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We suggest in this paper to treat the problem of smoothing demand by aggregation in a two-step
procedure, corresponding to the two different constituents of consumption characteristics, wealth
and preferences. Instead of imposing a manifold structure on preferences we exploit the nice
structure of wealth-space. The first step of this procedure, aggregation with respect to wealth, is
carried out. It is shown that, for any preference, aggregation with respect to wealth yields a
mean demand which is almost everywhere C'. Moreover, it is shown that for an important class
of preferences, vanishing Gaussian curvature of indifference surfaces does not destroy
differentiability of the mean demand function.

1. Introduction

The purpose of this article is to study those phenomena which, in case of
non-convex preferences, make it questionable whether demand, aggregated
with respect to many consumers, is differentiable.

In our opinion it would be desirable to have a differentiable aggregate
demand function for the following reasons:

Firstly, in contrast to microtheory which allows individual preferences to
be non-convex, :nacrotheory teaches that aggregate demand is a function and’
that moreover this function can be locally approximated by a linear function.
Also empirical demand analysis stipulates a well behaved aggregate demand
function. Therefore it would be desirable to have a microtheoretical basis for
the concept of a smooth aggregate demand function.

Secondly, decentralization of consumption decisions by means of prices
would hardly be possible without aggregate demand being smoother than
individual demand. Non-convexity of individual preferences leads to jumps in
individual demand behavior. If the consumption sector is described by an
atomless measure space then gaps in the demand correspondence are
automatically filled in by aggregation according to Lyapunov's theorem.
There is no reason, however, why individual consumption decisions at an
equilibriviu piiwce system should clear the market, because the value of the
aggregaie demand correspondence can be a large convex set.
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But even a continuous aggregate demand function which may have
extremely steep slopes is not suitable to explain the decentralization of
demand decisions. For it is well known that the graph of a convex-valued
upper-hemicontinuous (u.h.c.) demand correspondence can be approximated
by the graph of a continuous function. The slope of the approximating
function becomes extremely steep close to points whose image scts under the
correspondence are not singletons. Thus, a continuous function may be
hardly distinguishable from a correspondence. Therefore it is essential that
the slopes of the aggregate demand function are bounded near equilibrium
prices. Otherwise, if demand were too sensitive with respect to prices, very
small price variations could lead to a considerable deviation from
equilibrium.

Thirdly, much of the explanatory value of equilibrium theory is based on
the concept of a regular equilibrium. The application of this concept to an
economy with a measure space of consumers requires differentiability of the
mean demand function. In this context we like to quote Debreu (1972, p.
614): 'One expects that, if the measure v is suitably diffused over the space 4,
integration over A of the demand correspondences of the agents will yield a
to*al demand function, possibly even a total demand function of class C!.

U.til now we lave been arguing from an economic point of view why we
think tiie concept of a C' mean demand function to be a useful one. Maybe
from a mathemuatician’s point of view it would be more naturai to treat the
problem in a C” setting. From cominents by R. Thom on the problem of
obtaining a €’ mean demand function we concluded that this is a very hard
problem requiring deep insights into singularity theory. Furthermore, for the
application of singularity theory to this problem, a smooth manifold
structure on the space of preferences is needed, a structure which we do not
want to impQse:”

The paper closest related to ours is Sondermann (1976). His and our
intention is to state conditions under which mean demand becomes C!.
Given the present state of the subject these conditions need not be generic.
Sondermann’s approach involves a smooth manifold structure on the space
of preferences and relies on the study of catastrophes. He pointed out that a
major difficulty in the analysis of the problem arises from the fact that jumps
of the individual demand, which occur at a given price system for a null set
of consumers, do affect the derivative of the mean demand function. In our
approach we essentially take care of the influence of these null sets by
aggregating demand with respect to wealth, keeping preferences fixed. We
intend to aggregate with respect to preferences by interchanging
differentiation and integration using Lebesgue’s Dominated Convergence
Theorem.

ror a discussion of Sondermann’s approach the reader is referred to
Araujo and Mas-Colell (1978). Their paper also contains a short proof of a
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theorem due to Sondermann (1975) yielding the continuity of the mean
demand function.

To motivate the idea that aggregation should be carried out in two steps,
first with respect to wealth, then with respect to preferences, it is useful to
look at the extreme casc where all goods are indivisible. To make things
simple assume that there are two commodity bundles only, x and y, between
vhich consumers are not indifferent. There are only two possible preference
relations. Consider the class of consumers preferring x to y. The mean
demand of this class of consumers is a convex combination of x and y with
weights depending on prices and wealth. Assume that the wealth
distribution of this class of consumers has a continuous density with respect
to the Lebesgue measure. Then the weights in the convex combination of x
and y vary differentiably with prices except on that closed null set of prices
which assign the same value to x and y. Therefore, considering a fixed
preference relation, one obtains by aggregation with respect to a suitable
wealth distribution a mean demand function which is C' except on a subset
of codimension one in the set of prices. The derivative of this mean demand
function is determined by those consumers who can just afford to switch
from vy to x. The first step of the aggregation procedure is an analogue of
this idea in the framework of perfectly divisible commodities. This step 1s
carried out in the present article. For each preference relation it brings about
a considerable smoothing effect.

Suppose now that there are very many commodity bundles and.
accordingly, very many preference relations. For each preference relation
there is a null set of prices where the corresponding mean demand may have
a kink. If, at a given price system, a kink occurs only for a nearly negligible
set of consumers then these kinks play almost no role for the bzhavior of the
mean demand of the whole consumption sector. One may hope to get rid of
the non-differentiability remaining after aggregation with respect to wealth
by aggregation with respect to preferences. It is essential for the second step
that preferences are dispersed.

The analysis in the perfectly divisible case is not quite as simple as
suggested by the above sketchy remarks. In this paper we intend to show
which kind of obstacles for differentiability occur. We will fix a not
necessarily convex preference and investigate which amount of smoothness of
demand can be obtained by aggregation with respect to wealth. We will see
that this first step of aggregation yields a demand which is a C' function
except on a closed null set ur prices, depending on the given preference
relation.!

The prices in this exceptional null set correspond to three types of

'For prices in this exceptional set demand need not be unique. In another paper [Dierker-
Dierker Trockel (1980)] we show that for most preferences aggregation with respect to wealth
yields a continuous mean demand function.
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difficulties: vanishing Gaussian curvature of indifference surfaces, critical
simple jumps and non-critical multiple jumps. A simple resp. multiple jump
at a price p denotes a situation where the cardinality of the demand set at p
is two resp. greater than two. A jump is called critical if there are points in
the demand set of p with equal marginal utilities.

The first difficulty leads to the study of unfoldings of degenerate germs.
Restricting ourselves to the simplest important case, the cusp catastrophe, we
show that vanishing Gaussian curvature does not destroy differentiability of
mean demand for a fixed preference, as long as no other disturbance occurs
simultaneously and some rank condition is fulfilled.

Critical simple jumps, to the contrary, require a good deal of dispersedness
of preferences.

Multiple (non-critical) jumps do not destroy the differentiability of mean
demand, provided that they occur, at any given price system, for a null set of
preferences only.

Aggregation with respect to preferences in order to treat critical and
multipie jumps will not be carried out in this paper.

2. Description of the model
The consumption set for every consumer is

X:={xeR'|x>0)}.

We consider prices in

S:={peR’|p>>0,

li= 3 Inl=1}.

An individual agent is described by his wealth w and by his preference <.
The wealth space is assumed to be the compact interval [w,w]<R,, w<Ww.

For any set 2 of utility functions on X two elements LU, EP are
considered equivalent (u; ~u,), if for all pairs of commodity bundles x, ye X,

Uy (X) >y (3)e=us (X)) > uy (V).

In the following we consider the quotient space #:=2/~ where 2 is the set
of all C” utility functions fulfilling %1, %2, %3 below. # is the space of all
preference orderings that are representable by C” utility functions in 2.

#1: Du(x)>0 forall xeX (monotonicity).
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Let g(x):=Du(x)-||Du(x)||~'. The following assumption keeps demand
away from the boundary of the consumption set:

%2: For any xe X, the set ¢l u™'(u(x)) is contained in X.

The fact that g~ !'(p) is a smooth one-dimensional manifold ‘varying
smoothly’ with p is very helpful for showing that mean demand is C'. We
therefore “ssume:

#3: g:X—S has full rank /-1 everywhere.

This assumption allows indifference hypersurfaces to have Gaussian
curvature zero. However, it precludes two or more principal curvatures to
vanish simultaneously.

For Theorem 1 we need two more assumptions on preferences:

Assumption %4 is made to handle the case of indifference surfaces with
vanishing Gaussian curvature, x. The concept of Gaussian curvature has
been used by Debreu (1972) in order to study the differentiability of demand
functions derived from preferences. Assume x(X)=0 and let p=g(x), w=px.
Denote the restriction of the utility function u to the budget hyperplane
{xeX|px=w} by u, . The family {umw|(p,w)eSth} can be regarded
as an [-parametric unfolding of u, , ,. More precisely. let U:R'/ ' x SxR. R
be defined by

U(xgeoon Xy popew)i=ulNn X N (pow)),

where

-1 \ -1 \-1
x,(ps W)=(“'_ Z Pi"ﬁ)(l - Z l’i) .

i=1 i=1

We write U (-, p,w): R ' >R instead of u,, and consider the [-parametric
unfolding U of the germ represented by U(:,p, W) at x=(X,....X,.,) It is
natural to concentrate on the class of unfoldings of the singularity U (-.p.\w)
at x having the property that nearby unfoldings represent the same
qualitative behavior. These unfoldings are the stable ones. A stable unfolding
enjoys the property that it represents all the ‘deformations’ of the singularity
at (p,w) for suitable parameters p,w. We therefore assume:

#4: The unfolding U is stable.

Stability of unfoldings is defined in various equivalent ways in Wassermann
(1974, §4). Assuming that U is stable amounts to requiring U to be versal in
Brocker’s (1975) terminology.
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The next assuraption. #5. is made to rule out preferences with a somewhat
artificial property. Loosely speaking, we want to exclude preferences
exhibiting triples of commodity bundles in a demand set which are stable
with respect to infinitesimal price variation in all directions. For [=2, the
phenomenon to be excluded is an infinitesimal version of a situation such as:

N
Fig. 1
More precisely, assume that three pairwise distinct commodity bundles
x.v.z are demanded at price p and wealth w, ie., the bundles x, y,z are <-
maximai in :x'exlpx'éw}. Then u(x)=u(y)=u(z) and px=py=p:.
Furthermore, Du(x), Du(y), and Du(z) are proportional to p. Hence there
exist numbers z, 8,7 such that p=xDu(x)=pDu(y)=7Du{z). We want to
exclude the case where x —y=[(x—B)/{(f—7y)] (v—z).
Counting equations characterizing the exceptional triples one sees that
there are 31+ 1 restrictions. As there are only 3/ degrees of freedom, it is

plausible that only ‘few’ preferences exhibit triples (x.y,z) of the kind to be
cxcluded. We assume

#5: Let (x.v,2)eXxXxX. Xxs#y, X#I. yv=#r
Assume u(x)=u(y)=u(z),
aDu(x)=fDu(y)=7Du(z)=p.
px=py=pz and x-—y=i(y—2z)

Then Z+#(x—p)(f—

We endow the space 2 of C* utility functions fulfilling #1, %2, 3 with
the topology of uniform C” convergence of functions on compact sets. This
is a melrizable separable topology. The space #=%/~ with the
identification topology determined by the projection n:2 -2/~ is the space
of preferences. According to Mas-Colell (1977, p. 1391) the same metrizable
scparable topology on 2 can be established in the following way. Associate
the mapping g:X —S defined by x—Du(x)-|| Du(x)||~! with any preference
=< in .2 where ue#? represents <. Endow the set of these mappings g with
the topology of uniform C* convergence on compact sets.
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The demand set of an agent with preference < e.# and wealth we[w, ]
at the price system pe S is

P(Z,pw)={xe X |pxSw,x<y=py>w).

The demand correspondence ¢:%2 x S x [w,w]—X, defined in this way. is
upper-hemicontinuous (u.h.c.) [Mas-Colell (1977, p. 1391)]. For any pe S this
defines a u.h.c. correspondence ¢@(-,p, ):?x[w,w]—X which has a
measurable graph [Hildenbrand (1974, p. 102)]. To define aggregate demand
we need a measure on the space 2 x [w, w] 0. consumers’ characteristics. The
smoothing effect of aggregation can be expected only if consumers’
characteristics are dispersed enough. One is tempted here to speak of ‘equally
distributed’ characteristics. However, it is by no means clear what ‘equal
distribution” might be unless one considers spaces where Lebesgue (or at
least Haar) measure is available. It seems to us that the space of preferences,
as far as we understand it today, has too little structure for the distinction of
a natural class of suitably diffused measures. Therefore we shall exploit the
fact that the wealth space is a subset of the real line.

For any topological space T, let #(T) denote the Borel o-ficld of T. We
assume

.#: For any preference < e there is a probability measure o .
on ([w,w], #[w,w]) with a continuous density. h., with
respect to the Lebesgue measure / such that h_(w)=h_(\¥)
=0.

We do not need any measure on the space of preferences in this paper since
we consider only one fixed preference in # But, for any probability i on
(. B(#)) assumption .# is consistent with the existence of a probability 7 on
(# x [w, W], B(P x [w,w])) such that p is the marginal distribution of 7 on
(2B(?)), and 6:2 x B([w,w])—-[0,1], with (.- )=0<, is a regular
conditional -distribution for (X, w)—w given (=, w)—=. To see this we
define h:2 x[w,w]—R in such a way that for any <e? and for any
we[w,w] the function h(<, - ):[w,w]—R is continuous and the function
h(-,w):?-R is Z[w,w]-measurable. Then h is a #(£ x [w,W])-measurable
function [Hildenbrand (1974)]. Now [, h(Z,w)i(dw)=3(Z, M) for any
M e B([w,w]) defines a transition probability d:2 x A([w.w])—[0.1]. Then
a unique probability t on (2 x[w,w], #(Zx[w,Ww])) is defined by
[Friedman (1971, pp. 347, 348)]

(Q)=] 8(=5,0)ud) forany QeB(P x[w,W]).
Ed
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The set Q <€ A([w,W]) is the <-section of Q. The mean demand formula then
reads as

Fip)= | e(Z,p,w)dr

# xly, W]

={ ?‘P(ﬁsp,w’)é(ﬁ,dw)u(dﬁ)

2w

= Jo(Z,pw)h<(w)ildw)pdx)
P w
= ®(Z,p)nd=)
#
For any <& 2 the function h =h(Z, -} is the continuous density of 4(%, *)
=§= with respect to the Lebesgue measure £ on ([w, W], 2 (Lw, w])).
In this paper we shall analyze the smootheness properties of ¢(<, ) for
any fixed preference <e?

3. Aggregation with respect to wealth

In this section we shall prove the following result:

Theorem 1. Let <. Under the assumptions U4, U5 and A there is a
closed null set N in the price space S such that the restriction to S\N< of

P, ’)=§:§¢(5, w)h(w)i(dw) is a C! function.

To prove the theorem we look at three phenomena which may destroy the
differentiability of @#(<, ), and we show that each of these phenomena can
occur on a small set only.

To simplify notation we will drop the symbol <X in ¢(-) in the rest of the
paper since the preference is fixed. Moreover we drop the density h«
occasionally as this does not change the arguments.

The first disturbing phenomenon is the vanishing Gaussian curvature.

Let Xo={xe ¥ |x(x)=0,u|yy) 4. has a maximum at x, w < g(x)x <w}.

Lemma 1. Assume /4. Then Ny=g(X,) is a closed null set.

Proof. Let C be any compact subset of S. To show that N, is closed it
suffices to show the closedness of NoeC. Consider X :={xeX|g(x)eC,
w<g(x)x<w}. Obviously X, is bounded and closed in X. Assumption %2
implies that X, stays away from the boundary X\X. Therefore, X is a
compact subset of X. As X, is closed, Xon X, and hence NonC
=¢(X, M X¢) is compact.
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Now we show that N, has zero measure. Let X}, denote the set of points
%€ X, such that u|,y, . has a singularity of codimension r at % We have
r22 since uyy 4 has a local maximum at %, and r</ because of #4. It
suffices to show that g(X{) has measure zero for any re N, 2<r<I/. The
unfolding U of assumption #4 is equivalent to the sum of a universal
unfolding f, with r parameters and a constant unfolding f with [—r
parameters [Brocker (1975, p. 1231)].

If we can show foi the universal unfolding that, in a neighborhood of any
singularity of codim r, only singularities with codim <r can occur, we know
that the unfolding U can have singularities of codim r near (X, g(x), g(%)x)
only on an (/—r)-dimensional manifold. The projection (p,w)—p takes
this (/—r)-dimensional manifold into a null set, because r=2. If follows that
g2(X%) is a null set.

Therefore it remains to show that for the universal r-parameter unfolding
f, of a singularity with codim r the following is true: Fer any parameter
veR" in a neighborhood of zero the mapping £, (-, v) has only singularities of
codim <r. Since, by %3, the singularity U(-, g(X),g(%)X) at X has corank 1.
the germ of f, at x can be transformed into the equivalent germ 7:(R,0)
—(R,0) given by x+—sx"*2 According to Brocker (1975, p. 124) we can
choose the universal unfolding of 5 to have the following form:

foxo)=x"" 24X+ N

Now, according to Brocker (1975, p. 123), codim y=dimg(m(l)/
{(én/éx)s,). The set &(1) denotes the smooth germs (R,0)—R, and m(1)
denotes the smooth germs (R, 0)— (R, 0).

By some computation one gets that for (v,...,0,)=0 the ideal
(Cf,i,v)/0x)g, has smaller codimension than the ideal (n/cx). .,
Therefore codim f,(-,v)<r. Q.E.D.

In order to avoid the case of vanishing Gaussian curvature we concentrate
upon prices in S, =S\N,. We are now going to study pairs of commedity
bundles which may belong to the same demand set @ .(p.w)=¢(=<,p, w).

For that purpose let

X, ={xeX|Hessian of uly.p,., is negative definite}

be the set of commodity bundles where preferences are locally convex and
have non-zero Gaussian curvature. The diagonal of X, x X, is denoted 4,.
We employ the symbol A in order to delete the last component of a vector
in R".
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Lemma 2. The mapping

G,:S, x (X, xX\4,)-»R"'"xRxR !'xR,
defined by

Gy (p.x, y)=(gix)—p,ulx)—u(y) §(y)—p,p(x—y)),

has zero as a regular value.

Proof. The derivative DG, (p,x,y) can be represented by the following

matrix:
og; i=1,..,1—1
—1(l-|.l—1) 6xj(x)<j=1""’1 ) 0
0 Du(x) —Du(y)
0g; i=1,..,1-1
~la-1a-1) 0 5}_0”(,-:1,,..,1 )
X—f—(x—y)é P —P

where é=(1,....1)eR'"! and (x—y), is the last component of x—y. From
Debreu (1972, p. 28) we know that

-

C8i

Bif.
{0y ») has rank [ because x(y)+0.
\ Du(y)
It remains to show that
/ 0g;
-1 76k
ox; (x)

X-F—(x—1)é (c!—ﬁ)Du(x)/

has rank I, where aDu(x)=p, fDu(y)=p. If a# B, then the rank is | because
k{x)#0. If x=p, then the rank is | provided X — §# (x—y),é. This inequality,
however, follows from mono'onicity if u(x)=u(y). Q.E.D.

Corollury. T'y=Gy'(0) is C" manifold of dimension [—1.
Let N, be the set of critical values of 7| s,xx'xx.a) Where m,

=proj|r :I,—S, and X'={xeX|w=Zg(x)-x<w} and 4 is the diagonal of
X'xX"
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Lemma 3. N, is closed in S, and null. A price system p, is in N, if there is
(P> x,y)em, (p,) such that Du(x)=Du(y).

Proof. A necessary and sufficient condition for p, to be a critical value of
, is that there is (p,,x,y)el', such that G, (p,, -, ") has less than full rank at
(x, y). A calculation similar to the one above yields that this happens iff Du(x)
=Du(y).

Let C be a compact subset of S,. As in the proof of Lemma 1 it suffices to
show that N; nC is a closed null set. Let X ={xeX|g(x)eC, w=g(x) x
<w}. We know that X is compact and claim that I') N [C' x (X x X\d¢)]
is compact. 4. denotes the diagonal of X x X.

To proof this assertion, consider a sequence (p,, X,. ¥, ), -1.2. . of points in
I'n[Cx(X¢cxXc\4c)] converging to (py. X, Yo)€C X X x X. We have to
show that x, # y,.

Assume the contrary. Without restriction we can assume that the sequence
(xp = ¥a)/|| Xa = ¥u|| Of elements of the (/—1)-sphere converges to a vector :.
The directional derivative of g at x, in the direction z must vanish because
g(x,)—g(y,)=0 for all n. This contradicts the assumption that the Hessi.n of
U | ker puisy At Xo is negative definite.

According to Sard’s theorem the set of critical values of 7, |/, tcuixex vouren
is a closed null set. Q.E.D.

Next we examine the case of three commodity bundles which may belong
to the same demand set ¢ <(p, w).

However, we shall show that this case can occur for a small set of prices
only. To exclude the disturbing phenomena we dealt with before we
concentrate upon prices in S, =S,\N,.

Let E={(x.y,z)e X x X x X |x=yor x=zor y=z}.

Lemma 4. The mapping
G,:S, x[(X; x X x X \E]>R""'"xRxR ' xRxR"'xRxR,

defined by

G, (p.x, 3, 2)=(g(x) = pulx)—uly) £(y)—p,u(y)
—u(z), §(z)~p, p(x—) ) p(y—2)),

has zero as a regular value.

Proof. The proof is similar to that of Lemma 2. One represents
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DG, (p.x.y.z) by a matrix 2nd finds that this matrix has rank 3/+1 provided

-B
2P e =yl

—7

(F-2)—(y—2)é#

But this inequality holds by assumption #5. Q.E.D.
Corollary. T'y=Gj; *(0) is a C' manifold of dimension | —2.

Lemma 5. There is a null set N, of price systems closed in S, such that for
any pe S,\N, and any we[w, W] the demand set ¢ (p,w) does not contain more
than two elements.

Proof. Let my=proj|, :[,—S,. Because dimI',=/-2 all points in I', are
critical points of 7n,. Define N,=7m,(I, (S, xX'xX'xX’)). By Sard’s
theorem and a reasoning similar to that in Lemma 3 we get that N, is a
null set closed in S,. Q.E.D.

Pioof of Theorem 1

Let N.:=NoUN, UN, and p,e S\N .. Hence p, is a regular value of =,.
Therefore, and by the compactness of [w,w] there is a finite number of C!
functions (id,x;(-),y;(-)), defined in a neighborhood V of p, and taking
values in I', having the following property: For any p in this neighborhood
V. of p, the correspondence ¢(p,-) is single-valued at any
welwi(p)w(p)[, where w;(p)=px;(p)=py:(p) and w;.,(p)=px;.;(p)
=py;.(p). Therefore we have finitely many, say k, smooth functions w; from
V into [w,w]. For any peV and any i,je{l,....k}, i¥j, we have w(p)
:|=wj( p). Denote by ¢'(-,-) the inverse of the mapping x—(g(x),g(x)x)
restricted to a suitable neighborhood of either x;(p,) or y;(p,). Define the
constant functions w, and w,,, by wo(p)=w and w,,,(p)=W, respectively.
Now, for peV and for any 1€{0,..., k} and any weJw;(p).w;., (p)[ we have
¢'(p,w)=¢(p,w) and therefore

wi+1(p) wi+1{p)

S (P: ps “:)h ‘w)dW: 5 (pi(p, w )h (\\-’ )d\'\'.

w‘,(p) w,.(p)
For the mean demand we have

k+1aeii g (p)

P(Zp)=3 | o(pwhiw)dw,

i=0 wip
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A version of Leibniz’s rule shows that this integral is C' at p, [Dieudonné
(1960, p. 173)]. The derivative at p, of such an integral is given by the linear
mapping from R! in R' defined by

wi+1(po) .

ZH[ § D¢ (po.w)h(w)dw
wipg) .

+ @' (Po. Wi+ (Po))h(wi+ 1 (po))Dp“"i-f 1(Po)

—¢ (Pos Wir (o) (wi(po DD, w;(po )] z.

Therefore the derivative of @(=<, ) is uniquely determined at p, and can be
computed as stated above. Q.E.D.

Remark. The proof shows that the derivative of mean demand (X, ")
consists of two parts. The first one describes the local substitution, the
second one the “jumping between commodity bundles’. The jumping effect is
measured by a sum of terms of the following kind:

(X;(po) — ¥ (Po (Wi (po))D Wi (o).

4. Vanishing Gaussian curvature: The cusp

In this section we want to analyze the most important and at the same
time the simplest type of a situation where a commodity bundle X with
vanishing Gaussian curvature is demanded at the price system p=g(xX) and
the wealth w=px. Since by assumption #3 the mapping g has full rank at x
there is exactly one direction at X in which the indifference surface u™"' (u(x))
has vanishing principal curvature. That is to say that the corank of ul, . at
X is one.

Here and in the following we will not distinguish germs of maps or sets
from their representatives, unless we encounter possible confusion. In the
whole section we are interested only in germs. The only exception is at the
end where we shall integrate functions.

In Thom’s list classifying elementary catastrophes there are several
catastrophes with corank one. The simplest one, the fold, belongs to a
potential function such as y)>. As X is demanded at price p and wealth
we know that u], ,;, has a local maximum at X. Hence the situation must be
somewhat more complicated than a fold.

So we are led to study the next candidate of Thom’s list, the cusp. In case
of a cusp the utility decreases in the direction of vanishing principal
curvature as y— —y* decreases near zero. Useful illustrations of the cusp
catastrophe can be found in Brécker (1975, pp. 148-150). In the following we
shall study the question of how the cusp phenomenon affects the
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differentiability of mean demand. Since a budget hyperplane is (/—1)-
dimensional, ul, . can be conceived of as (yi,...y,_j)>—0Ot+y3+- -
+yv#_,) where the first coordinate represents the direction of vanishing
principal curvature. According to Brocker (1975, 14.8 and 14.i0) any
corresponding [-parametric versal unfolding of ulm._ is the sum of a
two-parametric  universal  unfolding  (¥y.... - 20y, U2 ) — (] + 0233
+ov,y,+yi+---+yt,) and an (/—2)-parametric constant unfolding
(Vperea Voo Useee ) — (0 432+ - +)7-,).  An  [-parametric  versal
unfolding hence is given by

(Viaeeo ¥io1s Vs laseeny U()"f‘*— O +oayi+o )y Hys+ v )

We shall assume that the unfolding U of u|ﬁ_w is equivalent to f [see
definition 14.2 in Brocker (1975, p. 121)]. We shall show that this
assumption together with the rank condition #3 on g ensures that the
phenomenon of vanishing Gaussian curvature does not destroy
differentiability of mean demand. Note that it is not necessary in this context
to vary preferences. It suffices to aggregate with respect to wealth keeping
the preference relation fixed.

Theorem 2. Let <€ and assume .#. Suppose @ (p,Ww)={X} and k(X)=0,
Furthermore assume that the unfolding U of u|; , is equivalent to f which is
defined by f(¥iv.-o Y- 1sU1s02see0 )= — (VT +L¥E+0, 3 + 334+ 432 ))
Then there is an ¢>0 such that

wte

| o< whg(w)dw is C' at p.

w—E

The assumptior: that ¢ is single-valued at (p,w) is made to exclude
disturbing phenomena that might occur in addition to k(x)=0. For a similar
reason we reed the ¢ in the conclusion of the theorem. Again, dropping the
continuous density h will not influence the arguments.

Before we start proving the theorem we shall discuss the idea behind it.
For this we introduce some of the notions of catastrophe theory which will
play an important role in the proof.

Let us assume /=2 for a moment. Moreover think of the parameters ¢,,v,
in the two-parametric vniversal unfolding (y,, v, v, — (v} + 1,02 +v,y,) as
being wealth and price, respectively.

Then the singular locus of f is defined by X, = {(y,,v;,0,)eR* xR?|y, is a
critical point of f(-,v,,v,)}. It is a smooth I-dimensional manifold. The
catastrophe map projects X, to the (v, v,)-space.

The set of parameters v,,v, for which f(-,v,,v,) has at least one
degenerate critical point is the catastrophe set, in our case the cusp. The
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Maxwell set {{vy,v;)|r,=0, v, <0} is the set of parameters where there are
two equal minima of the potential function f(-,v,,v,). The Maxwell
convention asserts that, when the potential function f(-,v,,r,) has more than
one local minimum, then the chosen state is the one of absolute minimum
potential. Therefore the Maxwell set and the Maxwell convention play an
important role, since they describe the situations at which a jump in demand
occurs.

Outside v, =0 we are off the Maxwell set. Hence there exists, for each
(ty,05), v,+0. a unique absolute minimum, y,(ry,v,), of the potential
function f(-,v,,v,). This minimum represents the demand at price r, and
wealth v,. We want to show that

Q "“t‘. te
vy | yplepey)dey + ) vi(enep)dey = | oy (egae,)dey,
- 0

—&

i.e., the mean demand. is C' at v, =0.

We have to show that each of the two integrals on the right-hand side is C'
at v,=0. The difficulty is that the derivatives of the integrands, though
existing everywhere except for the point (0,0), do not stay bounded when the
arguments approach (0,0). So one has to show that the arguments ¢,,t, tend
to zero ‘faster’ than the derivatives of the integrands tend to infinity. For this
one shows that the derivative of ¢,—|°,y, (¢v,,1,)dp, is the uniform limit of
the derivatives of ry—{~7y, (v,,v,)dr, for i tending to zero.

In the following proof of Theorem 2 we shall show that the identification
of the parameters r,,v, and the wealth-price situations is qualitatively
correct near the critical point, and we shall outline the computations yielding
the differentiability of mean demand.

Proof of Theorem 2

Let f be the unfolding defined in the theorem which is by assumption
equivalent to U. Once X=(x,,...,x,_,) is associated with x=(x,,....x;) the
equivalence of f and U establishes the following commutative diagram:

(R x S xR, (%, p,w))—+—>(R'""! x R", (0,0))

proj pow proj;

(SXR, (5,W) —X= (R',0)
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Here h and I’ are germs of diffeomorphisms. For any (X,p,w)eR' "' xSxR
near (%, , W) we have

h(x, p,w)=(hy (X, p. W), ... By (X, p, W), (%, p, W), ..o hyy— i (X, p, W)
=(h (X, pw),.... hy_ (X, p,w), Ky (p,w),.... hi(p,w)).

We notice that the consumption set X is C* diffeomorphic to its image in the
singular locus X, of U by the map x4 (X, g(x), g(x)x). The inverse of this map
is given by (%,p,wh= (%, (w—px)- (1=} py)""). The sets Z; and X,
=¥ adio 1o Uy 8)ERTI X R l by +20,1, +4y1=0,  y,=-=y_,=0}
are smooth /-dimensional manifolds.

If we denote their germs at (X, p,w) resp. (0,0,0) by the same symbols we
have X,.=h"'(Z;). Computation of the kernel of the derivative of
(¥, 04,02 =4y3 + 20,5, + 1, at (0.0,0) shows that the tangent space Tjp o, %,
cR'"'xR' is the [-dimensional subspace with coordinates y,,v,,... 0,
Denote by M, the closure of the Maxwell set {(vy,..., v)|v; =0,v, <0} in the
parameter space R, ie., M, ={(v;,....t;)|v,=0,0,<0}. Analogously, My
denotes the closure of the Maxwell set of U. If we project T, (, 2, to the
parameter space R' we just obtain the subspace spanned by the set M,.
Indeed,

pTOjZ(T;OOO,Xf)= :(vl,.. . U’)I L’l =0} = TOMf'

By the equivalence of the unfoldings U and f we get (again denoting germs
by the same symbols as their representatives)

proj, ,(Zy)=h""(proj,(Z,)),
My=h"""(M,),

and

proj,.. (T 5.6 20)=T; 5, My.

Consider the following diagram:

9

/ i Proj .\ \

(X, %) (Egs (5, ) 2225 (S x R, (7, 19)) ——2> (S, ),

where ; is defined by x> (%, g(x), g(x)x).
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Using proj, , (Tiz i, 2v) = Ts.0) My we get

dg(x)

/d(x) 0§ b, ' roj, N
TX o T 5y =Ty e s Ty My > TS,

[,
(X, p.W) (3.W)

Since ¢ has full rank everywhere, the map dg(X): T, X - T, S is surjective.
Thus proj,: T;; 4, My— T;S is surjective.

Since dim T;; ;,My=dim T;S=I—1 we conclude that pI‘O_]m" M-S
defines a local dlffeomorphlsm at (p, w).

Thus w--prOJ“.lMvo(pro_ml\m) L:(S,p)—=(R,W) is a smooth germ. The
graph of any representative of w represents the germ of M, at (p.Ww). Now
we choose a representative of w, also denoted w. Near (p,w) the demand
correspondence is single-valued except for the pomts (p.w(p)). For any p
near p we can write the integral [J()*% ¢ (p,w)dw of the correspondence
@(p. *) as a sum of two integrals of functions, i.e.,

\’v(p!#-s M:'(.p) ﬁr(p!+s
| epow)dw= | o'(pw)dw+ | @“(p.w)dw.

wp e wip)—¢ Wi(p)

The graphs of the functions ¢" and ¢' can be looked at as demand curves
corresponding to curves in the upper and lower sheet of the singular locus 2.
[For a picture see, for example, Brocker (1975, pp. 148, 15¢).]

It remains to show that the two right-hand integrals are C' at p. Since the
proofs are analogous we shall prove this only for the first integral. That
means we consider only parameters in the half space {(v,,...,t;|r, £0} and
the corresponding parameters in the (p,w)-space. There are uniquely
determined sheets of 2, and X, respectively, corresponding to this half space
of parameters. Expressed in terms of the unfolding f we consider only points
of X, belonging to the following set:

{(yl’vhvz)ezflvl <0.y,20;.

Define for any p'e S the set E, = {(p,w)e S xR|p=p'}. Since proj,, My
— S is a local diffeomorphism at (j, w) we know that E; & M, at (p,w). By
the equivalence of the unfoldings U and f this implies h'(E;) A M, at 0.
Then for any p’ near j the set h'(E,) intersects M, transversally. Therefore
the projection from R' onto its v,-axis, restricted to h'(E,) and denoted 7,
defines a C* chart of h'(E,) near h'(E, ) n M. Consequently, the map n,oh'
from E, into the v,-axis of R' defines a C* chart near E,, n My. Thus ¢ is a
local coordinate of E, based at E, n My = {(p’,W(p'))}.

Now, for any p near p the local inverse of m,0h’ associates with any v,
near zero a point b’ 'om, '(v,)=(p,w,(v,))€E, This defines a local C~
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diffeomorphism w,:R—R near zero. Therefore, for any (p,w) with w near
Ww(p) we have (p,w)=(p,w,(v,)) for some v, near zero. Clearly, w,(v,) tends
to Ww(p) for r, tending to zero.

Now we fix a sufficiently small compact neighborhood V of j. For any
neJ0,z[, we define the mapping

w(p)—n
®,:S—R. :p— | o'(p,w)dw.

w(p)—¢

The mapping @, is C' at p since ¢',W(-)—¢ and W(-)—n are. Its derivative
atpis

w(p)—n
Do, (f)= | D,¢'(p.w)dw +Dw(p)(@'F(W(P)—n)—@'pw(p)—¢).

(P -

Clearly, for n tending to zero, &, converges pointwise to @, which is defined
by

w(p)
d:S-R, :p— | ¢'(p.w)dw.

w(pl—¢

Therefore, if D@, converges uniformly in the compact neighborhood V of 5
for 5 tending to zero, we get by Lang (1969, theorem 12, p. 117):

(1) @, converges to ¢ uniformly on V for 5 tending to zero.
(2) @ is C' at any pe V.
(3) Do(p)=lim,_,D®,(p) for any pe V.

Hence it remains to show that D@, converges uniformly on V. For the
second term of the sum this is an immediate consequence of the continuity of
¢'. Thus we have to show that

wi-)—n

§ Do (-, w)ydw

w()-¢

converges uniformly on V for 5 tending to zero.
Equivalently, we show that

w(-)
§ D,e'(-,w)dw
-

(-

tends to zero uniformly on V,
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For this it is sufficient to prove the uniform convergence to zero on V of
V()
I 11Dg! (o).
W)~y

Now define the map y:R'—X, by
Yi=hojog'oh L

Since the mappings h, j, k"', n, ! define local diffeomorphisms it suffices to
prove that

w,, Loiep))

I |IDthej)@ (p,w, (&) o D' (p.w,(r,))

-1 d
wy (W(p)— 1)

oD~ Y(r, ' (vy)) o Dr, ey || dry

converges to zero uniformly on V. Remembering that h' 'om, '(v,)
=(p,w,(t,)) and Ww(p)=w,(0), and abbreviating w, ' (w,(0)—#) by p(p.y) we
can write this last integral as

1]
| HD!//(h'(P,wp(ul)))oDn;1(ul)“dlrl_

pip.n)

1

Since n, ' is a local diffeomorphism it suffices to prove that

0
[ {1Dy (pw,(w))||de,

pip,m

converges to zero uniformly on V.
As we know that ¢(h'(p,w,(v;)))eZ, and that y,=---=),=0 for all
(."Il’ .. .,_v'_ 1 Ul" .oy U,)G Zf’ we get

W' (pw,(vy))) =y (R (pw,(r,))). 0....,0, By (p.w,(ty ).
hy(p, w,(ry))).

It suffices to show that

0 0
5 ”Dyl(h'(l’;“’,,(l’l)))d'-’x and j‘ HD'Z'(PsW,,(l"l))“dul

p(p, M) plp.m
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converge to zero uniformly on ¥, For the second integral this follows directly
from the fact that k' is a iocal diffeomorphism.
By definition of X, we have for i=3,...,],

ey g,
E_L:_ (' (p.w,(r,)))=0.

For i=1,2, we have

oy
2L (04,0, 13 (9, W, (0 Hi Py W, (01))) |

ov;

Byl ]
2 (hip,wy(c )| =
Moreover we get

¥y
5 (v,0,05,...,0)

cry

R
cy,
=— (v4,0,0;,...,07)
0ty

<const || vy ¥,

<const -|| vy ||

Thus, for any pe V. we have

0 0
§ || DY (p,w,(y))||dv, Sconst-} | vy3dy,
plp.m pip.m

=const - p*(p,n).

Since ¥ is compact and since (p(-,1)),-, is a decreasing sequence of real-
valued functions defined on V converging to zero, the sequence converges
to zero uniformly on V. Therefore

W
-

(p)
jp H D,¢'(p.w) H dw <const - max p*(p,n),
wipl—n peV

which converges to zero for 5 tending to zero. Hence D®,(p) converges to
D®(p) unifo.mly on V. Q.ED.
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