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For a pair of random varjables, (X, ¥) on the space £2° x 27 and a
positive constant, 2, it is an important problem of information theory to
look for subsets s of 227 and <& of 27 such that the conditional probability
of Y being in % supposed X is in 9 is larger than 2. In many typical
situations in order to satisfy this condition, <& must be chosen much larger
than 5, We shall deal with the most frequently investigated case when
X =(X1, 00, Xy}, ¥Y=(1, +-+, Ya) and (X3, Y;) are independent, identi-
cally distributed pairs of random variables with a finite range. Suppose
that the distribution of (X, ¥) is positive for all pairs of values (x, y), 'We
show that if & and @ satisfy the above condition with a constant 2 and
the probability of <7 goes to 0, then the probability of &7 goes even faster
to 0. Generalizations and some exact estimates of the exponents of prob-
abilities are glven, Our methods reveal an interesting connection with a
so-called hypercontraction phenomenon in theoretical physics,

1, Introduction. For a pair of random variables (X, Y) on the space 227 x &/
and positive constant 3, it is an important problem of information theory to look
for pairs of sets &7 ¢ 427, &7 ¢ %/ such that ‘

(1.1) PriYe& | Xe ]2,

In many typical situations in order to satisfy (1.1), Pr[Y ¢ &#] must be much
larger than Pr [Xe $']. We shall deal with the most frequently investigated
case where . |

=GR e X, Y= x...xZ,,
X=Xy ooy XYy o Y= (Yo 1),
and (X,, ¥,) are independent, identically distributed pairs of random variables
with finite ranges 227 x 2. We use the notations
S = R e R, X" = (X, - X))
Thus (1.1) turns into
(1.2) PriY*"esZ|X*e V] = 1.
Suppose for a moment that the distribution of (X}, ¥}) is fixed in such a way that
for all x e 2%, ye %/, we have
PriX,=x,Y,=y]> 0.
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Let us fix 4 independently of n. We shall show that if 5% and &% satisfy (1.2)
and Pr[Y" e &) — O then Pr [X* e &¥'[/Pr [Y" € &2] — 0 uniformly in n. An-
other formulation of the same result is that for every 2, > 0 and 2, >> 0 there is
a A > 0 (independent of a) such that Pr{Y*ec&Z|XA"e %] = 4, Pr(X*e
K| Y* e F = A, implies Pr[X*e ¥, Y"e &F1 = A,. This says that in the
product spaces 27", Z/" there are no pairs of small sets going into each other
with a large (i.e., constant) probability.

Actually, our results are sharper than this, Under the above conditions, we
show that there is an r > I such that with some function ¢(2) > 0, (1.2) implies

(1.3) Pr[Y*e ] 2 o) Pr{X* e 7T

for all n. This result can be interpreted as follows, If we know by chance that
the random sequence X* is in the set % so that we have some “information”
of the amount —log Pr {X* ¢ %] about X™, our information, in any reasonable
sense, about Y*, will be only —rlogPr [X* ¢ 7] i.e., a constant times less.

In [17 we have shown that if & and £Z satisfy (1.2), then n~tlogPr[¥ne
GXre ] —0andntlog Pr[X» ¢ ¥ |V ¢ ZF] — Oimplies n~! log Pr[X" e
S, Y* e &8} — 0. That is, we cannot have two exponentially small sets ¥,
&% going into each other with greater than exponentially small probability.
Witsenhausen showed that if both conditional probabilities are larger than some
constant depending on the distribution of (X, Y;) then Pr [X» ¢ &7, Y* e &F] is
also larger than some constant i, > 0.

In [2] we have investigated pairs of sets %, &% satisfying (1.2) and having
probabilities which are exponentially small in 7. We have determined all pos-
sible pairs of exponents. From the results proved there we later deduced together
with J. Korner and 1. Csiszdr that if in the condition (1.2) 2 goesto | as n— oo
then with an appropriate » we have (1.3) (we have also determined the best 7).
In this paper we remove the condition 1 — 1. To formulate the result more
generally, we first give a condition weaker than the positivity of Pr[X, = x,
Y, = y}. The distribution of (X, Y) is called decomposable if there exist 7, &
such that 0 < Pr[Xe ), Pr(YegZ} < 1, Pr[Xe if and only if Ye
7] = 1. Note that if Pr[X = x, ¥ = y] is positive for all pairs then the distri-
bution of (X, Y} is indecomposable.

THEOREM 1. If the distribution of (X,, Y)) is indecomposable then there exist
p >0, r <1 such that for all n, 87, &%

Pr(YeZ| =Pr(Y"eZ|Xne ¥ . PriXre 7.

REMARK. A more symmetrical formulation is: there are ¢, r with 0 < ¢, 7 <
1, 6 4+ = > 1 such that

PriXre s, YieZ| = Pr[Xr e PrYre Y.

Note that if ¢ 4 7 == 1 then this inequality follows from Hdlder’s inequality
without any conditions on the distribution of (X;, ¥)).
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Hawever, our later more sharp results as welf as the interpretation concern
the nonsymmetrical form.

In this paper we determine the best constant r as well as the best » which is
appropriate for any input distribution Pr[X = x] at a fixed transition probability
matrix | -

| Pr[Y=p[X=x] (xesye¥).
In proving Theorem [ we shall actually prove more. Let us fix an L-norm for
the functions defined on 27*. Then there is an L -norm with ¢/p < r for the
functions defined on & such that the Markov operator 7* defined by

(T*9)(x) = E[g(Y*}| X" = ]

takes al! functions g with ||g||, < 1 to functions T*g satisfying ||T"¢||, < 1.

As Professor Dobrushir noted, this so-called hypercontracting property of
the Markov operator as well as the problem of determining the best ¢ was inde-
pendently considered in theoretical physics (for Gaussian distributions, see [6]).

At the end we illustrate the results on the case of binary random variables.

We are indebted to I. Csiszar and J. Kérner for their contribntions to Theo-
rem 4 and Theorem 9 and for several useful discussions about the problem. We

also are thankful to J, Komlés and Major for their valuable advice.

2. Statement of the main results.

A. Hypercontraction of the Markov operator. In order to keep the notation
simple we denote the elements of 227 (resp, &) and also the elements of 27"
(resp. Z’") by x (resp, y). It will be always clear from the context with which
set we ate dealing. Let us also use the abbreviations -

Wi |x) = Pr[Y* e Z| X" = x]
PH) = PriXre ), QN&F) =Pr[Yred]
Pl=P,  Pix) =P |
The transition probability matrix {w*(y|x)} is denoted by }#*. We can always
assume without loss of generality that '
P(x) Q(x) >0  forall xe2”, ye?. |
The simultaneous distribution of the random variables X, ¥ will be denoted by

(W, P).
We denote by F{%) the set of all real-valued functions defined on. the set 2

and define the Markoy operator T': SF{¥) — F (27} by

(2.1) (T0)(%) = Dyow W[ )0(y) = Elg(Y)} X = x].

The operator T% ; F (&} — (2"} is then the tensor power of T. Notice that

if f,,(x) = w*(&#|x) and 1,,(x) is the indicator function of ZZthen f,, = T"‘I s
For any p = | we denote by s,(W, P} the minimum of those r which satisfy

for every g e F(%) the inequality

(2.2) {E[(TX)PP? & {Eg(XyT)™ -
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If we consider #(27) and % (2") together with the underlying measures P and
Q, then (2,2) can be written as
(2.3) 173l = llgll

where ||+||, is the L -norm, integration taken with respect to the underlying
measures. (It will turn out that rp is never less than 1.)

5,(n) = s,(W=, Pr) shows many similarities with the maximal correlation
p(We, P*), 'The maximal correlation o(}, P) of X and Y is defined as the maxi-

mum of
Ef(X)g(Y)

for those functions f defined on 27 ¢ defined on & satisfying
EfiX) = Eg(Y) =0, Efi(x) = Eg"(Y) = 1.

pis O iff Xand Y are independent and 1 iff the distribution of (X, ¥) is decom-
posable. (See, for example, [6].) If (X, Y,) (i = 1, ..., n) are independent but
not necessarily equidistributed pairs with distributions (W¥,, P)) then (see [2], [6])

p(W“, P“)= max; P(Wi’ P{) .
The following two theorems insure
S =5()<1l for p>1
and together with Lemma 1 below give Theorem I as an immediate consequence.

THEOREM 2. Let (X Y)) (P = 1, - - -, n) be independent pairs of random variables
—not necessarily equidistributed—with distributions (W,, P,) and corresponding
Markov operators T,

We have
S,(W*, P*) = max, s,(W,, P,).

THEOREM 3.

(a) s, = p~* with equality if and only if X and Y are independent. s, =1, s, is
monotonically decreasing in p.

(b} s, = p* + p~(1 — p*) where p is the maximal correlation,

(c) If (W, P)is indecomposable then s, is strictly decreasing in p.

LemMma 1. Foralln, & C 27% &8 C &/, p = 1 we have (denoting s, by r)
(2.4) QY Z) Z Pr[Yre | Xre 7] . Po( o7y,
Proor. We have by Holder's inequality
Pr[d"e 7, Y e = E1_(X*)f (X"
S PSPV B (KPP < P(SY Y (B
Rearrangement gives (2.4).

B, A-kernels, connection between the L,-norm and the I-divergence. In order to
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state our next results we need the following definitions. The “2-kernel” ¥ (&%)
of a set &% ¢ Z/* is defined by

(2.5) W(F) =[x e 27 | wHB|%) 2 4}

(This notation is different from the one used in [1]: the set denoted here by W,(57)
was denoted there by ¥,_,(£%).) _

For a finite set 2" and probability distributions R, $ on %2 we define the rela-
tive entropy of R (it is the negative of the I-divergence of Kullback [4]) with
respect to S by ‘

(2.6) Hy(R) = L. R(z) log %% .

It is known that Hy(R) < 0 and equality holds if and only if R = 5.
For a distribution R over 527 we define the distribution T*R over & by

(2.7) (T*RYNP) = Tia WP | X)R(x)
Note that @ = T*P. The quantity

K
(2.8) s = (W, P) = SUPpipwp “{%%T}'ij)ﬂ

will play an important role in the sequel. As was shown in [1], the behaviour
of the function .
- log Q™(<F)

(2-9) .Dﬂ(l, 5, W, P) = maxjmﬂ(a](,) log P"(‘FR(‘@))

is of particular interest in multiuser communication theory. We use the abbre-

viation
D.(2, 8) = D,(4, g, W, P).

The function js monotone in A, n and 8. Therefore the following limits exist:
2.10)  D(2,0) = lim,o Dy(2, 8), D) =limy D(2,8) -

From [1] we derived together with I. Csiszar and J, Korner

"THEOREM 4.

(2) lim, , D) = §

(b) If (W, P) is indecomposable then s < 1.
It is easy to show that s is 0 iff X and Y are independent and 5= 1 if (W, P) is
decomposable. (b) of Theorem 4 is also of independent interest. It says that if
(W, P) is indecomposable then the Kullback J-divergence-Hy(T*R) o.f the output
distribution T*R from Q is by a constant multiple less than the [-divergence of

the input distribution R from P. _
Our main task is to investigate the behaviour of D(4, 8), in the case wh.en A
' in addition to the results stated in o0

does not converge to 1, For this we necd in 2 .
Far o further theorem which relates the quantities s, = s,(W, Pyand 5 = 5( W, B)
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Since by Theorem 2, s5,(n) = 5,(1), one obtains the best estimate in (2.4) by
replacing s,(n) by s, where
(2.11) s = s(W, P) = inf,,, 5,(W, P).
THEOREM 3.
(a) § = s and s is the minimum of those r satisfying
(2.12) ETL, 0(0)"¥® < [Eg(Y)r

Sfor every g6 F(#), ¢ = 0.
(b) There is a constant c(W) depending only on W such that

$,(W, P) — s(W, P) < (W) - p~.
Notice that we have as a consequence of Theorems 2.5 and Definition (2,11) that
(W, Pr) = s(W, P) ,
This can also be derived from resuits of [1].
Now we are ready to state our main result about D(4, §), which goes beyond

Theorem 4. New in this result is not only the fact that D(2) equals 5 but also
that it is less than one,

THEOREM 6.

(&) DA =sforall Awith0 < 2 < 1.
(b) Ford < 2

4
520 (122

Proor. Since evidently
Pr[Y*e | X" e Ty 2 2,
Lemma 1 yields

log Q*(7) s{n) - plog A

1

@.13) g (¥ = " T Tog i)
SRR p—L L

log O"(&#) — log 2
This and Theorem 2 imply

2.14 DA &) < s, + PIOBA
(2.14) 055+ hE
for all n and therefore also

2.15 DA, &) <5 4 POBA
(2.15) (4,8) = p+10g5_10g2

The right-hand side tends to s, as 8 goes to 0. Therefore
(2.16) DAy £ s=infs,, 0< A<l
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Since 5 = s (by Theorem 5) and since D{2) is decreasing in 2, (2) follows from
(2.16) and Theorem 4, Using d < 2*and (b) of Theorem 5 we obtain from (2.15)

2.17 D2, 8) <5+ 0 ( p log 4
G40 (h0) =5+ (‘” +Plog6)

Choosing p = (log Aflog 5)~* one gets (b). {0
Notice that (2.13) is equivalent to
(2.18) PHU(B)) < 1P QN BN
where r = s5,(n). |
By Theorems 2, 3 if (W, P) is indecomposable, then s,(n) = 5, < 1,
and hence we have the
CoroLLARY 1, If (W, P)is indecomposal;le, then there is a constant r < 1, and
for all 2 (0 < 2 < 1) ae(2) > 0 such that for all n and &7,
(2.19) P S ANONB)
C. Relation to maximal correlation. We mentioned already earlier that Theo-

rem 2 expresses a property of s, and hence by Theorem 5 also of s and 5, which
is very familiar for the maximal correlation, The following result establishes a

connection between s = s and
TrrorEM 7. The following properties of (X, Y) are equivalent and fmply s = 0%
(i) The inequality : ' :
(2.20) H(T*R)[Hp(R) £ 5
is alWays strict unless R = P,
(i) The inequality
(2.21) ‘ E ]:[l.l' g(y)wwl-l') é {Eg(y)l}l/l
is ahways strict unless g is a constant.

D. Bounds on Dy(4, 8, W) = max, Dy, 6, W,P). Let us now tura to the
problem of finding an estimate on D,(3 8, W, P) which is independent of the
distribution P. This problem has arisen in [1]. We define

(2.22) D(3, 8) = lim,._. Xy Dy(2; 3 W, P)

and '

(2.23) p(W) = max, p(W, P).
THEOREM 8. -

max, (W, P) == p(W) -

(For the definition of s(W¥, F) see (2.11).)
Notice that ¢(#) in Theorem 4 is independent o

a consequence of Theorem 6 and Theorem 8

f P. We therefore abtain as
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COROLLARY 2.
(a) D(2) = lim,_, D(2, 8) = p(W).
(b) For d < 2* we have

- 1
D(A, 8) < (W) + O (-}-‘gg—g-) -

REMARK. A simple necessary and sufficient condition for g(#) < 1 can be
given: for every pair x,, x, € £2° there exists a y ¢ 3/ such that

w(y|x) - w(y|x) > 0.
E. [ustration of the behaviour of (W, P) in the binary case. Suppose that
Z&=%=1{0,1} and
We = (3% :5) 0<a,8<4).
We denote by P,, the stationary input probability distribution:
Q=T ,=P,.

Evidently,
Poal0y = Pna(‘l) =%.
THEOREM 9.
(a) W oaes Poad = P Weas Pog) = P (Waa) = (1 — 2a),

(b) If a = B then
S(Weaps Pap) > PP (Waps Pup) -
3, Norm improvement of the Markoy operator, proof of Theorems 2 and 3.

Proor oF THEOREM 2. It is enough to prove the statement for n = 2, The
general case is thent proved by induction., '

(1) s,(W2 Py = maX,, S Wy Py) .
Let us define the operator
I: F(&) - F@) by W)y y) =9(n).

Then we have for any g e F(Z)), || oll, = |igll,» [T, 01}, = ||T10}|,» Hence
5,(W? P*) = 5,(W;, P,). The same holds for s,(W,, £,).

(2) s,(W?, P*) < max,.,,5,(W, P). -
For a function % in some S (2] x &) and any z, ¢ 2] we define I, & F(55) by

hx,(zs) = h(z, 7).
Let us write, for a moment,

F o= MaXyey o S,(Wo, Py} .
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Then we have
”T’Q’“r = {Zzlxz P;(x,)Pn(x,)[(Tﬂg)(xh xa)]p}lfp
= (D, PO)E(T0),, ()]}
= {E|[(T*0)x,I5}7 .

Now
(ng)wl = Zvl w(yllxl)Tﬂgvl '

By Minkowski’s inequality
II(TRQ)G;IHP -5- . Eﬂ‘; w(yl I xl)”TﬁgﬂlIIP ¢
If we define k(y,) = ||7a9, |l,» then the right-hand side is equal to (T,7)(x;).
Thus we have by the definition of r:
1711, < (EUTAYX)PY? < (BR(Y) 1 = (Bl Tagr 57 = 19l »
which completes the proof,

Proor or THEOREM 3. We shall use a simple fact, well known from elementary
calculus,

Fact 1. Let O be a distribution on 2/, g ¢ S7(#), ¢ = 0. Then the expression
llgtl, = 1125 QeI
is increasing in ¢ (g > 0) and"
lim,.g]l, = IT, 9(y)**  where °=1.

If 3 y,, y, with g(y)) = 9(p,) and Q(ys), Q(py) > O, then ll9ll, is stric.:tly. increasing.
Proof of (a). It is easy to see that (2.3) holds for all g e F(y) iff it holds for

all g = 0. Choosing now g¥™ instead of g, (2.2) can be written as

(3.1) B[, (| Xyl < Eg(Y) -

It follows from Fact 1 that the left-hand side of (3.1) is decreasing in p. But
then s, is also decreasing, which was to be proved. The other statements of (a)
are trivial,

(b) Since all our inequalities are homogene
us define 57, = F (&) by

ous, we can normalize them. Let

(3.2) FHY) =1gloe F@) 02 0 Eg() =11
Set ‘
(3.3) Fy o(0) = ELT@)X)F -

(2.2) is then equivalent to

(3.4) F,=<1 foral g e, .

Finally, we define g, by

(3.5) gfy) =1  forall ye#,
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and r, by
(3.6) rp = 0* 4 p7(1 — o).

We complete the proof of (b) and show that in a small neighbourhoed of g,, 7,
can be substituted by a value close to r,.

LEMmMA 2.

(@) 5,27,
(b) For every e > 0 there exists a neighbourhood U, (gy) of ¢, in 57> such that
forallpz 1, rzr, + cimplies F, (9) < 1 for all ge UJg,).

Proor. We consider F,,(g) as a function of the vector g and differentiate it
partially.
aF

300y ) = T IOYITTER(y | DTGNP
____.._m._F?.'L.._._ =r%1 « p—t A : Yrp=1J7 ) L/rp p=3
5700 940 (9) (1 = pg(yag (1> Bw(y | Xyw(p | X)[(Tg**)(X)]

+ 8y, 71 rp — Dy Ew(y,| X)[(Tg ) XY~ .

Here 8, is the Kronecker symbol. It is easy to see that these expressions con-
verge uniformly in p to their values at g, as g — ¢,, Now we have

oF

oy =ren.
_ﬂ?&L— = r%] — p=? v — 5,,.“,.19(}’0)(?'}7 - 1)
T Sy (89 = T = ) {0l Dm0 1) i b
Define now
(3.7) F = FY) = [he S(F)| ENY) = 0}

It is known (see [6]) that the quadratic form

o°F
. Ly, R} TE TR Y
Yor¥y ag(yo) ag(yl) ( U) (yﬂ) (yl)
is negative semidefinite in the space 570 iff
(3.8) ezl
p-1
and is negative definite iff strict inequality holds in (3.8). This fact, together

with the uniform convergence, proves Lemma 1 completely, because (3.8) is
equivalent to (a) of Lemma 2.

(¢) Buppose p < p'y € = (r, — r,»)/2. Then, with ¥ = ry+e& Fa g sl
for all ge U,(gy). Putr =s,. We claim that

(3.9 o) < F, (9) forall g=g,.
Let us suppose that g == g,.
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We denote : '
B = {yo e Z|g(ys) = max, g(»},
S ={xeZ|3ye B w(y|x) >0}.

Since g = g, we have 0 < P(£7) < 1. We have assumed that the distribution
of (X, Y) is indecomposable. Thus there is & pair (x, y) such that w(y|x) >0
and either x ¢ &, yg S or x ¢ 7, ye &&. The later possibility is ruled out by
the construction of 7. Therefore we have an x € &2 such that there are y, & &,
¥, ¢ 2 with w(y,|x) >0 (i = 0, 1). Hence by Fact1 '

(3.10) [Z, w(y | X)a() 1 > (5, W gy ™ T,

and this implies (3.9).
Now, the set &} — U,(g,) is compact and on it, (3.9) holds. By the conti-

nuity of F, .(g) we can choose an r’/ < r = 5, such that

(3.11) Fomg) s 1 for all g¢ Ufg) .
and we obtain :
(3.12) 5, £ max (1, ') < 8y

which was to be proved.

4. 2-kernels, proof of Theorem 4. We prove Theorem 4 by proving the fol-
lowing three statements:

(a,) D) zs forall 2<1,

(aj) lim,, D) < 3,

(b) If (W, P) is indecomposable then § < 1.
Even though they are provable independently (a,} follows from (2.16) and Theo-
rem 5 and (b) follows from Theorem 3 and Theorem 5. Thus we have to prove

only (2,). o |
In [1] we have pointed out that (in our notation) for every distribution R 3 P

over &~ there exists a sequence 3, of subsets of 2/n guch that for any 2 > 0,
lim, n~* log Q*(&5,) = H(T*R),
lim inf, n=tlog PH(U(&F,)) 2 Hp(R) .

Now fix 2 distribution R = P such that Ho(T*R) # 0. Denote by u(d) the legst
integer n such that 0°(&%,) S 5. Then we have

lim inf,.o Pua(4: 9) 2 HQ(T*R)fH,,(R) .
r than P(4) which completes the proof of (a,).
the I-divergences and the maximal cor-
We use the function

The left side is clearly not greate

5. Connections between the L -normt,
relation. Proofs of Theorems 5, 7 and 8.

(51) G,(g) — EHU g(y)w(lem .

A. Proof of Theorems 5 and 7. We denote by s* the miniml_xin of those r for
which G,{g) < 1 forall g & 7,1, that is the minimal r for which (2.12) holds.
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(3,) First we show that s = 5%, By Fact 1 we have G, < F, .. This proves
s* = 5. Let us fix now an r > s*. Put

={ge G lg) = 1}.
We shali show that &, = {g,]. If g, &, then clearly for all x

IIy gl(y)wwlm =1
by Fact 1. Hence g, > 0. Let us compute the first derivative of G.(g) in a

¢ > 0.

oG .
5.2 =l 15 X wiylXyr
(5.2) O r e (yo) T EwW(py | X) TI, 5:())

If g, .5, then this is equal to r~1g,(».)"'Q(y,). Now G,(g) has a2 maximum at
o in &1 Hence, by the theorem on Lagrange’s multipliers, g,*Q must be
proportional to Q. This is posmble only for g, = g,. Hence

= {1} -

The next step is to show that §* = p®. This follows from the fact that the

quadratic form of the second partial derivatives of G, at g, is negative semi-
definite in 7 ° iff r = p*
For a fixed r > s*, let us choose now ¢ = (r — p%)/2 and find a p such that

= te.
Then we have r = r, -+ ¢, and hence by Lemma 2,

F,.=1 forall ge Uf(y,).
On the other hand, on the compact set &1 — Uy(g,)

(53) lim, ., [T, w(y [ 9P = TI, g(y)e

holds uniformly in g, and thus lim,_., 7, (9) = G,(g) < 1 umformly in ge
4t = U(go). Choose a p' such that for all ge & * — Ulgy) F, .(0) = 1.
Then we have '
(5.4) rz min (s, 5,0 = 5,
which proves s = s*,

(a;) To complete the proof of Theorem 5 (a) we have to proves = 5. First we
show s = 5. Let us denote for a distribution R over .27

(5.5) VAR) = VR, W, P) = rH,(R) — H(T*R) .

With this notation, ¢ is the minimum of those r satisfying ¥’ (R) s 0 for all R.
1t is enough to show that

Lz {p,p')

(5.9) max, exp[r-V (R)] = max,, o5 G
holds for all » (0 < r < 1),
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For every distribution R on 27 let us define g, by

(3.7) gx(y) = (T*R)(»)/2(») .
We have
(5.8) G,(gz) = E oxp[rT log gz)(X)]
= 5. R(x) exp [r-‘crlog 0:)(x) — log i;%] -

The last expression is, by the convexity of exp ¢, larger than

exp [r-1 3", R()(T log gp)(x) — X2 R(¥) log j__fg_))} = exp[rVAR)] .

This proves (5.6) and hence s = 5.

The next step is to show that 5 2 p*. Inorder to do this one has to differentiate
V.(R) twice partially and establish that if it has a local maximum at R = P then
r = ¢* This is rather straightforward and we write down the derivatives of
V,(R) only for later purposes. We have

W (R) = (1 — T*RY () — rlog 221,
(5.9) S = (=0 (7 10g - )(x) rlog 5
6""V,. 1 re 64:0:1

(5.10) (R) = Iy wr 1% %) gy ~ Riwy

R (x,) OR(xy)
We refer to [6] for the proof of the fact that the quadratic form with coefficients
as in (5.10) is negative definite in the space of functions {f e F(2°)| 2. f(x)=0}
iff r > p*(W, R).
Now we show that
max , exp[s~tV,(R)] = maxw_,,.i‘G,(g) =1.
Suppose first that for every g # g G(9) < 1. Thens=s= g Indeed, for

each 7 > p'in some neighbourhood U of g, G.(g) = 1 holds. If G,(g) < I every-
where outside U and if § > r then for some 7/ with 7 < P < s, Gulg) 1 for all

g & &1, This contradicts the minimality of 5. Suppose now that there is a
g, € T4 gy % g with Gy(g) = {. We define the distribution R, by

(5.11) Ryx) = P(x) TL, )" -

Clearly 30, Ry(x) = 1. We shall show that g, = ¢z,
bers of the weighted sum in (5.8) are equal and hence

1 = G,(gz,) = explsV (R V(R)=0.

(R) =0 since g, = ¢, implies
f 5 = s and, by the way,

This implies that all mem-

s is then the minimum of those r satisfying V.
R, # P, Hp(R}} % 0. "This will complete the proof o
also of Theorem 7.

Let us denote

B=ye?|n(y) >, 7, =g Tt g(y) =0 forall y¢ 9B}
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We prove that for y, ¢ <&, (T*R)}(y,) = 0, By definition one has

(T*R)(y)) = Do PX)wW(po| X) IT, g p)e®ife
Suppose that w(y,| x,) = 0. Then

H-.' gl(y)wdvla:om = 0
holds since this expression has a factor

Giyayson.

Hence every term in the above sum is 0. The function G,(g) has a maximum
for g = g, under the condition g e & . By Lagrange’s multiplier theorem it
follows that there is a g such that for all y e &7,

oG
—_(g,) — uQ =0
holds. This can be written, because of (5.2), as follows: for all y ¢ &7,
(5.12) #9:(y)2(y) = sTHT*R,)y) - ‘

If y ¢ &7 then the left-hand side is 0 and as we just showed then also (T*R,)(y) = 0,
Thus (5.12) is true for all y. Let us sum up to determine u
# 2y QoY) = 57 Ly (T*RYy) »
hence y = 5!, Then from (5.12) we have g, = n, O
We do not prove (b) of Theorem 5 here, It is rather elcmentary: one has to

do the estimates in the proof of s* = s more carefully. Especially, one needs
an appropriate speed of convergence in Fact 1. '

B. Proof of Theorem 8. Cleatly, s*(W) < max, s(J¥, P). On the other hand,
putr = (W) and choose Py with r = p*(W, P,). Then—as it was shown in (5.10)
and the text thereafter—the function V,(R, W, P,) of R is concave when R runs
over all possible distributions. It has a local maximum at R = P,, which is also
a global maximum. Thus V, (R, W, P) £ 0 for all R, hence r = s(W, P,). [

6. Pairs of binary random variables. Proof of Theorem 9.

(a) Let us compute p'(W,,, P) for an arbitrary input distribution P. As was
shown in [6], it is the value of a certain determinant:

(6.1) (W ewr P) = POP(NA0)0(1) (1 — 2.
By Theorem 8 we are done if we show that
(1~ 200 = G gy Pag) = 5 (W)
i.e., p(W,q P) is maximal for P = P,.. In our case this is equivalent to
PO)P(1) < 0(O)Q(L) .
The last inequality follows from the fact that Q(0) is closer to } than P(0).
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(b} Let us define an arbitrary distribution by
| R(0) = P,(0) -+ 1
and denote F() = Hp (R,). An easy computation shows that
Hp (T*R)) = F(at)
F(H) = ey 4 1% + o(1h

wherea =1 —a — 8, ¢, ¢, 5% 0.
We have to show that

@) . tim, F@0 _
sup, Z0) % lim,, “}5‘ = O Weps Pop) -

It is easily seen that this limit equals 4*, Now

Flat) _ pGt aal -+ o(f)
F(y — e—+attol)

For some t with ¢, tj¢, < O this expression is clearly larger than &’ []

REFERENCES

[1] AuLsweok, R., Gics, P. and KURNER, J. (1976). Bounds on conditional probabilities with
applications in multi-user commurication. Z. Wahrscheinlichkeltstheorie und Verw.

Gebiete 34 157-177.

[2] CsAxi, P. and Fiscuer, J. (1963},
Inst. Math, Hung, Acad. Sci, 8 27-51.

13] GAcs, P. and KSRNER, J. (1973). Common information is fa
Probiems of Conirol and Information Theory 2 149-162.

[4] KULLBACK, S, (1958). Information Theory and Statistics. Wilcy, New York.

[5] Newson, E. (1973). The frec Markoff field. J. Funciional Anal, 12 211-221.
' of pairs of dependent random variables. SIAM

' On the general notion of maximal cor:clat-ion. Publ.

¢ less than mutual information,

[6] WiTsENHAUSEN, H, §. (1975). On sequences o
J. Appl. Math, 28 100-113,
MATHEMATICAL INSTITUTE OF
THE HUNGARIAN ACADEMY OF ScCIENCES
H-1053 BUDAPEST, REALTANODA U. 13-15

DEerT. OF MATHEMATICS

THE Ouio STATE UNIVERSITY
23] W, 181H AVENUE
Corumaus, OHIo 43210



