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Summary. During mating the males of the bushcricket 
Poecilimon veluchianus transfer a large spermatophore 
of about a quarter of their body weight to the female. 
Such nuptial feeding is often thought to function as pa- 
ternal investment by increasing the fitness of the male's 
offspring. According to an alternative, though not mutu- 
ally exclusive, hypothesis, the size of the spermatophore 
is maintained because of its function as a sperm protec- 
tion device. In this case the cost to the male should 
be classified as mating effort. To discriminate between 
these two hypotheses we measured the duration of sperm 
transfer into the female spermatheca and the time taken 
for spermatophore consumption. A comparison of dura- 
tions revealed that spermatophore consumption inter- 
feres with the process of sperm transfer (Fig. 4). There 
was no significant effect of spermatophore consumption 
on number of eggs laid, weight of eggs or absolute weight 
of hatched larvae. The relative dry weight of hatched 
larvae, however, was increased as a result of spermato- 
phore consumption (Table 1). Thus spermatophylax size 
is adjusted in accordance with a sperm protection func- 
tion and the spermatophylax therefore represents mating 
effort. The increase in relative dry weight indicates that 
there may also be a paternal investment effect of the 
spermatophylax, if the offspring that benefit from sper- 
matophylax materials are fathered by the donating male. 

Introduction 

In groups of insects as varied as bushcrickets, butterflies, 
empedids, hangingflies and scorpionflies the males offer 
nuptial gifts during or after courtship (for a review see 
Gwynne 1991). One possible explanation of such nuptial 
feeding is that the males exchange the gifts for the oppor- 
tunity to mate and thereby increase the number of off- 
spring they will father. The costs, measured as reduced 
number of future offspring, of such behaviour, directed 
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to maximisation of the number of the male's offspring, 
have been defined as mating effort (Low 1978). Alterna- 
tively these nuptial gifts are thought to function as pater- 
nal investment (Trivers 1972), at least in bushcrickets, 
because they potentially can increase the fitness or the 
number of the female's offspring (see Gwynne 1990). 

There has been considerable debate about these two 
hypotheses (Gwynne 1984a, b, 1986a, b; Quinn and 
Sakaluk 1986; Sakaluk 1986; Wickler 1985, 1986). To 
support the paternal investment hypothesis it has to be 
shown that the offspring benefit from the nuptial gift 
and are, at least in part, fathered by the donating male 
(Wickler 1985). If the nuptial gift is larger than necessary 
for successful insemination this shows that its size is 
maintained through a paternal investment function. Al- 
ternatively the size of the nuptial meal may be adjusted 
to its mating effort function. In this case increased off- 
spring fitness may result as a side-effect of the mating 
effort function with no additional costs to the male. 

In Requena verticalis, egg-weight, a measure that 
probably is positively correlated with fitness, was in- 
creased by feeding females with spermatophylaxes 
(Gwynne 1984a). Given the nearly complete first-male 
advantage in fertilization (Gwynne 1988 b) only the first 
male a female mates with will invest parentally. In the 
bushcricket Decticus verrucivorus, however, Wedell and 
Arak (1989) and Wedell (1991) found no evidence of 
paternal investment. They concluded that in this species 
the spermatophylax serves only as a device for successful 
insemination. 

The aim of this study was to examine the function 
of the spermatophore and the reasons for its mainte- 
nance in the bushcricket Poecilimon veluchianus. In this 
species spermatophore production is so costly to males 
(Heller and Helversen 1991) that it results in a relatively 
balanced operational sex ratio in the field, only weakly 
biased in favour of males. During copulation males of 
P. veluchianus transfer a spermatophore that weighs 
about a quarter of the male's body weight and consists 
of a small sperm-containing ampulla and a large sperma- 
tophylax (about 85% of spermatophore weight). Some 
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minu tes  after copula t ion  the female bends over and  be- 
gins to feed on  the spermatophylax.  This jelly-like par t  
of  the spermatophore  is thought  to deter the female f rom 
consuming  the ampul la  before the sperm have reached 
the female 's  spermatheca.  

The experiments  were designed to discr iminate  be- 
tween the two hypotheses (paternal  inves tment  versus 
ma t ing  effort) and  to answer  the fol lowing quest ions:  
(1) Is the size of  the spermatophylax  as large as necessary 
for successful i n semina t ion  or larger? (2) Do females 
lay more  or heavier eggs after c o n s u m p t i o n  of  the sper- 
m a t o p h o r e ?  

To answer the first ques t ion  the du ra t i on  of  sperm 
transfer  (experiment  1) was compared  with the du ra t ion  
of  spermatophore  c o n s u m p t i o n  (experiment  2), to reveal 
whether  spermatophylax  size is adjusted to the t ime 
needed for sperm transfer  (mat ing  effort) or to a larger 
size evolved th rough  selection for increased pa te rna l  in- 
vestment.  To address the second ques t ion  we prevented 
some females f rom feeding on  the spermatophores  (ex- 
per iment  3) and  compared  their egg-number  and  differ- 
ent  measurements  of  offspring qual i ty  with those of  con- 
trol females. 

Methods 

Species and study site. Poecilimon veluchianus Ramme is a medium- 
sized herbivorous bush-cricket endemic in central Greece (Willemse 
1985). Males and females are brachypterous and therefore flight- 
less. The insects are active mainly at night. Females lay their eggs 
in the soil at sunset, males call almost exclusively during the night 
and mating takes place from about 2000 to 0600 hours with a 
peak between 2300 and 0300 hours. 

All experiments were conducted in spring 1989 and 1990 some 
kilometers north of Vitoli (near the village of Makrakomi, Nomos 
Fthiotis, Greece, about 330 m above sea level), either in the natural 
habitat of the species (experiment 2) or in cages at that place (exper- 
iments i and 3). The animals were fed with flowers and buds of 
Spartiumjunceum, their main foodplants at this locality. For details 
on the study site and its vegetation see Heller and Helversen (1991). 

Experiment 1. Duration of sperm transfer. To estimate the time 
required for transfer of sperm from the ampulla to the female 
spermatheca, 76 virgin females were mated and their ampullae re- 
moved at different time intervals [2, 3, 4.25 (4 and 4.5 combined), 
6, 7.5, 9, 12, 15 h]. The spermatophore was removed with forceps 
and the content of the ampulla was suspended in 4 ml water by 
repeatedly passing it through a fine syringe. After dissection of 
the female we handled the spermatheca similarly. For determina- 
tion of sperm concentration we used a haematocytometer (Neu- 
bauer, improved). For each sample we counted the number of 
sperm in a volume of 50 nl (or up to 16 times that volume if 
we found fewer than 100 spermatozoa) and calculated the absolute 
number of sperm in every sample. From this we derived the percent- 
age of sperm transferred to the spermatheca for every copulation. 

Experiment 2. Duration of spermatophore consumption. On 27 May 
1990, 120 females were marked individually with reflective tape 
and adheasive labels (for details of method see Heller and Helversen 
1990) and released at the place of capture. During two arbitrarily 
choosen days (28 May and 5 June) we searched for the marked 
animals every 1-2 h and examined them for the presence of sperma- 
tophores. The duration of spermatophore consumption was calcu- 
lated from the time between the first and the last observation of 
an individual female with a spermatophore. This value was ad- 

justed by adding half of the interval between the last observation 
without and the first with a spermatophore, and between the last 
observation with and the first without a spermatophore. On two 
nights (4 and 6 June), the same experiment was repeated with 24 
and 10 caged virgin females (caught as subadults, at the time of 
the experiment about 10 days adult) and the same number of males. 
In this experiment females and males were weighed before placing 
them together in a large cage (1.5 x 1.5 x 1.5 m) and copulating 
pairs were identified so that the duration of spermatophore con- 
sumption could be related to the weight of males and females. 

Experiment 3. Effect of spermatophore consumption on oviposition. 
In order to determine fitness effects of spermatophore consump- 
tion, 40 virgin, newly moulted females were assigned to two groups 
at random. All females had been collected as subadults and reared 
to adults in a 120-1 cage. About 3 days after their moult, the animals 
were marked individually with adheasive labels. The adults were 
housed individually in transparent plastic containers of 400 ml vol- 
ume filled with about 60-80 ml fine sieved sand from the natural 
environment serving as oviposition substrate. All females were 
weighed to the nearest milligram and the length of one hindfemur 
was measured with dial calipers to the nearest 0.1 mm. 

Beginning on the 8th night after moult, every night (with the 
exception of three nights of heavy rainfall during which only very 
few animals copulated in the field) individually marked males that 
had not copulated for at least 2 days were placed into the female 
cages (one by one, from about 2300 to about 0300 hours). During 
this time the females were monitored every 30 rain to check whether 
they bore spermatophores. The females of one group ( -  SP, group 
B) were prevented from feeding on their spermatophores by sprin- 
kling the spermatophylaxes with fine sand (the egg-laying sub- 
strate). This did not prevent the insemination process, as was con- 
firmed later by the production of fertile eggs and spermatheca 
dissection. After this treatment the females rarely tried to feed 
on the spermatophore and never succeeded in consuming a sub- 
stantial part of the spermatophylax. Some spermatophores treated 
in this way did not fall off until about 1800 hours the next day 
and were therefore removed with forceps at that time. The females 
of the other group (+SP, group A) served as a control and were 
allowed to consume their spermatophores. The egg-laying substrate 
was sieved daily and the eggs were kept and counted later in the 
laboratory. Most of the females survived until 20 June and were 
then, about 30 days post-moult, killed and preserved in 70% alco- 
hol. Four females were excluded from the analysis because of early 
death or inability to mate or lay eggs. 

In October 1989, the eggs were cleaned from the adhering mate- 
rial and put on moist sand in petri dishes for 10 days at room 
temperature (about 22 ° C) and then held for 14 days in a refrigera- 
tor (at 5 ° C). After this procedure groups of 5 eggs (with larvae 
of stage 23 after Ingrisch 1978) were weighed to the nearest 0.1 mg. 
The larvae that hatched from 2 to 20 March 1990 were weighed 
and up to five per female were dried at 80 ° C. One dried larva 
of each female (the first hatched) was weighed with a Cahn electro 
balance to the nearest 0.001 rag. 

Results 

Duration o f  sperm transfer 

The time necessary for sperm transfer  was surpris ingly 
variable. For  example, one spermatophore  a t tached to 
the female for only 3 h con ta ined  less than  20% of  its 
original  n u m b e r  of  sperm cells, while six others after 
the same time still con ta ined  more  t han  80%.Even  after 
12 h some spermatophores  con ta ined  more  than  50% 
of their init ial  sperm (see Fig. 1). It seemed that  2 h was 
no t  long enough  for any  sperm to reach the spermatheca 
bu t  wi thin  15 h all spermatophores  t ransferred more  
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Fig. 1. Percentage of sperm transferred to the female spermatheca 
as a function of different spermatophore attachment durations. 
Time (h):n, 2:4, 3:7, 4.25:15, 6:13, 7.5:11, 9:10, 12:10, 15:6. 
The solid line connects the means for the different durations 
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Fig. 2. Cumulative mean daily number of eggs per female in rela- 
tion to female age. The crosses connected with a dotted line are 
the values for experimental animal (group B; - S P ;  deprived of 
spermatophore consumption); the solid line represents the values 
of the control animals (group A; +SP, allowed to consume the 
spermatophore) 

than 70% of their sperm. At nearly any chosen time 
from 3 h to 12 h after spermatophore attachment, we 
found spermatophores with more than 50% and others 
with less than 5% sperm transferred. In only 4 out of 
59 cases were values between 5% and 50% transferred 
sperm found. In summary, sperm transfer from the am- 
pulla to the spermatheca seems to be a rapid process 
with a long and variable delay after mating, resembling 
an all-or-nothing reaction with a variable delay before 
initiation. 

Duration of spermatophore consumption 

During the 2 nights, 104 and 62 of the surviving marked 
females were located in the field. A total of 24 females 
that were observed with a spermatophore took on aver- 
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age 9.4h (SD--2.3) to consume the spermatophore. 
There was no correlation between the calculated moment 
of copulation and duration of spermatophore consump- 
tion (r = - 0.15, P > 0.5). The duration of spermato- 
phore consumption was significantly longer in captive 
females (mean 12.2h, n=33, SD--3.3 h, Mann-Whit- 
ney, Z=3.3,  P<0.001). This difference in consumption 
time may be explained by captive females mating with 
males that had refrained from mating for a minimum 
of 2 days and therefore produced larger spermatophores 
than males that remated within a shorter period (Heller 
and Helversen 1991). In this experiment, the time taken 
for spermatophore consumption was not correlated with 
female weight (P > 0.2; multiple regression analysis), but 
it was correlated with male weight (y=0.023x-3.5,  r=  
0.54, P = 0.01), and therefore with the weight of the sper- 
matophylax which is itself strongly correlated with male 
weight (unpublished results). 

Effect of spermatophore consumption on oviposition 

The number of eggs the females laid per day did not 
depend on their age, at least over the period from the 
beginning of oviposition until about 30 days after moult 
(Fig. 2). Therefore a measure of female fecundity (eggs/ 
day) that is independent of female lifetime can be deter- 
mined by dividing the total number of eggs laid during 
life by the number of egg-laying days (the days a female 
survived from the 14th day after its imaginal moult). 
A comparison of group A (+ SP, control) and B ( -  SP, 
deprived of spermatophore) did not reveal any influence 
of spermatophore consumption on fecundity (Table 1 A). 
The number of eggs laid was even higher in the group 
not feeding on spermatophores (see Table 1 A, cf. Fig. 2), 
so there is no indication that spermatophore consump- 
tion results in an increase in female fecundity. The fecun- 
dity of the females is clearly correlated with female 
weight (Table 1 A, Fig. 3) but not with their size as esti- 
mated by hindfemur length (Table 1 A). 
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Fig. 3. Mean number of eggs laid per egg-laying day (the days 
a female survived from the 14th day after her imaginal moult) 
as a function of female body weight. (regression: y = 0 . 0 0 5 3 x -  
0.935, r=0.592, P<0.001) 
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Table 1. Means (not adjusted for effects of covariates) and analyses of A, number of eggs produced and B F measurements of offspring 
weight (B, D and E in mg, F in % ; further explanation see text) in experiment 3 (ANOVA) 

Mean __ SE (n) A Number of eggs per egglaying day B Weight of groups of 5 eggs C Residual of egg weight 

Group A (+ SP)Group B (-SP) Group A (+ SP)Group B (-SP) Group A (+ SP)Group B (-SP) 
2.69-+0.19 (17) 3.03-+0.21 (17 )  24.16_+0.33 (17)23.32__.0.30 (17) 0.44_+0.32 (17) --0.48_+0.31 (17) 

Analysis of variance 

Source of variation df MS F ratio P df MS F ratio P df MS F ratio P 

Treatment 1 1.562 3.778 0.061 1 3.018 1.987 0.169 1 3.627 2.524 0.123 

Covariates 
Female weight 1 7 . 9 6 7  19.272 0.000"* 1 4.015 2.644 0.114 1 3.202 2.229 0.146 
Female size 1 0.262 0.633 0.441 1 12.343 8.128 0.008* 1 13.541 9.425 0.005* 

Residual 30 0.413 30 1.519 30 1.437 

Mean + SE (n) D Weight of hatched larvae (wet) E Dry weight of hatched larvae F Relative dry weight of larvae 

Group A (+ SP)Group B (-SP) Group A (+ SP)Group B (-SP) Group A (+ SP)Group B (-SP) 
6.78+0.20 (10) 6.60_+0.10 (13)  1.38_+0.04 (10) 1.27_+0.02 (12)  20.29+0.47 (10)19.04_+0.17 (12) 

Analysis of variance 

Source of variation df MS F ratio P df MS F ratio P df MS F ratio P 

Treatment 1 0.002 0 .010  0.924 1 0.039 3 .543 0.076 1 10.691 10.004 0.005* 

Covariates 
Female weight 1 0.641 0 .339  0.574 1 0 . 0 0 4  0 .375  0.555 1 1.868 1.748 0.203 
Female size 1 0 . 9 9 6  5 .266  0.033 1 0 . 0 3 2  2 .849  0.109 1 0.012 0.011 0.917 

Residual 19 0.189 18 0.011 18 1.068 

Treatments: females prevented from consuming the spermatophore 
or not; covariates: female size (hindfemora length) and female 
weight 

To correct for the inflation in the Type 1 error associated with 
multiple statistical tests, we adjusted the significance levels 0.05 
and 0.01 to P=0.0085 (*) and P=0.002 (**). Regression lines for 
the covariates and dependent variables are not significantly differ- 
ent between the treatment cells 

One other possible effect of  spermatophore consump- 
tion could be an increase in egg or offspring size (mea- 
sured as weight). We compared the mean weights of  
groups of 5 eggs (1 4 values per female) between the 
control and experimental group, controlling for female 
size and weight as covariates, and obtained no indication 
of  an effect of  spermatophore consumption (Table 1 B). 
In order to eliminate the correlation between female age 
at oviposition and egg weight (older females laid eggs 
of lower weight than younger ones, n =  138, r =  -0 .25 ,  
P<0 .01)  we calculated the mean residual for every fe- 
male and again compared groups A and B (residual of  
egg weight, Table 1 C). Both egg weights and residuals 
are correlated with the length of  the female hindfemur 
but not with female body weight, indicating that female 
size affects egg size, whereas female nutrition (weight) 
seems to affect egg number but not egg size. Comparison 
of the wet weights of  hatched larvae (one mean value 
for every female from 1-7 larvae) also yielded no differ- 
ence between the groups A and B (Table 1 D). The dry 
weights of  larvae from group A were slightly larger than 
those of  group B (Table 1 E). Only the relative dry weight 
of the larvae (the proportion of  dry weight in relation 
to wet weight, expressed as a percentage) was significant- 

ly influenced by the treatment (Table 1 F). This may indi- 
cate that the larvae did not grow bigger but retained 
more material during embryonic development if the fe- 
males were allowed to feed on the spermatophores. 

Females of  group B copulated at a faster rate (13 
out of 17 remated within 5 days) than females of  the 
control group (3 out o f 1 7  remated within 5 days, P <  
0.001, Fisher's exact test). 

Discussion 

Comparison of the durations of  spermatophore con- 
sumption and sperm transfer is necessary to discriminate 
between the different hypotheses of  spermatophylax 
function. In Poecilimon veluchianus sperm transfer seems 
to be an all-or-nothing process with a variable initiation 
delay. Therefore the proportion of  spermatophores that 
have transferred a substantial part of their sperm (we 
considered more than 20% as substantial) into the sper- 
matheca is the best measure of  success in sperm transfer. 
This measure of  the duration of  sperm transfer can be 
compared with the period the females need for total 
consumption of  the spermatophore. Comparing the two 
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Fig. 4. Comparison of the proportion of spermatophores that have 
transferred more than 20% of their sperm into the female sper- 
matheca [fl (t), dotted line] and the proportion of spermatophores 
not completely consumed [/2(0, thin line] as a function of sperma- 
tophore attachment duration. Assuming independence of these two 
curves, we calculated the cumulative percentate of prematurely 
consumed spermatophores [f3 (t), bold line] as follows: 

f3 (t) = i A f2 (~) * F 1 - f3  (t)] 
t - - 0  

curves (Fig. 4) it is evident that a small proport ion of  
spermatophores is consumed before sperm transfer. For 
example, a spermatophore that is consumed 6 h after 
copulation will have a chance of only about  66% of  
transferring a substantial part of  its sperm into the fe- 
male spermatheca. An estimate of the percentage of  sper- 
matophores that are consumed before sperm transfer 
yields about 19% prematurely consumed and thus un- 
successful spermatophores (Fig. 4). The spermatophores 
eaten in less than 9 h are particularly at risk of  being 
consumed prematurely, since the one curve (thin line, 
percentage of spermatophores not consumed) falls be- 
fore the other (dotted line, percentage of  spermato- 
phores that have transferred more than 20% of  their 
sperm) has reached the 100% level. Thus, assuming that 
consumption time and duration of  sperm transfer are 
independent, spermatophore size seems to be rather 
small. However, spermatophore size in P. veluchianus 
depends on the time since the last copulation (Heller 
and Helversen 1991). A male may then profit more if 
it produces a small spermatophore that may be unsuc- 
cessful rather than delaying mating until it is able to 
produce a large spermatophore that is certain to be not 
consumed prematurely - otherwise it should not mate 
at that time. In summary, spermatophylax size in P. 
veluchianus seems to be adjusted to the sperm protection 
function, as it is in Gryllodes supplicans (Sakaluk 1984, 
1986). 

To see whether the spermatophylax could also act 
as incidental paternal investment one has to show that 
the progeny of  the investing male benefit from spermato- 
phylax consumption (Wickler 1985). There are two pos- 
sible effects of  paternal investment, which may either 
increase the fitness or the number of  offspring (Gwynne 
1990). Our experiments have revealed that there is no 

increase in the number of eggs produced after spermato- 
phore consumption (Table 1 A; cf. Fig. 2), contrary to 
the results for Reguena verticalis (Gwynne 1984a). 

Spermatophore consumption could also result in 
"be t t e r "  offspring instead of  a higher number of  off- 
spring. Fitness in offsping is difficult to measure directly, 
so we measured the weight of eggs and larvae, which 
is probably positively correlated with fitness (Capinera 
1979; Harvey 1985; Gwynne 1988a). The weights of  de- 
veloped eggs and hatched larvae were higher if their 
mothers were allowed to feed on the spermatophores, 
but the differences were not significant (Table 1 B D). 
Spermatophore consumption yielded a significant in- 
crease in relative dry weight of  hatched larvae (Table 
1 F). This result may indicate that the larvae did not 
grow to a larger size, but used the spermatophore mate- 
rials to increase their energy reserves, sustaining them 
for longer while searching for food after eclosion. 

To determine whether a nuptial gift that benefits a 
female's progeny can be viewed as paternal investment 
it is necessary to know whether the male fathers the 
offspring he benefits. The experiments here deal only 
with the question of  the benefit of the spermatophore 
for the offspring and not with their paternity. However, 
we have some indication that the investing male will 
only rarely be the father of  the progeny that benefit 
from nuptial feeding. Since about 90% of all eggs are 
fertilized by the last male to copulate with the female 
(Achmann et al. 1992), the interval between two matings 
should be considered as the critical period for nutrient 
incorporation. The inter-mating period most frequently 
observed in P. veluchianus is 2 days (Heller and Helver- 
sen 1991), which seems too short for incorporation of  
spermatophore materials into developing eggs, because 
there is a lag of  about 7 days for the incorporation of  
spermatophore contents into the eggs of  Poecilimon af- 
finis (D. v. Helversen pers. comm.). In contrast, Sim- 
mons (1990) has reported that egg weight increases as 
little as 24 h after copulation in an undescribed member 
of the Zaprochilinae as a result of spermatophore con- 
sumption. 

There may be, however, a very fast utilization of  the 
main spermatophylax component,  water, which consit- 
utes about 88% of spermatophylax weight in P. velu- 
chianus (unpublished results). It seems possible that 
water may enhance female or offspring fitness in the 
dry summer climate of  Greece, but it is unlikely to result 
in higher relative dry weight of hatched larvae. 

The females of  P. veluchianus mate at a higher rate 
if they are prevented from consuming the spermato- 
phore, which may be interpreted as an attempt to gain 
materials they are deprived of. This result, like the higher 
mating rate in an unnamed species of  Zaprochilinae 
(Gwynne and Simmons 1990) and in Requena verticalis 
(Gwynne 1990) when females are undernourished, indi- 
cates that the females benefit from spermatophore con- 
sumption. 

Taken together, our results reveal that spermatophy- 
lax size in P. veluchianus is maintained by selection on 
the male to increase the number of  young he will father, 
and hence the spermatophylax represents mating effort. 
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In addi t ion it m a y  cause an increase in p rogeny  fitness, 
which could be considered as incidental paternal  invest- 
ment  if  nutrients are incorpora ted  in eggs laid before 
remating. The spermatophylax  m a y  even funct ion as 
true paternal  investment,  but  only in the rare case when 
the opt imal  spermatophylax  size is a lmost  equal for the 
mat ing  effort and paternal  investment functions.  

In Requena vertical& the size o f  the spermatophylax  
seems to be larger than  necessary for sperm protect ion,  
and spermatophylax  consumpt ion  yields an increase in 
egg number  and egg weight, so Gwynne  (1986a) con- 
cluded that  the spermatophylax  represents paternal  in- 
vestment  in this species. Wedell and A r a k  (1989) and 
Wedell (1991) found  no evidence o f  paternal  investment 
in the wartbi ter  Decticus verrucivorus and concluded that  
spermatophylax  size is adjusted to a sperm protec t ion 
function. Given such var iat ion in bushcrickets it seems 
to be premature  to label nuptial  gifts as paternal  invest- 
ment  in a given species o f  bushcricket  wi thout  experi- 
mental  conf i rmat ion.  

Even the occurrence o f  a reversal in the typical cour t -  
ship sex-roles, as has been observed in bushcrickets 
(Gwynne  1981, 1985; S immons  and Bailey 1990) canno t  
be taken as evidence for paternal  investment.  Cour tship  
sex role reversal may  also evolve if female reproduct ive 
success is limited by the female 's  ability to acquire sper- 
matophores ,  even if this benefits the offspring o f  subse- 
quent  mates. 

A relationship between the sexes similar to that  in 
P. veluchianus has been found  in brush- turkeys  (Jones 
1990) where the m o u n d s  that  males build in a period 
o f  mon ths  serve mainly as a device for at t ract ing females 
for  copulat ions.  The eggs that  females lay in these 
mounds  short ly after copula t ion  have been fertilized 
some days earlier, most ly  by other  males. 
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