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We sugges! in this paper to treat the problem of smoothing demand by aggregation in a two-step 
procedure, corresponding to the two different constituents of consumption characteristics. wealth 
and preferences. Instead of imposing a manifold structure on preferences we exploit the nice 
structure of wealth-space. The first step of this procedure, aggregation with respect to wealth. is 
carried out. It is shown th!at, for any preference, aggregation with respect to wealth yields a 
mean demand which is almost everywhere Ct. Moreover, it is shown that for an important class 
of preferences, vanishing Gaussian curvature of indifference surfaces does not destroy 
differentiab!!ity of the mean demand function. 

I. Introduction 

The purpose of this article is to study those phenomena which, in case of 
non-convex preferences, make it questionable whether demand, aggregated 
with respect to many consumers, is differentiable. 

In our opinion it would be desirable to have a differentiable aggregate 
demand function for the following reasons: 

Firstly, in contrast to microtheory which allows individual preferences to 
be non-convex, ;nacrotheory teaches that aggregate demand is a function and’ 
that moreover this function can be locally approximated by a linear function. 
Also empirical demand analysis stipulates a well behaved aggregate demand 
function. Therefore it would be desirable to have a microtheoretical basis for 
the concept of a smooth aggregate demand function. 

Secondly, decentralization of consumption decisions by means of prices 
would hardly be posGble without aggregate demand being smoother than 
individual demand. Non-convexity of individual preferences leads to jumps in 
individual demand behavior. If the consumption sector is described by an 
atomless measure space then gaps in the demand correspondence are 
automatically filled in by aggregation according to Lyapunov’s theorem. 
There is no reason, however, why individual consumption decisions at an 
equilibrium pi& system should clear the market, because the value of the 
aggregate demand correspondence can be a large convex set. 

*The authors have benefitted from conversations with several colleagues and guests at the 
Sonderforschungsbereich 21 in Bonn. Financial support of the Deutsche Forschungsgemeinschaft 
is gratefully acknowledged. 



But even a continuous aggregate demand function which may have 
extremely steep slopes is not suitable to explain the decentralization of 
demand decisions. For it is well I, nnown that the graph of a convex-valued 
upper-hemicontinuous (uhc.) demand correspondence can be approximated 
by the graph of a continuous function. The slope of the approximating 
function becomes extremely steep close to points whose image sets under the 
correspondence are not singletons. Thus, a continuous function may be 
hardly distinguishable from a correspondence. Therefore it is essential that 
the slopes of the aggregate demand function are bounded near equilibrium 
prices. Otherwise. if demand were too sensitive with respect to prices, very 
small price variations could lead to a considerable deviation from 
equilibrium. 

Thirdly, much of the explanatory value of equilibrium theory is based on 
the concept of a regular equilibrium. The application of this concept to an 
economy with a measure space of consumers requires differentiability of the 
mean demand function. In this context we like to quote Debreu (1972, p. 
614): ‘One expects that, if the measure v is suitably diffused over the space A, 
integration over A of the demand correspondences of the agents will yield a 
to’al demand function. possibly even a total demand function of class C’.‘ 

tirtil now we ! ave been arguing from an economic point of view why we 
think the concept of a C’ mean demand function to be a useful one. Maybe 
from a mathem;~tician’s point of view it would be more natural to treat the 
problem in a C’ setting. From conments by R. T!iom on the problem of 
obtaining a C’ mean demand function we concluded that this is a very hard 
problem requiring deep insights into singularity theory. Furthermore, for the 
application of singularity theory to this problem, a smooth manifold 
structure on the space of preferences is needed, a structure which we do not 
want to impoK_ 

The paper closest related to ours is Sondermann (1976). His and our 
intention is to state conditions under which mean demand becomes C’. 
Given the present state of the subject these conditions need not be generic. 
Sondermann’s approach involves a smooth manifold structure on the space 
of preferences and relies on the study of catastrophes. He pointed out that a 
major difficulty in the analysis of the problem arises from the fact that jumps 
of the individual demand, which occur at a given price system for a null set 
of consumers. do affect the derivative of the mean demand function. In our 
approach we essentially take care of the influence of these null sets by 
aggregating demand with respect to wealth, keeping preferences fixed. We 
intend to aggregate with respect to preferences by interchanging 
differentiation and integration using Lebesgue’s Dominated Convergence 
Theorem. 

For a discussion of Sondermann’s approach the reader is referred to 
Araujo and Mas-Cole11 (1978). Their paper also contains a short proof of a 



theorem due to Sondermann (1975) yielding the continuity of the mean 
demand function. 

To motivate the idea that aggregation should be carried out in two steps, 
first with respect to wealth, then with respect to preferences, it is useful to 
look at the extreme case where all goods are indivisible. To make things 
simple assume that there are two commodity bundles only, x and ~7, between 
vvhich consumers are not indifferent. There are only two possible preference 
relations. Consider the class of consumers preferring x to J. Tl-ue mean 

demand of this class of consumers is a convex combination of .X and J* with 
weights depending on prices and wealth. Assume that the wealth 
distribution of this class of consumers has a continuous density with respect 
to the Lebesgue measure. Then the weights in the convex combination of s 
and _r vary differentiably wirh prices except on that closed null set of prices 
which assign t!le same value to s and ~9. Therefore, considering a fixed 
preference relation, one obtains by aggregation with respect to a suitable 
wealth distribution a mean demand function which is C* except on a subset 
of codimension one in the set of prices. The derivative of this mean demand 
function is determined by those consumers who can just afford to switch 
from J* to s. The first step of the aggregation procedure is an analogue of 
this idea in the framework of perfectly divisible commodities. This step is 
carried out in the present article. For each preference reiation it brings about 

a considerable smoothing effect. 
Suppose now that there are very many commodity bundles and. 

accordingly, very many preference relations. For each preference relation 

there is a null set of prices where the corresponding mean demand may have 
a kink. If, at a given price system. a kink occurs only for a clearly negligible 
set of consumers then these kinks play almost no role for the bAaviol- of the 
mean demand of the whole consumption sector. One may hope to get rid of 
the non-differentiability remaining after aggregation with respect to wealth 
by aggregation with respect to preferences. It is essential for the second step 

that preferences are dispersed. 
The analysis in the perfectly divisible case is not quite as simple as 

suggested by the above sketchy remarks. In this paper we intend to show 
which kind of obstacles for differentiability ;JI;cur. We will fix a not 
necessarily convex preference and investigate which amount of smoothness of 
demand can be obtained by aggregation with respect to wealth. We will see 
that this first step of aggregation yields a demand which is a C’ function 
except on a closed null set ur prices, depending on the given preference 
relation.’ 

The prices in this exceptional null set correspond to three types of 

‘For prices in this exceptional set demand need not be unique. In another paper [Dicrker 
Dierker Trockel ( 3 980)] we show that for most preferences aggregation with respect to ~vealth 
yelds a continuous mean demand function. 



difficulties: vanishing Gaussian curvature of indifference surfaces, critical 
simple Jumps and non-critical multiple jumps. A simple resp. multiple jump 
at a price p denotes a situation where the cardinality of the demand set at p 
is two resp. greater than two. A jump is called critical if there are points in 
the demand set of p with equal marginal utilities. 

The first diftkulty leads to the study of unfoldings of degeqerate germs. 
Restricting ourselves to the simplest important case, the cusp catastrophe, we 
show that vanishing Gaussian curvature does not destroy differentiability of 
mean demand for a fixed preference, as long as no other disturbance occurs 
simultaneously and some rank condition is fulfilled. 

Critical simple jumps, to the contrary, require a good deal of dispersedness 
of preferences. 

Multiple (non-critical) jumps do not destroy the differentiability of mean 
demand, provided that they occur, at any given price system, for a null set of 
preferences 0n:y. 

Aggregation with respect to preferences in order to treat critical and 
multiple jumps will not be carried out in this paper. 

2. Description of the model 

The consumption set for every consumer is 

We consider prices in 

An individual agent is described by his wealth w and by his preference 5. 
The wealth space is assumed to be the compact interval [w, $1 c k,. w < $. 
For any set -9 of utility functions on X two elements :dl, zd2 E @ are 
considered equivalent (II l - u2 J, if for all pairs of commodity bundles ~,JYE X, 

in the following we consider the quotient space 9: = @,/ -- where 9 is the set 
of all C’ utility functions fulfilling %I, @2, #3 below. 9 is the space of all 
preference orderings that are representable by C’ utility functions in 9. 

/l/l : DU (_u) 4 0 for all .Y E X (monotonicity). 



Let g(x):=Du(x).l(Du(x)I/-‘. The following assumption keeps demand 
away from the boundary of the consumption set: 

‘@2 : For any ?CE X, the set cl U- ’ (O(X)) is contained in X. 

The fact that g- ’ (p) is a smooth one-dimensional manifold ‘varying 
smoothly’ with p is very helpful for showing that mean demand is C’. We 
therefore ‘qsume : 

‘1/3 : g:X--d has full rank I- 1 everywhere. 

This assumption allows indifference hypersurfaces to have Gaussian 
curvature zero. However, it precludes two or more principal cixvaturcs to 
vanish simultaneously. 

For Theorem 1 we need two more assumptions on preferences: 

Assumption ~#4 is made to handle the case of indifference surfaces with 
vanishing Gaussian curvature, K. The concept of Gaussian curvature has 
been used by Debreu (1972) in order to study the differentiability of demand 
functions derived from preferences. Assume h;(Z) =0 and let fl= g(_C), 6 = p.f. 
Denote the restriction of the utility function 11 to the budget hyperplane 
(_YE.YII).Y=\v~ by liiP,,,,. The family Iz~,~,,,,I(P,~)ESX~+~ can be regarded 
as an C-parametric unfolding of 14, B, ,;,. More precisely. let U : I?,: ’ x S x k _ -4 

bc defined by 

ki(.y 1,. . ., s/ 1.p. w): =il(J+. . .,s,- 1,s,(p, w)), 

We write U ( -, 17, +):I?; ’ -42 instead of Use,,;, and consider the I-parametric 
unfolding U of the germ represented by U (s, pZ, 1:) at _G = (.? 1 . . . . . _tl _I ). It is 
natural to concentrate on the class of unfoldings of the singularity 1! ( -. p. C) 

at i having the property that nearby unfoldings represent the samt‘ 
qualitative behavior. These unfoldings are the stable ones. A stable unfolding 
enjoys the property that it represents all the ‘deformations’ of the singularity 
at (fi, 6) for suitable parameters p, w. We therefore assume: 

SJ4 : The unfoiding U is stable. 

Stability of unfoldings is defined in various equivalent ways in Wassermann 
(1974, 44). Assuming that U is stable amounts to requiring IJ to be versa1 in 
Briicker’s (1975) terminology. 
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The next assumption. &5. is made to rule out preferences with a somewhat 
arr:ificial property. Loosely speaking, we want to exclude preferences 
exhibiting triples of commodity bundles in a demand set which are stable 
with respect to infinitesimal price variation in all directions. For I =2, the 
phenomenon to be excluded is an infinitesimal version of a situation such as: 

More precisely, assume that three pairwise distinct commodity bundles 
s. J’. 2 arc demanded at price p and wealth it’, i.e., the bundles x,p, z are s- 
maximaS in :?I% x 1 px’~ 11’). Then LI(.I’)=u(J)=u(z) and px=py=pz. 

Furthermore, &r(x), Drr(y ), and Du(z) are proportional to p. Hence there 
exist numbcrc x, /i, ; such that ~=rxDrr(x)=PDu(!:)=;~DuI=). We want to 
exclude the case where x-~*=[(~-p)/(/%-;)] *(v--z). 

Counting equations characterizing the exceptional triples one sees that 
there are 31+ 1 restrictions. As there are only 31 degrees of freedom, it is 
plausible that only ‘few’ preferences exhibit triples (?cJ, Z) of the kind to be 
excluded. We assume 

Assume 

px = p}’ = p3 and 

Then +(x--/3)/(/&;)). 

We endow the space 9 of C’- utility functions fulfilling @I, W, 4’/3 with 
the topology of uniform C I convergence of functions on compact sets. This 
is a metrizable separable topology. The space .P =@/ - with the 
identification topology determined by the projection z ::%-+@/ - is the space 
of preferences. According to Mas-Cole11 (1977, p. 1391) the same metrizable’ 
separable topology on 9 can be established in the following way. Associate 
the mapping g:X+S defined by .v+Du(x)~~~ Du(x)IIml with any preference 
5 in .fl where u E .$ represents 5. Endow the set of these mappings g with 
the topology of uniform C’ convergence on compact sets. 
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The demand set of an agent 
at the price system I)E S is 

with preference 5 E :Y and 
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The demand correspondence cp ::Y x S x [\y, Cj-X, defined in this way, is 

upper-hemicontinuous (u.11.c.) [Mas-Cole11 (1977, p. 1391)]. For any I)E s this 
defines a u.h.c. correspondence cp( ., p, - ):P x [y, ti]--+ X which has a 

mawable graph [Hildenbrand (1974, p. 102)]. To define aggregate demand 
we need a measure on the space P x [I+), @] o. consumers’ characteristics. The 

smoothing effect of aggregation can be expected only if consumers’ 
characteristics are dispersed enough. One is tempted here to speak of ‘equally 
distributed’ characteristics. However, it is by no means Aear what ‘equal 
distribution’ might be unless one considers spaces where Lebesgue (or at 
least Haar) measure is available. It seems to us that the space of preferences, 
ns far as we understand it today, has too little structure for the distinction of 
a natural class of suitably diffused measures. Therefore we shall exploit the 
fact that the wealth space is a subset of the real line. 

For any topological space ‘T: let 8(T) denote the Bore1 G-field of 7: We 
assume 

J’: For any preference 5 E 9 there is a probability measure 0 c 
on ([BY, rU], A?[-?, UY]) with a continuous density. II;, with 
respect to the Lebesgue measure i. such that k z (v)= II = (\?) 
=o. 

We do not need any measure on the space of preferences in this paper sine: 
we consider only one fixed preference in S? But, for any probability /r on 
(,/p,;/A($‘)) assumption .&? is consistent with the existence of a probability 5 on 
(Y x [w, G-J, &?(P x [w, M’])) such that p is the marginal distribution of 5 on 

(3 B(P)), and S:g xS?([w,W])+[O, 11, with ii(s, a)=&, is a regular 
conditional r-distribution for (5, w )ww given (5, w)H$. To see this we 
define h :$P x [w, t3]t-+R in such a way that for any 5 E.P and for any 
w E [w, W] the function h (5, * ):[w, W] +R is continuous and the function 
h( ., w):&+R is a[~!, Gj-measurable. Then /I is a A?(.P x [@I, \i;] )-measurable 
function [Hildenbrand (1974)]. Now S,h(~,wji.(dw)=(j(~,M) for anJ 
M &?([u), t3]) defines a transition probability b:Y x .#([~l. ri;])-+[O, I]. Then 
a unique probability z on (9 x [M*, @I, A?(9 x [\J*, GJ)) is defined b> 
[Friedman (197 1, pp. 347, 348)] 

T(Q)=~ &(s,Q&(ds) for any QE~(.P x [\~.c?]j. 
d 
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The set Q+&(Et\@J) is the s-section of Q. The mean demand formula then 
reads as 

For any 5 ~9 the function h,- -h(s, s) is the continuous density of S(s, a) 
=ris with respect to the Lebesgus measure 2. on ([wJ?], &?([w,t?])). 

In this paper we shall analyze the smootheness properties of cp( 5, - ) for 
any fixed preference 5 E 9 

3. Aggregation with respect to wealth 

In this section we shall prove the following result: 

Th40I’e112 1. Let 5 ~9. Under the asswnptiorls SV4, 
closed ~11 set N5 in the price space S such that the 
@(5.*)=~;$9(& *, z \~)/~~(w)j.(d\~) is a C’ _function. 

?i5 arld .M there is a 
restriction to S\N 5 of 

To prove the theorem we look at three phenomena which may destroy the 
differentiability of @(s, e), and we show that each of these phenomena can 
occur on a small set only. 

To simplify notation we will drop the symbol 5 in cp( a) in the rest of the 
paper since the preference is fixed. Moreover we drop the density h5 
occasionally as this does not change the arguments. 

The first disturbing phenomenon is the vanishing Gaussian curvature. 
Let X, = (x E Y 1 K(X) =O, 24 Ig(xj,g(xjx has a maximum at x, w g g(x)x s W). 

Lemma I. Assume JB~. Then N, = g(X,) is a closed rurll set. 

Prooji Let C be any compact subset of S. To show that No is closed it 
suffices to show the closedness of N, E C. Consider X,: = (x E X 1 g(x) E C, 
y 5 g (x)x 5 121. Obviously X, is bounded and closed in X. Assumption %2 
implies that X, stays away from the boundary .R\X. Therefore, Xc is a 
compact subset of X. As X, is closed, X0 nX, and hence N, n C 
= g(X, fi X,) is compact. 
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Lemnat1 2. The mapping 

G,:S, x(X, XX&l,)4P XRXF’xl?, 

defiwd by 

G1 (p&y!)= (~(x)-Ei,u(X)--f(1’),~(4’)-~,p(X-4’)), 

htrs zero us u regular value. 

Pro?& The derivative DG, (p,x, J) can be represented by the following 
matrix: 

: -1 ---A- (l-l.f-1) 0 1,1- 1) 3 dXj (X) (;:;I;;$- Du(x) 0 1) 

a-j- (x-y)&? P 

where G=(l , . . . . 1) E It*- ’ and (x - J$ is the last component of x - y. From 
Dcbreu ( 1972, p. 28) we know that 

$14.) 
r ?y 
1 *.; 

has rank 1 because K(J) #O. 

\ 
Dub? 

It remains to show that 

/ 
-1 E(X) 

‘. - s 

c-f-(x- !.,)@ (N-fl)Du(x) 
/ 

has rank I, where xDu(x)=p, pDu(p)=p. If cr#b, then the rank is 1 because 
K(x)+O. If CYL =/?, then the rank is I provided 2 - f# (x - ~$e^. This inequality, 
however, follows from mono’ onicity if u(x) = U(J). Q.E.D. 

Corol!~r~. rI = G; ’ (0) is ayC1 manlyold of’dimension I- 1. 

Let N, be the set of critical values of nl 1 ,-,n,Si x ,xtxxs,,dj where 71~ 
=proj lr,:T1 +S, and X’= {xEX[W5g(x).x&?) and A is the diagonal of 
X’XX’. 
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Lemma 3. N, is closed in S, and null. A price system p1 is in N, if there is 
(p,,x,y)~n, (11~) such that Du(x)=Du(y). 

Pro05 A necessary and sufficient condition for p1 to be a critica! value of 
71, is that there is (pl,x,y)~f 1 such that G, (pl, s, *) has less than full rank at 
(x, y). A calculation similar to the one above yields that this happens iff Du(x) 
= Du(y). 

Let C be a compact subset of S,. As in the proof of Lemma 1 it suffices to 
show that N,nC is a closed null set. Let X,=(xEXIg(x)EC, @g(x)*x 
5 I$). We know that Xc is compact and claim that & n [C x (X, x X&I,)] 
is compact. & denotes the diagonal ol’ Xc x X,. 

To proof this assertion, consider a sequence (P”,x,~, y,), -. 1, 2s_. . of points in 
Ij n [C x (X, x X&I,)] converging to (p,), x0, Y&G C x X, x X,. We have to 
show that x0 + y,. 

Assume the contrary. Without restriction we can assume that the sequence 

(x, - l’n )// 1 -x, - yn / 1 of elements of the (/ - 1)-sphere converges to a vector z. 
The directional derivative of g at x0 in the direction z must vanish because 
g(x,)-g&)=0 for all tz. This contradicts the assumption that the H~SSI: 11 of 
u 1 KerD,,,ub nt x0 is negative definite. 

According to Sax-d’s theorem the set of critical values of ‘I, I,., r,IC-r ,sc x vcII, ,] 

is a closed null set. Q.E.D. 

Next we examine: the case of three commodity bundles which may belong 
to the same demand set (pi(p, w). 

However, we shall show that this case can occur for a small set of prices 
only. To exclude the disturbing phenomena we dealt with before we 
concentrate upon prices in S2 = S,\N *. 

Let E=((x.y,z)~X~ xX, xX, Ix=y or x=2 or y=zi. 

Lemma 4. The mapping 

G2:S2x[(X,xX,xXJ,E]+R’-‘xRxR’-‘xRxR’-’xRxR, 

defined bz 

has zero as a regular value. 

Proof: The proof is similar to that of Lemma 2. One represents 
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DG2 (p,x, 1’. z) by a matrix 2nd finds that this matrix has rank 31+ 1 provided 

(j-i)-(y-z),Bfp x- cI-qA jq..--y)+?]. - ** 1 

But this inequality holds by assumption W?. Q*E.D. 

Corollary. f 2 = G; * (0) is a C’ manifold of dimerzsiof2 l-2. 

Lemma 5. There is a null set N, of price systems closed in S2 such that for 
arty PE S,\N, attd any w E [w, W] the demand set cp(p, w) does not contain more 
than two elements. 

PUK$ Let z2 = proj Ir2 : T2-+S2. Because dim f 2 = I- 2 all points in I’2 are 
critical points of q. Define N2 = n2 (r, n (S, x X’ x X’ x X’)). By Sard’s 
theorem and a reasoning similar to that in Lemma 3 we get that N, is a 
null set closed in S,. Q.E.D. 

Let Ni:= N,uK,uN, and po~flN5. Hence pO is a regular value of rrl. 
Therefore, and by the compactness of [w,u’] there is a finite number of C’ 
functions (id, xi ( - ), yi( - )), defined in a neighborhood V of p. and taking 
values in f 1, having the following property: For any p in this neighborhood 

v of PO the correspondence CP(P, *) is single-valued at any 
‘t’E ]lvi(p), lt’i+ 1 (p)[v where wi(p)=Px,(P)=PJ*i(P) and Wi+ 1 (p)=P-xi+ 1 (p) 
= p-r’i t 1 (p)_ Therefore we have finitely many, say k, smooth functions Wi from 
V into [w, I?]_ For any p E I/ and any i,je (1,. . ., k}, i f.j, we have Wi(p) 
$=~&p). Denote by cp’( *, 0) the inverse of the mapping xH(g(x),g(x)x) 
restricted to a suitable neighborhood of either Xi(po) or yi(po). Define the 
constant functions w. and M:~+ 1 by we(p) = w and wk+ 1 (p) = W, respectively. 
Now, for pa I/ and for any ZE (0,. . ., k) and any wC]Wi(p), tvi+ 1 (p)[ we have 
cp’( p, w ) = q (p, W) and therefore 

for the mean demand we have 

lt+ l H’i+ I(p) 

@(5, P)= c s cpi5 (p,w)h(w)dw. 
i:=o Wi(Pl 
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A version of Leibniz’s rule shows that this integral is C’ at 11~ [Dieudomle 
(1960, p. 173)]. The derivative at p0 of such an integral is given by the linear 
mapping from R’ in R’ defined by 

Therefore the derivative of @(5, .) is uniquely determined at 17~ and can be 
computed as stated above. Q.E.D. 

Remark. The proof shows that the derivative of mean demand cP(5, a) 
consists of two parts. The first one describes the local substitution, the 
second one the ‘jumping between commodity bundles’. The jumping effect is 
measured by a sum of terms of the following kind: 

4. Vanishing Gaussian curvature: The cusp 

In this section we want to analyze the most important and at the same 
time the simplest type of a situation where a commodity bundle .? with 
vanishing Gaussian curvature is demanded at the price system F = g(s’) and 
the wealth C=iK Since by assumption &3 the mapping g has full rank at 2 
there is exactly one direction at 2 in which the indifference surface ~1~ ’ (~(2)) 

has vanishing principal curvature. That is to say that the corank of tl /d.,i. at 
x’ is one. 

Here and in the following we will not distinguish germs of maps or sets 
from their representatives, unless we encounter possible confusion. In the 
whole section we are interested only in germs. The only exception is at the 
end where we shall integrate functions. 

In Thorn’s list classifying elementary catastrophes there are several 
catastrophes with corank one. The simplest one, the fold, belongs to a 
potential function such as JV-+J *3. As ,u’ is demanded at price F and wealth \? 
we know that u Id,* has a local maximum at 2. Hence the situation must be 
somewhat more complicated than a fold. 

So we are led to study the next candidate of Thorn’s list, the cusp. In case 
of a cusp the utility decreases in the direction of vanishing principal 
curvature as J++ -_v~ decreases near zero. Useful illustrations of the cusp 

catastrophe can be found in Briickcr (1975, pp. 148-150). In the following we 

shall study the question of how the cusp phenomenon affects the 
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differentiability of mean demand. Since a budget hyperplane is (I- l)- 
dimensional, tl ]p. ,i, czn be conceived of as (4’,,...,~,_l)~-(~:+4’~+‘*. 
‘-c_$_ 1 ) where the first coordinate represents the direction of vanishing 
principal curvature. According to Brijcker (1975, 14.8 and 14.10) any 
corresponding I-parametric versa1 unfolding of u le.* is the sum of a 
two-parametric universal unfolding (yl,. . ., yl__ 1, cl, QH - (y’f t u2y: 

+ I+ J, + yi + . . . + yf__ 1 ) and an (I - 2)-parametric constant unfolding 
(.V l....,.r’J_l,“J,.9., t’,)~+-(!‘~+~‘~+...+~‘12_~). An I-parametric versa1 
unfoldirlg hence is given by 

(4’ I* . . . . 2’1- l,Vl,C2 ,..., IlI)~-(r:+v2~:+t’l~,‘t~~+...+4,i2_1). 

We shall assume that the unfolding U of u Ip,C is equivalent to .f [see 
definition 14.2 in Briicker (1975, p. 121)-j. We shall show that this 
assumption together with the rank condition ~2.3 on g ensures that the 
phenomenon of vanishing Gaussian curvature does not destroy 
differentiability of mean demand. Note that it is not necessary in this context 
to vary preferences. It suffices to aggregate with respect to wealth keeping 
the preference relation fixed. 

Theorem 2. Let 5 E 9 and assume -.A!. Slippose ‘p5 (j, 6) = ($1 and ~(2) =0, 
Ftrrtherntore assunw that the unjolding U qf u Ipwc, is equivalent to f which is 
dejined hy f’(y,,... ~‘I-l,v,,~~2,...,vI)= -(4’~+~.~!‘:+~‘~~,+4.5+...+4.:_~). 
Then there is an E > 0 such that 

3+c 

.J’ ‘pI ( -, w)h< (w)dw is C’ at j. 
-E 

The assumption that cp 5 is single-valued at (6, @) is made to exclude 
disturbing phenomena that might occur in addition to ti(x1) =O. For a similar 
rezcjon we need the E in the conclusion of the theorem. Again, dropping the 
continuous density h, will not influence the arguments. 

Before we start proving the theorem we shall discuss the idea behind it. 
For this we introduce some of the notions of catastrophe theory which will 
play an important role in Ihe proof. 

Let us assume I = 2 for a moment. Moreover think of the parameters t‘,, v2 
in the two-para_metric l,niversal unfolding (yl, vl, t:,)&+ - (J$ -t r.:,y: + vlyl ) as 
being wealth and price, respectively. 

Then the singular locus of f is defined by X, = ((J+, vl, v2) E R1 x R2 ) yt is a 
critical point uf f( .,,ul, v,)). It is a smooth I-dimensional manifold. The 
catastrophe map projects C, to the (v,, v,)-space. 

The set of parameters L+, v2 for which f ( -, vl. v2 ) has at least one 
degenerate critical point is the catastrophe set, in our case the cusp. The 
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Here It and h’ are germs of diffeomorphisms. For any (?;, p, U+Z RI- ’ x S x R 

near (i, fi, 6 ) ue have 

Ir(~,p,M.)=(h*(~,p,w) ,..., h,-,(~,p,w),hl(~,p,ruj,...,h,,-,(~,p,w)) 
= (12, (i, p, W)$. . ., h,- (%p, 4, 12; (p, 4, &(p, 4). 1 * - a’) 

We notice that the consumption set X is CL diffeomorphic to its image in the 
singular locus C,: of U by the map xt&(L g(.u), g(x)x). The inverse of this map 
is given by (z&p,~p(i, (w-$).(1 -XI:\ p,,)‘-l). The sets C, and Z, 

= 1(.1’1 ,..<, J,_~,’ ,,..., L$ER’-* xR’)c,+2c,.vl+44.;=0, y2=-.=yr_1=0} 
arc smooth I-dimensional nianifolds. 

If we clenote their germs at (3, F, W) resp. (O,O,O) by the same symbols we 
have & = h - l (C, ). Computation of the kernel of the derivative of 
(!.,.~~,l’~)~4~:+21~~~, +c, at (O,O,O) shows that the tangent space 7;,,,,C,- 
c R’ - ’ x R’ is the f-dimensional subspace with coordinates y,, c2,. . ., q. 

Denote by M, the closure of the Maxwell set ((u,, . . ., u,) 1 u1 =O, zi2 <O> in the 
parameter space R, i.e., M, = ({u,, . . . . v,) ) t+ = 0, u2 SO). Analogously, M, 
denotes the closure of the Maxwell set of U. If we project 7;,,,, C, to the 
raramett::r space R’ we just obtain the subspace spanned by the set M,. 
Indeed, 

By the equivalence of the unfoldings U and f we get (again denoting germs 
by the same symbols as their representatives) 

projP,,.(CL,) = II’- ’ (proj2 G$)h 

Mu=h’-’ (M,), 

and 

Consider the following diagram : 

where .i is defined by x&i, g(x), g(x)x). 
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Using Projp.w(~.~.li.~iICLI)= 7;ii,,jM” we get 

Since g has full rank everywhere, the map dg(2): &X-+ l$S is surjective. 
Thus proj, : 7;@, Gi,) M, -j $S is surjective. 
Since dim T (B,,$/l,=dlm T,S=l- 1 we conclude that projPlrr :M,.-+s 

defines a local diffeomorphism at (fi, G). 
1 1 

Thus G=proj ,,,, ,b,,o(proj ,,,,,, ,,)- ’ :(S,+(R,G) is a smooth germ. The 
graph of any representative of k represents the germ of M,, at (fi.6). Now 
we choose a representative of G, also denoted G. Near (F, cc) the demand 
correspondence is single-valued except for the points (p, 12=‘(p)). For any p 
near t5 we can write the integral ~~$?~ cp (p, w)dw of the correspondence 
cp(p. - ) as a sum of two integrals of functions, i.e., 

The graphs of the functions @’ and cp’ can be looked at as demand curves 
corresponding to curves in the upper and lower sheet of the singular locus &. 
[For a picture see, ‘for example, Briicker (197S, pp. 148, 15G).] 

It remains 10 show that the two right-hand integrals are C’ at fi. Since the 
proofs are analogous we shall pro=:e this only for the first integral. That 
means we consider only parameters in the half space I (c,, . . . . z*, 1 I* 1 s 0) and 
the corresponding parameters in the (p, w)-space. There are uniquely 
determined sheets of C, and CU respectively, corresponding to this half space 
of parameters,. Expressed in terms of the unfolding J’ we consider only points 
of C, belonging to the followmg set: 

Define for any p’%S the set E,.={(~.M’)ES xR(p=p’). Since projp,,,,l,:& 
+S is a local diffeomorphism at (13, G) we know that E, iti M,, at (p, b?). By 
the equivalence of the unfoldings U and f this implies h’(E,) iii M, at 0. 
Then for any p’ ne!ar F the set K(E,.) intersects M, transversally. Therefore 
the projection from l?’ onto its L:~- axis, restricted to h’(E,,) and denoted rr,,, 
defines a C”’ chart of h’(E,.) near h’(E,,) n M,. Consequently, the map nps oh’ 

from E,. into the u,-axis of R’ defines a C” chart near E,, n Ad,. Thus L’, is a 
local coordinate of E,, based at E,, n Mu = ( (p’. r? (p'))) . 

Now, for any p near fi the local inverse of 7t,0 h’ associates with any I’~ 
near zero a point h’- * o 7~; ' (2;',)=(p,wp(cl))~Ep. This defines a local c” 
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difleomorphism ~9~. 9 R+R near zero. Therefore, for any (p, W) with w near 
r?(p) we have (JJ w) = (p, w,(c,)) for some u1 near zero. Clearly, wP(uI) tends 
to G;(p) for r, tending to zero. 

Now we fix a sufficiently small compact neighborhood P of fi. For any 
rl E 10, ~1, we define the mapping 

The mapping 4$ is C’ at j3 since cpl, cT( . 1-c and G( * )-q are. Its derivative 
at fi is 

Clearly, for rl tending to zero, @, converges pointwise to @, which is defined 

bY 

Therefore, if D@, converges uniformly in the compact neighborhood P of j 
for rl tending to zero, we get by Lang (1969, theorem 12, p. 117): 

(1) ?$ converges to @ uniformly on V for q tending to zero. 
(2) @ is C’ at any PE i? 
0) D@(~)=lim,,, D@,,(p) for any PE t/: 

Hence it remains to show that D@, converges uniformly on K For the 
second term of the sum this is an immediate consequence of the continuity of 
9’. Thus we have to show that 

converges uniformly on P for 11 tending to zero. 
Equivalently, we show that 

te(-j 

j D,cp’( -, w)dw 
H=‘(. ) - ff 

tends to zero uniformly on K 
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For this it is sufficient to prove the uniform convergence to zero on V of 

Now define the map $: Rf+Cs by 

$:-hojoq’oh’-‘. 

Since the mappings 11, j, h’- I, n; ’ define local diffeomorphisms it suffices to 
prove that 

converges to zero uniformly on I? Remembering that h’ - * o TT; 1 (I’, ) 

= (p, wp(r, )) and E,(p) = w,(O ). and abbreviating W; ’ (~~(0) -+I) by /J(I), rl) we 
can write this last integral as 

Since 71; * is a local diffeomorphism it suffices to prove that 

converges to zero uniformly on ;ii: 
As we know that t,b(h’(p, w,(v, )))dl. and that jtL = * . . =~!=0 for all 

(J 1,..*,.):~-1,r1,...r q ) E C,, we get 

tW’(p,y,(u, )))=(yl (h’(p,qc, ))), o,...,o, h; (p+,(cl )),..- 

11; (p, y&-l ))). 

It suffices to show that 
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converge to zero uniformly on P For the second 
from the fact that h’ is a &al diffeomorphism. 

By definition of Z, we have for i = 3,. . ., 1, 

2 (h’(p, w,b, )))=O. 

i 

For i = 1,2, we have 

Moreover we get 

$U,,O.U, ,..., ut) sconst .I[ ulS 11, 

$,,o,v, ,..., 2~~) sconst -11 u;+ II. 

Thus, for any PE K we have 

~~~~,Il~S(h.(P,,~~,(l:l)))l/d~l sconst 
. 

=const - P3(P3 $9 

Since V is compact and since (p( .,v))~_,~ is a _ decreasing sequence of real- 
valued functions defined on P converging to zero, the sequence converges 
to zero uniformly on E Therefore 

aggregation 

integral this follows directly 

which converges to zero for zl tending to zero. Hence D@,(p) converges to 
D@(p) unifol mly on VI Q.E.D. 
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