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We calculate per Monte Carlo evaluation on an 83 × 3 lattice the energy density e G of the gluon sector of QCD, in- 
cluding virtual quark loops up to the fourth power in the hopping parameter expansion. For light quarks of one flavour, 
we observe at T/A L ~ 95 -+ 10 a rapid variation of e G in T, accompanied by strong fluctuations from iteration to iteration, 
as clear signal of the deconfinement transition. 

The deconfinement transition, at which strongly 
interacting matter  becomes a colour-conducting plas- 
ma, has so far been studied for pure Yang-Mills  sys- 
tems and for full QCD without  virtual quark loops 
("quenched approximat ion") .  The concentration on 
Yang-Mills  fields in the first studies of  the phenomenon 
is physically meaningful: non-abelian gauge fields alone 
already exhibit confinement at low [1,2] and decon- 
finement at high [3] temperatures,  at least on the lat- 
tice. The statistical mechanics of  SU(N) gauge fields ,1 
has therefore contr ibuted significantly to our under- 
standing of  colour force thermodynamics.  On the 
other hand, the neglect of  virtual quark loops in the 
extension of  full QCD is due to technical difficulties 
rather than to physical reasoning: the evaluation of  
the r X r fermion matrix,  where r is some multiple of  
the number of  lattice sites (typically 10 000 or more), 
quickly led to the limits of  computer  possibilities both  
in speed and in memory space. Nevertheless, it is the 
virtual quark loops which provide the "breaking of  
the string" through meson formation, so their role 
in deconfinement is certainly crucial. The advent of  
array processors has now put the inclusion of  fer- 
mions within reach, and the aim of  this paper is to 
present first results on the statistical mechanics of  
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QCD with virtual quark loops. More precisely, we 
shall show how the energy density e G of  the gluon 
sector of  QCD is modified when virtual quarks are 
included. Pure SU(3) gauge theory,  we recall, led to 
a first order phase transition at the deconfinement 
point [5 ], and we want to see what happens to this 
when light virtual quarks of  one flavour are brought in. 

A phase transition can be studied in two ways. We 
may consider some thermodynamic quanti ty - energy 
density, specific heat - and look for a discontinuity 
or singularity; or we may construct a specific order 
parameter to distinguish the two phases. Thus, in the 
Ising model,  the Curie point  can be characterized eith- 
er by the singularity of  the specific heat or through the 
vanishing o f  the spontaneous magnetization. 

In SU(N) Yang-Mills  theory,  deconfinement is 
related to the breaking of  a global Z N symmetry [6,7]. 
The euclidean formulation of  the part i t ion function 
[8] requires the gauge fields to be periodic at the 
boundaries of  the imaginary time integration range: 
A(x,  O) = A(x ,  fl), where fl = T -1 is the inverse physical 
temperature.  On a lattice with spacing a, this implies 
that gauge transformations Vx, r must satisfy 

Vx,r= 0 = Vx,r=Nfl V x ,  (1) 

with fl = Nfla for the temporal lattice axis. The 
Yang-Mills  action, because it consists of  closed loops, 
is invariant under the larger class of  transformations 
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Vx,r= 0 = CNVx,r=N¢ 3 V x ,  (2) 

where ON1 E Z N is an element of  the center Z N of 
the SU(N) gauge group. On the other hand, the ther- 
mal Wilson loop 

Ue 

L(x )  - tr [-I Ux;r,,+ 1 , (3) 
7-=1 

where Ux;r,r+ 1 is the gauge group element on the link 
connecting r and r + 1 at x, is not invariant under the 
transformation (2): it becomes 

L ' (x )  = CNL(X ) . (4) 

The expectation value (L), averaged over x, thus con- 
stitutes an order parameter of  the state. Since (L) is 
connected to the free energy FQ of an isolated colour 
source [6], 

(L) ~ e x p ( - ~ F Q ) ,  (5) 

it vanishes in the confined state and becomes non-zero 
after deconfinement. 

The introduction of fermions into the action breaks 
the global invariance just discussed. In the euclidean 
form, fermion fields must be antiperiodic at the r- 
boundary, and hence the action contains terms of the 
type 

~ x,Nfj-1 Ux ;N/3-1,N/3 $ x,N[3 = -- ~ x,N[3-1 Ux ;Nil-l, Nt3 ~x,0 

"-') --¢~V ~x,N~3 - 1 Ux;NB-1,N e l~x;O • (6) 

It is thus evident that deconfinement in full QCD can- 
not be characterized in terms of a global invariance 
under the center of  the gauge group, and in particular, 
that (L) no longer constitutes an order parameter dis- 
tinguishing confined and deconfined states. We shall 
therefore follow the alternative approach to transi- 
tion phenomena and look for singular behaviour of  
thermodynamic quantities. 

Our starting point is the effective boson form of  the 
euclidean partition function of  QCD [9], 

= f H dVdet (1  - K M ) e x p t - S G ( U ) ]  , (7) 
ZE(fl) links 

where SG(U ) is the usual Wilson action for SU(3) 
gauge fields at finite temperature,  

SG(U ) = 6 2(aa/ag) (1 - ~ Re tr UUUU) 

+g~2(a~/a o (1 - ~ Re tr UUUU , (8) 

obtained by summing over space-like (Pa) and space-  
time (Po) plaquettes; a a and a# are the spatial and 
temporal lattice spacings, ga and g# the corresponding 
couplings. The matrix M, 

(9) 
M u ( U ) = ( 1  - ")'u)Unm6n, m _ ~  + (1 + 7 ~ ) U ; n 6 n ,  m+[~ 

describes the interaction between fermions of one fla- 
vour, corresponding to the Wilson form 

SF(U ) = ~(1 - KM)~b. (10) 

In the finite temperature case, the hopping parameter 
K (g2) is "link-direction" dependent: 

3 

KM= ~ M  0 +K a ~ M u .  (11) 
# a 

The resulting euclidean energy density of  the gluon sec. 
tor, obtained from 

eE - 1 ZEN3Nfi3a~ flinks[-I dUdet (1  - nM) 

× exp [ -SG(U)]  (SSG(U)/~at3)a ° , (12) 

with N a (N~) denoting the number of lattice sites per 
spatial (temporal) axis, leads for a a = a# = a (where ga 
= g~ = g, K a = K~ = K) to the physical energy density 

eG /T  4 = lSNJ [ (g -2 ) (P  o - ff#) + c'3(p - Po) 

i + c[t(e - p¢)] , (13) 

where Po, PO and f lare  the lattice expectation values 
for space-like, space- t ime and symmetric lattice pla- 
quettes, respectively. The averaging here is carried out 
with both the gluon Boltzmann factor and the fermion 
determinant as weights, 

1 
fia = gEE f liHsnk dU det(1 -~ :M)  exp [ -SG(U)]  

(1 - ~ Re tr UUUU) , (14) 
Pa 

and similarly for if# and P; the factor det(1 - KM) 
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provides the effect of  virtual quark loops on the gluon 
system. The constants c'o and c~ result from the dif- 
ferentiation of  the couplings ga and go with respect to 
a 0 ; they are known, and for a o = a O and colour SU(3) 

r 
one has [10] c a = 0.197633, c~ = -0 .132203 .  The prob- 
lem is thus one of  evaluating plaquette averages in the 
presence of  det(1 - ~l~r); in the quenched approxima- 
tion, this determinant is set equal to  unity and hence 
the effect of  virtual quark loops on the gluon system is 
neglected. 

We now expand the logarithm of  det(1 - ~M) in 
powers of  the hopping parameter K (g2) 

co 

In d e t ( 1 -  raM) = -tr/..~1 ~ M / . =  (15) 

Only closed loops contribute to the right-hand side of  
eq. (15). Taking into account the determinant in the 
Monte Carlo update of  the links corresponds now to 
replacing SG(U ) by  a new effective action Sef f (U ). 
On an N 3 × N o lattice with N o = 3, 

Sef f = SG(U ) - 32K 3 ~ Re L 
sites 

- 16K 4 ~ Re tr U U U U +  o(Ks), (16) 
P~r,Po 

where, because of  periodicity in the temporal direc- 
tion, the lowest order contr ibut ion in K is given by 
the thermal Wilson loop.  For the present, we include 
only terms up to fourth order in K. 

To calculate CG(/~), we still need to know the value 
of  the hopping parameter K (g2) at given g2, for mass- 
less quarks. At small g2, K is approximated by [ 11 ] 

K(g 2) "~ ~-(1 + 0 .099g2) .  (17) 

At larger g2, there are Monte Carlo results [12] for the 
region between the strong coupling value K = 0.25 and 
the weak limit ~ = 1/8. For the g2 range we are inter- 
ested in, we take K = 0.15 and K = 0.20 as indicative 
values. 

As we shall here calculate only ffa and frO' a com- 
ment is needed on the ffvalues used. The inclusion of  
the fermion determinant  up to fourth order in the 
hopping parameter expansion simply means shifting 

(6/g 2) ~ (6/g 2) + 48K 4 (18) 

in the evaluation of  if, where no n = 3 loop exists. With 
this shift, we use the values o f f fob ta ined  in ref. [13]. 

In fig. 1, we now show the energy density (13), 
evaluated on an 83 × 3 lattice, as function of  6/g 2. 

Our results are normalized to the S te fan-Bol tzmann 
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Fig. 1. Gluon energy density eG/T 4 in fourth order hopping parameter expansion as function of 6/g 2 and T/AL, for K = 0.20 (O 
ordered, • disordered start), K = 0.15 (o ordered, • disordered start) and K = 0 (zx ordered, • disordered start; here the T/A L scale 
does not apply). The dashed line is the ideal gas limit. 
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form e sB for a non-interacting gluon system, evaluated 
also on an 83 × 3 lattice [14]. To obtain e G as func- 
tion of  T = (Nt3a)-l, we use the normalization group 
relation 

4rr 2 [__66 ~ 
aA L = exp - 33 - 2Nf ~g2 ] 

4 5 9 - 5 7 N f  I 87 r2  (~ - ) ]}  
in , (19) 

+(33 - 2Nf) 2 33 - 2 N f  

with Nf = 1. We note that e G shows an rapid rise at 
6 / g  2 ~-- 5.38 for K = 0.15 and at 6 / g  2 ~-- 5.24 for 
= 0.20; hence the specific heat c v = ( a e / a T )  ~ (ae/ 
ag-2) ,  as shown in fig. 2, has a singularity-like peak 
there, as a clear signal of  deconfinement. Using eq. 
(19), the corresponding critical temperature Tc/A L 
becomes 89 for K = 0.15 and 105 for K = 0.20; this 
suggests a value of  95 +- 10, to be compared to 86 for 
the Yang-Mills system [5]. 

These results are obtained in fourth order of  the 
K-expansion. The effect of higher order terms is under 
investigation, but we note here already that the fourth 
order term only provides, by eq. (18), for fig. 1 an 
overall shift in 6 / g  2 by 0.024 for K = 0.15 and by 
0.072 for K = 0.2. 
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Fig. 2. The derivative d (eG/eSB)/d(6/g 2) ~ c V, as function of 
6/g 2 . 
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Fig. 3. Average thermal Wilson loop {L) for • = 0.15 as 
function of 6/g 2 (o ordered, • disordered start). 

In contrast to the abrupt change of e G in the transi- 
tion region, the thermal Wilson loop (L) does not 
vary greatly there, as seen in fig. 3. 

The behaviour of  e G found here is to be compared 
with the behaviour of  the pure Yang-Mills systems 
for colour SU(3) and SU(2). We note that the first 
order transition observed for the SU(3) Yang-Mills 
system [5] appears to be transformed into a second 
order transition by the inclusion of  virtual quark loops. 
On the other hand, the variation of  e G in fig. 1 appears 
still more rapid than the second order transition of  
the SU(2) Yang-Mills system [15]: in both cases, e/ 
T 4 requires about 20AL to rise from "bot tom to top";  
but ASU(2)/ASL U(3) ~ 2_We note further that at high 
T our eG(T ) approaches the Stefan-Boltzmann limit; 
but it does so much slower than for the pure Yang-  
Mills systems, and from above. 

To provide further evidence for the second order 
nature of  the transition for the gluon system with 
quark loops, we show in fig. 4a the behaviour of  e G 
as function of  the number of  Monte Carlo iterations, 
starting once from a completely ordered and once 
from a random initial configuration, in the vicinity of  
the deconflnement point. In fig. 4b, the corresponding 
behaviour is shown for the pure SU(3) Yang-Mills case 
While the latter shows a clear two-state signal, we find 
in fig. 4a the strong random fluctuations expected of  a 
second order transition. 

We are interested here in QCD with light quarks. To 
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Fig. 4. (a) Gluon energy density eG/T 4 with quark loops, as function of the number of lattice iterations, in bins of 200, for K 
= 0.15, at the deconfinement point. (b) The corresponding gluon energy density eG/T 4 for the pure Yang-Mills system. 

ensure a small quark mass, we must know rather pre- 
cisely K c, the value of the hopping parameter at the 
pion pole, as function o f g  2. Let us see what the un- 
certainties in K imply here. For the strong coupling val- 

ue K c = 0.25, the proposed relation [12] 

~-(1/~: - 1/~c) = e x p ( m q a ) -  1 , (20) 

gives us as estimates mq = 2.5 T c for K = 0.15 and mq 
= 1.2 T c for K = 0.20, in the case of one flavour. If 

K c ~-- 0.20 [12], then K = 0.15 gives mq = 1.8 T c, while 
the K = 0.20 curve corresponds to massless quarks. 

Finally, we want to comment on recent conjectures 
that in the presence of virtual quark loops deconfine- 
ment no longer exists as a formal phase transition 
[ 16-18] .  As noted above, fermions break the global 
symmetry of the action under the center of the gauge 
group; hence <L) can no longer be used to define con- 
finement and deconfinement phases. Unless we find a 
new order parameter, we can thus only look if some 
thermodynamic function shows discontinuous or sin- 
gular behaviour as signal of a phase transition. 

Such a discontinuity can occur as a "cont inuat ion" 
of the Yang-Mills transition, if the latter is of first 
order [SU(3) gauge fields in three space dimensions]. 

Then only for sufficiently strong fermion coupling will 
the loops smooth out completely the discontinuity. 

In the case of a second order transition in the 
Yang-Mills system [e.g. SU(2) gauge fields], any 
singular behaviour would have to be related to a new 
order parameter or symmetry. 

In either case, the physical basis for deconfinement, 
the Debye screening of colour forces, appears to be 
unchanged. Hence we expect as before to find an ab- 
rupt change of behaviour at some Tc, and this is borne 
out by our results. 

In ref. [18], it is found for the SU(3) system that 
the discontinuities in (L > and e G at K = 0 persist for 
a range of K values (~ <~ 0.08 on an 83 X 2 lattice for 
one flavour) and then disappear. It is now argued that 
this situation corresponds to a line of first order transi- 
tions, terminating in a second order point;  it is not 
shown, however, that for K > 0.08 there are no second 
order transitions. On an 83 X 3 lattice with one flavour, 
the end of the first order region would be expected to 
lie at K = 0.15, where we do in fact find second order 
behaviour*2. It persists, however, also for some range 

,2 We thank P. Hasenfratz for pointing out this agreement 
between the results of ref. [18] and ours. 

431 



Volume 133B, number 6 PHYSICS LETTERS 29 December 1983 

of K values beyond this point (see fig. 2), so that we 

find no evidence for any disappearance of the decon- 
finement transition. 

Since the extension to Nf > 1 is accompanied by a 
decrease of • at fixed 6/g 2, we do not expect these 
conclusions to be much changed for Nf = 3. 

A further important issue is of course the validity 
of a truncated hopping parameter expansion for 
values up to 0.20. Preliminary results obtained by 
including the K 5 contribution do not, however, lead 
to any striking changes. 

With our present approximations, this appears to 
leave us with three possible scenarios: 

(1) Deconfinement in the presence of light quarks 
is a second order phase transition and lies at the end 
of the line of first order transitions arising as K is in- 
creased. We still find, with relation (20), an appearant 
quark mass of about 1 - 2  T c, but this may well de- 
crease for more accurate Kc, on a larger lattice, in high- 
er order of K ; moreover, eq. (20) may have to be modi- 
fied to account for interactions. 

(2) Deconfinement is generally a second order tran- 
sition, but for sufficiently heavy quarks (i.e., sufficient- 
ly small ~) it is triggered to occur prematurely as a 
first order transition. 

(3) There is no more singular thermodynamic be- 
haviour for K greater than the value k associated with 
the endpoint,  and the case of light quarks corresponds 
to x-values larger than g. In this situation, deconfine- 
ment ceases to be a phase transition. 

There are rather clear tests to distinguish between 
these alternatives. To establish the occurrence of a 
second order transition, we have to show that the 
peak in c V increases with increasing lattice size. If 
there is a second order transition for one value ~ only, 
decreasing ¢ should lead to a first order transition, in- 
creasing g to non-singular behaviour. With present 
precision, we do not see any difference between K 
= 0.15 and K = 0.20. In addition, it should of course 
be checked that one is in the scaling region ofg  2. 

In summary: we conclude that deconfinement as 
a rapid change in physical regimes persists for SU(3) 
gauge fields at finite temperature, when virtual quark 
loops are included. The transition coupling 6/g 2 on a 
83 X 3 lattice is shifted to lower values than found 

for the corresponding Yang-Mills system, so that the 
deconfinement temperature does not seem to be much 
modified. For the nature of deconfinement, our results 

support a second order phase transition. 
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