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ABSTRACT. Global bifurcations in dynamical systems often occur from
homoclinic or heteroclinic orbits. The best known effect is the termi-
nation of a branch of periodic orbits at a homoclinic orbit. In this
paper we extend our numerical approach to connecting orbits and the
error analysis developed in [1]. The basic nondegeneracy condition is
characterized by a geometric transversality condition. Further, the
analysis of the error obtained by truncating to a finite interval is
generalized in order to include periodic boundary conditions and to
explain the superconvergence phenomenon with respect to the parameter
as observed in [11].

1. INTRODUCTION

Global changes in the asymptotic regime of a parametrized dynamical
system

X=f(x,1), feCLR™P,R") (1.1)
are often related to the appearance or disappearance of connecting
orbits. Here we call a solution (X(t)(t€R), 1) of (1.1) a connecting
orbit patr (COP) if

X(t)»Xy as t->ze and f(X,,A)=0. (1.2)

For the homoclinic case (i.e. X_=X_) the most important effect
is the birth of periodic orbits or more complicated invariant sets (see
e.g. Shil'nikov [12}, Sparrow [13], Guckenheimer & Holmes [ 9], Glen-
dinning [ 8] and section 3 below). Moreover, both homoclinic and hetero-
clinic (X #R%_) orbits occur when determining the shape and speed of

traveling waves in parabolic systems, (see e.g. Fife [6 1).

In Beyn [ 1] we have introduced the notion of nondegenerate connec-
ting orbit pairs. these turn out to be regular solutions of ;hg infinite
boundary value problem (1.1), (1.2) if a suitable phase condition is
added:
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¥(x,2) =0 (1.3)

In this paper we characterize this nondegeneracy by the transversal
intersection of certain stable and unstable manifolds.

Moreover, we extend our numerical approach from [ 11, which was
based on earlier work of de Hoog & WeiB [3 ], Keller & Lentini [10].
Here we consider approximating finite boundary value problems of the
following general type

%=f(x,1) on J=[T_,T,]1 (1.4a)
B(X(T_), x(T,),x)=0 (1.4b)
wJ(x,x) =0 (1.4c¢)

We assume (1.4c) to be a scalar condition and (1.4b) to be a set of
m+p-1 so called asymptotiec boundary conditions. The whole systen
(1.4} is then a boundary value problem of dimension m+p for the
unknowns (x,A). The general form (1.4b) includes the most efficient
projection conditions (see [ 11]) as well as the periodic b.c. which
are convenient for the homoclinic one-parameter case. For the solutions
of (1.4) and (1.1) - (1.3) we present a detailed error analysis. This
will explain the superconvergence phenomenon for the parameter as
observed in [ 1] and it will give us a theorem on the bifurcation of
periodic orbits from a homoclinic orbit.

A related approach to connecting orbits has been developed by fried-
man & Doedel [5 L[ 7 1. The main difference in their approach is that
the stationary points it as well as certain eigenvalues and eigen-
vectors of the linearizations fx(ii,;‘) are introduced as new unknowns
into the system. This simplifies the implementation of the boundary
conditions but also increases the dimension of the system and requires
some a-priori knowledge about the structure of the spectrum. Other
differences relate to the integral phase condition and the use of

weighted Banach spaces in [51,[ 7] whereas here we employ the theory
of exponential dichotomies Coppel [ 2], Palmer [11].

2. A WELL-POSED PROBLEM FOR CONNECTING ORBITS

The theory of exponential dichotomies [ 21,[11] turns out to be a use-

ful tool when dgah’ng with linearizations at connecting orbits. There-
fore we start with some results on linear differential operators

Lx=%-A(t)x, x€Cl(3,R™), Aeco(a,R™M (2.1)
where J is an open interval (T_,T,). We include the cases where
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T_=-% or T _= += or both.

L is said to have an exponential dichotomy on J, if there is a fun-
damental solution matrix Y(t), t€J, a projector P in R" and constants
K,ul,a2>0 such that for all t,s€d

IY(£)PY(s)THISK exp(-ay(t-s)) vtz (2.2a)

HY(£)(I-P)Y(s) " Hi<K exp(-oy(s-t)) Vs =t (2.2b)
For later estimates it is useful to introduce the eritical exponents
(as,au) of L given by

ag=supfa; >0: there exist P,Y,ll I1,2,,K with (2.2)}
a,=supfa,>0: there exist P,Y,Il ll,a;,K with (2.2)}

It is easy to show (see [2 1, p. 16) that for any given il Il,Y(t) and
any ¢>0 there exists a projector P and a constant K such that (2.2a)
and (2.2b) hold with A =0 =E,0, =& - €. For the constant coefficient
case Lx=%-Ax with a hyperbolic matrix A, we may take J=R and find
the critical exponents

& =Min{-Rex : A is an eigenvalue of A with Rex <0} (2.3a)

°‘u=M1'n{ Rex : A is an eigenvalue of A with Rex> 0} (2.3b)
where P = P, resp. I-P=P  are the projectors onto the stable resp.
unstable subspaces of A.

A close inspection of the roughness theorem [2 ] and Lemma 3.4 in
[11] also shows that the exponential dichotomy on an interval (to,oo)
as well as the critical exponents are invariant under perturbations of
A(t) which vanish as t-e. Combining these results gives us the first
part of the following Lemma.

Lemma 2.1

For a linear operator Lx =x- A(t)x assume that A(t)»A, as tote

with hyperbolic matrices Ai and Jet Oues %y be the corresponding
Spectral bounds (2.3). Then, for any t €R, L has an exponential dicho-
tomy on both (-, t,) and (t ,) with critical exponents (a_g»a_,) and
(“+s’°‘+u)' Moreover, if P_ and P_ are projectors for which the dicho-

tomy estimates (2.2) hold on (~o,t;) and (t,,=) then
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Y(E)P,Y(t)ToP,  as tose (2.4)

where P denotes the projector onto the stable subspace of A
Fmaﬂy, the adjoint operator L*x= x+AT(t)x also has exponentn]
dichotomies on (—ec,to) and (to,w) with projectors I - PI and I - PI. The

critical exponents are (a_u,a_s) and (o +s)

The last statement follows immediately from (2.2) and the fact that
1T('c) is a fundamental matrix of L*.
In our next step we introduce the Banach spaces

Xk(J)= {xeck(J,Rm) : x(j)(t) converges as t-T, for j=0,...,k

k )
lixll, = _;:0 supfix(3) ()1l = tedy
J:

The solutions of linear inhomogenous initial value problems in these
spaces are described in the following Lemma (see [2] and [11],
Appendix for a proof).

Lemma 2.2

Under the assumptions of Lemma 2.1 the general so]utwn xeX (t o)
of Lx=re€ X°(t y0) is gwen by x(t) = Y(t)Y(tO) 1y (G,r)(t) where
EER(P,) and (G,r)(t) = IY(t PY(s)'lr(s)ds-IY (t)(I-P)Y(s)" Ir(s)ds

to
Finally we recall from [ 1] that a COP (x,A)EX (R)xR of the

system (1.1) is called nondegenerate if the following conditions hold

A,:=f (%4,1) is hyperbolic with stable dimension m, (2.5)
p=m_ -m, +1 (2.6)
the only solutions (y,u) € X1(R)x RP of the variational

system yzfx()'(,i)y+f (i,;\)u are y=cX(c€ R), u=0 (2.7)

A nondegenerate COP (X, A) was shown in [ 1] to be a regutar solution
of the operator equation

%- f(x,1) =0, ¥(x,A)=0 (2.8)
provided the phase condition ¥€ Cl(Xo(R)xRP, R) satisfies
¥(X,A) =0, vx(i,x)§¢ 0 (2.9)

The following Theorem gives a geometrical equivalent of the nondegene-

racy condition (2.7). First we apply the implicit function theorem to
obtain locally unique stationary points X, (1) of (1.1) such that
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Theorem 2.3

Let ()‘(,X)EXI(R)x R’ be a COP of the system (1.1) which satisfies (2.5)
and (2.6). Then (X,)) is nondegenerate if and only if the immersed
stable and unstable manifolds )

Meg = ((2) A= All<e, ®(t,x,0)2x, (1) as t-r}
- (2.10)
Mo,= {{x2) sl - ali<e, ®(t,%,1) »x_(1) as t- -}

intersect transversely at any point ()‘((to)ﬁ), t, €R, of the COP.

Remark: In (2.10) we have just given the set definition of M+s’ M-u by
using the t-flow ®(t,-,A) of (1.1). The manifold structure will be
made precise in the following proof. For a two-dimensional saddle-
saddle connection the transverse intersection is illustrated in Figure
1.

<N & b
S \ L~
a7 /. xi\)
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My —
M.s

Figure 1. I1lustration of transversal intersection for the two-dimen-
sional heteroclinic case.
Proof: We fix some t,€R and apply Lemma 2.1 to the Tinearization
Lx=x-f (X,X)x. The parametrization of M near (X(t,),1) will be
obtained from the initial value problem

y=F(y,2) in [t ,=), P (y(ty) - X(t,)) =E€R(P,) (2.11)
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In fact, this may be written as an operator equation for

(¥sEsA) exl(to,w) xR(P) x RP. Using Lemma 2.2 we can invot{e the. '
implicit function theorem to obtain solutions y{:,£,1) €X (to,co) with

£ and A- A close to zero such that y(t,0,i) =Xx(t). Mg is then locally
parametrized by (y(to,g,x),x) with tangent space

£ ER(P ;
Ty:= T(i(to),i)Mﬂs = {(g+z+(t°)x,x) : £€R(P,),2€R}

where z,(t) = (6,f,(X,1))(t). Similarly, we find
T27 = Tage )it = (0 2-(1)03) s n€N(P), ae R}
t
where z_(t) = (6_f,(X,3))(t) = [Y(£)P_Y(s)7IF (%(s),1)ds
t -0
- PY(e) (- poyv(s) ™3 (x(s), N)ds.
t

. From X € N(L) we conclude i(to)eR(P+)nN(P_), hence
(>’((tc,),0)erlnT2 and dim (T,NT,)21. From (2.6) we obtain

dim (T1+ T,) = dim(T) + dim(Ty) - dim(T;nT,) = My +p+m-m_ +p
-dim(TlnTz) =m+p+1- dim(TlnTz) <m+p. Thus the transversality
condition T, +T,=RMP is equivalent to

Tlﬂ T2=span{(i(to),0)} (2.12)

Let us now assume that (i,i) is nondegenerate and consider an element
(E+Z+(to)u,u)=(n+2-(to)u,u)ETlnT2 (2.13)

where £ €R(P.), n€N(P_). Then the function
Z (Y (EY(t,) e, t2t,
z_(t)u+Y(t)Y(to)"1n » tet,

is continuous at t, and satisfies Ly=fA(>'<,X)u. Hence p =0 and ¥=C§
for some c€ R by (2.7) and we have (& + 2, (ty)usm) = (cX(t,),0).
Conversely, assume (2.12) and let ye Xl(to,co), u€ R satisfy
Ly = f, (X,A)u. Then by Lemma 2.2 and the analogous result on (mosty) W
may write y as in (2.14) for some EER(P,), nEN(P_). The continity of
y now yields (2.13) and we find u=0, y(t,)=cX(ty) from our assumption.
Finally, (2.14) gives us y(t)=c Y(t)¥(ty)"1X(t,) = ck(t) for all t€ R

o

y(t)={ (2.14)
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3. THE APPROXIMATION ERROR

We consider numerical approximations of a COP obtained by solving the
finite boundary value problem (1.4). Condition (1.4c) is a finite
phase condition, such as

0
¥3(x,1) =Tf>'<0(t)T(x(t) - xo(t))dt, (3.1)

where Xq is an initial approximation (e.g. given by the last solution
on a branch of COP's). For more general integral conditions see [5 1],
[71.

A very efficient type of asymptotic boundary conditions (1.4b) are
the so called projection boundary conditions which have been analyzed
in detail in [11,[3]. They are defined by

B(x(T_)s x(T4)52) = B_(A)(X(T_) - x_(3))s B (N)(x(T,) - x4(X))) (3.2)

where the rows of B_(1) € RM-s>M resp. B+(A)€ R™U™ £orm a basis of
the stable subspace of fl(x_(x),k) resp. the unstable subspace of
fI(x+(A),A). Notice that m  +m_g=m+p- 1 follows from (2.6) and that
the projection conditions force the endpoints x(Tt) to lie in the
linearized stable and unstable manifolds of xt(x). 0f course, (3.2)
requires to compute the stationary solutions Xi(A) as well as smooth
bases of stable and unstable subspaces (see [ 1] for more details on
the implementation).

In the homoclinic case (p=1) a simple alternative are periodic
boundary conditions

B(x(T_)s x(T4)s2) =x(T,) - x(T.) (3.3)
and this has been extensively used by Doedel & Kernevez [ 4]. However,
the periodicity condition introduces larger errors than the projection
conditions.

For an illustration of these errors we consider the following two-
dimensional system from [ 1]

%] = X, x2=x1-x§+)\x2+ux1x2 (3.4)
For fixed p this system has at some X =2x(u) a homoclinic orbit based at
the origin, For u=0.5 and the simple phase condition x,(0) =0, table 1
shows the errors
e, (T) = supfliX(t) - x(t)li: 1t1<T}, €,(T)=1X- 2l
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where Xp,AT denotes the solution of {1.4) on [-T,T]. Actually, the
solution on [-15,15] was taken as exact solution and all finite boundary
value problems were solved at high accuracy (~10’15) so that the error
arising from truncation to a finite interval becomes dominant. Anti-
cipating an error behaviour O(e'aT) we also display the terms

5X,A(T) =1n ex,)\(T-l) -1n ex,A(T).

T e, (T) 5,(T) e, (T) 5,(T)
5 1.01 E-3 1.59 3.24 E-5 2.57
6 2.02 E-4 1.61 2.13 E-6 2.72  projection
7 4,03 E-5 1.61 1.31 E-7 2.79 b.c.
8 8.03 E-6 1.61 7.79 E-9 2.82
9 1.60 E-6 1.62 4.57 E-10 2.84
5 1.02 E-1 0.863 5.15 £-3 1.45
6 4,53 E-2 0.813 1.11 E-3 1.53  periodic
7 2.02 E-2 0.806 2,30 E-4 1.58 b.c.
8 9.03 E-3 0.806 4.66 E-5 1.60
9 4.03 E-3 0.807 9.33 E-6 1.61
Table 1

We note that X =- 0.429505849 and that fx(O,i) has eigenvalues
- o =- 1.237552425, au=0.808046576. Table 1 then suggests that the
exponents for the x-error are ZGU for the projection conditions and x,
for the periodic conditions. The A-error, however, shows a super-
convergence with exponents 2<Jzu+0tS and 2au respectively. These effects
will be explained by the following approximation theorem which is a
generalization of the corresponding result [ 11, Theorem 3.2. We will

write J-R for J=(T_,T,), T ,++ and we use the phrase 'J sufficiently
large' correspondingly. |

Theorem 3.1

Let (X,X) be a nondegenerate COP of (1.1) with endpoints x, and assume
f € C2(R™P,R™). Further assume
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AL: Be C3(RE™P, R™P") B(x_,%.,3)=0 and the

)€ RMP- 1,m+p-1

matrix (B_C__, B,C, is nonsingular.

+7+u
X_

»X,»A) and the columns of the matrices

g -8B
Here B:l:_-B—)Z(T*)(

Ciu€ R™M™U  pegp. C_SERm’m'S form a basis of the unstable

resp. stable subspace of f,(X,,X).

A2: v;€C?(x°(J) x RP,R), ¥;(X|351)~0 as J=R,

IWJ,X(R|J,X)§|J| >9>0 for all large J and the derivatives

wj,wh‘ are bounded uniformly in J in some tube Ké’ 6>0

(see (3.5)).

Then there exists a constant p$6‘ such that the boundary value
problem (1.4) has a unique solution (xJ,AJ) in

K= (0x,2) € X1(3) x RP 2 llx=%) gl +112 - Rl < o) (3.5)

for sufficiently large J. Moreover, there exist 13+0 as J>R and to
any ¢>0 a constant Ce such that the following estimates hold with
d=1 and ya(t) =x(t+1,)

Ii?J-xdlllsCe {exp(—(da+s-s)T+)+exp(-(do:_u-e)lT_I)} (3.6)
Hx =25l < C.{exp(-(8,-€)T, ) +exp(-(6_-€)IT_I)}, (3.7)
6+=M1n(2da+s,da+s+a+u),6_=M1n(2da_u,da_u+a_s).

Here a,  and @, are the spectral bounds for fx(ii,i) as in (2.3).

Finally, for the projection conditions the above estimates hold with
d=2,

Remark: The phase shift 3 is constructed in such a way that
¥3(¥g51) =0 holds. If we replace Y by Xj3 in (3.6) then error terms
depending on ¥, will appear (see (11).

Before proceeding to the proof we notice some important consequences
of Theorem 3.1. Assumption Al is satisfied for the projection conditions
if £ is in C3 and A2 is a rather mild though technical assumption on ¥
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which is satisfied in standard cases. For our example above we have

au<as<2qu, thus (3.6) gives the exponent Zau and (3.7) the exponent

Zau +a.
Similarly, Al is automatically satisfied in the homoclinic case

(p=1) for periodic boundary conditions and we obtain the exponents

, and 2au for our example as in Table 1. In the periodic case, Theorem

3.1 also yields a general result on bifurcation of periodic orbits from

a homoclinic orbit. We take J=(-T,T) and the simple phase condition
¥3(x,2) = k(0)T(x(0) - X(0)) (3.8)

Then A2 is satisfied and we also have t;=0 since "'J(;‘l[—T,T]’;‘)=O

Corollary 3.2

Let (X,x) be a nondegenerate homoclinic orbit pair of a one-parameter
dynamical system (1.1) with f in Cz. Then there exists a To>0 and a
branch of 2T-periodic orbits xg€ X1(-T,T),AT€ R (T2T,) which after a
suitable choice of phase satisfy the estimates

x| [-T,T1" xtllp <C, exp(-(Min(aS,au) -¢)T)

Ix-apl<C exp(—(ZMin(aS,au) -e)T)

where ® .G are the spectral bounds for fx()'<+,i) according to (2.3).

Even in the two-dimensional case this result is more general than
the standard global bifurcation theorems. For example, the saddle
connection bifurcation in [ 91, Ch. 6 requires a nonvanishing trace in
addition to our nondegeneracy condition (which is formulated there in
a geometric way similar to Theorem 2.3).

Proof of Theorem 3.1. We merely sketch the basic steps of the proof
which is very similar to that of Theorem 3.2 in Beyn [ 1 1. Let us
write (1.4) as an operator equation

Fy(x,2) =0 | (3.9)
where Fj: X1(J) x RP» X0(J) x R™P is defined by the left hand sides of
(1.4). The unique solvability of (3.9) in some Ko foﬂowsv'fr‘om a local
contraction theorem (see [ 11, Lemma 3.1) provided we have a uniform
bound for the inverse of the Frechet derivative Fj(Xj;,1). For that
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purpose we set
Lx=%-f (% 5. X)x, B, —x?-.?? (X(T)s X(T,),%)
B, =22 (X(T.), X(T,).%), F, =, (X,,%)

and consider the variational equations

Ly - Fu=rex®(J) (3.10a)
By(T_)+By(T,)+Bu=be RmP-1 (3.10b)
wj(;(lJa;\)(y:u)=B€R (3.10c)

For these we show an estimate uniformly in J

(||y||1)$c(1 1 )(llr‘llo ) (3.11)
Hull 81 vy(e,d)/\ibl + 181

where Y(e,J) = exp(-(a, y~€) T)rexp(=(a_.-e)IT_1).

First we take a matrix function ®= (ml, re a0 ) such that the
columns 9; € X (R) form a basis of N(L*)(see [1] Prop. 2.4). By
Lemma 2.1 these satisfy an estimate

exp(-(a_s-e)t), t<0
. 3.12
o, (t) < cs{exp(_(%_e)t), a0 ( )

We multiply (3.10a) by @J(t), integrate over J and find by partial

integration
T

T (t)y( j@ (t)F(t)dtu = f T(t)r(t)dt

Using (3.12) and the nondegeneracy of (X, A)([ 11, Prop. 2.4) this
gives us the estimate

il <C, (vl +v(e,3) Hyll) (3.13)
which is the key to the superconvergence phenomenon. In much the same
way as in ([ 11, Appendix) we use Al to find an estimate
ylly<CQirn, +iibli+ 181). Combining this with (3.13) yields (3.11).

In the next step we replace y(e,J) by 1 in (3.11) and then obtain
an inequality
1Yy = xglly +HX = agll< CUB(Y5(T_)s ¥3(T,)s X)il=:a(e,d) (3.14)

as in ([ 1], Theorem 3.2). Using Al and the exponential approach of the
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connecting orbit towards the stationary points we find
c(e,J)=0(exp(-(da+S-s)T+)+exp(-(d0t_u- e)IT_1)) (3.15)
which proves (3.6).
For the refined estimate (3.7) we first notice that (3.11) also
holds with §J in place of ild' We then apply (3.11) with
y=yg- Xy p=a- Ag and find for the right hand sides by the c2-
smoothness of f,B and ¥,

el =1 F(Fg3) - Flxgag) = 4 (T 3) (T - x9) = £, 5 ) G- 2y
< C Iy - xgll, +1X - Adll)zscco(s,d)(li}"d- Xglig +11% - A4)

bl <HB(F (T, ),Fg(T_), M)+ C_(1F3 - xyll, +113 = 2512
<o(e,d)(1+C, (17 - Xl +1% - A411)

IBI <C,o(e,d)(17 - xgll, +11% - A1),

Inserting this into (3.11) and taking the terms involving
H§J-le%-+HX- Ajll to the left we end up with

(IIS(J-XJIII)<C (1 1 )(0 )_(G(S,J) )
WX- gl ) *\1o(e,d) +v(e,d)/ \o(e,9)) \(o%40 v)(e,d)

Now the exponential terms for o and y yield the final estimate

We remark that further numerical examples with connecting orbits in
spaces of dimension greater than two appear in [l ]. There we have
employed the projection boundary conditions (3.2) and the integral
phase condition (3.1). Moreover, in that paper we developed an adaptive
strategy for choosing the finite interval which partially was based

on quahtatwg error estimates as in Theorem 3.1 and partially on
further numerical observations of the error behaviour at the boundary.
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