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The word problem in fundamental
groups of sufficiently large
irreducible 3-manifolds

By FRIEDHELM WALDHAUSEN

We treat the word problem in its topological version, i.e., given a space
(more precisely: given a space in terms of some finite notation), to decide
whether or not a given closed curve in this space is contractible. We describe
a solution of this problem for manifolds which (are known to) belong to the
class mentioned in the title.

The restriction to irreducible manifolds is, of course, not really necessary.
It only is more convenient than the requirement that every irreducible
summand of the manifold be either (known to be) sufficiently large or (known
to be) simply connected—which would do just as well. This remark applies
to compact submanifolds of the 3-sphere.

The algorithm deseribed is essentially a corollary to work by Haken,
namely the method of (algorithmically) splitting a manifold in a certain way
and to the extent that finally only balls are left [2]. The surfaces we use for
splitting are required to be “good” in the sense described in (1.1)(this prop-
erty is slightly more restrictive than the one Haken uses), By definition, a
good surface has certain properties with respect to non-singular discs. We
then show it has the analogous properties with respect to singular discs, (1.6),
(1.7). While this is pretty obvious (with the loop theorem lurking in the back-
ground), to prove it is the hard part of the paper.

Now, if we split a manifold we simultaneously cut into pieces any curve
in that manifold, Similarly, if that curve bounded a singular dise, there will
be left pieces of that singular disc, The idea of the algorithm may now be
phrased as follows, Each time we are going to split the manifold (which
already is part of the algorithm), we first normalize the singular disc (or what
is left from it) while the original curve is kept fixed, taking advantage of the
fact that all splitting is done at good surfaces. Here the existence of the
singular dise, of course, is merely hypothetical. In the end we check algo-
rithmically whether or not there is a singular dise which is a candidate for a
Diece of the original singular disc. If so, we simplify the original curve, and
start all over again. If not, that curve is proved to be non-contractible. Since
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the method just indicated is not too suitable for communication we have to
generalize it a bit. This is done in § 2.

I wish to thank W. Haken for discussions and also for pointing out a gap
in the original draft of this paper.

1. Preliminaries

We are in the piecewise linear category throughout.

A manifold is 3-dimensional, compact, and orientable; we call it suffi-
ciently large if it contains an incompressible surface.

In the manifold M, let F, be a (compact, connected, orientable) surface
(such that F, N M, = dF,). Then, the manifold M, obtained by splitting M,
at F,, has by definition the property: oM, contains surfaces F’ and F” which
are copies of F,, and identifying F’ and F” gives a projection

p,: (M, F'UF")y— (M, F) .

(1.1) Let M be a manifold which is irreducible (i.e., any 2-sphere in M
bounds a ball in M). In éM (which may be empty) let J be a (finite) graph
any point of which has order at most 3. Let F be a (compact, connected,
orientable) surface in M, (F N oM = oF), such that oF is in general position
to J. F will be called good (with respect to J) if and only if the following
hold:

(1) Fis incompressible (i.e., F'is not a 2-sphere; and if D is a dise in
M, D F = aD, then 3D = 2D for some disc Din F).

(2) Fis boundary-incompressible (i.e., no component of F bounds a disc
in M and if D is a disc in M such that DN (FUoM) = oD, and DN F is
an arc k in oD, k N oF = ok, then there exists a (non-singular) disc DinF,
such that D c k U éM). |

(3) There is no surface in M which has properties (1) and (2), and which
has bigger characteristic than F has.

(4) Let D be a disc in M such that DN (F U oM) =0D,and DN Fisan
arc kindD,kndF =0k, If DNJ consists of at most one point, then there
exists a disc D in F' such that 8D c & UM, and that D n J consists of not
more points than D N J.

(1.2) LEmMMA. Let M be a connected irreducible manifold. If oM + O,

and if M is not a ball, then there exists a good surface wm M.
Proor. It is known, e.g.[7, (1.4)], that there exists in M an incompress-

ible surface the boundary of which is a non-bounding cycle in M; from this

the lemma follows. ‘ o
(1.3) ProposSITION, Let M be a connected irreducible manifold. If (it 1s
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known that) there exists in M a good surface, then a good surface in M can
be constructed.

This is a corollary of results of Haken which we state in the following
lemmas.

(1.4) LEMMA. For any value of y, there is an algorithm for finding out
1f there exists in M an incompressible and boundary-incompressible surface
F with characteristic y(F')=y. If such a surface exists, the algorithm will
construct one; [3].

(1.5) LEMMA. For any value of v, there is an algorithm for finding out
1f there exists in M a boundary-incompressible disc F with W F)<m, where
N(F') denotes the number of intersection points F 1 J, If such a disc exists,
the algorithm will construct one; [3].

ProoF oF (1.3). By (1.4), we may construct an incompressible and
boundary-incompressible surface F which has maximal characteristic. By
(1.5), we may construct it in such a way that »(F) is minimal if ¥ is a disc.
Since any point of J has order <38, we simultaneously may achieve general
position of 4 F with respect to .J,

Case 1. Assume F is a disc, and (1.1.4) does not hold. There are two
discs which can be obtained by composing D, ef, (1.1.4), with part of F,
At least one of them, say D*, must be boundary-incompressible, Since
n(D*) < n(F), we have a contradiction.

Case 2. Assume F is not a dise, and (1.1.4) does not hold. Since F is
boundary-incompressible, there exists a disc ) in F such that oD =
(DN D)u (D noM). Since F has maximal characteristic, the dise DU D is
boundary-compressible, i.e., (D | D) bounds a dise D’ in oM, Our assump-
tion (1.1.4) is wrong, means (3D’ — 0F) N J consists of at most one point
(which we may assume to be a general point of J ), and 0D’ N dF N J has at
least one more point than 3D’ — 3F)  J., If D’ N Jis not connected, we may
pass to a smaller disc with similar properties; so we assume D’ ( J is con-
nected. We now take away from D’ those components of D’ — (JUAJF) which
contain 6D’ — 6F, and, in addition, that edge of the graph J U 6F which
pierces 4D’ — oF, if it exists. This way we make D’ collapse to a complex
which consists of ares in JUGF and discs which have their boundary in
J U 0F. Thus we see 9D’ corresponds to a circuit in J U OF which runs at
most twice through each edge. Since there are only finitely many circuits like
this, and since it can be checked whether a simple closed curve in M bounds
a disc, we can find out by trial whether a disc like the above D’ actually
exists. If we hit upon D’, we can make 7(F') smaller by an obvious isotopy
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of F.

(1.6) LEMMA. Let F be a good surface in the manifold M. Letf:D—M
be a singular disc such that f~'(F) = 3D. Then there exists f': D— M,
f'1oD = f.6D, f'(D)C F.

ProoF. 1f this were wrong, the loop theorem would show that F is
compressible.

(1.7) LEMMA. In the manifold M let F' be a surface which 18 good with
respect to the graph J. Let f: D— Mbe a singular disc such that f~(F) s
an arc k in 8D, f'(6M) = oD — I::, and that f~'(J) is at most one point, dis-
joint to ok.

(1) Then there exists f': D— M, such that f' k= fk f(D)CF,
J'(eD — kyc oM,

(2) and that f'~(J) consists of not more points than f~'(J).

PRoOF OF (1). Construct N by splitting M at F. There is a lifting
f:D— N of f. Assuming assertion (1) is wrong, and denoting by G that
component of 3N which contains f(@D), we find that the loop f|aD is not
contained in the normal subgroup of 7,(G) which is generated by p~—(0M),
(here, p: N — M is the natural projection). Hence the loop theorem gives us
a non-singular D in N, DnaN =DnG =sD such that 8D is not contained
in that same normal subgroup. An analysis of the proof of the loop theorem
shows we may assume 8D n p~(oF) consists of at most two points: If it is
empty, we conclude F is compressible, if it consists of two points, we conclude
F is boundary-compressible; but F is neither of these.

PROOF OF (2). We may assume f(0D — 12) n J, if not empty, is a general
point of J: for otherwise, since any point of J has order <3, we can achieve
that £, in addition, has this property.

Case 1. Fis a disc. (Notation as in (1).) If fmaps ok to one point, the
assertion is trivial; so we assume it does not.

Let k, and k, be the arcs in p~(3F) which are 1:2,oundedo by f(3k). We
construct G’ from G by removing a point from each k&, and k,. Then fl1oD
is not contained in the normal subgroup of m,(G’) which is generated by
(»oM ). So, using the loop theorem, we conclude there exists a disc D’
in N, D' (3N = D', D' n p~@F) = fAD) N p~@F), such that D' N pX(J)
consists of not more points than fHp I Considering the disc p(D'), we
see at least one of the arcs p(k;) and p(k.) must intersect J in not more points
than p(D’) does, since F' is good.

Case 2. F is not a dise. By (1), thereisa deformation (of pairs), con-
stant on 8D — k, from f: (D, k) — (M, F) to ¢ such that g'(@D) C dM; g’ may
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be chosen so that ¢’ |k is locally homeomorphic. Since F' has maximal charac-
teristic and is not a dise, it follows from the loop theorem that ¢’ | D can be
extended to a map g: D— dM. Since no component of 6F is contractible, g
may be chosen so that g~'(F') = k.

We construct the graph J* as follows: If g@D - k)NJ = @,letIbea
neighborhood in J of this point, and define J' = J — . If g@D—k)nJ = @,
let J' = J. Call the “positive side” of g(k) that one which is approached by
g(ﬁ). Then, J* is to be the union of all those points which in J’ can be
reached from the positive side of g(k), without crossing g(k).

By a small deformation of ¢ which is constant on 4D and does not alter
g~'(F'), we achieve general position of g with respect to J*. If now [ is any
simple closed curve or arc in J*, then g~'(l) is a system of simple closed curves
and arcs, and if [N g(k) = ol, then for any of them we have | N oD = o1.
Furthermore, if 7 is any such arc and if 81 c dD, then g(31) consists of two
different points, because otherwise we would conclude that g |k were not
locally homeomorphie. In particular we see there is no deformation of g, con-
stant on 0D, by which any point of J* could be uncovered,

Let ! be an arc in J* such that I N g(k) = 4l. Then in g~'(l) there is an
arc [ such that I Nk = 1. There is a disc D, in D which is bounded by T
and an arc in k; [ may be chosen so that D, N g7'(I) does not contain an arc
other than [, Sinceg|k is locally homeomorphie, the map g|oD,: 8D,— g(8.D,)
has non-zero degree. Hence there must exist a dise in M which is bounded
by ! and an are in g(k).

Let I be a simple closed curve in J* — g(k). Then g—*(l) consists of mutu-
ally disjoint simple closed curves which bound discs D,, D,, .. in D. At least
one of the maps g |4D;: dD; — I must have non-zero degree, for otherwise we
could uncover ! by a deformation of g which is constant on oD, in contradic-
tion to what we found above. Hence ! bounds a disc in 6 M.

By the preceding arguments we see we may engulf J* by a system of
discs, D', with the following properties:

(a) D'NoF = D' ng(k) = aD’' N g(k), and every component of D’ con-
tributes exactly one arc to this intersection;

(b) J* — g(k) is contained in the interior of D

(¢) D’collapses to a complex which contains J* U (D'naF), and which
consists of arcs in J* U g(k) and discs which have their boundary in J* U g(k);

(d) D' -3F)NgdD — k) =:;

(e) if g@D—k)nJ = &, then (3D’ — 0F)NJ = @; in the other case
(@D’ — dF)N I consists of either one or two points (where I is the neighbor-
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hood of g(6D — k) N J in J chosen above); in the last case, these points are
separated by g(6D) N I, and are contained in different components of D',

Since F is good, we see that J* N g(k) = @ in the first case of (e), so in
this case we are finished.

In the first one of the two remaining cases, J* N g(k) is at most one point
since F' is good (and, in particular, we may assume D’ has only one compo-
nent). But we still have to consider the possibility that (/) Nk consists of
more than one point. Having normalized g, by a deformation which is con-
stant on 4D and leaves unaltered g-'(F), first to achieve general position
with respect to (6D’ — 6F), and secondly to remove closed curves from
93D’ - 3F), we find g~(D’) consists of disjoint dises D/, - - -, D}, such that
DN 4D is an arc in k; we have m > 1. By another deformation of the same
type, we achieve that the g | D} are homeomorphisms onto D’, and that g is
in general position with respect to J. If now I is that neighborhood of
9(@D—k)n J in J, as chosen above, we see g~'(I) contains ares I, ++ -, ., with
I, escaping from D). None of the I; reenters any D, and only one of them
goes to o) — k.

Hence, if instead of J* we now define J to be the union of those points
which in J can be reached from the positive side of g(k) (cf. the definition of
J*), we see the above engulfing arguments go through for J. So, there is a
disc D" in oM such that D" n oF is an arc in 8D"”, and that J — g(k) is con-
tained in the interior of D”. Hence J N g(k) ought to be empty, since F'is good.

In the last one of our cases, we may assume at once that D’ has only two
components, We observe that INJ * consists of two points. On the other
hand, g~'(I} N 8D is only one point. Therefore one of our above finding-a-disc-
arguments shows that any arc in (0D’ — 6F) U I which has both its end points
in 6F, is parallel in 6M to an arc in 3F. So thereisa disc D* in 6M such that
D* N oF is an arc in D* and that J* U T — g(k) is contained in the interior
of D*. Hence again J* " g(k) ought to be empty.

2. The algorithm

Let M, be a connected manifold (given as a simplicial complex) which is
(known to be) irreducible and sufficiently large. IndM, (which may be empty)
let there be given a graph J, any point of which has order <3,e.g., the
empty graph. In M, there exists by assumption an incompressible surface.
If M, is not a ball (i.e., if and only if no component of dM, is a 2-sphere),
there exists therefore a surface in M, which is good with respect to J;, and
80, by Haken’s algorithm, cf. (1.3), & good surface F, in M, can be constructed.
Construct M, by splitting M, at F,; denote by »: M,— M, the natural
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projection, and define J, = p7(J, U 6F,); because of the general position of
J, N dF,, any point of J, has order <3.

M, is irreducible, and every component of M, has non-empty boundary;
so, if there is a component of M, which is not a ball, there exists a surface in
M, which is good (with respect to the graph J,), (1.2). We repeat the above
construction to get F,C M,, p,: M,— M,, and J, = p;'(J, ' 6F;,). And so on,

By a result of Haken, this procedure will stop after a finite number of
steps ([2, if, p. 101], details will be given in [3]). Let

FTCMT! pT:Mf'H—-)Mf’ J,+1=p:'(J,UaF,), 121':%7"')

be the sequence of data finally obtained.

We are going to describe an algorithm 2, to answer the following ques-
tions (@), (B), (7):

(a) Let ! be the circle, and f:l— M, a map. Is f contractible?

(8,7) Let!l be the interval, and f:!— M, a map such that j(5l)coM,—J,.
Is there a homotopy, constant on dl, from f to f such that f(I) — M., and

® fOHnJ, =27

(v) fY(J,) is at most one point?

Since every component of M,, ., is a ball, we can take for 9, ., the obvious
algorithm. So, it will suffice to describe ¥, under the assumption that ,,
for » < 8 < m + 1, has been described already.

After a small deformation of f:(l,8l)— (M,, M, — J.), we will have
S79M,) = o, and f will be in general position with respect to F,; in partic-
ular, f-!(F,) will be disjoint to 8! and will consist of finitely many points;
denote by j(f) the number of these points.

Instead of the algorithm ¥, we shall describe a series of algorithms, 97,
J=0,1,..., where % is to answer the above questions (a), (B), (v) for those

S, for which j(f) = j. In describing %!, we may then assume 9! has been
described for ¢ < j.

(2.1) Description of . Since f)NF, = &, a lifting of f:1— M, to

f*:l— M, exists (and can be constructed). To S* we apply the algorithm
?Ir+1-

PROPOSITION. The answer to question (@)(resp. (B) or (V) on f is “yes” if
and only if A,., gives the answer “yes” to question (@) (resp. (B) or (7)) on f*.

(2.2) Description of i, j = 1. First reduction. Let I’ be one of those
arcs in ! for which I'N f~'(¥.) = ol’. There exists a lifting of 7| I’ to

f*: (l,y al’) I (Mr+1’ aIMVA:NH - Jr—,Ll) .
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Using 91,.,, we check question (8) for f*. If the answer turns out to be

“yes”, we have deformed f into a map f’ such that after a general position

deformation we will have j(f’) = j(f) — 2. Thus we may apply A7~
Second reduction. Let I’ be one of those ares in ! for which ol’ N ol = @

and I’ ~ (f'(F,) 'ol) = al’. There exists a lifting of f| ! to
fr, oty — (M., oM, ., — J,.) .

Using %, .,, we check question (7) for f*. If the answer turns out to be
“yes”, we have deformed f, by a deformation which is constant on I — i’,
to f’ such that f’(I') = F, UoM,,and I' N f"7'(J, U oF,) is at most one point.

Since /(') N oF, # ¢, we have f'(I") N J, = O. Thus, if we denote the arc
L - UVodnf(F,))

by 1”, and 11" by 1", we see the answer to our question on f is “yes”, if and

only if the corresponding question on f’* has the answer “yes”. After a

general position deformation, we have j({l") = j(I) — 1, and so we may apply

Ai—t,

PROPOSITION. If both reductions fail to apply for every choice of I, then
the answer to question (@) (resp. (8) or (7)) 18 “no”.

PROOF OF PROPOSITIONS (2.1) AND (2.2). Assume the answer to question
() (resp. (B) or (7)) is “yes”, i.e., if D is the dise, and if we identify ! with
aD (resp. with an arc in 6D), there exists an extension of f:lto g:D such
that g(6D — 1) is contained in oM., and ¢~'(J,) N (6D — I) is empty or is at
most one point, respectively.

By small deformations which are constant on ! and which do not alter
g-(J.) ( (3D — 1), we achieve g~'(3M,) = 8D — L, 9@D — DN J. N F, = O,
and g is in general position with respect to F,. Then g~'(F,) consists of
mutually disjoint simple closed curves and arcs, and for any component % of

g-(F.,), we have k n 3D = ok, and 3k N ¢7'(J,) N 0D — D= .
g has been so chosen that it has the above properties and

We assume
By lemmas

that the number of components of ¢~'(F’) is as small as possible.
(1.6) and (1.7) this implies that every component of g~(F,) is an are, and that
at least one endpoint of any such arc lies in i,

(1) Let k& be a component of g '(F,) such that ok C . Then for one of
the dises split off D by k, we have 3D’ — kUl Passing to another k, if
necessary, we may assume D' N g~ (F,) = k. Thus we see the first reduction
applies.

(2) Assume the above case does no
let k be a component. ¢~'(J,) N (@D — 1) is at mos

t occur for any component of g7 '(F7,);
t one point and is disjoint
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to k. Therefore one of the discs split off D by k, say D’, does not contain
this point, Passing to another k, if necessary, we may assume D’'{ ¢~'(F,) =
k. Hence the second reduction applies.

(3) ¢7(F,) = @. This case will occur in the situation of (2.1); which
proves that proposition,

3. Remark

There exist irreducible manifolds with infinite fundamental group which
are not sufficiently large. The ones I know, [7, § 2], have quite pleasant
fundamental groups in which the word problem is definitely solvable. It is
conceivable that other ones might be obtained from a manifold which is a
regular neighborhood of a singular surface, by attaching handle bodies to kill
the boundary (as indicated in the remark in 7, § 2]). Yet, these have a good
chance to be “almost sufficiently large” in the sense that there exists a finite
cover which is sufficiently large. If this should indeed happen, we can again
solve the word problem, as follows:

Let M be a manifold which is (known to be) almost sufficiently large.
By a well-known procedure, [6,§ 58], we construet all coverings M; —
M, j.(») = J < jyn), the index of which is a given number n; and we let
Ji{n + 1) = jy(n). Let D, be Haken’s algorithm for constructing an incom-
pressible surface in M}, (9; is a finite produre only if such a surface exists at
all); let 9i,7=1,2,..., be the steps of ,. Running along the short diagonals
1+ J = const., we eventually will hit upon a covering M, — M such that M.
is sufficiently large. Using the covering projection and the solution of the
word problem in 7,(M,), we solve the word problem in 7,(M).
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