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Algebraic K-theory of generalized
free products, Part 2

By FRIEDHELM WALDHAUSEN

III. Decomposition theorems for K-theory

10. A fibration. This section gives the main step towards relating the
K-theory of a ring to that of its constituent rings, in any of the situations
of Sections 1-3. The result is Proposition 10.1 below which relates the
K-theory of the ring to the K-theories of the auxiliary categories of ‘Mayer
Vietoris splittings’ and ‘split modules’, respectively.

We denote R+ @, the functor which to the ring R associates a suitable
small category equivalent to the category of finitely generated projective
right R-modules, cf. 6.2. In either of the three cases of Sections 1-3
(generalized free products, Laurent extensions, polynomial extensions) we
let MV be the category of admissible Mayer Vietoris presentations, that
is, the full subcategory of those Mayer Vietoris presentations (cf. Sections
1-3) which satisfy the fact that any of the modules involved is in the
appropriate category 9.. For example, in the free product case, the Mayer
Vietoris presentation

0"—’M—‘—"MA®,4R@MB®BR——’MG®0R“——’O

is in 9NV if and only if Me Py, M, € P,, etc.; MV is an exact category inan
evident way: a sequence is exact if and only if the induced sequences in Py,
P, ete., are exact. We have an exact forgetful map

frOMO— Py
(and more such maps f,: MV — P, ete.).

Notation. 9% is the full subeategory of those modules that are in the
image of the forgetful map f: 9NV — P».
* is a cofinal subcategory of P as, for example, it contains the free
modules. In fact, it is a strongly cofinal subcategory, cf. Proposition 7.4,
hence the sequence Q9% —>QFP,— G is a fibration up to homotopy, where
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G = coker(K,(P) — K(R)), and 8 is G considered as a category. .
We let O be the exact category of admissible split modules, a certain
subcategory of the category of split modules (cf. Sections 1-3). We can

identify ‘O to the subcategory f~(0) of 9NV, where 0 is the distinguished
zero object of 9.

PROPOSITION 10.1. The sequence QU — QIO — QP% i3 a fibration up
to homotopy.

The proof will be given after the statement of the next lemma. Let Fp

denote the full subcategory of free modules in 95, and 9N the subcategory
F(F) of ORV.

LEMMA 10.2. The sequence QU — QMY — QF, is a fibration up to
homotopy.

The proof will be given at the end of this section.

Proof of Proposition 10.1. If Ue MV, and - f(U) is a surjection from
an object of F, it follows from Propositions i.1 and 4.2, 1 < ¢ < 3, which-
ever applies, that there is a surjection - Uin 90 with f(u) = @. Then
U@ker(u) e ONV. From this and the fact that F » is strongly cofinal in 2%,
one sees that 9NV’ is strongly cofinal in MV; also that

coker (K, (M) — K,(IN0)) — coker (K(F z) — K,(P%)

is an isomorphism. Consequently by Pro

position 7.4, the right hand square
in the diagram

QU — QMY — Q¥ .
QU — QM — QP%

is homotopy cartesian. The upper row is a fibration up to homotopy, by
Lemma 10.2, therefore so is the lower row, as asserted.

Notation. § is the ful] subcategory of those objects in 9NV that are

‘standard,’ i.e., isomorphic to a direct sum of Mayer Vietoris presentations
of the type (N, n, A) as defined in Sections 1-3. From Propositions (1-3).1
we have

Fact10.3. If UeS, and 2% U are morphisms in 9N, then v is the
zero map if and only if f(v) is; consequently » is surjective if and only if
S is.

Definition. ST, the category of ‘semi-standard’ Mayer Vietoris presen-
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tations, has Ob(67) = Ob(8) x Ob(V), and if W, = (U, V)edD, 1=1,2,
then a morphism from W, to W, is a morphism in 9V from UV, to
U;@V,. So Wi U@ V gives an equivalence with a full subcategory of
IN0V. On the other hand, the component U, — V, of the morphism above, is
necessarily the zero map, by fact 10.3. Hence

Fact 10.4. $7 is equivalent to the category of short exact sequences
in 9NV,

Ur—aUPV—>V, UeS, Ve,

Also, the map U, @ V,— U, @ V, is surjective if and only if both U—U,
and V,— V, are, by fact 10.3 again.

Following the notation of Section 8, we denote &(S, V) the category of
epimorphisms in § with kernel in 0. Letting Is(¥,) be the groupoid of
isomorphisms in F,, we have a map f’: §S, V) — Is(F), induced from the
forgetful map f.

LEMMA 10.5. The map f: &S, V) — Is(Fr) ts ¢ homotopy equivalence.

Proof. It suffices to show that the left fibre /M is contractible for
any MelIs(F;). An object X of f’/M consists of an object S of & together
with an isomorphism z: f'(S) — M. A morphism in f*/M from X to X' is a
morphism s: S — 8" in ONV so that 2 = &’ o f'(s); by 10.3, the extra condition
that 8 be a surjection with kernel in 0 is then automatically satisfied.

In the language of Propositions (1-3).1, the object X of f'/M is equi-
valent to & basis (n, -+, n,) of M together with a tuple of Mayer Vietoris
Presentations (N;, n;, A;), 7 =1, .-+, m, and by the above, a morphism
from X to X’ is equivalent to a morphism in 9N,

@ <N:’1 Njy Ai> I @ <N:, n;’ A;)
inducing the identity map on M. By Propositions (1-3).1, such a morphism
exists if and only if, for any j =1, ---, m, the tree A; contains a certain
finite tree A(n; X’), and if it exists, the morphism is unique. It follows
that f'/M is equivalent to the opposite category of an ordered set; con-

Sequently it is eontractible, as asserted. ’
Again in the notation of Section 8, we have a category &IV, V) and
a subcategory &(SU, V) (actually, it is only equivalent to a subcategory).

LEMMA 10.6. The inclusion j:&(ST, V)~ &OUT, V) 18 a homotopy
equivalence.

Proof. It suffices to show that, for any Ue&(ONV, V), the categox:y
J/U is contractible. For this in turn it is enough that any finite diagram in
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/U be contractible in j/U. Let € be such a finite diagram andlet v: V> U
be its objects. By Propositions (1-3).1, there exists U,eS and a map
u;: U,— U so that f(u,) is an isomorphism, and so that u, factors through
any of the v, Finally by Propositions (1-3).2, we can find U,eT and
uy: U,— U so that U, @ U, — U is surjective. Pullback with U, U,— U
now defines a funetor on j/U whose restriction to € takes values in j/U as
one easily checks. This functor from € to j/U admits two natural trans-
formations, one to the embedding functor, and one to the constant functor
with value U, U,— U. Therefore € is nullhomotopic in j/U, as asserted.

From the inclusion of exact categories, V— 9N, we have a bicategory
QP(ONY, V), cf. Section 7. Similarly there is a bicategory Q*(F,, 0), and
the forgetful map finduces a map Q*(OMVY, V) — Q**(F,, 0).

LEMMA 10.7. The map QP(ONT, V) — Q*(F,, 0) i8 @ homotopy equi-
valence.

Proof. This map is in a natural way the induced map of underlying
objects, of a map of T-objects. By Proposition 6.3 and its addendum, it is

sufficient to show that the ‘de-loop’ of the map in question, the map of
simplicial bicategories

NH{QPONTY, ) — N(Q™(F 5, 0))
is a homotopy equivalence.
Let NN, V) denote the simplicial category obtained by taking
the nerve in the Q-direction of the bicategory Q(ON, ), and N*(F, 0)

similarly. In order to establish the homotopy equivalence it is sufficient, by
Lemma 5.1, to show that, for each m, the map of simplicial categories

NF( N™ORT, «-@)) — Nr( N™(F 0))
is a homotopy equivalence.

Following the terminology of Lemma 8.4, we introduce the short hand
notation &(B, €), for the category &, ---, 3,; ¢,
when B, = «++ =B, =Band €, = ++» =€, = C.

An object of the category N'™(Fp, 0) is a sequence of morphisms of
length m in QFy; it is thus equivalent to a filtered object of length 2m + 1

in Fp Indeed the category N™(F,, 0) is equivalent to the category

&(Frs Ozmine By Lemma 8.4, the subquotient map induces a homotopy
equivalence

-+, C,) in the case

Nr(g(g‘m 0)(2m+1)) — (Nr(&;(f}-ﬂ’ 0)))21"“ ’

The analogous result for N*™ (IR, V) requires a bit more work since

exact sequences in IV’ need not split. We define &(®, €),,, to be a category
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of epimorphisms of filtered objects, like &(B, C).,,, except that the filtrations
involved in the objects need not split. Then N™(OIV, V) is equivalent to
g(‘:)]ﬂ?’, D) emsne Furthermore we define &'(B, )., to be the category in
which an object is an object of §(®, €).,, together with an admissible splitting
of the last admissible monomorphism of the filtration involved in the object.
Morphisms in g’(ﬂ%, ©)., are not required to respect the splitting. The obvious
forgetful map is therefore an equivalence with a full subcategory of
&(B, C)in-

SUBLEMMA. The map &N, 73)(”,%5(9]1“1‘)', M 18 a homotopy
equivalence.

Proof. It suffices to show that for any Me &@OT, V)., the left fibre
J/M is contractible, where j denotes the map in question. Let the object M
be given by the filtration M,>--- > M,_,— M,. By Propositions (1-3).1
and (1-8).2, there exist Ne ST and a map N— M, so that the composite
map N — M,/M,_, is an epimorphism with kernel in 0. On replacing M, by
M, = M, & N, we obtain an object M’ of &M, V)., together with an
obvious map j(M")— M in EONT, V). Pullback with this map gives a
funetor j/M — j/M. There are two natural transformations of this functor,
one to the identity functor, and one to the constant funetor with value
(M’, 5(M")— M). The category j/M is thus contractible, and the proof of
the sublemma is complete.

In view of Lemma 8.1 and the sublemma we have that

NAEONV, V)im) —> Ne(EONV, Wiy X EONV, V))
is a homotopy equivalence and hence, by induction, that the subquotient
map induces a homotopy equivalence NH(&(OMT, D)) — (N:(EOLT', V)))™.
To sum up, we have now verified that the map
NA(N=OTV, V) — Ni(N™(F,, 0))

is homotopy equivalent to the map
(Np(@(@]’(@(y, cU)))zmH - (Nr(g(ffm 0)))2m+1
and consequently, that it is enough to show that NH{&(ONT, V) —
Ni(&(F , 0)) is a homotopy equivalence. '
In view of Lemmas 10.5 and 10.6 and the commutative diagram
&(S, V) — &(8T, V) — &AM, V)

N l S

N Ve
Is(Fz) = 6(Fr 0),
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we may show instead that Ny(6(S, V) — N(&(S, ) is a homotopy equiva-
lence. But by 10.4, S is equivalent to a category of filtered objects, and
&(87, V) is equivalent to the category &(8, V; 0, ) (cf. Section 8). So by
Lemma 8.1, the subquotient map on the latter category induces a homotopy
equivalence  N(&(ST), ) — Ni{&(8, ) x N80, V).  Disregarding
Ni(&(0, 1)) which is contractible since &(7, 1) is, we see that the map
Ni(&(S, 1) - NH(E(50, 1)) is a section of this homotopy equivalence, and
S0 is a homotopy equivalence itself, completing the proof.

Proof of lemma 10.2. The left hand square in the diagram
Q0 —— Q*(V, V) — — ¢

l

QMY — Q»ONTY, V) — Q7(F 2 0)

1s homotopy cartesian by Proposition 7.3, and in the right hand square both
horizontal maps are homotopy equivalences, the upper one by a remark
preceding Proposition 7.3, and the lower one by Lemma 10.7. Hence the

large square is homotopy cartesian. This means that the lower row in the
following diagram is 3 fibration up to homotopy

@0 — Qomvy — QF

O

&V — QMY — QFp, 0)

C-4
ﬁl ; la
B— R,

The categories P, are as in 6.2, In barticular if M,

€ P;, the modules
(M;@:A4) R, R and M; @R are not Just canonically isomorphic, they are
identical.
FMO—-9

15 the forgetful map of the Preceding section; f:
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is the forgetful map which to the Mayer Vietoris presentation
0— M-'—"MA®AR€BMB®3R—"MC®CR“‘“’O
associates the A-module M,, and f;, f; are similar.

Proposition 11.1. The forgetful map QIMV — QP X QP X QF; is a
homotopy equivalence.

Proof. We will use sections of the above forgetful maps. s,: P, — MO
associates to M, the Mayer Vietoris presentation

0— (M.®.R) — M,Q,R—>0—0

and s,: P, — MV is similar; s.: P — DNV associates to M, the Mayer Vietoris
presentation

A A
0— (M, ®0R) _— (MC®CA) ®AR @ (MC®CB) X R — M, ®0R‘_’" 0
where A is the diagonal and A the skew codiagonal.
There is a natural transformation from the identity functor on M0 to
any of the functors 8, f,, 85° 5 8cofe. The latter patural transformation
is given by the diagram

0 —— M e M,Q.R ® M,Q;R ——— M;®R—0

o k]

0 (M, @0 ) s (M, R0 4) @ R © (M, R B R R — My @R — 0

where k, and £, are the terms in the canonical decomposition £ = £, — £4;
note that the A-map inducing £, is unique, similarly with &, so the natural
transformation is well defined. The two former natural transformations

are obvious. .
We denote 970" the full subcategory of 9NV whose objects satisfy the

fact that the natura] transformation from the identity to seo f, is surjective.
It is closed under extensions in OV, and the sections s, $p S; €an all be
considered as maps to 9NV". By definition of 9N there is an exact sequence

of endofunctors

0-———-—-)9 ————?Idm-‘(‘\u —"—_')SCOf(;‘___)O

defining g, and ¢ is isomorphic to s,° g.Dssogs for certain functors
0. MY — P, and gz MV’ — Py By the BX 3)-lemma, ¢ and hence also g,
and g, are exact functors. These satisfy the fact that g,°s, is the identity
on @,, that g,os, is the zero map, and the like. So the map

Qg gm fo): QMY — QP, x QP X QY¢

is a left inverse of
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Qe De, D) QP x QP % QF e — MV’ .
But it is also a right inverse up to homotopy, for the additivity theorem
applied to the above sequence of endofunctors shows that the endofunctor

on QO induced from 8,09, 8,° 9, D 8- f is homotopic to the identity.
Consequently, Q(s, & 8, P s.) is a homotopy equivalence when we consider
its target to be ONV".

On the other hand, the exact subcategory MY is closed in NV under
extensions and admissible quotients; and the natural transformation in 910
from the identity functor to the endofunctor 8,-f, @ 8,0 D 8.~ f: is an
admissible monomorphism with target and quotient in OMIXY’. So by the
resolution theorem [20] applied to the inclusion of the dual categories (or
even by the additivity theorem) it follows that the inclusion @MT" - » @MV
is a homotopy equivalence. Consequently, Q(s, P 3, s;) is a homotopy
equivalence when we consider its target to be QU

The composed map (f,, fa, fc)o (8, B3, 8.) can be described by the
matrix

1d,, a,
Idy, B,
Id,,

Since the H-space BQP., being connected, has a homotopy inverse, the

induced map on QP, x @P; x QP is a homotopy equivalence. Consequently
Q(f 4 fa f¢) is a homotopy equivalence, as asserted.

We denote @,, @;: P, — 0 the two maps which take M, to

(M ®cA) QR — M:®RcR, (M;®:B)®R,R —— M. R.R

respectively. Combining them we have a map ¢ = (Pa D @p): Py X Pp— 0.
Under the equivalence of "0 with a category of nilpotent objects, cf. Propo-

sitions 1.3 and 1.4, the map ¢ corresponds to the section i described Just

before the statement of Lemma 1.5. From this equivalence of categories
we therefore obtain a map

q{:":e(f)—‘_'")ggx gg

such that the composed map v -9 is isomorphic to the identity functor on
P X Pe

THEOREM 11.2. Suppose the ring C is regular coherent, Then the map

Qg)c X Qg)a — Q0
18 @ homotopy equivalence,

Proof. Let 9M;™ be the category of finitely presented C-modules. By
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assumption about C this is an abelian category in which every object has
finite projective dimension. Hence the inclusion QF, — Q9N ?- is a homotopy
equivalence by the resolution theorem [20].

Denote V" the category of those split modules for which the C-module
involved is in OM;®. Then V'® is also an abelian category. (Note if V" is
made into an exact category by analogy with the procedure for Mayer
Vietoris presentations then the same exact structure results.) Further
every object of ' * may be resolved by objects of U. In fact, Proposition
1.2 says such a resolution can be built up; and the process can terminate
because objects of IM-" have finite projective dimension. Hence by another
application of the resolution theorem, the inclusion Q0 — QU"* is also a
homotopy equivalence.

Every object of 1" has a finite filtration with subquotients in the
image of OS> > ON4P. Infact, Lemma 1.5 provides such a filtration where
the C-modules involved are finitely generated; but a finitely generated
submodule of a finitely presented C-module is necessarily itself finitely
presented as C is coherent. So

QO™ X QING™ — QU
is a homotopy equivalence by the devissage theorem [20]. We have esta-
lished now that three of the maps in the diagram

QO™ X QISP — QU™
are homotopy equivalences. If follows that the remaining map is also a

homotopy equivalence, as asserted.
It is an interesting question if the conclusion of the theorem can be

established with weaker hypotheses on the ring C. The results below show
that any deviation of Qo from a homotopy equivalence must contribute in a

very direct way to the K-theory of the ring R.
Let 92 be as defined in the preceding section (the modules which are in

the image of £: MV — Pp).
THEOREM 11.3. In the diagram
Qo Y95 09, x @2,
ase| o @8
QP ——— QP%
the two composed maps from QU to QP% differ by the functor isomorphism
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which to any object of QU associates its structure map. The square 18
homotopy cartesian with respect to the homotopy of the composed maps
given by this funmctor 1somorphism.

Proof. Let D be the exact category in which an object is a short exact
sequence
OMMx’_“*Mz*‘—”Mc(@cR‘"“"O
with M, M,cO0b(P%) and M € 0b(P;). Let s, t: 9 — @* denote the functors

‘subobject’ and ‘total object’, and f:D— P the forgetful map. The
(unnamed) map P, D associates to M, the exact sequence

0—0— (M@ R) — Mc @R —0.
There is a natural map 90— D. The resulting square

QY — QORV

Qfo‘\ l

QP — Q9D
is not commutative. But the two composed maps from Q0 to Q9 differ on
the total objects of objects of QD only, and here the distinction is just as
described in the theorem. We assert the square is homotopy cartesian with
respect to this homotopy. To see this we consider the diagram

QU —— @MV —— QF:

|

QP —— Q9D \ I

l X(Q(f o 8) l
QP — QP X QPL— QP .
Discarding the middle row, we obtain a commutative diagram in which the
upper row is the fibration of Proposition 10.1, and the lower row is trivially
a fibration. Hence the large left hand square is homotopy cartesian. The
lower left hand square is commutative, one of its vertical maps is an identity,
and the other one is a homotopy equivalence by the additivity theorem.
Furthermore the functor isomorphism that measures non-commutativity of
the upper left hand square, is not felt by the large left hand square.

Consequently, the upper left hand square is homotopy cartesian in the way
asserted.

This being established, consider the diagram
Qfe.fa fs
Q“f — Q@im %, Q%o x (@D, % Q5 — QP % QT

. 1x | Qs @22) l
Qs — QD ——===— @9, x Q% » Q9%
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in which the left hand square is the one just considered. The middle and
right hand squares commute. In the middle square, the horizontal maps are
bomotopy equivalences, the upper map by Proposition 11.1, and the lower
map by the additivity theorem, by the fact that BQ?, has a homotopy
inverse and that therefore the map

QP < QP — QT = QD% , (Mg, M) — (My, M M, ®cR)

is a homotopy equivalence. In the right hand square, the horizontal maps
are projections away from Q@%,. It follows that the large square is homotopy
cartesian in the way asserted by the theorem.

There is a technical variant of Theorem 11.3 that we will need later on.
Let ‘0. be the simplicial exact category which in degree n is 0,, the category
equivalent to ¥ in which an object is a sequence of » composable isomor-
phisms in U; similarly with @,., P%., etc.

Proposition 11.4. The non-commutative square of simplicial categories

QU. — Q2,. X QP;.

Qg’g- — Qg)zg.
is homotopy cartesian with respect to the simplicial homotopy which to any
object of O associates its structure map.

Proof. An object of 0, determines a commutative diagram in 97

—_—— —— —_
e O - 3 e >
‘[ N[ ] I

!

i

:

...... -,

where each row has n arrows, and the vertical arrows are the structure
maps of the objects of U involved. One can obtain from this diagram a
sequence of n + 1 objects in Pk, as indicated by the broken arrows in
one case. By definition, this sequence gives the value of the simplicial
homotopy on the object of U, in question. It is clear that the homotopy
described is indeed a simplicial homotopy between the two composed maps
from QT. to QP%.; we have to verify that the square is homotopy cartesian
with respect to this homotopy.

Considering QU as a simplicial category in a trivial way, we can consider
it as a simplicial subcategory of Q0., and the inclusion is a homotopy
equivalence. Itis thus sufficient to compare the homotopy of Theorem 11.3
to the restriction to Q7 of the present homotopy. The two homotopies are
not the same exactly, as one is simplicial and the other one is in the category
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direction. But the two homotopies will indeed become identical when we
pass to nerves and take the diagonal simplicial sets of these. This establishes
the proposition.

Combining Theorems 11.2 and 11.3 we have

COROLLARY 11.5. If C is regular coherent, there is a commutative
homotopy cartestan square

Qa, xQ3,

Qg)c X Qg’c I QgA A Qg’a
lQ(Id & 1d) EQ(&. T3y
Qg’c — - Qg)fz .

Remark. The appearance of QP rather than Q@P; in this corollary is a

bit unsatisfying. Its significance is the following. In view of the connected-
ness of the bottom terms in the square,

if and only if the map of homotopy theo
is a homotopy equivalence. Hence the

the right vertical map gives the followin
groups

the square is homotopy cartesian
retic fibres of the vertical maps
homotopy fibration associated to
g long exact sequence of homotopy

T K(B) — K(C) — K (A) © K(B) — K,(R)

in view of Proposition 7.4, Replacing Q93 by @2, in the corollary would
amount to the additional assertion that K(4) @ K,(B) — o(R) is surjective.

device of Bass [3] gives a continuation of the
keeping it exact,

— K(A)D K(B) — K(R) — K_(C) —s .
Furthermore one hag a vanishing theorem
theses, or stronger still, g theorem that

Ko(C) - KG(C[t’ tﬂ])
is surjective. Two proofs of such g

: theorem are given in [3] under the
assumption that C be regular noetherian, One checks that the first of these

for K_(C) under suitable hypo-

Ppresented modules insteaq of finitely
assumption, QP% can indeed be repl

On the level of geometric reg)
more explicit form,

generated ones. So under this stronger
aced by Q2. in the corollary,

izations, Theorem 11.3 can be given a
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Notation. BQT is the homotopy theoretic fibre of the retraction
BQy: BQTUO — BQ(9P; X P¢) ;
(—1d): BQP; — BQY. is a homotopy inverse on the H-space BQP,. Similarly,
—BQ@B,: BQP; — BQP, is the composition of BQB,: BQP, — BQP, with a
homotopy inverse (on either BQP, or BQP;; this does not matter).
THEOREM 11.6. There is a natural splitting, up to homotopy,

BQT -5 BQU x BQI. x 95) .
The sequence
P

(Baal BOAY)
BQU x B, B4 =B poo . BQP, — BQPx

has the homotopy type of a fibration. The map QBQP:— BQV has a
canonical section, up to homotopy.

Proof. By Corollary 7.2 the diagram of simplicial categories
QU ——— QF.(p)

o| |

QP X @Fc — QF.(yrop)
is homotopy cartesian, and QF.(y - p) is contractible since y o @ is isomorphic
to the identity functor. Hence BQT — BQF.(p) x BQP,; x BQP, and

BQF.(p) 5 BQU, which is the first assertion.

It was seen in the proof of Proposition 1.3 that for any object V of ¥
there are canonical isomorphisms M, — M, R4, My— M,Q;B where
(M, M) = y(V)e P, x .. Let T be the full subeategory of those objects
in U for which these canonical isomorphisms are identities. Then V' is
equivalent to ‘0 by the inclusion. By definition of V' the diagram

BQUV — BQ?P, X BQP,

1 l

BQ9P, — B9
induced by the diagram of Theorem 11.3 is commutative. By 11.3 this
diagram is homotopy cartesian, though not as a commutative diagram but
With respect to the homotopy described in 11.3.

Homotopy cartesianness of the diagram gives a map between the
homotopy fibrations associated to the vertical maps, inducing a homotopy
equivalence between the homotopy theoretic fibres. The homotopy fibration
associated to the left vertical map is, by the first assertion, homotopy
equivalent to the sequence
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[pt.]
Id
- ~ . Id
BQU x BQg, XM 21 5o BQ9. - Beo. ', pgg, |

So one obtains the asserted homotopy fibration,

But there is another map between these homotopy fibrations, because
of the commutativity of the diagram. The two maps agree on the base, on
the total space, and on the part BQP, of the fibre. Using that the map
Id + (~Id) on a homotopy everything H-space is nullhomotopic by a
homotopy that itself is unique up to homotopy, one can therefore take the

‘difference’ of the two maps, and one obtains this way the required map
BQU - QBQ9:.

A-\i-ﬁ-»R

a/ /'I
/ ta,/

C / i

AN / ’

A

al 5 g

commutes, where { denoteg conjugation by ¢, : g _, R, i(r) = trt—,

If we let Pr be as in 6,2 (s0 7~ @,
phism of Pr. This automorphis
isomorphism 7. from the j

isa functor), t induces an automor-

m is inner; in tensor prodyect notation, an
dentity functor tq £, is given by

j,:M-—»M®R:R, M ——m.erRt = m & (Ere")t = m tr .

o1 2, we consider R as a left
A-module via @: 4 -, p and as g left C-module vig go g C— R. Thus the
natural transformation
(Mc ®c aA) ®AR - Mc' ®CR
IS the identity, and 5 natural transformation
(Mc ®c ﬁA) ®AR - Mc ®0R

is given by the isomorphism Je
the identity, €xcept on zero,

An object of 9NV, the category of admigsipje Mayer Vietoris Presenta-
tions, is an exact Sequence

described before, Note that 3, is nowhere
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0— M— M,®Q.R— M,Q;R—0
with M;eP;, etc. We have the obvious forgetful maps f,; IV —2,,
Jo: MV — P, the obvious section s, of f,, and the obvious natural trans-
formation from the identity on M0 to s, o f,. The section s, of £, associates
to M, the Mayer Vietoris presentation

Id
1.5 (25)
0— (My ®oR) —=> (My R B My Rosd) 4R~ M, @R — 0

and the natural transformation from the identity on 90 to s, f, is given
by the diagram

{ K

0 — M M, QR
lxaor “'/ \j\‘—:o‘ﬁ
0— (M, R R) — (M Qe D My Qo A) R — M, Qe K—0

where ¥ = x, — &, is the canonical decomposition, cf. Section 2, the point
being that j;'ox, is indeed induced from an A-map.
There are maps ., ¢;: 9, — UV which send M, c O0b(P,) to

———> M QR —0

0— (M; ®c.4) R — M; @R — 0,

0— (M; ®csA) @ R~ My @R — 0
respectively. These combine to ¢ = (@, P @s): FPo X Po— V. From Section
2 we have a map y: V0 — 9, X 9, and the composed map v o @ is isomorphie
to the identity functor on 9, x P,.

The arguments of the preceding section now carry over to the present
situation, with trivial alteration. We obtain corresponding results.

PROPOSITION 12.1. The map Q(f,, fo): QT — QP X QP 18 a homotopy
equivalence.

THEOREM 12.2. Suppose the ring C is regular coherent. Then
QP X QP,— QU is a homotopy equivalence.

THEOREM 12.3. In the square

Qv Y4 g9,

o |

QP, — QP%
the two composed maps from QU to QP: differ by the functor isomorphism
which to any object of QU associates its structure map. The square is
homotopy cartesian with respect to the homotopy of the composed maps given
by this functor isomorphism.
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PROPOSITION 12.4. The non-commutative square of simplicial categories
QV. — Q9,.
Qgc- — Qg’ﬁ-

s homotopy cartesian with respect Lo the simplicial homotopy which to any
object of U associates iis structure map.

COROLLARY 12.5. In the square

aa% * .
Q9. % Q9 X, 0y

lQ(IdéBId) l
P ———s Q91

the two composed maps from QP x QI to Q92 differ by the functor
180morphism which is the identity on QP.

phism 7, on 0 x QP.. IfC is regular cohe
cartesian with respect to the homotopy of
Junctor isomorphism.

» 0, and 18 given by the isomor-

Notation. BQUD is the homotopy fibre of the retraction

BQyr: BQUY — B, x 9,) .
The map BQea, + (—BQRB,): B2, - BQ?, is the s
H-space structure on BQ2 ) of the ma
of BQRB, with a homotopy inverse.

um (with respect to the
ps BQea, and —BQB,, the composition

THEOREM 12.6. There 18 & natural splitting, up to homotopy,

BQ® =, B « BQ2, . BQ9, .
The sequence

( pt.
25 B Ay +{— *
BQ « BQg, iif%ll BQ2, —, BQgs

has the homotopy type of & fibration. The map QBQPY — BQV has a canoni-
cal section, up to komotopy.

13. Decomposition theorems in the polynomial ¢

ring K be given as the tensor algebra of the C-bimodule § where S is free
as left C-module and finitely ge

. tive ag right C-module, as in
Section 3.

An object of O is g short exact, sequence

rlension cage. Let the

nerated projec
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section 8, of f; are the obvious ones. The value of the section s, of f, on the
module M, is, by definition, the short exact sequence associated to the
commutative diagram

((Mc ®eS) ®0R) — M. QR

l l

((Mc & S) ®0R) — M, QR
in which the horizontal map is induced from the inclusion S C R; we are
using here the condition that S be finitely generated projective from the
right (actually, the generality could be pushed a bit). There are natural
transformations from the identity functor on 9NV to 8,¢f, and to 8 of.
The latter natural transformation is given by the diagram

{

0 M - M,®cR ———— M,@:R—0
£got "/ \‘1 1
i N\
00— (M, ®:S)RcR)— (M, D M, QcS)RcBR— M Q:BR—>0.
As in the two preceding sections, one now deduces

ProprosITION 13.1. The map Q(f,, f): @MV — QP X QP 18 a homotopy
equivalence.

THEOREM 13.2. Suppose the ring C is regular coherent. Then QPc—
QYU i8 a homotopy equivalence.

THEOREM 13.3. In the square
Qv L.q9,

ol |

QP — Q9%
the two composed maps from QU to QP% differ by the functor isomorphism
which to any object of QU associates its structure map. The square 18
homotopy cartesian with respect to the homotopy of the composed maps
given by this functor isomorphism.
The composition of P, — T with either f, or f; is the identity. Thus
instead of just a commutative homotopy cartesian square, one obtains by

combining Theorems 13.2 and 13.3,
COROLLARY 13.4. Suppose that C is regular coherent. Then QF;—

QP% is a homotopy equivalence.

As in the remark after Corollary 11.5, one can sharpen this to a
homotopy equivalence QF, — QP when one assumes C[t] and C[t, t7'] are
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regular coherent.

The analogue of Theorems 11.6 and 12.6 also takes a sharpened form
here,

THEOREM 13.5. The loop space QBQP% i8 naturally homotopy equivalent

to the product of BQ (the homotopy theoretic fibre of BQU — BQF.) and
the homotopy theoretic fibre of

1d, — BQS,
Bo9, 729, Bag, x BQS,
where S, (M,) = M;Q¢S. Thus it is homotopy equivalent to BQU x QBQY.

1V. K-theory and homology

14. The homology theory associated to a T-category. In Section 6, a
small T-category was defined as a covariant functor F:§, — (small cate-
gories) satisfying

(1) F{+}is the category with one object and one morphism,

(il) For any two pointed sets (X, *), (Y, *), the natural map

F((X, ») V (Y, »))— F(X, ») X F(Y, x)
is an equivalence of categories.

Using direct limit one can extend F to a funetor on the category of
pointed sets, not necessarily finite. Then (i) and (ii) continue to hold. We
keep the notation F for the extended functor.

One can further extend to a functor

(pointed sets)*”’ — (categories)*’” ,

that is, to a functor from pointed simplicial sets to simplicial categories

(which actually are also pointed). We continue to denote this functor F.
Then F satisfies

(ii") For any two pointed simplicial sets (X, ), (Y, «), the natural map

?

F((X, %) V (Y, %)) — F(X, *) x F(Y, %)

4

is & weak equivalence of simplicial categories, that is, it is an equivalence
of categories in each degree.

The following is essentially a translation of a result by Anderson [2].
One should note that Segal’s de-looping of F{Ly x}, ¢f. Proposition 6.3,
corresponds to the special case of the cofibration

(8°, #) — (A, #) — coker (S° — AY) ,

LEMMA 14.1. Let F be o small T-category. Suppose the underlying

category F{1L U +} i8 connected. Then F sends cofibrations to fibrations up
to homotopy.
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Proof. The assertion means, if (4, «) is a simplicial subset of (X, *),
and (X/4, +) the quotient simplicial set, then F(4, *) — F(X, *x) > F(X/A, *)
is a fibration up to homotopy. To see this, one notes that in each degree 7,
the sequence

F(4,, ») — F(X,, x) — F((X/A),, *)

is trivially a fibration up to homotopy, by (ii) above. By hypothesis, and
again by (ii), F((X/A),, *) is connected. So the assertion follows from
Lemma 5.2.

LEMMA 14.2. Let F be a small T-category, with connected underlying
category.

(1) Letf, g: (X, »)— (Y, *) be maps of pointed simplicial sets. Suppose
the geometric realizations of f and g are homotopic. Then the geometric
realizations of F(f) and F(g) are homotopic.

(2) Let h:(V, =) > (W, x) be a map of pointed simplicial sets. Suppose
h 18 a weak homotopy equivalence. Then F(h) is a weak homotopy equi-
valence.

Proof. If in (1), f and g are simplicially homotopic, we know the
assertion (1) to be true because the functor F, being extended from the
category of basepointed sets, preserves simplicial homotopies between maps
of simplicial objects. Consequently, we know (2) to be true if both V and
W satisfy the Kan condition. To prove the lemma, it suffices thus to show
that F'(j) is a weak homotopy equivalence when 7 is the natural transfor-
mation j: (X, +) - (Ex~X, +) of Kan. Since F' commutes with direct limit,
up to homotopy, the latter follows if we show F'(¢) is a weak homotopy
equivalence when ¢ is an elementary anodymne extension, that is, an inclusion

e: (X, x) — (X U A" %)
where A* is the simplicial set n-simplex, and A’ the i** horn of A", the
union of all the (n — 1)-faces of A" except the ¢*" one. By the preceding
lemma, the sequence

F(X, ) 29 FX U A%, «) — FATAYL %)
is a fibration up to homotopy. But (A®/A%, %) is contractible by simplicial
homotopy. So F(A®/A% +) is contractible, and F(e) is a weak homotopy
equivalence, as asserted.
In view of Lemmas 14.1 and 14.2, the functor (X, *)— F(X, *) is a

homology theory on the category of pointed simplicial sets; that is, its
homotopy groups satisfy the Eilenberg-Steenrod axioms except for the
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dimension axiom. We will also need the corresponding unreduced homology
theory.

Notation. If Fisa I-category, we denote F+ the functor on unbased

simplicial sets which is the composition of F with the functor that adds a
basepoint.

There is the following formulation of excision for F+.
LEMMA 14.3. Let

A— B

Ft4)— F *(B)
F*(C)— F+(D)
18 homotopy cartesian.

Proof. For the sake of argument we assume the horizontal maps are
monomorphisms. Then in the diagram

F*(4) — F*(B)—, F(B/A4, »)

l

: ft hand Square is homotopy
cartesian, as asserted.

Amalgamated free products of groups. Let a:G,— G, and B:G,— G,
be monomorphisms of groups and G = (. « °

G, the resylti
1*6,(, ulting amalgamated
free product (the pushout of « ang #). Let N denote the functor nerve

F* NGy — FH(NG)
18 homotopy cartesian,

Proof. In view of Lemmag 14.2 and 14.3, it suffices to verify that the



GENERALIZED FREE PRODUCTS 225

map NG, ,;, NG,— NG induces a homotopy equivalence of geometric
realizations. To see this one notes first that the functor fundamental
groupoid commutes with colimits. So the map induces an isomorphism of
fundamental groups in view of the very definition of the amalgamated free
product. Since NG is an Eilenberg-MacLane space, it is thus sufficient to
show that NG, !J v, NG, is an Eilenberg-MacLane space, too. But this is easily
seen from the Mayer Vietoris sequence of homology in the universal covering.

HNN extensions of groups. Let a, 8:G,— G, be monomorphisms of
groups. The HNN extension of G, with respect to (@, 8) can be defined as
the pushout in the category of groupoids in the diagram

G.uUG22a,

oo
G xI —G
where U is the coproduct in the category of groupoids (disjoint union) and
I'is the connected groupoid with two vertices and trivial vertex groups.
LEMMA 14.5. Let F be a small T-category with connected underlying
category. Then the commutative square of simplicial categories
F*(NG,U NG,y — F*(NG,)
l |
FH(NG, x NI)— F*(NG)
18 homotopy cartesian.
Proof. As in the preceding lemma one verifies that the map

(NG, x NI) U (NGOUNG,,>NG1 — NG

induces a homotopy equivalence of geometric realizations.

15. Whitehead groups. Let R denote a ring, and G a group. A functor
from pairs (R, G) to spaces will be constructed,

(R, G) — Wh*(()

Whose homotopy groups give the Whitehead groups of G, taken relative to
the ring R,

Notation. The I-category Iy, of Section 6 will be denoted T'; hence-
forth.

By direct limit, we can assume that [' is defined on pointed sets which
are not necessarily finite. I'; can be considered ina natural way as a functor
With values in the category of exact categories, so we can compose with
the @-construction.
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LemMmA 15.1. QI'; i8 a [-catsgory.

Proof. The Q-construction commutes with products and filtering direct

limits, up to equivalence, and it preserves equivalences. So the assertion
is immediate from the definition of a I'-category.

Notation. T'; is the composition of T, with the functor that adds a
basepoint.

If X is a set without basepoint, an object of I'; thus consists of (an
equivalence class of) the following data:

(1) An object P = P,. of 9, where X’ is some non-empty finite subset
of X (resp., P = Py, = 0, the distinguished zero, if X' = 2),
(i) The data required to express P as a direct sum

P = eae,\"P{:) ]

(iii) A choice, for any ¥ < X’ not mentioned so far, of an object P, in
the jsomorphism class of @,., P....
The equivalence relation on these data is generated by allowing X’ to be
replaced by 2 larger finite subset X” of X, but insisting that if Y < X"

one have Py, = Py .y, (equality, not just isomorphism). Note in particular
that equivalent data involve the same P.

We will now consider '} as a functor from simplicial sets (without
basepoint) to simplicial categories. As before, we let @,. be the simplicial
category which in degree n is P, the category equivalent to 9, in which

an object is a sequence of n composable isomorphisms in P.. Let G be a
group, NG its nerve, and RG the group algebra over R.

ProprosSITION 15.2. There i3 a natural transformation o f functors from
pairs (R, G) to simplicial exact categories

(B, &) — T5NG) 2 (R, 6) s 9,

If G s the trivial group, W(R, G). i3 ¢ weak equivalence, that is, it is i1
each degree an equivalence of categories.

Proof. In view of the description of I'f(X) above, we see that in par-
ticular for X = (NG), = G", an object of T'4{(NG),) consists of
(i) an object P of @,

(i) a direct sum decomposition indexed by the n-tuples in G,

P = @cn,--n,g,,secnpm,..
(iii) certain other data.

The proposition requires us to associate to this object a sequence of
isomorphisms in @5, . Butif PeP, and i, P2 P, 1,(P) = PR, RG, the
¢

“1Tp) 9
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left action of G on RG extends to an action
m: G — Is(i,(P)) .

A canonical choice of the natural transformation W(R, G), is then made by
associating to the object in question, the sequence of isomorphisms on ¢, (P)
which on the summand indexed by (g,, - -, g.) is given by

m(gi)! % m(gu) .

It is clear that W(R, G), has the asserted properties.

Applying Corollary 7.2 in the case when f = Id, is the identity map on
I'{(NG).), and g = W(R, G),, we obtain the homotopy cartesian square of
simplicial categories

QUi{((NG),) —— QF.(1d,)

| |

QP zgtay — QF( W(R, G)n)

and QF.(Id,) is contractible. Assembling these squares for varying n, we
obtain a commutative square of bisimplicial categories.

PROPOSITION 15.3, The square of bisimplicial categories
QrH((NG).) —— QF.(1d.)

l

QP . — QF.(W(R, G).)

i8 homotopy cartesian. The bisimplicial category QF.(1d.) is contractible.
The square is natural in (R, G).

Proof. Naturality is clear. QF.(Id.) is a simplicial object of contrac-
tible things (the QF.(1d,)) hence is itself contractible. The square is
homotopy cartesian by Lemma 5.2. To see this, let X, (resp. Y,) denote
the homotopy theoretic fibre at * of the left (resp. right) vertical map in
the square preceding the proposition. Then X, —Y, is & homotopy equiva-
lence since this square is homotopy cartesian. Similarly let X and Y denote
the homotopy theoretic fibres of the vertical maps in the square of the
Proposition. Then the natural map B(X.) —» X is a homotopy equivalence
by Lemma 5.2 since QP...., is connected, for every n. Similarly B(Y.)— Y
Is a homotopy equivalence. B(X.)— B(Y.) is a homotopy equivalence by
Lemma 5.1. Hence X— Y is a homotopy equivalence, and the square is
homotopy cartesian, as asserted.

Definition 5.4. The Whitehead space of G relative to R, denotta:d
Wh*(@G), is given by QBQF.(W(R, @).), the loop space of the geometric
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realization of the bisimplicial category QF.(W(R, G).). Its homotopy groups
are the Whitehead groups of G relative to R,

Notice that the Whitehead groups of the trivial group are always
trivial (essentially by definition), Letting, for short, K(R) = QBQ%P, and

K(X;R) = QBQT(X) for a simplicial set X, we can restate Proposition 15.3
to say

COROLLARY 15.5. There is ¢ canonical homotopy equivalence of
K(NG; R) with the homotopy theoretic fibre of the map K(RG) — Wh*G).
Or put otherwise, the Sunctor Wh*@G) is g0 defined that it measures to

what extent the SJunctor G — K(RG) deviates from q homology theory
evaluated on NG.

Eemark. It can be shown that the bisimplicial set Ob(QF.(W(R, G).))
or what is the same by definition, the bisimplicial set Ob (F.(W(R, G).)), is
naturally homotopy equivalent to Wh*(@). The fundamenta] group of this
bisimplicial set cap easily be computed by band. In the case when R is the
ring of integers, it ig amusing to see how not just the usua] Whitehead
group appears, but almost jtg definition in terms of elementary expansions.

smooth manifolds or pi i

—for the matter at hangd this amountg to the

biecewise linear manifolds), The theory of [27]
to higher concordance groy

definition of Wh,(G) appear

away is due to two facts: Firstly, the Whitehead
only on groups (that i8, the fundamentg] groups
not the higher homotopy groups), Secondly,

&Toups here defineq depend
of any spaces considered,
-theory (from which after
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all the Whitehead groups are derived) is really concerned with linear
Phenomena, but the geometry involves non-linear phenomena as well.

The first defect can be rectified by extending the definition of Wh,(G)
to simplicial groups. It would be tempting here to just use the degreewise
extension (that is, evaluate the functor G — Wh?(G) in each degree of the
simplicial group and then pass to the geometric realization of the resulting
simplicial space). This does not give the correct result however (for instance
the functor so constructed does not take a weak homotopy equivalence of
simplicial groups to an isomorphism of the Whitehead groups—as it should
do if it were the correct one). The correct procedure is to use a suitable
definition of K-theory for simplicial rings (not the degreewise extension)
[27]. This K-theory coincides with Quillen’s for a ring considered as a
simplicial ring in a trivial way (as of course does the degreewise extension),
and it preserves weak homotopy equivalences. The second defect, that of
ignoring non-linear phenomena, can also be rectified [27].

PROPOSITION 15.7. (0) Why(G) = K(ZG), the reduced projective class
group.

(1) Why(GQ) is the usual Whitehead group.

(2) Why(G) coincides with the quotient of K,(ZG) considered in [13];
hence it coincides with the second Whitehead group of [9].

Proof. From Corollary 15.5, one has the long exact sequence of homo-
topy groups

.- = K,(RG) >z, Wh¥G) — ©,K(NG; R) — K(RG) — m,Wh*(G) — 0.
Let H, denote ordinary homology. Since 7, K(?; R) is a generalized homology
theory one has

7,K(NG; R) ~—> H{NG, K,(R))—> H{pt., K,(R)) — K{(R)
from which part (0) of the proposition is immediate. Furthermore one sees
easily from the spectral sequence of a generalized homology theory that
T.K(NG; R) — H,(NG, K,(R))@ H(NG, K,(R)) — K(R)D H{(NG, K,(R)).
Assertion 15.8. 7, K(NG; Z)— K.(ZG) is the usual map.
It is immediate from this assertion that
Wh,(G) = coker (K,(Z) ® H,(NG, Z) — K,(ZG))

i8 the usual Whitehead group. . .
The usual map K,(Z)® H,(NG, Z)— K,(ZG) is injective. For. abelian
G, this is clear from the existence of the determinant homomorphism and

the ensuing diagram
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Z, G —- GL(ZG)
units(ZG) +— K(ZG) .

For non-abelian G one reduces to this case by abelianization and the diagram
Z: @ Hl(NGa Z) —— x(ZG)

| |

Zz ®H1(NGU}: Z) - Ka(ZGah) v
Thus by the preceding assertion, K,(ZG) -~ Why(G) is surjective, and
Wh,(G) = coker (r,K(NG; Z) — K,(ZG)) .

Assertion 15.9. 7, K(NG; Z)—K ,(ZG) coincides with the corresponding
map wn [13].

In view of this assertion, our Why(G) is the same quotient of K,(ZG) 88
the one in [13] which Loday has shown to coincide with the second Whitehead
group of Hatcher and Wagoner [10]. Modulo the two assertions above, the

proof of the proposition is thus complete. The assertions will be dealt with
in the next section.

Remark 15.10. The natural transformation of 15.2 can be put into 8
more general framework, as follows. Suppose @ <« 4 — ¢ is a bi-exact
pairing in the sense of 9.2. Let G be a group. To the pair (G, B) one can
associate an exact category Repg((), the category of G-representations in
B; it may be defined as the category of functors @ — @ where G is G con-
sidered as a category.

The map of 15.2 then has an analogue which is a bi-exact pairing of
simplicial exact categories, ‘evaluation’,

Fo(NG U *) X Repg(G) — C .
from which other pairings may be deduced as in 9.2. The map of 15.2 itself
can be recovered as the induced map
FR(NG U *) X G_—)GPRG .

where ¢ € Repg,, is the standard representation of G on ZG,

16. Comparison of homology theories. The purpose of this section is
to prove assertions 15.8 and 15.9. The proof involves showing that certain
a prior: different ways of manufacturing a homology theory from K-theory
lead in fact to the same result. Also, one must chase analogues of the

natural transformation W(R, G). of 15.2, through comparison thegrems for
K-theory.
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If X. and Y. are simplicial sets we denote X, & Y. the bisimplicial set
which in bidegree (m, n) is X, x Y,. If X. and Y. are pointed we can form
an analogue of the usual smash product from X.® Y. by collapsing
X.®*»U+® Y.; we denote this X. A Y.! a similar notation will be used
for multi-simplicial sets.

LEMMA 16.1. Let X and Y be pointed simplictal sets, Let @ be a small
exact category, pointed by a zero object 0. There is a natural transforma-
tion of trisimplicial sets

NAT(X)AY— NQTH(XAY).

If Y = 8 this is a homotopy equivalence. If Y = 8" (any pointed simpli-
cial circle) the associated map

BQr (X) — QBQI'«(X A SY)
18 @ homotopy equivalence.

Proof. This has been described by Anderson [2] in a more general
context, Suffice it to point out here the following. An element == 0 in
bidegree (m, n) of the bisimplicial set Ob (QT«(X)) A Y is represented by

(i) (UcX, ~«, yeY, — ») where U is finite,

(i) certain data indexed by the category of subsets of U.

Similarly, an element =0 in bidegree (m, n) of Ob(QI'x(X A Y)) is repre-
sented by

(i) Vc(X, — ») x (Y, — *) where V is finite and non-empty,

(ii) certain data indexed by the category of subsets of V.

The asserted natural transformation is simply given by (U, y)— U x {y).

It is clear that NQU((X) A §'— NQT (X A S") is an isomorphism. The
third assertion need be proved only for a particular simplicial circle, in
view of Lemma 14.2. Applying the natural transformation to the cofibration
Sequence S°— A' - S, we obtain a diagram

| l l

NQRT (X A 8") — NQU (X A AY) —— NQT (X A SY

in which the bottom row is a fibration up to homotopy by Lemma 14,1, The
simplicial nullhomotopy of X A A!induces a nullhomotopy of NQT (X A Al.) ’
bence 2 map NQT,(X) A St NQT (X A S). On the one hand, this map 15
the same as the right vertical map in the diagram; on the other hand., 1t
adjoint is the homotopy equivalence from BQI' ,(X) to QBQT,(X A S given
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by the bottom row.
As pointed out by Anderson [2] the lemma signifies in particular that
NQT(S*) £ 8t —— NQTU'(S* /. 8"
gives an Q-spectrum, and that the two reduced homology theories
T lii? Q*B(NQT4(S*) A X) and =,BQI(X)

»

are the same in view of the natural transformation

Q*B(NQT'((S™) A X) —— Q*BQT' (8" A X) «— BQIy(X)

and the fact that this natural transformation is an isomorphism on the
‘coeflicients’, the case X = §°.

Asin 9.2, let @ X @ -> € be a bi-exact functor of small exact categories,
each pointed by 0. So there is a map of bicategories

QAR Is(B) — QC"
inducing an embedding of bisimplicial sets
NQR A NIs(B) — NQC.

where C, is the category equivalent to € in which an object is a sequence
of n composable isomorphisms in €.

LEMMA 16.2. In this situation there is a natural transformation of
simplicial exact categories

I NIs(B)) —> C.

satisfying that the following diagram of bisimplicial sets, involving the
natural transformotion 16.1, commutes (the source trisimplicial set is
diagonalized along the S° and NIs(®) directions, to get a bisimplicial set):

diagu,m(NQFa(S"f A Nls(®)) — NQI'4(N1s(®))
i
NQ® A NIs(B) ———— NQC.

If in particular PpX Ps0— Prg is induced from RG = R®,ZG, and
G C Is(ZG) C1s8(P 1), the following diagram also commautes

TUNG U o V&6

-—> g’}gg-
l 1 i
FH(NIS (g)za)) — P e

Proof. The construction of the natural transformation is entirely
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analogous to that of the natural transformation W(R, G) in 15,2, The
asserted properties are immediate from the definitions.

The bi-exact pairing @ x B — € induces, for every pointed simplicial
set X, a bi-exact pairing

Fe(X) x B —Te(X) P
as well as an embedding of trisimplicial sets (using that T'¢(X). iF@,(X ):
NQI¢(X) A N1s(B) — NQI': (X).

LEMMA 16.3. There is a natural transformation of bisimplicial exact
categories

(XA NIs (33)) — T (X)
satisfying that
NQ[‘@(X A Nls (EB))
/"

/ N
NQI'(X) A NIs(B) — NQTe(X)

commutes.
Proof. For pointed sets U, V, there is an equivalence of categories

FG(U ANV)— F(I‘GcU))(V)

which forgets some of the choices. Taking this map in each degree gives
the vertical arrow in the following diagram;

NQT((X A NTs(®))
VA
NQU4(X) A NTs (@) -----|--- Ngl‘e.(X ).

\\x /
NQF(I‘G(X))(NIS (%))

The solid arrow from bottom to right is the natural transformation of 16.2, s
taken in each degree in X, and the other solid arrow comes from 16.1. The o
broken arrows are filled in to make the diagram commutative. i
The asserted natural transformation is defined as the broken arrow E
from top to right., The upper triangle in the diagram looks like t:he one ;
whose commutativity has been asserted, but we are left to identify the i
horizontal arrow. That this arrow is as asserted is seen by applying the |
breceding lemma, in each degree in X, to the lower triangle. i

Proof of assertion 15.8, that m,K(NG; Z)— K(ZG) 18 the zfsual map(i
The summand K,(Z) of 7, K(NG;Z)~ K.(Z)® H(NG, K(Z)) is mappe
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correctly because of functoriality. To see how the otber summand is
mapped, we consider the diagram

B((NT1d, U ) A (NG U »)) — BG U+

l l

B(NIs(@2) A (NG U»)) — BIs(Pas.)

AN
QB(NQP: A (NG U %)) | K,,(\I";’G) < BGL*(RGY) .
N L
QBRI (NG U ») — QBQP 6.

The subdiagram of the solid arrows is commutative in view of Lemmas 16.2
and 9.2.4 and the inclusion NGU « c NIs(ZG) U » € NIs(P,;) . The broken
arrow is a homotopy equivalence and the triangle containing it is homotopy
commutative, by Lemma 9.3.3. Assume now that R = Z. The composed
vertical map on the left is & kind of Hurewicz map. It sends 7, BG into the
summand H(NG, K(Z)) of 7,K(NG;Z) because this summand can be

identified with the kernel of 7, K(NG; Z) — 7. K(pt.; Z). We claim that the
map

G = n,BG — H{(NG, K,(Z)) — G*

is surjective; in fact it ought to be abelianization. Granting this, the
assertion is now immediate from the commutativity of the diagram and
the fact pointed out in the preceding section, that the induced map on the
right, G** — K,(ZG), is injective.

To justify the claim one could check more details about the Hurewicz
map. A quicker way is this. By the vanishing theorem for Whitehead
groups, in Section 19, we know if F is a free group, 7, K(NF; Z)— K,(ZF)
is an isomorphism. Hence by the commutative diagram above, F—
H|(NF, K(2)) is surjective. Let F— G bea surjection from a free group.

Then H(NF, K(Z))— H(NG, K(Z)) is the induced surjection of the
abelianized groups, and the diagram

F** — H(NF, K(Z))

X

G** — H(NG, K(Z )
establishes the elaim.

Proof of assertion 15.9, that 7, K(NG; Z) — K,(ZG) coincides with the
map in [13}. In the diagram
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Nls (93) A Nls (gza) » Nls (EPRG)

v

(K(R) x BGL*(R)) A (K(2ZG) x BGL*(ZG))---» K(RG) X BGL*(RG)

v

QBQP, N\ QBQDP .4

it

QQ(BQY, A BQP,0) > QQBQQP s ,

the subdiagram of the solid arrows is commutative up to basepoint pre-
serving homotopy, in view of 9.2.6 and 9.3.3, and there is a unique way, up
to homotopy, to fill in the broken arrow so that the diagram stays homotopy
commutative. Because of the homotopy commutativity of the upper square,
the pairing given by the broken arrow coincides with the pairing in [13] in
view of the very definition of the latter (actually, the pairing in [13] is well
defined up to ‘weak homotopy’ only).

Let :(rings) — (rings) denote the functor suspension of Karoubi and
Z* its n-fold iteration. The only things we have to know about I are that
it has been used by Loday in a way described below, and that there is a
homotopy equivalence, due to Wagoner [24]

K,(R) x BGL*(R) — QBGL*(ZR)

which is functorial in B, further, that the resulting Q-spectrum is connected
if R is regular noetherian, especially if R = Z [24] (due to the vanishing of
the K_, of Bass [3]).

In view of 9.3.3 and 9.2.5, and the inclusion BG U x C BIs(ZG) U » C
BlIs(?,;), we have a homotopy commutative diagram

lim Q"((K,(Z"R) x BGL*(Z"R)) A (BG U %))

m

lim Q*((K(Z"R) x BGL*(E"R)) A (Ki(Z6) x BGL*(2()))

~= lim Q™QBQPsnz A (BG U +)) —> lim Q~*{(BQP3mz A\ (BG U »))

n "

= lim Q@ BQPsns A QBAF50) — lim @*"(BQPsmz A 0BQF20)

— lim Q™" BQPxmpg-
— lim Q™" BQQP smps. -

m
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The homotopy equivalences are those of Quillen’s comparison theorem, cf.
9.3.3, and the de-looping of 9.1.2, respectively. As pointed out above, the
pairing involved coincides with the one in [13]; therefore the composed map
in the diagram, from the upper left to the right, gives the transformation

of [13] in question, by definition of the latter (actually, only the induced

map of homotopy groups is defined in [13]).
The map

lim Q*QBQPsmp A BX) — lim Q*"(BQPsnp A BX)

m »

is a weak homotopy equivalence for any pointed simplicial set X because
it is a transformation of homology theories inducing an isomorphism of the

coefficients. Therefore the transformation of [13] can also be given by the
map

lim @~ B(NQP3mz A (NG U #)) — lim 0" BQP sz

Because of 16.1 and 16.3 we have the following commutative diagram
whose bottom row is the de-loop of the map just given:

BQI'x(NG U #) ——— BQP g

=

limQ"B(NQTx(S*) A(NG U *))i1@9~BQrR(S*A(NG U*))—1limQ*BQly,,.(5"

» o~

lim Q***B(NQT 3mx(S") A (NG U +)) » lim Q" BQT zm g (S”)

",n

r~

liﬂgl Q*B(NQP3mr A (NG U *)) — lim Q*BQY smga-

The claim is that the two vertical maps on the left are homotopy equivalences
if R = Z; assertion 15.9 follows immediately from this, These maps are
transformations of homology theories, evaluated on (NG U ). If R= 2
both homology theories are connected, so it suffices to show the transfor-
mations are homotopy equivalences when evaluated at S°; that is, the maps
liin Q*BQU (8" — liin Q*"*BQI s w (8™ ——lim O* BQsm;
.

L]

are homotopy equivalences. By induction on Lemma 16.1, and direct Limit,
this diagram is homotopy equivalent to

BQU (8" — l:l_r}x Q*BQT 3mg(S") «— lim Q"BQPsmp, .

- ~

By induction on Wagoner’s homotopy equivalence BQP; —QBQYP;,, and
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direct limit, it follows that the first one of the latter maps is a homotopy
equivalence. The second map is a homeomorphism. This completes the
proof.

Remark. Theargument showsinparticular that generally the homology
theory X+ 7, BQT z(X) coincides with the homology theory obtainable from

X+— 7, lim Q*B(NQPsmp A X)

»

by making the latter connected.
17. Decomposition theorems for Whitehead groups.

17.1. The case of free products with emelgamation. Let a:G,— G,
B:G,— G, be monomorphisms of groups and G = G,*, G, the associated
free product with amalgamation. Let R be a fixed ring. We follow the
notation of Section 15, THNG) = I'y(NG U *) = T'g (NG U *).

By definition of a T'-category there is a canonical map

QT'&(NG, U NG,) — QT'H(NG,) X QT'i(NG,)

and this map is a homotopy equivalence since it is a weak equivalence of
simplicial categories. The direct sum map on the category &, induces a
section of this map which is also a homotopy equivalence. Hence Lemma
14.4 may be reformulated thus;

LEMMA 17.1.1. The commutative square of simplicial categories

QU4(NG,) x QTHNG,) — QT(NG,) X QTH(NG,)
QT H(NG,) » QT E(NG)
18 homotopy cartesian.
With the group algebras over R of the groups G, G,, G,, G, we are in
a position to apply Proposition 11.4. Proposition 15.2 gives a natural
transformation from the square 17.1.1 to the square 11.4 where by definition
the transformation on the upper left term is the composed map
QF;(NGO) X QFZ(NGO) — QgRGO' X Qg)RGO'_—_) Qﬁ‘o .

The only non-commutativity in the resulting cubical diagram is in the
square 11.4. Furthermore the homotopy between the two composed maps
in this square restricts to the trivial homotopy on QU'i(NG,) > QTi(NG,).

We can thus formulate
THEOREM 17.1.2. The non-commutative square of bisimplicial cate-
gories

BRSNS R AR TR G0 S WA feee el e e a o s b L e
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QF.(TH(NG,) x TENG,) — V) — QF(TUNG,) = Ti(NG,) -+ Ppo; % P )

| |

QF.(THNGy) — Prg; ) » QF.(TR(NG) - » Phs.)

i8 homotopy cartesian with respect to a specific homotopy of the composed

maps (the simplicial homotopy which to any object of UV associates its
structure map).

Proof. This is a formal consequence of other results. Technically, the
proof is a special case of a generality on homotopy cartesian squares. 'ljbe
latter is most easily understood in 8 more general framework. So we give

a little theory of ‘homotopy cartesian cubes’, and point out in the end how
this implies the theorem.

Let I be the ordered set (0 < 1) considered as a category, and I" =
Ix .+ xI(ntimes). An n-ad of spaces is a functor

X: I* — (topological spaces) .
Consider the n-cube as an n-ad C, with
Cu(iy, ooy %) = [0, 2]« o0 [0, 1,]
where [0, 4] is the closed interval from 0 to 1 for 1 = 0 or 1. The base bC,

is the sub-n-ad of C, given by those points in the cube which have at least
one coordinate equal to 1. Let

0, — X

be a fixed map of n-ads. The homotopy fibre of X at f is the space X, of
maps

C,— X

which restrict to f at bC,. We say X is a homotopy cartesian n-cube if X/
is contractible for every f.

Let S be a proper subset of {1, -+, n}, of cardinality m say, and S’ its

complement. Denote by X(S’, 0) the (n — m)-ad given by restriction of X
to

I¥ x (0, <ee, 0)
and let

[ bC,_p — X(S, 0)

be a fixed map. Define the derived m-ad X’ = X(S/f) by letting X'(i, -+ -, i,)
be the homotopy fibre of the (n — m)-ad

XI(IS' X (B oo, 1,”)‘)

at f, (resp. the image of f, in the (n — m)-ad under consideration).
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Let f,: bC.. — X(S/f,). Then f, and f, combine to give a map (which is

stationary on the coordinates indexed by S'),
LHUfbC,— X
and
X(fof:f;) ~ (X(S/’ﬂ)))f,

by the exponential law for mappings.

By the homotopy extension theorem, any f is homotopic to a map of
the type f, U f;, and again if fand f” are homotopic then X, =~ X,.. Hence

LEMMA, Let X be an m-ad, and S a proper subset of {1, ---, n}, of
cardinality m. Then the following are equivalent:

(i) X 18 @ homotopy cartesian n-cube;

(i) Forany f.. bC, ., — X(S', 0), the derived m-ad X(S/f,) 18 a homotopy
cartesian m-cube.

Consequence 1. Let the (m + p)-ad X be given as an m-ad of homotopy
cartesian p-cubes. Then X is homotopy cartesian.

Consequence 2. Let Y be a p-ad satisfying that there is only one
homotopy class of maps bC, — Y. Suppose there is an m-ad of p-ads one of
which is Y, and where the other ones are homotopy cartesian p-cubes.
Suppose further the (m -+ p)-ad is homotopy cartesian. Then Y is homotopy
cartesian.

These observations extend to diagrams which are not necessarily
commutative, but which are equipped with commuting homotopies in a

suitable sense.
As to the theorem, each of the terms involved embeds in a homotopy

cartesian square obtainable from Corollary 7.2; for example,
QF}L;(NG) —_— QF-(Id(..>)

QPL.. — QF.(THNG) - Pie.)

is one of these. Putting these squares together, we obtain a (2 -+ 2)-ad
which is homotopy cartesian by consequence 1 above. The theorem results
now by application of consequence 2 above to this (2 + 2)-ad considered as
a 2-ad in the other way: One of the squares is that of the theorem, and the
other three squares are homotopy cartesian. In fact, these are just the two
squares of Proposition 11.4 and Lemma 17.1.1, respectively, and another
square in which all terms are contractible.

Under an extra assumption we can replace Theorem 11.3 by Corollary
11.5 in deriving the preceding theorem, and obtain a stronger result. We
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use the notation

W(R, G).: TLNG,) — gna;
of 15.2; also

W(R, G)¥: THNG) — P .
Observe that

QF.(W(R, G)). x W(R, G).) — QF.(W(R, G,).) x QF.(W(R, Gy).).

COROLLARY 17.1.3. Suppose the group algebra RG,is regular coherent.
Then the commutative square of bisimplicial categories

QF.(W(R, G,).) x QF.(W(R, G,).) — QF.(W(R, G,).) x QF(W(R, G,).)

QF.(W(R, G,).) > QF.(W(R, G)¥)
18 homotopy cartesian.

Remarks 1. There is a fibration up to homotopy
QF.(W(R, ®)F) —> QF(W(ER, G).)— T

where J is the group coker (K (RG,) @ K,(RG,) — K(RG)) considered as a
bisimplicial eategory in a trivial way.

2. Taking geometric realization and passing to loop spaces, the corollary
says that

Wh¥(G,) x Wh¥G,) —> Wh*G,) X WhE(G,)
WhE(G,) Wh*(G)*

is homotopy cartesian, where WhF()* is a certain union of components of
Wh*(@).

3. The argument of Theorem 11.6 carries over to show that in general
one has a sequence of the homotopy type of a fibration

pt.
QBQD x WhA(G,) (ot ('9*’); Wh*G,) x Wh¥G,) —> Wh*(G)*

and that BQ0 is canonically a direct factor of Wh®G)*, up to homotopy.

17.2. The case of HNN extensions. Let a, 8: G, — G, be monomorphisms

of groups, and G the associated HNN extension, the pushout in the diagram
of groupoids

G UG = a

;

X ¢—

G, X I —
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We identify G, with a subgroup of G by means of the right vertical map.
The morphism in I from 0 to 1 maps to an element ¢ of G. Let £ denote
conjugation by ¢, #(g) = tgt". Then @ = £+8. Let R be a ring.

LemMMA 17.2.1. The non-commutative square of simplicial categories
QTLNG,) X QTH(NG,) — QTHNG,)

l l

QI'z(NG,) ———— QTHNG)
18 homotopy cartesian with respect to the simplicial homotopy of the com-~
posed maps from the upper left to the lower right, which is trivial on
QTHNG,) % 0, and on 0 x QUHNG,) is given by t.
Proof. In the diagram
QI #(NG,) X QTHNG,) — QU'HNG, U NG,) — QT'L(NG))

QTENG,) ———— QUH(N(G, x I)) — QTHNG)
the right hand square is the commutative homotopy cartesian square of
Lemma 14.5. The upper left horizontal map is the section induced from the
direct sum map on 9., of the natural homotopy equivalence which goes the
other way. The lower left horizontal map is induced from the inclusion
{0} cOb(I) and is a homotopy equivalence by Lemma 14.2. The failure of
commutativity of the left hand square is measured by the simplicial homo-
topy of maps
QUE(NG,) X QU HNG,) — QTHYN(G, x I))

induced from the simplicial homotopy of maps {0 U 1} — NI which is trivial
on 0, and moves 1 along NI. This gives precisely the asserted effect.

With the group algebras over R of the groups G, G, G, we are in a
position to apply Proposition 12.4, Proposition 15.2 gives a natural trans-
formation from the square 17.2.1 to the square 12.4 where by definition the
transformation on the upper left term is the composed map

QUH(NG,) X QUHNG) — QP sz X @Pro; — . .

The only non-commutativity in the resulting cubical diagram is in the
squares 17.2.1 and 12.4 themselves. We can thus formulate

THEOREM 17.2.2. The non-commutative square of bisimplicial categories
QF.(THNG,) x THNG,) — V) — QF.(THNG,) = Prs: )

|

QF(THNGs) — Prs; ) —— QF(THNG) — Pks.)
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is homotopy cartesian with respect ta a specific homotopy of the composed

maps (the simplicial homotopy which to any object of U associales ils
structure map).

Proof. This is exactly the same as the proof of Theorem 17.1.2 except
for one more point; namely the homotopies involved in the squares 17.1.1
and 12.4 must be compatible under the transformation. It suffices to check
this on QU'5(NG,) x 0 (where it is trivial) and on 0 x QU NG,). Let (P, -+)
be an object in degree n of 0% QT 4(NG,). The homotopy of the square17.2.1
is given on (P, +++) by the isomorphism

I PRRRG — (PR RG) @5 RG .
The compatibility condition is that under the transformation, 7, should go
to the structure map of the object p,(P) of U which is
0— ((P ®RRG0) ®Rao ERG1) ®RG,RG R (P ®RRG0) ®R(;0 RG — 0.

But the structure map of this object is 7,, by definition.

COROLLARY 17.2.3. Suppose the group algebra RG, i3 regular coherent.
Then the non-commutaiive square of bisimplicial categories

QF.(W(R, G).) X QF.(W(R, G,).) — QF.(WR, G.).)

QF(W(R, G).) ——— QF.(W(R, G)¥)
s homotopy cartesian with respect to the homotopy of the composed maps
which is trivial on QF.(W(R, G,)).) X 0, and on 0 x QF.(W(R, G,).) is given
by the isomorphism j,, that is, the inner automorphism induced by con-
jugation by t.
Remarks 1. The isomorphism j, equals the identity only on zero
objects.

2. There is a fibration up to homotopy
QF.(W(R, G)*)— QF.(W(R, @)— T

where T is the group coker (K,(RG,) — K(RG)) considered as a bisimplicial
category in a trivial way.

3. Inanalogy to Theorem 12.6 one has a sequence of the homotopy type
of a fibration

pt.
QBQ % Wh*(G)) e ) WhA(G,) — Whe(G)*

and BQY is canonically a direct factor of Wh™G)*, up to homotopy

18. The fundamental theorem. This relates the K-theory of the
ordinary Laurent extension of a ring to the K-theory of the polynomial
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extension. The interesting feature is that mention of exotic terms can be
avoided altogether. The most direct formulation of the result is Theorem
18.1 below. On passage to geometric realization, or homotopy groups, the
result can be given a more explicit formulation, especially if the product
in K-theory is used.

Let R be a ring. We use two polynomial rings on R whose indetermi-
nates we denote ¢ and ¢!, respectively. Using the suggestive notation
R[t, t7'] for the Laurent polynomial ring, we have natural embeddings

R[t] — R[t, t7'] — R[t'] .

Let NZ be the nerve of the infinite cyclic group (the standard simplicial
circle). Identifying R[t, t™'] to the group algebra RZ we have from 15.2 a
map of simplicial exact categories

FR(NZ U "’) —_ g’l*?[g'g—lln

where the star signifies that we are considering a certain cofinal subcate-
gory. On checking the definition, ¢f. Section 10, one sees that an object of
DPrte 11y 18 in P, o, if and only if it is stably isomorphic to a projective that
comes from 9,.

From the natural embedding P, — Tx(NZ U +) (one can think of it as

the composition of the isomorphism g’gzl‘ﬁ(pt. U *) and the map induced
from pt. U » — NZ U »), used twice, we obtain the left vertical map in the
following diagram in which the terms in the upper row are regarded as
simplicial exact categories in a trivial way:

g)g X Pp — g’xm X 9’5[,-—;}
[‘R(NZ L ow) —— 9’,‘,{,,,«:,. .

The upper horizontal map goes component by component. The vertical
maps involve the direct sum map. The diagram is commutative.

THEOREM 18.1. The commutative diagram of simplicial categories
QP, . QP —— APk X QP31
QUNZ U #) ——— QPR -1
18 homotopy cartesian.

Proof. This results from formally putting together previous results,
By Corollary 7.2 applied to the rows of the diagram, we obtain two homo-

topy cartesian squares
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QFr X @Fx

l

QF.(Id, ) — QF (P X Pr— Phin X Phe—n)

— Qg’fg[q X ng[tﬂ]

and

QFR(NZ U *)

—— QP

QF.(d,,) — QF.(TNZ U %) — Phpe—y.)

together with a map from the former square to the latter. Hence (cf. the
generalities in the proof of Theorem 17.1,2) the square formed by the upper
rows will be homotopy cartesian if and only if the square formed by the

lower rows is. The latter square involves two contractible terms, so it will
be homotopy cartesian if and only if the map

QF(Ps X Pp— Pl X Phpe1)) — QF(LR(NZ U #) — Phiei-11-)
is a homotopy equivalence. We will prove this.
Applying Theorem 17.2.2 in the special case when G, = G, is the trivial
group (and hence G the infinite cyclic group), and using that in this case

T(NG U ») is just P, considered as a simplicial category in a trivial way,
we obtain a square of bisimplicial categories

QF.(Pp X Pp— V) ————— QF.(Fr— Fz.)
(T)

QF. (P —Pp) — QF.(T.(NZ U ) — P,y
and this square is homotopy cartesian with respect to a specific homotopy
of the composed maps from the upper left to the lower right (that is to any
object of V is associated its structure map).
The square (T) has an analogue (t) for the polynomial extension R[t]
(which is the special case of Sections 3 and 13 in which the bimodule is the
ground ring itself). That is there is a natural transformation from the

square made up of 9, and identity maps, to the square of Theorem 13.3.
By the argument of the proof of Theorem 17.2.2, this gives a square

QF Py - TH)

) |

QF.(FPr— Pp) — QF.(Pr— P)

which is homotopy cartesian with respect to a specific homotopy of the

composed maps. The notation T’ is used to avoid confusion with the 0
above.

= QF(Py —> Prd)
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The obvious natural transformation from the square (t) to the square
(T) is compatible with the homotopies of the composed maps involved.

Interchanging the roles of ¢ an ¢! we obtain another homotopy cartesian
square (t7*) and a natural transformation from (t™) to (T).

It was pointed out at the end of Section 2 that the natural map

T XV — D
is an equivalence of categories. Hence the map Ut X PV — 0. is a weak
equivalence of simplicial categories. Applying Proposition 7.1 to the rows

of the diagram
Pp X Pp— VL X VT
g)R X QR —_> @0'
gives the fact that
QF.(Py— ) X QF.(Pr— V™) — QF.(Fn X Pz V)

is a homotopy equivalence.

Thus if we combine the squares (t) and (t™*) by taking the cartesian
product of corresponding terms, the natural transformation from (t) x (t™)
to (T) is a homotopy equivalence on the upper left term. But it is a homo-
topy equivalence on two more terms, for in any of the squares (t), (t7), (T),
the lower left and upper right terms are contractible, by Proposition 7.1.
Hence the natural transformation is a homotopy equivalence on all four
terms, and in particular we have proved that

QE(Pr— Phra.) X QF(Pr— Pru—11.) — QF’(FR(NZ Us*)— 93{!.:~*1-)
is a homotopy equivalence. In view of the natural homotopy equivalence

QF.(Pr X Pr— Pl X Phy—1y) — QF(Fr—> Pri) X QRE(Pp— PRie—114)
this completes the proof of the theorem.

COROLLARY 18.2. For i = 1, there is a natural exact sequence

’ A .

0— K(R)— K(R[t]) ® K{R[t™"]) — K(E[t, ¢ ) — K. (B)—>0
where A’ and A denote the skew diagonal and the codiagonal of the natural
maps, respectively, together with a naturael splitting of the map

Ki(R[t’ t—l]) — K, _(R) .

Proof, The cofibration sequence pt.U*— NZ U «— (NZ,+) gives a
fibration up to homotopy upon application of QT ', by Lemma 14.1. Becaus:e
of the retraction NZ U * — pt. U *, We can compare this fibration to a split
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fibration and hence obtain the homotopy equivalence
QTAUNZ U x) — QP; x QTNZ, *)

using the faet that QT x(pt. U *)ng’g.
In view of this homotopy equivalence, the long exact sequence of
homotopy groups of the homotopy theoretic fibration associated to the map

QQR X QQR -_ QFR(NZ U *)
decomposes into exact sequences

0 — 7,BQPs —— 1(BQP; % BQP)

2, 2.BQTYNZ U ») — m,BQUH(NZ, +) — 0 .
Furthermore one has a canonical splitting of the map
T, BT (NZ U ») — m,BRT (NZ, *) .
Also BQP, = QBQT «(NZ, «) canonically, by 6.3 or 14.1.
On the other hand, the map of homotopy fibrations associated to the
transformation between the vertical maps of the square of Theorem 18.1

induces a homotopy equivalence between the homotopy theoretic fibres since
the square is homotopy cartesian. Also if ¢ = 2 then

T, BQP% Sadi n.iBQg’R(t]
etc., by Proposition 7.4. The assertion of the corollary therefore follows

by comparison of the long exact sequences of homotopy groups of the two
homotopy fibrations.

Addendum 18.3. The splitting K, (R)— K(R[t, t™']) of the map
K(R[t,t7"])— K,_(R) of 18.2, can be induced by the product with the
element of K,(Z[t, t7']) represented by t e (Z[t, t7).

Proof. In view of Remark 15.10 and associativity of the smash product
one has a commutative square, for any group G,

BQT;(NG U ») A BQPs — BQQT (NG U »)

l

BQg’z,;. /\ BQEPR B BQQg)RG' .
Because of the homotopy equivalence similar to one of the preceding lemma

BQQT (NG U *) — BQQP,, X BQQTA(NG, *)
and the homotopy equivalence obtainable from Lemma 14.1,

BQQ9, — QBQQTLS!, »)
this gives in the case when G is the infinite cyelic group, a homotopy com-
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mutative diagram
BQg)z A BQg’R — BQQg’R

,_, |
QBQT (S, ) A BQP» t

l

QBQCJ)Z[t,t—l} /\ BQg’R I QBQQQ)R“,‘——I]

in which the right vertical map is (a de-loop of) the section’used in the
preceding lemma, by definition of this section.
By 9.2.4 we have a commutative diagram

B(d, U 0) A BQPz—-> BQT»

|=

QOBQP, A BRQP, — QBQQP:

in which the left hand vertical map is given by associating to B(1d,) the
loop in BQ?P, which is given by the pair of arrows (0 «- Z;0>2Z)in QF ;.

The assertion of the addendum is now immediate by combining this
diagram with the one obtained from the preceding diagram by taking loop

spaces.

19. A vanishing theorem. Recall a ring R is regular coherent if any
finitely presented (right) R-module has a finite resolution by finitely
generated projective R-modules, and regular nostherian if, in addition, any
finitely generated R-module is finitely presented. For example, a theorem
of Hilbert says if R is regular noetherian then so are the polynomial ring
and Laurent polynomial ring on R, cf. [3].

Definition. AgroupG is regular coherent if, for any regular noetherian
ring R, the group algebra RG is regular coherent. Similarly, G is regular
noetherian if RG is, for any regular noetherian R.

For example, a finitely generated free sbelian group is regular noethe-
rian, by the theorem of Hilbert above. More generally, poly-Z-groups are
regular noetherian (G is a poly-Z-group if there is a sequence of subgroups
1=G,CG,cC++CG, =G, each normal in the next, so that each of the

groups G;/G;_, is isomorphic to Z).
THEOREM 19.1. Any of the following conditions (i) to (iv) 18 sufficient

for the group G to be regular coherent. -
i) G = Gixq,G. where G, and G, are regular coherent and G, is regular

noetherian.

(ii) G 1sthe HNN extension constructed from embeddings G, G, where
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G, is regular coherent and G, 18 regular noetherian.
(ili) G i3 the umion of an increasing sequence of regular coherent
subgroups.

(iv) G can be embedded in o regular coherent group.

For example, iterated HNN extension from G, =3 G, with G, trivial, and
starting with G, trivial, gives precisely the finitely generated free groups.
Thus free groups are regular coherent. As another example, let M bea
connected 2-dimensional manifold. If M is not closed (i.e., compact without
boundary), 7, M is free. If M is closed, and different from the 2-sphere and
projective plane, 7, M is an HNN extension from G, — G, where G, is finitely
generated free, and G, is free cyclic. Thus with the exception only of the
cyclic group of order 2, any such 7, M is regular coherent.

Proof of Theorem 19.1. A general fact to be noted is, if G, is a subgroup
of G, there is a canonical splitting of RG,-bimodules,

RG, = RG,@® RG,

where IE(\}1 is generated either as 2 left or as a right RG,module, by the
elements of &, not in G,. The bimodule 1%1 is both left free and right free.
In particular, tensor product with RG, over RG, is an exact functor. In
view of this remark, case (iii) of the theorem is obvious, and cases (i) and
(ii) are special cases of Corollary 4.2.

To prove (iv), let R be a regular noetherian ring and suppose G is a
subgroup of the regular coherent group G'. Let M be a finitely presented
RG-module. Then M has a projective resolution over RG,

_—_)P"—M—)'.'—_—}PL"’—_’P()““—*‘*M———*O

which is i-good, for some ¢ = 1, in the sense that P, is finitely generated
for § = 4. Then

ker (P~ Poo) @u BG' — ket (P, ®s RG" ~ P, @40 BG')

is finitely generated since RG’ is coherent and P, R RG’ is finitely gene-

rated. Hence ker(P,— P.,) is finitely generated. By induction it follows
that M has a resolution which is 4-

good for any i. There is some n so that
ker (P, " i o . ) . i

f (h “"*1. .1) ®RGI:"’G '8 Projective since BG’ is regular coherent. In view
of the splitting RG' = RG @ RG’, this implies ker(P, — P, ) is projective.
It follows that M has the required kind of resolution, and the proof is
complete. '

Definition 19.2. Cl is the smallest class :
. Of g’)‘ou 8 sat/ll . .
(1) The trivial group is in Cl. p 8fying
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(2) An HNN extension from G,=G,isin Clif G, € Cl and G, i3 reqular
coherent.

(3) An amalgamated free product G, +¢,G, is in Clif Gy, G, €Cl and G,
18 regular coherent.

(4) Cl 18 closed under filtering direct limit.

ProOPOSITION 19.3. (1) The class Cl i3 closed under taking subgroups.
(2) The same class Cl is obtained if in cases (2) and (3) of Definition
19.2, it 18 required in addition that G, Cl.

Proof. Let a splitting of & group G consist of a pair of CW complexes
(X, Y) satisfying

(i) Yis bicollared in X; that is, there is an open embedding ¥ X B'— X
where R! is the Euclidean line, so that ¥ x [~1, +1] is closed in X and
Yx0=1Y.

(ii) X is connected, 7, X~ @G, and 7, X = 0if 5 > L.

(iii) ;Y = 0 at any basepoint if j > 1.

(iv) For any component Y, of Y, 7, Y, — m, X is injective.

If Y is assumed connected, and a basepoint in Y and a normal direction
to Y in X are chosen, then a homotopy equivalence class of splittings
(preserving basepoint and normal direction) is the same as an expression of
7,.X as an HNN extension from 7, Y n(X — Y)if X — Y is connected;
respectively, the same as an expression of 7, X as the free product with
amalgamation from 7, X, < @, Y — n,X, if X — Y has components X, and X,
and where the maps are the obvious ones.

In general then, a splitting can be thought of as a number of HNN
extensions and/or amalgamated free products constructed one after the
other and enumerated by the components of ¥; ef. [26] for a fuller discus-
sion of this. Thus if we generalize Definition 19.2 by allowing splittings in
general, instead of just HNN extensions and amalgamated free products,
we still obtain the same class Cl.

On the other hand, splittings are more flexible than HNN extensions
and amalgamated free products. Specifically, if (X, Y) is a splitting of G,
and G’ any subgroup of G, we can form the pair (X', Y’) where X' is the
covering space of X with 7,X’ = G', and Y" is the induced covering space
of Y. Thus splittings are inherited by subgroups. In view of part (iv) of
Theorem 19.1, this immediately implies the first assertion of the proposition.
By tracking the construction of any particular group in Cl, it also implies
the second assertion.

THEOREM 19.4. If R is regular noetherian, and G €Cl, then Wh*G) is
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contractible.

Proof. The definition of Cl can alternatively be interpreted as a cun-
struction of any of its members by transfinite induction, and in view of
the preceding proposition, only such groups are used in the process which
have been constructed before. The proof of the theorem can therefore be
given by checking the assertion in any of the particular constructions to be
performed. Of these, (1), that Wh¥(trivial group) is contractible, is true
essentially by definition of Wh*(@), and (4) is true since Wh*(G) commutes
with filtering direct limit.

(3) The assumption is that G = G, 4 G, where G, is regular coherent
and Wh®G,) is contractible for ¢ = 0, 1, 2, and any regular noetherian ring
R. By Corollary 17.1.3 there is a homotopy cartesian square in which three
of the terms are contractible in view of the assumption just stated. The
fourth term is Wh*(G)* which therefore is also contractible. Let R’ be the
group algebra over R of the infinite cyclic group. Then R’ is regular
noetherian since B is. So Wh#(G)* is contractible by what has been esta-
blished. In particular 7, Wh®(G)* = 0. But ©,Wh*(G)* contains 7,Wh*(G)
as a direct summand, by Theorem 17.2.2 (cf. Remark 3 after Corollary
17.2.3). So 7#,Wh*G) = 0. Putting this together with the contractibility
of Wh*G)* shows that Wh*(Q) is contractible (cf. Remark 1 after Corollary
17.1.3).

(2) Theargument of the preceding case carries over to this case. One
just replaces Corollary 17.1.3 by Corollary 17.2.3 in the argument.

THEOREM 17.5. The class Cl contains

(1) free groups,

(2) free abelian groups,

(3) poly-Z-groups,

(4) torsion free one-relator groups,

(5) Sfundamental groups .M if M is a 2-manifold different from the
projective plane,

(6) fundamental groups =, M if M is a compact orientable 3-manifold
any irreducible summand of which either has non-empty boundary, or i8
simply connected, or is ‘sufficiently large’ in the sense of [25],

(7) Sfundamental groups =, M if M is any submanifold of the 3-sphere,
(8) subgroups of the groups listed before.

More curious examples are groups concocted & la [16] to illustrate
unsolvability of certain decision problems in group theory. These have a
marked tendency to be members of Cl. Of course this need not mean that
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Cl is a very large class, it can mean as well that the groups in Cl are
particularly tractable.

Proof of Theorem 19.5. (8) follows from the other assertions in view
of Proposition 19.3. The cases (1), (2), (3) are clear.

Case (4). One-relator groups. It is implicit in the analysis of one-relator
groups in [14], and will be made explicit in the lemma below, that if G is
a torsion free one-relator group then there exists a sequence of groups

¢=G,G,G,G, -G, G, G, =1

so that G is a subgroup of G; and G} is an HNN extension obtained from
H;,,—G,,, where H;,, is a free group. By case (2) of Definition 19.2, G,,, €Cl
implies G, € Cl since a free group is regular coherent, and by Proposition
19.3, G e Cl implies G;e€Cl. So G€eCl, as asserted.

LEMMA. Let G be presented as a one-relator group, with relator R.
Suppose R is cyclically reduced and involves more than one generatlor.
Then there exist one-relator groups G’ and G, with relators R’, R, s0 that

(i) G i3 a subgroup of G',

(i) G’ is an HNN extension obtained from H= G, where H is free and
JSinitely generated,

(ii) the relator R, of G, has smaller length than the relator R of G,

(iv) R is a k** power if and only if R’ is, if and only if B, 18.

Proof [14]. Let F be a free group on generators {{;a,b,¢, ---}. To
every element f of F' one associates an integer ¢,(f), the t-exponent sum; it
is the exponent of ¢ in f after abelianizing and collecting.

Case 1. The assumption is that B involves t, and ¢,(R) = 0. By defini-

tion, G’ = G in this case. There is a unique way of writing Rasa reduced
word of conjugates t*xt* of generators x different from t. We let F, be the

free group on free generators
{a’kr qu Cpy °° Ny é k _S— nz}
corresponding to the generators {@, b, ¢, -} of F different from £, where
n, and n, are given, respectively, by the minimum and maximum numbers
k occurring in the expression of B by the t*zt™* above. There is a unique
cyclically reduced word R, in the generators of F, so that on substituting
1, — trat ™

we recover R. By definition, G, is the one-relator group with generators F
and relator B,. We can recover G from G, as the group with presentation

(F, ;R =1,tHt" = H')
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where H and H’ are the subgroups of F, with generators
(@ by co5m Sk<m—1), {(a,b, - :m + 1sk<sn)

respectively. 7, has been chosen so that there is at least one generator of
F, which occurs in R, but is not contained in H. Therefore H —» G, is an
embedding by the ‘Freiheitssatz’ [14, Theorem 4.10]. Similarly H' -» G, is
an embedding. Hence G is an HNN extension in the way asserted.

Case 2. The assumption is that ¢,(R) # 0 for any generator x of F
involved in R. Suppose that e(R) =1, ¢(R) = @, both 0. We let F”’ be
the free group on the same generators as F, except that ¢ is replaced by u,
and we embed F'in F’ by sending ¢ to u*. We let R’ be the relator obtained
by replacing ¢ in R by 7, and by definition, G’ in the one-relator group
with generators F” and relator R, The induced map G — G’ is an embedding
by [14, Corollary 4.10.2]. Next we replace the generator a of F' by v = au".
By substituting accordingly ¢ = vy~ ip R', the relator is changed to R”,
and ¢,(R") = 0. We can apply case 1 now. To finish the argument we have
to check that the relator R, finally obtained has smaller length than R.

Indeed, its length is equal to the length of R with all occurrences of ¢
discarded.

Case (5) of theorem: 9-

manifold groups. Ignoring that the present case
is a special case of 4),

we will give a more geometric argument. The
reason is that the same argument applies in the case of 3-manifolds where

however the simplieity of the argument is obscured somewhat by the tools
that must be used to Justify its working.

Let M be a compact connected 2-manifold and C 3 properly embedded

circle in M which is 2-sided (that is, separates a neighborhood). Then we

can cut Mat C, to produce a manifold 3" Which (hopefully) is simpler. The

cutting process can be made very concrete when one draws a picture and
uses scissors. Mathematically it ig easier to describe the reverse process

of reconstructing M from M'. Namely, pm’ Comes equipped with two em-
beddings of S! onto boundary curves C, and C,, angd

M= colim(»S”:;’M')
and the common image of C,and C,in M is just C.
The fundamenta] groupoid commuteg with colimits, go

M = colim (@S'—= M .
Choosing basepoints and connec

ting paths ag required, w £
fundamental groups, The pre » We may also talk o

ceding formuylg implies if both .G, -z, M’
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and 7,C, — 7, M’ are injective then 7,C — 7 M is injective, and conversely.

Hence provided that 7.C - =, M is injective, the cutting of Mat C gives
rise to the reverse process of building up 7, M from simpler constituents by
either amalgamated free product or HNN extension (depending on whether
C does or does not separate M),

If the boundary of M is not empty, there is a variant of the cutting
process where we take C to be a properly embedded arc. The condition that
m,C -7, M be injective is trivially satisfied in this case. So the same con-
clusion about 7, M is valid.

The assertion of case (5) is that, in general, 7,M can be entirely built
up from the trivial group by iterating the process of taking either an HNN
extension or an amalgamated free product (with the extra condition that
the amalgamation groups must be regular coherent), The assertion follows
at once if we can show that, in general, the cutting process described can
be performed on M, and can be iterated to reduce M to a disk (or a number
of disks).

A hypothesis is required to get the cutting process started, namely that
M be sufficiently large to contain the C required, with 7,C — 7, M injective
(there are two exceptional cases: the 2-sphere and the projective plane).
But once the process has been started it can be continued. For after the
first step we are left with a 2-manifold with non-empty boundary, and if
this is not a disk already, we can find an appropriate embedded arc since
a compact 2-manifold with boundary may be represented as a disk with
bands.

The amalgamation groups 7,C that occur in the process are either trivial
or free cyeclic. So in addition to what case (5) asserts we can also conclude

that 7, M is regular coherent.

Case (6) of theorem: 3-manifold groups. Let M be a compact connected
3-manifold which for simplicity we assume is orientable. Suppose we can
find a properly embedded connected 2-manifold F in M which is 2-sided and
satisfies that 7, F'— w, M is injective. Then as in case (5) above we can draw
the conclusion that z, M is either an amalgamated free product or an HNN
extension, depending on whether F does or does not separate M.

Further, if by iterated cutting of this kind we can reduce the given M
to simply connected pieces then it follows that w, M can be built up from the
trivial group by iterated HNN extension and/or amalgamated free product.
This gives the conclusion of case (6). For the amalgamation gro.ups are
2-manifold groups 7, F’ where any F isa 2-sided submanifold in an orientable



ks

254 FRIEDHELM WALDHAUSEN

manifold and hence itself orientable. In particular F’ cannot be the pro-
jective plane, so #,F’ is regular coherent,

The fact is that a surprisingly large number of 3-manifolds can be cut
to pieces in the way required. This depends on 8 number of theorems in
3-manifold theory (which, e.g., can be found in {10]). Here are a few relevant
notions and a review of the argument. Recall we are assuming M is compact
(and connected) and orientable.

M is called a connected sum of M, and M, (notation M ~ M, 4 M,) if it
can be obtained by removing the interior of a 3-ball from each of M, and
M,, and gluing the resulting 2-sphere boundary components. This is equi-
valent to the possibility of cutting M at a properly embedded 2-sphere into

two parts, obtainable by removing an open ball from each of M, and M,
respectively. In particular,

T, (M, % M,) ~ .M, *ﬂxMz .

A classical result of H. Kneser says that M has a (maximal) connected sum
decomposition

M~M4---3M,

where each of the summands is non-trivial (i.e., different from the 3-sphere)
and prime for connected sum, that is, it cannot itself be non-trivially
obtained by connected sum. Note that if the Poincaré conjecture were
known to be true (that a closed M is necessarily S°if it is simply connected)
the existence of a maximal decomposition would follow from Grushko’s
theorem. Other facts in this context are that connected sum is well defined

if orientations are taken care of, and that the maximal decomposition is
essentially unique; but we do not need these.

One says M is irreducible if every properly embedded 2-sphere in M
bounds a 3-ball in M. If M isirreducible then it is prime for connected sum,

and the converse is almost true: S' x S* is the only M which is prime but

not irreducible. Hence we may (and will) restrict attention to irreducible
manifolds.

If M is irreducible and has non-empty boundary then n.MecCl.

For if M has a 2-sphere boundary component it must be isomorphic to
the 3-ball (why?). If M has a boundary component different from the
2-sphere, a beautiful application of Poincaré duality (noted already in the
classical book by Seifert and Threlfall) shows H'M + 0. Hence there is 2
non-trivial map M —S' and consequently, by transversality, there is a
properly embedded 2-manifold F in M which is dual to a non-trivial element
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of H'M. Using the theorems of Papakyriakopoulos, one can modify F, if
necessary, to satisfy that 7, F— n,M is injective. So M can indeed be cut
in the way required. Denoting M’ the manifold obtained by cutting, it may
be shown that M’ is irreducible again, and of course M’ has non-empty
boundary. So we are in the same position as before, but with M replaced
by M’, and we may proceed inductively to cut M’, and so on. On the other
hand, a theorem of Haken [8] says that the cutting process cannot be
continued indefinitely. But as mentioned before, the only way for the
cutting process to stop is that only a ball (or a number of balls) is left over.
This completes the argument.

Let M be a closed irreducible manifold and suppose it contains a pro-
perly embedded 2-sided 2-manifold F (connected and S*) so that 7, F'— 7, M
is injective. Then we may cut M at F to obtain M’, say. The latter is
irreducible again and has non-empty boundary. And so the cutting process
can be performed all the way, by the preceding argument applied to M.
But this means that everything depends just on the existence of that very
first #. The manifold M is called sufficiently large if such an F exists.

For example, F cannot exist if 7, M is finite. If on the other hand 7, M
is not finite (and M irreducible) it appears that ‘in general’ M may be
expected to be sufficiently large: Certainly it is very difficult to construct
M which are not, and only a very few such are known to date; besides, each
of the known examples has a finite covering space which ¢s sufficiently
large.

Not very surprisingly, M is sufficiently large if and only if 7. M is either
non-trivially an amalgamated free product or an HNN extension (or both).
For example if 7, M is an HNN extension then H'M = 0 and this implies M

is sufficiently large, as indicated before.

Case (1) of theorem: Submanifolds of the 3-sphere. By a direct limit
argument it suffices to consider compact submanifolds. Let M be one. If
M is not irreducible it must be non-prime since S* X S* does not embed in
S°%, So suppose M~ M, £ M, By the Schoenfliess theorem, any proper
embedding of S? in S° is equivalent to the standard embedding (or what
amounts to the same thing, the S* decomposes S® into two 3-balls). This
implies that M, and M, also embed in S°. As 7. M~ 7, M, + t,.M, we can thus
1nduct1vely reduce to the irreducible case. So assume M is irreducible, and
embeds in S°. Then either M = S¢ and there is nothing to prove, or M has

non-empty boundary and the preceding case applies.
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