Titelaufnahme
Titelaufnahme
- TitelUsing Structured UKR Manifolds for Motion Classification and Segmentation
- Verfasser
- Erschienen
- SpracheEnglisch
- DokumenttypKonferenzband
- URN
- DOI
Zugriffsbeschränkung
- Das Dokument ist frei verfügbar
Links
- Social MediaShare
- NachweisKein Nachweis verfügbar
- IIIF
Dateien
Klassifikation
Abstract
Task learning from observations of non-expert human users will be a core feature of future cognitive robots. However, the problem of task segmentation has only received minor attention. In this paper, we present a new approach to classifying and segmenting series of observations into a set of candidate motions. As basis for these candidates, we use structured UKR manifolds, a modified version of unsupervised kernel regression which has been introduced in order to easily reproduce and synthesise represented dextrous manipulation tasks. Together with the presented mechanism, it then realises a system that is able both to reproduce and recognise the represented motions.
Statistik
- Das PDF-Dokument wurde 5 mal heruntergeladen.
