Sommer, Björn: CELLmicrocosmos - Integrative cell modeling at the molecular, mesoscopic and functional level. 2012
Inhalt
- Acknowledgments
- Abstract
- 1 Introduction
- 1.1 Modeling and Visualizing the cytological Cosmos
- 1.2 CELLmicrocosmos: A bidirectional Approach
- 1.3 CELLmicrocosmos: An interdisciplinary Approach
- 1.4 Project and Thesis Structure
- 2 Biological Background
- 2.1 [MES] Mesoscopic Composition
- 2.1.1 The Cell
- 2.1.2 Cell Types
- 2.1.3 Cell Components and their Substructures
- 2.1.3.1 Plasma membrane
- 2.1.3.2 Cell Walls
- 2.1.3.3 Cytosol
- 2.1.3.4 Nucleus
- 2.1.3.5 Nucleolus
- 2.1.3.6 Endoplasmic reticulum
- 2.1.3.7 Ribosome
- 2.1.3.8 Golgi apparatus
- 2.1.3.9 Peroxisome
- 2.1.3.10 Mitochondrion
- 2.1.3.11 Chloroplast
- 2.1.3.12 Vesicle
- 2.1.3.13 Endosome
- 2.1.3.14 Lysosome
- 2.1.3.15 Vacuole
- 2.1.3.16 Extracellular matrix
- 2.1.3.17 Volume of Cell Components
- 2.2 [MOL] Molecular Composition
- 2.2.1 The Molecules of Cells
- 2.2.1.1 Carbohydrates
- 2.2.1.2 Nucleic Acids
- 2.2.1.3 Lipids, van der Waals and covalent Forces
- 2.2.1.4 Amino Acids and Proteins
- 2.2.1.5 Small Molecules
- 2.2.2 Membrane Model History
- 2.2.3 The Fluid Mosaic Model
- 2.2.4 Proteins in Membranes
- 2.2.5 Microdomains and Rafts
- 2.2.6 Membrane Compositions
- 2.3 [FUN] Metabolism
- 2.3.1 Enzyme, Products and Substrates
- 2.3.2 The Gain of Energy for Reactions
- 2.3.3 Biological Energy: ATP
- 2.3.4 Metabolic Pathways and Energy
- 2.3.5 The Citrate Cycle
- 2.4 [MES+MOL+FUN] Integrative Cytology?
- 3 Technical Background
- 3.1 [MES] Cell Microscopy and Modeling
- 3.2 [MOL] Membrane Modeling
- 3.2.1 Spectroscopy Types
- 3.2.1.1 X-Ray Crystallography
- 3.2.1.2 Electron Crystallography
- 3.2.1.3 Nuclear Magnetic Resonance (NMR) Spectroscopy
- 3.2.1.4 Summary
- 3.2.2 Structure Databases
- 3.2.2.1 Protein Databases
- 3.2.2.1.1 The Protein Data Bank (PDB): Database and Format
- 3.2.2.1.2 DisProt
- 3.2.2.1.3 Protein Modal Portal
- 3.2.2.1.4 PDBTM
- 3.2.2.1.5 OPM
- 3.2.2.2 Lipid Databases
- 3.2.2.2.1 HIC-UP
- 3.2.2.2.2 PDB Ligand Expo
- 3.2.2.2.3 Avanti Lipids
- 3.2.2.2.4 Klotho
- 3.2.2.2.5 Chemistry Molecular Models
- 3.2.2.3 Membrane Databases
- 3.2.2.4 Quantitative Comparison of Databases
- 3.2.3 Membrane Modeling and Simulation
- 3.2.4 Membrane Packing Problems
- 3.2.5 Traditional Membrane Modeling Methods
- 3.2.6 The Knapsack Problem
- 3.2.7 Packing Densities as a qualitative Criterion
- 3.3 [FUN] Network Reconstruction and Localization
- 3.3.1 Experimental Methods
- 3.3.2 Pathway and Localization Databases
- 3.3.3 Data Integration
- 3.3.4 Network Mapping Problem
- 3.4 [MES+MOL+FUN] Summary
- 4 Related Approaches
- 4.1 [MES] Cell Modeling Tools
- 4.1.1 Visual Cell Modeling
- 4.1.1.1 CELLmicrocosmos 1.0 DisplayCell
- 4.1.1.2 Meta!Blast
- 4.1.1.3 The Visible Cell® Project
- 4.1.1.4 AutoFill/AutoCell
- 4.1.1.5 LifeExplorer
- 4.1.2 Mathematical Cell Modeling and Simulation
- 4.1.3 Summary
- 4.2 [MOL] Membrane Modeling Tools
- 4.2.1 Membrane Visualization
- 4.2.2 Membrane Modeling
- 4.2.2.1 A Grid-based Method using MOE
- 4.2.2.2 ChemSW® Chemsite Pro®
- 4.2.2.3 CHARMM-GUI Membrane Builder
- 4.2.2.4 VMD Membrane-Plugin
- 4.2.2.5 Packmol
- 4.2.3 Summary
- 4.3 [FUN] Network Modeling Tools
- 4.3.1 2D Network Modeling Tools
- 4.3.2 2.5D Network Modeling Tools
- 4.3.3 3D Network Modeling Tools
- 4.3.3.1 Metabolic Pathways in VRML
- 4.3.3.2 MetNetVR
- 4.3.3.3 GEOMI: Protein Interaction Networks in 3D
- 4.3.3.4 The Interactorium
- 4.3.3.5 Integration and Visualization of Multimodal Biological Data
- 4.3.3.6 3DScape
- 4.3.4 Summary
- 4.4 [MES+MOL+FUN] The missing Link
- 5 Methods and Implementation
- 5.1 [MES] Mesoscopic Modeling: Constructing a Virtual Cell Environment
- 5.1.1 Requirements
- R1.I Realistic Cell Component Models (Abstraction Level 1)
- R1.II Interpretative Cell Component Models (Abstraction Level 2)
- R1.III Abstract Cell Component Models (Abstraction Level 3)
- R1.IV Multiple Cell Component Types
- R1.V Cell Component Layers
- R1.VI Multiple Cell Compositions
- R1.VII Cell Component Distribution
- R1.VIII Color Schemes
- R1.IX Import Capabilities
- R1.X Export Capabilities
- 5.1.2 Methods
- 5.1.2.1 Cell Component Modeling and Abstraction Levels
- 5.1.2.1.1 3D-microscopy-based Modeling (Abstraction Level 1)
- 5.1.2.1.2 Molecular-structure-based Cell Component Modeling (Abstraction Level 1)
- 5.1.2.1.3 Interpretative Cell Component Modeling (Abstraction Level 2)
- 5.1.2.1.4 Abstract Cell Component Modeling (Abstraction Level 3)
- 5.1.2.2 Cell components in CellEditor and the SphereCell
- 5.1.2.3 Coloring Methods for Cell Components
- 5.1.2.3.1 Contrast Color Codes
- 5.1.2.3.2 Color Scales
- 5.1.2.3.3 The Color Codes/Scales in CellEditor
- 5.1.2.4 Cell Component Layers
- 5.1.2.5 CellEditor
- 5.1.2.6 Placing cell models
- 5.1.2.7 Import and Export Capabilities
- 5.1.3 Implementation Details
- 5.2 [MOL] Molecular Modeling: Integrating Lipids and Proteins into a Membrane
- 5.2.1 Requirements
- R2.I Compatibility with different molecule types
- R2.II Compatibility with the Fluid Mosaic Model
- R2.III Membrane Composing
- R2.IV Incorporation of microdomains
- R2.V Performance for Desktop PCs and Laptop PCs
- R2.VI Solution to Membrane Packing Problems
- R2.VII Restriction to Geometrical Problem Solving
- R2.VIII Semi-automatic Placement of Proteins
- R2.IX Access to Databases: PDB, PDBTM and OPM
- R2.X Visualization
- R2.XI Packing Quality Verification
- R2.XII Export capabilities for further visualizations and simulations
- R2.XIII Import capabilities to analyze and visualize externally modified membranes
- R2.XIV Modularity
- R2.XV Reproducibility
- 5.2.2 Methods
- 5.2.2.1 PDB Integration
- 5.2.2.2 Lipid and Protein Packing
- 5.2.2.3 Shape-based and Atomic-based Computation and Visualization
- 5.2.2.4 Membrane Model: Stacks and Microdomains
- 5.2.2.5 Lipid Packing Algorithms and the Two-and-a-half-dimensional Knapsack Problem
- 5.2.2.6 A high-density-generating Plugin Algorithm: The Wanderer
- 5.2.2.7 The Plugin-Interface
- 5.2.2.8 Seed-based random number generation
- 5.2.2.9 Reverse-Parsing
- 5.2.2.10 Lipid Packing Density and Statistics
- 5.2.3 Implementation Details
- 5.3 [FUN] Functional Modeling: Integrating Metabolic Networks into a Virtual Cell
- 5.3.1 Requirements
- R3.I Import of Cell Models
- R3.II Access to a Data Warehouse
- R3.III Import of Network Structures
- R3.IV Differentiation of Localization Terms
- R3.V Import of Localization Data
- R3.VI Access to Localization References
- R3.VII Localization Visualization
- R3.VIII Combination of different Networks
- R3.IX Coloring Methods for the Network
- R3.X Coloring Methods for the Localizations
- R3.XI Node Distribution Algorithms
- R3.XII Node Mapping Functions
- R3.XIII Interactivity
- R3.XIV 3D Navigation
- R3.XV Shading for the Network
- R3.XVI 3D Stereoscopy
- R3.XVII Desktop and VR-ready
- R3.XVIII Reproducibility
- 5.3.2 Methods
- 5.3.2.1 Cell Modeling as Basis
- 5.3.2.2 Network Reconstruction
- 5.3.2.3 Protein Localization
- 5.3.2.3.1 The Databases
- 5.3.2.3.2 Localization Import via AND
- 5.3.2.3.3 The Mapping Table
- 5.3.2.3.4 The Localization Table and Localization Referencing
- 5.3.2.3.5 The Localization Charts
- 5.3.2.4 Correlating Networks with Cell Components
- 5.3.2.5 Network Layouts
- 5.3.2.6 Node Mapping
- 5.3.2.7 Correlating Networks
- 5.3.2.8 Coloring Methods for Networks
- 5.3.2.9 Coloring Methods for Nodes
- 5.3.2.10 CELLmicrocosmos Navigation and the NodeDetails Window
- 5.3.2.11 3D Stereoscopy and Shading
- 5.3.2.12 Export Capabilities
- 5.3.3 Implementation Details
- 5.4 [MES+MOL+FUN] Integrative Modeling: Combining Mesoscopic, Molecular and Functional Modeling
- 6 Application Cases
- 6.1 [MES] Cm3 CellEditor
- 6.1.1 Construction of an Animal Cell
- 6.1.2 Construction of a Plant Cell
- 6.1.3 Construction of a Bacterial Cell
- 6.1.4 Construction of a SphereCell
- 6.1.5 VRML import of single cell components
- 6.1.6 VRML export of the whole cell environment
- 6.1.7 Cell Models for Exhibitions
- 6.1.8 Cell Models for Education
- 6.2 [MOL] Cm2 MembraneEditor
- 6.2.1 Modeling of inner and outer mitochondrial membranes
- 6.2.1.1 Modeling an outer mitochondrial membrane
- 6.2.1.2 Incorporation of cholesterol
- 6.2.1.3 Addition of an inner mitochondrial membrane
- 6.2.2 Application to the Classical 2D-Knapsack-Problem
- 6.2.3 Protein Placement
- 6.2.4 Computation of extreme densities
- 6.2.5 Modeling of a lipid raft-containing plasma membrane
- 6.3 [FUN] Cm4 PathwayIntegration
- 6.3.1 Localizing metabolic Pathways
- 6.3.1.1 Downloading the Citrate Cycle and the Glycolysis
- 6.3.1.2 First Localization Results
- 6.3.1.3 Investigating the preliminary Localizations
- 6.3.1.4 Examining an Outsider by direct Access to external Sources
- 6.3.1.5 Localization Result
- 6.3.1.6 3D Visualization
- 6.3.2 Cytological Disease Mapping
- 6.4 [MES+MOL+FUN] Cm1 CellExplorer and CmX mRNA
- 7 Conclusions and Outlook
- 7.1 [MES] Cell Modeling at the Mesoscopic Level
- 7.2 [MOL] Cell Modeling at the Molecular Level
- 7.3 [FUN] Cell Modeling at the Functional Level
- 7.4 [MES+MOL+FUN] Integrative Cell Modeling
- 7.5 Synthetic Cell Modeling
- 8 References
- 9 Appendix
- 9.1 Biological Abbreviations
- 9.1.1 Lipid Abbreviations [Genn89]
- 9.1.1.1 (Glycero-)Phospholipids
- 9.1.1.2 Phosphatidylethanolamine
- 9.1.1.3 Sphingolipids
- 9.1.1.4 Sterols
- 9.1.2 Other Biological Abbreviations
- 9.2 Technical Abbreviations
- 9.3 Optimization Problem Definition
- 9.4 Abstraction Levels
- 9.5 Special Terms
- 9.6 The PDB Format: An Example
- 9.7 A Simple Membrane Packing Algorithm
- 9.8 The Enzyme Classification: An Example
- 9.9 2D Visualization of the Glycolysis in the 2D Viewer of CmPI
- 9.10 Coordinate Axes
- 9.11 Units and molecular components
- 9.12 Units of the cell
- 9.13 Common names of fatty acids
- 9.14 The Color Codes derived from the Color Alphabet of Green-Armytage
- 9.15 Versioning Information
- 9.16 Projects and Participants
- 9.17 Implementation Work
- 9.17.1 Implementation Work of Björn Sommer
- 9.17.2 Implementation Work of Students and Colleagues
- 9.17.3 Cell Components and their Authors
- 9.18 Used Programs
- 9.19 Complete Comparison Tables
