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An effective 3-d 4-component scalar model is studied in order to determine the effects of order parameter 
fluctuations on the electroweak phase transition. Its lattice formulation contains also the effects of magnetic 
screening and is investigated both with mean field and Monte Carlo techniques. Numerical results point in the 
direction of a weakening of the first order phase transition at a value of the Higgs mass mH = 35 GeV. 

1. I N T R O D U C T I O N  

The tiny matter-antimatter  asymmetry ob- 
served on cosmic scales requires explanation in 
the framework of standard cosmology. Baryon 
number violating processes are known to occur in 
the electro-weak theory and are, in fact, expected 
to occur frequently at high temperatures. The 
occurence of a non-vanishing matter-antimatter 
asymmetry, however, is expected to be possible 
only, if the universe evolved through some non- 
equilibrium stages. If the electroweak phase tran- 
sition was of first order (discontinuous) nature, 
than at temperatures Tc ,~ 100 G e V  there might 
have been a chance for developing the observed 
baryon asymmetry of the universe. 

The very active present day investigation of 
this question is based on perturbative evalua- 
tion of the effective potential of the Higgs-field. 
Renewed interest in the field is due to the ob- 
servation that  the non-perturbatively generated 
screening masses for the gauge bosons as well as 
thermal fluctuations of the order parameter [1] 
might substantially modify the strength of the 
first order electroweak phase transition and even- 
tually could lead to a second order transition, if 
the magnetic screening mass becomes too large 
[2]. Thus the perturbative calculations [3,4] lead 
to constraints on the magnetic screening mass re- 
quired for a first order transition and also lead to 
other predictions, like for instance the latent heat 
and surface tension. In this work we study the 
influence of the finite temperature fluctuations of 

the Higgs-field on these parameters. Specifically 
we will study an effective 3-d theory for the Higgs- 
field, which has been obtained from the (3+1)- 
dimensional SU(2)-Higgs model in two steps: 

• Dimensional reduction: One integrates over 
all non-static Matsubara fields at one-loop 
level. Since these modes are massive, no in- 
frared sensitivity is expected, their pertur- 
bative integration seems to be well-founded. 

• Elimination of gauge degrees of freedom: 
The theory resulting from the first step is a 
3-dimensional Gauge-Higgs model, where in 
addition, also an isovector field, the fourth 
component of the gauge fields, is present. 
In order to reduce the theory further one 
integrates over the magnetic gauge degrees 
of freedom and the isovector scalar. Ac- 
cording to the improved perturbative treat- 
ments, the infrared stability can be ensured, 
if one includes into the result of the "naive" 
3-dimensional l-loop calculation the electric 
screening mass and an additional magnetic 
screening mass. Especially the second of 
them lacks, however, firm theoretical basis. 

As a result of this approach one arrives at 
a three dimensional effective Lagrangian for the 
Higgs field alone 
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where the nonperturbative magnetic screening 
mass is MA and the perturbative results for M~ 
and Mp are given by 

= + 

M} = 5 _2T2 -~y • 

E¢ is the linearly divergent integral fv l iP 2, C -- 
A in perturbation theory. The above parameters 
mR and A are close but not identical to the tem- 
perature zero values of the Higgs-mass and the 
quartic coupling of the D = 4 theory. They pick 
up a renormalization correction, which can be 
worked out when temperature independent terms 
of the effective potential in our approach are com- 
pared with the zero temperature effective poten- 
tial of the full theory. These contributions are 
however small at the value of the Higgs-mass, 
which is considered in this paper. We note that 
the effective 3D action [5] reproduces the self- 
consistent gap equations for the screening masses 
widely used in the perturbative treatment of the 
phase transitions [3,4]. We thus expect that an 
analysis of the above effective 3D model with non- 
perturbative methods will yield valuable informa- 
tion for the influence of screening masses on the 
nature of the electroweak phase transition. 

2. T H E  L A T T I C E  A C T I O N  

We consider the following lattice action 

11 ~ OA t 
S3D,Latt = V [-~¢xeX + "~(¢xex)" 

2 
P 

] 
Hereby denotes O = aT the physical temperature 
in units of a, n is the hopping parameter which is 
related to the temperature dependent Higgs mass 
by ~ = (M~a ~+6)  -1. The couplingsg~ and A 
denote the corresponding zero temperature gauge 
field and quartic couplings. We fix the value of 
g2 by choosing a W-mass m w =  80 GeV and 

the vacuum expectation value of the Higgs-field 
to be v0 = 246 GeV. In addition 7A and 7p are di- 
mensionless constants appearing in the definitions 
of the electric and magnetic screening masses 
(M~A,p -- 7n,pgeT 2) respectively. In resummed 
perturbation theory 7p = ~ and ~'A 0 ( O ( g 2 ) .  
Using for 7p its perturbative value we choose for 
the parameter "YA a value of ~A 4 = 7B ~ and keep 
7B as a free parameter. We then consider a value 
for the Higgs-mass mn = 35 GeV, which deter- 
mines the quartic quartic coupling A = 3m2H/V 2. 
This choice is motivated by a recent work of Ka- 
jantie et al.[6] in order to facilitate a comparison 
of their results with our approach. After fixing all 
these parameters we are left with the two free pa- 
rameters @ and n. In the n-O plane of couplings 
we expect a phase transition from a symmetric to 
a broken phase in the model. It means tuning 
and @ on the PT line approaching the Gaussian 
Fixed Point at @ = 0 will allow the construction 
of the continuum limit. 

3. M E A N  FIELD ANALYSIS 

The mean field calculation of $3D,L,u exhibits 
the properties of the model in a qualitative way. 
In the t~-@ plane of couplings we obtain scaling 
laws, e.g. for the order parameter jump ~ta,t, the 
interface tension crtatt and the shape of the phase 
transition line no(@) 

~.~.. O 0.5 
~latt : Tc 

O" 2 
O'latt =- "~']c O 

(t~c(O) -1 -- 6)0 2 -- 2ZMF 

with ZMF determined by the mean field equa- 
tions. Fig. 1) shows the quantity a/T]  as a func- 
tion of the magnetic screening mass parameter 
7B and the Higgs-mass. It can be seen that for 
7B = 1 the phase transition is first order up to 
values of the Higgs mass of about 85 GeV, turning 
then into a second order phase transition. These 
results are consistent with results of Buchmfiller 
et al [3]. 
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Figure 1. Mean field results for g/T3~ as function 
of 7B and mH. TCP denotes the end point of the 
first order regime. 

4. M O N T E  C A R L O  ANALYSIS 

expect a weakening of the phase transition in- 
duced by fluctuations of the Higgs field. Thus 
a possible explanation could be that the full dy- 
namics of the gauge fields operates in the direc- 
tion of a strengthening of the first order phase 
transition. 

Table 1 
Numerical results (MC) in comparison to mean 
field analysis (MF). L denotes the linear extent of 
the lattice. The interface free energy estimators 
from the Monte Carlo simulation use Binder's 
method. 

MF MC (9 L 
Tc 99.62 115 - 

¢ /Tc  1.32 1.10 5.0 16 
- 0.90 3.0 18 

cr/T{lO" 2.42 0.15 5.0 8 
- 0.27 5.0 12 
- 0.38 5.0 16 
- 0.05 3.0 18 

In our present numerical evaluation we simu- 
late S3D,Latt using a Multicanonical algorithm. 
We briefly summarize the numerical results of our 
simulation obtained so far in Table 1). The Table 
contains values for the jump of the order param- 
eter and estimates for the interface tension as de- 
termined at mH = 35 and 7B = 1, as well as an 
estimate of the critical temperature, which is de- 
termined from the shape of the phase transition 
line. The interface tension estimates are obtained 
from ratios of probability distribution functions 
of certain operators in the metastable region of 
the model [7]. For a detailed description of the 
employed methods we refer to a forthcoming pa- 
per [8]. These results indicate a weakening of the 
PT as compared to the mean field calculations, 
e.g. see the comparison of interface tension esti- 
mators as compared to the mean field value. This 
result is quite interesting. It has to be contrasted 
with a recent claim by Kajantie et al.[6], which 
states that they see a somewhat stronger first or- 
der phase transition, than indicated by a l-loop 
perturbative analysis of their model. They would 
attribute this effect to nonperturbative contribu- 
tions from gauge field dynamics, while we would 
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