quasiperiodic attractors carry a
rather slow transport velocity due to the dynamical bottleneck left behind on the invariant
circle by the destroyed bounded orbits. Finally, we show some sample trajectories for
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Figure 7.11: Deterministic kT = 0 phase diagrams showing nondiffusive attractors for
the dynamics of chiral molecules proportional to those considered in figure 4 of [5] and

subjected only to a constant bias force ~A = A~eα. The panels correspond to those of figure
4 [5], i.e. (a) corresponds to the 6 vertex molecule, (b) to the 7 vertex molecule and (c)
to the 5 vertex molecule in figure 4 of [5]. The parameter LM controls the length of all
lines of the molecules, i.e. the inter vertex distance and thus the size of the molecules.
In [5] LM = 0.3 is used in panel (a), LM = 0.08 in panel (b) and LM = 0.44 in panel
(c). Note that due to a shortcoming of the plotting program employed (Gnuplot 4.4), the
color transitions are not smooth. In particular, the transition from ϑ = 0◦ to ϑ = 45◦ in
panel (b) should be continuous.

various noise strengths showing the 180◦ chiral separation in figure 7.10(c).

7.8 Differently shaped molecules and large triangles

In figure 4 of [5], three differently shaped chiral molecules are considered. Their deter-
ministic transport behavior is further detailed in figure 7.11. A notable difference to
the triangles considered so far is that the critical forces at which both running solutions
(leading to ϑ = 0◦ and ϑ = 90◦, respectively) are created are almost identical for both
axes and for all sizes of the molecules considered in panels (a) and (b), i.e. the screw
like molecules. This can be explained by considering the close to critical force equilibria
of these molecules, which turn out to be almost identical for both chiral partners due to
the tube like shape of the molecules staying the same upon reflection. But in both cases
the critical values of the bias force at which the running solutions cease to be locked to
the coordinate axes, i.e. the molecules start to rotate, vary significantly for the different
coordinate axes, and thus also for the statistical weights of the corresponding solutions,
even in the region of coexistence. Thus, the molecules can be made to be transported
almost along one of the coordinate axes for a suitable value of the bias force. Selecting
this value and e.g. a very large bias force leading to ϑ = 45◦ as the second force value
in (7.43), 180◦ separation is obtained by using the asymmetric periodic drive protocol
discussed in section 7.6. In contrast, the critical configurations at which running solutions
are created for the molecule considered in figure 7.11(c) are very different for both chiral
partners, since they have less similar shapes, and the transport behavior is more like that
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Figure 7.12: Deterministic kT = 0 phase diagram for the same dynamics as in figure
7.3(h), but larger values of L∆. Otherwise, the description of figure 7.3 applies.

of the triangular molecules.
As is evident from figure 7.11, chiral separation is possible for very different sizes of

the molecules, as was found for triangular molecules. Furthermore, we have found that
chiral separation is likewise possible for even more differently shaped molecules, such as
20 vertex screws, or for different angles between the vertices of the molecules in figure 4
of [5].

Figure 7.12 considers our standard triangle, but for large values of L∆ and thus
triangles extending through multiple elementary cells. As evident from figure 7.12, chiral
separation of these large triangles can be obtained similarly as for smaller molecules while
the structure is relatively complicated. While these large triangles might seem artificial at
first glance, they may correspond to large molecules that interact only via a few binding
sites with the substrate.

We conclude that chiral separation as discussed in [5] can be obtained for chiral
molecules of almost any form, as long as these are not too small, i.e. point particle like,
or the potential is locally flat, see section 7.9.

7.9 Small molecules and locally flat potentials

So far we have exploited a “rod” like behavior of our chiral molecules, i.e. transport
locked to the coordinate axes, or SSBT upon applying a bias force in the ~e45◦ direc-
tion. In contrast, we have found that for locally flat potentials10 and small molecules
(on the scale of the potential), such behavior is not “typical”, e.g. for the potentials and
molecules shown in figure 7.1(b,c). In particular, we have found the delocalization thresh-
old (critical force) for these molecules and locally repulsive potentials to be practically

10We have considered Gaussian potential wells separated by flat regions and Gaussian potential hills
separated by flat regions.
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Figure 7.13: (a1) Deterministic kT = 0 phase diagram of the dynamics of a triangle
proportional to (7.36) but L∆ = 0.25 a square lattice of Gaussian repulsive potentials

(7.31) with σ = 0.1. Only a (not too large) constant bias force ~A = A~eα is applied,
and of which all possible (up to symmetry) orientations are considered. The transport
direction, i.e. ϑL, of nondiffusive deterministic attractors of the triangle is encoded in
colors, as indicated by the palette shown in (a1). Coexistence of deterministic attractors
with different transport directions is indicated by hatching. White is displayed if no
nondiffusive attractors were found. (a2) ϑL for the noisy kT = 0.002 counterpart of the
dynamics in (a1). The same color encoding is used, but and white is used if the modulus
of the numerically obtained average velocity, see (a3), was too small to reasonably define
its direction. (a3) |~vL| for the same dynamics as in (a2). The colors are encoded according
to the legend in the panel. (b1,2,3) contain the same information, but for the mirror image
of the triangle considered in (a1,2,3), respectively.
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zero11, rendering the conclusions from [5] partially inapplicable. In those situations, the
molecule behaves mostly like a point particle, locking to lattice directions of the form

~v = n~ex +m~ey (7.49)

(with integers n,m) close to the direction of the bias force as reported for point particles
in e.g. [18, 20, 21, 23, 26]. In particular, locking to the coordinate axes or the (1,1) axis
was found to be particularly robust. Higher order (referring to the higher periodicity of
the solutions with respect to an appropriately chosen Poincaré section) locking steps are
less robust (cf. figure 7.14). Thus the separation techniques relying on the bias force in
the (1,1) direction considered so far are not directly applicable to this situation.

Section 7.7.1 contains some findings which are applicable to this case, as long as the
potential is not too flat (cf. figure 4.40).

Another approach is to make use of the fact that the dynamics of the two chiral
partners are simply different. Thus, whenever the transport properties of one chiral
molecule depends sensitively on some external parameters like the bias force, we can
expect its mirror image to show a different transport behavior. This in turn is the case
close to critical values of the parameters, i.e. at bifurcations where the molecule changes
the direction to which it locks. An example of this behavior is shown for Gaussian
repulsive potentials with σ = 0.1 at each lattice site and a triangle proportional to our
“standard” triangle but with L∆ = 0.25 in figure 7.13, see figure 7.1(b) for an illustration
of the setup. The upper row shows the transport direction (and modulus in panel (a3))
for one chiral partner, and the lower row the same for its mirror image. As can be
seen from panels (a1) and (b1), there are critical lines in parameter space at which the
transport direction changes abruptly, corresponding to deterministic bifurcations which
are different for the two chiral partners. Including noise, these differences are washed
out, but still visible, and can be employed for chiral separation. But now, the separation
angles are rather small, limited by the distance of the jump of the transport direction,
similar to the situation of large bias forces considered in [5]. As discussed in [5], 90◦

chiral separation by a constant bias force can be interpreted as one large jump as well.
Turning to the modulus of the transport velocity, we find that it is practically identical
for the two chiral partners for almost all directions of the bias force, and especially so in
the presence of noise, and is thus an even worse tool for chiral sorting.

We show a more precise picture of the dynamics by considering a vertical cut through
figure 7.13 at A = 0.5 in figure 7.14. There are many plateaus of the transport direction
(left panel) where the molecule locks to one direction for a whole interval of bias force
directions, between which more or less smooth transitions by means of devils staircase
like structures (i.e. smaller plateaus) are found. In particular, there are large plateaus
around the main symmetry directions, α = 0◦ and α = 45◦, but also e.g. a large
plateau with ϑ ≈ 26.57◦ corresponding to transport locked to the (2,1) direction of
the lattice. Around the edges of these plateaus the transport directions of the chiral
molecule and its mirror image are different, allowing for chiral separation, while around
the centers of the plateaus they are identical. This is somewhat unfortunate since the
locking to the plateaus is most robust around their centers, as found for kT > 0, but

11For Gaussian potential wells separated by flat parts of the potential, the delocalization threshold is
non-zero. For bias forces larger than the delocalization threshold, we have found the same behavior as
discussed in this section, i.e. as for Gaussian potential hills.
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Figure 7.14: Transport direction ϑL/R (thick lines) and velocity vL/R (thin lines) for the
same dynamics as considered in figure 7.13 but A = 0.5 and the noise strength is indicated
in the panels. The lines with subscript L correspond to the upper row in figure 7.13 and
the ones with subscript R to the lower row in figure 7.13 (mirror image).

expected since we are exploiting a sensitive dependence on parameters, which is usually
accompanied by a sensitive dependence on noise, see e.g. section 4.19. Noise smoothes the
transitions between the plateaus, reducing the separation angle, but separation persists
up to kT ≈ 0.02 (right panel).

Having understood the mechanism of separation, we turn to a survey of separation
regimes to estimate the limits of chiral separation of “short” molecules in “locally flat”
potentials as shown in figure 7.15 for the separation angle and figure 7.16 for the separa-
tion vector. Considering a triangle smaller (with smaller L∆) but otherwise proportional
to our standard triangle (panels with indices (i1) i = 1, 2), we find that for σ = 0.05
separation is practically impossible for the triangles considered, and also for many more
that we have tried and for which results are not shown. For σ = 0.1 separation is possible
as was already found in figure 7.13.

For locally flat potentials an important feature is that with all monomers of the
molecule being identical there is no torque acting on the molecule in the flat regions of
the potential. Thus, noise can freely rotate the molecule, reducing the effectiveness of
deterministic locking significantly. In contrast, if the monomers are not identical, the
molecule has at least one preferred orientation even in a homogeneous force field. We
consider this situation by setting

γ1 = 0.5 , γ2 = 1.0 , γ3 = 1.5 , (7.50)

but otherwise considering the same triangles, thus obtaining the same value for γ to
get the same point particle limit for L∆ = 0. Therefore the dynamics are comparable,
in particular for small molecules, i.e. small L∆. The results are shown in the second
and fourth columns of figure 7.15 (panels with indices (i2), i = 1, 2) and figure 7.16,
showing that chiral separation is enhanced, in particular for σ = 0.05 but also for σ =
0.1. While we have not introduced a quantitative measure of chirality, the triangles
with anisotropic monomers will be somewhat “more chiral” depending on that measure,
making the comparison less direct. Evaluating trajectories directly (not shown) we have
found that the main mechanism of enhancement is indeed the preferred orientation of the
molecules in the flat part of the potential.
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Figure 7.15: Separation angle ϑL − ϑR according to the legend in (a21) for the noisy (kT
as indicated in the panels) dynamics of triangles proportional to (7.36) and their mirror

images subjected only to a constant bias force ~A = A~eα. In the two upper rows, (aij)
and (bij), σ = 0.05 is used in the potential (7.31), and σ = 0.1 in the two lower rows,
(cij) and (dij). The triangle “lengths” are L∆ = 0.05 for the two columns on the left,
(aij) and (cij), and L∆ = 0.25 for the two columns on the right, (bij) and (dij). The
triangles considered in the first column, (ai1) and (ci1) (i = 1, 2), and the third column,
(bi1) and (di1) (i = 1, 2), have γj = 1, j = 1, 2, 3, and the triangles considered in the
second column, (ai2) and (ci2) (i = 1, 2), and fourth column, (bi2) and (di2) (i = 1, 2),
have γ1 = 0.5, γ2 = 1 and γ3 = 1.5.
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As a final remark we have found the behavior to be similar if we replace the Gaussian
repulsive interactions at the lattice sites with attractive interactions. In that case there
is a finite delocalization threshold, but that does not lead to transport parallel to the x
axis for α = 45◦ because, after escaping a trap, the molecule finds itself in a flat part of
the potential and will subsequently move into the direction of the force. It will then be
attracted by the next trap in the direction of the force. Thus, there is no chiral separation
at α = 45◦, while similar conclusions as above apply for α 6= 45◦.
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Figure 7.17: Average angular velocity
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for the noisy (kT as indicated in the panels)

dynamics of the standard triangle (7.36) (lower row) and its mirror image (upper row)

subjected only to a constant bias force ~A = A~eα.

7.10 Rotation

Last, we consider the average angular velocity at the example of the triangles considered
in section 7.4 and section 7.9. If the dynamics have a reflection symmetry, the angular
velocity vanishes in the presence of noise, while SSBT is possible in the deterministic
dynamics. Thus, considering chiral molecules, a non-zero angular velocity is expected
by Curie’s principle. As intuition suggests, and from figure 2 of [5], the average angular
velocity of triangles with side lengths of the order of one elementary cell of the potential is
rather small, and usually vanishes in the deterministic dynamics, in particular for running
solutions locked to one of the coordinate axes. Due to noise, the angular velocity takes a
non-zero value, see figure 7.17.

The situation changes if we consider smaller triangles (smaller L∆ in (7.36)), see figure
7.18 for some results. We have found the angular velocity to still be zero at kT = 0 for
the majority of parameters of the systems considered here (not shown). Noise induces a
non-zero angular velocity with varying effectiveness with the smaller triangle (L∆ = 0.05)
having the largest angular velocity, and the larger triangle (L∆ = 0.1) having a larger
angular velocity for the σ = 0.1 potential. The latter can be explained by noting that
the angular velocity will be zero for a flat potential. We conclude that, for the triangles
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Figure 7.18: Average angular velocity
〈

φ̇
〉

for the noisy (kT as indicated in the pan-

els) dynamics of triangles proportional to (7.36) (subscript L) and their mirror images

(subscript R) subjected only to a constant bias force ~A = A~eα. The parameters are (a)
L∆ = 0.05 and σ = 0.05, (b) L∆ = 0.1 and σ = 0.05, (c) L∆ = 0.05 and σ = 0.1, and
(d) L∆ = 0.1 and σ = 0.1. Thus, the dynamics of triangles with γ1/2/3 = 1 in the same
potentials and noise strengths as in figure 7.15 are considered.
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considered, most running solutions locked to a specific direction (which may be of higher
order) do not carry an angular velocity, while (noise induced visits to) deterministically
transient regions lead to a non-zero angular velocity. This can be further supported by
noting that the angular velocity is usually smallest close to the center of locking steps,
which is particularly visible for the smaller triangle (L∆ = 0.05) (deterministic result not
shown), but also for the larger one (cf. figure 7.13(a1) and figure 7.18(d1L)).

Finally, if we consider the triangles whose monomers have different friction coefficients
according to (7.50) (cf. figure 7.15) with all other parameters as in figure 7.18, we find
that the angular velocity is practically zero in figure 7.19. This is due to the anisotropic
friction coefficients inducing a preferred orientation of the triangle in the constant bias
force field. Thus we find the angular velocity to be larger in this case if the bias force is
small.
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Figure 7.19: Average angular velocity
〈
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〉

for the noisy (kT as indicated in the panels)

dynamics of triangles proportional to (7.36) (subscript L) and their mirror images (sub-

script R) subjected only to a constant bias force ~A = A~eα but the triangles have γ1 = 0.5,
γ2 = 1 and γ3 = 1.5. The parameters are (a) L∆ = 0.05 and σ = 0.05, (b) L∆ = 0.1 and
σ = 0.05, (c) L∆ = 0.05 and σ = 0.1, and (d) L∆ = 0.1 and σ = 0.1. Thus, the dynamics
of triangles with γ1 = 0.5, γ2 = 1 and γ3 = 1.5 in the same potentials and noise strengths
as in figure 7.15 are considered.

242



Figure 7.20: (a) Schematic representation (not to scale) of the experiment discussed in
[86]. The posts are represented by grey discs. The inlet/outlet for the fluid is one the
left/right. The (1,0) direction of the lattice is indicated by the non-horizontal red line
and the average flow direction by the horizontal line. (b) Experimental result. The red
and the blue lines correspond to the spatial traces of the chiral partner molecules, and
the respective thick lines indicate the average directions. The grey line indicates the (1,0)
direction of the lattice. The figure was provided by Jan Regtmeier, Universität Bielefeld,
and is taken from [86].

7.11 Proof of principle experiment

A proof of principle experiment sorting microfabricated “L” shaped chiral particles with
side lengths of several micrometers in a quasi two dimensional microfluidic periodic post
array has been conducted successfully in the Anselmetti lab of Bielefeld University [86].
A schematic illustration of the experimental setup is shown in figure 7.20(a). A periodic
and symmetric array of posts has been fabricated using soft lithography [86]. The posts
have radii of 5µm, and the center-center distance of the posts is Lexp = 22µm, i.e. the
free space between posts is about 12µm in the (1,0) direction, and 17µm in the (1,1)
direction of the lattice. The height of the channel is about 5.7µm. The particles are L
shaped, the longer side being of length 15µm, the shorter side 9µm, and the height is
about 4.6µm. Thus the particle dynamics are effectively two dimensional. Inertia effects
are negligible in aqueous solution, i.e. the particle dynamics are overdamped (see also [5]
and [6]). The bias forces are generated by hydrodynamic pressure using a pump, and are
always parallel to the x axis. The post array is tilted, and the bias force is tilted with
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respect to the lattice directions, see figure 7.20(a). Neglecting the impact of the suspended
particles on the incompressible low Reynolds number flow profile, the approximate force
field is the flow profile of water in the empty post array, and the maximal flow velocity
can be estimated to be several 100µm

s
. It is not constant in space, as the simple bias

forces considered here are, but its effect is similar12. Neglecting wall interactions, the
generated dynamics are phase space volume preserving [246] for point particles, but it is
interesting to note that the dynamics of molecules are not [79]. With wall interactions
(collisions), the dynamics of point particles do not preserve phase space volume [27], and
may have attractors.

To get a feeling of the experimental time scales, and in particular the noise strength,
we do some hand-waving estimates, which should be correct up to one order of mag-
nitude. The diffusion coefficient at room temperature can be estimated to be about

D ≈ 0.02µm2

s
≈ 4 · 10−5 L2

exp

s
(that of a sphere of radius 10µm), and free diffusion is

negligible. From the flow velocity, the “typical” velocity of the particles should be of
the order of some tens of lattice periods per second. The time scale of the experiment is
given by the particle velocity in first approximation since the post array generates a hard
wall potential, and time can be absorbed into the unit of the applied force if thermal
fluctuations are neglected. The particle velocity in the experiment is comparable (within
the order of magnitude) to that of the triangles considered in figure 7.14, and the exper-
iment corresponds to a noise strength of kT ∼ O(10−5), which is much smaller than the
noise strengths considered in the remainder of this chapter. Thus, thermal fluctuations
should be negligible in the experiment, possibly giving rise to complications due to deter-
ministically coexisting attractors or chaos, which would make the experiment unreliable
at first glance. The experiment works reliably, but some hints of coexisting dynamical
states have been found, and early simulations clearly reveal coexisting attractors [410].
In that context, quenched disorder in the form of imperfections of the post array might
play an important role, leading to fluctuations of a possibly larger effective temperature
(see chapter 5). This would result in a smoothing of the complicated deterministic struc-
tures. Furthermore, the complexity of the experiment, in particular the driving with
microfluidic pumps13, the neglected z dynamics, the z structure of the post array and the
structure of the particles might give rise to further stochastic or deterministic effects in
the dynamics [86].

The post array “potential” is a hard wall potential, and is flat in between the posts.
According to preliminary simulation results of the dynamics using L shaped particles
composed of four or more circular monomers [410], chiral separation cannot be achieved
for α = 45◦, in agreement with our findings for locally flat potentials (see section 7.9).
Chiral separation was found to work best for particles only slightly smaller than the
distance between posts. Such particles barely fit through the post array [410], which is in
line with section 7.9, see in particular figure 7.15 and figure 7.14. As discussed in section
7.9, chiral separation occurs at the borders of deterministic locking steps of the dynamics,
and the chiral partners lock to different steps. The separation angle is bounded by the

12Note that an anisotropic force field leads to a preferred orientation of an extended object composed of
identical monomers, as opposed to the spatially isotropic bias forces considered throughout this chapter.
This should enhance enantioselectivity, see e.g. figure 7.15.

13E.g., a periodic modulation with a frequency of 0.1 Hz has been applied to free particles that got
stuck in the post array.
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angular difference of the steps onto which the chiral partners lock. Early simulation results
[410] indicate that for the relatively large (in the sense that slightly larger particles would
become stuck) particles considered in the experiment, the separation angle is largest for
the first locking step transition, i.e. one chiral partner moves in the (1,0) direction,
and the other in a direction of lesser symmetry and similar to that of the force, and
the experiment has been conducted accordingly. This is in line with our toy model.
Comparing with figure 7.15 and figure 7.14, we find that the separation angle is indeed
largest for the first locking step transition.

Achieving 180◦ separation with time dependent forces seems to be rather difficult
in this particular experiment. Due to the hard wall interactions the magnitude of the
applied forces (i.e. the fluid velocity or applied pressure) can be absorbed into the time
unit, up to the negligible thermal fluctuations. Therefore, the transport direction does
not depend significantly on the magnitude of the bias force (i.e. fluid velocity). Taking
into account fluctuations by using a smaller driving (fluid velocity) or modifications of
the driving (e.g. pulsed driving), such a dependence might be introduced. But even then,
one would be left with the difficulty of applying the driving reliably and precisely (which
might be challenging with pumps) to achieve 180◦ separation (see section 7.6). Given
the complexity of the experiment, implementing a sufficiently precise simulation model is
a formidable challenge, and the most direct way of getting parameters suitable for 180◦

separation would be measurements. Whether that is worth the effort in the current proof
of principal state of the experiment is doubtful since the current separation efficiency (see
figure 7.20(b)) already seems to be sufficient.

7.12 Generalizations, further experimental realizations

The effects discussed in this chapter have a very general nature, relying on the fact that
the dynamics of the chiral partners is simply different for both partners [84, 85]. The
main obstacle is the magnitude of the effect, as was discussed in the preceding sections.
In short, we have found that the interaction of the enantiomers with a periodic potential
drastically enhances enantioselectivity if the strength of thermal noise is not too large.
The latter requirement can be summarized as being that purely noise induced diffusion
in the absence of applied bias forces has to be small. Generalizations of the model, such
as including hydrodynamic interactions [375, 376], quenched disorder or inertia effects
are not expected to alter our conclusions qualitatively. Including inertia effects may even
enhance the effects due to a stronger locking mechanism [1, 183, 208]. Quenched disorder
was shown to be similar to thermal noise for deterministic unbounded solutions in a
slightly different context in chapter 5, i.e. the predicted sorting mechanisms will survive
in the presence of not too large quenched disorder14.

We have found several regimes of chiral separation. Using only a constant bias force,
molecules of sizes of the order of the substrate periodicity and substrates without flat
parts (accessible to the dynamics) can be sorted with a separation angle of up to 90◦ at

14Chiral separation may even be achieved on a purely disordered substrate. For each realization of the
disorder, the molecules will be slightly deflected from the direction of the bias force, and that reflection
will be different for both chiral partners. If the disorder is quenched on sufficiently large time scales,
this reflection can be measured for any given sample, and thus used for chiral separation without further
measurements. Of course, this is a rather complicated way of achieving chiral separation.
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α = 45◦. For locally flat potentials, α = 45◦ does not allow for chiral separation, but
deterministic locking behavior allows for chiral separation when α is between competing
lattice directions, but the maximum separation angle is limited by the difference between
the competing directions. Using an asymmetric periodic driving force, one can achieve
up to 180◦ separation in both cases, but the latter is much more complicated.

With only a symmetric periodic driving force in a symmetry direction of the lattice up
to 90◦ diffusive sorting can be reached under the same prerequisites as for 90◦ separation
with a constant bias force. Combining a symmetric periodic driving force and a constant
bias force, almost point like molecules can be sorted with separation angles of up to 180◦

by exploiting SSBT as described in chapter 4 and [4]. If the symmetric drive and the
constant bias force are orthogonal and both point into a symmetry direction of the lattice,
180◦ separation can be achieved by exploiting absolute transverse mobility [203].

The periodic potentials required can be realized by optical lattices [18, 23, 24, 27, 28,
189, 190, 271–273, 273–276], crystal surfaces [182, 183, 270], micro and nanostructuring
[411–414] or magnetic bubble lattices [105, 106, 185, 218, 220, 277]. The chiral molecules
can be real molecules or artificial structures [78, 83, 86, 415–418]. Compared to other
separation techniques, the main advantage of our method is that the same structure
can be used for very differently shaped chiral particles (e.g. see figure 4 of [5]) only by
adjusting the applied forces. Furthermore, no chemical additives are needed a priori.

A proof of principle experiment on a microfluidic chip using micrometer sized artificial
particles in a post array has been conducted with success [86].

Generalizing our method of chiral separation to three dimensions is straightforward.
The easiest way of doing so is to break reflection symmetry across the plane perpendicular
to the added z direction. Consider a periodic structured surface aligned with the x-y
plane. The presence of the surface already breaks reflection symmetry, and thus a chiral
molecule interacting with the surface such that it is usually close to this surface can be
sorted as above, if all likely orientations of the molecules to the surface are suitable, or
the molecules may be aligned with respect to the surface, e.g. by an electric field or
a hydrodynamic flow. Using only one surface has the disadvantage that the volume of
molecules interacting with the surface is much smaller than the volume of molecules in
free suspension [73]. In a truly three dimensional periodic structure reflection symmetry
across the x-y plane can be broken e.g. by a force in that direction or an anisotropy of
that surface, to recover above discussed effects.
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Chapter 8

Conclusion

We have shown that SSBT is a common feature of the nonlinear dynamics of a Brownian
particle driven out of equilibrium by a periodic driving force if the phase space of the
dynamics is at least three dimensional and the dynamics are reflection symmetric. For
inertial dynamics this fact is well established, as discussed in chapter 3, and our work
implies a similar conclusion for overdamped dynamics with the exception of the absence
of SSBT in any asymptotic limit of the drive parameters, such as the large drive power
limit of inertial dynamics.

Together with a symmetry breaking perturbation, SSBT can be used to control the
transport properties, and, in particular, the transport direction of a Brownian particle
by varying almost any scalar parameter of the dynamics. Most naive expectations with
respect to the influence of a given parameter of the dynamics are unhinged due to SSBT.
E.g. an applied bias force may direct the particle against that bias force (ANM) [1–3]
or, more generally, may lead to transport into almost any direction (“directing Brownian
motion” [4]), an increase of the dissipation strength or a reduction of the drive power may
accelerate the particle (see e.g. Fig. 6 of [2] or figure 4.24), an increase of the strength
of fluctuations may direct the particle into the opposite (or, more generally, another)
direction than the direction expected for very large fluctuations, or an increase of the
bias force may direct the particle into the opposite direction even if the particle mobility
is positive for a small bias force (see e.g. Figs. 14-15 of [2], figure 4.25 or figure 5.5). The
result is that

• Brownian particles can be directed into almost any direction without changing the
direction of any external force,

• and the transport direction of Brownian particles depends sensitively and often
unexpectedly on almost all parameters of the dynamics.

This high selectivity of the dynamics allows efficient separation of different particle
species. The differences between the particle species may be encoded in parameters
of the dynamics and will lead to possibly very different transport directions. Possible
applications may look like (e.g.) [62], where ANM is exploited for separation, or [185],
where diffusive sorting induced by SSBT is demonstrated. If transport is restricted to
be parallel to a particular direction, there are only two possible directions and the abso-
lute transport velocities to choose from. Lifting that restriction, the response behavior
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becomes much richer. In particular, if at least two spatial dimensions are available for
transport, one can sort more than two particle species at once (see e.g. figure 4.27).

Another aspect is that the absolute transport velocities due to SSBT are typically
much larger than those found for similar system parameters without SSBT. This in itself
may be used for particle separation, and its consequence in the symmetric dynamics is
particularly appealing: (deterministically) enhanced (anisotropic) diffusion due to the,
either noise induced or intermittent chaotic, switching between SSBT attractors with
different transport directions. The diffusion may be highly anisotropic, i.e. strong in the
direction of SSBT and weak in the other. If the direction of strong diffusion is different
for different particle species, this provides a tool for sorting particles without breaking
the spatial symmetry, see e.g. figure 4.28 and figure 7.8.

We have unraveled the mechanisms of SSBT in overdamped dynamics of Brownian
particles at three example dynamics, in chapter 4 for point particle dynamics, in chapter 6
for two coupled point particles, and in chapter 7 for the dynamics of extended “molecules”
with an internal structure. The main requirement is that the time scales and the forces
due to the periodic potential and the drive have to be comparable, i.e. all relevant
parameters have to be of order unity in properly scaled units1, and random fluctuations
have to be sufficiently small. With respect to thermal noise, the latter means that the
typical thermal energy has to be much smaller than the potential barriers separating
adjacent potential wells, i.e. free thermal diffusion has to be suppressed on the relevant
time scales. In chapter 5, we have shown that in the presence of SSBT quenched disorder
can be treated similarly to thermal noise. Using that analogy for randomly (Gaussian)
displaced lattice sites of the periodic potential, we have found that the mean square
displacement has to be smaller than about 1

1000
th of the spatial period. That requirement

is very strong but depends heavily on the statistics of the disorder. E.g., large but rare
displacements of the lattice sites are much less detrimental.

In chapter 7, we have employed SSBT with respect to chiral symmetry to enhance
the chiral selectivity of a tilted two dimensional periodic potential significantly, achieving
up to 90◦ separation, i.e. both chiral partners move into orthogonal directions. Adding
an asymmetric periodic driving force, 180◦ separation could be achieved from the same
principles. Adjusting a scalar parameter of the periodic driving force, 180◦ separation
could be maintained for astonishingly large noise strengths, and 90◦ diffusive separation
could be achieved for small noise strengths with a symmetric periodic driving force. The
mechanism of SSBT with respect to chiral symmetry is very different to that of SSBT as
discussed in chapters 3-6, but both require a sufficiently small noise strength to make use
of SSBT. Our main conclusion, that the interplay of SSBT and the symmetry breaking
perturbation controls transport, remains valid and is behind the large separation angles.
We have found the main requirement for SSBT with respect to chiral symmetry to be
that the molecule rotation is sufficiently inhibited by the potential, i.e. the size of the
molecules has to be of the order of the length unit of the potential, and the potential
must not have (relevant) flat parts. The latter requirement is lifted for very “long” (rod
like) molecules, but further studies are needed to determine the usefulness of SSBT in
that limit. Our method of sorting by use of SSBT can be considered as an extreme case
of a well known locking phenomenon [21], where the molecule locks to different lattice

1In contrast, SSBT may also be found in the high drive power limit of underdamped dynamics, but
that limit restricts the possible response behavior significantly [137, 157].
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directions in dependence of the direction of the (tilting) bias force [5]. By making use of
the fact that the locking steps will be different for the chiral partner molecules in general,
chiral separation could be achieved under conditions under which SSBT is unavailable,
but the separation angles are much smaller in this case. If certain conditions are met,
180◦ separation could be achieved again by adding a periodic driving force, but that effect
is of a less general nature than the 180◦ separation in the symmetric case. This method
of chiral separation has been realized in a proof of principle experiment sorting artificial
particles in a microfluidic post array [86]. The associated potential is locally flat, and
only effectively constant bias forces are available. Hence the experiment makes use only
of the nonlinear locking behavior and achieves rather small (but sufficient) separation
angles.

Our findings from chapter 3 have been realized experimentally in a resistively shunted
Josephson junction [3]. We have achieved remarkably good agreement between theory and
experiment by means of a careful fit of the model parameters. The method could be ex-
tended along the lines of (e.g.) [172] and accelerated by using a GPU for the computations
[173] (see chapter 3), such that automated and almost instantaneous characterization of
Josephson junctions becomes possible.

The models considered in this work are of a very simple and general nature, and each
model is minimal in the sense that the predicted effects cannot be found in simpler dy-
namics. Our results can be generalized to many different experimental systems featuring
periodic potentials and driven out of equilibrium by a deterministic driving force. Exam-
ples are atoms or molecules on crystal surfaces [182, 183, 208, 270], molecules or artificial
particles in micro and nano structures (driven by hydrodynamic flows or electromag-
netic fields) [25, 59, 61, 62, 280–283, 411–414], molecules or artificial particles in optical
lattices (driven by hydrodynamic flows, travelling potentials2 or additional electromag-
netic fields) [18, 23, 24, 27, 28, 189, 190, 271–276, 422, 423], paramagnetic particles in
magnetic bubble lattices (driven by magnetic fields) [105, 106, 185, 218, 220, 277], the
electrical properties of superconducting devices (driven by microwaves) [107, 278, 279],
superconducting vortex lattices with or without pinning (driven by electric and magnetic
fields3) [223–228, 230, 231], models of motor proteins [361–368] or mechanical pendula
(driven by magnetic fields, electric fields or mechanical agitation) [138, 168–171]. Beyond
the fundamental interest in such paradoxical response behavior, our main application is
to control the transport properties of Brownian particles, which can be applied in many
ways, e.g. sorting, stabilization of unstable states, making work available upon request or
switchable resistors in the context of superconductors. Lastly, according to the methods
outlined in chapter 2, our conclusions apply also to systems that are physically very dif-
ferent, but which can be described within the same framework of SDE’s and have discrete
symmetries.

2I.e., the potential moves relative to the particles [419, 420], e.g. [218, 273, 421].
3An additional driven vortex layer might also be used.
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Madrid, “Giant acceleration of free diffusion by use of tilted periodic potentials,”
Phys. Rev. Lett., vol. 87, p. 010602, 2001.

[215] P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi, J. M. Rubi, and A. Pérez-
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